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Abstract

Although the latest and most powerful supercomputer today, Tianhe-2 in China, can

finish 33.86 quadrillion floating-point operations per second (www.top500.org), it is still a

big challenge to simulate the simplest few-electron system - the helium atom - a three-

body system with one nucleus and two electrons. Within the fixed-nucleus approximation

and time-dependent close coupling (TDCC) approach, we developed software to solve the

time-dependent Schrödinger equation (TDSE) accurately, implementing the finite-element

discrete-variable representation (FE-DVR) scheme. The general idea of the method is to

expand the wave functions in the eigenvectors of the angular momentum operator, which

further transform the six-dimensional TDSE to a set of infinite two-dimensional coupled

equations. Although there are infinitely many coupled equations, they can be truncated

to a finite number of equations by applying selection rules and physical requirements, and

solved with our current computational resources.

By numerically solving the TDSE in full dimensionality, we investigate the double photo-

ionization of helium atoms in external fields. In co-planar emission geometry with and

without the presence of a comparatively weak infrared (IR) laser pulse, we discuss the

double ionization (DI) dynamics of helium atoms irradiated by ultrashort pulses of extreme

ultraviolet (XUV) laser light.

We first investigate the degree of electronic correlation by correlated photoelectron angu-

lar distributions for two-photon double ionization (TPDI) of helium atoms in the sequential

and non-sequential DI regime. We quantify sequential and non-sequential contributions to

TPDI driven by an XUV pulse with central photon energy ~ωXUV near the sequential DI

threshold. If the spectral width of the XUV pulse is broad enough, both the sequntial

(~ωXUV > 54.4 eV) and non-sequential (~ωXUV < 54.4 eV) channels are open. Therefore,



the sequential and non-sequential DI mechanisms are difficult to distinguish. By tracking

the DI asymmetry in joint photoelectron angular distributions, we introduce the forward-

backward-emission asymmetry as a measure that allows the distinction of sequential and

non-sequential contributions. Specifically, for ~ωXUV = 50 eV pulses with a sine-squared

temporal profile, we find that the sequential DI contribution is the largest at a pulse length

of 650 as (1 as = 10−18 s), due to competing temporal and spectral constraints. In addition,

we validate a simple heuristic expression for the sequential DI contribution in comparison

with ab initio calculations.

We then investigate the influence of the laser field on the DI of helium by a single XUV

pulse. For IR-laser-assisted single-XUV-photon DI our joint angular distributions show that

the IR-laser field enhances back-to-back electron emission and induces a characteristic split-

ting in the angular distribution for electrons that are emitted symmetrically relative to the

identical linear polarization directions of the XUV and IR pulse. These IR-pulse-induced

changes in photoelectron angular distributions are (i) imposed by different symmetry con-

straints for XUV-pulse-only and laser-assisted XUV-photon DI, (ii) robust over a large range

of energy sharing between the emitted electrons, and (iii) consistent with the transfer of dis-

crete IR-photon momenta to both photoelectrons from the assisting IR-laser field. While

selection-rule forbidden at equal energy sharing, for increasingly unequal energy sharing we

find back-to-back emission to become more likely and to compete with symmetric emission.

To obtain a high level of accuracy, accurate quantum-mechanical calculations of three

Coulomb interacting particales exposed to an intense XUV and weak IR field are at the

limit of current computational power. Any direct extension (such as strong laser-field inten-

sity, elliptically-polarized field, and laser-induced DI) of our approach to more complicated

systems appears to be currently out of reach. At the end of this thesis, we give suggestions

on how to improve the efficiency of TDSE calculations for simulations of these complicated

many-photon processes.
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finish 33.86 quadrillion floating-point operations per second (www.top500.org), it is still a

big challenge to simulate the simplest few-electron system - the helium atom - a three-

body system with one nucleus and two electrons. Within the fixed-nucleus approximation

and time-dependent close coupling (TDCC) approach, we developed software to solve the

time-dependent Schrödinger equation (TDSE) accurately, implementing the finite-element

discrete-variable representation (FE-DVR) scheme. The general idea of the method is to

expand the wave functions in the eigenvectors of the angular momentum operator, which

further transform the six-dimensional TDSE to a set of infinite two-dimensional coupled

equations. Although there are infinitely many coupled equations, they can be truncated

to a finite number of equations by applying selection rules and physical requirements, and

solved with our current computational resources.

By numerically solving the TDSE in full dimensionality, we investigate the double photo-

ionization of helium atoms in external fields. In co-planar emission geometry with and

without the presence of a comparatively weak infrared (IR) laser pulse, we discuss the

double ionization (DI) dynamics of helium atoms irradiated by ultrashort pulses of extreme

ultraviolet (XUV) laser light.

We first investigate the degree of electronic correlation by correlated photoelectron angu-

lar distributions for two-photon double ionization (TPDI) of helium atoms in the sequential

and non-sequential DI regime. We quantify sequential and non-sequential contributions to

TPDI driven by an XUV pulse with central photon energy ~ωXUV near the sequential DI

threshold. If the spectral width of the XUV pulse is broad enough, both the sequntial

(~ωXUV > 54.4 eV) and non-sequential (~ωXUV < 54.4 eV) channels are open. Therefore,



the sequential and non-sequential DI mechanisms are difficult to distinguish. By tracking

the DI asymmetry in joint photoelectron angular distributions, we introduce the forward-

backward-emission asymmetry as a measure that allows the distinction of sequential and

non-sequential contributions. Specifically, for ~ωXUV = 50 eV pulses with a sine-squared

temporal profile, we find that the sequential DI contribution is the largest at a pulse length

of 650 as (1 as = 10−18 s), due to competing temporal and spectral constraints. In addition,

we validate a simple heuristic expression for the sequential DI contribution in comparison

with ab initio calculations.

We then investigate the influence of the laser field on the DI of helium by a single XUV

pulse. For IR-laser-assisted single-XUV-photon DI our joint angular distributions show that

the IR-laser field enhances back-to-back electron emission and induces a characteristic split-

ting in the angular distribution for electrons that are emitted symmetrically relative to the

identical linear polarization directions of the XUV and IR pulse. These IR-pulse-induced

changes in photoelectron angular distributions are (i) imposed by different symmetry con-

straints for XUV-pulse-only and laser-assisted XUV-photon DI, (ii) robust over a large range

of energy sharing between the emitted electrons, and (iii) consistent with the transfer of dis-

crete IR-photon momenta to both photoelectrons from the assisting IR-laser field. While

selection-rule forbidden at equal energy sharing, for increasingly unequal energy sharing we

find back-to-back emission to become more likely and to compete with symmetric emission.

To obtain a high level of accuracy, accurate quantum-mechanical calculations of three

Coulomb interacting particales exposed to an intense XUV and weak IR field are at the

limit of current computational power. Any direct extension (such as strong laser-field inten-

sity, elliptically-polarized field, and laser-induced DI) of our approach to more complicated

systems appears to be currently out of reach. At the end of this thesis, we give suggestions

on how to improve the efficiency of TDSE calculations for simulations of these complicated

many-photon processes.
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Chapter 1

Introduction

The investigation of the interaction of atoms and molecules with intense laser fields is one

of the most interesting areas of the current research in atomic and molecular physics. The

general motivation for studying molecules in laser fields lies in the possibility of gaining

fundamental understanding of the dynamics and the intermediate processes involved in

various physical, chemical, and biological reactions.

1.1 History of the Atom

1.1.1 Atomic Models

Natural philosophy, or the philosophy of nature, was the philosophical study of nature and

the physical universe that was dominant before the development of modern science. It is

considered to be the precursor of natural sciences such as physics. A Chinese philosopher

Mozi (ca. 470 BC - ca. 391 BC ) believed there are indivisible small units for every material.

At the same time, the ancient Greek philosophers Democritus (ca. 460 BC - ca. 370 BC)

also believed that every material is made from small units, he called these small units

as “ατoµoς” (atomos), which means “uncuttable, or indivisible, something that cannot be

divided further” in Greek. However, the scientific concept of the atom was first used by

Robert Boyle in his book The Sceptical Chymist published in 1661 [74]. In this book, he

claimed that matter is made from different “particles” or atoms.
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During 1802-1803, John Dalton developed the basis of modern atomic and molecular

theory [74]. The main points of Dalton’s atomic theory include: (1) Elements are made

of extremely small particles called atoms. (2) Atoms of a given element are identical in

size, mass, and other properties; atoms of different elements differ in size, mass, and other

properties. (3) Atoms cannot be subdivided, created, or destroyed. (4) Atoms of differ-

ent elements combine in simple whole-number ratios to form chemical compounds. (5) In

chemical reactions, atoms are combined, separated, or rearranged.

Dalton’s atomic theory describes a structureless particle. However, in 1897, J. J. Thom-

son and coworkers discovered the first subatomic particle - the electron [74]. In the 1910’s,

experiments by Ernest Rutherford and coworkers established the structure of an atom as a

dense nucleus of positive charge surrounded by lower-mass electrons [74]. The proton was

identified as the nucleus of the hydrogen atom [112], and the neutron was introduced to

explain isotopes, whose nuclei have different masses in spite of identical atomic numbers. In

1932, the neutron was discovered by J. Chadwick [68].

Modern atomic theory developed alongside quantum mechanics. N. Bohr used a shell

model to successfully explain the energy levels in hydrogen [114]. In the 1920’s, E. Schrödinger

and W. Heisenberg and others developed modern quantum mechanics [51, 112, 114]. Nowa-

days, the probabilistic Copenhagen interpretation of quantum mechanics is widely accepted

in atomic and molecular physics [112, 114].

1.1.2 History of the Helium Atom

Although helium is found on the Earth, it was first discovered in the solar corona on the

Sun [99, 112], and named after the Greek word Helios, the Sun [99]. The first evidence of

helium was observed in 1868 as a bright yellow line with a wavelength of 587.49 nm in the

spectrum of the chromosphere of the Sun. In 1882, Italian physicist Luigi Palmieri detected

helium on the Earth, through its D3 spectral line, when he analyzed the lava of Mount

Vesuvius [102]. In 1907, E. Rutherford and T. Royds demonstrated that alpha particles are
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helium nuclei [74].

Helium is the second lightest element, and the second simplest atom to model, following

the hydrogen atom. Unlike hydrogen, which mostly exists in nature in the molecular form

of H2, helium exists in the form of isolated atoms. The helium atoms are therefore the best

and simplest object for investigating correlation in a many-electron system. Although it is

rare on Earth, helium is the second most abundant element in the known Universe (after

hydrogen), constituting 23% of the Universe’s baryonic mass [15].

1.2 History of the Laser and other Light Sources

In 1917, Albert Einstein established the theoretical foundations for the laser and the maser

in the paper Zur Quantentheorie der Strahlung (On the Quantum Theory of Radiation) via

a re-derivation of Max Planck’s law of radiation [99], conceptually based upon probability

coefficients (Einstein coefficients) for the absorption, spontaneous emission, and stimulated

emission of electromagnetic radiation. In 1928, Rudolf W. Ladenburg confirmed the exis-

tences of the phenomena of stimulated emission and negative absorption [99]. In 1939, V.

A. Fabrikant predicted the use of stimulated emission to amplify “short” waves [99]. In

1947, Willis E. Lamb and R. C. Retherford found apparent stimulated emission in hydrogen

spectra and effected the first demonstration of stimulated emission [99]. In 1950, Alfred

Kastler proposed the method of optical pumping [99], experimentally realized, two years

latter, by Brossel, Kastler, and Winter [68, 99].

In 1959, the term “LASER” was first used in the paper The LASER, Light Amplification

by Stimulated Emission of Radiation [24, 99]. After the invention of the laser, it has been

applied to many areas of modern society, including science, consumer electronics (such as

the PC, and smartphones), information technology, medicine, industry, law enforcement,

entertainment, and the military. In the 1980’s, the discovery of high-order harmonic gen-

eration by intense laser-atom interactions started to provides a new method to generate

coherent, ultrashort-pulse, x-ray emission [9]. The term “Free-electron laser (FEL)” was
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first coined by John Madey in 1976 at Stanford University [61]. The mechanism of the FEL

is quite different from the traditional laser; there is no “stimulated emission”; it has the

widest frequency range of any laser type, and can be widely tunable [13], from microwaves,

through terahertz and infrared radiations, to the visible spectrum, ultraviolet, and X-ray

regimes [64].

With the emergence of attosecond (1 as=10−18 s) optics in the twenty-first century,

available attosecond pulses open the possibility of probing electron dynamics in matter [9],

and therefore electron correlation, on its own timescale. The simplest electron-electron

correlation system is the helium atom. Using attosecond pulses, it is possible to not only

observe, but also actively induce and control correlation effects [19]. The helium atom

double ionization (DI) is the best candidate for such investigation.

1.3 Double Photo-Ionization

1.3.1 History

Atomic double photoionization (DPI) is a process of formation of doubly-charged ions when

laser radiation is exerted on atoms [87, 110]. DI is usually less probable than single ionization

(SI). Two different processes are distinguished in the DI of helium: sequential DI (SDI) and

non-sequential DI (NSDI). SDI is a process of formation of doubly-charged ions consisting

of two separate single-electron ionization events: the first electron is removed from an atom

followed by detachment of the second electron from the ion. NSDI is a process whose

mechanism differs from the sequential one. For example, both the electrons leave the nuclei

simultaneously and the second electron’s liberation is assisted by the first electron.

The phenomenon of NSDI was experimentally discovered by Suran and Zapesochny

for alkaline earth atoms in 1975 [103]. Despite extensive studies, the details of double

ionization in alkaline earth atoms remain unknown. For noble gas atoms, NSDI was first

observed by L’Huillier [42, 43]. The interest in the phenomenon grew rapidly after it was

rediscovered[110] in higher intensity infrared fields.
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At the same time, the DI of helium in intense extremely ultraviolet (XUV) pulses has also

been a subject for both theorists and experimentalists. In the 1990’s, Huetz et al. applied

the Wannier theory for the Coulomb break-up of three-particle system [17, 109] to the DPI

of helium and predicted the angular correlation between two escaping photoelectrons [29].

Then, Briggs and coworkers [54–57] derived selection rules for helium DI. Many experiments

on single-photon DI (SPDI) of helium with XUV pulses were done in the 1990’s [6, 93–

96, 104, 105]. The first experimental result for the triple differential cross section (TDCS)

of NSDI of helium was reported by Schwarzkopf et al. [93] who discussed only equal energy

sharing of the photoelectrons. Later, experimental results for unequal energy sharing were

reported [95, 96]. Bräuning et al. later reported measurements that cover the full ranges of

energy sharing and emission angles of the two photoelectrons [6]. In the meantime, many

theoretical studies have been done [6, 32, 38, 40, 58, 70–73, 77, 80–83, 88].

Due to their extremely small values, the measurement of a two-photon DI (TPDI) cross

section has remained a challenge to experimentalists in the laboratory. To the best of our

knowledge, the first measured two-photon DI cross sections of helium were published in

2005 by Hasegawa et al. [30]. In this experiment, intense higher harmonics in the soft X-ray

spectral domain were used, and the two-photon DI cross section for XUV pulses with a

photon energy of 42 eV were estimated as 4 · 10−53 cm4s.

Following the 2005 experiment of Hasegawa et al. [30], two-photon DI of helium has

been the subject of many theoretical studies [4, 21, 27, 32, 37, 40, 70–73, 77, 79, 98, 100,

101, 119]. In particular, Guan et al. [26, 27] presented the joint energy distribution of two

photoelectrons in both sequential and non-sequential regimes, and discussed the TDCSs

of 42 eV XUV TPDI; Zhang et al. [119] calculated joint angular distributions (JADs) for

two-photon DI by XUV pulses in both the non-sequential (39.5 eV< ~ωXUV <54.4 eV)

and the sequential regimes (~ωXUV >54.4 eV) for different energy sharing of the emitted

electron. Kheifets and Ivanov have discussed the TPDI angular distribution by convergent

close-coupling (CCC) theory [39, 40]. Guan et al. studied the dynamics of TPDI of helium in
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short intense XUV pulses by an ab initio method based on a time-dependent close-coupling

(TDCC) approach [27]. Palacios et al. [71–73] and Peng et al. [79] worked on investigations

of two delayed XUV pulses; while Zhang et al. [119] focused on the joint angular distributions

(JADs) of the emitted electrons with different excess energy and energy sharing for TPDI

by XUV pulses in both the non-sequential (39.5 eV< ~ωXUV < 54.4 eV) and the sequential

regimes (~ωXUV > 54.4 eV). Ni et al. [65] applied selection rules to few-XUV-photon DI

by solving the TDSE for a simplified helium model and revealed the oscillation between the

forbidden and non-forbidden of back-to-back electron emission due to the absorption of odd

and even photon numbers in a monochrome XUV pulse. Jiang et al. have discussed the

difference in SPDI and TPDI in the difference of emission angles of two photoelectrons [37].

None of these investigations address the influence of an IR laser. The role of an assisting

IR-laser pulse was studied by Hu in 2013 as a step towards the coherent control of chemical

reactions [34]. The author’s ab initio calculations for the DI of helium by an attosecond XUV

pulse showed that the delay of the assisting few-cycle IR laser very sensitively influences the

photoelectron energy distribution and can be tuned to significantly enhance the emission of

fast photoelectrons.

1.3.2 Emission Patterns

Helium DI is a convoluted process where photon-electron, electron-nucleus, and electronic

interactions compete. Accordingly, the detailed scrutiny of measured and calculated DI data

and the most rewarding comparison of experimental and theoretical data requires highly

differential emission probabilities (or cross sections) from which effects due to different

emission pathways can be best distinguished. We therefore focus in this work on a specific

value of the energy sharing between the two emitted electrons, equal energy sharing, and

investigate highly differential JADs for equal energy sharing. JADs for the helium DI exhibit

four different typical electron emission patterns (Fig. 1.1), which we will refer to repeatedly

throughout this thesis. For coplanar emission, each pattern can be related to a given range
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of the electron-emission angles θ1 and θ2 relative to the linear polarization direction of

the XUV and/or IR electric field E, which will serve as the quantization (z) axis in our

calculations below. The red solid arrow in Fig. 1.1(a) indicates the XUV or IR electric field

direction E, the black solid arrows denote the z-axis, and the remaining arrows represent

asymptotic photoelectron momenta. Different colors and line styles correspond to different

emission patterns in the JADs, as schematically depicted in Fig. 1.1(b):

Figure 1.1: (a) Schematics for four different types of photoelectron emission patterns in
the double ionization of helium. From top to bottom: back-to-back emission, side-by-side
emission, conic emission, and symmetric emission. (b) Schematics for the identification of
the corresponding emission patterns (with matching line types and colors) in joint angular
distributions (see text).

• “back-to-back emission” (green solid arrows in Fig. 1.1(a) and green solid lines with

slope 45◦ in Fig. 1.1(b) with θ12 = |θ1 − θ2| = 180◦),

• “side-by-side emission” (blue dotted arrows in Fig. 1.1(a) and blue dotted lines in

Fig. 1.1(b) with θ1 = θ2),
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• “conic emission” (purple dashed arrows in Fig. 1.1(a) and purple dashed line with

slope −45◦ and θ1 + θ2 = 360◦ ± 180◦), and

• “symmetrical emission” (blue dotted-dashed arrows in Fig. 1.1(a) and dotted-dashed

line along θ1 + θ2 = 360◦ in Fig. 1.1(b)).

1.4 Contents of this Thesis

We have investigated few-photon DI of helium atoms without and in the presence of an

assisting IR-laser field by numerically solving the TDSE in full dimensionality [46, 48]. We

consider the absorption of one (~ωXUV=89 - 99 eV) or two (~ωXUV=45 eV) XUV photons

and compare the XUV-pulse-induced DI of helium without and with the assistance of an IR

pulse. We discuss numerical examples for which the electrons are emitted from the ground

state of helium with excess energies between 10 and 20 eV and find that the presence of the

IR field alters photoelectron angular distributions in a characteristic way due to the transfer

of photon momenta from the assisting IR pulse.

In this thesis, the theoretical tools are presented first. In Chap. 2, we present the finite-

element discrete-variable representation (FE-DVR) implementation, solve the TDSE with

Arnodi-Lanczos method, and formulate the physical observables used in later discussions.

In Chap. 3, we apply the FE-DVR scheme to hydrogen atoms and to helium atoms with

single-active-electron (SAE) model. Some numerical details, such as grid sizes (finite-element

size and DVR order) and propagation time step ∆t, will be discussed in this chapter.

In the following three chapters, the FE-DVR scheme is applied to the studies of helium

photo-DI by a single XUV pulse (Chap. 4 and 5) and to single-XUV-photon DI within the

presence of a laser field (Chap. 6). In Chap. 4, few-photon DI by XUV pulse is discussed.

And we discuss and compare characteristics of few-photon DI. In Chap. 5, we study sequen-

tial and non-sequential contributions to the TPDI of helium exposed to the electric field of

an ultrashort XUV pulse. The concepts of sequential and non-sequential DI are clarified in

short and long pulses, respectively.
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In Chap. 6, we applied an IR field to the single-XUV-photon DI. This study predicts

the enabling of back-to-back emission at equal energy sharing, and the enhancement of

side-by-side emission at unequal energy sharing [49].

The last Chapter, Chap. 7, summarizes the results presented in this dissertation, followed

by six appendices containing a list of abbreviations used in the dissertation, a derivation

of symmetries of JADs, a short derivation of Lobatto basis functions in the DVR theory,

numerical convergence tests, source-code descriptions, and copyright clearances for reusing

figures from literatures.

Atomic units (a.u.) are used throughout this thesis, unless specified otherwise.
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Chapter 2

Theory and Numerical
Implementation

In the chapter, the quantum mechanics theory of helium atoms will be presented first. Next

we discuss the discretion scheme on numerical grids. At the end of this chapter, we discuss

how to extract physical observables from wave functions we obtained by solving the TDSE.

2.1 The Time-Dependent Schrödinger Equation

The Schrödinger equation is the basic equation, just like Newton’s second law in classical

mechanics. It was introduced to quantum mechanics by Erwin Schrödinger in 1926 [112].

The solution of a Schrödinger equation is called as wave function. In the Copenhagen

interpretation, the square of wave function is interpreted as a probability amplitude.

The Schrödinger equation has two forms: time-independent and time-dependent. The

time-independent Schrödinger equation (TISE) is used to describe a time-independent sys-

tem, such as the harmonic oscillator. To investigate the dynamics of a system, we need to

use the TDSE, which gives a description of how a system evolves in time.

The form of the non-relativistic Schrödinger equation depends on the physical situation.

In atomic units, it can generally be written as

i
∂Ψ

∂t
= ĤΨ, (2.1)

where Ψ is the wave function of the the quantum system of interest, and Ĥ is the Hamiltonian
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operator which characterizes the total energy of any given wave function and takes different

forms depending on the situation. In position space, the one-particle TDSE can be written

as:

i
∂Ψ(r; t)

∂t
= ĤΨ(r; t), (2.2)

and the two-particle TDSE is expressed as:

i
∂Ψ(r1, r2; t)

∂t
= ĤΨ(r1, r2; t). (2.3)

Equation (2.1) can be formally solved as [51]:

Ψ(t) = T̂ exp

(
−i

∫ t

t0

Ĥ(t′)dt′
)
Ψ(t0), (2.4)

where the time-ordering operator T̂ is introduced [51]. The time-ordering operator acts

on a group of time-dependent operators, T̂ [Ĥ(t1)Ĥ(t2)Ĥ(t3)], and is just an instruction to

arrange the operators with the earliest times to the right (the earlier time operator acts on

wave function first). For example,

T̂ [Ĥ(t1)Ĥ(t2)Ĥ(t3)] = Ĥ(t3)Ĥ(t1)Ĥ(t2), if t3 > t1 > t2. (2.5)

If a potential is time-independent, i.e. dV̂ (t)/dt = 0, or the potential changes slowly,

it can be treated as a time-independent operator in a short time step. Therefore, we have

V̂ (t) ≈ V̂ (t0 + ∆t) for small ∆t = t − t0, and the time-ordering can be dropped. The

time-dependent wave function can now be approximated as

Ψ(t) ≈ exp

(
−i

∫ t

t0

Ĥ(t′)dt′
)
Ψ(t0). (2.6)

The wave function Ψ(t) can be calculated by iteratively propagating by a small time step

∆t until t = N∆t. For each time step,

Ψ(t+∆t) ≈ exp{−iĤ(t+∆t/2)∆t}Ψ(t). (2.7)
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2.2 Finite-Element Discrete Variable Representation

In the previous section, we derived the formal solution of the TDSE. In the following sections,

we want to numerically solve it. After trying different schemes, we finally selected the

finite-element discrete-variable representation (FE-DVR) scheme for the implementation on

a numerical grid. By adopting this scheme, we can have at least three advantages:

1. High accuracy. By using the Gaussian quadrature rule, we need fewer grid points

than uniform grids to achieve the same accuracy.

2. Variable grids. By using finite elements, we can use more grids in the region near the

nucleus, and less grid points in the outer region, without doing any transformation. This is

very efficient for the Coulomb potential, especially for the low-n energy levels.

3. High efficiency and parallelizability. The FE-DVR method is efficient in distributed

memory (a multiple-processor computer system in which each processor has its own private

memory) parallel computing. Each computing node on most supercomputers is equipped

with two processors. For example, Edison at NERSC has 24 cores per node [63]. The shared-

memory-only computing is still very limited for large scale calculations due to the high

demanded RAM memory requirement. Depending on the laser parameters, the sizes of the

physical problems can increase dramatically, either through the number of angular partial

waves, or the number of spatial grid points (or both). Therefore we have to parallelize our

code through distributed-memory programming. To parallelize the problem, the numerical

grid is divided into many small blocks, each block almost propagates independently, except

for the exchanges of data on the boundary with neighboring blocks. For a regular scheme,

such as finite difference, the ghost points (that are located outside interval of the local grid)

are dependent on the order of finite difference. To get a better accuracy, five-point, or even

nine-point stencil finite-difference schemes are often adopted. The wave functions at the

ghost points are communicated via network, which is much slower than RAM reading. In

the FE-DVR method, no matter what the order of the DVR basis is, we only have one ghost

point, and the data exchange is therefore minimized.
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2.2.1 Discrete Variable Representation

Before its application to atomic physics, the DVR scheme was widely used [44, 45, 78, 88].

Different from the traditional numerical scheme, a DVR scheme uses a set of the basis

functions defined at grid points to describe a wave function.

Gaussian quadrature rule

The Gaussian quadrature rule states that an integral of a polynomial function can be ex-

panded as a weighted sum of function values at specified grid points within the domain

of integration. For convenience, taking the domain of integration in [-1, 1], an n-point

Gaussian-Legendre quadrature rule is expressed as∫ 1

−1

f(x)dx =
n∑

i=1

ωif(xi), (2.8)

where xi and ωi are the coordinate and corresponding weight of the i-th specified point,

respectively. We choose the zeros of a Legendre polynomial as our specified points, and

denote them as quadrature nodes. Depending on whether including end points (-1 and 1)

or not, there are three kinds of typical quadrature rules. The first kind is the Gaussian-

Legendre rule, which does not include neither -1 nor 1 as the grid nodes of DVR basis. The

second one is the Gaussian-Radau rule, which includes only one end (-1 or 1). The last one

is the Gaussian-Lobatto rule, which includes both -1 and 1 as the grid nodes of DVR basis.

