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Abstract

When the same experiment is carried out in a different environment, the error term not

only includes the random error within a given experiment, but it also includes the additional

sources of variability that are introduced by conducting the same experiment in different en-

vironments. These differences include both natural factors such as location, time or weather

and other factors such as personnel or equipment necessary to carry out this experiment.

By considering the effect of changing experimental environments on the reproducibility of

experiments, we try to figure out in what situations the initial experimental results will likely

carry over to other environments. We examine how p-value, effect size, sample size, and the

ratio of the standard deviation of environment by treatment interaction and the standard

deviation of experimental error interact with one another, and as a whole, affect the exper-

iment’s reproducibility. We suggest that not only p-values but also the effect sizes and the

environmental effect ratio—the ratio of the standard deviation of environment by treatment

interaction and the standard deviation of experimental error—should be considered when

researchers are making statistical inferences. Large effect sizes and/or small ratios of the en-

vironmental effect ratio favor high probability of reproducibility. If the environmental effect

ratio is too large, the reproducibility probability may be reduced to just a coin toss, and

if effect sizes are small, researchers should be very cautious about making inferences about

reproducibility even if the observed p-value is small and sample size is large.
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Chapter 1

Introduction

Researchers are more and more concerned with the reproducibility of scientific research

since they have found a high probability of failure to reproduce the same results as other

researchers. A survey of Nature readers found that about 70% of scientists have failed to

reproduce other researchers’ experiments, and more than 50% have failed to reproduce their

own studies (Baker, 2016). Scientists have referred to these concerns as the problems of

research reproducibility which are quite pervasive across all scientific domains (Begley and

Ioannidis, 2015).

1.1 Reproducibility in Agriculture Research

Agriculture shoulders the responsibility of supplying safe and secure food for an exponen-

tially growing population. From the time of R.A. Fisher at Rothamsted Experiment Station

to today, agricultural researchers have recognized the difficulty in drawing valid statistical

inferences from an experiment done under non-homogeneous conditions. They were early

adopters of the techniques of blocking and randomization to mitigate the effects of confound-

ing environmental factors, and now such techniques are recognized as the gold standard for

research. However, even with this well-established systematic approach over several decades,

many times, scientists found it difficult to reproduce other researcher’s experiment in agri-
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cultural research which is due to misconceptions and misuse of statistics (Bello and Renter,

2018). Incorrect or improper conduction in experimental design, methodology, data, or com-

puter code as a whole put forward a big challenge for the reproducibility of research (Richard

et al., 2016). To fix this problem, open science and standardized implementation of statistical

principles and methods should be encouraged (Bello and Renter, 2018).

1.2 Reproducibility in Social Science Study

In social science, researchers want the treatment to be homogeneous across individuals, but

at the same time they also worry about that the experimental sample do not represent the

population as a whole. The infrequency of some data sources (Census, yields, and seasonal

prices) may also degrade the power of studies (Richard et al., 2016). In 2015, an open

science collaboration study was published on Science saying that researchers conducted

replications of 100 experimental and correlational studies published in three psychology

journals using original materials and found that less than 50% of the original findings were

reproducible (Aarts et al., 2015). A study from Federal Reserve Board of USA, which

tried to replicate 67 papers published in 13 well-regarded economics journals, concluded

that economics research is usually not replicable; the study found that more than half of

the papers are irreproducible despite using author-provided data and code. (Chang and Li,

2015). Even researchers that have big data from big projects of big companies, such like the

Google’s project of Google Flu Trends, have found that bad experimental design and bias of

inference could be the blame for the failure of reproducibility (David et al., 2014; Bello and

Renter, 2018).

In psychological studies, researchers need to predict and determine the internal or ex-

ternal conditions, such like cognition, affect, behavior or situation, for the stability and the

variability of psychological phenomena because psychological phenomena may vary across

time, situation and persons (Iso-Ahola, 2017). Bavel et al. (2016) analysized 100 replication

attempts in psychology and found that replication success was associated with the extent

of contextually sensitive variables (varying in time, culture, population, or location) which
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might be a significant predictor of replication success even adjusting for effect size, or sta-

tistical power. Johnson et al. (2017) used a method based on z-transformed correlation

coefficients to reanalyze 100 psychology experiments from the Open Science Collaboration

and found that more than 90% of experimental hypotheses were incorrect.

With the problem of reproducibility in social science study a serious problem like this,

the confidence in the research results should be a concern, and how to fix this problem needs

in-depth discussion and intensive study. The proposed solutions should always be involved

with open science and collaboration (Richard et al., 2016).

1.3 Reproducibility in Biomedical Science

The lack of reproducibility in the health science researches has been lamented by scien-

tists (Boos and Stefanski, 2011). Every year, governments spend heavily on biomedical

study hoping to find some ways to treat diseases or improve human health. At the same

time, most of studies turn out to be irreproducible after researchers spend huge amounts of

effort and time on it. The cause of irreproducibility in biomedical research is complicated.

It could be due to the experiment design, the characteristic of the experimental samples,

the natural variability in the biological experimental systems, the expertise of the personnel,

the equipment, and/or the change of experimental environment. “Huge expense of human

research, ethical issues, the complex interaction of diet, genetics, environment and metabolic

factors, the drastically change of time, geography and culture, strictly controlled experimen-

tal situation may cause the problems of lacking adequate controls, and make reproduction of

results in real-life situations difficult and may limit generalizability of results to society in

general” (Richard et al., 2016). Prinz et al. (2011) used in-house target validation method

to reproduce the results of 67 medical projects and found that 65 percent of results were not

consistent with the original studies. These failures of reproducibility of biomedical research

may risk loss of credibility with the public and in some way will hinder the development of

biomedical research (Mullane et al., 2018).

This is a challenge that needs to be addressed globally through cooperation and collab-
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oration between researchers and institutions (Partnership, 2016). Kaplan and Irvin (2015)

suggests identifying the treatment effects should depend on transparent and impartial report-

ing of clinical trial results. Prinz et al. (2011) conjectured that heterogeneous experimental

conditions caused by negligence over the experimental conditions could be an explanation

for the failure of reproducibility despite self-correction and peer review, and recommended

fulfillment of confirmatory validation studies should be prior to larger investment. Zarin

et al. (2011) suggested that the study’s purpose, recruitment status, design eligibility crite-

ria, locations should be registered beforehand. In order to improve reproducibility, a number

of measures such as greater openness and transparency of methods and data, collaboration,

strict reporting and registering guidelines, peer review, automation, personnel training are

encouraged (Partnership, 2016).

1.4 Statistical Significance and Reproducibility

When many scientists are putting a large amount of effort trying to get a significant result, do

significant results really mean significant effects? Ioannidis (2005) noted “A research finding

is less likely to be true when the studies conducted in a field are smaller; when effect sizes are

smaller; when there is a greater number and lesser pre-selection of tested relationships; where

there is greater flexibility in designs, definitions, outcomes, and analytical models; when there

is greater financial and other interest and prejudice. . . ”. For example, since the launch of the

clinicaltrials.gov registry in 2000, which forced researchers to preregister their methodology,

the percentage of significant positive results from large heart-disease clinical trials dropped

from 57% to just 8% (Bavel et al., 2016). One possible explanation is that reduced error

variance and more precise estimates of treatment effects were provided by newer clinical trial

management methodologies (Kaplan and Irvin, 2015).

Journals tend to favor publication of statistically significant findings (Kaplan and Irvin,

2015). When researchers perform statistical inference, they likely rely on p-values to deter-

mine the “statistically significant” results. However, p-values may be misleading. Sample-
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to-sample variability and ignoring variability in p-values is potentially misleading and could

cause a lack of replication in studies; therefore in some situations the p-value should be

adjusted (Boos and Stefanski, 2011). Based on the p-value method, Shenhav et al. (2015)

mentioned a max (p-value) method (with P1, P2 as the p-values yielded from the original

experiment and the reproduced experiment respectively) would be more precise. Boos and

Stefanski (2011) argued that reporting the magnitudes of the p-values would make more

sense. However, statistically significant p-values about treatment effects without further

context do not have any practical significance (Bello and Renter, 2018). A small p-value, or

statistical significance, does not imply a large size of an effect.

