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NOMENCLATURE

biharmonic operator V4 = (32 + 13 + 1 32 )2
ar2 Tdr 12362
deflection

normal slope

transverse loading

flexural rigidity of the plate D = Et
modulus of elastiecity

Poisson's ratio

radius of the large circle

maximum deflection of a clamped, uniformly-loaded,
circular plate w, = gR

64D
maximum slope of a clamped, uniformly-loaded, circular
plate w.' = -1.54 wp
R

radial coordinate
angular coordinate

normal direction

radius of the large circle a = 4.016 in.

1.693 in.

]

radius of the small circle b

distance between the centers of the large and small
circles ¢ = 4.685 in.

positive integer

plate thickness



INTRODUCTION

Since exact solutions can not be obtained for many engineering problems,
numerous approximate methods have been developed. One of the more recent tech-
niques is the point-matching method. It is a form of collocation in which a
solution is chosen which exactly satisfies the partial differential equation
governing the problem while matching the boundary conditions at only a finite
number of discrete points. Though the technique was employed by J.C. Slater
(1934) and by J. Barta (1937), it was H. D. Conway (1960) who introduced the
nanpe ''point matching."l* The point-matching method is accepted as a useful
method to obtain the approximate solution of problems govefned by harmonic and
biharmonic differential equations, not only because it is a simple and direct
method ideally suited for the computer, but also because it is a general method.
A single computer program for a given type of problem can be written to give
solutions for different boundary shapes and boundary conditioms. Although the
point-matching method is particularly suited to problems of irregular and un-
symmetric boundaries, most of the published work has been for regular symmetric
shapes.

In this report the point-matching method is illustrated by applying the
technique to the analysis of a thin, clamped plate of irregular geometry under
a uniform transverse load. Both single and double poles of expansion are used
to determine the deflection of the plate. The advantages and disadvantages of
both approaches are given and the values of deflection-obtained in each case
are compared with each other and to experimental values. Areas of difficulty

are pinpointed and suggestions to improve accuracy are given. In additionm,

*Numeric superscripts refer to references presented at the end of the
report



symmetric and special cases are considered in order to compare the accuracy of
the symmetric cases to unsymmetric cases. The use of radial slope along the

boundary of the clamped plate instead of normal slope is also investigated.

THE POINT-MATCHING METHOD

For a thin plate of arbitrary shape under a uniform transverse load the

governing differential equation is

vy = -Iq)- (1)

where Va is the biharmonic operator, w the deflection, q the transverse load,
and D the flexural rigidity of the plate. The solution of the differential
equation is of the form w = w, + WP where o and wp are the complementary and
particular solutions respectively. The well-known solution in polar co-
ordinates to the biharmonic differential equation 152

L @
= 1 ad
w =R, + ZRmcos mé + ERm31n mé + v, (2)
m=1 m=1

where wp is the particular solution for the loading and

2 2
m=0, RO = AO + BDr + Colog r + Dor log r
m=1, R = A+ Blr3 +,Clx:—1 + Dllog ¥ (3)
m >1, R =A P +Brt+C rm+2 +D r-m+2
m m m m m

Omitting terms in order to obtain finite values at r = 0, one obtains the

following algebraic-trigonometric polynomial solution suggested by Con.way:3

w = Z(A r"cos nb + B_r'sin nd + C rn+2cos ne + D rn+zsin ng) + w (4)
n n n n P
n=0
where for a uniformly loaded plate
4
v =L , (5)

For clamped plates, the boundary conditions are

w=¥_g (6)

T



where
v _ v n-1 , n-1 .
ol Zjénnr cos{ng + ¢) + Bnr sin(ne + ¢) +
n=
CnFn+1{ZCOS ng cos 4 + ncos(nd + ¢5} + (7)
. ¢ W
Dnrn+1{231n ne cos ¢ + nsin(ng + ¢ﬂ}+ P
and
ow 3
4o = hr’qeos ¢ (®)

64D
The plate coordinates and the sign convention used are shown in Fig. 1.

The coordinates r and 9 define points on

the boundary and within the region. The

¢ coordinate measures the direction of the

normal to the boundary and is positive when

the normal direction leads the radial direc-

tion in the counterclockwise sense.

After having chosen a suitable series,

each term of which satisfies the partial dif-

ferential equation 'éxactly, the procedure

used in point matching is to determine the " Fig. i.

unknown coefficients so that the boundary |

conditions are satisfied at discrete points. As an example, to determine N
terms in the series for the deflection of a clamped plate, N linear simultaneous
Aequations are constructed which satisfy the boundary conditions of zero slope
and zero deflection at N/Z_points. This ig done by substituting the values of
r, 6, and ¢ for each collocation peint into the-appropriate equations expressing
the boundary conﬁitions at that point. The equations are then solved for the

unknown coefficients. The deflection at interior points and at points on the



boundary between matched points can then be calculated.

EXAMPLE PROBLEMS

The problem to be solved Ly the method of point matching was a thin,

clamped, uniformly-loaded plate of constant thickness and of the shape shown in

Fig. 2. The unsymmetric shape shown closely
approximates the base of a sump pump, the
dimensions of which were a = 4.016 in.,

b =1.693 in., and ¢ = 4.685 in. The method
used to solve the simultaneous linear algebraic
equations was Gauss-Elimination with complete
pivoting. This subroutine was taken from the
Scientific Subroutine Package and is included

in Appendix A. The calculations in the sub-

It

. ot ~
~~ \\\

Fig. 2.

routine were done in double precision as were all the calculations in the main

programs. Two methods of expansion were used. In the first method a single pole

was used for the expansion of the infinite series solution. In the second method

two poles of expansion were used to obtain two independent series solutions which

satisfied the continuity conditions on slope and deflection along a common bound-

ary. The computer program for each method of expansion is given in Appendix A.

Single-Pole Expansion Method

Described below and shown in Fig. 3 are three cases where a single pole of

expansion was applied to the unsymmetric shape in Fig. 2. The coordinates of

the collocation points used are given in Appendix B.

Case I: The normal slope and the deflection were set equal to zero at



thirty-five collocation points.
Case II: The radial slope and the deflection were set equal to zero at
thirty-five collocation points.
Case III: The normal slope and the deflection were set equal to zero at

thirty-five collocation points, and, in addition, cormer point

32 was considered to be rounded.

18

Caﬁe I Case II

Case III

Fig. 3. Unsymmetric Cases



Since the maximum error occurs on the boundary, one can determine the
accuracy of the solutions for deflection and slope by calculating the deviation
of the deflection and slope between collocation points along the boundary. The
maximum deflection of the unsymmetric plate should occur near the center of the
large circle and should be approximately equal to the center deflection of a

clamped, uniformly-loaded, circular plate,Awhich is

Ye T %%D L
Therefore, the deviation of the deflection along the boundary can be compared
to this value. Likewise, the deviation of the slope along the boundary can be
compared to the maximum slope of a clamped, uniformly-loaded, cirﬁular plate,
which is

w' = -1.54 (10)

c e
R .

The deviations of the deflection along the boundary for the three unsymmetric
cases of Fig.'3 are shown in Fig. 4.

From Fig. 4 it is apparent that the use of the boundary condition of zero
radial slope (Case II) instead of zero normal slope (Case I) does not appreci-
ably change the deviations of deflection along the boundary. However, the nor-
mal slope at the collocation points where zero radial slope was specified was
as high as 3.2 wé. A comparison of the results of Case I-and Case II shows
that the values of the interior deflection at corresponding points are in rela-
tively close agreement. At the center of the large circle, for example, the
deflection for Case I is 1.09'wc and the deflection for Case II is 1.12 W
Although the use of normal slope is a refinement over the use of radial slope,
the accuracy obtained in each case is compafablé. The main advantages of using
radial slope over normal slope are that it eliminates the work of determining
the normal direction and that it simplifies the computer program.

