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Abstract 

The term ‘protein-protein interaction (PPI)’ refers to the study of associations between 

proteins as manifested through biochemical processes such as formation of structures, signal 

transduction, transport, and phosphorylation. PPI play an important role in the study of biological 

processes. Many PPI have been discovered over the years and several databases have been 

created to store the information about these interactions. von Mering (2002) states that about 

80,000 interactions between yeast proteins are currently available from various high-throughput 

interaction detection methods. Determining PPI using high-throughput methods is not only 

expensive and time-consuming, but also generates a high number of false positives and false 

negatives. Therefore, there is a need for computational approaches that can help in the process of 

identifying real protein interactions.  

Several methods have been designed to address the task of predicting protein-protein 

interactions using machine learning. Most of them use features extracted from protein sequences 

(e.g., amino acids composition) or associated with protein sequences directly (e.g., GO 

annotation). Others use relational and structural features extracted from the PPI network, along 

with the features related to the protein sequence. When using the PPI network to design features, 

several node and topological features can be extracted directly from the associated graph.  

In this thesis, important graph features of a protein interaction network that help in 

predicting protein interactions are identified. Two previously published datasets are used in this 

study. A third dataset has been created by combining three PPI databases. Several classifiers are 

applied on the graph attributes extracted from protein interaction networks of these three 

datasets. A detailed study has been performed in this present work to determine if graph 

attributes extracted from a protein interaction network are more predictive than biological 

features of protein interactions. The results indicate that the performance criteria (such as 

Sensitivity, Specificity and AUC score) improve when graph features are combined with 

biological features. 
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CHAPTER 1 - Introduction 

1.1 Protein-protein interactions 

Proteins are groups of amino acids linked together by peptide bonds. They play a vital 

role in organisms and participate in many processes within cells. Proteins generally have at least 

one biological function. Protein-protein interactions (PPI) are the associations between proteins. 

Protein interactions are important in many biological processes. In my thesis, I investigate the 

protein interactions in Saccharomyces cerevisiae for two reasons. First, Saccharomyces 

cerevisiae has been firmly established as the most investigated eukaryotic organism (Mewes et 

al., 2002). Second, Saccharomyces cerevisiae is a model system relevant to human biology 

(Gavin et al., 2002).  

There are several biological techniques to detect protein interactions in the yeast 

organism. Qi (2008) states that there are several in vivo methods and in vitro methods for 

identifying PPI. in vivo refers to a reaction that takes place inside an organism, while in vitro 

means performing a given experiment in a controlled environment outside of a living organism. 

Some experiments can identify interactions on a small scale, while others detect interactions on a 

large scale (also known as high-throughput methods of detecting protein-protein interactions). 

There are many experiments that provide physical interactions among proteins (at either binary 

or complex level) while few experiments provide functional associations among proteins. A few 

high-throughput methods that identify physical protein-protein interactions are listed below: 

1.1.1 Mass spectrometry based analysis of protein complexes 

Gavin et al. (2002) and Ho et al. (2002) develop a technique to identify protein 

interactions in Saccharomyces cerevisiae on a large scale. Qi (2008) states that this method 

involves the following steps:  

1. A tag is attached to a target protein in order to capture bait proteins.  

2. Bait proteins are systematically precipitated. 

3. Purified protein complexes are separated according to mass.  

4. Proteins are detected by mass spectrometry techniques.  

5. Database-search algorithms are used to identify proteins. 
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1.1.2 Protein microarrays  

MacBeath & Schreiber (2000) developed this technique to detect protein-protein 

interactions on a large scale. They state that this technique consists of three steps: 

1. A high-precision contact-printing robot is used to deliver nanoliter volumes of protein 

samples to glass microscopic slides.  

2. The proteins are immobilized because they are covalently attached to the slides but they 

still retain their functional properties on the slides.  

3. The slides are probed with other proteins and the interactions are then identified.  

1.1.3 Yeast two hybrid (Y2H) 

Originally developed by Fields & Song (1989), this technique is one of the most widely 

used techniques for identifying protein-protein interactions. According to Shoemaker & 

Panchenko (2007), the Y2H method is based on the fact that many eukaryotic transcription 

activators have at least two distinct domains: one that directs binding to a promoter DNA 

sequence (BD) and another that activates transcription (AD). There are two Y2H approaches as 

described by Shoemaker & Panchenko (2007): 

1. In the matrix approach, a matrix of prey clones is created where each clone expresses a 

particular prey protein in one well of a plate. Each bait strain is then mated with an array 

of prey strains. The diploids where two chimeric proteins interact are selected based on 

the expression of a reporter gene and the position on the plate. 

2. In the library approach, each bait is screened against either an undefined prey library 

containing random cDNA fragments or open reading frames (ORFs). Diploid positives 

are selected based on their ability to grow on specific substrates. The interacting proteins 

are determined by DNA sequencing.  

1.2 Protein interaction databases 

1.2.1 The Biomolecular Interaction Network Database (BIND) 

BIND (Bader et al., 2003) stores information about interactions, complexes and 

pathways. It also contains a number of large scale interaction and complex mapping experiments 

using yeast two hybrid, mass spectrometry, genetic interactions and phage display. The group 

that maintains BIND has also developed a graphical analysis tool that provides users an 
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understanding of functional domains in protein interactions. They have also developed a 

clustering tool that allows users to divide the protein interaction network into specific regions of 

interest. BIND assumes that interactions can occur between two biological ‘objects’, which could 

be protein, RNA, DNA, molecular complex, small molecule, photon (light) or gene.  

1.2.2 The Database of Interacting Proteins (DIP) 

DIP (Salwinski et al., 2004) is a database containing 18,343 interactions between 4,923 

proteins validated from 23,366 experiments of the Saccharomyces cerevisiae organism. A few of 

the experiments from which they validate protein interactions are co-immunoprecipitation, yeast 

two-hybrid and in vitro binding assays. The group that maintains DIP has developed several 

quality assessment methods and uses them to identify the most reliable subset of the interactions 

that are inferred from high-throughput experiments. They also provide an online implementation 

of their evaluation methods that can be used to evaluate the reliability of new experimental and 

predicted interactions.  

1.2.3 IntAct 

IntAct (Kerrien et al., 2007) contains data such as experimental methods, conditions and 

interacting domains that is extracted entirely from publications and is manually annotated by 

curators. It also formalizes the data by using a comprehensive set of controlled vocabularies in 

order to ensure data integrity. It is probably the only database that contains negative examples of 

protein interactions, i.e. they identify that two proteins do not interact. The database contains 

169,792 interactions between 63,427 proteins. These interactions were obtained from 8,477 

experiments that were performed on several organisms. The web site provides tools allowing 

users to search, visualize and download data from the repository. 

1.2.4 A Molecular INTeraction database (MINT) 

MINT (Chatr-aryamontri et al., 2007) stores molecular interaction data extracted from 

several publications. Most of its curation work is focused on physical interactions, direct 

interactions and colocalizations between proteins. Genetic or computationally inferred 

interactions are not included in the database. It contains 42,044 interactions between 5,256 

proteins of the Saccharomyces cerevisiae organism. An online graph visualization and editing 
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tool called "MINT Viewer" is available that allows users to view the interaction network and 

delete edges that are not of interest to the user.  