1.5 A Different Experimental Environment

In order to reproduce other researcher’s experimental result, people need to carry out the

experiment in the same or similar environment. However, only repeated experiments with

similar findings will give “reproducibility” more sense (Goodman et al., 2016). Basic terms

such as reproducibility, replicability, reliability, robustness, and generalizability are nearly

identical and “reproducibility” consists of “methods reproducibility”, “results reproducibil-

ity”, and “inferential reproducibility” (Goodman et al., 2016). We will consider “inferential

reproducibility”.

When follow-up research fails to yield the same significant result as the initial research,

the research concerns may focus on what went wrong with the experimental design, the

methodology, the data, or the computer code. What perhaps is not as well-known is the

fact that the follow-up research must be done in a different experimental environment. This

can lead to failure to confirm the initial results even if two experiments are done flawlessly.

The environment of an experiment includes natural factors such as weather, location, time,

and other factors like the characteristic of the experimental units, the experimental protocol,

the expertise of the personnel, and the equipment used to carry out the experiment. These

uncontrollable and controllable factors can interact with each other and, as a whole, affect

the outcome of an experiment in unique ways. From the time of R.A. Fisher when he
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used the techniques of blocking and randomization to reduce the effects of confounding

factors, to today, researchers have realized the difficulty in making valid statistical inferences

from an experiment done under non-homogeneous environments. A biology multi-laboratory

study figured out that genotype×laboratory interactions were unavoidable even under strict

and careful standardization which implied that results from a single experiment might be

idiosyncratic (Kafkafi et al., 2005).

When researchers finish an experiment and have significant results, they want their results

to apply broadly. This is the solid foundation for the progress of science. If researchers can

replicate the experiment under several randomly selected environments, then they can draw

valid inferences about average treatment effects through the techniques of mixed models

where the average is taken across environments. With limited coordinated community effort,

and unavoidable existence of interaction across experimental environments, a mixed model

where the size of interaction can be estimated from multi-laboratory results should be used

if possible (Kafkafi et al., 2005). Even if researchers realize that there is interaction across

experimental environments, it may not be possible to replicate the experiment because of

costs, time, or other limitations. Thus the question is: under what conditions would it

be reasonable to infer that results from an experiment done in one environment could be

reproduced in another environment?

1.6 Introduction to Our Study

In this study, we define reproducibility as obtaining the same inference in a follow-up ex-

periment as in the initial experiment. We examine how p-value, effect size, sample size,

and variances between different environments interact with one another, and as a whole,

affect the experiment’s reproducibility. We propose three quantities that measure the likeli-

hood that results of the initial experiment can be reproduced in the follow-up experiment:

the probability of reproducibility, the adjusted p-value, and the adjusted confidence level.

These quantities depend on four quantities: the environmental effect ratio—the ratio of the

standard deviation of environment by treatment interaction and the standard deviation of
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experimental error, the effect size, the level of significance of the test or the level of confi-

dence, and the sample size. We focus on environment by treatment interaction and effect

size.
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Chapter 2

Model and Test Statistics

2.1 Model

We design an experiment to compare the effect of two treatments. Observations from the

initial experiment are assumed to follow the model (we call it Model 2.1 here)

Yij = ui + εij, i = 1, 2, j = 1, ..., n (2.1)

where ui is the mean of the ith treatment and the εij’s are iid random variables distributed

as N(0, σ2
e). We would like make inferences on u1 − u2.

In the follow-up experiment, when the same experiment is repeated, changing experi-

mental conditions are assumed to affect the responses either in some systematic way or in

ways unique to each treatment. We express this with a mixed model (we call it Model 2.2

here)

Yij = ui + θ + δi + εij, i = 1, 2, j = 1, ..., n (2.2)

The ui’s and the εij’s follow the assumptions in Model 2.1. The term θ represents random

sources of variability common to all observations such as weather, time or location. The δ’s

represent random sources of variability unique to each treatment such as varying expertise of

the personnel in handling each treatment, variability caused by the equipment or procedures
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that are unique to each treatment, and the interactions of the treatments with the climate

or location under which the treatments are administered. The distribution of θ is N(0, σ2
θ).

Its distribution does not figure into the distribution of differences of the means. The δi are

idependent and identically distributed N(0, σ2
B) (B denoting ”between” between environ-

ments within treatment (or interaction). The random terms in Model 2.2 are assumed to

be mutually independent. Since we want to confirm the result of the initial experiment, we

assume the initial experiment is done perfectly in a flawless experimental environment, so

the Model 2.1 excludes the terms of θ, and δ.

2.2 Test Statistics and Distribution

Note: A random variable NCT has a non-central t-distribution with degrees of freedom

(df) if it can be expressed in the form

NCT = Y/
√
V/df (2.3)

where Y has a N(u, 1) distribution, V has a chi-square distribution with degrees of freedom

df , and Y and V are independent. The parameter u is called the non-centrality parameter.

Now we will use the non-central t-distribution to compute the probability of reproducibil-

ity under Model 2.2 with the same assumptions on the terms we had before. Let us consider

testing H0 : u1 − u2 = 0 against Ha : u1 − u2 6= 0. We will consider the case in which σe is

unknown.

The difference of sample means can be expressed as:

(Y 1 − Y 2) = (u1 − u2) + (ε1 − ε2) + (δ1 − δ2) (2.4)

where the bar notation indicates the sample mean of the respective random variables. This

has a normal distribution with mean u1 − u2 and variance 2σ2
e/n+ 2σ2

B. Thus, the variable
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Y defined by

Y =
Y 1 − Y 2√

2σ2
e/n+ 2σ2

B

(2.5)

has a normal distribution with mean

u =
u1 − u2√

2σ2
e/n+ 2σ2

B

(2.6)

and standard deviation 1. The random variable V defined by V = 2(n−1)(S2
p/σ

2
e) has a chi-

square distribution with df = 2(n− 1) degrees of freedom, where Sp is the ”pooled” sample

standard deviation from the observations taken on the two treatments. Thus, Sp/σe =√
V/df . The test statistic is

t− stat =
Y 1 − Y 2

Sp
√

2/n
(2.7)

Multiply and divide the right hand side of 2.7 by
√

2σ2
e/n+ 2σ2

B, and after some simpli-

fication, the t− stat can be expressed as

t− stat =
Y√
V/df

√
1 + nσ2

B/σ
2
e = NCT

√
1 + nσ2

B/σ
2
e (2.8)

where under Ha, NCT has a non-central t-distribution with df = 2(n−1) and non-centrality

parameter

u =
u1 − u2√

2σ2
e/n+ 2σ2

B

=

√
n∆√

1 + nσ2
B/σ

2
e

(2.9)

where ∆ is the effect size defined by

∆ = (u1 − u2)/(σe
√

2). (2.10)

The effect size is the expected value of the difference between two observations, one

from treatment one and the other from treatment two, divided by the standard deviation

of this difference. It occurs naturally in certain mathematical expressions in our discussion.

Another definition of effect size is called Cohen’s d (Cohen, 1988), which excludes the factor
√

2.
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2.3 Probability of Reproducibility

2.3.1 Computation of Probability of Reproducibility

We define the probability of reproducibility as the probability that the follow-up experiment

(Model 2.2) yields a significant result, assuming the initial experiment (Model 2.1) yields

a significant result. Without loss of generality, we assume that u1 > u2 in testing H0 :

u1 − u2 = 0 against Ha : u1 − u2 6= 0 using the t − statistic and that the test is done at

level of significant α which is set at the traditional .05 level or smaller. Let tα/2,df denote

the upper α/2 percentage point of the Student’s t-distribution. We consider the probability

of reproducibility only in the case in which the initial test is statistically significant. If

t − stat ≥ tα/2,df in the initial experiment, then we have a reproducible result if t − stat ≥

tα/2,df in the follow-up experiement. The probability of reproducibility in this case is P (t−

stat ≥ tα/2,df |Model 2.2). In the event that the initial experiment is significant in the wrong

direction, that is, t − stat ≤ −tα/2,df , then reproducibility occurs if t − stat ≤ −tα/2,df

in the follow-up experiment which would be a confirmation of an incorrect result. Since

P (t− stat ≤ −tα/2,df |Model 2.2) is small, less than α/2 when u1 > u2, we will only consider

t− stat ≥ tα/2,df in computing the probability of reproducibility. Thus, for a two-sided test

at level of significance α, the probability of reproducibility is

P (t− stat > tα/2,df ) = P

(
NCT > tα/2,df/

√
1 + nσ2

B/σ
2
e

)
(2.11)

When the experiment is done the first time, we assume that there are no random compo-

nents other than the ε’s, so the distribution of the t− statistic in this case can be attained

by setting σB = 0 in the computation above. Thus, the probability of reaching the correct

decision in the first experiment is

P (t− stat > tα/2,df ) = P (NCT ∗ > tα/2,df ) (2.12)

where NCT ∗ has a non-central t-distribution with degree freedom 2(n−1) and non-centrality

11



parameter
√
n∆.