The accuracy of Case 1 is not very good, since the maximum deviation of
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the deflection aleng the boundary is of the same order as the maximum plate
deflection W and the deviation of the deflection between collocation points is
not very uniform. The solution does, however, represent considerable effort.
The spacing of points and the number of points used proved to be very critical.
Until the collocation points were more evenly distributed according to arc
length, the deflection of interior points was often negative. In addition,
until the number of collocation points was increased, very large deviations of
slope and deflection along the boundary were obtained. Though there is no
mathematical proof that convergence is obtained with an increase of collocation
points,1 in all cases the deviation between collocation points decreased as the
aumber of collocation points increased. Although the maximum number of equations
used for any case was 70, the number of equations could be increased since no
difficulty with round-off error was encountered. |

As seen in Fig. 4, the rounding of the corner (Case III) opposite the tan-
gent line resulted in a more accurate solution with a maximum deflection devi-
ation of .4 LA The reason the results of Case I are much worse than these
results appears to be due in part to the fact that the values at this cusp are
almost double valued and cause difficulty when several collocation points are
used near the corner. To investigate this further and to compare the solutions
of symmetric cases to unsymmetric cases, the four symmetric cases described
below and shown in Fig. 5 ﬁere considered. A single pole of expansion was again
used and in each of the following cases the boundary conditions were zero normal
slope and deflection.

Case IV: Thirty-five symmetric colloéatioﬁ points were used with the

points being the same as those used on the left-hand side of the
cases shown in Fig. 3.

Case V: Thirty-five symmetric collocation points were used with the



points being the same as those used on the right-hand side of
Case I showm in Fig. 3.
Case VI: Thirty-five symmetric collocation points were used with the
points being the same as those used on the right-hand side of
Case III shown in Fig. 3. The corner point was rounded.
Case VII: Twenty-three collocation points were used with the points
located every 15 degrees apart except for one deleted point

in the upper right-hand side.

Case-IV Case V

18

: 12
Case V1 : Case VII
Fig. 5. Symmetric Cases
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The graphs of Fig. 6 show the deviation of the deflection from the pre-
seribed zero value for the symmetric cases presented in Fig. 5. A general
comparison of these curves with the curves of the unsymmetric cases in Fig. 4
shows the overall increase in accuracy obtained when symmetrical cases are used.
More specifically, the maximum deflection deviation for the symmetrical cases
is .44 Vo which is approximately one-half of the maximum deflection deviation
for the unsymmetrical cases.

A comparison of the curves of Case V and Case VI in Fig. 6 shows that
rounding the corner point reduced the maximum deflection deviation from .44 v,
to .07 W, which represents a considerable improvement. It is felt that the
results obtained for Case VI are reasonable and that the solution would give
good results for interior deflectionms. Since mno ioss of accuracy was detected
in the solution of the 70 equations involved, it is felt that an even better
solution could be obtained by increasing the number of collocation points.

The point-matching solution for Case IV resulted in a maximum boundary
deflection deviation of .007 w and a maximum slope deviation of .0085 wé.

The deviation curve for deflection was of such small order that it appears as
a straight line in Fig. 6. Case IV illustrates the accuracy that can be
obtained for a symmetric, well-behaved, irregular shape.

For the circular plate (Case VII) the point-matching solution gave the
Mexact" solution. This provided an excellent check for the computer program.
The only non-zero coefficients of the series solution for this case were Ao and

Co.

Double-Pole Expansion Method

In the two-pole method the plate is separated into two regions, each

having its own series solution. These series are then truncated so that the
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aumber of coefficicnts retained correspond to the number of matching conditions.
For example, if there are 15 matching points on the fixed boundary of one region
and 4 matching points on the common boundary, then that series would be trun-
cated at 34 coefficients. The set of simultaneous equations to be solved to
obtain the coefficients are then obtained by requiring the series to satisfy
the boundary and continuity conditions at the matching points. Radial slopes,
instead of normal slopes, were equated to zero at all boundary points. This
was justified since the resulting normal slopes remained quite small. For the
common boundary, however, the normal slopes were equated. Equating only deflec-
tions and normal slopes along the common boundary does not insure that the
moments and the shearing forces will be equal along this section. An improved
solution could perhaps be obtained by adding the-continuity conditions on moments
and shear at the common boundary.

The two-pole expansion method was used to obtain an approximate solution
for the original unsymmetric problem which 1is shown in Fig. 2 and is repeated
in Fig. 7 to show the coordinate system and the collocation points used. Sev-
eral solutions were obtained, with the best overall results being found when
56 equations were used. This solution
used 20 collocation points on the fixed
boundary of the large circle, 6 points
on the fixed boundary of the small circle,
and 2 points on the common b;undary. The
maximum boundary deviation for the deflection

was .03 LA and the maximum boundary devi-

ation for the radial slope was .13 wé.

Thus the accuracy of this two-pole expansion Fig. 7. Coordinate System
: and Identification
solution was very much improved over the of Collocation Points
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accuracy of the single-pole expansion solution for the same problem.

Although the double pole of expansion handled the corner point more eas-—
ily, it did have several disadvantages. Not only was the computer program
more complicated, but the choice of collocation points proved to be even more
critical than when a single pole of expansion was used. As an example, when
two points were added to the clamped boundary of the small circle, negative
values of deflection at interior points of the small circle were obtained.
The proper spacing and number of collocation points proved to be critical in

order to obtain reasonable results.

EXPERIMENTAL APPARATUS

The experiment described below and shown in Plate I was constructed to
verify the results obtained by using both single and double poles of expansion.
The shape shown in Fig. 2 was machined out of two bolted, 3/8-inch steel plates
with 3/4-inch birch plywood backing in order to provide a suitable clamping
device. A .032 inch thick sheet of aluminum (ALC-2024-T3) was then inserted
and bolted between the two steel plates, and a stainless steel tank was con-
structed which conformed to the shape of the exposed aluminum plate. The plate
was loaded by siphoning three inches of water into the tank. Three inches of
water was used in order to obtain, according to small-deflection theory, a
maximum deflection of approximately one-half of the plate's thickness. The
deflection at selected points was determined by using a Starrett mechanical
gage which was calibrated to read deflections as small as one ten-thousandths

of an inch.



PLATE I

EXPERIMERTAL APPARATUS



PLATE T
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VERIFICATION

The deflection at selected points along line AA' shown in Fig. 8 was deter-
mined experimentally. In Fig. 9 the experimental results are compared with the
results obtained analytically. The assumed values for the modulus of elasticity
and Poisson's ratio were 10.5 X 10° psi and .33 respectively. A!

Figure 9 shows that the three different
solutions for the deflection along line AA'
are in close agreement. There are, however,
some obvious irregularities in the upper
region of the small circle. The single-pole
solution with the rounded corner point géve
negative deflections in thisrregion, and the
single-pole solution which contained the
corner point produced an unexpected increase A
in the deflection over the small circle portiom. Fié. 8.

. These imperfections in the single-pole solutions indicate that more equations
and a better 5pacinglof collocation points is necessary in order to obtain an
acceptable solution by the point-matching method. The double-pole solution
appears to give the best reéultS. The fact that this analytical solutiom pro-
duced smaller deflections, in the region of the small circle, than those ob-
_tained experimentally tends, however, to discredit the results for this case
as well. The experimental results were expected to give smallér deflections
than those predicted by the elementary plate theory in which the strain of the
middle plane is neglected. Large-deflection plate theory predicts that the
maximum deflection would be as much as 10 percent less than that given by the

elementary theory. The difference between the experimental and theoretical



single pole, rounded corner

single pole, unrounded corner

double pole
w/wc experiment
1.2 '

——————
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Fig. 9. Dimensionless Deflection Along AA'

1.4 1.6 A'
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results at the center of the large circle, as shown in Fig. 9, tends to verify
these predictions.

It can also be seen from the curves of Fig. 9 that when the corner is
rounded the values obtained for deflection by using a single pole of expansion
are generally slightly larger than for the other cases. This was expected
since with a rounded corner the plate is less constrained.

Table 1 was prepared to compare the experimental and theoretical deflec-
tion results at the interior points shown in Fig. 10. Good agreement is to be

seen in this table for the points on the large cirecle.