1.2.5 The Munich Information Center for Protein Sequences (MIPS) 

MIPS (Mewes et al., 2002) provides information on Open Reading Frames (ORFs), RNA 

genes and other genetic elements. The research group that maintains MIPS has also applied 

techniques such as gene disruption in conjunction with powerful expression analysis and two-

hybrid techniques as part of a systematic functional genome analysis. These methods generate 

information on how proteins cooperate in complexes, pathways and cellular networks. In 

addition, detailed information on transcription factors and their binding sites, transport proteins 

and metabolic pathways are being included or interlinked to the core data. The database also 

provides information on the molecular structure and the functional network of the yeast genome. 

1.3 Introduction to Machine Learning 

Machine learning algorithms (Mitchell, 1997) offer some of the most cost-effective 

approaches to automated knowledge discovery and data mining (discovery of features, 

correlations, and other complex relationships and hypotheses that describe potentially interesting 

regularities) from large data sets. In particular, machine learning algorithms have proven to be 

very successful for many bioinformatics problems, including protein-protein interaction 

prediction. The field of machine learning has developed terminology that is somewhat different 

from typical biological use.  Here are some useful terms and definitions (Mitchell, 1997).  A 

machine learning system is specified by the following components:  

• A learner: An algorithm that can use experience to improve performance of some task.  In 

our context, this is an algorithm that can predict if two given proteins interact or not. 

• A task: In our case, the task is to predict protein interactions when provided with 

information about the PPI network.   

• An experience source: For the PPI task, the source is a collection of the PPI databases 

that contain information about the protein interaction network. 

• Background knowledge: It is the information the learner has about the task before the 

learning process.  In our case, it is the list of known protein interactions that have been 

detected through high-throughput methods.  
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• Performance criteria: measures of the quality of the learning output in terms of accuracy, 

precision, efficiency, etc.  In protein interaction prediction problem, performance is often 

measured in terms of the following criteria, where different importance may be placed on 

optimizing each probability: 

• sensitivity (Altman & Bland, 1994) : the probability of correctly predicting that a 

protein pair interacts, 

• specificity (Altman & Bland, 1994): the probability of correctly determining that 

there is no interaction between a protein pair, 

• Receiver Operating Characteristic (ROC) curve (Fawcett, 2004): a plot of the true 

positive rate versus the false positive rate, and 

• The area under the ROC curve (AUC) score. 

In the problem of protein interaction prediction, we will focus on machine learning 

systems for classification tasks. These are tasks where the learner is provided with experience in 

the form of labeled examples (a.k.a., training data set or data source) and is asked to classify new 

unlabeled examples in one of several possible classes. In our case, the training examples are 

information about protein interactions. The variables used to encode an example are called 

attributes or features. The class label of an example is a special attribute representing the class to 

which that particular example belongs. The class label in protein interaction prediction problem 

is whether a protein pair interacts or not.   The output of a learning algorithm is often termed a 

classifier, when the task considered is a classification task.  Several strategies can be used to 

estimate the true error of a classifier. The simplest one is to divide the labeled data into a training 

set and a test set (a.k.a., validation set). The classifier is learned from the training set and its error 

is estimated using the test set. More commonly, the error is estimated by using a method called 

cross-validation. To use this method, the labeled data is divided into k folds. A classifier is 

learned from a training set consisting of (k-1) folds and tested on the remaining k
th
 fold. The 

estimate for the true error is obtained by taking the average of the error of the k possible 

classifiers learned by leaving out one fold at a time.  

1.3.1 Decision tree 

Decision tree algorithms (Quinlan, 1986; Breiman et al., 1984) are among some of the 

most widely used machine learning algorithms for building pattern classifiers from data. Their 
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popularity is due in part to their ability to: select from all attributes used to describe the data, a 

subset of attributes that are relevant for classification; identify complex predictive relations 

among attributes; and produce classifiers that are easy to comprehend for humans. The ID3 

(Iterative Dichotomizer 3) algorithm proposed by Quinlan (1986) and its more recent variants 

such as C4.5 (Quinlan, 1993) represents a widely used family of decision tree learning 

algorithms. The ID3 algorithm searches in a greedy fashion, for attributes that yield the 

maximum amount of information for determining the class membership of instances in a training 

set D of labeled instances. The result is a decision tree that correctly assigns each instance in D 

to its respective class. The construction of the decision tree is accomplished by recursively 

partitioning D into subsets based on values of the chosen attribute until each resulting subset has 

instances that belong to exactly one of the m classes. The selection of an attribute at each stage 

of construction of the decision tree maximizes the estimated expected information gained from 

knowing the value of the attribute in question. C4.5 (Quinlan, 1993) is the most popular variant 

of the ID3 algorithm that has been implemented as the J48 classifier in WEKA (Waikato 

Environment for Knowledge Analysis - Witten, 2005), a popular machine learning toolkit. Some 

of the improvements that C4.5 has made over ID3 algorithm are: dealing with missing data, 

pruning the tree after creation and dealing with attributes of different costs.  

1.3.2 Random Forest 

Random Forest (Breiman, 2001) is known to produce highly accurate results in many 

problems. The algorithm involves the construction of multiple trees from the data and the trees 

vote for the class. Random Forest then chooses the class with the maximum number of votes. 

The method of constructing each tree is described by (Breiman, 2001) in the following steps:  

1. If there are N examples in the training set, the tree will be built by sampling N examples 

at random with replacement,  

2. If there are M input variables, a small subset of these examples m is chosen at each node 

to find the best split of the data at that node, and  

3. There is no pruning of the trees that are constructed at each stage. 
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1.3.3 Naïve Bayes 

Naïve Bayes is a highly practical learning algorithm (Mitchell, 1997), comparable to 

more powerful algorithms such as decision trees or neural networks in terms of performance in 

some domains. In the Naïve Bayes framework, each example x is described by a conjunction of 

attribute values, i.e. x =< a1,• • •, an >. The class label of an example can take any value from a 

finite set C = {c1,• • •,cm}. We assume that the attribute values are conditionally independent 

given the class label. A training set of labeled examples, D = {< x1 , y1 >, • • • , < xt , yt >}, is 

presented to the algorithm. During the learning phase, a hypothesis h is learned from the training 

set. During the evaluation phase, the learner predicts the classification of new instances x as 

follows       

)|()(maxarg)(
1

ji

n

i

j
Cc

NB caPcPxc
j

∏
=∈

=  

1.3.4 Support Vector Machine 

The Support Vector Machine (SVM) algorithm (Vapnik, 1998; Cortes & Vapnik, 1995; 

Scholkopf et al., 1997; Cristianini & Shawe-Taylor, 2000) is a binary classification algorithm. If 

the data are linearly separable, it outputs a separating hyperplane, which maximizes the “margin” 

between classes. If data are not linearly separable, the algorithm works by implicitly mapping the 

data to a higher dimensional space, where the data become separable. A maximum margin 

separating hyperplane is found in this space. This hyperplane in the high dimensional space 

corresponds to a nonlinear surface in the original space. SVM classifiers are sometimes called 

“large margin classifiers” because they find a maximum margin separation. Large margin 

classifiers are very popular due to theoretical results that show that a large margin ensures a 

small generalization error bound (Vapnik, 1998) and also because they proved to be very 

effective in practice.   