We denote Gdf,u(t) as the cumulative distribution function (cdf) of this non-central t-

distribution, where df is the degrees of freedom, and u is the non-centrality parameter.

Then the probability of reproducibility is

1−Gdf,u(tα/2,df/
√

1 + nσ2
B/σ

2
e) (2.13)

The power of the initial test is approximately P (t− stat ≥ tα/2,df |Model 2.1), but that is

not the case in the follow-up experiment. Under Model 2.2, the probability of significance in

the wrong direction, i.e. P (t− stat ≤ −tα/2,df |Model 2.2), can be substantial and may be as

large as .5 depending on the size of σB/σe—we call this term the environmental effect ratio.

Thus, the probability of reproducibility is the probability of reaching correct conclusion in

the follow-up experiment both in terms of rejecting the two-sided null hypothesis H0 and

doing so in the right direction. It is affected by four factors: α, n, ∆, and σB/σe.

Z-Test

When we consider the case in which σe is known, we still use the Model 2.1 and the Model 2.2

for the initial experiment and the follow-up experiment respectively and the assumptions

based on both models still hold. The z − statistic for Model 2.2 is

z − stat = (u1 − u2)/(σe
√

2/n) + (ε1 − ε2)/(σe
√

2/n) + (δ1 − δ2)/(σe
√

2/n) (2.14)

from which we can see the distribution of z − stat

z − stat ∼ N(∆
√
n, 1 + nσ2

B/σ
2
e) (2.15)

The probability of reproducibility is then

1− Φ

(
zα/2 −∆

√
n√

1 + nσ2
B/σ

2
e

)
(2.16)
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where Φ is the cdf of the standard normal distribution, and zα/2 is the α/2 upper percentage

point of the standard normal distribution.

Normal Approximation

The central and non-central t-distribution have degrees of freedom determined by the sample

size. We shall use the normal distribution, as mentioned above, as an approximation for

the central and non-central t-distribution to get an approximate formula when the sample

size is sufficiently large such that a normal approximation to the central and non-central

t-distribution is adequate. In this situation, under null hypothesis, the test statistic t −

stat ∼̇ N(0, 1), and under alternative hypothesis, t − stat ∼̇ N(u, 1), where u is the non-

centrality parameter. We shall use tα/2,df ≈ zα/2, tβ,df ≈ zβ, and

Gdf,u(tα/2,df ) ≈ Φ(zα/2 − u). (2.17)

where G and Φ is the cdf of non-central t-distribution and normal distribution respec-

tively and zα/2 is the upper α/2-quantile of Φ.

2.3.2 The Effect of σB/σe on Probability of Reproducibility

We will assume that the initial experiment has sufficiently high power to detect an effect size

of practical importance. We assume the initial experiment is well designed and well carried

out and α is set at the traditional .05 level or smaller. We investigate conditions under which

the follow-up experiment also produces a significant result. The follow-up experiment intro-

duces the variance component σ2
B into the model, and it affects the probability distribution

of the test statistic through the deviation ratio σB/σe. The size of σB/σe will depend on how

well treatments can be administered consistently across environments and the interaction of

the environment with the treatments. Less consistency and more interaction will result in

larger values of σB/σe.
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Example 1: Small n, Traditional α, ∆ = 1.02

Snedecor and Cochran (1989) illustrate the independent sample t-test with data from a

study to compare the comb weights of male chicks given one of two hormone treatments.

The sample size is n = 11, the sample means are 97g and 56g, and the pooled standard

deviation is 12.14g. A test for differences of means gives p = .003 for the two-sided test. The

observed effect size is 1.02.

To illustrate how σB/σe affects the probability of reproducibility, we consider an initial

experiment like this one with a sample of size n = 11, α = .05, and the true effect size

∆ = 1.0. Under Model 2.1, the t − statistic has power .88 for this effect size, which we

assume would meet the requirements of the researchers. The probability of reproducibility

is P (t− stat ≥ t0.025,20|Model 2.2). Figure 2.1 shows a plot of this probability and plots the

probabilities of significance in the wrong direction, i.e. P (t − stat ≤ −t0.025,20|Model 2.2),

and non-significance as a function of σB/σe.

If σB/σe = 0, the probability of reproducibility is the power of initial test, .88, and small

values of σB/σe will ensure that there is a high probability of reproducibility in the follow-up

experiment. However, as σB/σe increases not only does the probability of reproducibility

decrease, but the probability of significance in the wrong direction increases. It can be

shown that for any given n, α,and ∆, these probabilities of reproducibility approach .5 as

σB/σe → ∞. Thus, the probability of obtaining a correct result for this effect size, while is

.88 for the initial experiment, can be substantially degraded in the follow-up experiment. In

the case of very large σB/σe, reproducibility is essentially determined by the toss of a coin.

Example 2: Small n, Traditional α, smaller effect size: ∆ = 0.68

Small et al. (2018) studied curcumin’s anti-inflammatory properties, and curcumin’s effect

on memory in non-demented adults. The study used a randomized, double-blind, two-group

parallel design and mixed general linear models controlling for age and education. The

sample size for the treated group was 15, and the treatment group’s effect size for improving

experimental subjects’ attention has a d = 0.98, p− value < 0.0001.(Small’s study used the
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Figure 2.1: Probability of reproducibility, probability of significance in the wrong direction,
non-significance, vs. σB/σe, n = 11, ∆=1.0, α = .05, initial power = .88

Cohen’s d as the effect size. We transform Cohen’s d into the scale of the effect size we use

in this study and have ∆ = 0.68). For this example we still use non-central t-distribution

and the same test models . Figure 2.2 shows a plot of the probabilities of reproducibility,

significance in the wrong direction and non-significance as a function of σB/σe. This plot

has a similar general trend as Figure 2.1. But since the effect size is smaller, this experiment

has power= .72 for this effect size under Model 2.1 and has a probability of non-significance

as big as .28 respectively, which implies that for a fixed value of σB/σe, the power of finding

significance, or the probability of reproducibility may decrease as effect size decreases.

Example 3: Large n and Small α

One might expect that when an initial experiment with a large sample size and small signif-

icance level yields a significant result, such result would be reproducible. However, this can

be wrong when there is a small effect size. Table 2.1 shows a case in which n=500, α=.01,

and ∆=.2 and 0.8.

The power of the initial test is .97 when ∆=.2. However, in the follow-up experiment

with the same effect size in which σB/σe=.5, the probability of reproducibility is just .57.
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Figure 2.2: Probability of reproducibility, probability of significance in the wrong direction,
non-significance, vs σB/σe, n = 15, ∆=0.68, α = .05, initial power = .72

n=500, α=.01,σB/σe = .5
∆

0.2 0.8
Power of initial test: model (1) 0.97 1.00
Power of the follow-up test: model (2) two-tail rejection 0.83 0.95
Prob reproducibility: model (2) upper-tail rejection 0.57 0.91
Prob follow-up test significant in wrong direction 0.26 0.03
Prob follow-up non-significant 0.17 0.05

Table 2.1: Example 3: a case in which n=500, α=.01, and ∆=.2 and 0.8.

Also, the probability of finding a non-significant result is .17 and the probability of finding

a significant result in the wrong direction is .26. If ∆ is increased to .8, the probability of

reproducibility is .91 and the probability of finding non-significance or significance in the

wrong direction become much smaller.