Fig. 10.
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DEFLECTION u/wc OBTAINED

BY VARIOUS METHODS

Pt. Single Pole (70 eqns.) Double
¢ i ° oomts? | SR | (o emsn |
1 1.3774 0.0 -.0167 .1023 .0277 0647
2 1.1856 .1787 .0771 .0538 .1070 L1224
3 1.1856 0.0 .0909 .0506 .0991 .1368
4 1.1856 -.1787 .0642 -.0384 .0860 .0864
5 9754 .2860 .2035 .1621 2422 .2232
6 .9357 0.0 .2793 1454 .2372 .2592
7 .5000 0.0 .8038 .7188 <1570 .6983
8 .5000 .5236 .7738 .7101 .7587 .6551
9 .5000 1.0472 6772 .6438 . 6692 .5327
10 .5000 1.5708 .6238 .5988 6161 .5111
11 .5000 2.0944 .5987 .5966 .5951 .5255
12 .5000 2.6180 .5856 6074 .5864 .5183
13 .5000  3.1416 .5836 .5991 .5831 .5039
14 .5000 -2.6180 .5875 .5844 .5827 .5183
15 . 5000 -2.0944 .5881 .6033 .5854 .5255
16 .5000 -1.5708 .5945 .6323 .5926 5155
17 .5000 -1.0472 6264 .6381 .6108 .5615
18 .5000 - .5236 .7062 .6627 . 6604 .5831
19 0.0 0.0 1.1026 1.0904 1.0866 .9647

7 Table 1
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CONCLUSTONS

To obtain an approximate solution for a transversely loaded plate of irreg-
ular geometry, the poiﬁt-matching method proved to be a relatively simple and
direct method to employ. The main difficulty in applying the technique was in
the proper choice and spacing of collocation points. It was only after more
equally spacing the points according to arc length and increasing the number
of collocation points that reasonable results were obtained. L. E. Hulbert and
F. W. Niedenfuhr have suggested that some of these difficulties can be elimi-
nated "by choosing a larger boundarf point set than necessary, writing the
boundary conditions at this set of points and solving the system of equations
for the unknown constants by least squares."4 The investigation of the addition
of the least-squares technique to the point-matching method is recommended for
further research.

The accuracy obtained usiné a single pole of expansion for the irregular
plate was disappointing when compared to the accuracy that was obtained for the
symmetric cases. This indicates that considerably less accuracy can be expected
when working with coﬁpletely unsymmetrié shapes than when working with the rel-
atively uniform symmetric shapes which have been considered in the literature.

The accuracy obtained by using double poles of expansion was good and pro-
duced the best solution. A multiple-pole scheme is therefore suggested when-
ever an irregular shape can be separated into more uniform regular shapes, even
though, in so doing, more work is involved and the proper choice of collocation
points is more difficult. Additional research‘gould include moment and shear

at the common boundary.



20

ACKNOWLEDGEMENT

The author is very grateful to his major professor, Dr. Harry D. Knostman,

for the guidance and encouragement he gave in the preparation of this report.



1.

21

REFERENCES

€. C. Lo, F. W. Niedenfuhr, and A. W. Leissa, "rurther Studies in the

Application of the Point Matching Technique to Plate Bending and
Other Harmonic and Biharmonic Boundary Value Problems," AFFDL
Report No. TR-65-115, June 1965.

. Conway, "The Approximate Analysis of Certain Boundary-Value Problems,"

Journal of Applied Mechanics, June 1960, 275-277.

Leissa and F. W. Niedenfuhr, "A Study of the Cantilevered Square
Plate Subjected to a Uniform Loading," Journal of the Aercspace
Sciences, Feb. 1962, 162-169.

. Hulbert and F. W. Niedenfuhr, "Accurate Calculation of Stress

Distributions in Multiholed Plates," Journal of Engineering for
Industry, August 1965, 331-336.




Appendix A

COMPUTER PROGRAMS

72



23

THIS PROGRAM USES ONE ALBEGRAIC—TRIGONOMETRIC POLYNOMIAL TO DETERMINL
RADIAL SLOPLE, MORMAL SLOPE, MOMENRTS, AND DEFLECTIOH. THE BOUNDARY
CONDITIONS ARE THAT THE DEFLECTIUN AND NUORMAL SLUGPE ARE ZERO
THPLICIT REAL*B{A-H,0-2), INTEGER*4 [ I-N)
DIMENSION RI(35),ANI3551BC(?O)fh(IS};B{le,CElB),DllB],El?O,?O)'Al
1[4900]|CR§!222)7CAN(222);CANH(2223,ANR(35!
101 FORMAT (4F20.8)
113 FORMAT(1F230.8}
102 FORMAT('0 SOLUTION CHECK IER= t,14)
103 FORMATI{'1 COEFFICIENTS DBTAINED FOR THE ALGEBRAIC TRIGCONQOMETRIC
LPOLYNOMIALY)
104 FORMAT('D Alt,12,%) =4,D16.8," Bl{1,12,") ="yDL6.8,*' Cl*',1247)
1=*,D16.8,* D[',12,%) =*,D16.8)
106 FORMAT('] THE DEFLECTION, RADIAL SLOPE, NORMAL SLOPE, AND HMOMENTS
1 ARE EVALUATED AT THE FOLLOWING SPECIFIED POINTS')
107 FORMATI('] SOLUTIONS AT *,Il,'/%,11,' THE RADIAL DISTANCE')
108 FORMAT('- AT THE POINT ("4DL0e8By Yy '+D16.Er 'y D168, ") DEFLECT
1[0“ ="D16.8’SX|I3,
118 FORMAT{68X,* NORMAL MOVMENT =1,016.8)
109 FORMAT(65X,* TANGENTTAL MOMENT =t,D16.8)
119 FORMATI(66X,* TWISTING FOMENT =',016.8)
112 FORMATI('O AT THE POINT (*4D16.8,"','4D16.84"4':016.8,") RADIAL
1SLOPE =',D16.8,5%X,13)
122 FORMAT{T71X,' NORMAL SLCPE =t,Dl6.8B1
111 FORMATI('1 THE NORMAL AND RADIAL SLGPE AT SELECTED POINTS ALONG
1THE BOUNDARY!') ’
hhWW IS THE DEFLECTION
TNM IS THE NORMAL MOMENT
TTM IS THE TANGENTIAL MOMENT
TTWM IS THE TWISTING MCMENT
RSLOPE IS THE RADIAL SLOPE
PSLOPE IS THE NORMAL SLOPE
K 1S THE NUMBER DOF PUINTS MATCHED
NE IS THE NUMBER OF EQUATIONS TO BE SOLVED
¥ IS THE NUMBER OF EACH TYPE OF COEFFICIENT
L IS THE NUMBER OF EACH TYPE OF COEFFICIENT MINUS ONE
K=35
NF=70 .
M=18 -
L=17
EPS=1.0D-14 ) ;
READ(L,113)(AN{I)I=14K)
RE!\"(17113)(ﬂNR([]!I=11K)
KM=K+M 5
KK=K+1
PO 10 [=1.K
R=RI (1)
T=AN(I)
TT=ANR(I)
Ef{l+1)=1.0
E(] K+l 1=R¥%2
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E(T1+K,1)=0.0

E(I4+H K+l )=(2%R=42)%DCOS(TT)

NO 10 N=1,L _

E(I N+L)=R==NTDCOSIH*T)
E(IyN+M)=REINEDSININZT)

E(I ¢ N+KK)=R* & [N+2)#LGCOSIN*T)

E{LyN+KM) =REE(N+2)¥DSININFT)

E(I€K yN+L )= (R #=x) =DCOSIN*T+TT)

COI+K, NeM)Y = {NERFEN)Z OSININET+TT)

E(I#K, N+4KK)=R&Xx (N+2) = (2¥DCOSIN*T)*DCOS{TT)I+1=DCOSIN*T+TT))
E(L#K N#CH) =R (N+2) % (25DSIN(NFTI=DCOSITT) +N*DSININ®T+TT) )
CO 20 I=1,K