1.3.5 K-Nearest Neighbors 

The K-Nearest Neighbors classifier (Cover & Hart, 1967; Mitchell, 1997) is a simple 

example of instance-based learning, also known as lazy learning. In the K-Nearest Neighbors 

algorithm, the nearest neighbors are defined in terms of a metric (a.k.a. distance) D between 
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instances. The class label for a new instance x is given by the most common class label among 

the k training examples nearest to x (according to the distance D). 

1.3.6 Bagging 

Bootstrap aggregating (Bagging) (Breiman, 1996) is an algorithm that helps improve the 

accuracy of a classifier. Bagging works by sampling examples from the training dataset D with 

replacement to create subsets of training data, which are called bootstrap samples. A classifier is 

applied to the different subsets and the output of these bootstrap samples is either averaged or 

they are allowed to vote for the class. Bagging is known to avoid overfitting and reduce variance 

in learning algorithms.  

1.3.7 REPTree 

REPTree is an implementation in WEKA (Witten & Frank, 2005) that builds a decision 

tree using information gain/variance reduction as the splitting criterion. It prunes the tree using 

reduced-error pruning (with backfitting). Missing values are dealt with by using fractional 

instances as in C4.5.  

1.4 Motivation 

Many PPI have been discovered over the years and several databases have been created to 

store the information about these interactions such as BIND (Bader et al., 2003), DIP (Salwinski 

et al., 2004), MIPS (Mewes et al., 2002), IntAct (Kerrien et al., 2007) and MINT (Chatr-

aryamontri et al., 2007). von Mering et al. (2002) states that about 80,000 interactions between 

yeast proteins are currently available from various high-throughput interaction detection 

methods. These methods detect if the interaction is either a physical binding between proteins or 

a functional association between proteins. The functional association between two proteins often 

leads to physical binding among them. Determining PPI using high-throughput methods is not 

only expensive and time consuming, but also generates a high number of false positives and false 

negatives. Therefore, there is a need for computational approaches that can help in the process of 

identifying real protein interactions.  

Several methods have been designed to address the task of predicting protein-protein 

interactions using machine learning. Most of them use features extracted from protein sequences 

(e.g., amino acids composition) or associated with protein sequences directly (e.g., GO 
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annotation). Others use relational and structural features extracted from the PPI network, along 

with the features related to the protein sequence. When using the PPI network to design features, 

several node and topological features can be extracted directly from the associated graph. This 

thesis provides an overview of predicting PPI using the graph information extracted from a PPI 

network along with other available biological features of the proteins and their interactions.  

CHAPTER 2 - Background and significance   

Several graph-based approaches have been used to address the problem of predicting PPI. 

These approaches represent the PPI network as a graph and extract relational and structural 

features from it. These features are provided to machine learning algorithms, few of which were 

described in the previous section. The training dataset that contains protein pairs along with 

graph-based features are provided to classifiers. The testing dataset that contains protein pairs 

that are not present in the training dataset, are presented to the learning model generated by the 

classification algorithms. Statistical measures such as accuracy, sensitivity, specificity and AUC 

score are obtained from the learning algorithms. Several previous approaches to protein 

interaction prediction using graph-based features are detailed below.  

2.1 Qi, Bar-Joseph & Klein-Seetharaman 

Qi et al. (2006) divide the protein interaction prediction task into three sub-tasks: (1) 

prediction of physical (or actual) interaction among proteins, (2) prediction of proteins belonging 

to the same complex and (3) prediction of proteins belonging to the same pathway. They use 

different data sources for different subtasks: data from the MIPS (Mewes et al., 2002) database 

for the first subtask, data from the DIP (Salwinski et al., 2004) database for the second subtask 

and data from the KEGG (Kanehisa et al., 2000) database for the third subtask. They assemble 

162 features and vary their encoding to understand their effects on the protein interaction 

prediction subtasks. The categories that they divide their 162 features are: 

• Gene expression: It contains 20 features (Pearson’s correlation coefficient) calculated on 

20 gene expression datasets that were recorded under more than 500 conditions (Bar-

Joseph et al., 2003). 
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• Gene Ontology (Molecular Function, Biological Process & Cellular Component): These 

3 categories contain information of how many times a pair of protein occurs in the trees 

(Christie et al., 2004). 

• Protein Expression: It is the difference of the expression levels of the pair of proteins 

(Ghaemmaghami et al., 2003). 

• Essentiality: An essential gene cannot be made into a haploid or homozygous deletion 

strain. This feature contains the essentiality of the pair of proteins. 

• High-throughput PPI datasets (HMS_PCI, TAP & Y2H): These 3 categories contain 

information extracted from several high-throughput protein interaction methods (Bader et 

al., 2003; Gavin et al., 2002; Ho et al., 2002; Ito et al., 2001; Uetz et al., 2000). 

• Synthetic Lethal: This feature was extracted by the union of Tong et al. (2001) and MIPS 

(Mewes et al., 2002). 

• Gene neighborhood / Gene Fusion / Gene Co-occur: This feature is the union of the three 

datasets described by von Mering et al. (2002). 

• Sequence Similarity: It contains BLAST hit information of the query protein on SGD 

database (Christie et al., 2004). 

• Homology based PPI: This feature uses Sequence Similarity information to identify 

homology pairs. These pairs are then “BLAST”ed against NCBI non-redundant protein 

database and the count of their interactions was extracted. 

• Domain-Domain Interaction: Deng et al. (2002) identify domain interactions based on 

sequence analysis. The value of this feature is the probability of interaction of a candidate 

protein pair. 

• Protein-DNA TF group binding: Qi et al. (2006) group the TFs based on the MIPS 

protein class catalog into 16 TF groups. For each TF group, they counted the number TFs 

that bind to both genes, and used this number as one of their attributes.  

• MIPS features (Protein Class and Mutant Phenotype): These 2 categories contain features 

that identify if the protein pair belongs to the same protein class and mutant phenotype. 

They apply several feature classifiers such as Random Forest (RF), RF similarity-based 

k-Nearest-Neighbor, Naive Bayes, Decision Tree, Logistic Regression, and Support Vector 

Machine (SVM) on their data and obtain reasonably good AUC scores. Their results show that 
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RandomForest is the one of the top two classifiers for all tasks; the other one is RandomForest 

similarity-based k-Nearest-Neighbor. They also observe that gene coexpression and few features 

extracted from the Gene Ontology were the best features for all three subtasks of the protein 

interaction prediction task. 