Depending on the physical problem we engaged, we can choose one or two types of these

grids (Legendre, Radau, Lobatto). In Tab. 2.1 and 2.2, we show examples of the grid points

and weights for the Gaussian-Lobatto quadratures of 4-th and 10-th orders, respectively.

DVR Functions

Following the suggestion of Light et al. [44, 45], Rescigno et al. [58, 88] and Schneider et

al. [90–92], we can construct polynomial functions on these quadrature nodes:

fm(x) =

{ ∏
j ̸=m

x−xj

xm−xj
, −1 ≤ x ≤ +1,

0, else,
(2.9)
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Table 2.1: The specified nodes of Gaussian-Lobatto quadrature rule for the 4-th order DVR
basis. The xi and ωi are the coordinate and corresponding weight of the i-th Lobatto node
point, respectively.

xi ωi

-1.0000000000000000 0.1666666666666667
-0.4472135954999579 0.8333333333333333
0.4472135954999579 0.8333333333333333
1.0000000000000000 0.1666666666666667

Table 2.2: The specified nodes of Gaussian-Lobatto quadrature rule for the 10-th order DVR
basis. The xi and ωi are the coordinate and corresponding weight of the i-th Lobatto node
point, respectively.

xi ωi

-1.0000000000000000 0.02222222222222
-0.9195339081664588 0.13330599085107
-0.7387738651055051 0.22488934206313
-0.4779249498104445 0.29204268367968
-0.1652789576663870 0.32753976118390
0.1652789576663870 0.32753976118390
0.4779249498104445 0.29204268367968
0.7387738651055051 0.22488934206313
0.9195339081664588 0.13330599085107
1.0000000000000000 0.02222222222222

where m is the index of DVR basis and j is the index for the grid points. Both m and j

run from 1 to n, the order of the DVR basis.

Properties of DVR functions

For DVR-basis functions, there is an important and useful relation between function and

node

fm(xj) = δmj, (2.10)

where, xj is the coordinate position of the j-th node. This relation means that only when the

index of the node equals the index of the DVR-basis function, the function value equals 1;

when they are different, the function value is zero. Here we need to notice that this relation

is only valid for node points. When the coordinate position x is located between these DVR
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nodes, the function value is neither 1 nor 0. Our numerical calculation is performed with

these fixed DVR nodes.

2.2.2 Finite-Element Discrete-Variable Representation

In the previous subsection, we have discussed the DVR basis functions in the region [-1,1].

However, a physical problem typically spans an arbitrary region, for example, [0,100]. To

apply the DVR theory, we can simply transform the physical space [0,100] into the model

space spanned over [-1,1], or divide [0,100] into many small elements, and transform all the

finite elements in physical space into the model space spanned over [-1,1]. The first option is

simple but not efficient, because it will generate a dense Hamiltonian matrix whose elements

are mostly nonzero (in contrast to sparse matrix in which most of the elements are zero). It

is difficult to save and slower to diagonalize a dense matrix than to solve a spare matrix if

the matrix order is large [33]. Therefore, we have chosen the latter option, which is called

as the Finite-Element Discrete-Variable Representation, short for FE-DVR [88].

Bridge Function [88]

In Fig. 2.1, we display the numerical mapping over 0 to 6 a.u. with 3 elements and 4

DVR-basis functions in each element. Here we can notice that there is overlap between the

neighboring elements: they use the same grid points as their DVR nodes, e.g., the last DVR

node of element 1 is the first DVR node of the element 2.

The DVR function is non-zero only inside its definition interval; outside of this interval,

it is always zero. In this sense, an electron moving in interval 1, for example, can move and

only move in this region. It cannot go across the boundary and moves to the interval 2.

To overcome this difficulty, we have to consider the overlapping nodes when constructing

the Hamiltonian matrix. The “bridge function” is introduced here as a “bridge” to the

neighboring regions (elements) as

χi1 = fi,n(x) + fi+1,1(x). (2.11)
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Figure 2.1: Schematic of DVR-basis functions with 3 finite elements. 3 sets of DVR-basis
functions are equally mapping over [0,6] by 3 elements. The element index i ranges from 1 to
3 on the top, the numbers over each elements within colored circles are served as indices of
DVR-basis functions as well as indices of DVR nodes, they are the second index of a DVR-
basis function fi,m(r). The 4 circled numbers on the top-left label the DVR-basis functions
in element 1. The 4 circled numbers on the top-middle label the DVR-basis functions in
element 2, and the 4 circled numbers on the top-right label the DVR-basis functions in
element 3. The curves represent the DVR-basis functions, the black dashed lines display the
ordinary functions, the blue dashed lines are the bridge functions. The red dashed-dotted
lines are two DVR-basis functions to be dropped due to the boundary conditions.
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It consists of the last DVR-basis function in i-th finite element and the first DVR-basis

function in the (i + 1)-th finite element. We use the first index i for a given finite element

and keep the DVR-basis function index n as in Eqn. 2.9. See the blue dashed-dotted lines

in Fig. 2.1 for example. It is obvious that the bridge function is continuous at the adjacent

grid points, but its first derivative is not.

The new basis functions are now rewritten as

χi1 = fi,n(x) + fi+1,1(x), (2.12)

χim = fi,m(x), m = 2, · · · , n− 1. (2.13)

These functions are not normalized, but can be simply normalized by

χi1 =
fi,n(x) + fi+1,1(x)√

ωi
n + ωi+1

1

, (2.14)

χim =
fi,m(x)√

ωi
m

, m = 2, · · · , n− 1. (2.15)

Properties of FE-DVR Functions

Similar to the DVR-basis functions, the FE-DVR-basis functions now follow the relation:

fim(x
i′

j ) = δmjδii′ , (2.16)

where i and i′ are the index of elements. δii′ indicates the property of non-overlap between

DVR basis functions of different finite elements.

We can approximate an integral into summation in the sense of the Gaussian-Lobatto

quadrature ∫ ∞

0

fim(x)fi′m′(x)dx ≈ δii′δmm′ωi
m, (2.17)

and any local operator has a diagonal representation:∫ ∞

0

fim(x)V (x)fi′m′(x)dx ≈ δii′δmm′V (xim)ω
i
m. (2.18)
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2.2.3 One-Dimensional Hamiltonian Expression in Finite-Element
Discrete-Variable Representation

Here we consider the simplest case of a one-dimensional wave function that is expanded as

[88]

ψ(x) =
∑
im

cimχim(x). (2.19)

Considering a function ψ(x) whose derivative is discontinuous at the connecting point

x0, its first and second derivatives are given by

dψ(x)

dx
= f(x)θ(x− x0) + g(x)θ(x0 − x), (2.20)

and
d2ψ(x)

dx2
= f ′(x)θ(x− x0) + g′(x)θ(x0 − x) + [f(x)− g(x)]δ(x− x0), (2.21)

respectively, where f(x) and g(x) are two continuous differentiable functions, and

θ(x) =

{
0, x < 0,

1, x > 0,
(2.22)

is the step function.

The expectation value of the radial kinetic energy can be calculated in symmetrical form

as

−1

2

∫ ∞

0

dxψ(x)
d2

dx2
ψ(x) = −1

2
lim
ϵ→0

∑
i

∫ xi+1−ϵ

xi+ϵ

dxψ(x)
∑
m

cimχ
′′
im(x)

−1

2

∫ ∞

0

dxψ(x)
∑
im

cimδ(x− xi)[χ
′
im(ri + 0)− χ′

im(xi − 0)]

=
1

2

∑
i

∫ xi+1

xi

dx

(
dψ

dx

)2

. (2.23)

Here ϵ is an arbitrary finite value. It therefore allows us to segregate the finite terms in

Eqn. (2.23) from the δ-function terms. Thus, the matrix elements of the kinetic-energy

operator in the FE-DVR frame can be calculated by

T ii′

mm′ =
1

2
(δii′ + δii′±1)

∫ ∞

0

dx
d

dx
χim(x)

d

dx
χi′m′(x). (2.24)
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The δ-functions in Eqn. (2.24) reflect the fact that a bridge function only covers two neigh-

boring finite elements, and there is no overlap between DVR-basis functions beyond adjacent

finite elements.

The first derivative in Eqn. (2.24) can be calculated by [88]

f ′
im(x

i
m′) =

 1
xi
m−xi

m′
Πk ̸=m,m′

xi
m′−xi

k

xi
m−xi

k
, m ̸= m′,

1
2ωi

m
(δm,n − δm,1), m = m′.

(2.25)

The second line represents the derivatives in each end of each interval: m = 1 for the left

end, and m = n for the right end. The derivation is presented in Appendix B.

The kinetic-energy matrix elements shows block structure where each block is a dense

matrix corresponding to a finite element. Adjacent blocks have an overlapping element,

which is related to the connecting grid point between finite elements. In Fig. 2.2 we show

an example matrix with 3 finite elements and 4 DVR functions each. Since the potential

matrix is diagonal, it does not change the block structure.

2.3 Single-Active-Electron Model

For hydrogen or hydrogen-like atoms (He+, Li++,etc), we can apply the one-particle TDSE

[Eqn. (2.26)] to describe it. For a multi-electron system (He, Ar, etc), in principle, we have

to adopt the multi-electron TDSE. However, if we only discuss SI, with the help of the

single-active-electron (SAE) model [106], the multi-electron atoms can be approximately

described by the single-particle TDSE.

The TDSE of the SAE can be written as:

i
∂Ψ(r; t)

∂t
= ĤΨ(r; t) = [T̂ + V̂ (r, t)]Ψ(r; t), (2.26)

where the Hamiltonian is divided into the kinetic energy T̂ and potential energy V̂ operator

of the system.
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Figure 2.2: Example of a 1-D Hamiltonian matrix in the FE-DVR scheme with 3 finite
elements and 4 DVR functions in each element. See Fig. 2.1 for detail.

2.3.1 Partial Wave Expansion

We expand the single-electron wave function in partial wave functions as:

Ψ(r, t) =
∑
l,m

ψlm(r, t)

r
Ylm(r̂), (2.27)

so the field-free Schrödinger equation now can be rewritten as

i
∂

∂t
ψlm = H0ψlm. (2.28)

2.3.2 Particle in External Field

When a single particle system is exposed to an external electromagnetic field, its Hamiltonian

needs to include an interacting term HI . In the length gauge of the laser-atom interaction,

it can be written as

HI = E · r, (2.29)
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where E is the electric field component of the laser. Some investigations showed that it

might be more economical to use the velocity gauge [121, 123], but some tests also showed

indistinguishable results when using the same angular configuration in the velocity and

length gauges [122]. Therefore, in this thesis, we only discuss results with length gauge. In

most cases, we assume the external electric fields (XUV and IR) to be linearly polarized

with sine-squared temporal profiles and write their electric-field vectors as

Ea(t) =

{
E0a sin

2(πt
τa
) cos(ωat+ φa), if 0 < t < τa,

0, else,
(2.30)

where the index “a” stands for “XUV” or “IR”. Their common polarization direction defines

our quantization axis which coincides with the z-axis of our coordinate system. |E0a|, τa, φa

and ωa denote electric-field amplitude, pulse length, carrier-envelope phase, and frequency,

respectively. In this thesis we assume that the two pulses coincide and set φXUV = φIR = 0.

We note that, in general, sine-squared pulses do not satisfy Maxwell’s equations, due to a

non-vanishing DC component. For the pulses used in thesis, we found the DC component

to be small and not induce noticeable changes in any of the observables we discuss.

For a linearly polarized laser, assuming the laser is polarized along the z direction, the

interaction can be expressed as

HI = E(t)z = E(t)r cos θ = E(t)r

√
3π

4
Y 0
1 (θ, ϕ), (2.31)

where E(t) is electric field and Y 0
1 is the l = 1,m = 0 spherical harmonic function. Due to the

linear polarization of the laser field, the magnetic quantum number m remains unchanged,

and Eqn. (2.28) can be simply written as

i
d

dt
ψl = H0ψl. (2.32)

Sincem will not change for linearly polarized laser (and the ground state with l = 0,m =

0 for H and He singlet state), we have the Schrödinger equation driven by linearly polarized

laser

i
d

dt
ψl = H0ψl +

∑
l′

E(t)rF (l, l′)ψl′ , (2.33)
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where

F (l, l′) =

∫
Y ∗
lmY10Yl′m′dΩ =

√
3

4π
(2l + 1)(2l′ + 1)

(
l 1 l′

0 0 0

)(
l 1 l′

m 0 m′

)
, (2.34)

where

(
l l1 l2
m m1 m2

)
is a Wigner 3j-symbol which is related to the Clebsch-Gordan coef-

ficients [113].

2.4 Two-Active-Electron Model

To study the behavior of a two-electron correlated system with many electrons, the most

direct idea is to extend the SAE model to a many-electron system; this is called the two-

active-electron (TAE) model. In the TAE model, only two electrons are active, all the rest

electron(s) act as a short range potential in the potential curve of our target system. For

the helium atom, there are only two electrons, so this short range potential term is 0.

2.4.1 General Form of the TDSE for the Helium Atom

The general form of the Schrödinger equation for a two-electron system in the two-active-

electron model can be written as:

i
∂Φ(r1, r2; t)

∂t
= HΦ(r1, r2; t), (2.35)

with the Hamiltonian

H = H0 + Vint, (2.36)

where

H0 = −1

2
[∇2

1 +∇2
2]−

2

r1
− 2

r2
. (2.37)

The interaction potential

Vint =
1

|r1 − r2|
+ [EXUV (t) + EIR(t)] · (r1 + r2) (2.38)

includes the electronic correlation and interactions between the electrons and external XUV

and IR electric fields in the dipole length gauge. The electric fields are given in Eqn. (2.30).
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We solve Eqn. (2.35) by expanding the time-dependent two-electron wave function in

bipolar spherical harmonics [34, 81],

YLM
l1l2

(Ω1,Ω2) =
∑
m1m2

CLM
l1m1l2m2

Yl1m1(Ω1)Yl2m2(Ω2), (2.39)

according to

Φ(r1, r2; t) =
∑
LM

∑
l1,l2

ψ
(LM)
l1l2

(r1, r2; t)

r1r2
YL,M

l1l2
(Ω1,Ω2). (2.40)

The functions Ylimi
(Ωi) are ordinary spherical harmonics in the solid angles Ωi = (θi, ϕi) of

the two electrons (i = 1, 2). The coupling of the two electrons’ individual angular momenta

with quantum numbers (l1,m1) and (l2,m2) to the total angular momentum of the two-

electron system with quantum numbers (L,M) is written in terms of the Clebsch-Gordan

coefficients CLM
l1m1l2m2

. Assuming the helium atoms are initially in the singlet-spin 1S0 ground

state with L = M = 0, angular momentum conservation implies that the atom remains in

M = 0 states during their interaction with the XUV and IR electric fields. Starting with

helium atoms in the 1S0 state further implies that the radial parts of the atomic wave

function are symmetric upon electron exchange, i.e. Φ(r1, r2) = Φ(r2, r1), such that for our

case (M = 0) only terms with even L− l1 − l2 contribute to the expansion Eqn. (2.39).

In order to determine the radial wave functions ψL
l1l2

(r1, r2) in Eqn. (2.40), we adopt the

FE-DVR implementation and numerically propagate the radial TDSE forM = 0 [33, 119],

i
∂

∂t
ψL0
l1l2

(r1, r2; t) =
∑
L′l′1l

′
2

⟨l1, l2, L, 0|H|l′1, l′2, L′, 0⟩ψL′0
l′1l

′
2
(r1, r2; t), (2.41)

on a two-dimensional numerical grid for the radii r1 and r2. In order to simplify the notation

we will drop the superscript M throughout the remainder of this thesis. Details of the

partial-wave analysis and angular-momentum-coupling constraints are given in the next

sub-section. Because we will discuss the case that the two electrons are initially in a singlet

spin state (and since we employ LS coupling), Ψ(r1, r2; t) = Ψ(r2, r1; t), and the radial part

of the wave function must satisfy the relation

ψL
l1l2

(r1, r2; t) = (−1)l1+l2−LψL
l2l1

(r2, r1; t). (2.42)
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In our numerical simulations, we therefore only include those partial waves with angular

momenta l1 + l2 − L = even.

We apply the DVR method based on the Gauss-Lobatto quadrature rule. This method

is known as an efficient procedure for obtaining highly accurate results with relatively small

numbers of radial grid points. Subdivision of the numerical intervals for the radial coordi-

nates r1 and r2 into smaller “finite” elements translates the Hamiltonian Eqn. (2.36) into

a large sparse matrix that can be efficiently diagonalized. The FE-DVR method is well

established for solving the radial two-electron TDSE and more details of its implementation

can be found in the literature [33, 58, 92, 119].

We solve Eqn. (2.41) by numerical wave-function propagation on the (r1, r2) grid points,

repeatedly applying the split time-evolution operator [66] over equally spaced small time

steps ∆t,

ψ(t+∆t) = e−iĤ0
∆t
2 e−iV̂int∆te−iĤ0

∆t
2 ψ(t) +O(∆t3). (2.43)

Here we need to mention that to obtain the accuracy O(∆t3), the Hamiltonian Ĥ should be

evaluated at the middle point t+∆t/2 of t and t+∆t.

In order to propagate Eqn. (2.41) in time, we employ the Lanczos method [26, 78]. At

each numerical grid point (r1, r2) the Hamiltonian H0 and the interaction potential Vint are

represented as N ×N matrices Ĥ0 and V̂int, respectively, in the channel indices and must be

diagonalized. N is the total number of channels (partial waves we adopted in the TDSE),

and each channel is defined by the set of quantum numbers (L, l1, l2). We will discuss how

to choose the partial waves in Chap. 4.

Since the FE-DVR scheme is based on the Gauss-Lobatto quadrature rule [1], it re-

quires the integrand to be a polynomial function for highly accurate results. However,

part of our numerical effort consists in calculating the matrix elements ⟨ψL′

l′1l
′
2
(r1, r2)|1/(|r1−

r2|)|ψL
l1l2

(r1, r2)⟩ of the electronic interaction for which the Gauss-Lobatto scheme is not ap-

propriate. To diagonalize the potential matrix without loss of accuracy, we instead calculate

this integral by solving Poisson’s equation [120], following the work of McCurdy et al. [58]
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in 2004.

2.4.2 Radial TDSE and Coefficients of Angular Momentum Cou-
pling Functions

The radial TDSE [Eqn. (2.41)] can be written as

i
∂

∂t
ψL
l1l2

(r1, r2; t) = [T̂ + V̂c]ψ
L
l1l2

(r1, r2; t)+
∑

L′l′1l
′
2
V̂F0(λ, λ

′)ψL′

l′1l
′
2
(r1, r2; t)

+
∑

L′l′1l
′
2
V̂F12(λ, λ

′)ψL′

l′1l
′
2
(r1, r2; t), (2.44)

where the collective angular momentum quantum numbers are defined as λ = {L, l1, l2} and

λ′ = {L′, l′1, l
′
2}, and

T̂ = −1

2

∂2

∂r1
− 1

2

∂2

∂r2
(2.45)

is the total kinetic energy operator for the two electrons, and

V̂c = − 2

r1
+
l1(l1 + 1)

2r21
− 2

r2
+
l2(l2 + 1)

2r22
(2.46)

includes the Coulomb interactions with the nucleus and the centrifugal potentials. The

angular-momentum coupling matrix elements are

V̂F0(λ, λ
′) =

∞∑
l=0

4π(−1)l√
2l + 1

rl<
rl+1
>

F0(λ, λ
′) (2.47)

for the electronic interaction, where r< = min{r1, r2}, r> = max{r1, r2}; and

V̂F12(λ, λ
′) =

4π√
3
E(t)[r1F1(λ, λ

′) + r2F2(λ, λ
′)] (2.48)
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for the interaction with the external electric field E(t) = EXUV +EIR. Following Refs. [33,

80–83], the angular-momentum coupling matrix elements can be written as

F0 =
√

(2l + 1)2(2l′1 + 1)(2l′2 + 1)(2L′ + 1)/(4π)2

× C l10
l0l′10

C l20
l0l′20

CL0
00L′0 ×


l l′1 l1
l l′2 l2
0 L′ L

 , (2.49)

F1 =
√

9(2l′1 + 1)(2l′2 + 1)(2L′ + 1)/(4π)2

× C l10
10l′10

C l20
00l′20

CL0
10L′0 ×


1 l′1 l1
0 l′2 l2
1 L′ L

 , (2.50)

and

F2 =
√

9(2l′1 + 1)(2l′2 + 1)(2L′ + 1)/(4π)2

× C l10
00l′10

C l20
10l′20

CL0
10L′0 ×


0 l′1 l1
1 l′2 l2
1 L L′

 , (2.51)

where Clebsch-Gordan coefficients and 9j symbols [35] are denoted as C ...
... and {...}, respec-

tively.

In terms of the collective quantum numbers λ and λ′, Eqn. (2.44) can be cast in the

more compact form [33]

i
∂

∂t
ψλ(r1, r2; t) = [T̂ + V̂c]ψλ(r1, r2; t) +

∑
λ′

[V̂F0(λ, λ
′) + V̂F12(λ, λ

′)]ψλ′(r1, r2; t). (2.52)

2.5 Continuum-State Wave Functions

To extract the physical information from the final-state wave function, we often need to

project the final state onto the asymptotic correlated two-electron wave functions. Since no

accurate closed-form expressions of such asymptotic correlated two-electron wave functions

are known for the three-body Coulomb problem [27, 50], we freely propagate our wave

function for a sufficiently long time (e.g., 40 a.u.) after the action of external field to

reduce the effect of final-state correlation. We proceed by neglecting the excited states and

the final-state interaction between the emitted electrons, leaving the inclusion of electronic
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correlation in the final state [7] to future investigations. This allows us to approximately

compute DI probabilities by subtracting the overlap with the 1S0 ground state wave function

from Φ(r1, r2; tf ) before projecting this difference onto the uncorrelated double Coulomb

continuum states [46]. These uncorrelated double Coulomb continuum states are eigenstates

of the uncorrelated Hamiltonian which neglects the electron-electron interaction term Ĥ12 =

|r1 − r2|−1.

The uncorrelated Hamiltonian reads

H0 =
p21
2

+
p21
2

− Z

r1
− Z

r2
= H1 +H2. (2.53)

This is a separable Hamiltonian. Z is the charge number of particle, it equals 2 for helium

atoms. It is the sum of two independent one-particle Hamiltonians (H1 and H2 as indicated

above). The one-particle Hamiltonian can be written as

H =
p2

2
− Z

r
. (2.54)

Its eigenstates can be separated into a radial and an angular parts:

Φklm(r) =
ϕkl(r)

r
Y l
m(Ω), (2.55)

where the angular part is expressed by the spherical harmonics function Y l
m(Ω). The radial

part, ϕ(r), has different forms for bound states and unbound states. The regular solution

for the unbound states is given by the regular radial Coulomb function Fl(η, κr) [5, 27, 46]

Fl(η, κr) = 2le−
1
2
πη |Γ(l + 1 + iη)|

(2l + 1)!
e−ikr(kr)l+1F (l + 1− iη, 2l + 2; 2ikr), (2.56)

and

ϕkl(r) =

√
2

π
Fl(η, kr). (2.57)

The confluent hypergeometric series F (a, b; z) is given by

F (a, b; z) =
∞∑
n=0

Γ(a+ n)

Γ(a)

Γ(b)

Γ(b+ n)

zn

n!
. (2.58)
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The asymptotic limit of Fl(η, κr) at r → ∞ has sinusoid-like form

Fl(η, κr) → sin(kr − ηln2kr − lπ

2
+ σl). (2.59)

Here, the Coulomb parameter η is defined by

η = −Z
k
, (2.60)

with Z=2 for helium. The Coulomb phase σl is

σl = arg[Γ(l + 1 + iη)]. (2.61)

The radial continuum-state wave function satisfies∫ +∞

0

ϕkl(r)ϕk′l(r)dr = δ(k − k′). (2.62)

Thus, the continuum states are normalized in momentum space. The singlet two-electron

Coulomb continuum wave function satisfying the incoming boundary condition (-) is given

by [27, 48]

ψ
(−)
k1,k1

=
1√
2
[ψ

(−)
k1

(r1)ψ
(−)
k2

(r2) + ψ
(−)
k2

(r1)ψ
(−)
k1

(r2)], (2.63)

which is the product of incoming-wave Coulomb continuum wave functions ψ
(−)
ki

(ri) (i = 1,

2) with emitted electron momenta k1 and k2 [5, 27].

2.6 Physical Variables

2.6.1 Total Energy

The total energy of a quantum system is defined by the expectation value of Ĥ,

Etot = ⟨Ĥ⟩ = ⟨Ψ|Ĥ|Ψ⟩ (2.64)

=
∑
λ,λ′

∫
dr1dr2ψ

†
λλ′(r1, r2)H

λλ′
(r1, r2)ψλλ′(r1, r2) (2.65)

≈
∑

i,j;λ,λ′

ωiωjψ
†
λλ′,ijH

λλ′

ij ψλλ′,ij (2.66)

where i, j are numerical grid indices, λ and λ′ are indices of partial waves, ωi and ωj are

the weights of the FE-DVR grids at the grid points ri and rj, and the Hλλ′
ij are Hamiltonian

matrix elements.
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2.6.2 Momentum and Energy Distributions

In order to obtain energy and angle-dependent double-ionization probabilities, we need to

analyze the final state of the doubly-ionized atom with regard to the asymptotic momentum

vectors of both emitted electrons. In principle, quantum mechanics demands this to be done

by projecting the wave function of the system, Φ(r1, r2; tf ), at a sufficiently long time tf

after the action of the IR and XUV pulses onto asymptotic two-electron continuum wave

functions. Since no accurate closed-form expressions of such asymptotic correlated two-

electron wave functions are known for the three-body Coulomb problem [27], we proceed by

neglecting the final-state interaction, leaving the inclusion of electronic correlation in the

final state [7] to future investigations.

In order to the remove spurious contributions to the DI probability amplitude that are

due to the non-orthogonality of this approximate asymptotic wave function and the initial

state Φ1S0
, we subtract the overlap with Φ1S0

(r1, r2) from Φ(r1, r2; tf ) to yield

Φ̃(r1, r2; t) = Φ(r1, r2; t)− ⟨Φ1S0
|Φ(t)⟩Φ1S0

(r1, r2). (2.67)

Numerical propagation of Φ(r1, r2; t) allows us to compute the DI probability

P (k1,k2) = |⟨ψ(−)
k1,k1

|Φ̃(r1, r2; tf )⟩|2 (2.68)

for detecting photoelectrons with momenta k1 and k2 [27, 46] as a six-dimensional distri-

bution in the momentum magnitudes k1 and k2 and corresponding momentum directions

Ωi = k̂i = (θi, ϕi), i=1, 2.