R=RTI (1)

TT=ANR(I)

BC({I)==(R*x4)

BClI+K)=—-{ (4%Rx%*4)*DCOS(TT) )

J=0

DO 30 N=1,4NE

"DO 30 I=14NE

CJd=d+l

AlL(J)=E(I,N)

CALL DGELGI(BC;AlyNEs1,EPS,TER)
WRITE(3,102)IER

WRITE(3,103)

A{l1)=BCI(1)

C(l}=BC{K+1)

B(l’=000

D(1)=0.0

KL=K+L

DO 40 1=2,M

A(IY=BCI(])}

B(I)=BC{I+L)}

C(I)=BCI(I+K)

D(I)=BC{I+KL)

00 50 I=1.M
WRITE(3,104)I,A[T),I,B(1)},1,CtI),I,D(D)
THE DEFLECTIOMN, RADIAL SLOPE, NORMAL SLOPE, AND MOMENTS AT SELECTED
POINTS ARE DETERMINED IN THE FOLLOWING
J=222

READ{1,101} (CRI(I},1=14+J)
READ{L,10LM{CAN(T) I=1¢d)
READ(14101)(CANRLL)sI=1,4J)

FM=}

CHANGE THE ABOVE CARD IF MORE DIVISIONS IN THE RADIAL DISTANCES A4RE
DESIRED : ' .
00 60 K=1,MM

WRITG(3,106)

HRITE(3,107)K,MH

DO 70 1=1.J

R=(CRI(I)/HFH)*K

T=CANI(])

TT=CANRI(L)
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RHHW=REXGFA (L) +C L) ER*¥2
319] 80 N=11L :

80 hHthwwHH+(h(N+l!*R**NiClN+1)*R**(N+2))*DCDS{N*T)+!B(H+1)*R**N+D(1
141 )#REE(N+2))EDSININFT)

CHAMGE THE FULLOWING CARD IF A DIFFERENT POISSON®'S RATIO IS DESIREH
VV=-33
TNH=C(1)*2*!1+VV)+C(2)¢2*R*(2*(1+VV)*DCOS(T)+{l—VV)*DCOS(T+2¢TT})+
lth)*Z*R*(Z*(1+VV}*DSIN(T)+!1—VVl*DSIN(T+2*TT))+A(3)*(1-VV)*Z#DCDS
1(2¢T+2¢TT)+u(31#(1—VV)*2?DSIN{2*T+2*TT)+C(3)*3*R#*2*(2*!1+VV)*nCUS
1(2*T)+2*(1—VV)*DCUS(2*T+2*TT))+Dl3)*3*R**2*(2*(1+VV)*DSIN(2$T)+2*(
11—VV)*DSIN{2#T+2*TTIl+4*R**2#{2*(l+VV)+{1—VV)#UCUSl2*TT}l

DO 90 N=3,L ’ .

90 TNr:TNM+AlN+1)*tl—VV)*N#(N—l)*R#*{N-ZI*UCDS§N$T+2*TT1+H(N+1)*(1—vv
11¢H¢[N~1)*R*#(N—ZI*DSIN!N*T+Z*TTI+C(N+1)#{N+1}*R**N*(2*(1+VVI¢DCGS
IIN*T1+N*(1—VV)*DCUS(N#T+2*TT})+D(N+l)*EN+1)*R*#N*(2*(I*VV}*DSIN£N*
1T)+N=(1L-VV)*DSIN(N*T+2%TT))

THH=—{TNM/[64.0))

THE NORMAL BENDING MOMENT SHOULD NOW BE MULTIPLIED BY (Q#R*%2
TTM=—(C!1)*(2*(1+VV}})-(CIZ)*E*R*t2*(1+VV}*DCOS(T1—(l—vV}*DCDS(T+2
1*TT))l-tD(Z)*Z*R*(Z*{1+Vv1*DSIH(T)-(1-VVI*DSIN(T+2*TTI})+h(31*(1-v
1V)*2*DCDS(2*T+2*TT)+B(3)*(1—VV)*2¢DSIN(2#T+2*TT)—(C(3)*3*R** (2%
11+VV)*DEDS(2*T}—(2*(l-VV)*ﬂCUS(Z*T+2*TT)))l—{D{3}*3¢R**2*{2*(1+VV}
l*DSIN{f*T)—(2*(1—VV1*DSIN(2*T+2*TT1})I—i#*R**z*(Z*{1+VV)-t1—Vu}*DC
10s(2%5i 1))

DO 100 N=3.L

100 TTH=TTM+A{N+1}#{I—VV)*N*tN—l)*R**IN-Z)*DCDS!V*T+2#TT)+B(N+1)*(l-vv
11*N*(N-1)*R**(N—Zi#DSIN(N*T+2*TT)-(C(N+1)*IN+1)*R**N*(2*(1+VV)*DCD
IS{N*T)-{V*(1-VV)*DCDS(N*T+2#TT))))—(D(N+1l*(N+1)*R**N#(2*(1+VV)#DS
LIN(NAT)=(NE(1-VV)IFDSIN(N*T+2%TT) 1))

TTM=TTM/(64.0) :
TTHM=C(2)*2*R*DSIN(T+2*TT)—(D(2)*2*R*DCUS(T+2*TT1)+Al3)*2*DSIH(Z*T
1+2*TT)-(B(31*2*DCUS(2*T+2*TT})+C[3)*2*3*R**2*DS[N(2$T+2*TT)-(D(3I*
12%3¢R*%2¢DCOS (24T+2%TT) ) +4*¥R*=%2*DSIN(2*TT)

DO 11C N=3,L ’

110 TTHP=TTNM+A(N+1I*N*lN—ll*R**(N—Zl*DSIN(N*T+2*TT)-[B(N+1)*N*(N—l)*R
1**(N—2)*DCDS(N*T+2*TT)I+CIN+1}*N*(N+1)*R**N*DSIN(V*T+2*TT}—LD{N+1}
LENE (N+1)4R=+*N*DCOSINTT+2%TY) ) . -

TTRM=((1-VV)=TTWM)/(64.0)
WRITE(3 4108 Ky ToyTT yWhuk,l
KRITE(3,118)TNM
HRITE(3,109)TTHM

70 WRITE(3,119)}TTWM

60 CONTINUE
HRITE(3,111)

J=J-112

DO 126G I=1,J

R=CRI(I)

T=CAN(I)

TT=CANRI(I}
RSLOPF=2¢C!11*R+At2)*DCUS(T)+B(2)*CSIN(T)+C(2]*3*R#*2*DCUS(Tl+DtZl
LEICRHE2EDSINIT) +4%R*< 3

DO 130 N=2,L
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130 PSLOPE=RSLUPL1A(N+1)*N*R**!N—lJ*DCUS(N¢fl+B(N+l)*V*R$*(N—1J*Dhlh{ﬂ
l*l)*C{N+I)*IH+2)*R**{N+1)*DCUS(N*T)+D(N+1)*(N+2)*R**(N+1]*DSIH{H¢T
1)
PSLDPF=ﬂ*R**3*DCGS(TT)+Clll*R*Z*DCUS(TT)+A(2)*DCUS(T+TT}*B(2)*351%
1(T+TT)+CI2!*&**2*{2*DCGS(T)*DCUS(TT)+DCUS(T+[TI1+D(2)*R**2*(2*DS[1
LIT)I4DCOS{TTI+DSIN(T+TT))

O 140 N=2,L
140 PSLDPE=PSLOPE+A(N+1)*N*R**{N—l}*DCDS{N*T+TT)+B(N+1}*N*?**(N*1)¢USI

IN(N*T+TT)+C(N+1i*R**(N*1)*IZ*DCUS(H*T]¢DCDS[TT)+N*DCDS(N*T+TT)J+Ul
1N+1)*R**(N+1}*(2*DSIN(N*T)*DCOS(TT)+H*OS[N(N*T+TT!) ;
WRITE(34112)R,TTT,RSLCPE,I

120 WRITE(3,122)PSLOPE
STOP .
END
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SUBROUTINE DGELG

PURPOSE
TO SOLVE A GENERAL SYSTEM UF SIMULTANEOUS LINEAR ECUA1IU\S.