2.2. Licamele & Getoor 

Licamele & Getoor (2006) combine the link structure of the PPI graph with the 

information about proteins in order to predict the interactions in a yeast dataset. More 

specifically, they look at the shared neighborhood among proteins and calculate the clustering 

coefficient among the neighborhoods for the first-order and second-order protein relations. They 

also consider the Gene Ontology distance between proteins. However, they do not make a 

distinction between direct (physical interaction) and indirect (proteins belonging to the same 

complex) interactions in their study. They combine data from multiple data sources such as 

MIPS (Mewes et al., 1999), BIND (Bader et al., 2001), DIP (Xenarios et al., 2002), yeast two-

hybrid (Ito et al., 2001; Uetz et al., 2000) and In vivo pull-down (Gavin et al., 2002; Ho et al., 

2002). They apply several classifiers such as Naive Bayes, kNN, Logistic Regression, C4.5, 

SVM, JRIP and Bagging with REPTrees on their data and obtain a reasonably good accuracy and 

AUC score when predicting new links from noisy high throughput data. 

2.3 Paradesi, Caragea & Hsu 

The above-mentioned approaches use relational data of the PPI network along with other 

biologically relevant information (such as, sequence, gene expression data, GO terms, etc.) to 

predict the protein interactions. Paradesi et al. (2007) address the problem of predicting protein-

protein interactions based solely on the graph features of the PPI network. They identify nine 

structural features for Saccharomyces cerevisiae protein interaction network such as indegrees, 

outdegrees, mutual proteins and backward distance among proteins.  

They also learn several classifiers such as Bagged Random Forest, Bagged REPTree, 

Random Tree, J48 and Classification via Regression on the data. They evaluated the learned 

models on the dataset of DIP (Salwinski et al., 2004) and also that generated by Qi et al. (2006). 

The method developed by Paradesi et al. (2007) compares well with the existing methods for PPI 
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prediction, even though they used only the relational features of the network data in their study, 

and not the sequence information as used by Qi et al. (2006) and Licamele & Getoor (2006). 

However, Paradesi et al. (2007) compare the results of different datasets with that 

obtained by the dataset of Licamele & Getoor (2006). Also, the method of generating negative 

examples using the dataset of Qi et al. (2006) does not provide the same negative examples as 

mentioned by Qi et al. (2006). These comparisons are made between algorithms applied to two 

different data sets. In order to make a fair comparison, the same dataset and features generated 

by Qi et al. (2006) are used. Due to the non-availability of the dataset by Licamele & Getoor 

(2006), the results obtained by using the graph features in this thesis cannot be compared with 

the results of Licamele & Getoor (2006). The comparisons of the previously published results are 

shown below: 

 

Figure 2-1 Comparison of results by Licamele & Getoor (2006) and Paradesi et al. (2007) 
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Figure 2-2 Comparison of results by Qi et al. (2006) and Paradesi et al. (2007) 

Note: First dataset is DIP (Salwinski et al., 2006) and second dataset is the dataset 

generated by Qi et al. (2006). 

2.4 Chen & Liu 

Protein interaction sites refer to the locations on the protein structures where one protein 

physically interacts with another protein. A protein domain is a functionally defined protein 

region. Chen & Liu (2005) predicts PPI using protein domain information. Many domain-based 

models for protein interaction prediction have been developed, and preliminary results have 

demonstrated their feasibility (Chen & Liu, 2005). Most of the existing domain-based methods, 

however, consider only single-domain pairs (one domain from one protein) and assume 

independence between domain–domain interactions. Chen & Liu (2005) introduced a new 

framework based on random forest for PPI prediction, which explores the contributions of all the 

possible domain combinations to predicting protein interactions. Furthermore, their model does 

not assume that domain pairs are independent of each other. They obtained the PPI data from 

DIP (Salwinski et al., 2004; Deng et al.,2002; Schwikowski et al., 2000; Xenarios et al., 2001). 

Chen & Liu (2005) extract the domain information for each protein and build a vector of the 

domain list of each candidate protein pair. The values in the vector are the number of 
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occurrences of the domain in both proteins. They obtain a better sensitivity and specificity when 

compared with a method that maximizes the likelihood of the observed protein interaction data 

and identifies domain interactions (Deng et al., 2002). Due the availability of the dataset 

generated by Chen & Liu (2005), a comparison is done between the results obtained by them and 

the authors. This comparison uses the training and testing dataset generated by Chen & Liu 

(2005). The nine graph features mentioned in this thesis are extracted by the authors and the 

results of both approaches are compared. 

2.5 Advantages of graph-based PPI prediction 

Thus, as seen with previous approaches of predicting protein interactions, it is observed 

that graph-based features extracted from the PPI network are often more useful than biological 

features in predicting protein interactions. Protein interactions have generally been identified in 

laboratory experiments (these include small-scale and high-throughput experiments). Most of the 

predictions discovered in a laboratory might be false positives. Graph-based PPI prediction helps 

to identify new protein interactions based on the PPI network. If the graph-based PPI prediction 

can identify predictions that have been discovered by one experiment and not discovered by 

another experiment, one can assign higher confidence to the fact that the two proteins interact.  

CHAPTER 3 - Experiments 

In this thesis, several experiments have been performed on published datasets. This work 

presents a detailed study to determine if graph attributes extracted from a protein interaction 

network are more predictive than biological features of protein interactions. Another study has 

been performed to observe the variation in accuracy and AUC score by increasing the size of the 

protein interaction dataset. The datasets were parsed in order to construct directed networks of 

interacting protein pairs. The approach as described in Maslov & Sneppen (2002) has been 

applied, in which the authors represent the PPI network as a directed graph with a directed edge 

from a “bait” protein to a “prey” protein. A link is drawn between two proteins if and only if 

there exists an interaction between those two proteins. The absence of an interaction between 

two proteins results in not adding a link between those two proteins in the graph structure. 

Several methods of generating training and testing datasets are performed. The classification 
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problem reduces to the problem of classifying proteins within a distance d(u, v) as either 1 

(interacting) or greater than 1 (non-interacting).  

3.1 Protein domain information 

The dataset published by Chen & Liu (2005) contains 3,713 proteins and 9,832 protein 

interactions of the Saccharomyces cerevisiae organism. They built this dataset by combining 

data from the DIP database (Salwinski et al., 2004), Deng et al. (2002) and Schwikowski et al. 

(2000). Although Chen & Liu (2005) claim that there are 9,834 protein interactions, it has been 

observed that two positive protein pairs have been repeated; one in the training dataset and the 

other in the testing dataset. Their dataset contains 4,293 protein domains that are present in the 

3,713 proteins. The domain information was obtained from the Pfam database (Bateman et al., 

2004). Chen & Liu (2005) split the positive examples into training and testing datasets with 

4,916 positive examples in each dataset. They also randomly sample 8,000 negative examples 

from a list of negative examples and store 4,000 negative examples in each of the training and 

testing dataset. Although this technique of data sampling is not accurate because there are more 

positive examples than negative examples in their dataset (In reality, there are many more 

negative examples than the positive examples in a protein interaction network), this technique 

has been followed in this thesis in order to compare with the published results of Chen & Liu 

(2005). In this study, graph features are added to the domain information to observe improved 

performance in predicting protein interactions. 