From this example, we can conclude that to determine whether an experimental result

is likely to be reproducible in a changing environment, we not only need to consider the

level of significance and the power of the initial experiment but also need to take the effect

size into consideration. Figure 2.3 shows plots of the probability of reproducibility and the

probability of significance in the wrong direction versus σB/σe for n=500, α=.01, and ∆=.2
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or .8 which illustrates that for a fixed σB/σe, a larger effect size may yield a bigger probability

of reproducibility. In other words, large effect size may overcome a noisy environment.
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Figure 2.3: Probability of reproducibility & probability of rejecting in the wrong direction vs
σB/σe, n = 500, ∆=.2 and .8, α = .01, initial power ≥ .97

Now, we can look at the limiting case as n → ∞ to gain additional insight. By the

Normal Approximation, we have

lim
n→∞

P (t−stat > tα/2,df |Model 2.2) = lim
n→∞

P (z−stat > zα/2|Model 2.2) ≈ 1−Φ(−∆/(σB/σe))

(2.18)

Under Model 2.1, the probability of reproducibility approaches 1 as n→∞. This is not

the case under Model 2.2. As Equation 2.18 shows, under Model 2.2, this limit turns out

to depend on the ∆ and σB/σe, but it is independent of the level of significance. Therefore,

increasing the sample size or reducing the significance level will not assure getting a high

reproducibility probability when random factors are in the follow-up experiment. In the

other words, smaller values of σB/σe and/or larger effect sizes are the keys to obtaining high

probabilities of reproducibility.
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2.3.3 Relative Efficiency of the Initial and the Follow-up Experi-

ments

In a statistical test in which the sample size is selected to achieve a desired power for a given

effect size, the size of the sample is a measure of the efficiency of the test. The smaller the

sample size, the more efficient the test is in achieving its objectives. If two tests are designed

to test the same hypotheses and achieve the same power at the same level of significance,

then the ratio of their respective sample sizes is a measure of the relative efficiency of the

two tests. We will use this idea to get the relative efficiency of the initial and the follow-up

experiment using the t-test.

Suppose for a given ∆ and α, we would like the probabilities of reaching a correct con-

clusion for the initial and follow-up experiments to be the same. Because the follow-up

experiment has a random component in it that is not in the initial experiment, the sample

size will be larger for the follow-up experiment. Let nI and nF be the sample sizes necessary

for the initial and follow-up experiments to have the same probability of a correct result

respectively. Then, the relative efficiency of the follow-up experiment to the initial experi-

ment is nI/nF . The sample size can be found by setting the probability of reproducibility

equation 2.13 to 1− β and solving for n.

1−Gdf,u

(
tα/2,df

/√
1 + nσ2

B/σ
2
e

)
= 1− β =⇒ Gdf,u=0

(
tα/2,df

/√
1 + nσ2

B/σ
2
e − u

)
= β

(2.19)

Then we have

G−1df,u=0(β) = tα/2,df/
√

1 + nσ2
B/σ

2
e − u

= tα/2,df/
√

1 + nσ2
B/σ

2
e −∆

√
n/
√

1 + nσ2
B/σ

2
e

= (tα/2,df −∆
√
n)/
√

1 + nσ2
B/σ

2
e

(2.20)
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Thus,

β = Gdf,u=0

(
(tα/2,df −∆

√
n)/
√

1 + nσ2
B/σ

2
e

)
(2.21)

Apply the Normal Approximation, then we have, for β < .5,

− zβ = Φ−1(β) ≈ (zα/2 −∆
√
n)/
√

1 + nσ2
B/σ

2
e (2.22)

After some simplification, we have

zα/2 + zβ

√
1 + nσ2

B/σ
2
e ≈ ∆

√
n (2.23)

For the initial experiment, nI = (zα/2 + zβ)2/∆2. For the follow-up experiment sample

size, we need to solve for nF in equation 2.23. Because the probability of reproducibility can

be no greater than the expression on the right side of equation 2.18, it is possible that there

is no solution to equation 2.23 in which case the relative efficiency is 0.
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Figure 2.4: Relative Efficiency vs σB/σe, 1− β = .8, ∆=0.5, α = .05

Figure 2.4 shows plots of the relative efficiencies for effect sizes of .5 versus σB/σe where

the level of significance is .05 and the desired probability of reaching a correct conclusion
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is .8. For instance, if the effect size is .5 and σB/σe is .2, the sample size are nI = 32,

nF = 46, giving a relative efficiency nI/nF = .70. (Computed sample sizes are rounded up

to the nearest integer). Thus, it takes a 44% larger sample size in the follow-up experiment

than that is required in the initial experiment to achieve a probability .8 of getting a correct

conclusion. If σB/σe > .6, nI/nF ≈ 0, which means it is not possible to find a sample size

for the follow-up experiment to have a power of .8.

This case of relative efficiency implies that there is a disadvantage for the researchers

who carry out the follow-up experiment. That is, if the follow-up experiment is done at

the same sample size as the initial experiment, it has a lower probability to find out the

significant result. Researchers need to raise their sample size of the follow-up experiment to

compensate the loss of efficiency. As with all sample size determinations, prior knowledge

of the size of the variance component will be required to determine the sample size for the

follow-up experiment.

2.4 Adjusted P -values and Adjusted Confidence Levels

The two common tools for making inferences about u1 − u2 are the p-values and confidence

intervals, but what does a p-value or a level of confidence in the initial experiment tell us

about these values in a follow-up experiment? We will show that small p-values or high levels

of confidence are not enough to determine that the results of the initial experiment would

carry over to a follow-up experiment. Instead, these must be interpreted in terms of the size

of σB/σe and the estimated value of ∆.

2.4.1 Adjusted P -values

We define the observed effect size to be ∆∗ = (y1−y2)/(
√

2sp), the lower-case letters denoting

observed values of the sample means from two treatments. We assume ∆∗ > 0 consistent

with our assumption that u1 > u2. The observed t−stat =
y1 − y2
sp
√

2/n
= ∆∗

√
n. The two-sided

20



p-value for the observations is

P
(
|t− stat| > ∆∗

√
n|Model 2.2, u1 − u2 = 0

)
=P

(∣∣∣∣NCT√1 + nσ2
B/σ

2
e

∣∣∣∣ > ∆∗
√
n|Model 2.2, u1 − u2 = 0

)
(2.24)

where NCT has a non-central t-distribution with df = 2(n−1) and non-centrality parameter

u. Under the null hypothesis, u = 0, NCT has a central t-distribution, with df = 2(n− 1).

Then we have

P

(∣∣∣∣NCT√1 + nσ2
B/σ

2
e

∣∣∣∣ > ∆∗
√
n|Model 2.2, u1 − u2 = 0

)
(2.25)

=2

(
1−Gdf,u=0

(
∆∗
√
n/
√

1 + nσ2
B/σ

2
e

))

We call this the adjusted p-value.
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Figure 2.5: Adjusted two-sided P-value vs σB/σe, n=11, ∆∗ = 1.02

Figure 2.5 and Figure 2.6 show how the p-value of the initial experiment has to be adjusted

in Examples 1 and 2, if ∆∗ were to be observed in the follow-up experiment. Figure 2.5 shows

that if σB/σe < .38, the inference can be made that the treatment effect would be significant
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Figure 2.6: Adjusted two-sided P-value vs σB/σe, n=15, ∆∗ = 0.68

at the 5% level in the follow-up experiment for Example 1, where the p − value = 0.003 in

the initial experiment indicates strong evidence for a treatment effect in the environment

in which the experiment was conducted. However if σB/σe > .38, the adjusted p-value

would show non-significance at the 5% level. Figure 2.6 shows that if σB/σe > .21, there

is not enough evidence to infer that the treatment effect would be significant at the 5%

level in the follow-up experiment for Example 2, while the the p-value of 0.014 in the initial

experiment also indicates strong evidence for a treatment effect in the environment in which

the experiment was conducted. This plot is similar to the p-value profile suggested by Perrett

and Higgins (2006) in considering significance in non-replicated experiment.