USAGE
CALL DGLLGIR A4 My N,CPS,1ER)

DESCRIPTION OF PARAMETERS
R — DOUBLE PRECISION M BY N RIGHT HARND SIDE MATRIX
(DESTROYED). ON RETURK R CONTAINS THE SOLUTION
OF THE EQUATIONS.

A — DOUBLE PRECISION M BY M COEFFICIENT MATRIX
(DESTRUYED) «

M - THE NUMBER OF EQUATIONS IN THE SYSTEM.

N - THE NUMBER OF RIGHT HARD SIDE VECTORS.

EPS ~ SINGLE PRECISIOM INPUT CONSTANT WHICH IS USED AS
RELATIVE TOLERANCE FOR TEST ON LOSS OF
SIGNIFICANCE.

IER -~ RESULTING ERRGCR PARAMETER CODED AS FOLLOWS

IER=0 — NO ERROCR;:

IER=-1 - NO RESULT BECAUSE OF M LESS THAN 1 OR
PIVOT ELEMENT AT ANY ELIMINATIGN STEP
EQUAL TO O,

IER=K — WARNING DUE TO POSSIBLE LOSS OF SIGNIFI-
CANCE INDICATED AT ELIMINATION STEP K+l
WHERE PIVOT ELEMENT WAS LESS THAN OR
EQUAL TO THE INTERNAL TOLERANCE EPS TIMES -
ABSOLUTELY GREATEST ELEMENT OF MATRIX A.

REMARLS
INPUT MATRICES R AND A ARE ASSUMED TO BE STORED COLUMNLISE
IN M%&N RESP. M%M SUCCESSIVE STORAGE LOCATIONS. ON RETURN
SOLUTIOUN MATRIX R IS STORED COLUMNWISE TOO.
THE PROCEDURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M IS
GREATER THAM O AND PIVOT ELEMENTS AT ALL ELIMINATION STEPS
ARE DIFFERENT FROM 0. HOWEVER WARNING IER=K - IF GIVEN -
INDICATES POSSIBLE LOSS OF SIGNIFICANCE. IN CASE OF A WELL
SCALED MATRIX A AND APPROPRIATE TOLERANCE EPS, IER=K MAY BL
INTERPRETED THAT MATRIX A HAS THE RANK K. NO WARKNING 1S
GIVEN IN CASE M=l.

SUBROUTINES AND FUNCTION SUBPROGRANMS REQUIRED
NONE )

METHOD

SOLUTIUN IS DONE BY HEANS OF GAUSS-ELIMINATION WITH
COMPLETE PIVNTING.

.....-....-........"..........'..........I.......-I...'...'.‘-.l'.

SUBROUTINE DGCLGIR,A M N, EPS,ILR)
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DIMENSTON A(L),R(1) '
DOUBLE PRECISTON RyAgPLV TByTOLPEVI DAGS, EPS
IF(M123,23,1 : :

SEAPCH FOR GREATEST ELEMENT I MATRIX A
1CR=0

PIV=0.00

MM=MM

" NM=N&M

0O 3 L=1,MHM

TB=DABS({A (L))

IF{TB-PIV)3,3,2

PIV=THB

I=L

CONT INUE

TOL=EPS*=P IV

ACI) IS PIVOT ELEMENT. PIV CONTAINS THE ABSOLUTE VALUE OF A{l).

START ELIMINATION LOOCP
LST=1
DO 17 K=1,M

TEST ON SINGULARITY

IF{PIV}23,23,4

IF{IER)Ts5.7

IF(PIV-TOL)6+6,7

IER=K-1

PIVI=1.DO/A(])

J={I-1)/HM

[=[=J¥M=-K

J=J+1-K :

I+K 1S ROW-INDEX, J+K COLUMN-INDEX OF PIVOT ELEMENT

PIVDOT ROW REDUCTION AND ROW INTERCHANGE IN RIGHT HAND SIDE R
00 B8 L=K,NMM

LL=L+1

T8=PIVI#R(LL)

RILLY=RI(L)

R{L)=TB

IS ELIMINATION TERMINATED
IF(K-1)9,18,18

COLUMN INTERCHANGE IN FATRIX A
LCND=LST+M-K

IFtJ112,12,10

[T=J%H4

NO 11 L=LST,LEND

TB=A(L)

LL=L+1T

AfL)=A(LL)

ALLYI=TB
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13

14
15
16

17

18
19

20

21
22

ROW !NTEQtHAHGE AND PIVOT ROW REDUCTION IN MATRIX A

DO 13 L=LST.+MM,M
LL=L+1]
TR=PIVI=A(LL)
A{LL)I=ALL)
A(L)=TB

SAVE COLJMN INTERCHAMGE INFORMATION
A(LST)=J

ELEMENT REDUCTION AND NEXT P1VOT SEARCH
PI\’:O.DO

LST=LST+1

J=0

DO 16 II=LST,LEND
PIVI=-A(II}

IST=I1+M

J=J+1

00 15 L=IST,MM.M
LL=L=-J
A(L)=A(LY+PIVI*A(LL)
TB=DABS(A(L))
[FfTB‘PIV)15g15|14
PIV=T8B

I=L

CONTINUE

DO 16 L=K,NM,M

LL=L+J
R{ILL)=R{LLY+PIVI*R(L)
LST=LST+M

END OF ELIMINATION LOOP

BACK SUBSTITUTION AND BACK INTERCHANGE
IFIM-1)23,22,19
IST=MM+M

LST=M+1

DO 21 [=2.+M
[1=LST-1
IST=IST-LST
L=IST-M
L=A(L)+.5D0

D0 21 J=TT1,NMM
TB=R{J)

LL=J

DO 20 K=IST MMM
LL=LL+1
Te=TRB~A(K)*R({LL)
K=J+L

R{J)=R(K)
R(KY=TB

RETURN

29



FRIOR RETURN
23 16R=-1
TRETURN
EiD

30
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IMPLICIT REAL*8(A-H,0-2), INTEGER*4 [ I-N)
DIMENS ION RI(36),AN(30].BC(56},A{111'Blll),CllllyDtlll,Ulﬂ),Vtéi.l
1(4!.5(56.56)yh1(3136),xtﬁlyCRI{270).CAN(Z?O].ANR(30),CANR(2?U}

101 FURMAT(4F20.8) :

102 FORMATI('C SOLUTION CHECK IER= *,13) .

103 FORMAT ('] COEFFICIENTS OBTAINED FOR THE DEFLECTION EQUATION OF T
1HE LARGER CIRCLE',/)

104 FORMATI('O A('312,') =%4D16.8+" C('412,') =*,D16.8)

105 FURHAT{'O B('|12v', ='1016081' u{'3127'1,='gU16-8,

106 FORMATI'l =~ COEFFICIENTS OBTAINED FOR THE DEFLECTIGCN EQUATION OF T
IHE SMALLER CIRCLE',/} ;

107 FORMAT('0 AA(',I2,") =%*,D016.8," CCl*,I24"') =',Dl6.8)

108 FORMAT('D BB("412,") =%,016.8," CO('12,%) ='4,D16.8])

109 FORMAT('l THE DEFLECTION AND MOMENTS AT POINTS IN THE LARGE CIRCL

lE*}
110 FORMAT('lI SOLUTIONS AT ', 11,'/%',I11,"' THE RADIAL DISTANCE?®)
111 FORMAT('— AT ('3D16+8:¢*yD16.89"3"+D16.8,"%) DEF =*,016.8," N2