3.2 Biological features 

The dataset published by Qi et al. (2006) contains 6,270 proteins and 2,865 protein 

interactions that they retrieved from the DIP database (Xenarios et al., 2002). There are 237,384 

negative examples that are identified among all possible negative examples. Qi et al. (2006) 

encode 162 features for each protein pair in their positive and negative datasets as mentioned in 

Section 2.1. Qi et al. (2006) randomly sample 30,000 examples into each of the training and 

testing datasets. These 30,000 examples contain 50 positive examples and 29,950 negative 

examples so that there are 600 negative examples for every positive example. This ratio is a 

close approximation to the real ratio of negative examples to positive examples. However, 

sampling only 50 positive examples from 2,865 positive examples is not representative of all the 
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positive interactions. It would make an interesting study to sample at least around 390 positive 

examples, so that around 234,000 negative examples could be provided to the learning algorithm. 

However, despite the low sampling frequency of positive examples, the technique used by Qi et 

al. (2006) has been applied in this study in order to compare with their published results. Graph 

features are added to the 162 features to observe improved performance in predicting protein 

interactions. 

 3.3 Combining PPI databases 

Section 2.3 describes a preliminary experiment comparing results from two different data 

sets.  In order to make this comparison fair and rigorous, two new datasets are created that 

contain features from other approaches. Protein interactions that occur in DIP (Salwinski, 2004), 

IntAct (Kerrien, 2007) & MINT (Chatr-aryamontri, 2007) are combined to form a true positive 

dataset. The intersection of all these databases gives rise to protein interactions that are 

confirmed by several experiments. These databases share a common attribute – the UniprotID of 

the proteins – among them. However, most of the proteins have multiple UniprotIDs. A hashmap 

was used to identify unique proteins across the three datasets. This intersection dataset contains 

956 proteins and 936 protein interactions. Thus, the dataset obtained by intersecting these three 

databases resulted in a sparser protein interaction network. In order to see if our features help in 

the prediction of protein interactions, the features of the intersection dataset are extracted from 

the published data of Chen & Liu (2005) and Qi et al. (2006). 

3.3.1 Protein domain information 

The positive protein pairs in the intersection data of DIP (Salwinski, 2004), IntAct 

(Kerrien, 2007) & MINT (Chatr-aryamontri, 2007) are identified in the published data by Chen 

& Liu (2005). 527 positive protein pairs of 571 proteins are present in both the datasets. There 

are 1,231 protein domains among these 527 interaction pairs. In order to determine the negative 

protein pairs, all possible protein pairs (571 x 571) are computed and subtracted from the 

positive protein pairs that are present in the published dataset by Chen & Liu (2005). 323,712 

negative protein pairs are identified based on this technique. The ratio of positive to negative 

examples is approximately 1:614, which is a close approximation to the actual ratio. 
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3.3.2 Biological features 

The positive protein pairs in the intersection data of DIP (Salwinski, 2004), IntAct 

(Kerrien, 2007) & MINT (Chatr-aryamontri, 2007) are identified in the published data by Qi et 

al. (2006). 317 positive protein pairs of 392 proteins are present in both the datasets. In order to 

determine the negative protein pairs, all possible protein pairs (392 x 392) are matched with the 

negative examples present in the published dataset by Qi et al. (2006). 936 negative protein pairs 

are identified based on this technique. This technique is used to generate negative protein pairs 

only because biological features have been identified for those protein pairs. The development 

time and computational time to compute biological features for all possible negative protein pairs 

is significantly large. However, this technique is a reasonably sound one to verify if there is an 

advantage of using graph-based features along with biological features in predicting PPI in a 

protein interaction network. 

3.4 Features 

The following graph features are extracted from the protein interaction network: 

1. Indegree of the start node: Denotes the popularity (importance) of the start node (i.e., of 

the protein associated with the start node). 

2. Indegree of the end node: Denotes the popularity (importance) of the end node (i.e., of 

the protein associated with the end node). 

3. Outdegree of the start node: Denotes the number of proteins interacting with the protein 

at the start node. 

4. Outdegree of the end node: Denotes the number of existing proteins interacting with the 

protein at the end node; correlates loosely with the likelihood of a reciprocal link. 

5. Number of mutual proteins of a protein w, such that u → w ^ w → v, for some proteins u 

and v. 

6. Number of mutual proteins of a protein w, such that v → w ^ w → u, for some proteins u 

and v. 

7. Number of mutual proteins of a protein w, such that u → w ^ v → w, for some proteins u 

and v. 

8. Number of mutual proteins of a protein w, such that w → u ^ w → v, for some proteins u 

and v. 
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9. Backward distance from v to u in the graph: identifies how far the protein v is from 

protein u. 

The diagrammatic representations of the nine features considered are as shown in Figure 3-1 

(a – i) below: 

 

Figure 3-1 Graph features 

Note: The objects in red denote the feature that we calculate. The dashed lines (in blue) 

above indicate that a link between two proteins u and v may be either present or absent, i.e. 

either u or v are directly connected or indirectly connected via another node w. 

CHAPTER 4 - Results 

The data is split into training and testing datasets according to the experiment setup 

described by Qi et al. (2006) and Chen & Liu (2005). Several classifiers such as RandomForest 

(RF), J48, ClassificationviaRegression (CVR), Naïve Bayes (NB) & Support Vector Machine 

(SVM) are applied to the training and testing datasets. It is important to note that the experiments 

performed using SVM classifier in WEKA use a linear kernel. The experiment is performed five 

times in order to negate the effect of randomly sampling examples. The average scores of the 
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performance criteria in the five experimental runs are reported. The performance criteria used in 

previous published works are used in related experiments of this study. 

4.1 Protein domain information 

As per the technique published by Chen & Liu (2005), 9,832 positive protein pairs are 

split into training and testing datasets. 8,000 negative protein pairs are randomly sampled and 

split into training and testing dataset. Chen & Liu (2005) calculate the sensitivity (=True 

positives/(True positives + False negatives)) and specificity (=True negatives/(True negatives + 

False positives)) performance measures in their study. The sensitivity (Se) and specificity (Sp) of 

the classifiers are shown: 
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Table 4-1 Results obtained from experiments using Chen & Liu (2005) dataset (5-fold) 