When the sample size is large, we apply the normal approximation, then we have

P (|t− stat| > ∆∗
√
n|Model 2.2, u1 − u2 = 0) ≈ 2

(
1− Φ

(
∆∗
√
n√

1 + nσ2
B/σ

2
e

))
(2.26)

If we take the limit of equation 2.26 as n→∞, the limit, we obtain the asymptotic adjusted

p-value:

lim
n→∞

P (|t− stat| > ∆∗
√
n) = 2 (1− Φ (∆∗/(σB/σe))) (2.27)
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For example, if we fix σB/σe = .3, and if ∆∗ = .5, then the limit of the adjusted p-value

in a follow-up experiment is .096, and for any environment in which σB/σe > .255, it is

impossible for the follow-up experiment to attain significance at the 5% level. If we increase

∆∗ = .6 and keep σB/σe = .3, the limit is .046. We can see the role that the observed effect

size plays in conjunction with the size σB/σe in Figure 2.7. For small observed effect sizes

and large values of σB/σe, it may be impossible for the asymptotic adjusted p-value to be less

than .05. Hence, large effect size is a better indicator of reproducibility than small p-value.
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Figure 2.7: Minimum Adjusted P-value vs σB/σe

2.4.2 Adjusted Confidence Levels

Confidence intervals sometimes are more informative in hypothesis tests. Factors like sample

sizes, significance levels of test, and the variability of data will affect the width of confidence

intervals. For our study here, the random factors in a follow-up experiment will have an

effect on the confidence intervals. In the other words, a confidence interval for the initial

experiment and one for its follow-up will not have same level of confidence for u1−u2 because

of the existence of σB. Since the conditional mean of Y 1 − Y 2 in the follow-up experiment

given θ, δ1, and δ2 is (u1 + δ1)− (u2 + δ2), the confidence interval, (Y 1−Y 2)± tα/2,dfSp
√

2/n,
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is biased by δ1− δ2 as an interval for u1− u2. If the level of confidence for an interval in the

initial experiment is 1 − α, based on the Equation 2.11, the true level of confidence 1 − α∗

for the difference u1 − u2 in the follow-up experiment can be derived as follows:

P

(∣∣∣∣∣(Y 1 − Y 2)− (u1 − u2)
sp
√

2/n

∣∣∣∣∣ ≥ tα/2

)

=P

(∣∣∣∣NCT√1 + nσ2
B/σ

2
e

∣∣∣∣ ≥ tα/2

)
=P

(
|NCT | ≥ tα/2/

√
1 + nσ2

B/σ
2
e

)
=P

(
NCT ≥ tα/2/

√
1 + nσ2

B/σ
2
e

)
+ P

(
NCT ≤ −tα/2/

√
1 + nσ2

B/σ
2
e

)
=1−Gdf,u=0

(
tα/2/

√
1 + nσ2

B/σ
2
e

)
+Gdf,u=0

(
−tα/2/

√
1 + nσ2

B/σ
2
e

)
=1−Gdf,u=0

(
tα/2/

√
1 + nσ2

B/σ
2
e

)
+ 1−Gdf,u=0

(
tα/2/

√
1 + nσ2

B/σ
2
e

)
=α∗

(2.28)

Note, u1 − u2 = 0→ u = 0. So NCT has a central t-distribution.

Based on this, we have

1− α∗ = 2Gdf,u=0

(
tα/2/

√
1 + nσ2

B/σ
2
e

)
− 1 (2.29)

which is called the adjusted confidence level. When the sample size is large, apply the Normal

Approximation, then we have

1− α∗ ≈ 2

(
Φ

(
zα/2/

√
1 + nσ2

B/σ
2
e

))
− 1 (2.30)

Note: For a central t-distribution, we denote its cdf as Gdf,u=0. Then

Gdf,u=0(−t) = P

(
Z√
V/df

≤ −t

)
= P

(
−Z√
V/df

≥ t

)
= P

(
Z√
V/df

≥ t

)
= 1−Gdf,u=0(t)

and vice versa, which is based on the fact that Z and −Z have the same distribution.
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In Example 2 with n = 15, and α = .05, the adjusted level of confidence for the ini-

tial 95% confidence interval is smaller than .95 by an amount determined by σB/σe. For

instance, it is .88 for σB/σe = .2 and it is .64 for σB/σe = .5. As Figure 2.8 shows, the

adjusted confidence level approaches 0 as σB/σe →∞.
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Figure 2.8: Adjusted confidence level vs σB/σe, n=15, ∆∗ = 0.68

2.4.3 Estimating and Interpreting σB/σe and ∆

The standard deviation ratio σB/σe and the effect size ∆ play key roles in the reproducibility

of research results. Having estimates of ∆ and σB/σe will help researchers identify those

results that are likely to carry over to other environments. Both σe and ∆ can be estimated

from the initial experiment, but that is not the case with σB. However,one might expect

that similar experiments would have similar values of σB/σe. The following examples will

give an indication of values of σB/σe that could occur in practice.
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Example 4: An estimate of σB/σe

Even for an experiment at one facility, there is often variability in the environments that is

accounted for in the design of the experiment by blocking. If the treatments appear more

than once in each block, then the usual RCB analysis with fixed effect ”treatment”, random

effects ”block” and ”block*treatment” would give us estimates of the desired components of

variance σ2
B and σ2

e . We used SAS PROC MIXED to analyze data in a randomized block

design from Snedecor and Cochran (1989) in which there are 3 treatments measured each of

4 times in each of 5 blocks. The data are the number of wireworms in soil samples treated

with either one of two fumigants or a control. We attained the estimates of the components

of variance as shown in Table 2.2 and computed the estimate of σB/σe to be .65.

Covariance Parameter Estimates
Cov Parm Estimate Se Z Value Pr>Z

blk 1.1052 2.4502 0.45 0.326
blk*trt(=σ2

B) 3.8559 3.1035 1.24 0.107
Residual(=σ2

e) 9.1056 1.9196 4.74 <.0001

Table 2.2: Estimates of the components of variance for Example 4

Relationship of σB/σe to Interclass Correlation

If we randomly select an environment then take observations according to Model 2.2, the

observations within treatment are correlated because the random term θ + δi is common to

all the observations within the treatment. The correlation, called the interclass correlation,

is given by

ρ = (σ2
θ + σ2

B)/(σ2
θ + σ2

B + σ2
e). (2.31)

The smallest which this can be is when σ2
θ = 0, so ρ ≥ σ2

B/(σ
2
B + σ2

e). It follows that

σB/σe ≤
√
ρ/(1− ρ). (2.32)
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Example 5: A bound on σB/σe

Perrett and Higgins (2006) estimated ρ for eight cultivars inoculated with spider mites in four

greenhouses which are the environments for this example. The values ranged from 0 to .30

with a median of .12. If ρ = .30, then σB/σe ≤ .65, and if ρ = .12, then σB/σe ≤ .37. Even

with a lack of statistical estimate of σB/σe, a bound on its value may be enough to indicate

whether the results are likely to be reproducible. We recommend plots of the probability

of reproducibility vs σB/σe as the Figure 2.1 or plots of the adjusted p-values vs σB/σe as

in Figure 2.5 and Figure 2.6 to gauge the sensitivity of results to changing environments.

With a reasonable bound on σB/σe, the researcher can place bounds on the probability of

reproducibility and adjusted p-values.

Example 6: A multi-lab experiment

Kafkafi et al. (2005) proposed a mixed model where the size of interaction can be esti-

mated from multi-laboratory data and an endpoint design is used to calculate the propor-

tions of variance in which the total variance between the mice in a multilaboratory ex-

periment was decomposed into between-genotype variability, between-laboratory variabil-

ity, genotype×laboratory interaction variability, and within-group variability. The ratio of

genotype×laboratory interaction variability and within-group variability is the ratio σB/σe

in our study. We calculate ratios σB/σe for different endpoints respectively based on the

graph of proportion of total variance. As Table 2.3 shows that the ratio σB/σe ranges from

about 0 to .64. This is a multi-lab experiment, and by some extent, we may recognize this

as the prior knowledge of the standard deviation ratio σB/σe under different experimental

environments for this kind of experiment. In the future, it may help other researchers make

more informed judgments for the reproducibility of results from a single experiment if these

values are shown to be reasonable by more multi-lab experiments.
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Ratios σB/σe for different endpoints (Kafkafi et al., 2005)
Endpoint(Response) σB/σe Endpoint(Response) σB/σe
lingering time 0.640 distance traveled 0.577
segment max speed 0.389 excursions 0.354
time for tum 0.146 radius of tum 0.316
segment length 0.513 center time 0.399
progression segments 0.149 segment acceleration 0.369
homebase occupancy 0 lingering mean speed 0.337
diversity 0 stops per excursion 0.155
lingering spatial spread 0.177 relative activity decrease 0
latency to half max speed 0

Table 2.3: A multi-lab experiment

Interpreting Effect Sizes

The effect size is a measure of the separation between the distributions of the two treatments

in the following sense. Let m = (u1 + u2)/2 be the midpoint between the means of the

distributions of the two treatments. Let p/2 denote the upper-tail probability above m for

the distribution with the smaller mean and equivalently the lower-tail probability below m

for the distribution with the larger mean. The sum of these two probabilities p is what we

define to be the overlap probability between the two distributions. The effect size can be

expressed in terms of p as ∆ =
√

2zp/2.