. IRMAL MOMENT =%,D16.845X,13)
112 FORMAT{L1HO,4&4Xs 'TANGENTIAL MOMENT =',D16.8," TWISTING MOMENT =',0
116.8)
113 FORMAT('1 THE NORMAL AND RADIAL SLOPE AT SELECTED POINTS ALONG
_*" 1THE BOUNDARY OF THE LARGE CIRCLE') : _
114 FORMAT('0 AT (' ,D16+84%y%¢D1648,%+*:D16.8,") ~RSLOPE =',D16.8," X
~ 1SLOPE =',016.8,5X[3) .
116 FORMAT(' THE DEFLECTION AND MOMENTS AT POINTS IN THE SMALL CIRCL
© o 1EY)
117 FORMAT('1 THE NORMAL AND RADIAL SLOPE AT SELECTED POINTS ALONG
1THE BOUNDARY OF THE SMALL CIRCLE*)}

123 FORMAT{1F80.8) -
: K 1S THE NUMBER OF POIRTS MATCHED ON THE LARGE AND SMALL CIRCLE
PLUS TWICE THE NUMBER CF POINTS ON THE COMMON BOUNDARY

NE IS THE NUMBER OF EQUATIONS TO BE SOLVED

NCL IS THE NUMBER OF CCEFFICIENTS OF EACH TYPE IN THE LARGE CIRCLE
NCS IS THE NUMBER OF CCEFFICIENTS OF EACH TYPE INW THE SMALL CIRCLE
ML IS THE NUMBER OF POINTS MATCHED ON THE LARGE CIRCLE
. MS IS THE NUMBER OF POINTS MATCHED ON THE SMALL CIRCLE

MB IS THE NUMBER OF POINTS MATCHED ALONG THE COMMON BDUNDARY

kWWW IS THE DEFLECTION

TNM IS THE NORMAL MOMENT .

TTM IS THE TANGENTIAL MOMENT

TTWH IS THE TWISTING MCMENT

'RSLOPE IS THE RADIAL SLOPE

PSLOPE IS THE NORMAL SLOPE

K=30

NE=56

NCL=11

NCS=4

pL=20 "

MS=6

MB=2

NL=NCL-1

NS=NCS-1



NCLZ=NCL%*2

NZ2=(NCL%¥3)-1

ML2=HML*2

N3=(NCL#%4)-1

Ne=(ML*2) +1 .

N5=2 %ML +2 *MS ) ) .

No6=(4+NCL }-2

“ML1=ML+1

N7=ML+MS

NB8=4%NCL+2*NS

NI=N3+NS

N11=NB+NS

N12=NT+1

N13=NT+MB

Ni1&=NCL+1

N15=NCL2+1

«NCL3=NCL%*3

Nl16=H13+1

N17=N7-MB

N18=NCL*4

N19=N18+NS

N20=NB+]1

N21=N11+1

NZ22=NCLZ2-1

N23=N€L3-2

N24=N9-1

N25=N8-1

N26=N11-1

EPS=1.0D-14

READ(14123)(RI{I),I=1,4K}

READ{1,123)(AN(I) 4I=1,K)

READ(1,123}(ANR(I),1=N12+K)

LOWER CIRCLE — EQUATIONS IN MATRIX FOR DEFLECTION

DO 10 [=1,ML

R=RI(I)

T=AN({I)

E{l,1)=1.0

E(I4NCL2)=R%%*2

DD 10 N=1,NL

E(T N+ 1)=R*x=N¥DCOSIN*T)

E(IN+NCL)=R&*N*DSIN(N*T)

E(I 4 N#NCL2)=Rx&(N+2)*DCOS(N*T)
10 E(T,N+N2)=R%x& (N+2 ) *DSININ*T)

LOWER CIRCLE — EQUATIONS IN MATRIX FOR RADIAL SLOPE

DO 20 I=1,ML

R=RI(T1) '

T=ANI(1)

E(T+ML,1)=0.0

F(I+ML,NCL2)=2%R%%*2

DO 20 N=1,HL

EL14#MLyMFLI=N*RFENEDCOS(NET)

ECL4+ ML, NENCL)I=NFREFENFDSIN(NET )

32



20

30

40

50

60

70

33

E{I+ML,N#N(L’)—(N*Z)*R*4!\+2)*DCUQ(Q*T)
E{T+MLN+N2 )= (r42) %RXE(N+2)EDSTN(HET)
ZERD MATRIX ELEMENTS

Lo 36 1=1.,ML2

DO 30 N=N3,NE

E(I4N)=0.0

DO 40 [=N4,N5

DO 40, N=1,Nb

E(I,N})=0.0

UPPER CIRCLE — EQUATIONS IN MATRIX FOR DEFLECTION
DO 50 I=MLL1,NT :
R=RI{I)

T=AN(])

E(IT+MLyN3}=1.0

E{T+ML NB)=R*%2

B0 50 N=1,.NS
E(T+MLyN#+N3}=R*xN:DCOS(N%T}
E(T+MLyN+NI)Y=REENFDSIN(NFT }.
E([+ﬁL|N+N8}=R**(N+21*CCDS{N*T}
E(T+MLyN+NLL)=R¥=2[(N+2 ) #¥DSIN{A*T)

UPPER CICLE = EQUATIONS IN HAIRIX FUR RADIAL SLOPE
DO 60 I=ML1,NT .

R=RI{I)

T=AN{I)

E(I+NT4N31)=0.0

E(I+NT¢NB)=2%R%%2

DO 60 N=1,NS
E(I+NT7:N+N3)=N*=R&=¥N%=DCOS(N=T)
E(I+NTNENF)=N=R¥ZN=DSIN[(N%T)

E{I+NT, N+N83“1N+2}*R*v(N+Zl*DCUS{N*T)
E(T4+NT,NENLI) = (N42)%R#=% (N+2) *DSTHIN*T)
EQUATIONS IN MATRIX OF DEFLECTIU“ FOR LOWER CIRﬁLE ALONG THE
COMMON BOUNDARY

DO 70 I=N124N13

R=RI(I)

T=AN(I)

E(I+NT7:1}=1.0

E(T+NT NCL2)=R%%2

DO 70 N=1,4NL

E(T+NT N&1)=R&EXN*OCOS{N*T)
E(T+NTN+NCL)=RE=XNEDSININ%T])
E(T+NT7yN+NCL2 ) =REX[N+2)*DCOSIN*T)
E(T+NT N+N2)=R*=X{N+2 ) RCSIN(N*T)
EQUATIONS IN MATRIX OF NORMAL SLOPE FCR LOWER CIRCLE ALONG THE
COMMON BIUNDARY

DO 80 I=N12,N13

R=RI(I[)

T=AN{1)

TT=ANR(I)

E{I1+N13,11=0.0

ClT+H13,2)=DCOAS(T+TT)

CE(I4N13,N14)=DSIN(T+TT)
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E(I+N13,NCL2)=2%R*DCOSITT)
E(I+N13.N15}={Rt#z)*(2¢DCDS[T)*DCDS{TT1+DCDS(T+TT))
EtI+N13.NCL31=(R¢*2)*{Z#DSIN(T)*DCDS(TTJ+DSIN[T+TT}}

00 80 N=2,HNL

E{I+N13,N+11=N¢(R#*{N—1))*DCDS(N*T+TT1
E(I+N13,N+NCLJ=N*{R*#Ih—II)*DSIN(N*T+TT)
E{I+N13.V+NCL2}=IR**(N¥1))*(Z*DCDS(N¢T}#DCOS(TT)+N*DCDS{N*T+TT1}
E(I+N13.N+N2)=!R*#!N+l)}*!Z*DSIN(N*T1*DCDS(TF)+N*DSIN{N*T+TT)I
EQUATIONS IN MATRIX OF DEFLECTION FOR UPPER CIRCLE ALONG THE
CDMMON BJUNDARY '

DU 90 I=N161K

R=RI1({I)

T=AN(T)

E(I+N1T,N3}=-1.0

E(I+NLT7,N8)=—(R*%x2)

D0 90 N=1,NS

E{T#+N1T,N+N3)=—(R*¥EN*DCOS{N%XT)}

E{T+NLT {N+NI )= (R¥EEN=DSIN{N*T})