 J48 NB CVR SVM 

 Se % Sp % Se % Sp % Se % Sp % Se % Sp % 

Domain 73.3 62.1 73.44 63.08 55.1 0 74.3 73.56 

Degree 86.62 85.74 89.78 60.66 85.78 86.98 87.2 76.02 

MutualProtein 96.68 59.3 97.5 57.72 55.1 0 98.96 55.94 

BackwardDistance 99.52 65.8 99.52 65.8 99.52 65.8 99.52 65.8 

Domain + Degree 86.3 86.08 88.94 62.52 85.92 86.7 80.7 77.76 

Domain + MutualProtein 85.14 68.4 95.64 59.08 55.1 0 78.62 75.26 

Domain + BackwardDistance 91.14 72.46 83.16 71.82 99.52 65.8 86.06 82.68 

Degree + MutualProtein 87.6 86.56 93.96 65.24 86.72 87.14 89.26 77.44 

Degree + BackwardDistance 92.56 91.54 93.1 71.88 92.02 92.14 93.3 83.54 

MutualProtein + 

BackwardDistance 

97.86 80.04 98.18 74.42 99.54 70.88 99.26 76.16 

Domain + Degree + 

MutualProtein 

87.8 85.88 93.16 65.94 86.86 86.84 83.18 78.76 

Domain + MutualProtein + 

BackwardDistance 

96.94 81.5 97.82 76.42 99.54 70.88 90.7 85 

Domain + Degree + 

BackwardDistance 

91.86 91.96 92.3 73.06 91.96 92.24 88.7 85.58 

Degree + MutualProtein + 

BackwardDistance 

93.04 93.1 94.68 69.4 92.94 93.14 95.74 85.68 

Domain + Degree + 

MutualProtein + 

BackwardDistance 

93.6 92.4 94.28 70.54 92.76 93.2 91.14 87.4 

 

Table 4-1 indicates that the BackwardDistance attribute is the best attribute for predicting 

protein interactions along with protein domain information. The MutualProtein information is the 

next best feature for predicting protein interactions when using protein domain information. The 
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Degree feature provides more information about the protein interaction network to the classifiers 

than the Domain information alone. The highest sensitivity with respect to Domain information 

is obtained when both MutualProtein and BackwardDistance are added to the Domain 

information. The highest specificity with respect to Domain information is obtained when both 

Degree and BackwardDistance are added to the Domain information. It is interesting to observe 

that combining Degree, MutualProtein and BackwardDistance with the Domain information does 

not produce the highest sensitivity and specificity. This is observed despite the fact that all the 

three graph features perform better individually than the Domain information. Chen & Liu 

(2005) reported a sensitivity of 79.78% and specificity of 64.38% when they used domain 

information only. The sensitivity and specificity scores from the above table indicate that a 

higher sensitivity and specificity are obtained by using graph features along with the Domain 

information. 

The results of RandomForest learning algorithm were not obtained due to memory 

constraints on the Beocat cluster. The experiments were run on the Beocat cluster with 16GB of 

RAM allotted to the program. The classifier built forests that exceeded the memory limit of 

16GB.  

4.2 Biological features 

As per the technique published by Qi et al. (2006), 50 positive protein pairs are sampled 

and their features are stored in the training dataset. Similarly, another 50 positive protein pairs 

are sampled and their features are stored in the testing dataset. 29,950 negative protein pairs are 

randomly sampled and their features are stored in the training dataset. Similarly, 29,950 negative 

protein pairs are randomly sampled and their features are stored in the testing dataset. Qi et al. 

(2006) calculate the AUC (area under the ROC curve) score in their study. The AUC scores of 

the classifiers are shown: 
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Table 4-2 Results obtained from experiments using Qi et al. (2006) dataset (5-fold) 

 J48 RF NB CVR SVM 

Feature 0.504 0.7052 0.7244 0.7466 0.504 

Degree 0.5 0.7394 0.9442 0.9798 0.5 

MutualProtein 0.61 0.806 0.826 0.5 0.622 

BackwardDistance 0.79 0.79 0.79 0.5 0.73 

Feature + Degree 0.57 0.7276 0.7378 0.9526 0.506 

Feature + MutualProtein 0.5944 0.8172 0.737 0.8347 0.626 

Feature + BackwardDistance 0.796 0.8438 0.7374 0.8634 0.736 

Degree + MutualProtein 0.7052 0.8604 0.9632 0.9828 0.624 

Degree + BackwardDistance 0.79 0.833 0.9646 0.9896 0.73 

MutualProtein + BackwardDistance 0.79 0.94 0.948 0.5 0.758 

Feature + Degree + MutualProtein 0.5784 0.8358 0.7428 0.9496 0.626 

Feature + MutualProtein + BackwardDistance 0.796 0.9408 0.7438 0.9052 0.758 

Feature + Degree + BackwardDistance 0.796 0.8678 0.7428 0.9768 0.736 

Degree + MutualProtein + BackwardDistance 0.79 0.944 0.9774 0.9926 0.758 

Feature + Degree + MutualProtein + 

BackwardDistance 

0.796 0.927 0.7468 0.98 0.756 

 

It is interesting to observe that different classifiers have different best attributes that 

predict protein interactions. However, it is not surprising to note that all the three graph features 

provide more information about the protein interaction network to the classifiers than the 162 

biological features alone. The highest AUC score with respect to the biological features is 

obtained when Degree, MutualProtein and BackwardDistance are added to the biological 

features. Qi et al. (2006) reported an R50 AUC score of 0.25 when they used the biological 

features only. Due to the similar experiment design of this experiment and the experiment by Qi 

et al. (2006), it can be safely assumed that the AUC score obtained by Qi et al. (2006) using a 

RandomForest classifier could have been 0.7052. The AUC scores from the above table indicate 

that higher AUC scores are obtained by using graph features along with the biological features. 
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4.3 Combining PPI databases 

4.3.1 Protein domain information 

In order to maintain the same ratio of positive to negative examples from the original 

datasets, 100 positive protein pairs and 29,950 negative protein pairs are randomly sampled from 

the original datasets and split into training and testing datasets. The AUC scores of the classifiers 

are shown: 

Table 4-3 Results obtained from experiments using the Intersection dataset & Chen & Liu 

(2005) dataset (5-fold) 

 NB CVR SVM 

Domain 0.4996 0.5 0.5 

Degree 0.8128 0.8582 0.5 

MutualProtein 0.7048 0.5 0.532 

BackwardDistance 0.858 0.5 0.858 

Domain + Degree 0.7082 0.81 0.5 

Domain + MutualProtein 0.6652 0.5 0.6 

Domain + BackwardDistance 0.841 0.5 0.85 

Degree + MutualProtein 0.876 0.8862 0.546 

Degree + BackwardDistance 0.9374 0.9278 0.858 

MutualProtein + BackwardDistance 0.943 0.5 0.858 

Domain + Degree + MutualProtein 0.791 0.8206 0.604 

Domain + MutualProtein + BackwardDistance 0.9162 0.5 0.858 

Domain + Degree + BackwardDistance 0.887 0.9326 0.85 

Degree + MutualProtein + BackwardDistance 0.981 0.9164 0.858 

Domain + Degree + MutualProtein + BackwardDistance 0.9402 0.919 0.858 

 

Table 4-3 indicates that the BackwardDistance attribute is the best attribute for predicting 

protein interactions along with protein domain information. The Degree information is the next 

best feature for predicting protein interactions when using protein domain information. The 

MutualProtein feature provides more information about the protein interaction network to the 

classifiers than the Domain information alone. The highest AUC score with respect to Domain 
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information is obtained when Degree, MutualProtein and BackwardDistance are added to the 

Domain information. The AUC scores from the above table indicate that higher AUC scores are 

obtained by using graph features along with the Domain information. 