Table 2.4 shows overlap probabilities for effect sizes from .20 to 2.5. It also shows the

asymptotic adjusted p-value 2(1 − Φ(∆∗/(σB/σe))) for these effect sizes and for σB/σe set

at either .25 or .75. For instance, for σB/σe = .25, an observed effect size ∆∗ = .5 has

an asymptotic adjusted p-value of .05, but it would take ∆∗ = 1.5 for this to happen with

σB/σe = .75.

Table 4: Overlap Probabilities, Min Adjusted P-values vs. ∆∗

Observed effect size ∆∗ 0.20 0.50 1.00 1.50 2.50
Overlap probability 0.89 0.72 0.48 0.29 0.08
Min adi p-value,σB/σe = .25 0.42 0.05 <.01 <.01 <.01
Min adi p-value,σB/σe = .75 0.79 0.50 0.18 0.05 <.01

Table 2.4: Overlap probabilities for effect sizes from .20 to 2.5

We define the effect size as ∆ = (u1 − u2)/(σe
√

2). Cohen’s d = ∆
√

2, is a measure of
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effect size for comparison of two means. Cohen (1988) described effect sizes of .2, .5, and

.8 as ”small”, ”medium”, and ”large” respectively which are correspond to ∆ = .14, .35,

and .57. Cohen (1988) also knowledged the danger of using terms like these. For different

research domains, the benchmarks of d will enable a direct comparative experimental results.

For domains like social science study, psychological, educational, or behavioral study, it is

not always possible to get a significant result along with a large effect size, which contributes

to the lack of reproducibility. Lipsey and Wilson (1994) listed the effect sizes (calculated

in Cohen’s d) of 302 studies about psychological, educational, and behavioral interventions

from literature review, in which more than 62% of those studies have a d ≤ .54, and the mean

of effect sizes of all those studies is well below .54, both of which correspond to ∆ ≤ .38. Coe

(2002) thought the range of circumstances in which the effects of these 302 studies had been

found might be limited. From Table 2.4 with σB/σe = .75, we see that none of the asymptotic

adjusted p-value are less than .05. From Figure 2.7, we see that when σB/σe = .18, we need

a ∆ as big as at least .38 in order to get the asymptotic adjusted p-value less than .05, and if

σB/σe > .18, a ∆ = .38 will never yield a significant asymptotic adjusted p-value. Since the

effect sizes from research fields like social science, psychological, educational, or behavioral

research might most of the time are not large enough to overcome the type of interaction

that can occur in experiment, perhaps that is one of the reasons for lack of reproducibility

in these fields.
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Chapter 3

Summary and Conclusions

Since S.N.Goodman (1992) proposed the idea of using the replication probability to de-

fine the probability of repeating a statistically significant result, terms like reproducibility,

replicability, and reliability have been used almost interchangeably (Goodman et al., 2016).

Broadly, reproducibility means the results of scientific research should be able to withstand

independent validation (Bello and Renter, 2018).

For our research purpose, we define the probability of reproducibility as the probability

that the follow-up experiment yields a significant result, assuming the initial experiment

yields a significant result. By considering the effect of changing experimental environments on

this probability, we analyze how the reproducibility depends not only on the sample size and

significance level, but also on the effect size and random environmental factors. Researchers

would never want their results only to apply to their certain research facility at a certain time.

They always want their results to apply broadly in different environment at different time.

However, in a strict sense, statistical significance only applies to the environment in which the

experiment is carried out. Environmental factors, either natural or those caused by the way

in which the research is conducted, will unavoidably affect the outcome of the experiment and

influence the reproducibility of the experiment. In order to extend conclusions to follow-up

experimental environments which are different from the initial experiment, researchers must

account for these environmental factors. We have proposed three measures which will help
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the researchers to determine whether the results of an experiment in one environment may

be reproduced by others: the probability of reproducibility, the adjusted p-value, and the

adjusted confidence level. The environmental effect ratio—the size of the standard deviation

ratio of random environmental factors and experimental error—and the effect size are key

factors in determining whether a result from one environment is reproducible in another, and

we have indicated situations in which reproducibility of experimental results can be expected

and those that cannot.

A p-value or statistical significance does not measure the size of an effect or the importance

of a result. Smaller p-values do not necessarily imply the presence of the larger or more

important effects, and larger p- values do not imply a lack of importance or even lack of

effect. If the sample size or measurement precision is high enough, small effect can yield

a small p-value, but with small sample sizes or imprecise measurement, even large effects

may produce large p-values (Wasserstein and Lazar, 2016). Large sample sizes and small

significance levels from initial experiments are not necessarily strong evidence for the wide

application of the results. If effect sizes are small, the probability of reproducibility may

be unsatisfied, and the adjusted p-values may fall above the traditional .05 level even if the

p-value of the initial experiment is highly significant.

When the same experiment is carried out in a different environment, the error term not

only includes the random error within a given experiment, but it also includes the additional

sources of variability that are introduced by conducting the same experiment in different

environments. It is often impractical to repeat an experiment in different environments to

determine significance across environments despite that being the right thing to do.

If one experiment is done in just one environment, a researcher may make use of prior

knowledge or expert judgment to place bounds on σB/σe, which is a measure of the effect of

the environment on reproducibility. Smaller values of σB/σe favor reproducibility of results,

so researchers should control the size of σB/σe by reducing the size of σB in every possible way.

This requires good experimental design, rigorous implementation of statistical principles and

standard practice of methods, and good expertise of personnel (Bello and Renter, 2018). If

the experiment will be conducted with a long timetable, strict consistency of the experimental
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protocol needs to be implemented as unexpected errors may propogate over time. However,

there are often uncontrollable elements that will affect the reproducibility even if researchers

have done their best to control the controllable factors. Effect sizes can help the researcher

decide whether results from the initial experiment will likely carry over to other environments.

As the Table 2.4 shows, we need an effect size of at least 1.0 in order to feel confident

about the reproducibility for values of σB/σe that occur in practice. Small effect sizes,

even if statistically significant, should be viewed with caution. Plots of the probability of

reproducibility vs σB/σe or plots of the adjusted p-value vs σB/σe can be used to indicate

the sensitivity of results to changing environments and to assist in making judgments about

the likelihood of reproducibility of results.

Ideally, researchers need to reproduce an experiment several times in randomly selected

environments before they can say the results from the initial experiment are reproducible.

Results from one experiment should be regarded as preliminary especially if σB/σe is ex-

pected to be large or effect size is small. Where possible, the components of variances should

be reported along with means, standard errors, and effect sizes in research results. With the

collaboration of research labs, we will have a further knowledge of the standard deviation

ratio σB/σe or the environment by treatment interaction under different experimental envi-

ronments, and then we can make more informed judgments for the reproducibility of results

from a single experiment.
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Appendix A

Code

[language=R]

#Figure 2.1:non-central t-distribution to compute probability of reproducibility

n=11, effectsize=1.0,alpha=0.05,vs. ratio of variances(0-2.0)

#experiment2 upper tail rejection

params2t=expand.grid(c(seq(0,2.0,0.1)), 1.0,11, alpha = .05)

tupperrej2 = function(param){

ratio = param[1]

effectsize = param[2]

nsize = param[3]

newalpha = 1-param[4]/2

reject = qt(newalpha,df = 2*(nsize-1))/sqrt(1+nsize*ratio*ratio)

pt(reject, df=2*(nsize-1),sqrt(nsize)*effectsize/sqrt(1+nsize*ratio*ratio),

lower.tail = FALSE, log.p = FALSE)

}

#experiment2 lower tail rejection

params2t=expand.grid(c(seq(0,2.0,0.1)), 1.0,11, alpha = .05)

tlowerrej2 = function(param){

ratio = param[1]
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effectsize = param[2]

nsize = param[3]

newalpha = 1-param[4]/2

reject = qt(newalpha,df = 2*(nsize-1))/sqrt(1+nsize*ratio*ratio)

pt(-reject, df=2*(nsize-1),sqrt(nsize)*effectsize/sqrt(1+nsize*ratio*ratio),

log.p = FALSE)