E(1+NL7,N+NB8)==(R&EX{N+2)¥DCOS(N*T))

ECI+NLT N4NLT ) == (REF (N+2) 2DS ININ%T))

EQUATIONS IN MATRIX OF NORMAL SLOPE FOR UPPER CIRCLE ALONG THE
COMMON BJUNDARY '

DO 100 I=N16,K

R=RI(T)

T=AN(I)

TT=ANR(I)

E(T+NT,N31=0.0

E(I+NT,N18)=DCOS(T+TT)

E(I+NT,N19)=DSIN(T+TT)

E(I4NT,NB)=2%R#DCOS(TT)
E(I¢NT,N20)=(R#%2)%(2%CCOS{T)#DCOS(TTI+DCOS{T+TT})
E{T+NT,N21)=(R¥%2} % {2%CSIN(T)*DCOS(TT}+DSINI(T+TT))

DO 100 N=2,NS -

ECI#NT,N&N3 )= (N*(R¥%(N-1) ) *DCOSIN%T+TT))

E(I+NT Nt NO) = (N4 (REE{N=1) ) *DSIN(N*T+TT})

E(T+NTyN+N8) = (R¥%(N+1)}#(2%DCOS (N*T)*DCOS(TT) +N*DCOS(N*¥T+TT)}) -
ECT4NT MENTLY=( (RE®(N+L) 1% {2%0S IN(NET }=DCOSITTI+NADSININXT+TT) )
BOUNDARY CONDITION — DEFLECTION AND SLOPE OF LOWER CIRCLE ZERD
DO 115 I=l.ML

R=RI(I)

BC(I)=—{R%%*4)

BCIT+ML)=={4&R%*4)

BOUNDARY CONDITION - DEFLECTION AND SLOPE OF UPPER CIRCLE ZERG
DO 120 I=ML1,N7

R=R1(1) _

BCU1+ML)=~[R¥%4) )

BCII+NT)== [4#R%%4)

BOUNDARY CONDITION ~ NCRMAL SLOPE ALONG THE COMMON BOUNDARY THE SAME
DO 125 I=N12,N13

R=RI(1} , :

TT=ANR{I) .

RR=RI (I+MB)
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TYT=ANR(I+MB}
125 BC(l+N13)=-(4*R*¢3*DCDS(TT}I—(4*RR**3*DCUS[TTTI3
BOUNUDARY CONDITION — DEFLECTION ALDNG COMMON BOURNDARY THE SAME
DO 126 1=H12,4N13
R=RI{1)
RR=RI{I+MB)
126 BCUI+NT7)=(RR¥*¥4}-(R¥%4)
J=0 .
DO 130 N=1sNLC
DO 130 I=1,NE
J=Jd+1
130 AL(J)=E(I,N)} ;
CALL DGELG(BC,Al+NEs1,EPS; IER]
WRITE(3,102)IER
WRITE(3,103)
Atl}y=8BCI(1}
B(1)=0.0
CI1)=BC(NCL2)
0(1)=0.0
U(1)}=BCI{N3)
Vil}=0.0
W(l)=BC(NB)
X(1}=0.0
DG 140 1=2,NCL
ACL)=BCI(I)
B(I)=BC{I+NL)
CLI)=BC(I+N22)}
140 O(1)=BCII+N23)
DO 141 I=2,NCS
UCT)=BC(I+N6)
VII)=BC(I+N24)
WIT)=BC(I+N25)
141 X{I)=BC(I+N26)°
DO 144 I=1,NCL
HRITE(3,104)}1,A[L)+I,C{I}
144 WRITE(3,105)1,8{I)+1I,D(1}
WRITE(3,106)
DO 150 I=1.NCS
WRITE(3,107)1,Ull},1,W(]) ,
150 WRITE(34108)1V(I)yl4X{I) .
CHANGE THE FOLLOWING CARD WHEN DIFFERENT NUMBERS OF PDINTS ARE USEUD
J=270
READ(1,101}(CRI(I),I
READ(L1,101){CAN{TI),1
READ({L,101)(CANRI(I},
WRITE(3,109} )
MM=1 _
CHANGE YHE ABOVE CARD IF MORE DIVISIONS IN THE RADIAL DISTANCES OF
THE LARGE CIRCLE ARE DESIRED. -
DO 61 K=1,MH ) o £
WRITE(3,110)K.MM
CHANGE THE FOLLOWING CARD WHEN DIFFERENT NUMBERS OF POINTS ARE usto
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00 T1 1=1,164
R=(CRI({TI}/MM)=K

- T=CANLI]

TT=CANR{I}
WHWH=REX4G+A{ 1) +C (1) *R*%2
DO 81 N=1,NL
hKWN=NNHH+(A(N+1}*R**N*ClN*l)*R**{N+2)}*DCOS(N*TJ+(B{N+1)*R**H*D[N
L4l ) HR%&(N+2) J=DSIN(N*T) i

CHANGE THE FOLLOWING CARD IF A DIFFERCNT POISSON'S RATIO IS BESIRED
VV=.33 ) . % )
TNV=C(11*2*[1+VV)+Cf2)*2*R*{2*(1+VV]*CCDS(T)+[1‘VV)* COSIT+#2%TT) )+
lD(Z)*Z*R*(Z*{I+VV)*DSIN(T’+(l—VV}*DSIN(T+Z*TT})+A(3)*{1-VV)*2*DCGS
1(2*T+2*TT)+E(3]*{1‘VV)*2*DSEN(2*T+2*¥T}+C{31*3*R**2*(2*(1+VV)*DCDS
1!2*T1+Z*(1‘VV|*DCDS[2*T+2*TT],+Df3)*3*R**2*[2*II+VV}*DSIN{2*7}+2*(
11—VV]*DSIN(2*T+2*TT}l+4*R**2*(2#(l+VV]+{l-VV)*DCOS‘Z*TT)}

DO 91 N=3,HL
TNH:TNM+A(N+1}*(I-VV}*N*{N-II*R**fN'ZI*ﬁCGS(N*T+2*TT)+B(N+1)*[1‘VV
L) &N [N-1} %R N-Z]*DSIN(N*T*Z*TT)+C[N+1l*(N+l)*R**N*{Z*(1+VV}*DCOS
l(N*T)+N*(l"VV}*DCUS(N*T+Z*TTli*U(N+l}*fN+1i*R**N*(Z*(l+VV)*DSIN(N*
1T)+N&{1-VVI*DSININ®T+2%TT) )

TNM=-{TNM/ [ 64.0))

THE NORMAL BENDING MOMENT SHOULD NOW BE MULTIPLIED BY Q%R¥*x%x2
TTHz—‘C{ll*{Z*(l+VVl1)*{C(Z)*Z*R*(Z*(1+VV)*DCUS(T]*(I—VV)*DCDS(T+2
I*TTI’)-(D(Z)*2*&*(2*{1+VV)*DSIN‘T’-(l-VV}*DSIN{T*Z*TT))}+A(3]*(1-V
1V}*2*DCUS(2*T+2*TT,*B{3)*(l*VV]*Z*DS[N[2*T+2*TT)"(C(3)*3*R**2*(2*(

'11+VVI*DCDSlZ*T)—{Z*{1-VV}*DCDS(2*T+2*TT))ll"(D{3l*3*R**2*{2*(1+VV)

151

15DSIN{2%T )= (2%{1-VV)*DSIN(2%T+2%TT)) ) )= (4¥R¥x2% (2% (1+VV)-{1-VVI*DC
105 (2%TT)) ) '

DO 151 N=3,NbL

TTH=TTM+A (N+1)%{1-VVIENE(N-1) %*R%=¥ {N-2)*DCOS{N&T+2%TT)+B(N+1) *(1-VV
LYENS (N-1) ¥R%% (N=2 ) ¥DS IN{NEXT+2%TT)~={C(N+1}# (N+1) *R&xN&{2¥{1+VV) *DCO
1S{N*¥T) = (N®{1-VV)®DCOSIN#T4+2%TT}) })=(DIN+L) ¥ (N+1)*R&XN* (2% L+VV)*DS
LIN(NET)=(N*=(1-VV)I*DSIN(N*T+2%TT) ))) .