This momentum distribution is calculated by

P (k1,k2) =
1

4π2k21k
2
2

∣∣∣∣∣∑
Ll1l2

(−1)l1+l2ei(σl1
+σl2

)Y l1l2
L0 (Ω1,Ω2)M

L
l1l2

(k1, k2)

∣∣∣∣∣
2

, (2.69)

where

ML
l1l2

(k1, k2) =

∫
dr1

∫
dr2r1r2ϕk1l1(r1)ϕk2l2(r2)ψ̃(r1, r2, tf ) (2.70)

is the partial-wave amplitude in momentum space.
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Integration over all angles results in the correlated energy distribution

P (E1, E2) =
1

k1k2

∫∫
dΩ1dΩ2P (k1,k2), (2.71)

where E1 = k21/2 and E2 = k22/2 are the final (asymptotic) energies of the emitted

electrons.

2.6.3 Triple Differential Cross Sections

Integration of (2.68) over k2 (or k1) leads to the triple differential cross section (TDCS) [27,

119]
d3σ

dE1dΩ1dΩ2

=

(
ω

I0

)2
k1
Teff

∫
dk2k

2
2P (k1,k2). (2.72)

The TDCS is defined in terms of the effective interaction time

Teff =

∫
dt

(
I(t)

I0

)NXUV

(2.73)

for a given number NXUV of absorbed XUV photons and XUV intensity profile I(t). For

the limiting case of a rectangular temporal pulse profile, Teff becomes identical to the total

XUV pulse duration τ for NXUV = 1 and equal to τ for arbitrary NXUV. For a sine-squared

pulse shape of duration τ , the effective time for SPDI is

T
(1)
eff =

3

8
τ. (2.74)

For TPDI it is [27, 119]

T
(2)
eff =

35

128
τ. (2.75)

The single differential cross section (SDCS) can then be obtained by integrating Eqn. (2.72)

over k̂1 and k̂2,

dσ

dE1

=
1

4π2k1

(
ω

I0

)2
1

Teff

∫
dk2

∑
L,l1,l2

|ML
l1l2

(k1, k2)|2, (2.76)

to give the energy spectrum of one ionized electron.
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2.6.4 Joint Angular Distribution and Mutual Angular Distribu-
tion

We evaluate JADs for co-planar DI at vanishing azimuthal angles (ϕ1 = ϕ2 = 0) and for

fixed energy sharing, integrating over the emitted electron speeds,

P (θ1, θ2) =

∫
dk1dk2k

2
1k

2
2 δ(k1 − k2)P (k1,k2). (2.77)

We define the angle difference between two emitted photoelectrons as the mutual angle

θ12, which is constant along the 45◦ direction in JAD:

θ12 =

{
θ2 − θ1, if θ1 < θ2,

θ2 − θ1 + 2π, if θ1 > θ2.
(2.78)

Integration of the Eqn. (2.77) over θ1 (or θ2) at fixed mutual angles θ12 defines the mutual

angular distribution (MAD)

P (θ12; ε) =

∫
dθ1P (θ1, θ1 + θ12, ε). (2.79)

We define the dominant angular difference Θ12 as the angle where

∂P (θ12; ε)

∂θ12

∣∣∣∣
θ12=Θ12

= 0 and
∂2P (θ12; ε)

∂θ212

∣∣∣∣
θ12=Θ12

< 0. (2.80)

2.6.5 Emission-Asymmetry Parameter

To quantitatively describe the asymmetrical emission pattern in helium DI, we define the

asymmetry parameter

A(θ1; ε) =

(∫ π/2

−π/2
−
∫ 3π/2

π/2

)
P (θ1, θ; ε)dθ(∫ π/2

−π/2
+
∫ 3π/2

π/2

)
P (θ1, θ; ε)dθ

. (2.81)

When A is close to 1, the two photoelectrons mostly go in the same direction (into the

same hemisphere); for instance in side-by-side emission. If A is close to -1, the two photo-

electrons mostly go in opposite directions (into two different hemispheres), for instance in

back-to-back emission. This asymmetry parameter is an indicator of the electronic correla-

tion in double photoionization. A ≈ −1 is related to strong electronic correlation between
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photoelectrons in the DI process. In our discussion, mostly we set the θ1 = 0, which means

that the electron is emitted along the laser and/or XUV polarization directions.

2.7 Symmetry in Joint Angular Distribution

Figure 2.3 displays two typical JAD, both linear color scale, for (a) single-photon DI and

(b) three-photon DI at unequal energy sharing. Both plots display the symmetries about

two diagonal lines.

The symmetry about the second diagonal line (45◦ slope) is caused by the indistinguisha-

bility of two identical electrons. It is given by

P (θ2, θ1) = P (θ1, θ2). (2.82)

The symmetry about the main diagonal line (θ1 + θ2=360◦) is expressed as

P (θ1, θ2) = P (2π − θ1, 2π − θ2). (2.83)

The detailed derivation for Eqn. (2.83) can be found in Appendix A.

The periodicity is given by

P (θ1, θ2) = P (2π + θ1, 2π + θ2), (2.84)

and the symmetry about the center (π, π) by

P (θ1, θ2) = P (2π − θ1, 2π − θ2). (2.85)

2.8 Numerical Convergence Tests

We have carried out extensive tests using our new FE-DVR code to assess the accuracy

of our numerical results relative to the numerical effort (in terms of computing time and

random access memory) and published data. For example, the accurate helium ground-state

energy is [97]

EHe
g = −2.903 724 4 a.u. (2.86)
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(a) (b)

Figure 2.3: Two typical joint angular distributions as contour plots. Panel (a) is for single-
photon DI and panel (b) is for three-photon DI at unequal energy sharing.

and the experimental result is

EHe
g = −2.903 561 2 a.u. (2.87)

We use 50 finite elements and 6 grid points in each element, with the outer boundary

rmax=76 a.u., and angular momenta l1 and l2 are up to 5. We obtain the current helium

ground state energy

EHe
FE−DV R = −2.903 700 2 a.u. (2.88)

This result is in excellent agreement with both theory and experiment results. In Ap-

pendix (C), we discuss in detail the convergence tests on angular momenta (L, l1, l2),

propagation time, time step, and numerical grid size.
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Chapter 3

Application to the Energy levels of
Hydrogen Atoms and Helium Atoms
with Single-Active Electron Model

The one-electron atom is the simplest atomic system. For many-electron atomic system,

there is no analytical solution. However, if we only discuss single ionization, we can use

the the SAE model, which reduces the complex many-electron system to a hydrogen-like

system. In this chapter, we will apply the FE-DVR scheme to solve the SAE model, including

hydrogen atoms and helium atoms.

For atoms with more than one electron, due to the charge screening effect [112], the

effective nuclear charge is not exactly equal to the nuclear charge number. The SAE model

was developed to describe the potential behaviors of many-electron atoms. There are many

different models [106, 118], such as the GSZ potential model by Green, Sellin, and Zachor

[23, 25] and Muller potential model [62] but we only list the parameters of the Tong-Lin

SAE potential model [106], which is used in this chapter.

The effective potential in the Tong-Lin SAE model is given by

V (r) = −Zc + a1e
−a2r + a3re

−a4r + a5e
−a6r

r
. (3.1)

Here, Zc is the asymptotic charge that can be seen by the active electron, which is always 1

for SAE. The ai’s are fitting parameters. For the H atom, there is only one electron, so Zc

is equal to 1, and all the other parameters are zero. In Tab. 3.1, we give the parameters in
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the Tong-Lin SAE model for noble gas atoms.

Table 3.1: Atomic parameters of Tong-Lin SAE potential model adapted from Ref. [106].

Atom Zc a1 a2 a3 a4 a5 a6
H 1.0 0.000 0.000 0.000 0.000 0.000 0.000
He 1.0 1.231 0.662 -1.325 1.236 -0.231 0.480
Ne 1.0 8.069 2.148 -3.570 1.986 0.931 0.602
Ar 1.0 16.039 2.007 -25.543 4.525 0.961 0.443
Xe 1.0 51.356 2.112 -99.927 3.737 1.644 0.431

3.1 Hydrogen Atoms

The hydrogen atom is the only atomic system we can solve analytically. So it is good to

use H atoms as our first test of the SAE model and FE-DVR scheme. In this section, we

compare our numerical results of energy levels with the analytical results for the hydrogen

atom. In Tab. 3.2 and Tab. 3.3, we list analytical energy levels and compare them with our

numerical results with Nfe = 60 finite elements and Ngr = 4 and Ngr = 10 grid points in

each finite element, respectively. In each table, the grid is mapped over the radial interval

[0,137.5]. For detailed mapping information, see Tabs. 3.4, 3.5 and Fig. 3.1.

Table 3.2: Energy levels of hydrogen atoms. Lobatto node number Ngr = 4. Up to n=7,
the error between current value and accurate value is less than 1%.

energy level present value accurate value error (%)
1 -0.499 845 064 6 -0.500 000 000 0 0.030 987 08
2 -0.124 993 427 4 -0.125 000 000 0 0.005 258 09
3 -0.055 554 213 2 -0.055 555 555 6 0.002 416 20
4 -0.031 249 520 7 -0.031 250 000 0 0.001 533 88
5 -0.019 999 775 0 -0.020 000 000 0 0.001 124 83
6 -0.013 888 756 2 -0.013 888 888 9 0.000 955 06
7 -0.010 198 186 7 -0.010 204 081 6 0.057 770 15
8 -0.007 591 876 3 -0.007 812 500 0 2.823 983 49
9 -0.004 796 407 3 -0.006 172 839 5 22.298 201 82
10 -0.001 255 376 9 -0.005 000 000 0 74.892 461 05
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Table 3.3: Energy levels of the hydrogen atoms. Lobatto node number Ngr = 10. Up to
n=5, our current FE-DVR eigenvalues and the accurate values are exactly the same, and
up to n=7, the error between present value and accurate value is less than 1%.

energy level present value accurate value error (%)
1 -0.500 000 000 0 -0.500 000 000 0 0.000 000 00
2 -0.125 000 000 0 -0.125 000 000 0 0.000 000 00
3 -0.055 555 555 6 -0.055 555 555 6 0.000 000 00
4 -0.031 250 000 0 -0.031 250 000 0 0.000 000 00
5 -0.020 000 000 0 -0.020 000 000 0 0.000 000 00
6 -0.013 888 880 0 -0.013 888 888 9 0.000 063 93
7 -0.010 198 263 0 -0.010 204 081 6 0.057 023 03
8 -0.007 591 939 8 -0.007 812 500 0 2.823 170 18
9 -0.004 796 485 1 -0.006 172 839 5 22.296 940 88
10 -0.001 255 470 0 -0.005 000 000 0 74.890 599 91

In Fig. 3.1, we display the finite-element mapping over [0,137.5]. For near-core mapping,

the element size is small, the first element size is 1. The element sizes increase exponentially

and the last element size is 4.37.

3.2 Helium Atoms with Single-Active-Electron Model

In this section, we apply the SAE model to the helium atom. We compare our calculated

energy levels of helium atoms with experimental results.

3.2.1 Energy Levels

In Tab. 3.6, we display the first 10 energy levels of neutral He (singlet states with S=0)

with total angular momentum L = 0. In tests for the hydrogen atom with the same grid

point setting, we found the calculated energy levels in very highly accurate agreement with

analytical values for n < 8. In this section, we can see that the numerical results of the

SAE model obtained in the FE-DVR method agree well with experimental values. Column

1 shows the present results, obtained by diagonalizing the Hamiltonian of the helium atom

in SAE model. We map our grid over [0, 137.5] with 60 elements and 10 nodes in each

element. The first element size is 1 a.u., and the last one is 4.37 a.u. Column 2 lists the
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Table 3.4: The grid points in the first and last 10 elements, and each finite element is
mapped by 4 Gaussian-Lobatto nodes.

element index grid points
1 0.000000 0.276393 0.723607 1.000000
2 1.000000 1.283390 1.741925 2.025315
3 2.025315 2.315879 2.786022 3.076586
4 3.076586 3.374506 3.856551 4.154470
5 4.154470 4.459932 4.954180 5.259641
6 5.259641 5.572836 6.079595 6.392790
7 6.392790 6.713913 7.233501 7.554624
8 7.554624 7.883876 8.416618 8.745870
9 8.745870 9.083458 9.629686 9.967273
10 9.967273 10.313406 10.873462 11.219596
...

...
...

...
...

51 98.373735 99.338442 100.899371 101.864078
52 101.864078 102.853207 104.453651 105.442779
53 105.442779 106.456948 108.097907 109.112076
54 109.112076 110.151918 111.834419 112.874261
55 112.874261 113.940428 115.665521 116.731687
56 116.731687 117.824843 119.593607 120.686764
57 120.686764 121.807593 123.621134 124.741964
58 124.741964 125.891167 127.750618 128.899821
59 128.899821 130.078117 131.984640 133.162936
60 133.162936 134.371061 136.325847 137.533972
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Table 3.5: The grids in the first and last 5 elements, and each finite element is mapped by
10 Gaussian-Lobatto nodes.

element index grid points
1 0.000000 0.040233 0.130613 0.261038 0.417361

0.582639 0.738962 0.869387 0.959767 1.000000
2 1.000000 1.041252 1.133920 1.267646 1.427926

1.597389 1.757669 1.891396 1.984064 2.025315
3 2.025315 2.067611 2.162625 2.299736 2.464074

2.637827 2.802165 2.939276 3.034290 3.076586
4 3.076586 3.119953 3.217372 3.357954 3.526453

3.704604 3.873102 4.013685 4.111104 4.154470
5 4.154470 4.198935 4.298820 4.442961 4.615725

4.798387 4.971150 5.115292 5.215177 5.259641
...

...
...

...
...

...
56 116.731687 116.890812 117.248272 117.764110 118.382380

119.036071 119.654340 120.170179 120.527639 120.686764
57 120.686764 120.849917 121.216426 121.745323 122.379244

123.049483 123.683404 124.212301 124.578811 124.741964
58 124.741964 124.909247 125.285034 125.827321 126.477289

127.164496 127.814465 128.356751 128.732538 128.899821
59 128.899821 129.071340 129.456640 130.012654 130.679077

131.383680 132.050103 132.606117 132.991418 133.162936
60 133.162936 133.338796 133.733850 134.303940 134.987234

135.709674 136.392967 136.963057 137.358112 137.533972
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Table 3.6: First 10 bound-state energy levels. The present results are calculated for singlet
states by diagonalization of Hamiltonian matrix with 60 finite elements and 10 DVR nodes
in each finite element mapping over radial coordinate. The experimental data were retrieved
from NIST Atomic Spectra Database [67] on March 29, 2015.

Because there is no corresponding singlet and triplet states in SAE model, we compare the
SAE results with the averages of experimental energy levels of singlet and triplet states.

n current value experimental value average error (%)
1 -0.903 800 996 6 -0.903 67 - 0.014 38
2 -0.160 010 729 9 -0.175 23 (3S) -0.160 60 0.366 93

-0.145 97 (1S)
3 -0.064 816 780 0 -0.068 69 (3S) -0.064 98 0.251 18

-0.061 27 (1S)
4 -0.035 008 343 0 -0.036 51 (3S) -0.035 045 0.104 72

-0.033 58 (1S)
5 -0.021 883 741 2 -0.022 617 (3S) -0.021 896 0.055 992

-0.021 175 (1S)
6 -0.014 964 455 4 -0.015 376 (3S) -0.014 969 0.030 360

-0.014 562 (1S)
7 -0.010 873 318 5 -0.011 129 (3S) -0.010 877 0.033 847

-0.010 625 (1S)
8 -0.008 137 989 6 -0.008 426 (3S) -0.008 2595 1.471 159

-0.008 093 (1S)
9 -0.005 469 545 4 -0.006 601 (3S) - -

-0.006 369 (1S) - -
10 -0.002 094 663 3 -0.005 310 (3S) - -

-0.005 143 (1S) - -
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Figure 3.1: Numerical grid point mapping over the radial interval [0,137.5] for the first and
last 10 elements for Ngr = 4. The black squares are grid points, and the red solid circles
indicate the finite-element mapping.

experimental values of He(L = 0) energy levels. Because there are singlet and triplet states,

but the SAE model has not corresponding singlet and triplet states, in column 3, we display

the average of singlet and triplet energies for fixed principle quantum number n. In the last

column, we calculate the percent error of average experimental value: |Etheory −Eave|/Eave.

For excited states, although the theoretical values are not very close to either single

energy levels, or the triplet energy levels, these values are in good agreement with the

average values of singlet and triplet energy levels. For principal quantum numbers n <

8, the error is much smaller than 1%. Even for n up to 8, the error is only about 1.5%.
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When n=9, the current numerical energy value is -0.005 470, closer to the 10th experimental

energy level [-0.005 310(3S), 0.005 143(1S)], rather than the 9th experimental energy levels

[-0.006 601(3S), 0.006 369(1S)]. This means that the numerical result misses the real 9th

and some higher energy levels of helium atom. In our investigation, these high n states

(Rydberg states) can be neglected.
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Chapter 4

Helium Photo-Double Ionization by
XUV Pulses

In this chapter, few-XUV-photon DI will be discussed. In section 4.1, we discuss how to

prepare an initial state, while in section 4.2 we present the selection of partial waves for our

TDSE simulation. Next, in sections 4.3-4.5, we will discuss few-photon DI with up to three

XUV photons. We use NXUV to denote the number of XUV photons. NXUV = 1 stands for

single-photon DI, NXUV = 2 stands for two-photon DI, and so on. In section 4.6, we will

discuss the similarity and difference of few-photon DI with NXUV up to 3.

In Fig. 4.1, we display a schematic representation of helium energy levels involved in the

few-XUV-photon DI for a total excess energy of 11 eV. We present three different photon

energies, and three different processes, respectively.

4.1 Preparing an Initial State

As in experiments, we need to prepare the initial atomic state for a numerical simulation. In

this section, we discuss how to prepare the initial state for our simulations of helium atoms.
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Figure 4.1: Schematic energetics for non-sequential double ionization of helium by two 45 eV
or one 90 eV photon and sequential double ionization by three 30 eV photons. Ip1 and Ip2
designate the first and second ionization threshold, respectively. For the examples considered
in this section, the combined excess energy of the emitted electrons is Eexc = 11 eV.
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4.1.1 Ground State

In many cases, the initial state is also the ground state. The unperturbed ground state is

one of the eigenstates of the field-free Hamiltonian

H0 = −1

2

∂2

∂r21
− 1

2

∂2

∂r22
− 2

r1
− 2

r2
+

1

|r1 − r2|
. (4.1)

So, in principle, it can be obtained by diagonalizing the two-active-electron Hamiltonian

matrix. Although the diagonalization is numerically easy to perform for a Hamiltonian

matrix within the SAE model, it is difficult, even impossible, to perform simulations with

very huge grids of the TAE Hamiltonian matrix on our current computational resources.

In fact, if we only need a few lowest states, the imaginary time propagation method is

an economic way to obtain the initial states we need. In the imaginary time propagation

method, the real time t in the TDSE is replaced by the imaginary time τ [46, 66]. Under

the transformation τ = it, the imaginary unit i is canceled by the i in the TDSE. Therefore

the unitary of the Schrödinger equation is lost. This requires that we have to re-normalize

the wave function at every couple of time steps in the imaginary propagation. Starting from

an arbitrary trial state, after propagating a sufficient long time with small enough time

step, the wave function will converge to the lowest state of a system controlled by a given

potential.

For helium atoms in our case, like most studies by other groups [27, 33, 71, 119], we

choose the singlet ground state as our initial state, which has total spin S = 0. The starting

trial wave function for imaginary time propagation method is arbitrary, so we could start

from a double Gaussian wave packet, which can be written as

ψ(r1, r2) = Ce−(r1−r0)2e−(r2−r0)2 , (4.2)

where C is a normalization factor, r0 is an arbitrary real number, which we set as 10 a.u.

The size of the propagation time step is related to the accuracy and convergence of the

ground energy and ground-state wave function. After many tests, 0.01 and 0.004 1 a.u.

44



are selected in our simulations. If we use the time step of 0.004 1 a.u., the convergence is

very quick for the ground state. After ∼ 0.5 fs of numerical propagation, the wave function

converges to a relative energy change less than 10−8 per iteration.

4.1.2 Excited States

In Fig. 4.2, we display the probability densities of the radial wave functions for the (a)

ground state and (b) first excited state with L=0. Both panels are plotted in a logarithm

color/gray scale.

To obtain an excited state, we can also apply the imaginary time propagation method.

For singly excited states, such as the |1snsnS⟩ states, the process is very similar to the

process of generating the ground state, except we subtract the overlap of the desired state

with lower energy states every few propagation steps to force convergence into the higher-

lying states.

For the case of doubly-excited states, the procedure is more complicated than for the

ground state [14, 20, 97], since the doubly excited states are mixed with the singly ionized

continuum states. The famous Fano profile describes the resonance between doubly excited

states and singly ionized continuum states [16]. To obtain the doubly excited states, the

idea is to transform the Hamiltonian Eqn. 4.1 to include absorption at the outer edge of

each radial grid or make complex rotation [97]. The Hamitonian Eqn .2.36 becomes non-

Hermitian, i.e., it has complex eigenvalues E − iΓ/2, where E is the energy eigenvalue and

Γ is the width. When we diagonalize this non-Hermitian Hamiltonian, the states above

the ionization threshold (the continuum with embedded resonances) split into two sets: the

“bare” continuum and the resonance continuum states. The “bare” continuum states lie

more or less on straight lines in the complex plane, and the resonance continuum states

(such as doubly excited states) are shown as isolated points, whose real parts are energies

E, while the imaginary parts are Γ/2 and related to the lifetimes (Γ = 1/τ).
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Figure 4.2: Probability densities of the radial wave function for the (a) 11S (1s2 1Se
0) ground

state and (b) 21S first excited state of helium obtained by imaginary time propagation on
a logarithm color/gray scale. The blue solid triangle in (b) indicates the node in the r1
coordinate of the first excited state with L=0.

4.2 Selecting Partial Waves

As discussed in Chap. 2, we expand our wave function by partial waves [Eqn. (2.41)]. In

principle, we need to include all partial waves to fully describe the physics. But this is

impossible numerically because there are infinitely many partial waves in the Hilbert space.

Depending on our real physical problem, we have to truncate the number of partial waves.

We select partial waves by looking at the selection rules and convergence patterns for a

particular process, if a partial wave does not contribute to the process, we will not include

it.

4.2.1 Selection Rules and Symmetries

There are infinitely many partial waves, but our real physical process cannot actually reach

all of them. We want to set some restrictions on the angular momenta. For example, if we

consider single-photon DI, the total angular momentum can only change by 1. Therefore we
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can restrict L to a very small scale, for instance, L = 0 and 1, since L=0 in the initial state.

In our actual calculation, due to the initial-state and intermediate-state interaction [119],

we include L = 0, 1, 2, and 3 for single-photon DI. In Fig. 4.3, the initial-state correlation

effect is displayed.

The restrictions for each momentum are

L ≤ Lmax, (4.3)

max(l1, l2) ≤ lmax
> , (4.4)

min(l1, l2) ≤ lmax
< . (4.5)

While Lmax gives the maximum value for the total angular momentum L, lmax
> gives the

maximum value for the larger angular momentum of li (i=1, 2), and lmax
< gives the maximum

value for the smaller momentum of li (i=1, 2). Mostly, we set lmax
> = lmax

< . Besides these

restrictions, angular momenta need to satisfy the conditions [112, 113, 119]

|l1 − l2| ≤ L ≤ l1 + L2, (4.6)

l1 + l2 − L = even. (4.7)

The second condition Eqn. (4.7) is due to the fact that our initial state is a singlet state

S = 0, and our linear polarized field does not change M .

In Tab. 4.1, we illustrate selecting and excluding the partial waves with the angular

configuration (Lmax, l
max
1 , lmax

2 ) = (2, 3, 3). Any combination that does not satisfy the

triangle relation Eqn. (4.6) is not listed in the table.

For SPDI and TPDI, after convergence testing [Appendix (C)] of the cross sections,

energy, and angular distributions, the configuration (Lmax, l
max
1 , lmax

2 ) = (3, 3, 3) is sufficient.

We have 23 partial waves in total for (Lmax, l
max
1 , lmax

2 ) = (3, 3, 3) [27, 46, 48]. When we

increase the photon number to 3, we have to increase the number of partial waves [e.g., to

(Lmax, l
max
1 , lmax

2 ) = (5, 5, 5) with 69 partial waves in most calculations in Chap. 6]. The

convergence tests on Lmax and lmax
1,2 are discussed in the Appendix (C).
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Figure 4.3: JAD for ~ω = 42 eV [(a), (b)] and ~ω = 85 eV [(c), (d)]. In (a) and (c), only
the ss, pp, and ds final-state angular momentum components are included, while all angular
momentum components [with restriction (Lmax, l

max
1 , lmax

2 ) = (2, 7, 7)] are included in (b)
and (d). Graphs were taken from Ref. [119].
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Table 4.1: Selection of partial waves for the helium singlet states under the constraint (Lmax,
lmax
1 , lmax

2 ) = (2, 3, 3).

No. L l1 l2 parity index of partial wave decision
1 0 0 0 e 1 X
2 0 1 1 e 2 X
3 0 2 2 e 3 X
4 0 3 3 e 4 X
5 1 0 1 o 5 X
6 1 1 0 o 6 X
7 1 1 1 e - parity forbidden
8 1 1 2 o 7 X
9 1 2 1 o 8 X
10 1 2 2 e - parity forbidden
11 1 2 3 o 9 X
12 1 3 2 o 10 X
13 1 3 3 e - parity forbidden
14 2 0 2 e 11 X
15 2 2 0 e 12 X
16 2 1 1 e 13 X
17 2 1 2 o - parity forbidden
18 2 2 1 o - parity forbidden
19 2 1 3 o 14 X
20 2 3 1 o 15 X
21 2 2 2 e 16 X
22 2 2 3 o - parity forbidden
23 2 3 2 o - parity forbidden
24 2 3 3 e 17 X
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4.3 Single-Photon Double Ionization

In this section, we will briefly discuss the main features of single-photon DI. Most of them

can be found in the literature. We present the most relevant results to our discussion in the

sections below.

All calculations in this section are carried out using a numerical grid with radial distances

0 ≤ r1 ≤ rmax
1 = 277 and 0 ≤ r2 ≤ rmax

2 = 277, including 151 FEs and 4 DVR basis functions

in each FE, in combination with the Poisson-equation method (cf. Appendix C). This grid

will be referred as “Grid 3” throughout this thesis, “Grid 1” consisting of 50 elements with

4 grid points in each FE and “Grid 2” containing 20 elements with 10 grid points in each

FE are smaller grids used for numerical test in Appendix C. All joint energy and angular

distributions in this section are evaluated by propagating the field-free TDSE for the time

τmax = 40 a.u. past the end of the XUV pulse. In agreement with Zhang et al. [119] we find

this time scale to be long enough to yield converged distributions for SPDI and TPDI.

SPDI has been well established in the 1990’s [29, 38]. Its angular distribution includes

two parts: a symmetrical part and an anti-symmetrical part. Both symmetrical and anti-

symmetrical parts can be written as products of an angular factor and a correlation factor.