4.3.2 Biological features 

317 positive protein pairs and 936 negative protein pairs are split into training and testing 

datasets. The AUC scores of the classifiers are shown: 

Table 4-4 Results obtained from experiments using the Intersection dataset & Qi et al. 

(2006) dataset (5-fold) 

 J48 RF NB CVR SVM 

Feature 0.8248 0.9052 0.7062 0.7468 0.6398 

Degree 0.7068 0.7928 0.759 0.8156 0.5048 

MutualProtein 0.5 0.6096 0.6096 0.5 0.5664 

BackwardDistance 0.85 0.85 0.8494 0.5 0.85 

Feature + Degree 0.8748 0.9302 0.7448 0.863 0.6772 

Feature + MutualProtein 0.8324 0.919 0.7374 0.7468 0.6898 

Feature + BackwardDistance 0.9 0.9672 0.8112 0.8882 0.881 

Degree + MutualProtein 0.7182 0.8058 0.7798 0.8264 0.5848 

Degree + BackwardDistance 0.9114 0.9418 0.9398 0.958 0.85 

MutualProtein + BackwardDistance 0.85 0.8872 0.8868 0.5 0.7318 

Feature + Degree + MutualProtein 0.8742 0.934 0.7618 0.863 0.6952 

Feature + MutualProtein + BackwardDistance 0.9014 0.967 0.8278 0.888 0.8898 

Feature + Degree + BackwardDistance 0.9234 0.9754 0.8264 0.9458 0.881 

Degree + MutualProtein + BackwardDistance 0.9328 0.9478 0.9482 0.9584 0.8684 

Feature + Degree + MutualProtein + 

BackwardDistance 

0.927 0.9706 0.8357 0.9464 0.8906 

 

It is interesting to observe that different classifiers have different best attributes that 

predict protein interactions. It is also surprising to note that MutualProtein does provide more 

information about the protein interaction network to the classifiers than the 162 biological 

features alone. The highest AUC score with respect to the biological features is obtained when 
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MutualProtein and BackwardDistance are added to the biological features. It is interesting to 

observe that combining Degree, MutualProtein and BackwardDistance with the biological 

features does not produce the highest AUC score. The AUC scores from the above table indicate 

that higher AUC scores are obtained by using graph features along with the biological features. 

CHAPTER 5 - Conclusion and Future Work 

5.1 Conclusion 

In this thesis, a comprehensive study about the importance of graph features in predicting 

protein interactions in a protein interaction network is performed. Two published datasets were 

used in this thesis. A third dataset was created by intersecting three protein interaction databases 

and combining the data from the other two published datasets. Nine graph features were 

extracted from the datasets and several learning algorithms were applied. The results indicate 

that graph features extracted from a protein interaction network are useful for predicting protein 

interactions.  

5.2 Future Work 

The future trends in the field of predicting protein interactions using graph-based features 

look very promising due to the following changes in the area of protein interaction prediction:  

5.2.1 Increase in quality and quantity of data 

There is a rapid increase in the discovery of new proteins and interactions based on the 

high-throughput methods. There is also a growth in techniques to identify actual protein 

interactions and eliminate false positive interactions. The research groups that maintain BIND 

(Bader et al., 2003), MINT (Chatr-aryamontri et al., 2007), DIP (Salwinski et al., 2004), MPact 

(Güldener et al., 2006) and IntAct (Kerrien et al., 2007) have formed the IMEx consortium to 

build a large, consistent and non-redundant repository of protein interactions and information 

about the interactions. According to the IMEx consortium, the data they are gathering will be 

broader in scope and deeper in information than any individual effort (Kerrien et al., 2007). The 

IMEx consortium will allow individual researchers and research groups to submit protein 

interaction information. This newly submitted data is run through several tests and manually 



 

 

26

curated to ensure that the interaction is a true positive interaction. As the quality and quantity of 

data increases, the PPI network becomes more complete, thereby allowing highly predictive 

graph features to be extracted from the network. There is scope for researchers to work on 

increasing the quality and quantity of protein interactions by developing new computational 

techniques. A primary contribution of this work has been to identify graph features that will help 

in predicting protein interactions. Other feature construction and extraction algorithms (Liu & 

Motoda, 1998) can be added to this body of features. 

5.2.2 Improvement in classification algorithms 

 There are also rapid advances in the machine learning and data mining algorithms. Most 

of the supervised and unsupervised learning algorithms used in the prediction of protein 

interactions were developed for tasks other than that. However, it has been observed that these 

algorithms have worked well for the protein interaction prediction task. There is a need for 

developing custom algorithms that can handle protein interaction data well.  

5.2.3 Use of protein interaction network analysis tools 

There are many protein interaction visualization tools such as ProViz (Iragne et al., 

2005), iPfam (Finn et al., 2005), VisANT (Hu et al., 2007), etc. and querying tools such as 

PathBLAST (Kelley et al., 2004), APID (Prieto & De Las Rivas, 2006), etc. available. These 

tools allow users to view and search for proteins in any PPI network. They can be exploited to 

gather several graph-based features from the PPI network. The visualization and querying tools 

can also be used to split the PPI network into several overlapping sub-graphs. Interactions can be 

predicted at the sub-graph level and these predictions can be combined to identify protein 

interactions at the original graph level. A protein pair can be labeled as interacting if it is 

observed that the interaction between the protein pair appears in more than one sub-graph. 

5.2.4 Development of different approaches 

Although there have been continuing advances in data and improvement of algorithms 

and tools, attention must be paid to improve the approaches of solving the protein interactions 

prediction problem. There is no one-solution-solves-all-problems approach anymore. Instead, 

there is a need for developing approaches that solve the problem by applying an ensemble of 

various machine learning algorithms for different subgraphs of the PPI network. In other words, 
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one could extract different graph-based features from different subsets of the PPI network and 

run different machine learning algorithms on the features, depending on the data. The different 

machine learning classifiers could “vote” on the class, and the weighted average of the output 

could be assigned as the actual class.
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Appendix A - Variance of the results across different experiments 

This section presents the variance of results of all experiments conducted in this thesis. 