}

#experiment2 not rejection

utrej2 = apply(params2t,1, tupperrej2)

ltrej2 = apply(params2t,1, tlowerrej2)

notrej2 = 1-utrej2-ltrej2

round(cbind(utrej2,ltrej2,notrej2),digits = 4)

x<-c(seq(0,2.0,0.1))

reproducibility.prob<-utrej2

wrongdirec.repro.prob<-ltrej2

nonsig.prob<-notrej2

df <- data.frame(x,reproducibility.prob, wrongdirec.repro.prob, nonsig.prob)

head(df)

library(ggplot2)

library(tidyr)

pdf("rplot1.pdf", height=4, width=8)

xy <- gather(df, key = variable, value = value, -x)

plot1<-ggplot(xy, aes(x = x, y = value, color = variable)) +

geom_line(aes(linetype=variable))+

scale_size_area() +

xlab(expression(paste(sigma[B]/sigma[e]))) +

ylab("probability")

plot1 + theme_bw()
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dev.off()

#Figure 2.2:non-central t-distribution to compute probability of reproducibility

#n=15,effectsize=0.68,alpha=0.05,vs. ratio of variances(0-2.0)

#experiment2 upper tail rejection

params2t=expand.grid(c(seq(0,2.0,0.1)), 0.68, 15, alpha = .05)

tupperrej2 = function(param){

ratio = param[1]

effectsize = param[2]

nsize = param[3]

newalpha = 1-param[4]/2

reject = qt(newalpha,df = 2*(nsize-1))/sqrt(1+nsize*ratio*ratio)

pt(reject, df=2*(nsize-1),sqrt(nsize)*effectsize/sqrt(1+nsize*ratio*ratio),

lower.tail = FALSE, log.p = FALSE)

}

#experiment2 lower tail rejection

params2t=expand.grid(c(seq(0,2.0,0.1)), 0.68, 15, alpha = .05)

tlowerrej2 = function(param){

ratio = param[1]

effectsize = param[2]

nsize = param[3]

newalpha = 1-param[4]/2

reject = qt(newalpha,df = 2*(nsize-1))/sqrt(1+nsize*ratio*ratio)

pt(-reject, df=2*(nsize-1),sqrt(nsize)*effectsize/sqrt(1+nsize*ratio*ratio),

log.p = FALSE)

}

utrej2 = apply(params2t,1, tupperrej2)

ltrej2 = apply(params2t,1, tlowerrej2)
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notrej2 = 1-utrej2-ltrej2

round(cbind(utrej2,ltrej2,notrej2),digits = 4)

x<-c(seq(0,2.0,0.1))

reproducibility.prob<-utrej2

wrongdirec.repro.prob<-ltrej2

nonsig.prob<-notrej2

df <- data.frame(x,reproducibility.prob, wrongdirec.repro.prob, nonsig.prob)

head(df)

library(ggplot2)

library(tidyr)

pdf("rplot2.pdf", height=4, width=8)

xy <- gather(df, key = variable, value = value, -x)

plot2<-ggplot(xy, aes(x = x, y = value, color = variable)) +

geom_line(aes(linetype=variable))+

scale_size_area() +

xlab(expression(paste(sigma[B]/sigma[e]))) +

ylab("probability")

plot2 + theme_bw()

dev.off()

#Table 2.1: n=500,effectsize=0.2/0.8,alpha=0.05,vs. ratio of variances=0.5

#experiment2 upper tail rejection

params2t=expand.grid(c(0,0.5), c(0.2,0.8),500, alpha = .01)

tupperrej2 = function(param){

ratio = param[1]

effectsize = param[2]

nsize = param[3]

newalpha = 1-param[4]/2

reject = qt(newalpha,df = 2*(nsize-1))/sqrt(1+nsize*ratio*ratio)
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pt(reject, df=2*(nsize-1),sqrt(nsize)*effectsize/sqrt(1+nsize*ratio*ratio),

lower.tail = FALSE, log.p = FALSE)

}

#experiment2 lower tail rejection

params2t=expand.grid(c(0,0.5), c(0.2,0.8),500, alpha = .01)

tlowerrej2 = function(param){

ratio = param[1]

effectsize = param[2]

nsize = param[3]

newalpha = 1-param[4]/2

reject = qt(newalpha,df = 2*(nsize-1))/sqrt(1+nsize*ratio*ratio)

pt(-reject, df=2*(nsize-1),sqrt(nsize)*effectsize/sqrt(1+nsize*ratio*ratio),

log.p = FALSE)

}

utrej2 = apply(params2t,1, tupperrej2)

ltrej2 = apply(params2t,1, tlowerrej2)

notrej2 = 1-utrej2-ltrej2

power=utrej2 +ltrej2

round(cbind(params2t,power,utrej2,ltrej2,notrej2),digits = 4)

#Figure 2.3: n=500,effectsize=0.2/0.8,alpha=0.01,vs. ratio of variances=0-2.0

#effectsize=0.2

#experiment2 upper tail rejection

params2t=expand.grid(c(seq(0,2.0,0.1)), 0.2,500, alpha = .01)

tupperrej0.2 = function(param){

ratio = param[1]

effectsize = param[2]

nsize = param[3]
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newalpha = 1-param[4]/2

reject = qt(newalpha,df = 2*(nsize-1))/sqrt(1+nsize*ratio*ratio)

pt(reject, df=2*(nsize-1),sqrt(nsize)*effectsize/sqrt(1+nsize*ratio*ratio),

lower.tail = FALSE, log.p = FALSE)

}

#experiment2 lower tail rejection

params2t=expand.grid(c(seq(0,2.0,0.1)), 0.2,500, alpha = .01)

tlowerrej0.2 = function(param){

ratio = param[1]

effectsize = param[2]

nsize = param[3]

newalpha = 1-param[4]/2

reject = qt(newalpha,df = 2*(nsize-1))/sqrt(1+nsize*ratio*ratio)

pt(-reject, df=2*(nsize-1),sqrt(nsize)*effectsize/sqrt(1+nsize*ratio*ratio),

log.p = FALSE)

}

RP0.2 = apply(params2t,1, tupperrej0.2)

wrongdirectionRP0.2 = apply(params2t,1, tlowerrej0.2)

#effectsize=1.0

#experiment2 upper tail rejection

params2t=expand.grid(c(seq(0,2.0,0.1)), 0.8,500, alpha = .01)

tupperrej0.8 = function(param){

ratio = param[1]

effectsize = param[2]

nsize = param[3]

newalpha = 1-param[4]/2

reject = qt(newalpha,df = 2*(nsize-1))/sqrt(1+nsize*ratio*ratio)

pt(reject, df=2*(nsize-1),sqrt(nsize)*effectsize/sqrt(1+nsize*ratio*ratio),
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lower.tail = FALSE, log.p = FALSE)

}

#experiment2 lower tail rejection

params2t=expand.grid(c(seq(0,2.0,0.1)), 0.8,500, alpha = .01)

tlowerrej0.8 = function(param){

ratio = param[1]

effectsize = param[2]

nsize = param[3]

newalpha = 1-param[4]/2

reject = qt(newalpha,df = 2*(nsize-1))/sqrt(1+nsize*ratio*ratio)

pt(-reject, df=2*(nsize-1),sqrt(nsize)*effectsize/sqrt(1+nsize*ratio*ratio),

log.p = FALSE)

}

RP0.8 = apply(params2t,1, tupperrej0.8)

wrongdirectionRP0.8 = apply(params2t,1, tlowerrej0.8)

x<-c(seq(0,2.0,0.1))

df <- data.frame(x,RP0.8,wrongdirectionRP0.8,wrongdirectionRP0.2,RP0.2)

head(df)

library(ggplot2)

library(tidyr)

pdf("rplot3.pdf", height=4, width=8)

xy <- gather(df, key = variable, value = value, -x)

plot3<-ggplot(xy, aes(x = x, y = value, color = variable)) +

geom_line(aes(linetype=variable))+

scale_size_area() +

xlab(expression(paste(sigma[B]/sigma[e]))) +

ylab("probability")

plot3 + theme_bw()

dev.off()
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#Figure 2.4: relative efficiency vs ratios

n0.5<-(qnorm(0.025)+qnorm(0.2))*(qnorm(0.025)+qnorm(0.2))/0.25

ratio0.5<-c(seq(0,0.6,0.1))

effectsize0.5<-0.5

n0.5<-((qnorm(0.2)+qnorm(0.025))^2)/((effectsize0.5^2))

a<-effectsize0.5^2-(qnorm(0.2)^2)*(ratio0.5^2)

b<-2*effectsize0.5*qnorm(0.025)

c<-qnorm(0.025)^2-(qnorm(0.2)^2)

N0.5<-((-b+sqrt(b^2-4*a*c))/(2*a))^2

N0.5

ratio0.5<-n0.5/N0.5

ratio0.5<-c(ratio0.5,rep(0,6))

x<-c(seq(0,1.2,0.1))

effectsize0.5<-ratio0.5

df <- data.frame(x,effectsize0.5)

head(df)

library(ggplot2)

library(tidyr)

pdf("rplot4.pdf", height=4, width=8)

xy <- gather(df, key = variable, value = value, -x)

plot4<-ggplot(xy, aes(x = x, y = value, color = variable)) +

geom_line(aes(linetype=variable))+

scale_size_area() +

xlab(expression(paste(sigma[B]/sigma[e]))) +

ylab("Relative Efficiency")

plot4 + theme_bw()

dev.off()
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#Figure 2.5: adjusted p-value vs. ratio of variances: n=11, effectsize=1.02.