The equal energy sharing result, demonstrating the selection rules [29, 54, 55], is a dipole

structure distribution. TheWannier theory on DI gives the angular factor as | cos θ1+cos θ2|2,

and electron correlation factor part [29]:

G(π − θ12) = e
−4 ln 2[

(θ12−π)2

(θ1/2)
2 ]
, (4.8)

where θ12 is the absolute angular difference between two electrons and θ1/2 is a fitting

parameter related to the correlation strength of two electrons. For unequal energy sharing,

the anti-symmetry factor, which vanishes at equal energy, will increase. With increasing

energy asymmetry, the anti-symmetric distribution | cos θ1 − cos θ2|2 emerges on the JAD

gradually, which manifests as the overlap of back-to-back emission and conic emission.
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Figure 4.4: Absolute TDCS in beV −1sr−2 for a fixed angles (θ1 = 0◦) and different energy
sharing. (a) Equal energy sharing E1 = E2 = 10 eV at θ1 = 0◦, (b) unequal energy
sharing E1 = 3 eV at θ1 = 0◦, ε = 0.15. The black dots with error bar are experimental
results from [6]. The red dashed lines are our calculated results. The XUV photon energy
is 99 eV.

4.3.1 Triple Differential Cross Sections

Figure 4.4 shows the TDCSs according to Eqn. 2.72 for ~ωXUV = 99 eV and for emission of

one electron along the XUV polarization direction at angle θ1 = 0◦ as a function of the other

electron’s emission angle θ2. Our calculated conditional TDCSs for co-planar emission are

symmetrical about the XUV polarization direction and in good agreement with measured

absolute conditional angular distributions [6, 93].

For equal energy sharing, E1 = E2 = 10 eV, the dominant angular difference between the

two photoelectrons is Θ12 ≈ 130◦ [Fig. 4.4 (a)]. In compliance with the known selection rules

for DI at equal energy sharing [8, 56], side-by-side and back-to-back emission are prohibited.

We numerically verified that Θ12 ≈ 130◦ and that neither back-to-back nor side-by-side

emission occur for arbitrary emission angles θ1, not just for the special case θ1 = 0◦. The

dominant relative emission angle Θ12 thus characterizes the DI process regardless of any

conditions imposed on θ1.
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The conditional TDCS at fixed θ1 = 0◦ for non-equal energy sharing in Fig. 4.4 (b)

reveals preferred angular differences Θ12 equal to ≈ 130◦ and 180◦. Due to the non-equal

energy sharing which is mapped as the energy ratio

ε = min{ E1

E1 + E2

,
E2

E1 + E2

} = 0.15, (4.9)

with E1 = 3 eV and E2 = 17 eV, back-to-back emission occurs while side-by-side emission

remains prohibited as for the case of equal energy sharing [8, 56]. The comparison of the

conditional TDCSs at different energy sharings shown in Figs. 4.4 (a) and 4.4 (b) suggests

the interpretation of Θ12 as a measure for the relevance of electronic correlation for DI,

larger values of Θ12 indicating a more prominent role of electronic correlation.

In this comparison, we take the XUV energy to be the same 99 eV as in experiments [6,

93]. In Fig. 4.4, we display the absolute TDCS for different fixed angles and energy (sharing)

for 99 eV XUV single-photon DI in both theory and experimental results. Figure 4.4(a) is

for a fixed energy E1 = E2 = 10 eV, θ1 = 0◦. Figure 4.4(b) shows the TDCS for a fixed

energy E1 = 3 eV, θ1 = 0◦. Our present results are in good agreement with the experimental

data [6].

In Fig. 4.4(a), for equal energies (E1 = E2), when electron 1 is fixed at 0◦, the second

electron is symmetrically distributed, and the dominant angular difference between two elec-

trons is approximately 130◦. For the other fixed emission angels of electron 1, as discussed in

[46], when electron 1 is fixed at 60◦, the second electron is asymmetrically distributed, and

the dominant angular differences between the two electrons are also approximately 130◦.

We can define the dominant angular difference between two photoelectrons as Θ12. It is the

dominant difference of the emission angle of electron 1 and the emission angle of electron

2 at the peak(s) of the TDCS. Its mathematical definition is given in Eqn. (2.80). For ar-

bitrary emission angels, back-to-back and side-by-side emissions always disappear, and the

dominant angular difference between two photoelectrons Θ12 is always approximately 130◦.

This variable is related to the correlation strength, the larger the Θ12, the stronger is the

correlation during DI. Θ12 can thus be used to measure the electron correlation.
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In Fig. 4.4(b), for fixed θ1 = 0◦, one electron takes the energy E1 = 3 eV, the other

electron takes E2 = 17 eV. In this case, with the energy sharing of ε = 0.15, the TDCS

displays three peaks. The angular difference has two peaks at 130◦, as the equal energy

sharing case, and one equal to 180◦. The asymmetry in energy makes the back-to-back

emission happen.

4.3.2 Joint and Mutual Angular Distributions

If we display TDCS in a contour plot as a function of angles (θ1, θ2), we can have an overview

of the angular distribution of both emitted photoelectrons. The TDCS is a function of energy

(E1) and angles (Ω1, Ω2). In many cases, we interested in the energy ratio of E1 and E2,

rather than in a specific energy. Due to the indistinguishability of the two photoelectrons,

the ionization probability of the electron pair with energies (E0, Eexc − E0) is the same as

the electron pair carrying energies (Eexc − E0, E0), and they have the same energy ratio.

For very short pulses, the energy spectrum are very broad. When we fix E1 at a given

value, e.g., 5 eV, the energy for the second electron might vary in a broad range: from 5 eV

to 20 eV. The distribution for E2 = 5 eV is very different from the distribution for E2 = 25

eV, but they are coherently added up to the TDCS and therefore cannot be distinguished.

However if we compare the angular distribution at different energy ratios, these differences

can be identified. The JAD [Eqn. (2.77)] is introduced for this purpose.

Joint Angular Distributions

Based on the DI probability distribution in Eqn. (2.68), the JAD in Eqn. (2.77) for DI in

co-planar geometry as a function of the energy sharing ε between the emitted electrons and

emission angles relative to the laser polarization can be rewritten as [119]

P (θ1, θ2; ε) =
2∑

i=1

∫
dk1dk2

k21k
2
2

2
δ(ε− Ei

E1 + E2

)P (k1,k2). (4.10)

For equal energy sharing and sufficiently long XUV pulses, the TDCS Eqn. (2.72) is pro-

portional to this JAD.
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Figure 4.5: Demonstration of (a) symmetric and (b) anti-symmetric joint angular distribu-
tions: the angular factor.

Based on angular momentum algebra, Huetz et al. [3, 29] showed that the DI probability

[c.f. Eqn. (2.68)] can be written as the square of the sum of two terms, where each term is

the product of an angular factor and a complex-valued amplitude,

P (k1,k2) ∼ |Ag(E1, E2, θ12)[cos θ1 + cos θ2]

+ Au(E1, E2, θ12)[cos θ1 − cos θ2]|2. (4.11)

The amplitudes Ag and Au are symmetric and antisymmetric under the exchange of E1 and

E2, respectively, and depend on the difference angle θ12 (Eqn. 2.78). These symmetric and

antisymmetric distributions are shown in Fig. 4.5. The symmetric distribution is presented

as an overlap of symmetric emission (θ1 + θ2 = 360◦) and side-by-side emission (θ1 = θ2).

On the other hand, the antisymmetric distribution displays overlapping of back-to-back

emission (|θ1 − θ2| = 180◦) and conic emission (θ1 + θ2 = 360◦ ± 180◦).

The coefficients Ag and Au satisfy the permutation rules:

Ag(E1, E2) = Ag(E2, E1), (4.12)

Au(E1, E2) = −Au(E2, E1). (4.13)

From Eqn. (4.13), we know that, for the special case of equal energy sharing (E1 = E2), the
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anti-symmetric term vanishes. Therefore the DI probability consists of a coherent sum of

dipole distributions in θ1 and θ2 that is modified by the correlation factor |Ag|2. Inspired by

the Wannier theory for near-threshold DI, we write this factor as a Gaussian function with

an angle-independent scaling factor b(E) [17],

|Ag|2 = bg(E) exp

{
−2 ln 2[

θ12 − π

θ1/2
]2
}
, (4.14)

and

|Au|2 = bu(E) exp

{
−2 ln 2[

θ12 − π

θ1/2
]2
}
. (4.15)

Then, adjusting a single parameter θ1/2 provides a good fit to measured angular distribu-

tions, even at the photon energies far beyond the near-threshold region [29]. The width

of the angular distribution θ1/2 is a measure for the importance of electronic correlation,

which shows an analogy to the dominant angle Θ12 identified in the TDCS discussed in the

preceding subsection.

The symmetric amplitudes Ag are shown in Fig. 4.6, the symmetric amplitudes Ag is

almost independent of the energy sharing, while the anti-symmetric amplitudes Au increase

with increasingly unequal energy sharing. Therefore, for increasingly unequal energy shar-

ing, the anti-symmetric contribution in Eqn. (4.11) increases, allowing for back-to-back

emission.

Figure 4.7 displays the combination of Fig. 4.5 and Fig. 4.6. The symmetric distribution

in Fig. 4.7(a) now presents four peaks on the diagonal line. Both back-to-back emission and

side-by-side emissions are not allowed. The anti-symmetric distribution shrinks the overlap

between back-to-back emission and conic emission.

For equal energy sharing, due to the vanishing anti-symmetric distributions at E1 = E2,

the JAD looks similar to Fig. 4.7 (a). For unequal energy sharing, the JAD has peaks from

both Fig. 4.7 (a) and Fig. 4.7 (b). We next examine some calculated JADs for the helium

DI by solving the TDSE.

55



Figure 4.6: Symmetric and anti-symmetric amplitudes (figures were adapted from Ref. [39],
except for the top-right panel).

56



Figure 4.7: Symmetric (a) and anti-symmetric (b) joint angular distributions, in which the
angular factors were multiplied by the amplitudes.

4.3.3 Angular Distributions

Equal Energy Sharing

Here we focus on XUV DI of helium at equal energy sharing where correlation effects are

expected to be strongest. For equal energy sharing, the TDCS is proportional to the JAD

with a constant factor [48]. We can compare the JAD with TDCS experimental results

[6, 48]. Our calculated JAD at equal energy sharing is shown in Fig. 4.8 (a) for 90 eV photon

energy. It is dominated by four peaks on the axis of θ1 + θ2 = 360◦ axis that corresponds

to thesymmetric emission (cf. Fig. 1.1). It excludes the back-to-back, conic, and side-by-

side emissions, in agreement with the selection rules B2 and F discussed by Maulbetsch

and Briggs [56] and Briggs and Schmidt [8]. The absence of back-to-back emission agrees

with the selection rule B2 which challenges the intuitive expectation that strong electronic

correlation during non-sequential DI enforces back-to-back emission. However, since this

would violate parity conservation, emission occurs instead at an angle of 130◦ between the

emission directions of the electrons, rather than 180◦. Side-by-side emission is forbidden

because of the electronic Coulomb repulsion, and is also excluded by the selection rule B2.

Figure 4.8 displays the calculated JAD and TDCSs for the helium DI. In Fig. 4.8(a),
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Figure 4.8: (a) Calculated normalized joint angular distribution for the double ionization
of helium by one ~ωXUV = 90 eV XUV photon at equal energy sharing. The XUV pulse
has a peak intensity of 1014 W/cm2 and a pulse lengths of 1 fs. (b) Conditional angular
distribution for θ1 = 60◦. The red dashed line shows the calculated angular distribution
for ~ωXUV = 90 eV and is scaled by the factor 0.55 relative to the distribution calculated
for ~ωXUV = 99 eV (green dash-dotted line). The black dots with error bars show the
distribution measured by Bräuning et al. [6] for ~ωXUV = 99 eV in units of b eV−1 sr−2.
Adapted from [6]. (c) Conditional angular distribution for θ1 = −76◦ and ~ωXUV = 99 eV.
The green dashed-dotted line shows our result, while the solid black lines are the convergent
close-coupling calculations for different gauges by Kheifets and Bray [38], and the black
dotted line shows a calculation with screened final-state Coulomb wave functions by Pont
and Shakeshaft [84]. The black dots with error bars show the measured relative cross sections
of Schwarzkopf et al. [93]. Adapted from Ref. [38].
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we present the calculated normalized joint angular distribution for the double ionization of

helium by one ~ωXUV = 90 eV photon at equal energy sharing. Figure 4.8(b) compares our

calculated conditional angular distributions for single-photon DI for XUV photon energies

of 90 eV and 99 eV with the experimental data of Bräuning et al. [6], taken at 99 eV

(20 eV excess energy). In this polar plot the emission direction of one electron is held fixed

at θ1 = 60◦. For this figure only we added results for 99 eV in order to facilitate the

comparison with the experimental data. The experimental distribution (black dots with

error bars) is normalized to the absolute total DI cross section (8.76 kb) of Samson et al.

[89]. Our calculated angular distributions for 90 eV and 99 eV are very similar; however,

the magnitude of the calculated 90 eV distribution is scaled by the factor 0.55 relative

to our calculated 99 eV distribution. Our 99 eV distribution is adjusted to the measured

distribution at θ2 = 330◦ and agrees well with the experimental distribution.

A comparison of conditional angular distributions for θ1 = −76◦ and ~ωXUV = 99 eV is

shown in Fig. 4.8(c). We adjusted our calculated angular distribution to the distribution

measured by Schwarzkopf et al. [93] at θ2 = 45◦. The green dashed-dotted line shows

our result, while the solid black lines are from the convergent close-coupling calculations

(CCC) for different gauges by Kheifets and Bray [38], and the black dotted line shows a

calculation with screened final-state Coulomb wave functions by Pont and Shakeshaft [84].

The three gauges used in the CCC calculations yield similar distributions, with almost

indistinguishable results for the velocity and acceleration gauges.

Energy Sharing Dependencies

Figures 4.9 displays the energy sharing dependence of TDCSs of the helium SPDI. For

θ1 = 0◦ and equal energy sharing with E1 = E2 = 10 eV, the dominant angular difference

|θ2 − θ1| between the two electrons is Θ12 ≈ 130◦ [Fig. 4.9 (a)]. In compliance with the

known selection rules for DI at equal energy sharing [8, 56], side-by-side and back-to-back

emissions are prohibited. This graph also shows good agreement between our calculations

and the theoretical results of Huetz et al. [6, 29]
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Figure 4.9: TDCSs in units of beV −1sr−2 for the double ionization of helium and fixed de-
tection angles (a,b) θ1 = 0◦, (c) 60◦, and (d) 30◦, indicated by the black arrows. The central
XUV-photon energy is 99 eV. The black dots with error bars are absolute experimental
TDCSs from Ref. [6]. Our calculated results are shown as red dashed lines and normalized
to the experimental data at (a) θ2 = 110◦, (b) 95◦, (c) 295◦, and (d) 275◦. Panels (a,c):
Equal energy sharing with E1 = E2 = 10 eV (ε = 0.5). (b,d) Unequal energy sharing
with E1 = 3 eV (ε = 0.15). The green dotted lines show theoretical results of (a) Huetz
et al. [6, 29] Panels (b-d): Kheifets and Bray [6]. Panels (c,d): The solid blue lines show
TDCC results of Palacios et al. [70].
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The conditional TDCSs at fixed θ1 = 0◦ in Fig. 4.4 (b) for non-equal energy sharing

with E1 = 3 eV and E2 = 17 eV , corresponding to the energy-sharing parameter ε =

0.15, reveal preferred dominant angular differences Θ12 at ≈ 130◦ and 180◦. Back-to-back

emission now occurs, while side-by-side emission remains prohibited as for the case of equal

energy sharing [8, 56]. Here we also includes a comparison with the theoretical CCC results

of Kheifets and Bray [6].

Figures 4.9 (c, d) compare the absolute measured TDCSs of Bräuning et al. [6] with the

CCC results of Kheifets and Bray [6], TDCC calculations by Palacios et al. [70], and our

calculations for equal [Fig. 4.9 (c)] and non-equal energy sharing with ε = 0.15 [Fig. 4.9 (d)]

with fixed emission angles θ1 = 60◦ and 30◦, respectively.

As for Figs. 4.9 (a, b), the dominant angular difference Θ12 in Figs. 4.9 (c, d) is about

130◦. The comparison of the conditional TDCSs at different energy sharing shown in

Figs. 4.9 (a-d) suggests the interpretation of Θ12 as a measure for the relevance of elec-

tronic correlation for DI, larger values of Θ12 indicating a more prominent role of electronic

correlation. We numerically verified that Θ12 ≈ 130◦ for arbitrary emission angles θ1, not

just for the special cases of θ1 = 0◦ and 60◦. For the excess energy of 20 eV we consider

in this section, our results for Θ12 agree with the theoretical prediction of Jiang et al. [37].

The dominant relative emission angle Θ12 thus characterizes the DI process regardless of

any conditions imposed on θ1.

Figures 4.10 (a-c) show the calculated JADs for single-photon DI at a central XUV

photon energy of 90 eV. All JADs in Figs. 4.10 (a-c) and 4.12 (a-d) are normalized to their

maxima and their yields are plotted on a linear scale. Going from equal energy sharing in

Fig. 4.10 (a) to unequal energy sharing with ε = 0.1 [Fig. 4.10 (b)] and extremely unequal

energy sharing with ε = 0.01 [Fig. 4.10 (c)], symmetric emission remains dominant, while

back-to-back emission is fading in to compete with symmetric emission for ε = 0.01, as

suggested by Eqn. (4.14).
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Figure 4.10: Calculated normalized joint angular distribution for the double ionization of
helium by one ~ωXUV = 90 eV XUV photon at (a) equal energy sharing ε = 0.5, (b) unequal
energy sharing ε = 0.1 and (c) extremely unequal energy sharing ε = 0.01. Panel (d):
Angular difference distributions extracted from (a-c). The XUV pulse has a peak intensity
of 1014 W/cm2 and pulse length of 1 fs.
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4.4 Two-Photon Double Ionization

4.4.1 Momentum and Energy Distributions

In 2008, Guan, Bartschat, and Schneider first discussed in detail TPDI of helium by applying

an ab initio non-perturbative time-dependent approach to the problem of a helium atom

driven by an intense XUV laser pulse [27]. In 2011, Zhang et al. systematically discussed

the JADs of TPDI in both non-sequential and sequential regimes. In this and the next

subsections, we follow Guan’s and Zhang’s discussions, and briefly show the interesting

properties of helium TPDI.

In Fig. 4.11, we display the energy distributions for TPDI with different photon energies,

covering both sequential and non-sequential regimes (42 - 57 eV). The pulse durations are

dependent on the photon energies, each pulse includes 10 optical cycles. At the lowest 42 eV

photon energy, we see an essentially flat distribution of the momenta and, correspondingly,

the energies of the two photoelectrons. With increasing photon energy, but still below

the threshold for sequential ionization (Ip2 = 54.4 eV), the probability that one of the

two electrons takes essentially all the excess energy while the other takes none is strongly

increasing, i.e., asymmetric energy sharing begins to dominate. At 57.0 eV, on the other

hand, we see a clear signature of the sequential ionization mechanism. The excess energy of

35.1 eV is likely distributed in the way that one of the electrons takes 33 eV, while the other

takes 2.1 eV. This corresponds to using the first photon to kick out one electron with a final

energy of 57.0 eV - 24.6 eV = 32.4 eV, and the second photon to ionize He+(1s), yielding

a free electron of energy of 57.0 eV - 54.4 eV = 2.6 eV. Nevertheless, some probability for

other scenarios (e.g., two step 2, known as TS2) remains [12, 27], indicating that the NSDI

mechanism is still competing [27]. It is not clear yet how to identify the NSDI and SDI in

TPDI with relative short XUV pulses. In section 5.1, we will discuss how to quantitatively

measure the SDI contribution in TPDI by short XUV pulse.
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Figure 4.11: Momentum (left column) and energy (right column) distributions of the two
escaping electrons. The laser pulse has a sine-squared envelope around the peak intensity of
5×1014 W/cm2 and a time duration of ten optical cycles. The central XUV photon energies
are 42, 48, 54, and 57 eV, respectively. These graphs were adapted from our reference [27].
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4.4.2 Angular Distributions

The angular distribution for TPDI is highly dependent on the photon energy. Although

JADs for NSDI and SDI are similar at equal energy sharing, they are very different when the

energy sharing varies from equal to unequal. The most important change is that the side-by-

side emission emerges and becomes dominant. These variations of JADs were systematically

studied by Zhang et al. in reference [119]. In this subsection, we will not repeat the

discussion in Ref. [119], but mainly discuss two typical energies in non-sequential (42 eV)

and sequential (70 eV) regimes, respectively.

Normalized calculated JADs for the helium DI by two ~ωXUV = 42 eV XUV photons are

shown in Fig. 4.12 (a-c). The central XUV-photon energy and almost the entire spectral

profile of the 1-fs XUV pulse are in the photon energy range for non-sequential DI, 39.5

eV< ~ωXUV <54.4 eV, excluding contributions due to sequential DI. After the absorption

of two electrons, the final state of the three-particle system has even parity with the total

angular momentum L being equal to either 0 or 2. In contrast to single-photon DI, where

the odd final-state parity prohibits back-to-back emission, both equal and unequal energy

sharing are subject to the same selection rules [54]. Back-to-back emission is now allowed

for any energy sharing of the photoelectrons. As a result of the double electron-emission

process depending on electronic correlation and the lack of censorship imposed by selection

rules, unhindered electronic repulsion shapes the JADs. Accordingly, our JADs for equal

energy sharing in Fig. 4.12 (a), unequal energy sharing with ε = 0.3 and 0.1 [Fig. 4.12(b,c)],

and extremely unequal energy sharing with ε = 0.01 [Fig. 4.12 (d)] are insensitive to the

energy sharing and dominated by back-to-back emission.

The striking robustness of the two-photon JAD against changes in energy sharing, im-

plies that regardless of the value of ε the same “knock-out” (also known as two-step-1)

mechanism [59] is operative. In this mechanism, the first electron absorbs two XUV pho-

tons and shares its energy with the second electron, leading to DI as a result of a binary

electron-electron collision [41].
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Figure 4.12: Calculated normalized angular distribution for the double ionization of helium
by two ~ωXUV = 42 eV XUV photon for four different electron-energy sharing values: (a)
ε = 0.5, (b) ε = 0.3, (c) ε = 0.1, and (d) ε = 0.01. These graphs were adapted from our
reference [119].

66



Figure 4.13: Calculated normalized angular distribution for the double ionization of helium
by two ~ωXUV = 70 eV XUV photon for four different electron-energy sharing values: (a)
ε = 0.5, (b) ε = 0.3, (c) ε = 0.1, and (d) ε = 0.01. These graphs were adapted from our
reference [119].
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Figure 4.14: Calculated normalized angular distribution for TPDI of helium by two ~ωXUV

= 45 eV (a,d), 54 eV (b,e) and 70 eV (c,f) XUV photon, respectively. The energy sharing
for the top panel is equal (ε = 0.5), for the bottom panel it is extremely unequal (ε = 0.01).
The XUV pulse has a peak intensity of 1014W/cm2 and pulse length of 1 fs. These graphs
were adapted from our reference [119].
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While in the sequential regime, the normalized calculated JADs for the DI of helium

by two ~ωXUV = 70 eV XUV photons are shown in Fig. 4.13. The central XUV-photon

energy and entire spectral profile of the 1-fs XUV pulses are in the photon energy range

for sequential DI, ~ωXUV >54.4 eV, excluding contribution due to non-sequential DI with-

in the non-sequential regime of spectrum. After the absorption of two electrons, as the

non-sequential DI discussed above, the final state has even parity with the total angular

momentum L being equal to either 0 or 2. In contrast to 42 eV TPDI, two bound electrons

can be sequentially ionized by two photons. Side-by-side emission is now allowed for any

unequal energy sharing of the photoelectrons. The double electron-emission process has

little dependence on electronic correlation, and due to the lack of censorship imposed by

selection rules instead, the unhindered final-state wave function shapes the JADs. For equal

energy sharing, the electron-electron correlation still plays important roles, and the JAD is

very similar to the 42 eV JAD in Fig. 4.12. When the energy sharing changes from equal

to unequal, the JADs change significantly. Side-by-side emission increases slightly at ε =

0.3 and becomes dominant at ε = 0.1 and 0.01; back-to-back emission decreases from equal

energy sharing to unequal energy sharing (ε = 0.3 ad 0.1), but becomes again prominent at

extremely unequal energy sharing ε = 0.01.

In Fig. 4.14, we displays the JADs for two different energy sharing values (ε = 0.5

and 0.01) with three different XUV-photon energies: 45 eV, 54 eV and 70 eV. In the top

panel, we notice that all three JADs are very similar. They are dominated by back-to-back

emission and conic emission, and there are four minor peaks for symmetrical emission. It is

also important to notice the gradual changes in each frame as the photon energy increases.

The first change with increasing photon energy is that the distance between the centers of

the first two minor peaks (counted from the left to the right) becomes larger. The second

change is that the relative heights of the four minor peaks with respect to the four main

peaks also become larger. These changes imply that, although electron correlation in the

intermediate state is very important at equal energy sharing for any photon energy, the
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degree of its importance decreases for larger photon energy. In particular, when the two

electrons are ejected in the same hemisphere, the angle between them becomes increasingly

smaller as the photon energy becomes larger. For example, the calculations show that the

dominant angular difference between the two electrons emitted in the same hemisphere are

about 84◦ and 74◦, respectively, for photon energies of ~ω = 54 and 70 eV.

For the unequal energy sharing, as shown in Fig. 4.14(d-f), the JADs change dramatically.

In Fig. 4.14(d), the 45 eV JAD is very similar to the equal energy sharing JAD, because

both JADs are shaped by strong electronic correlation when helium atoms are doubly ionized

by 42 eV photons whose central photon energy belongs to the non-sequential regime. In

Fig. 4.14(e), back-to-back emission remains dominant in 54 eV JAD, but the minor peaks for

symmetrical emission are merging to side-by-side emission peaks. The 54 eV central energy

XUV pulse with 1-fs pulse duration has a full-width at half-maximum (FWHM) in intensity

of 6 eV. So actually the 54 eV 1-fs pulse covers both sequential and non-sequential regimes,

which allows us to observe both sequential and non-sequential features. In Fig. 4.14(f), the

70 eV JAD shows dominant side-by-side emission, and weak back-to-back emission. For a

pure SDI process, we are expecting the energy sharing εSDI = (70-54.4)/(70×2-79.01) ≈ 0.26.

Because ε = 0.01 does not equal to this εSDI, electronic correlation also helps to shape the

JAD. However, it is difficult to quantitatively describe the correlation for different energy

sharing.

4.4.3 Total Cross Sections for One- and Two-XUV-Photon Co-
planar Emission

We calculated the total cross sections σNXUV
tot for co-planar DI based on Eqn. (2.71) by

integrating over the energies E1 and E2 of the emitted electrons, using Eqn. (11) of Ref. [119].

For DI induced by the absorption of a single 90 eV photon we find σ1
tot = 7.40× 10−21 cm2,

in good agreement with the value of 7.53× 10−21 cm2 measured by Samson et al. [89]. For

DI upon absorption of two 45 eV photons, we obtain σ2
tot = 8.9 × 10−53 cm4s, consistent

with the cross section (8.5× 10−53 cm4s) calculated by Guan et al. [27]
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Figure 4.15: Calculated normalized joint angular distributions for the double ionization of
helium by two ~ωXUV = 30 eV XUV photons with different FE-DVR parameters. (a) Used
the Grid 3 defined in Sec. 4.3, the sizes of the FEs are non-uniform. (b) 64 FEs with 11
DVR functions in each FE. The FEs are 4 a.u. long [76].