Protein domain information 
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Table A-1 Variance of results obtained from experiments using Chen & Liu (2005) dataset 

(5-fold) 

 J48 NB CVR SVM 

 Se Sp Se Sp Se Sp Se Sp 

Domain 1.76E-

5 

2.36E-

5 

6.24E-

6 

5.85E-

5 

0 0 2.0E-5 6.64E-

6 

Degree 4.57E-

5 

8.26E-

5 

4.57E-

5 

2.02E-

5 

7.76E-

6 

2.49E-

5 

1.56E-

5 

2.56E-

6 

MutualProtein 1.25E-

5 

3.9E-7 5.9E-6 1.59E-

7 

0 0 4.64E-

6 

2.4E-7 

BackwardDistance 1.76E-

6 

0 1.76E-

6 

0 1.76E-

6 

0 1.76E-

6 

0 

Domain + Degree 7.12E-

5 

1.06E-

4 

3.54E-

5 

1.05E-

5 

2.05E-

5 

3.91E-

5 

1.0E-5 1.74E-

5 

Domain + MutualProtein 6.34E-

5 

1.2E-6 1.33E-

4 

5.6E-7 0 0 1.61E-

5 

7.04E-

6 

Domain + BackwardDistance 4.91E-

4 

3.78E-

5 

7.44E-

6 

1.69E-

5 

1.76E-

6 

0 1.02E-

5 

7.36E-

6 

Degree + MutualProtein 2.04E-

5 

3.1E-5 9.84E-

6 

1.06E-

5 

7.75E-

6 

9.84E-

6 

2.3E-5 6.4E-7 

Degree + BackwardDistance 7.9E-5 6.9E-5 7.16E-

5 

0.0021

4 

5.25E-

5 

3.34E-

5 

1.16E-

5 

1.04E-

6 

MutualProtein + 

BackwardDistance 

5.44E-

6 

2.4E-7 4.37E-

5 

0.0070

7 

1.04E-

6 

8.56E-

6 

2.64E-

6 

2.4E-7 

Domain + Degree + MutualProtein 2.72E-

5 

3.45E-

5 

2.5E-5 1.22E-

5 

7.04E-

6 

7.84E-

6 

9.36E-

6 

1.66E-

5 

Domain + MutualProtein + 

BackwardDistance 

1.9E-5 2.8E-6 3.33E-

5 

0.0032 1.04E-

6 

8.56E-

6 

7.9E-6 4.79E-

6 

Domain + Degree + 

BackwardDistance 

1.26E-

5 

1.38E-

5 

8.6E-5 0.0017

9 

4.42E-

5 

2.94E-

5 

1.52E-

5 

5.36E-

6 

Degree + MutualProtein + 

BackwardDistance 

7.02E-

5 

1.56E-

5 

1.77E-

5 

2.98E-

4 

9.04E-

6 

3.44E-

6 

1.1E-5 2.96E-

6 

Domain + Degree + MutualProtein 

+ BackwardDistance 

3.32E-

5 

1.32E-

5 

3.21E-

5 

3.7E-4 4.9E-5 1.4E-5 7.04E-

6 

9.6E-6 
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Biological features 

Table A-2 Variance of results obtained from experiments using Qi et al. (2006) dataset (5-

fold) 

 J48 RF NB CVR SVM 

Feature 3.84E-4 3.24E-4 0.0120 0.0073 2.4E-5 

Degree 0 3.45E-4 3.41E-5 2.34 

E-4 

0 

MutualProtein 0.0081 0.0012 6.24E-4 0 4.96E-4 

BackwardDistance 0.0018 0.0018 0.0018 0 0.015 

Feature + Degree 0.0062 2.21E-4 0.0146 2.15E-4 6.4E-5 

Feature + MutualProtein 0.0035 5.4E-4 0.0152 0.0043 4.24E-4 

Feature + BackwardDistance 0.0012 0.0011 0.0157 9.79E-4 0.0123 

Degree + MutualProtein 0.0228 3.3E-4 7.36E-6 1.11E-4 5.44E-4 

Degree + BackwardDistance 3.6E-4 3.6E-4 3.6E-4 0 0.003 

MutualProtein + BackwardDistance 0.0018 1.2E-4 2.16E-4 0 0.0087 

Feature + Degree + MutualProtein 0.0017 6.19E-4 0.0152 7.9E-5 4.64E-4 

Feature + MutualProtein + BackwardDistance 0.0012 1.73E-4 0.0172 0.0023 0.0071 

Feature + Degree + BackwardDistance 0.0012 3.64E-4 0.0160 3.99E-4 0.0123 

Degree + MutualProtein + BackwardDistance 0.0018 5.84E-4 5.44E-6 1.17E-4 0.0087 

Feature + Degree + MutualProtein + BackwardDistance 0.0012 4.96E-4 0.0160 1.51E-4 0.0069 
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Combining PPI databases 

Protein domain information 

Table A-3 Variance of results obtained from experiments using the Intersection dataset & 

Chen & Liu (2005) dataset (5-fold) 

 J48 RF NB CVR SVM 

Feature 6.47E-4 4.1E-4 5.37E-4 8.42E-4 2.78E-4 

Degree 0.0023 2.6E-4 3.6E-4 7.38E-5 3.5E-5 

MutualProtein 0 7.54E-5 7.54E-5 0 0.0014 

BackwardDistance 1.10E-4 1.1E-4 1.08E-4 0 1.1E-4 

Feature + Degree 6.85E-4 3.37E-5 5.25E-4 0.001 5.17E-4 

Feature + MutualProtein 2.37E-4 1.50E-4 6.23E-4 8.42E-4 5.97E-4 

Feature + BackwardDistance 9.76E-4 7.33E-5 2.01E-4 3.73E-4 4.28E-5 

Degree + MutualProtein 0.0017 4.58E-4 3.81E-4 1.16E-4 3.43E-4 

Degree + BackwardDistance 2.21E-5 2.21E-5 2.16E-5 0 2.21E-5 

MutualProtein + BackwardDistance 1.1E-4 1.13E-4 1.1E-4 0 0.036 

Feature + Degree + MutualProtein 6.67E-4 2.51E-4 5.22E-4 0.001 8.28E-4 

Feature + MutualProtein + BackwardDistance 0.001 5.48E-5 2.61E-4 3.72E-4 4.37E-5 

Feature + Degree + BackwardDistance 3.41E-4 1.58E-5 1.93E-4 7.41E-5 4.28E-5 

Degree + MutualProtein + BackwardDistance 2.83E-4 1.12E-4 9.01E-5 1.94E-5 2.61E-4 

Feature + Degree + MutualProtein + BackwardDistance 2.9E-4 4.02E-5 2.57E-4 7.58E-5 5.78E-5 
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Biological features 

Table A-4 Variance of results obtained from experiments using the Intersection dataset & 

Qi et al. (2006) dataset (5-fold) 

 NB CVR SVM 

Feature 0.0013 0 0 

Degree 0.0017 5.38E-4 0 

MutualProtein 5.34E-4 0 0.0017 

BackwardDistance 0.0015 0 0.0015 

Feature + Degree 0.0013 0.002 0 

Feature + MutualProtein 0.0023 0 2.8E-4 

Feature + BackwardDistance 0.002 0 0.0015 

Degree + MutualProtein 0.0012 3.05E-4 0.0027 

Degree + BackwardDistance 2.99E-4 0 2.99E-4 

MutualProtein + BackwardDistance 4.24E-4 0 0.0015 

Feature + Degree + MutualProtein 0.0011 6.6E-4 5.84E-4 

Feature + MutualProtein + BackwardDistance 0.001 0 0.0015 

Feature + Degree + BackwardDistance 0.0016 0.003 0.0015 

Degree + MutualProtein + BackwardDistance 1.4E-4 0.0027 0.0015 

Feature + Degree + MutualProtein + BackwardDistance 2.53E-4 0.0037 0.0014 

 