#experiment2 upper tail rejection

params2t=expand.grid(c(seq(0,1.0,0.1)), 1.02,11, alpha = .05)

tupperrej2pvalue = function(param){

ratio = param[1]

effectsize = param[2]

nsize = param[3]

newalpha = 1-param[4]/2

reject = qt(newalpha,df = 2*(nsize-1))/sqrt(1+nsize*ratio*ratio)

2*pt(sqrt(nsize)*effectsize/sqrt(1+nsize*ratio*ratio),df=2*(nsize-1),

lower.tail = FALSE, log.p = FALSE)

}

utrej2pvalues = apply(params2t,1, tupperrej2pvalue)

utrej2pvalues

x<-c(seq(0,1.0,0.1))

adjusted.two.sided.p.values<-utrej2pvalues

p.value0.05<-c(rep(0.05,11))

df <- data.frame(x,adjusted.two.sided.p.values,p.value0.05)

head(df)

library(ggplot2)

library(tidyr)

pdf("rplot5.pdf", height=4, width=8)

xy <- gather(df, key = variable, value = value, -x)

plot5<-ggplot(xy, aes(x = x, y = value, color = variable)) +

geom_line(aes(linetype=variable))+

scale_size_area() +

xlab(expression(paste(sigma[B]/sigma[e]))) +

ylab("p-values")

plot5 + theme_bw()
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dev.off()

#Figure 2.6: adjusted p-value vs. ratio of variances: n=15, effectsize=0.68.

#experiment2 upper tail rejection

params2t=expand.grid(c(seq(0,0.5,0.05)), 0.68,15, alpha = .05)

tupperrej2pvalue = function(param){

ratio = param[1]

effectsize = param[2]

nsize = param[3]

newalpha = 1-param[4]/2

reject = qt(newalpha,df = 2*(nsize-1))/sqrt(1+nsize*ratio*ratio)

2*pt(sqrt(nsize)*effectsize/sqrt(1+nsize*ratio*ratio),df=2*(nsize-1),

lower.tail = FALSE, log.p = FALSE)

}

utrej2pvalues = apply(params2t,1, tupperrej2pvalue)

utrej2pvalues

x<-c(seq(0,0.5,0.05))

adjusted.two.sided.p.values<-utrej2pvalues

p.value0.05<-c(rep(0.05,11))

df <- data.frame(x,adjusted.two.sided.p.values,p.value0.05)

head(df)

library(ggplot2)

library(tidyr)

pdf("rplot6.pdf", height=4, width=8)

xy <- gather(df, key = variable, value = value, -x)

plot6<-ggplot(xy, aes(x = x, y = value, color = variable)) +

geom_line(aes(linetype=variable))+

scale_size_area() +
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xlab(expression(paste(sigma[B]/sigma[e]))) +

ylab("p-values")

plot6 + theme_bw()

dev.off()

#Figure 2.7: minimum of adjusted p-values

params2=expand.grid(c(seq(0,1.0,0.1)), 0.38)

ureject2= function(param){

ratio = param[1]

effectsize = param[2]

reject = param[3]

2*(1-pnorm(effectsize/ratio))

}

effectsize0.38 = apply(params2,1, ureject2)

params2=expand.grid(c(seq(0,1.0,0.1)), 0.75)

ureject2= function(param){

ratio = param[1]

effectsize = param[2]

reject = param[3]

2*(1-pnorm(effectsize/ratio))

}

effectsize0.75 = apply(params2,1, ureject2)

params2=expand.grid(c(seq(0,1.0,0.1)), 1.25)

ureject2= function(param){

ratio = param[1]

effectsize = param[2]

reject = param[3]

2*(1-pnorm(effectsize/ratio))

}
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effectsize1.25 = apply(params2,1, ureject2)

x<-c(seq(0,1.0,0.1))

pvalue0.05<-c(rep(0.05,11))

df <- data.frame(x,effectsize0.38,effectsize0.75,effectsize1.25,pvalue0.05)

head(df)

library(ggplot2)

library(tidyr)

pdf("rplot10.pdf", height=4, width=8)

xy <- gather(df, key = variable, value = value, -x)

plot10<-ggplot(xy, aes(x = x, y = value, color = variable)) +

geom_line(aes(linetype=variable))+

scale_size_area() +

xlab(expression(paste(sigma[B]/sigma[e]))) +

ylab("minimum adjusted p-values")

plot10 + theme_bw()

dev.off()

#confidence intervals

2*(pnorm(qnorm(0.975)))-1

2*(pnorm(qnorm(0.975)/(sqrt(1+15*0.04))))-1

2*(pnorm(qnorm(0.975)/(sqrt(1+15*0.25))))-1

#confidence intervals use t-distribution

params2t=expand.grid(c(0,0.2,0.5), 0.68,15, alpha = .05)

tupperrej2pvalue = function(param){

ratio = param[1]

effectsize = param[2]

nsize = param[3]

newalpha = 1-param[4]/2
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reject = qt(newalpha,df = 2*(nsize-1))/sqrt(1+nsize*ratio*ratio)

2*pt(reject,df=2*(nsize-1),lower.tail = TRUE, log.p = FALSE)-1

}

utrej2pvalues = apply(params2t,1, tupperrej2pvalue)

utrej2pvalues

#Figure 2.7: adjusted confidence level

params2t=expand.grid(c(seq(0,2.0,0.1)), 0.68,15, alpha = .05)

tupperrej2pvalue = function(param){

ratio = param[1]

effectsize = param[2]

nsize = param[3]

newalpha = 1-param[4]/2

reject = qt(newalpha,df = 2*(nsize-1))/sqrt(1+nsize*ratio*ratio)

2*pt(reject,df=2*(nsize-1),lower.tail = TRUE, log.p = FALSE)-1

}

adjustedconfidencelevel = apply(params2t,1, tupperrej2pvalue)

adjustedconfidencelevel

x<-c(seq(0,2.0,0.1))

confidentlevel.95<-c(rep(0.95,21))

df <- data.frame(x,adjustedconfidencelevel,confidentlevel.95)

head(df)

library(ggplot2)

library(tidyr)

pdf("rplot7.pdf", height=4, width=8)

xy <- gather(df, key = variable, value = value, -x)

plot7<-ggplot(xy, aes(x = x, y = value, color = variable)) +

geom_line(aes(linetype=variable))+

scale_size_area() +
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xlab(expression(paste(sigma[B]/sigma[e]))) +

ylab("confidence-level")

plot7 + theme_bw()

dev.off()

# Overlap probabilities for effect size of Table 2.4

(1-pnorm(c(0.2,0.5,1.0,1.5,2.5)/sqrt(2)))*2

#SAS code for table 2.2

DATA FUMIGANT;

INPUT trt $ blk $ rep1 rep2 rep3 rep4;

rep=1; WORMS=rep1; OUTPUT;

rep=2; WORMS=rep2; OUTPUT;

rep=3; WORMS=rep3; OUTPUT;

rep=4; WORMS=rep4; OUTPUT;

keep trt blk WORMS rep;

DATALINES;

C I 5 4 5 2

C II 0 9 3 3

C III 4 4 3 9

C IV 7 3 5 12

C V 4 9 8 6

S I 5 5 1 2

S II 6 4 5 4

S III 2 9 3 7

S IV 6 4 8 4

S V 2 9 7 3

O I 12 20 8 8

O II 7 4 4 5
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O III 9 6 7 11

O IV 12 22 17 13

O V 7 8 5 9

;

RUN;

proc print;

run;

PROC MIXED data= FUMIGANT covtest;

CLASS trt blk rep;

model WORMS =trt;

random blk blk*trt;

run;
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