4.5 Three-Photon Double Ionization

Obviously, SPDI belongs to NSDI. TPDI, depending on the central photon energy, can be

either NSDI (39.5 eV < ~ωctr < 54.4 eV) or SDI (~ωctr > 79.01 eV). Three-photon DI

processes can also be classified as NSDI and SDI. The NSDI regime for Three-photon DI

of helium is very narrow: 26.3 eV < ~ωctr < 27.2 eV, but the spectral width of a 1-fs

sine-squared pulse is 6 eV, therefore it is hard to observe the NSDI with three photons by

1-fs XUV pulse. We therefore discuss the SDI only in this section.

In Fig. 4.15(a,b), we present the equal-energy-sharing JAD for DI by three 30 eV photons

with two different numerical parameter settings. Figure 4.15(a) shows the JAD obtained by

using “Grid 3” (consisting 151 elements with 4 grid points in each FE) defined previously in

Sec. 4.3, and Fig. 4.15(b) uses a uniform distribution of FEs with 11 DVR basis functions in

each FE [75]. In both JADs for three-photon DI, besides the strong symmetrical emission,

we observe two extra minor peaks around each symmetrical main peak.
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The JAD for DI by three 30 eV photons in Fig. 4.15 is similar to the single-photon JAD

in Fig. 4.8 in the sense that the same forbidden emission patterns are present. In either

case, back-to-back, conic, and side-by-side emission are prohibited, as mandated by selection

rules [56]. For one- and three-photon DI the JADs contain the same dominant nodal lines.

We calculated the three-photon JAD by propagating for the time τmax = 100 a.u. past

the end of XUV pulse in order to minimize unphysical side-by-side emission. For this

propagation time, the contribution from side-by-side emission relative to the total DI yield

for three-photon DI, integrated over a 10◦-wide stripe (5◦ on each side) and centered about

θ1 = θ2, is below 1.3%. Variation of τmax, i.e., of the total propagation time, allows us to

disentangle effects that tend to influence the JAD in opposite ways (not shown). Since three-

photon DI is (predominantly) sequential in nature, electronic correlation is not required to

efficiently liberate both electrons. The photoelectrons thus tend to individually follow the

electric force they experience in the linearly polarized XUV pulse. Furthermore, since back-

to-back emission would violate parity conservation they initially tend to move in the same

direction along the polarization. However, for equal energy sharing the effect of electron

repulsion accumulates as time goes on and prevents the detection of side-by-side emission.

As electron repulsion becomes increasingly influential, the initial “side-by-side electronic

density” is pushed away from the θ1 = θ2 line and merges with the nearby peaks on the

symmetric-emission line (θ2 = 360◦ − θ1) in Fig. 4.18(b) (cf. the disappearance of the side-

by-side contribution in Fig. C.2 for increasing τmax).

4.6 Comparison of Helium XUV Double Ionization by

One, Two, and Three Photons

In previous sections, we have discussed the general features of helium few-photon DI in an

XUV pulse separately. We have noticed that for all three processes, symmetrical emission

is presented, but it is relatively weak in TPDI compared to SPDI and three-photon DI. At

equal energy sharing, back-to-back emission is only allowed in TPDI, but forbidden in both
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SPDI and three-photon DI. In this section, we compare these three processes, assuming the

two photoelectrons carry the same total excess energy.

For all numerical results in this subsection (Chap. 4.6) we used the angular momentum

limits (Lmax, l
max
1 , lmax

2 ) = (3, 3, 3) for one-photon DI and two-photon DI and (Lmax, l
max
1 , lmax

2 )

= (5, 5, 5) for three-photon DI in the expansion of wave function [Eqn. (2.40)], unless spec-

ified otherwise.

4.6.1 Few-photon Double Ionization in a Single XUV Pulse

Depending on the number of XUV photons involved, NXUV, and photon energy, ~ωXUV, DI

of helium in intense XUV pulses proceeds either sequentially or non-sequentially. In this

section we discuss joint energy and angular distributions of the emitted electrons for DI of

helium induced by the absorption of either one 90 eV, two 45 eV, or three 30 eV photons.

For all three cases the total energy transferred to the atom is 90 eV (cf. Fig. 4.1), and

the electrons leave the atom with a combined excess energy of Eexc = 90 eV−Ip1 − Ip2 =

E1 + E2 ≈ 11 eV. While DI is predominantly sequential for the absorption of three 30 eV

photons, the absorption of two 45 eV or one 90 eV photon can only proceed through non-

sequential DI.

Different from many-photon DI of helium in a strong laser field [86, 111], the angular

distribution of photoelectrons is highly dependent on the photon number of absorbed [46].

For single-photon and three-photon DI, both back-to-back and side-by-side emission are not

allowed or weak, which is not true for many-photon DI [86, 111], while for two-photon DI,

back-to-back emission is dominant [27, 46, 119].

4.6.2 Energy Distributions

Figure 4.16 shows joint photoelectron energy distributions for the DI of helium by one, two,

and three photons, with photon energies ~ωXUV = 90, 45, and 30 eV, respectively. The

photon energies in each case are the central energy in the spectrum of an XUV pulse with

peak intensity I0 = 1014 W/cm2 and a pulse duration of 0.364 fs (FWHM in intensity),
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corresponding to the spectral width (FWHM in spectral intensity) ~∆ωXUV=6 eV.

As expected, the energy distributions in Figs. 4.16(a-c) show dominant DI yields at 11 eV

excess energy. Corresponding normalized DI yields, integrated over the XUV-pulse spectral

profile,

P (ε) =

∫ ∞

0

dE1P (E1,
1− ε

ε
E1), (4.16)

are given in Fig. 4.16(d) as a function of the energy sharing parameter ε [cf. Eqn. (2.71)].

For the spectrally broad sub-fs XUV pulses considered in this work and for non-sequential DI

by one and two photons, the DI yields are distributed over a broad range of energy sharings

with Eexc ≈ 11 eV. For non-sequential DI by a single 90 eV photon, the DI yield is almost

independent of the energy sharing between the photoelectrons [Figs. 4.16(a,d)]. This fact

is well-established in the literature, both theoretically and experimentally. It was discussed

in Ref. [11, 71, 119] for a slightly higher XUV photon energy of 99 eV. Non-sequential DI

by two 45 eV photons slightly favors asymmetric energy sharing [Figs. 4.16(b,d)]. Our joint

energy distributions in Fig. 4.16(b) qualitatively resemble, but are less asymmetrical than

the distributions calculated by Guan et al. [27] for a slightly higher photon energy (48 eV).

In contrast, sequential DI by three 30 eV photons operates by one-photon absorption

of the first electron with kinetic energy E1 ≈ ~ωXUV − Ip1 = 5.4 eV, followed by two-

photon absorption of the second electron, leading to the energy release E2 ≈ 2 ~ωXUV −

Ip2 = 5.6 eV. Accordingly, the largest yield in Fig. 4.16(c) occurs near E1 ≈ E2 =5.5 eV.

The small energy difference of E2−E1 = 0.2 eV is much less than the FWHM = ~∆ωXUV ≈

6 eV, and thus cannot be resolved in this graph within the spectral width of the XUV pulse.

4.6.3 Angular Distributions

Figure 4.17 displays the calculated JADs for these three different DI processes. The calculat-

ed JAD in Fig. 4.17(a) is dominated by four peaks on the θ1+θ2 = 360◦ axis that correspond

to symmetric emission (cf. Fig. 1.1). It excludes back-to-back, conic, and side-by-side emis-

sions, which is in agreement with the selection rules B2 and F discussed by Maulbetsch and
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Figure 4.16: Normalized joint photoelectron energy distributions for the double ionization
of helium by (a) one 90 eV, (b) two 45 eV, and (c) three 30 eV photons of a 1014 W/cm2

peak intensity 1-fs long XUV pulse. (d) Corresponding normalized double-ionization yields,
integrated over the XUV-pulse spectral profile, as a function of the energy sharing ε between
the photoelectrons.
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Figure 4.17: Calculated normalized joint angular distributions for the double ionization of
helium at equal energy sharing by (a) single-photon DI by 90 eV XUV pulse, (b) two-photon
DI by one 45 eV XUV pulse and (c) three-photon DI by 30 eV XUV pulse.

Briggs [56]. The absence of back-to-back emission agrees with the selection rule B2 which

states that electron momenta satisfy k̂1 = ±k̂2 and the sum of parity (π) and L is an odd

integer, do not contribute to the DI process. The symbol π denotes the parity, with values

0 (for even parity) and 1 (for odd parity). This selection rule challenges the intuitive ex-

pectation that strong electronic correlation during non-sequential DI enforces back-to-back

emission. However, since this would violate parity conservation, emission occurs instead

with an angle of 130◦ between the emission directions of the electrons, rather than 180◦.

The absence of the conic emission is dictated by selection rule F. This rule stipulates that

for E1 = E2 and θ1 + θ2 = 180◦, states with M = 0, odd values of π+ S, and even values of

π + L do not contribute to the cross section. Side-by-side emission is forbidden because of

the electronic Coulomb repulsion, and is also excluded by selection rule B2.

Our calculated angle-differential yield for equal-energy-sharing DI of helium as a result of

the absorption of two 45 eV photons is shown in Fig. 4.17(b). It has four distinct peaks that

correspond to back-to-back emission. Thus, features prohibited for single-photon sequential

DI (back-to-back and conic emission) are dominant for two-photon DI, where the preferred

emission type is back-to-back at equal energy sharing. The same conclusions can be drawn

from the theoretical equal energy sharing JADs calculated by Zhang et al. [119] for photon
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energies between 42 to 85 eV.

The JAD for DI by three-30 eV-photon DI is shown in Fig. 4.17(c). The selection rules

demanding that back-to-back and side-by-side emissions be forbidden remain valid. This

is similar to the single-photon JAD in Fig. 4.17(a) in the sense that the same forbidden

emission patterns are present. In either case, back-to-back, conic, and side-by-side emission

are prohibited, as mandated by selection rules [56]. For one- and three-photon DI the JADs

contain the same dominant nodal lines.

Normalized DI yields for the emission of one electron along the XUV polarization di-

rection (θ2 = 0◦ corresponding to the JADs in Figs. 4.18(a,b) are given in Figs. 4.18(c,d),

respectively, where, in addition, contributions to the DI yields from individual allowed an-

gular momenta L of the two-electron state are shown. These contributions are obtained by

restricting the sum over L in Eqn. (2.40) to L = 0 or 2 in Fig. 4.18(c) and to L = 1 or 3 in

Fig. 4.18(d). The shape of the angular distributions in Fig. 4.18 depends on the interference

of the two contributing partial waves. Our two-photon angular distribution in Fig. 4.18(c)

is dominated by D-waves (L = 2) and is in fair agreement with the CCC calculations of

Kheifets and Ivanov [40] and in good agreement with the time-dependent close-coupling

calculations of Colgan and Pinzola [11].

In general, successively increasing the number of absorbed XUV photons leads to JADs

with alternating forbidden and dominant back-to-back and conic emission. This finding

is consistent with the selection rules for equal energy sharing derived by Maulbetsch et

al. [56, 57] and it is retained in the simplified, reduced-dimensionality model of Ni et al. [65]

who constrained the center-of-mass of the two electrons to move on a straight line along the

XUV polarization direction.

In Fig. 4.10 and Fig. 4.19, we display the JAD (a-c) and MAD (d) of 90 eV XUV single-

photon DI and 45 eV two-photon DI, respectively. The energy sharing parameters are (a)

0.5 (equal energy sharing), (b) 0.1 (unequal energy sharing), and (c) 0.01 (extremely unequal

energy sharing).
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Figure 4.18: Calculated normalized joint angular distributions for the double ionization of
helium at equal energy sharing by (a) two 45 eV photons and (b) three 30 eV photons in
XUV pulses with a peak intensity of 1014 W/cm2 and a pulse length of 1 fs. Panels (c) and
(d): DI cross sections for individual total angular momentum (black solid and red dashed
lines) that contribute to DI for two-photon DI (c) and three-photon DI (d) at fixed angle
θ1 = 0◦. Cross sections (blue dotted lines) including (c): L = 0 and 2 and (d): L = 1 and 3.
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Figure 4.19: Calculated normalized joint angular distribution for the double ionization of
helium by two ~ωXUV = 45 eV XUV photons at (a) equal energy sharing ε = 0.5, (b)
unequal energy sharing ε = 0.1, and (c) extremely unequal energy sharing ε = 0.01. (d)
Mutual angular difference distributions extracted from (a-c). The XUV pulse has a peak
intensity of 1014W/cm2 and a pulse length of 1 fs. JADs for two-photon DI at different
energy sharing. For two-photon DI, the JAD is not sensitive to the energy sharing change.
From equal energy sharing ε = 0.5 to extremely unequal energy sharing ε = 0.01, the JAD
is almost independent to the energy sharing ε.
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In Fig. 4.10 (a-c), the JADs of single-photon DI show that from equal energy sharing

(ε = 0.5) to unequal energy sharings (ε = 0.1 and 0.01), we observe that the symmetric

component (symmetric emission) remains dominant, but the asymmetric component (back-

to-back emission) raises from zero at equal energy sharing to a strong signal at extremely

unequal energy sharing. The MAD in Fig. 4.10(d) clearly shows this change. The blue

dotted curve represents the equal energy sharing results, the red dashed curve shows the

unequal energy sharing with ε = 0.1, and the black solid curve shows the extremely unequal

energy sharing (ε = 0.01) distribution. Each curve is divided by its total yield. The 90 eV

XUV single-photon DI yield is almost flat over different energy sharings as discussed in

the energy distribution in Fig. 4.16(d). The equal-energy-sharing curve shows that both

back-to-back (anti-parallel) emission and side-by-side (parallel) emission are forbidden. The

unequal-energy-sharing (ε = 0.1, 0.01) curves display that the more asymmetric the energy

sharing is, the more back-to-back emission occurs. There is no side-by-side emission for any

energy sharing. With regards to MAD, the blue dotted equal-energy-sharing curve shows

no back-to-back emission and no side-by-side emission, with a dominant mutual angle of

Θ12 = 130◦. The red-dashed and black-solid curves show that the back-to-back emission is

no longer forbidden. The ε = 0.01 curve shows that the yield at back-to-back emission is

about 70% of the yield at θ12 = 130◦.

Normalized calculated JAD for the helium DI by two ~ωXUV = 45 eV XUV photons are

shown in Fig. 4.19 (a-c). The central XUV-photon energy and spectral profile of the 1 fs XUV

pulses are in the photon energy range for non-sequential DI, 39.5 eV< ~ωXUV <54.4 eV,

excluding contributions due to sequential DI. After the absorption of two photons, the final

state of the three-particle system has even parity, the total angular-momentum quantum

number L being equal to either 0 or 2. In contrast to the single-photon DI, where the odd

final-state parity prohibits back-to-back emission, both equal and unequal energy sharing

are subject to the same selection rules [54]. Back-to-back emission is now allowed for any

energy sharing of the photoelectrons. As a result of the double electron-emission process
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depending on electronic correlation and the lack of censorship imposed by selection rules,

unhindered electronic repulsion shapes the JADs. Accordingly, our JADs for equal energy

sharing in Fig. 4.19 (a), unequal energy sharing with ε = 0.1 [Fig. 4.19 (b)], and extremely

unequal energy sharing with ε = 0.01 [Fig. 4.19 (c)] are insensitive to the energy sharing

and dominated by back-to-back emission.

The MADs in Fig. 4.10 (d) clearly display the dependence of single-photon DI on the

energy sharing, that is seen in the underlying JADs [Figs. 4.10 (a-c)]. The MADs show

further that the photoelectrons are almost exclusively emitted into opposite hemispheres

over a large range of energy sharing parameters ε. The curve for equal energy sharing

ε = 0.5 conforms with the symmetry requirement of vanishing back-to-back and side-by-side

emission, while back-to-back emission becomes more prominent for unequal (ε = 0.1) and

extremely unequal ε = 0.01 energy sharing. For all energy sharings side-by-side emission is

absent and the dominant mutual angle is Θ12 ≈ 130◦. At ε = 0.01 the yield at back-to-back

emission is about 70% of the yield at θ12 = 130◦.

The MADs for DI by two 45 eV photons in Fig. 4.19 (d) show dominant back-to-back

emission and two minor peaks at θ12 ≈ 75◦ and ≈ 285◦. The minor peaks correspond to the

four minor peaks for symmetrical emission seen along the negatively sloped diagonal lines

in the underlying JADs in Figs. 4.19 (a-c). The MADs also show almost no dependence on

the energy sharing, as the JADs in Fig. 4.19 (a-c).

4.7 Conclusion of this Chapter

We briefly reviewed and discussed the few-photon DI of helium by short XUV pulses. De-

pending on the parity, DI with absorption of odd (even) number of photons presents similar

pattern in the JADs, respectively. However, the behavior of the odd and even JADs varies

differently as the energy sharing changes. Odd parity JADs are dominated by symmetrical

emission; back-to-back emission is fading in to compete with increasing asymmetry in en-

ergy sharing. In contrast, even parity JADs are dominated by the overlap of back-to-back
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emission and conic emission at arbitrary energy sharing. We discussed their prominence and

absence for sequential and non-sequential DI upon absorption of up to three XUV photons

without the presence of an assisting IR laser field. The laser-assisted DI by single-XUV

pulse will be discussed in Chap. 6.
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Chapter 5

Distinction of Sequential and
Non-Sequential Processes in
Two-Photon Double Ionization

In this section, we investigate the correlation and angular distribution in two-photon DI from

39 eV to 70 eV, and discuss the relation between them. We find that the strong correlation

will result in similar angular distribution for two-photon DI. This is a characteristic feature

of non-sequential double ionization with two photons.

Unless specifically stated, based on the convergence test [see Appendix C], the angular

configuration we used throughout this chapter is (L, l1, l2)max=(3, 3, 3).

5.1 Discovery of Non-Sequential Double Ionization

In 1975 the mechanism of non-sequential double ionization was revealed in the photoioniza-

tion of alkaline earth atoms [103]. It is enabled by strong electronic correlation and thus is

clearly distinctive from the sequential double ionization mechanism. NSDI was observed for

noble gas atoms in 1982 [42], and received rapidly increasing attention [22, 85, 111] after

the 1994 photo-double ionization experiment on helium atoms by Walker et al. [110].
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5.2 Single-Photon Double Ionization

Single-photon double ionization is the simplest case of non-sequential DI. It requires a

photon to carry at least 79.01 eV energy to strip off two electrons in the helium atom.

In Chap. 3, we have discussed the general characteristics of SPDI momentum and angular

distributions. Since the initial singlet state is an S-wave, the one-photon interaction leads

to the final states only in P -waves. However, due to the selection rules and electron-

electron correlation, the dominant emission mode is neither side-by-side nor back-to-back.

It shows a dominant and symmetric distribution with respect to the angle difference of 130◦

between two photoelectrons. With increasing photon energy, this dominant angle difference

deceases. Figure 4.8(a) shows our ab-initio-calculated JADs P (θ1, θ2; ε) for SPDI and co-

planar emission geometry. These JADs were found [46] to agree well with experimental

results [6] and illustrate that symmetric electron emission remains dominant over a wide

interval of energy sharing parameters ε. In contrast, the anti-symmetric component (back-

to-back emission) occurs only for unequal energy sharing. This dependence on ε is also seen

in the mutual angular distributions (MADs), which display DI yields as a function of θ12

and are normalized individually in Fig. 4.8(b) [48]. Overall, these MADs for SPDI depend

weakly on the energy sharing and show a dominant mutual angle of ≈ 130◦.

5.3 Sequential and Non-Sequential Two-Photon Dou-

ble Ionization

While SPDI is always non-sequential, for sufficiently long XUV pulses two-photon DI (TPDI)

of helium atoms proceeds sequentially if the central XUV photon energy ~ωXUV is larger than

the second ionization potential (I2 = 54.4 eV) and non-sequentially for 39.5 eV< ~ωXUV <

I2. For such pulses SDI and NSDI are clearly distinguishable. TPDI is much more difficult

to detect than SPDI due to its extremely small total cross section (≈ 10−52 cm4s) [27, 30, 46].

It was first measured in 2005 [30], followed by many theoretical studies [19, 27, 34, 40, 46,

48, 75, 119]. Photoelectron angular distributions for TPDI were calculated in the sequential
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and non-sequential regimes by applying convergent close-coupling theory [40] and by using

time-dependent close-coupling methods [27, 119].

If the spectral profile of an ultrashort XUV pulse overlaps the sequential and non-

sequential DI regimes, the distinction between SDI and NSDI becomes difficult. Further-

more, for extremely short pulse duration of less than a few hundred attoseconds, strong

electronic correlation is enforced, even for central pulses energies in the sequential regime.

In this case the time between the two photoabsorption events is so short that the inter-

electronic distance remains sufficiently small to entail strong correlation of the released

electrons. Accordingly, calculated JADs for DI at ~ωXUV = 70 eV dramatically change

for decreasing XUV pulse length, moving from a product of two independent dipole dis-

tributions in the long-pulse limit (a few femtoseconds) to progressively forward-backward

asymmetrical distributions with increasingly suppressed forward emission (both electron-

s being emitted in the same direction along the XUV polarization direction), resembling

JADs for NSDI [19].

The role of electronic correlation in TPDI of helium with ultrashort XUV pulses was in-

vestigated in previous ab initio calculations [19], yet it remains unclear how to quantitatively

characterize and distinguish sequential and non-sequential contributions. In this section, we

investigate JADs for the DI of helium and refer to the degree of forward-backward emis-

sion asymmetry as a measure for the relative importance of SDI. We calculate JADs by

numerically solving ab initio the TDSE, expanding the atomic wave function in the four

angular variables of the two electrons. These calculations employ the FE-DVR scheme, and

propagate the two-electron radial wave function on a numerical grid for the electrons’ radial

coordinates r1 and r2. We partition the numerical grid into 100 to 200 FEs (adjusting the

number of elements to the pulse duration) and use a DVR basis set in each element. A

detailed description of our implementation of this method is given in Chap. 2.

Unless stated otherwise, based on convergence tests in Appendix C, we truncate the an-

gular expansion of the atomic wave function for orbital and total angular quantum numbers
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larger than 3. Throughout this chapter we assume XUV pulses with sine-squared temporal

profiles and peak intensities of 1014 W/cm2.

Absorption of two photons by ground-state helium atoms results in interfering S and

D partial waves which one might expect to result in more structured JADs than in SPDI.

However, as pointed out by Kheifets et al. [40], TPDI angular distributions consist of five

terms that include electronic correlation effects as similar Gaussian factors and can be

divided into symmetrical and antisymmetrical components in analogy to the SPDI angular

distributions discussed above. Figure 5.1 shows calculated JADs [Figs. 5.1(a,c)] and MADs

[Figs. 5.1(b,d)] for TPDI in XUV pulses with a pulse length of 1 fs and central photon

energies of 50 eV (Figs. 5.1(a,b)) and 70 eV (Figs. 5.1 (c,d)), normalized to their maxima,

respectively. While the angular distributions for the photon energy ~ωXUV = 50 eV in

the NSDI regime are virtually indistinguishable for different energy sharings, for ~ωXUV

= 70 eV, i.e., in the SDI regime, the character of the angular distribution changes from

being strongly dominated by back-to-back emission at equal energy sharing (ε = 0.5) to

dominant forward (side-by-side) emission at extremely unequal energy sharing (ε = 0.01).

The independence of the NSDI angular distributions on ε [Figs. 5.1(a,b)] was also noted in

previous calculations [119].

The equal-energy-sharing JADs for ~ωXUV = 50 eV [Fig. 5.1(a)] and 70 eV [Fig. 5.1(c)]

are similar and dominated by back-to-back emission, with two weak peaks along the θ2 =

360◦− θ1 diagonal, indicating symmetrical emission, and no side-by-side (θ2 = θ1) emission.

At unequal energy sharing and for ~ωXUV = 70 eV [bottom-right panel of Fig. 5.1(c)], back-

to-back emission (θ1,2 = 180◦) remains strong, but side-by-side emission becomes dominant,

since the importance of electronic correlation in DI decreases with increasing asymmetry.

The photoelectrons thus become more efficiently directed by the XUV electric field, leading

to the emergence of side-by-side emission along the laser polarization direction as a typical

aspect of SDI at unequal energy sharing.

For the pulse length of 1 fs and corresponding spectral width of 6 eV, the spectra of
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Figure 5.1: Calculated normalized (a,c) joint and (b,d) mutual angular distributions for two-
photon double ionization of helium for energy sharing parameters ε = 0.01, 0.1, and 0.5.
The XUV photon energy is (a,b) 50 eV and (c,d) 70 eV. All other XUV pulse parameters
are the same as in Fig. 4.8.

87



the 50 and 70 eV XUV pulses considered above are confined to either the non-sequential

or sequential DI regime, respectively. For significantly shorter pulse lengths, the distinction

between these two DI spectral regimes becomes less obvious. As Feist et al. [19] revealed

for central XUV-photon energies in the SDI regime, TPDI by ultrashort XUV pulses can

have strong NSDI contributions. Conversely, as we show below, ultrashort XUV pulses that

are spectrally centered in the NSDI regime can share the characteristics of SDI angular

distributions.

5.4 Pulse-Duration Dependence of Two-Photon Dou-

ble Ionization

In order to investigate the effect of spectral pulse overlap with the two DI regimes, in

Fig. 5.2 we show conditional TPDI angular distributions for a fixed emission angle of one

electron (θ1 = 0◦) and ~ωXUV = 50 eV XUV pulses with pulse durations of 160 as, 500 as,

and 3 fs, corresponding to spectral pulse widths of 37, 12, and 2 eV [full-width at half-

maximum (FWHM) in intensity], respectively. The full-range angular distributions in the

left panel of each graph are normalized individually to their maxima. They show dominant

back-to-back emission and minor peaks for emission into the same (“forward” relative to

the XUV polarized direction) hemisphere. The normalized back-to-back emission yields

for the two energy-sharing values and three pulse lengths are almost identical. The small

forward-emission yields are displayed separately in the zoomed-in right panels. In contrast

to the large back-to-back emission yields, the forward emission yields depend on the energy

sharing and pulse length. They increase as the energy sharing changes from equal (ε = 0.5)

to extremely unequal (ε = 0.01). This increase is most pronounced at the intermediate

pulse length of 500 as [Fig. 5.2(b)]. The relatively strong forward emission for ε = 0.01 is

reminiscent of the forward-emission dominance for SDI [cf. Fig. 5.1(c,d)]. Reducing the pulse

length from 3 fs to 500 as, thus leads SDI character to the angular distribution. Interestingly,

this trend is reversed by further reducing the pulse length from 500 as to 160 as, since the
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constraint for DI to happen during the presence of the ultrashort 160 as pulse reenforces

electronic correlation, suppressing (uncorrelated) sequential emission [19].

The preceding discussion suggests the SDI contribution has a lower pulse-length limit

given by a temporal constraint, while being limited at larger pulse durations by vanishing

spectral overlap with the SDI spectral domain. In order to quantitatively distinguish SDI

from NSDI contributions, we evaluate the forward-backward asymmetry parameter

A(θ1 = 0; ε) =

(∫ π/2

−π/2
−
∫ 3π/2

π/2

)
P (0, θ2; ε) dθ2(∫ π/2

−π/2
+
∫ 3π/2

π/2

)
P (0, θ2; ε) dθ2

(5.1)

for the XUV-pulse durations, energy-sharing parameters, and central XUV-pulse energy

considered in Fig. 5.2. The limiting cases of both electrons being emitted into the same

hemisphere and into opposite hemispheres correspond to asymmetries of 1 and -1, respec-

tively. As shown in Fig. 5.3, the asymmetry for 160 as and 3 fs pulse durations are large

in magnitude (A ≈ −0.99) and comparatively insensitive to changes in energy sharing. In

contrast, the asymmetry for 500 as pulses more strongly depends on the energy sharing.

It falls in between the asymmetries for 160 as and 3 fs pulses at equal energy sharing and

increases to -0.956 at extremely unequal energy sharing (ε = 0.01). In order to compare

this weak dependence of A(θ1, ε) for pulses centered in the NSDI, the inset in Fig. 5.3 shows

that asymmetry changes from 1 to -1 for XUV pulses with ~ωXUV=70 eV in the SDI regime

and 1-fs pulse duration.

The inset in Fig. 5.4 shows the spectral intensity I(ω) of a 1 fs sine-squared XUV

pulse with ~ωXUV = 50 eV. A small portion of I(ω) overlaps the SDI regime. Since I(ω)

decreases rapidly above the second ionization threshold, the XUV-pulse spectral components

in the SDI regime primarily account for DI with small excess kinetic energies of the emitted

electrons, E1 + E2 = 2~ω − 79.0 eV, and extremely unequal energy sharing. For example,

a typical frequency component of the pulse in the SDI regime at ~ω = 54.8 eV results in

a highly unequal energy sharing with ε = (~ω − 54.4 eV)/(2~ω − 79.0 eV) = 0.013. We

therefore choose the small value ε = 0.01 for the following discussion.
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Figure 5.2: Conditional angular distributions with one electron emitted along the XUV
linear polarization direction (θ1 = 0◦) for two-photon double ionization of helium in XUV
pulses with a central photon energy of 50 eV and pulse lengths of (a) 160 as, (b) 500 as,
and (c) 3 fs. Each panel shows results for equal (ε = 0.5) and extremely unequal (ε = 0.01)
energy sharing. The full-range distributions (left panels) are normalized to their maxima.
The right panels zoom in on the forward emission contributions.
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Figure 5.3: Forward-backward-emission asymmetries A(θ1 = 0; ε) for the conditional angular
distributions in Fig. 5.2 and for ε) = 0.1 and 0.3. The inset shows asymmetries for XUV
pulses with a central photon energy of 70 eV and 1 fs pulse length, corresponding to the
angular distributions in Figs. 5.1 (c,d). Markers represent ab initio calculations and are
straight-line interpolated.
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5.5 Yield of Sequential Two-Photon Double Ionization

Attempting to find a simple analytical description of the pulse-length dependence of A in

Fig. 5.5, we first recall the known expression of the SDI yield [18, 75]

Yseq =
σ1σ2I

2
0

ω2
(Teff)

2, (5.2)

given in terms of the single-photon single-ionization cross sections for He (σ1) and He+ (σ2)

and the effective interaction time of the XUV pulse for the single-photon processes, Teff

[Eqn. (2.74)]. For sine-squared pulses Teff equals 3/8 times the full XUV-pulse duration

τ [18, 27, 119].

5.6 Heuristic Formula

Guided by the SDI yield of Eqn. (5.2), we integrate over the SDI frequency range to construct

the heuristic expression

Y heur
seq = B

[
Teff

∫ ∞

I2

I(ω)

ω
dω

]2
(5.3)

for the SDI contribution, uniting the constraints for SDI on the temporal pulse profile (factor

T 2
eff) and spectral overlap with the SDI spectral domain (factor [

∫∞
I2

I(ω)
ω
dω]2). Figure 5.5

shows
√
Y heur
seq (blue solid line) for ~ω = 50 eV after adjusting the proportionality constant B

to the results of our ab initio calculation (stars). The stars in Fig. 5.5 show the asymmetries

A(θ1 = 0; ε = 0.01) derived from our ab initio FE-DVR numerical solution of the TDSE

according to Eqn. (5.1) for XUV-pulse lengths between 160 as and 2.5 fs. Consistent with

Figs. 5.2 and 5.3, the asymmetries are largest near 500 as. The normalized heuristic SDI

contribution (blue solid curve) reaches its maximum at a pulse length of 650 as, in agreement

with our ab initio calculation.

This confirms that the SDI yield can be neglected for pulse durations longer than 1.5 fs,

as one would expect in view of the vanishing overlap between the pulse spectrum and the

SDI spectral range. It also confirms the requirement of a sufficiently long pulse duration for

SDI to occur, as discussed above. Accordingly, due to relatively small SDI contributions,
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Figure 5.4: Effective sequential-double-ionization yield versus the total pulse duration. The
yield is calculated by the heuristic formula Eqn. (5.3). The inset shows the spectrum of an
~ωXUV = 50 eV pulse with sine-squared temporal profile and a pulse length of 1 fs. The
blue area indicates the overlap of the pulse spectrum and the spectral domain for sequential
double ionization at ~ω > 54.4 eV.

the asymmetries for 160 as and 3 fs in Fig. 5.3 are comparatively robust against changes in

energy sharing [cf. Figs. 5.1 (a,b)].

5.7 Emission Asymmetry Parameter and Effective

Sequential Double-Ionization Yield

In the discussion of Fig. 5.2 and Fig. 5.3, we have noticed that the emission asymmetry

parameter A vanishes at both ultrashort and long pulse durations, and has a maximum

around 500 as of pulse durations. In Fig. 5.5, we calculated 10 different pulse durations, and

plotted the forward-backward DI asymmetries A with the square root of effective sequential-

double-ionization yield. Based on the proportionality of
√
Y heur
seq and our ab initio calculated

forward-backward DI asymmetries A, we conclude that A is a good indicator for the SDI

contribution to the DI of helium for central pulse energies in the NSDI spectral domain.
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Figure 5.5: Comparison of ab-initio calculated forward-backward double-ionization asym-
metries A(θ1 = 0; ε = 0.01) (stars) with the heuristic formula [Eqn. (5.3] for the sequential-
double ionization contribution Y heur

seq (solid blue line) as a function of the XUV-pulse length
for a central pulse energy of 50 eV. The sequential double ionization yield is normalized to
the maximum of A at 650 as. The inset displays the spectrum of an ~ωXUV = 50 eV pulse
with sine-squared temporal profile and a pulse length of 1 fs. The blue area indicates the
overlap of the pulse spectrum and the spectral domain for sequential double ionization at
~ω > 54.4 eV.

This offers the possibility of determining the pulse lengths of ultrashort XUV pulses based

on measured asymmetries A.

5.8 Conclusions of this Chapter

We studied sequential and non-sequential contributions to the TPDI of helium. We calculat-

ed photoelectron angular distributions by applying the FE-DVR numerical method to solve

ab initio the TDSE for helium exposed to the electric field of an ultrashort XUV pulse. We

found that forward-backward asymmetries of two-photoelectron angular distributions con-

stitute an appropriate measure for the distinction between sequential and non-sequential

DI contributions. We confirmed this link between the forward-backward asymmetry and

the sequential DI contribution for central pulse energies below I2 by matching the pulse-
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length-dependent profile of our ab initio calculated forward-backward asymmetry with an

intuitively appealing heuristic formula for the square root of the SDI fraction.
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Chapter 6

Laser-Assisted Single-XUV-Photon
Double Ionization

Observing the ultrafast motion in molecules and atoms in real time has been a fascinating

and challenging task. A significant breakthrough was made by Ahmed H. Zewail, who

won the 1999 chemistry Nobel prize for developing a rapid laser technique that enables

scientists to study the action of atoms in chemical reactions, leading to the creation of

femtochemistry [115, 116]. This technique is called the pump-probe technique, and is the

analog of conventional snapshot photography.

In this chapter, we start to apply our new developed code to an XUV-pump-IR-probe

investigation. However, due to the limits of computational resources, we only studied the

special case, where the XUV and IR pulse overlap, that is, we only present results for zero

delay between the XUV and IR pulses. We note, however, that our code is ready for the

calculation of an entire delay range. Such calculations, based on our code, remain to be

done with access to the most powerful computational resources available at supercomputer

centers, such as National Energy Research Scientific Computing Center (NERSC) and the

Oak Ridge Leadership Computing Facility (OLCF). We added a short and comparatively

weak IR pulse to the single-XUV-photon DI process in helium atoms, and studied how the

IR field will change the energy and angular distributions of photoelectrons.

For all numerical results in this chapter we used the angular momentum limits (Lmax, l
max
1 ,
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lmax
2 ) = (3, 3, 3) for one-photon DI and two-photon DI and (Lmax, l

max
1 , lmax

2 ) = (5, 5, 5) for

all other processes in the expansion Eqn. (2.40), unless specified otherwise.

6.1 XUV Double Ionization in the Presence of an IR

Laser Pulse

The presence of a comparatively weak IR pulse during the DI of helium in an intense XUV

pulse can strongly modify the energy and angular distribution of photoelectrons. In this

section we discuss and quantify effects of an assisting IR laser electric field on the XUV-DI

process. The XUV and IR pulse are assumed to have overlapping sine-squared temporal

profiles, as given in Eqn. (2.30), with identical phases (φXUV = φIR = 0◦). The XUV-pulse

has a peak intensity of IXUV = 1014 W/cm2, the central photon energy ~ωXUV = 89 eV, and

a pulse length (full width at half intensity) of 10 XUV cycles or 0.46 fs. The IR parameters

are IIR = 3×1012 W/cm2, and ~ωIR = 1.61 eV. At this intensity the IR pulse by itself would

not ionize the atom [110]. We will discuss energy and angular distributions for assisting IR

pulses with pulse lengths of 1 and 4 IR cycles or 2.6 and 10.3 fs, respectively.

6.1.1 Energy Distributions

Figure 6.1 shows the joint energy distributions for laser-assisted single XUV photon DI for

an IR pulse length of 2.6 fs. Figures 6.1(a) and 6.1(b) display joint distributions where

the effective number of absorbed minus emitted IR photons is even and odd, respectively.

We separated the contributions from even and odd IR photon numbers in order to clearly

resolve the sideband pattern [60, 117] in the joint energy distribution. Each stripe in the

pattern complies with energy conservation, representing a certain effective number NIR of

absorbed minus emitted IR photons.

In each graph of Fig. 6.1, neighboring stripes are separated by the energy of two IR

photons (∼ 3.2 eV), as indicated by dashed and dotted lines. Regardless of the photon

number, the largest DI yield occurs at equal energy sharing. The most intense stripes in
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Figure 6.1: Normalized joint photoelectron energy distributions for IR-laser-assisted single-
photon double ionization of helium at equal energy sharing in a 10-cycle XUV pulse of peak
intensity 1014 W/cm2, central photon energy ~ωXUV = 89 eV, and pulse length 0.46 fs. The
assisting single-cycle laser pulse has a peak intensity of 3 × 1012 W/cm2, photon energy of
~ωIR = 1.61 eV, and a pulse length of 2.6 fs. (a) Even effective numbers of IR photons. (b)
Odd effective numbers of IR photons.
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Fig. 6.1(a) occur at the total energies E1 + E2 ≈ 10, 13.2, and 16.4 eV, corresponding to

the absorption of one XUV photon and, effectively, 0, 2, and 4 IR photons. The largest DI

yields in Fig. 6.1(b) are located at E1 + E2 ≈ 11.5 eV, corresponding to the absorption of

(effectively) one XUV photon and one IR photon.

6.1.2 Angular Distributions for Even and Odd IR Photon Num-
bers

We analyze JADs for the special case of both emitted electrons having the same final kinetic

energy. As in the previous subsection, we separately consider even and odd effective pho-

ton numbers for clarity. Figures 6.2(a,b,e) and (c,d,f) show our numerical results for laser-

assisted XUV-photon DI of helium for odd and even total photon numbers, respectively. We

obtain these angular distributions by integrating joint energy distributions across all side-

bands for equal energy sharing. Note that for odd total photon numbers in Figs. 6.2(a,b,e)

we include one 89 eV XUV plus any even number of IR photons. Likewise, for even total

photon numbers in Figs. 6.2(c,d,f), we include one XUV plus any odd number of IR photons.

Figure 6.2(f) shows results for laser-assisted two-photon DI, including two 45 eV XUV

and any even number of IR photons. We obtain the laser-assisted single XUV-photon JADs

by including combined excess energies of the two electrons up to Emax
exc = 3.0 a.u. ≈ 82 eV,

corresponding to NIR ≤ 45. The IR pulse lengths are 2.6 fs and 10.3 fs in Figs. 6.2(a,c) and

(b,d), respectively, corresponding to one and four IR cycles. Figures 6.2(e) and (f) compare

the JADs for symmetric emission by one and two XUV photons, respectively.

The nodal lines in the JADs for single- and three XUV-photon DI of helium without

laser assistance in Figs. 4.8(a) and 4.18(b) resist the addition of any even effective number

of IR photons in Figs. 6.2(a,b). Combinations of photoelectron emission directions that are

forbidden in the absence of an IR laser pulse thus remain forbidden upon addition of the laser

pulse, as long as the total number of photons remains odd. Likewise, for even total photon

numbers, JADs without [Fig. 4.18(a)] and with an assisting laser pulse [Figs. 6.2(c,d)] are

similar and dominated by back-to-back emission. For both, even and odd photon numbers,
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Figure 6.2: Normalized joint angular distributions for IR-laser-assisted double ionization
of helium at equal energy sharing in a 10-cycle XUV pulse of peak intensity 1014 W/cm2

and central photon energies of ~ωXUV = 89 eV and 45 eV. The assisting IR pulse has a
peak intensity of 3× 1012 W/cm2, central photon energy ~ωIR = 1.61 eV, and pulse lengths
(a,c) 2.6 fs and (b,d) 10.3 fs. (a-d) Laser-assisted single-89 eV-photon double ionization for
(a,b) odd and (c,d) even total effective numbers of XUV and IR photons. (e) Normalized
single-89 eV-photon double ionization for symmetric emission with and without assisting
IR-laser pulses of pulse lengths 2.6 fs and 10.3 fs for odd total effective numbers of XUV and
IR photons. (f) Normalized single-89 eV-photon double ionization for symmetric emission
with an assisting 2.6 fs or 10.3 fs IR-laser pulse for even total effective numbers of XUV and
IR photons, compared with IR-laser-free two-45 eV-photon double ionization. Calculation
with angular momentum limits (Lmax, l

max
1 , lmax

2 ) = (4, 4, 4) in Eqn. (2.40).
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the assistance of the IR pulse adds structure to the JAD, along lines with θ1 + θ2 = const

and most obviously for symmetric emission.

In comparison with the laser-free XUV DI in Fig. 4.8(a) and Fig. 4.18, the laser-assisted

yields in Fig. 6.2 show weak but enhanced (not observable) side-by-side emission, indicating

a more pronounced influence of electronic correlation during the laser-assisted DI process.

Increasing the IR pulse length from 2.6 fs to 10.3 fs leads to a redistribution of yields in the

JADs. For odd total photon numbers, the four dominant symmetric emission peaks along

θ1+θ2 = 360◦ in Fig. 6.2(a) recede as the IR pulse length is increased to 10.3 fs in Fig. 6.2(b)

and the dominant yield becomes focussed in eight peaks along lines θ1 + θ2 = (360 ± 90)◦,

consistent with the transfer of discrete amounts of IR-photon momenta. For even total

photon numbers, the increase of the IR pulse length from 2.6 fs in Fig. 6.2(c) to 10.3 fs

in Fig. 6.2(d) preserves the dominant back-to-back emission along the laser- and XUV-

polarization direction. As for odd photon numbers, the more diffuse appearance of the

JADs for the longer IR pulse can be understood as the result of a prolonged momentum

exchange with the IR-laser electric field during the photoemission process.

Figures 6.2(e) and (f) include cuts of the JADs in Fig. 6.2(a-d) and Fig. 4.18(a) along the

symmetric-emission line given by θ1+ θ2 = 360◦. Since convergence in the propagation time

is slowest for side-by-side emission, the DI yield at θ1 = 180◦ in Figs. 6.2(e) and (f) allows

us to quantify the overall degree of convergence achieved in the numerical calculation. For

a fully converged calculation this yield has to vanish. In general, our JADs are closest to

convergence for laser-free XUV DI and least converged for the longest pulse lengths of the

assisting laser, for otherwise identical physical and numerical parameters. The deterioration

of the convergence induced by the assisting laser pulse is more severe for odd photon numbers

in Fig. 6.2(e).

101



6.1.3 Angular Distributions for Specific Effective IR Photon Num-
bers

Figure 6.3 shows normalized JADs for single-XUV photon DI of helium for specific even and

odd total numbers of photons within the range −1 ≤ NXUV +NIR ≤ 4. Negative (positive)

IR-photon numbers NIR indicate that the number of emitted IR photons exceeds (is smaller

than) the number of absorbed IR photons. The pulse length of the assisting IR laser pulse

is 2.6 fs. All other laser, XUV-pulse, and numerical parameters are the same as in the

preceding Sec. 6.1.2. These JADs were obtained from the energy distributions in Fig. 6.1

by integrating over a small energy domain near equal energy sharing given by

|E1 + E2 − Eexc| < ωIR. (6.1)

where Eexc=NXUVωXUV + NIRωIR − Ip1 − Ip2 is the total excess energy due to the (net)

absorption of NXUV (=1,2) XUV and NIR IR photons. As for all JADs shown in this paper,

each JAD is normalized separately to its maximum yield.

The IR-photon-number specific JADs in Figs. 6.3(a-f) resemble the distribution for un-

specified odd and even photon numbers in Fig. 6.2(a) and (c). For odd photon numbers,

the DI yields become more concentrated in the four prominent peaks at and near sym-

metric emission while all other structures loose intensity as NIR is increased from -2 to 2

in Figs. 6.3(a-c). As observed for the laser-free XUV emission in Fig. 4.8(a) and for the

laser-assisted emission in Figs. 6.2(a,b), back-to-back and conic emission remain separately

forbidden for each number of IR photons NIR, as long as the total photon number is odd.

For even NIR symmetric emission is most likely. The progressive concentration of the

DI yield in four peaks along the symmetric emission direction as NIR increases from -2 to

3 in Figs. 6.3(a-f) is more pronounced for even than for odd total photon numbers. As

for laser-free DI by absorption of two XUV photons in Fig. 4.18(a) back-to-back emission

contributes significantly for laser-assisted XUV DI with NIR = −1 [Fig. 6.3(d)]. However,

as more IR photon are effectively absorbed, the momenta transferred from the IR-laser field

onto the photoelectrons progressively weaken back-to-back emission and increase the relative
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Figure 6.3: Normalized joint angular distributions for IR-laser-assisted single-XUV-photon
double ionization of helium in a 10-cycle XUV pulse of peak intensity 1014 W/cm2 and
central photon energy (a-f) ~ωXUV = 90 eV. The assisting IR laser pulse has a pulse length
of 2.6 fs. All other parameters are the same as for Fig. 6.2. (a-c,g) Odd and (d-f,h) even
total effective numbers of photons. The effective number of absorbed IR photons is (a)
NIR = -2, (b) 0, (c) 2, (d) -1, (e) 1, and (f) 3. Negative photon numbers indicate that more
IR photons are emitted than absorbed. (g,h) Normalized yields for symmetric laser-assisted
XUV double-ionization. (g) Odd total numbers of photons with NIR = −2, 0, and 2. (g)
Even total numbers of photons with NIR = -1, 1, and 3.
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importance of symmetric emission in the dominant four peaks in Figs. 6.3(e) and (f). For

increasing numbers of effectively absorbed IR photons, symmetric emission thus becomes

more dominant for both, odd and even photon numbers. For equal energy sharing of the

photoelectrons, this can be regarded as a compromise between (i) the simultaneous transfer

of equal amounts of momenta along the laser and XUV pulse polarization direction from the

IR-laser field to the emitted electrons (promoting side-by-side emission) and (ii) electronic

repulsion (prohibiting side-by-side emission at sufficiently large propagation times).

The normalized DI yields for symmetric laser-assisted XUV DI for odd total photon

numbers in Fig. 6.3(g) show a steady decrease of the DI yield near the back-to-back emission

direction at θ1 ≈ (90±12)◦ as NIR is increased from -2 to +2. Simultaneously, the dominant

symmetric emission peaks in this graph at θ1 ≈ 55◦ and ≈ 125◦ become broader, as one

would expect for larger numbers of absorbed IR photons. For the case of even total photon

numbers in Fig. 6.3(h) symmetric back-to-back emission in direction perpendicular to the

laser polarization direction (θ1 = 90◦) becomes less likely as NIR is increased from -1 to +3,

in agreement with the intuitive picture of increasing momentum being transferred from the

external IR electric field to the photoelectrons in direction parallel to the laser polarization.

Our discussion shows that for equal energy sharing, back-to-back emission oscillates

between forbidden (for odd) and dominant (for even totol photon numbers NXUV +NIR) as

the number of effectively absorbed IR photon increases. This oscillation originates in dipole

and selection parity selections rules [54, 56, 57].

6.1.4 Summary of Section 6.1

We investigated the IR laser-assisted XUV DI of helium based on a newly developed FE-

DVR computer code for numerically solving the TDSE equation in full dimensionality.

We studied JADs separately for odd and even numbers of exchanged photons and for

specific effective numbers of absorbed (and emitted) IR photons. We found that an assisting

IR field retains some of the dominant features of the laser-free JADs while modifying the
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distribution of DI yields in compliance with known dipole and parity selection rules. These

modifications become more significant as the effective number of absorbed IR photons in-

creases, in support of the intuitive picture of momentum transfer from the IR-laser field

to the photo-emitted electrons in laser-polarization direction. In particular, we found that

the IR pulse promotes side-by-side and enables back-to-back emission. For even numbers of

absorbed (IR plus XUV) photons, the IR pulse was found to enable back-to-back emission

and conic emission. This is in agreement with the dipole and parity selection rules that

forbid (allow) back-to-back and conic emission for odd (even) total effective numbers of (IR

plus XUV) photons, respectively.

6.2 Energy Sharing Dependence

In Sec. 6.1, we discussed the DI of helium at equal energy sharing and found the addition

of a comparatively weak IR field to the ionizing XUV pulse leads to the appearance of

characteristic sidebands in energy and angle distributions [46]. In this section we extend

these investigations to nonequal energy sharing. We analyze JADs and MADs for XUV

pulses with 1014 W/cm2 peak intensity, τXUV = 1 fs pulse duration, and ~ωXUV = 89 eV

central photon energy that coincide with an assisting IR pulse with a peak intensity of

3× 1012 W/cm2, pulse length τIR = 2.6 fs, and ~ωIR = 1.61 eV photon energy, as given by

Eqn. (2.30).

We are going to compare angular distributions for equal and unequal energy sharing

between the photoelectrons and distinguish contributions from even and odd effective num-

bers of photons involved for clarity. For even (odd) effective numbers we include one 89 eV

XUV photon plus any odd (even) number of IR photons. We calculate these “even” and

“odd” contributions to JADs and MADs by restricting the partial-wave expansion of the

time-dependent wave function for the helium atom Eqn. (2.40) in the combined XUV and

IR fields to even and odd values of the total angular momentum quantum number L. We

compute the angular distributions discussed below by integrating joint energy distributions
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Figure 6.4: Calculated normalized joint angular distributions for IR laser-assisted single-
XUV-photon double ionization of helium by 1014W/cm2 peak intensity ~ωXUV = 89 eV
XUV pulses assisted by coincident 3 × 1012 W/cm2 IR-laser pulses. Contribution to the
double-ionization yield from (a)-(c) odd and (d)-(f) even total effective numbers of XUV
plus IR photons. Results for (a,d) equal energy sharing (ε = 0.5), (b,e) unequal energy
sharing (ε = 0.1), and (c,f) extremely unequal energy sharing (ε = 0.01).

across along all sidebands (all possible energies E1 and E2) for a given value of the energy-

sharing parameter ε.

6.2.1 Joint Angular Distributions

Figure 6.4 shows our calculated JADs for laser-assisted single-XUV-photon DI for the odd

and even effective photon numbers in the top panel and bottom panel, respectively, for three

different values of energy sharing. Even though side-by-side emission is possible at unequal

energy sharing, no such contribution can be seen on the linear-scale graphs, regardless of

the final-state parity.
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For odd effective photon numbers (odd parity final states), the equal energy sharing

distributions in Figs. 6.4 (a-c) have kept the four symmetrical-emission peaks which are the

main features of single-photon DI without an assisting IR field [cf. Fig. 4.8]. As the energy

symmetry is broken, symmetrical emission remains dominant at ε = 0.1 [Fig. 6.4 (b)] and

small contribution from back-to-back emission emerge, as for the laser-free single-XUV-

photon DI [cf. Fig. 4.8 (b)]. For extremely unequal energy sharing at ε = 0.01 [Fig. 6.4 (c)],

both symmetric and back-to-back emission are prominent in the JAD. However, in contrast

to the laser-free DI [cf. Fig. 4.8 (c)], the peak DI yield for back-to-back exceeds the peak

yields for symmetric emission. For odd parity final states and unequal energy sharing, a

striking change induced by the assisting laser pulse is thus the promotion of back-to-back

emission.

Contributions to the JAD from even effective photon numbers (even parity final states)

show competing symmetrical and back-to-back emission over a large range of energy sharing.

These main contributors to DI in Fig. 6.4 (d-f) are the same as for laser-free DI by two 45 eV

photons [cf. Fig. 4.19], albeit with very different relative yields. Unlike laser-free even-parity

DI by two 45 eV photons, our even-photon-number results in Fig. 6.4 (d-f) are sensitive to

changes in the energy sharing. Interestingly, while at equal energy sharing back-to-back

emission is stricktly prohobited for single-photon DI, the absorption of an additional IR

photon enables clearly noticeable back-to-back emission [Fig. 6.4 (d)].

6.2.2 Mutual Angular Distributions

Figure 6.5 shows MADs for the laser-assisted single-XUV-photon DI. All distributions are

normalized to the enclosed area and extracted from the corresponding JADs shown in

Fig. 6.4 according to Eqn. (2.79).

For odd total effective numbers of XUV plus IR photons (odd parity), side-by-side (θ12 =

0◦) and back-to-back emission (θ12 = 180◦) are strictly forbidden at equal energy sharing

[Fig. 6.5 (a)]. For unequal energy sharing, both side-by-side and back-to-back emission (red
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Figure 6.5: Mutual angular distributions for IR-laser-assisted single-XUV-photon double
ionization of helium for differnt energy sharings ε. (a) Contributions to the double-ionization
yield from (a) odd and (b) even total effective numbers of XUV plus IR photons. The XUV
and IR pulse parameters are the same as in Fig. 6.4. The insets zoom into the distributions
near the mutual angles θ12 = 0◦ and 180◦.

dashed line) occur and become increasingly prominent with increasing energy asymmetry.

For extremely unequal energy sharing (ε = 0.01), the back-to-back-emission yield reaches

≈ 80 % of the peak value at Θ12 ≈105◦, while the side-by-side-emission yield reaches ≈ 15 %

of the peak value.

For even parity back-to-back emission strongly dominates the MADs in Fig. 6.5 (b),

regardless of the energy sharing. The side-by-side-emission yields remain very small at

unequal energy sharing (ε = 0.1) and are largest at extremely unequal energy sharing

(ε = 0.01). The small but noticeable side-by-side-emission yield at ε = 0.01 is compatible

with a two-step mechanism. This mechanism operates by the fast photoelectron carrying

away almost the entire excess energy, while the slow electron reverses its motion by asorbing

one IR photon to follow the fast electron. This picture thus explains noticeable side-by-side

contributions by allowing the electrons to initially move in opposite directions, i.e., along

the strongly favored back-to-back emission directions, while being compatible with dipole

sections rules that would prohibit side-by-side emission without an assisting IR-laser pulse.

Figure 6.6 depicts the schematic of laser splitting the emission peaks and enabling the
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Figure 6.6: Schematics of laser controlled DI. (a) Shift to side by side emission; (b) shift
to back-to-back emission, and (c) enabling the side-by-side emission. The green solid lines
stand for the momentum without laser assistance. The red dashed lines stand for the extra
momentum obtained from the laser field. The momenta are plotted in blue dotted dashed
lines.
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parallel emissions. Fig. 6.6(a,b) displays how the laser controls the photoelectrons shift to

parallel/anti-parallel emissions, respectively. The DI photoelectrons gain initial energy by

absorbing one XUV photon, and propagate in the laser field. The laser field can streak

the photoelectrons, and these electrons can obtain equal amounts of extra energies and

momenta. These momenta can be parallel (a) or antiparallel (b) to the electric field. In the

case (a), initial and extra momenta both point to the left, the angle difference of their total

momenta therefore decreases, which means the photoemission shifts to side-by-side emission.

On the other hand, panel (b) displays the photoemission shifting to back-to-back emission.

Panel (c) depicts how the laser can enable side-by-side emission. The initial momenta of the

two electrons are asymmetrical. One electron takes almost all the energy, while the other

takes little. Because of correlation, the two photoelectrons go in opposite directions. When

the IR laser is added, both electrons obtain extra momenta, as shown in panel (c), both

pointing to right. Since the extra momentum is greater than the smaller initial momentum,

the momentum of this electron will therefore be turned 180◦, the same as the other electron.

Since back-to-back emission is relatively strong only in the extremely unequal energy sharing

cases, side-by-side emission is also observable for small energy sharing.

In order to more clearly display the enhancement of side-by-side and back-to-back emis-

sion by the assisting IR-laser pulse and to show this effect on observable MADs (including

odd and even parity contributions), we compare in Fig. 6.7 MADs for single-XUV-photon DI

of helium with and without the assisting IR-laser field at different energy sharing. To allow

a quantitative comparison, the distributions in Fig. 6.7 are not individually, normalized, in

contrast to the MADs shown in Fig. 6.5.

This comparison shows that each peak in the MADs for IR-laser-free DI splits into two

peaks in the presence of the weak IR-laser field. This splitting of the dominant emission

angles is due to momentum transfers from the IR field. Absorbing equal amounts of energy

from the IR field, photoelectrons released by the XUV field are thus pushed either towards

the side-by-side or back-to-back emission direction. At equal energy sharing [Fig. 6.7 (b)],
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Figure 6.7: Contributions to the mutual angular distributions for IR-laser-assisted single-
XUV-photon double ionization of helium for (a) equal energy sharing and (b) extremely
unequal energy sharing with ε = 0.01. XUV- and IR-pulse parameters are the same as in
Fig. 6.4. The black solid curves correspond to XUV-pulse-only results, blue dotted lines to
odd parity, and green dash-dotted lines display even parity. The red dashed curves show
coherent additions of odd and even parity contributions.

this momentum transfer changes the dominant relative emission angle from Θ12 ≈ 130◦ for

IR-laser-free emission to ≈ 105◦ and ≈ 170◦ for IR-laser-assisted emission. For extremely

unequal energy sharing [Fig. 6.7 (a)], the dominant relative emission angle splits from ≈ 135◦

for IR-laser-free emission to ≈ 95◦ and ≈ 170◦ for IR-laser-assisted emission.

The dominant mutual angles for the even-parity contributions are ≈ 130◦ and ≈ 180◦

for equal, and ≈ 95◦ and ≈ 170◦ for extremely unequal energy sharing (Fig. 6.7). For odd

parity final states the dominant relative angles can be estimated by vector addition. For

equal energy sharing (E1 = E2 = 5 eV), the dominant photoelectron momentum vector

(in plane polar coordinates), (k1,Θ12) = (0.606, 130◦), changes upon absorption of an IR

photon by ±(A0,IR, 0) where A0,IR ≈ 0.156 is the peak amplitude of the vector potential at

3 × 1012 W/cm2 peak intensity of the IR pulse. This vector addition results in estimated

dominant mutual angles for IR-laser-assisted emission of Θ12 = 106◦ and 159◦, in good

agreement with the numerical results in Fig. 6.7 (a).

We note that for even parity (i.e., absorption of one XUV, assisted by an odd number of
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IR photons) the exchange of IR photons results in final states that include contributions from

different total angular momenta, e.g., L = 0, 2 if one IR photon is absorbed. Due to this

coherent superposition of states with different symmetry, the simple addition of electron

momenta and IR vector potential does not explain the dominant angles for even-parity

contributions to laser-assisted XUV DI.

6.2.3 Conclusion of Section 6.2

We analyzed the dependance of joint and mutual photoelectron angular distributions on the

energy sharing of the emitted electrons for the double ionization of helium atoms by short

XUV pulses in co-planar emission geometry with and without the presence of a compar-

atively weak IR-laser pulse. Compared to the laser-free single-XUV-photon DI of helium,

we found that the presence of a weak IR field can dramatically change the JAD of the two

escaping electrons, leading to (i) angular shifts and a splitting into two dominant emission

directions, (ii) strong enhancement of back-to-back emission at all energy sharings, and (iii)

enhanced side-by-side emission yields at extremely unequal energy sharing.

These IR-pulse-induced changes in photoelectron angular distributions illustrate known

constraints imposed by dipole selection rules. They are robust over a large range of energy

sharings between the emitted electrons, and, for special cases, can be classically estimated

by simple vector addition, based on the transfer of IR-photon momenta to photoelectrons.

6.3 Intensity Dependence

Figure 6.8 displays the joint energy distributions (JEDs) of the laser-assisted DI at different

laser intensities. The left panels are JEDs for odd parity, and the right panels show JEDs

for even parity. The top-left graph shows the laser-free JED. From top to bottom, the IR

intensities are 0, 1010, 1011 and 1012 W/cm2, respectively. With increasing IR-laser intensity,

the odd-parity probability density in the JEDs decreases, while the even-parity probability

density increases. This means that assisted by a weak IR-laser field, the DI yield does not
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Figure 6.8: Intensity dependence of JEDs. Panel (a) is laser-free result for comparison.
(a-d) are JEDs with odd parity, and (e-g) are JEDs with even parity, respectively.
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change a lot. The odd-parity and even-parity photoelectrons are competing. Stronger IR

fields can boost the even-parity photoelectrons. At the intensity 1012 W/cm2, the odd-

parity and even-parity probability densities are comparable in magnitude. However, if we

keep increasing the IR-laser intensity, e.g. to 1013 W/cm2, the DI-probability increases due

to the strong IR-laser field can be significant, and many-photon process will be important

or even dominant. Since we would have to employ many more partial waves to describe

such a process, no numerical results for stronger assisted IR field are shown in this thesis,

the numerical effort being significant and requiring access to computational resource that

are not locally available to us.

6.3.1 Conclusions of Section 6.3

We have studied the control of electrons emission in XUV DI of helium by short IR laser

pulses. By changing the laser intensity, we can turn on and off back-to-back emission and

side-by-side emission.
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Chapter 7

Conclusions and Outlook

7.1 Summary and Conclusions

We have developed a set of codes to simulate and analyze single and double photo-ionization

of helium atoms. These codes are based on the implementation of the TDCC and FE-DVR

methods, and are validated by comparison with published experimental and theoretical

results, and by assessing the convergence in the number of included angular momentum

eigen-states, propagation time, and numerical grid size.

We studied sequential and non-sequential contributions to the TPDI of helium. We

calculated photoelectron angular distributions by applying the FE-DVR method to solve

ab initio TDSE for helium exposed to the electric field of an ultrashort XUV pulse. We

found that forward-backward asymmetries of two-photoelectron angular distributions con-

stitute an appropriate measure for the distinction between sequential and non-sequential

DI contributions. We confirmed this link between the forward-backward asymmetry and

the sequential DI contribution for central pulse energies below I2 by matching the pulse-

length-dependent profile of our ab initio calculated forward-backward asymmetry with an

intuitively appealing heuristic formula for the square root of the SDI fraction.

We also investigated the IR-laser-assisted XUV DI of helium based on our newly devel-

oped FE-DVR computer code for numerically solving the TDSE in full dimensionality. We

first focused on equal energy sharing of the emitted electron, where for side-by-side emission
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convergence in the propagation time is slowed by the Coulomb interaction of the emitted

electrons and thus serves as a lower limit for the degree of convergence at different emission

angles (and non-equal energy sharing). We classified the distinct back-to-back, side-by-side,

conic, and symmetric double emission modes in JADs at equal energy sharing, and discussed

their prominence and absence for sequential and non-sequential DI upon absorption of up

to three XUV photons and with and without the presence of an assisting IR laser field.

We discussed JADs separately for odd and even numbers of exchanged photons and for

specific effective numbers of absorbed (and emitted) IR photon. We found that an assisting

IR field retains some of the dominant features of the laser-free JADs while modifying the

distribution of DI yields in compliance with known dipole and parity selection rules. These

modifications become more significant as the effective number of absorbed IR photons in-

creases, in support of the intuitive pictures of momentum transfer from the IR-laser field

to the photo-emitted electrons in laser-polarization direction. In particular, we found that

the IR pulse promotes side-by-side and enables back-to-back emission. For even numbers of

absorbed (IR plus XUV) photons, the IR pulse was found to enable back-to-back emission

and conic emission. This is in agreement with the dipole and parity selection rules that

forbid (allow) back-to-back and conic emission for odd (even) total effective numbers of (IR

plus XUV) photons, respectively.

We analyzed the dependance of joint and mutual photoelectron angular distributions

on the energy sharing of the emitted electrons for the double ionization of helium atoms

by short XUV pulses in co-planar emission geometry with and without the presence of a

comparatively weak IR-laser pulse. Compared to the laser-free single-XUV-photon DI of

helium, we found that the presence of a weak IR field can dramatically change the JADs of

the two escaping electrons, leading to (i) angular shifts and a splitting into two dominant

emission directions, (ii) strong enhancement of back-to-back emission at all energy sharing,

and (iii) enhanced side-by-side emission yields at extremely unequal energy sharing.

These IR-pulse-induced changes in photoelectron angular distributions illustrate known
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constraints imposed by dipole selection rules. They are robust over a large range of energy

sharing between the emitted electrons, and, for special cases, can be classically estimated

by simple vector addition, based on the transfer of IR-photon momenta to photoelectrons.

7.2 Challenges and Outlook

We discussed laser-assisted single-XUV-photon DI and our study connects to many more

challenging problems. We plan to investigate the time-delay dependence DI induced by

strong IR fields, and laser-assisted single-XUV-photon DI including transient doubly excited

states. We also intend to apply our new code to systematically investigate the influence of

the carrier-envelope phases of the XUV and IR pulse, the XUV-pulse length, and the delay

between XUV and IR pulse have on the correlated electron dynamics during the DI process.

The transient absorption experimental results [10] are a significant numerical challenge

when we consider the IR pulse lengths and XUV-IR delay range in typical experiments

[10, 108]. In such experiments, they use very long pulse durations (∼ 10 fs) and large time

delays (up to ∼ 40 fs) between the XUV and IR pulses. Both long pulse durations and large

time delays are challenge to numerical simulation on current computational resources.

Nowadays, the optimization with graphics processing unit (GPU) as an emerging high-

performance computing platform, has been introduced to physics [36]. The GPU-based

optimization is available in many supercomputers, such as Edison at NERSC [63], Titan at

OLCF [69, 107]. Although GPU-based optimization and Many-Integrated-Core Architecture

(MIC) [107] of IntelrXeon PhiTM Coprocessors can be applied to accelerate the computa-

tion, it is still difficult for us to solve our problems above. We have to seek for optimization

schemes other than through hardware, as discussed in the two following subsections.

7.2.1 L-Shaped Grid

For DI, we often need to keep both radial coordinates equal. However, when we consider

only single ionization of helium, where one electron remains bound to the nucleus core,
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Figure 7.1: L-shaped grid. Panel (a): 2×2 blocks. Panel (b): 4×4 blocks. The red blocks
form the L-shaped grid, the blue blocks are truncated, because the two electron radial
probability densities in these regions are negligible for single ionization process.

we can use an L-shaped grid. In such a grid, we assign no points to the wave function

where both r1 and r2 exceed some value rsmall. For example, in Fig. 7.1(a), we set rsmall =

rmax/2 and reduce the computational efforts by 25%. If we set rsmall = rmax/4, as shown in

Fig. 7.1(b), we can reduce the computational efforts by up to 56.25%.

The L-shaped grid is convenient in distributed-memory parallel computing. We can

assign the small blocks to different nodes, such that only a few ghost points need to be

communicated between different computing nodes.

7.2.2 Further Reducing the Number of Partial Waves

Although selection rules and symmetries, as discussed in Chap. 4.2, can eliminate irrelevant

partial waves and largely reduce the number of partial waves we used in solving the TDSE,

the number of partial waves is still too large to numerically solve TDSE if there are many

photons involved in a process. For example, when (Lmax, l
max
1 , lmax

2 ) = (6, 6, 6), we have to
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use 106 partial waves. This number currently is at the limit of our local current computing

resources. If we need to consider DI in an IR laser field, to make sure the result is converged,

we would have to use at least the configuration (Lmax, l
max
1 , lmax

2 ) = (30, 30, 30) [34], which

requires about 8,000 (or 5,000 without symmetry redundance) partial waves. It is impossible

for us to perform such simulations in the near future; neither with local resources nor at

supercomputer centers, e.g., NERSC [63] and OLCF [69]. So we need to reduce the number

of partial waves effectively, without significantly sacrificing accuracy.

Due to electron-electron correlation, the ground state of helium can be expanded in

configurations according to |1S⟩=c(0)|ss⟩+c(1)|pp⟩+c(2)|dd⟩+c(3)|ff⟩+· · · , and |c(0)| ≫ |c(1)|.

For DI, the dominant component is the |ss⟩ state, but the remaining components |pp⟩,

|dd⟩ and |ff⟩ also play important roles in detailed structure of angular distribution [119].

Partial waves with even higher angular momenta [l1(or l2) ≥ 4] are neglected in most of our

calculations for single-photon DI and two-photon DI.

For excited states, different partial waves play different roles. In Fig. 7.2, we display

the probability distributions versus the partial waves, extracted from the final-state wave

function for DI at the end of the 1-fs 42 eV XUV pulse. Different L’s are plotted in different

colors: L=0 in black, L=1 in red, L=2 in blue and L=3 in purple. As expected, the (0,

0, 0) partial wave is dominant. To better view the wave functions for four partial waves

with L=0, we plot the probability densities of the four wave functions in Fig. 7.3. In

Fig. 7.3 (a), there is a large overlap with the ground-state wave function (see Fig. 4.2). This

means that two electrons mostly stay in the ground state due to the relatively “weak” XUV

field. Besides the component overlapping with the ground state, there are also “DI” and/or

“doubly excited” components: the wave function with r1 > 10 and r2 > 10. Other than this

(0, 0, 0) partial wave, the other three partial waves with L= 0 show “DI” and/or “doubly

excited” components [r1(r2) > 10]. The second strongest partial waves are (1, 0, 1) and

(1, 1, 0). This is due to the one-photon process, singly ionization of helium by 42 eV XUV

photon. The next strongest component is (0, 1, 1). It could be from either the initial ground
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Figure 7.2: Histogram of the probability-density distribution of partial waves in 42 eV XUV
photon TPDI. The x-axis lists partial waves configurations (L, l1, l2) and corresponding
index numbers for each partial wave. Different L values are plotted in different color: L=0
in black, L=1 in red, L=2 in blue and L=3 in purple. The (0, 0, 0) partial wave corresponds
to the |ss⟩ state, it approximates 1. XUV pulse parameters: 5×1014 W/cm2, and 1-fs pulse
duration.
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Figure 7.3: The probability densities of 4 partial waves with L = 0 in TPDI by single 1-fs
duration XUV pulse with 42 eV central energy. The color scales are different in each panel.
The (0, 0, 0) partial wave is the most important component, it indicates that most electrons
stay in ground state. With increasing l1/l2, the probability densities decrease. These graphs
agree with the results shown in Fig. 7.2.
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state or the two-photon DI process. The next important partial waves are (2, 0, 2), (2, 2, 0)

and (2, 1, 1). They are the strongest DI contributions, not counting the L=0 components

which overlap with ground state. Compared to these partial waves, some partial waves are

very low in probability amplitude. For instance, the (2, 3, 3) partial wave has a probability

amplitude less than 10−7, and the partial waves (3, 2, 3) and (3, 3, 2) are a little above 10−7.

So they are negligible in our simulation, and we can truncate them. If we only consider the

partial waves with probabilities higher than 10−5, we can truncate 8 partial waves from 23

partial waves in total. This is true even when the photon number is large [34]. Actually,

in Hu’s simulation, only 381 partial waves are needed in the configuration (30, 30, 30) to

describe the atto-second boosted IR-laser DI of helium [34]. Thus, this truncation would

make it possible to apply our newly developed code to examine DI of helium by intense IR

pulse with intensities of about 1016 W/cm2 by using Titan at OLCF [69].
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Appendix A

Symmetries in Joint Angular
Distribution

In this part, we discuss the symmetries of JADs. Figure 2.3 displays two typical JADs in

both linear for SPDI (a) and 3PDI (b) at unequal energy sharing. Both plots display the

symmetries about two diagonal lines, these symmetries about the second diagonal line is

caused by the indistinguishability of two identical electrons,

P (θ2, θ1) = P (θ1, θ2). (A.1)

The other one comes from the spherical harmonics. We can see more symmetries about

these points (θ1, θ2): (90
◦, 90◦), (180◦, 180◦), (270◦, 90◦), (90◦, 270◦), and (270◦, 270◦). In

other words, we have

P (θ1, θ2) = P (π + θ1, π + θ2) = P (π − θ1, π − θ2)

= P (2π − θ1, 2π − θ2). (A.2)

We start from the fact that the spherical harmonics have well-defined parity in the sense

that they are either even or odd with respect to reflection about the origin. Reflection about

the origin is represented as

Ylm(π − θ, π + ϕ) = (−1)lYlm(θ, ϕ). (A.3)

and the distribution is proportional to the modules square of bipolar spherical harmonics,
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the factor [(−1)l1+l2 ]2 is always 1. Now we have

P (θ1, ϕ1; θ2, ϕ2) = P (π − θ1, π + ϕ1;π − θ2, π + ϕ2). (A.4)

Because ϕ and ϕ+ π are on the same plane, it is symmetric about the axis z = 0. And we

define the (π − θ, π + ϕ) as (π + θ, ϕ):

P (π − θ1, π + ϕ1; π − θ2, π + ϕ2) = P (π + θ1, ϕ1;π + θ2, ϕ2). (A.5)

Because P (θ1, ϕ1; θ2, ϕ2) is actually independent of ϕ. So we have

P (θ1, ϕ1; θ2, ϕ2) = P (θ1, π + ϕ1; θ2, π + ϕ2), (A.6)

and

P (π + θ1, π + θ2) = P (π − θ1, π − θ2). (A.7)

Adding π on both sides for each variable, we find

P (2π + θ1, 2π + θ2) = P (2π − θ1, 2π − θ2), (A.8)

that is

P (θ1, θ2) = P (2π − θ1, 2π − θ2). (A.9)

Considering the indistinguishability of two identical electrons, P (θ2, θ1) = P (θ1, θ2), we have

P (θ1, θ2) = P (2π − θ2, 2π − θ1). (A.10)

This is the symmetry about the main diagonal line.
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Appendix B

First Derivative of the
Gaussian-Lobatto Basis in the
Finite-Element Discrete Variable
Representation Method

Although the first derivative of DVR basis [Eqn. (2.25)] can be found in Refs. [52, 88], we

are not aware of an explicit derivation in the literature. In this Appendix, we analytically

derive the first derivation of DVR basis at the mesh points [28].

We rewritten the Eqn. (2.25) in one FE only as follow (dismiss the index i)

f ′
m(xm′) =

{
1

xm−xm′
Πk ̸=m,m′

xm′−xk

xm−xk
, m ̸= m′,

1
2ωm

(δm,n − δm,1), m = m′.
(B.1)

The first line of Eqn. (B.1) is trivial. We only discuss the derivation of the second line in

Eqn. (B.1).

B.1 Preliminary

Because we have to transform all finite elements in physical space into the model space

spanned by x from −1 to +1, in what follows, we only consider the Legendre polynomial

Pℓ(x) in the region x ∈ [−1,+1]. Before we go any further, it is better to keep the differential

equation satisfied by Pℓ(x)

(1− x2)P ′′
ℓ (x)− 2xP ′

ℓ(x) + ℓ(ℓ+ 1)Pℓ(x) = 0. (B.2)
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in mind. Here P ′
ℓ(x) and P

′′
ℓ (x) are the first- and second-order derivatives of Pℓ(x), respec-

tively. We assume that we choose N DVR mesh points in the region [−1,+1]. These N

points are determined through the zero points of P ′
N−1(x) and two boundary points at ±1.

In other words, we organize the mesh points in the following way: x1, x2, x3, · · · , xN−1, xN ,

in which x1 = −1, xN = +1, and P ′
N−1(xi) = 0 (2 6 i 6 N − 1). Once the mesh points are

determined, the relevant Lobatto basis in the DVR method is defined by

fi(x) =
N∏

j=1( ̸=i)

x− xj
xi − xj

. (B.3)

Let us consider how to analytically obtain their first-order derivative at the same mesh point

where the basis is defined, i.e., dfi(xi)/dx. To this end, we divide the problem into the two

cases: (i) non-boundary DVR basis [fi(x) (2 6 i 6 N − 1)], and (ii) boundary DVR basis

[f1(x) and fN(x)].

B.2 Case (i)

In this case, the DVR basis [Eqn. (B.3)] can be recast as

fi(x) =
1

AN−2

1∏
j ̸=i(xi − xj)

(x2 − 1)P ′
N−1(x)

x− xi
. (B.4)

Here, AN−2 is the coefficient corresponding to the highest-order term of xN−2 in P ′
N−1(x).

In what follows, we will leave 1/[AN−2

∏
j ̸=i(xi−xj)] out in fi(x) to simplify notation, since

it is a constant for a given basis. Therefore, we have

f ′
i(x) =

(x2 − 1)P ′′
N−1(x)

x− xi
+

2xP ′
N−1(x)

x− xi
−

(x2 − 1)P ′
N−1(x)

(x− xi)2
(B.5)

=
1

(x− xi)2

{
(x− xi)

[
(N − 1)NPN−1(x)− 2xP ′

N−1(x)

]

+ 2x(x− xi)P
′
N−1(x)− (x2 − 1)P ′

N−1(x)

}

=
1

(x− xi)2

{
(x− xi)(N − 1)NPN−1(x)− (x2 − 1)P ′

N−1(x)

}
,
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in which Eqn. (B.2) was used. In the limit of x → xi, the above derivative turns to be

a limit of type 0/0. After carrying out the derivatives of the denominator and numerator

separately, we have

f ′
i(xi) = lim

x→xi

1

2(x− xi)

{
N(N − 1)(x− xi)P

′
N−1(x) +N(N − 1)PN−1(x) (B.6)

− 2xP ′
N−1(x)− (x2 − 1)P ′′

N−1(x)

}
=
1

2
N(N − 1)P ′

N−1(xi) = 0.

At this point, we recognize that f ′
i(xi) = 0 for non-boundary DVR basis. This indicates

that the the first-order derivative of the DVR basis vanishes at the point where the DVR

basis is defined. In other words, xi is an extreme point for fi(x). It comes as no surprise,

since we already know that fi(xi) = 1 at x = xi, which corresponds to a maximum of fi(x).

B.3 Case (ii)

Now we consider a boundary. We only take the case of x1 = −1 as an example to show how

we derive f ′
1(x1). The same procedure can be extended to the case of xN = +1. We know

that for the Gauss-Lobatto quadrature, we always have

P ′
N−1(x) = AN−2

N−1∏
i=2

(x− xi), (B.7)

where the coefficient AN−2 corresponds to the leading term of xN−2 in P ′
N−1(x). Its detailed

expression is not important for our present purpose. AN−2 should be canceled, as we will

see later. In this case, after using

f1(x) =
1∏N

j ̸=1(x1 − xj)

P ′
N−1(x)

AN−2

(x− 1), (B.8)

we have

f ′
1(x) =

1

AN−2

∏N
j ̸=1(x1 − xj)

[
P ′′
N−1(x)(x− 1) + P ′

N−1(x)
]
. (B.9)
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On the other hand, at x1 = −1, we have

N∏
j ̸=1

(x1 − xj) = (−1− x2)(−1− x3) · · · (−1− xN−1)(−1− 1) =
(−2)

AN−2

P ′
N−1(−1). (B.10)

Therefore, f ′
1(−1) can be recast as

f ′
1(−1) =

P ′′
N−1(−1)

P ′
N−1(−1)

− 1

2
. (B.11)

Now, the question is, how can we obtain P ′
N−1(−1) and P ′′

N−2(−1). The value of P ′
N−1(−1)

is trivial. It is available in some books [1]. However, P ′′
N−1(−1) is far from trivial, which can

be found in Ref.1. Here, I am going to show how I obtain both P ′
N−1(−1) and P ′′

N−1(−1) in

a systematical way. For the Legendre polynomial Pℓ(x) at any oder ℓ > 0, I start with

Pℓ(x) =
1

2ℓ

ℓ∑
k=0

(
ℓ

k

)2

(x− 1)ℓ−k(x+ 1)k. (B.12)

Therefore, we have

P ′
ℓ(x) =

1

2ℓ

ℓ∑
k=0

(
ℓ

k

)2

k(x−1)ℓ−k(x+1)k−1+
1

2ℓ

ℓ∑
k=0

(
ℓ

k

)2

(ℓ−k)(x−1)ℓ−k−1(x+1)k, (B.13)

P ′′
ℓ (x) =

1

2ℓ

ℓ∑
k=0

(
ℓ

k

)2

k(k − 1)(x− 1)ℓ−k(x+ 1)k−2 (B.14)

+
1

2ℓ

ℓ∑
k=0

(
ℓ

k

)2

k(ℓ− k)(x− 1)ℓ−k−1(x+ 1)k−1

+
1

2ℓ

ℓ∑
k=0

(
ℓ

k

)2

k(ℓ− k)(x− 1)ℓ−k−1(x+ 1)k−1

+
1

2ℓ

ℓ∑
k=0

(
ℓ

k

)2

(ℓ− k − 1)(ℓ− k)(x− 1)ℓ−k−2(x+ 1)k.

Keeping only those non-zero terms (k 6 2, say), simple algebra shows at x = −1,

P ′
ℓ(−1) = −1

2
(−1)ℓℓ(ℓ+ 1) and P ′′

ℓ (−1) =
1

8
(−1)ℓ(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2). (B.15)

After replacing ℓ by N − 1, this means that

f ′
1(−1) =

P ′′
N−1(−1)

P ′
N−1(−1)

− 1

2
= −1

4
(N − 1)N. (B.16)
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Furthermore, the same procedure applied to xN = +1 shows that

f ′
N(+1) =

1

4
(N − 1)N. (B.17)

Remember that at these two boundary points, the weight factor in Gauss-Lobatto quadra-

ture is

ω1,N =
2

(N − 1)N
. (B.18)

The results at the two boundary points xi = −1 and xi = +1 can be summarized as

f ′
i(xi) =

1

2ωi

[
δiN − δi1

]
. (B.19)

B.4 Conclusion

At this point, we recognized that the results we derived so far [both cases (i) and (ii)] can

be written in a single equation

f ′
i(xi) =

1

2ωi

[
δiN − δi1

]
, (B.20)

for any Lobatto mesh point xi from x1 to xN . This equation corresponds to Eqn. (17a) in

the paper of Manolopoulos and Wyatt [52]. The same equation was shown as the second

case of Eqn. (20) in Rescigno and McCurdy’s work [88]. Comparing their equations with

my equation, we see that Manolopoulos and Wyatt’s equation has a misprint. The order of

the two terms in that equation should be exchanged, i.e., a minus sign should be multiplied

to correct the equation.
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Appendix C

Numerical Convergence Test

We have tested our new FE-DVR code to assess the accuracy of our numerical results

relative to the numerical effort (in terms of computing time and random access memory)

and published data.

C.1 Convergence with Respect to l1 and l2

As a first test, we computed the ground and two first excited L = 0 state energies of helium.

Using the imaginary time propagation method [31], we replace the real time variable t in our

FE-DVR code by the imaginary time variable τ = it and numerically propagated Eqn. (2.43)

in imaginary time. The propagation starts with an initial two-electron trial wave function

for the helium ground state, given as the product of Gaussian functions,

ψ00
l1l2

(r1, r2; t = 0) = Ae−(r1−r0)2−(r2−r0)2 (C.1)

with the normalization constant A and r0 = 10. Since we have to normalize the wave

function every couple steps (e.g., every 10 steps we used), it doesn’t matter what the initial

value of the normalization constant A is, we could simply set it as 1 for the initial state.

To test our code, we represent the radial distances 0 ≤ r1 ≤ rmax
1 = 60 and 0 ≤ r2 ≤

rmax
2 = 60 on two different numerical grids. For each radial distance, “Grid 1” consists of 50

elements with 4 grid points in each FE. After taking the bridge DVR functions into account,

it results in a total 50× (4−1)−1 = 149 points for “Grid 1”. Similarly, “Grid 2” contains
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Table C.1: The energies of the 11S ground state and the two lowest L=0 excited states (21S
and 31S) of helium. The correlation matrix elements rl</r

l+1
> (cf. Appendix A) are computed

by either Gaussian-Lobatto integration (“Direct-integration method”) or by solving Pois-
son’s equation (“Poisson’s Eqn.”). The FE-DVR imaginary time propagation calculations
were performed for two different radial numerical grids covering 0 ≤ r1 ≤ rmax

1 = 60 a.u.
and 0 ≤ r2 ≤ rmax

2 = 60 a.u.: “Grid 1” uses 50 elements with 4 grid points in each element,
and “Grid 2” uses 20 elements with 10 grid points in each element. The last three rows
show theoretical [97, 119] and experimental [53] energies from literature. All the energies
are given in a.u.

Method/Source 11S 21S 31S
Direct integration (Grid 1) -2.889 6 -2.130 1 –
Direct integration (Grid 2) -2.901 7 -2.144 6 –
Poisson’s Eqn. (Grid 1) -2.903 363 5 -2.145 900 6 -2.061 272 0
Theoretical value [119] -2.903 669 0 -2.145 970 6 -2.061 271 0
Theoretical value [97] -2.903 724 4 -2.145 974 0 -2.061 272 0
Experimental value [53] -2.903 561 2 -2.145 898 6 -2.061 201 7

20 elements with 10 grid points in each FE, resulting in a total of 179 grid points for each

radial coordinate.

We repeatedly applied Eqn. (2.43), propagating the TDSE for 0.5 fs with equidistant

time steps for predetermined maximal values l1
max and l2

max of l1 and l2. We used the same

time step as Hu [33], ∆t = 0.0041. For 0 ≤ l1 ≤ lmax
1 = 3, 0 ≤ l2 ≤ lmax

2 = 3, and L = 0,

we found that the ground-state energy has converged with respect to the propagation time

and number of time steps to at least four significant decimal digits on either Grid 1 or Grid

2.

Our energies for the 11S ground state of He, computed by FE-DVR imaginary-time-

propagation for l1
max = l2

max = 3, including the four channels (L, l1, l2) = (0,0,0), (0,1,1),

(0,2,2), and (0,3,3)), agree to four significant digits with our result for l1
max = l2

max = 10,

including eleven L = 0 channels. Our calculated ground-state energies also coincide to four

significant digits with published experimental [53] and recently calculated theoretical [119]

energies (Tab. C.1).

Following the same imaginary time-propagation procedure, and projecting the converged
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ground state out of the trial wave function Eqn. (C.1) every 10 steps, we obtain the energies

of the first excited 21S state listed in third column of Tab. C.1. Similarly, repeatedly

projecting both, the converged ground and first excited states out of Eqn. (C.1) every 10 time

steps during the numerical wave-function propagation, we arrive at the second excited zero-

angular-momentum 31S state energy in the fourth column. We obtain our most accurate

values for the energies of the 21S state, -2.145 900 6 a.u., and the 31S state, -2.061 272 0

a.u., by applying the “Poisson’s equation method” [see Sec. (C.3)] [46, 58]. These first

and second excited L = 0 state energies are in good agreement with the theoretical values,

-2.145 970 6 a.u. and -2.061 271 0 a.u., calculated by Zhang et al. [119] using the same

FE-DVR method with parameters lmax
1 = lmax

2 = 7 a.u., rmax
1 = rmax

2 = 60 a.u. divided into

64 elements, and the measured energies, -2.145 898 6 and -2.061 201 7 a.u. [53], respectively.

The corresponding radial probability densities,

p(r1, r2) =
∑
Ll1l2

|ψL0
l1l2

(r1, r2)|2, (C.2)

are calculated on numerical Grid 1 by imaginary time propagation for the ground and first

excited state with L=0 and shown in Fig. 4.2. The ground-state probability density has a

maximum at r1 = r2 ≈ 0.9 a.u. The first excited state has maxima at r1 = r2 ≈ 0.5 a.u. and

r1 = r2 ≈ 4.5 a.u., and a node at r1 = r2 ≈ 1.7 a.u.

C.2 Convergence with Respect to the Numerical Grid

Size

We compared the ground-state and first excited-state energies for imaginary time propaga-

tion calculations with different numbers of FEs and different numbers of grid points in each

element. We performed these calculations with L = 0 and l1
max = l2

max = 3.

Table C.1 includes our results for the ground and first-excited-state energies of helium.

As listed in the first two rows, the calculation on Grid 1 results in the energies -2.889 6 a.u.

and -2.130 1 a.u., while using Grid 2 we obtain -2.901 7 a.u. and -2.144 6 a.u., respectively
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for the 11S and 21S states of helium. As expected, the numerical grid with more points (Grid

2) yield results in better agreement with the measured energies (the last row in Tab. C.1).

C.3 Comparison of the “Poisson Equation” and “Di-

rect Integration” Methods

We next compare results for the lowest helium energies obtained by either diagonalizing

the matrices representing the electronic correlation terms rl</r
l+1
> [r< ≡ min(r1, r2), and

r> ≡ max(r1, r2)] in Eqn. (2.41) via Gauss-Lobatto integration or by solving Poisson’s

equation [58]. Knowing that the “Poisson equation” method is better suited to overcome

numerical problems related to the singular 1/|r2 − r1| electronic correlation interaction, it

is nevertheless worth pointing out that our ground and excited states energies agree better

with the calculated energies of Zhang et al. [119] and the measured data by Martin [53]

for calculations with the smaller numerical grid (Grid 1) in combination with Poisson’s

equation than for calculations carried out on the larger grid (Grid 2) in conjunction with

a straight-forward Gauss-Lobatto integration. Using the Poisson equation method and the

smaller Grid 1 we find that the three lowest helium energies in Tab. C.1 are converged to

at least four significant digits and agree to at least three significant digits with published

experimental [53] and recently calculated theoretical [119] energies.

The ground-state energy (-2.903 67 a.u.) obtained by Zhang et al. [119] is in slightly bet-

ter agreement with the experimental value (-2.903 56 a.u.) than our best value in Tab. C.1

(-2.903 36 a.u.). This is to be expected in view of the numerically significantly more ex-

pensive FE-DVR calculation by Zhang et al. with parameters rmax
1 = rmax

2 = 60 a.u.,

lmax
1 = lmax

2 = 7, 64 FEs, and 8 grid points in each element. Our best numerical value

for the ground-state energy in Tab. C.1, agrees equally well with the result of a calculation

using an explicitly correlated basis, -2.903 72 a.u., by Scrinzi et al. [97].

The third and fourth column of Tab. C.1 compare the energies of first- and second-

excited L = 0 states from different sources. Our best values for the energies of the 21S state
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(dominated by the configurations 1s2s), -2.145 900 6 a.u., and 31S state (1s3s dominated),

-2.061 272 0 a.u., are in good agreement with the theoretical values, -2.145 970 6 and

-2.061 271 0 a.u., of Zhang et al. [119], -2.145 974 0 and -2.061 272 0 a.u. of Scrinzi et

al. [97], and the experimental values, -2.145 898 6 and -2.061 201 7 a.u., of Martin et

al. [53], respectively. Our results for the excited-state energies agree to five digits with the

measured energies, while we reproduce the measured ground-state energy to three digits.

We note that the experimental energies quoted in Table I also agree slightly better with

both, relativistic and non-relativistic calculations by Alexander et al. [2] for the excited

states than the ground state.

C.4 Convergence in the Number of Included Total An-

gular Momenta L

In this subsection, we discuss the convergence of joint angular distributions with regard to

the number of total angular momentum states ψLM
l1l2

included in Eqn. (2.40) for the IR-laser-

pulse-assisted XUV DI of helium. The central frequency, intensity, and pulse length for the

XUV and IR pulses are ~ωXUV = 89 eV , IXUV = 1014 W/cm2, τXUV = 0.47 fs (10 XUV

optical cycles) and ~ωIR = 1.61 eV , IIR = 3×1012 W/cm2, τIR = 2.6 fs (1 IR optical cycle),

respectively. We assume that the two linearly polarized pulses coincide (no time delay) and

equal energy sharing of the emitted electrons (E1 = E2). We performed these calculations

for a numerical grid, referred to as “Grid 3”, with 151 elements, 4 grid points in each FE,

the first FE length (near the origin) equal to 0.5, and rmax ≈ 277. Grid 3 is an extension

of “Grid 1” with additional 101 elements.

The graphs in Fig. C.1 shows JADs for IR-laser-assisted XUV DI obtained from separate

calculations for maximal angular momentum quantum numbers, (L, l1, l2)max ≡ (Lmax, l
max
1 ,

lmax
2 ) = (3, 3, 3), (4, 4, 4), (5, 5, 5) and (6, 6, 6), corresponding to 23, 42, 69 and 106 channels,

respectively. All the angular distributions are snapshots taken 20 a.u. after the end of the

cosine-squared-shaped IR laser pulse. The graphs in the top (bottom) row show angular
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Figure C.1: Normalized joint angular distributions for IR-laser-assisted XUV double ioniza-
tion of helium at equal energy sharing for maximal angular momentum quantum numbers
(a, e) (L, l1, l2)max ≡ (Lmax, l

max
1 , lmax

2 ) = (3, 3, 3), (b, f) (4, 4, 4), (c, g) (5, 5, 5), and (d,
h) (6, 6, 6). (a-d) Results for odd and (e-h) even photon numbers. The photon numbers
correspond to one absorbed XUV plus the number of absorbed minus emitted IR photons.

distributions for even (odd) total photon numbers. The total number of photons consists

of one absorbed XUV photon plus the number of absorbed minus emitted IR photons. All

JADs discussed in this section (Appendix C) are normalized to their maximal yields and

color (gray-scale)-coded on a linear scale.

With increasing Lmax the JADs show more structures in Fig. C.1. In addition, though it

is not directly observable, the low probability for side-by-side emission turns to be negligible.

While the intensity distributions for Lmax = 4, 5, and 6 show small discrepancies, their main

structures are the same, and the JADs appear to have converged at Lmax = 5 with regard to

their main characteristics. For this reason we use (L, l1, l2)max = (5, 5, 5) corresponding to

69 partial wave channels for all subsequent numerical results discussed in the work, unless

specified otherwise.
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Figure C.2: Normalized joint angular distributions for IR-laser-assisted XUV-double ion-
ization of helium at equal energy sharing for the different propagation times τmax past the
end of the IR pulse. (a) τmax = 4 a.u.; (b) τmax = 24 a.u.; (c) τmax = 104 a.u.. (d) Normal-
ized double-ionization yields at θ1 + θ2 = 360◦. As the propagation time is increased, the
side-by-side-emission yield at θ1 = θ2 = 180◦ disappears as physically expected.

C.5 Convergence in the Propagation Time

Figure C.2 shows JADs for laser-assisted XUV DI of helium for the equal energy sharing

of the emitted electrons. The calculations are performed on Grid 3, using the Poisson-

equation method for the 1/r1,2 interaction matrix elements and the angular-momentum

limits (L, l1, l2)max = (3, 3, 3). The three graphs display snapshots of JADs calculated

according to Eqn. (2.77) and taken at different propagation times τmax past the end of IR

pulse.

The JAD for τmax = 4 a.u. in Fig. C.2(a) differs from the JAD for τmax = 24 a.u. in

Fig. C.2(b), mainly with regard to the smaller not observable contribution of side-by-side

emission. This contribution is physically prohibited at large distances from the residual

helium nucleus due to electronic repulsion. For τmax = 104 a.u. the JAD is converged

and it is indistinguishable from Fig. C.2(b), except for side-by-side emission, and no longer

displays side-by-side emission [Fig. C.2(c)]. Indicative for the not observable contribution

of side-by-side emission for finite τmax is the absolute value of the JAD at θ1 = θ2 = 180◦.

These absolute values are not shown on the normalized graphs. They decrease from 0.059

to 0.029 to 0.01 for τmax=4, 24 and 104 a.u. in Figs. C.2(a), (b), and (c), respectively. We

performed a similar convergence test for even photon numbers (not shown) and found much
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faster convergence in τmax than for odd photon numbers.

We display in Fig. C.2(d) the normalized angular yields obtained from the JADs in

Fig. C.2(a-c) on the diagonal defined by θ2 = 360◦− θ1. This graph thus highlights the four

dominant peaks in Fig. C.2(a-c) and side-by-side emission with θ1 = θ2 = 0 or 180◦, where

convergence in τmax is most difficult to achieve.

For an alternative quantitative comparison of the convergence in τmax, we also calculated

relative integrated side-by-side yields obtained by integrating the JADs in Fig. C.2(a-c) over

a narrow diagonal stripe defined by θ2 = θ1. The width of this stripe is taken as 10◦, i.e.,

|θ1 − θ2| ≤ 5◦, centered at θ1 = θ2, 5
◦ for each side. The relative integrated side-by-side

yield drops from 0.24% at τmax = 4 to 0.13% at τmax = 24 a.u., and to 0.05% at τmax =

104 a.u., while the amplitudes of side-by-side-emission-peak heights decrease from 0.06 to

0.03, and finally to 0.01, respectively. Thus, as physically demanded, side-by-side emission

disappears for sufficiently long propagation time, while for relative emission angles of the

two photoelectrons outside the side-by-side range converged JADs are readily obtained at

the end of the IR pulse. In particular, the nodal structure in Fig. C.2 for non-side-by-side

emission is not affected by increasing τmax, as expected from the selection rules discussed

by Maulbetsch and Briggs [56].

Currently, for each result in Fig. C.1 and Fig. C.2, we allocated 20 Gb RAM memory,

and ran the jobs via OpenMP on 10 Intel Core i7-2600 3.40GHz central processing units

(CPUs), about 200 hours on each CPU. The RAM memory requirement is of order of

3× 16× n2
Ch × n2

size/1024
3 Gb, where 3 is number of the biggest matrix we used plus 1 (to

include the many smaller matrix), 16 stands for the double complex variables we used, and

nsize is the grid size in each dimension (r1 and r2). Currently, we adopt a 300×300 box (100

finite elements in each dimension), and 69 channels. To improve the results, for example,

we take a configuration (L, l1, l2)max = (10, 10, 10). In this case, we have about 400

channels. This requires about 650 Gb RAM memory which well exceeds our local capability

(32 Gb) now. For a 10 times longer pulse and longer propagation times, we have to extend
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the box size, about 10 times in each dimension, which will also largely increase the memory

requirement (from 20 Gb to 63 Tb). These increases will result in the CPU time requirement

increasing about 3×104 times, from 2×103 to 6×107 CPU hours. If we use 100 nodes with

24 CPUs each, it would require 3 calendar years to finish one computing job. We started

to investigate a graphics processing unit (GPU) based application [36], which might greatly

reduce the computing time.
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Appendix D

Copyright Clearance

In this thesis, we have cited and adapted some figures from the literature. To reuse these

figures, we have to obtain the permission from American Physical Society. This has been

done through Copyright Clearance Center on its website www.copyright.com.

D.1 Copyright Clearance for Fig. 4.3, 4.12, 4.13 and

Fig. 4.14
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D.2 Copyright Clearance for Fig. 4.6
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D.3 Copyright Clearance for Fig. 4.11
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Appendix E

Sources and Data Files Descriptions

In this appendix, we list and describe all F90 source codes and input/output files for

(i) Our FE-DVR implementation for the solving TDSE by the Arnoldi-Lanczos propa-

gator based on Krylov subspace projection techniques;

(ii) Data analysis by projection on products of Coulomb continuum wave functions;

(iii) Input and output files used in (i) and (ii).

All codes are written in F90. Numerical packages, such as LAPACK, ARPACK and

BLAS, are employed in matrix algebra operations.

E.1 How to Use this Software

The operation routine is:

• (1) Compile executable file he2color_fedvr.

• (2) Compile configcalc.f90 and run configcalc.x to obtain the angular-momentum

configuration in selected partial-wave file.

• (3) Modify parameter.inp to configure FE-DVR settings.

• (4) Modify tdse.inp to configure the parameter-setting for the TDSE solution, includ-

ing laser field, XUV pulse, read-in files (configuration file and initial wave-function file)
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and their locations, Lanczos order and tolerance, wave-function absorption parameter,

propagation time and step.

• (5) Modify the script file run.uni to configure parallelization. Then run run.uni.

• (6) Copy the data files to the directory analysis.

• (7) Run the executable files or.x / er.x / ar.x to analyze data.

• (8) Compile and run theta12.f90, sbsrate.f90. JAD file (fort.700) obtained from

step (7) is required.

E.2 Source Codes and Files

Table E.1: This table lists and describes makefile, main program and subroutines.

file name function description
Makefile Compiles source files and makes executable file.

helium_fedvr.f90 The main program. It is the entry of whole program.
accuracy_real.f90 Defines the accuracy of real numbers.

globalmod_constants.f90 Defines the globally-used constants.
globalmod_discrete.f90 Defines the globally-used variables for DVR.

readin.f90 Reads in the FE-DVR parameters.
hamiltonian_matrix.f90 Calculates the 1-d Hamiltonian matrix.

lagrange_dvr_derivative.f90 Calculates the first derivative of DVR basis functions.
Finds Lagrange interpolation polynomials as a function
of x and their first and second derivatives on an
arbitrary grid y.

lgngr.f90

gaussq.f90 Generates the Gaussian quadratures.
Includes all subroutines used for computing the
operation w = exp(t ∗ A) ∗ v based on Krylov
subspace projection techniques. A is a complex
matrix; w and v are vectors.

expokit.f90

mataid.f90 Includes all subroutines used for the matrix-vector
multiplication routines.

localincludes.f90 Defines most of variables in the TDSE. Includes one
parallelized subroutine for computing w = exp(t*A)*v.

laser.f90 Defines and computes the laser field.
configcalc.f90 Selects the partial waves to be used in the TDSE.
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Table E.2: This table lists and describes the files for data analysis. The .x files are executable
files obtained from compiling the source files in the same row.

file name function description
TDCS.f90, ar.x Computes TDCSs, total cross sections, JEDs, and JADs.
eTDCS.f90, er.x Computes JADs with even parity.
oTDCS.f90, or.x Computes JADs with odd parity.

ylm.f90 Computes spherical harmonics Y m
l (θ, ϕ).

anglib.f90 Subroutines for ylm.f90.
gamma.f90 Computes the Gamma function Γ(x).
theta12.f90 Computes mutual angular distributions.
sbsrate.f90 Computes rate of side-by-side emission.

Table E.3: This table lists and describes the input files.

file name function description
parameter.inp Parameters for FE-DVR setting.

tdse.inp Parameters for TDSE setting.
initnxm Saves initial-state wave function.
run.uni Launches the executable program (e.g., he2color_fedvr).

Table E.4: This table lists and describes the output files.

file name function description
fort.500 Original configuration (Computed through configcalc.x).
fort.509 Electric field data.
fort.526 Saves the grids and weights data.
fort.600 JED, saves in the form for gnuplot 3-D plotting.
fort.604 JED, saves in complex format.
fort.620 Distribution versus energy sharing.
fort.700 JAD [θ1,θ2,P(θ1,θ2)]
fort.748 Symmetrical-emission data on JAD.
fort.800 Products of Coulomb Waves.
fort.806 SDCS (E1,SDCS).
fort.810 TDCS (θ, ϕ,TDCS)
fort.850 Coulomb wave functions
fort.999 Error information.
fort.1000 Initial-state wave function.

fort.1001-fort.9999 Wave-function snapshots.
running Records program execution history.
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Figure E.1: A sample code of the file helium fedvr.f90. The developing history of code is
shown in comment lines.

E.3 Examples of Input Files

We here show examples for the input files parameter.inp and tdse.inp.
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E.3.1 Example of “parameter.inp”

&HYDROGEN cnuclear =2, lang = 0, lmax=28 &END

&FEDVRDIS no gp = 4, no fe = 200, bound start = 0.0, bound end = 0.50, bslope = 0.0

&END

Description

The input file parameter.inp includes parameters for the one-electron FE-DVR scheme. In

the first line, the list HYDROGEN includes three parameters. cnuclear is the nuclear

charge of target, it is 1 for hydrogen or hydrogen-like targets, and 2 for helium atoms or

TAE targets. lang and lmax are the minimal and maximum values of angular momenta. In

TAE calculations, they will be reset by the configuration file.

In the second line, the list FEDVRDIS includes 5 parameters for FE-DVRmethod. no gp

is the number of grid points in one finite element, no fe is number of finite elements in one

radial coordinate. bound start and bound end are the start and end of first finite element.

bslope is the slope of the FE-size increment. Set it to non-zero value for non-uniform FEs

mapping.

E.3.2 Example of “tdse.inp”

1. 1. nL(# of config.), configuration file name

2. 23 ∼/lib/l1l2Llist333.txt

3. 2. L0(max L1/L2 in init file), initial state filename,

4. 3 init4x50

5. 3. Lanczos order, tol

6. 20 .1D-19

7. 4. dt, start time, end time

8. 0.005d0 0.d0 100.d0

9. 5.(P1)IR energy(eV), # of IR cycles, intensity(E∧2), CEPIR(deg), delayIR(as)
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10. 42.d0 10 .5d15 0.d0 0.d0

11.6.(P2)XUV energy(eV), # of XUV cycles, intensity(E∧2), CEPXUV(deg), delayXU-

V(as)

12. 42.d0 10 0.d12 0.d0 0.d0

13.7. absorb boundary (0:all,1:none, mostly 0.9)

14. 0.95d0

15.8. snapshot step, restart (1 Yes, else No), restart file #

16. 2000 0 1

17.9. static field

18. 0.d0

19.10. photon energy start (a.u.), photon energy end, photon energy step

20. 0.2 1.1 0.02

21.11. delay start (IR o.c.), delay end, delay step

22. -2.0 2.0 0.05

Description

• Lines 1-2: There are two parameters. The first one is the total number of partial waves

employedE. It is shown in first line of the configuration file (e.g., l1l2Llist333.txt). The

second parameter is the directory of the angular-momentum configuration file.

• Lines 3-4: Parameters for the initial state. L0 = 3 for (L, l1, l2)max = (3, 3, 3)

configuration. The first four digits of line 4 are reserved for L0. The initial wave function

is stored in the data file init4x50, which means that it has 4 grid points (n = 4) and 50

FEs (m = 50).

• Lines 5-6: Parameters for the wave-function propagating: Lanczos order and tolerance

for each time step propagation.

• Lines 7-8: Time step, start time and end time for the propagationin atomic units.

Remember to change the “start time” if you want to restart a calculation.

• Lines 9-10: The parameters for pulse 1 (laser field) with sin-squared profile. They
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include photon energy (in eV unit), pulse duration (in unit of optical cycles), intensity (in

unit of W/cm2), CEP phase (in unit of degree) and delay (in unit of as). The delay is the

start point of sin-squared pulse; it is usually zero, but can be shifted.

• Lines 11-12: The parameters for pulse 2 (XUV pulse) with sin-squared profile. They

include photon energy (in eV unit), pulse duration (in unit of optical cycles), intensity (in

unit of W/cm2), CEP phase (in unit of degree) and delay (in unit of as). The delay is

relative to the center of pulse 1.

If you want to perform a laser-free calculation, which has only one XUV pulse, the pulse

1 can serve as XUV pulse. Then set the intensity of pulse 2 as 0, as shown in the example

above.

• Lines 13-14: To set up the absorption boundary. 0.95 means the wave function on the

first 95% of grid points from 0 will not be absorbed, the absorber is applied to the outer 5%

of grids.

• Lines 15-16: Snapshot and restart setting. To avoid data loss, we recommend to save

intermediate data for the restart calculations. We save wave-function data every 2000×0.005

a.u. = 10 a.u. The restart parameter is set to 0 or 1 only. 1 means this is restarting

calculation, and set the restarting file through “restart file #”. This “restart file #” must

be consistent with the “start time” in lines 7-8.

• Lines 17-18: To set the parameter of the static field, if there is a static electric field

presented.

• Lines 19-22: These four lines apply to ac-Stark shift and XUV transient-absorption

calculations. They are disabled in most calculations. Uncomment the loops (lines 490/1042

and lines 491/1040. ) in helium_fedvr.f90 to enable them. Lines 17-18 set up the photon

energy scale and step in atomic units; lines 19-20 set up the time delay setting in units of

the IR laser optical cycles.

All source codes and sample input files are available upon request to collaborators and

funding agencies.
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