TTM=TTM/{64.0)

TTHM=C(2) *2%R&DSIN(T+24TT I -(D(2)} #2%¥R*DCOS{T+2%TT) ) +A(3}#2xDSIN(2%T
1424TT)=(B(3)%2%DCOS{2%T+2%TT) J4C (3 ) #2*3¥R*F24NDSIN(2*T+25TT) - (D(3} ¥
12%3%R**25DCOS(2%T+2%TT) ) +4¥R*¥2£DSINI2%TT)

DO 161 N=3,NL ‘

161 TTWM=TTRM+A(IN+L)ENS (N=-1}%R&&(N-2)¥DSIN(NFT+2%TT)=(BIN+1}*N*(N-1)%R

71
61

1% (N-2)%DCOSIN*T+245TTI 1 +CIN+ LY NH{ N+ L) #REENEDSININST+2%TT)I - (D(N+ 1]}
1N (N+L ISR FN*DCOS (N*T+2*TT) )

TTWH=({(1-VV)*TTHH) /(64.0)

WRITE(34111)RsTyTT Wby TNM,I

WRITE(3,112)TTM,TTKHHM

CONTIRUC .

KRITE(3,113)

CHANGE THE FOLLOWING CARD WHEN DIFFERENT NUMBERS OF POINTS ARE USED
DO 121 I=1,88

R=CRI(1)

T=CANL[I}

TT=CANR(I)
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RSLUPF=2*C(ll*R+hlE)*UCOS{T)+B{2)*DSIN!T)+C{2)*3*R**2*DCUS{T}+D{2}
L#3FREAXZENDSTH(T ) +4%R**]
DO 131 N=2,NL ' . -

131 RSLUPEzRSLDPE+A{N+l)*N*R**{H—1J*DCDS{N*T)+B{N+IJ*N*R**IN-1)*DSTH(H
1¢T}+C(N+ll*(N+2]*R**(N+1)*DCDSIN*T1+D(N+1!*(N+2!*R**(N+1)*DSIN(N#T
1)

PSLOPE=4*R**3*UCUS{TT1+C{1l*R*Z*DCUS(TT)+A(2!¢DCUS(T+TT)+B[2]*0511
1(T+TT)*C(2)*R**2*(2*DCOS(T}*DCDS{TT)+DCOS(T+TT)]+D(2)*R**2*(2*DS{N
LITI1:DCOSITT)I+DSIN(T+TT))

DO 143 HN=2.NL

143 PSLOPE=PSLOPE+A[N+1)*N*R**(N—ll*DCOS[U*T+TT)+B(N+1)*N*R**IN-I)*DSI
lNIN*T+TT)+C(H+1)*R**(N+1)*(Z*DCOS(N*T)*DCUS{TT)+N*DCOS(N*T+TT}lth
IN#1)SREE(N+L) % (2DSIN(NET ) *DCOSITT ) #N*#DSIN(N*T+TT))

121 WRITE(3,114)R,T,TT,RSLCPE,PSLOPE,!

THE DEFLECTION, RADIAL SLOPE, NORHMAL SLOPZ, AND MOMENTS AT SELECTED

POINTS OF THE SMALL CIRCLE ARE DETERMINED HERE

WRITE(3,116)

LL=1 : :

CHARGE THE ABOVE CARD IF MORE DIVISIONS IN THE RADIAL DISTANCES OF

THE SMALL CIRCLE ARE DESIRED.

DO 62 K=1,LL

WRITE(3,1101K,.LL '

CHANGE THE FOLLOWING CARD WHEN DIFFERENT NUMBERS OF POINTS ARE USED

DO 72 1=165,J ' :

R={CRI(I)/LLI*K

T=CAN(I}

TT=CANR(I)

CWWWH=R*%4+U( L) +H (1) *¥R%x2

DO 82 N=1,NS

82 hHHH=HNHH+[UiN+1)*R**N+N(N+1)fR**(N+2))*DCGS{N*T}+lV(N+1)*R#*N+X(N
14#1) #R&% (N+2) ) #DSININ%T) ' ’

TNH=H(11*2*(1fVV)+Hi2)*2*R*(2*11+VV}*DCUS(T)+{1—VV)*DCGS(T+2*TT)1*
IX(Zi*Z*R*(?*(1+VV)*DSIN(T)+[1—VV)*DSIN1T+2*TT))+U(3}*(1-VV)*2*DCOS
1(2*T+2*TT}+V(3)*(1-VV1*2*OSIN[2*T+Z*TTl+w(3l*3*R**2*{2*(1+VV1*DCGS
L(2%T)+2%( 1-VV)£DCUST25T+2%TT) ) # X (3 ) *3%R*= 2% (2« (1+VV)*DSIN(2*T) +2%I(
11-VV)#DSIN(2%T+2%TT) +4%xR¥ 2% (2% (1 +VV)+(1-VV)%#DCOS(2*TT))

DO 92 N=3,NS ' ; ' . :

92 fNM=TNM+J(N+l)*(1—VV}¢N*(N—1)*R**{N—Zi*DCDS(N*T+2*TT)+V(N+ll*l1—VV
11¢N*IN—1)*R**(N—Z)*DS[&lN*T+2*TT)+H(N+1)*(N+ll*R**N*(2*{1+VV!*DCUS
llN*T}4N*(l-VVl*DCUS(N*T+2*TTI)+X(N+1}¢IN+1}*R##N*(Z*II+VV)*DSININ*
IT)4N*(L-VVI*DSIN(N&T+2%*TT) )

TNM==(TNM/ (64.0))

TTH=—1H(1)*!2*(1+VV)))-(H{E)*Z*R*{Z*[1+VV,*DCUS[T)-[l—VVi*DCUS(T+2
I*TTl}l-lx(El*Z*R*lz*l1+VV}*DS[N(T)—(I—VV}*DSIN{T+2*TT)l}+U(3)*(1—V
IV S2%DCOS (2%T+2%TT)+VI(3) £ (1-VVI*2&DSIN(2%T+25TT)-(H(3) *3Rxx2%( 2%
11+VV)¢DCDS[2*TJ“(2*II-VV)*DCUS(Z*T+2*TTlJI}-(X(3)*3*R**2*l2*[1+VV1
1*DSiN(2*Tl*i2*(l—VV)*DSINlZ*T*E*TTl1})*(Q*R**Z*IZ*(1+VV)—{1-VV)*DC
105(2¢T7)) )

DO 152 N=3,NS :

152 TTM=TTH+U{N+ 1) &{I=VV)ENE(N-1) $R&&(N-2)*DCOS INF#T+2¢TT)+V(N+1) ¥ (1-VV
LYANE (N=1) #R&% (N=2)%DSININ*T+2*TT)=(WIN+1) & (N+ 1) #REENX( 21 +VV)*DLO
LSINET )= (N®(1-VV)EDCOSINET+25TT)) ) )= (X(N+L) e (N+1) &R ®&H&(2%( L+VVI DS
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FIN(N&ET)={H*{ 1-VVI*DSIN(N&T+2%¥TT))})

TTM=TTM/{64.0)

TTHE=H(2) ¥2%REDSIN(T+2%TT)— (X (2) ¥2%R*0COS(T+25TT) Y +U (3} #2¥DS Tt 2T
L42%TTI={V(3) k24DCOS (2% T+#25TT) )4 W (3 ) ¥2¥J*R&E2LDSIN(2¥T+2¥TT )~ (X (3} *
124346R&%24DCOS (2%T+25TT ) )+ 4¥R¥¥2EDSIN(2%TT)

DD 162 N=3,NS :
162 TTWM=TTWM+UCN+L ) EN® (N=1 ) %R¥& (N-2 ) 3DS TRINFT #25T T )= (VN4 1 )3NH(N=1)*R
1**(N*2)*DCDSlN*T+2*TT})+H(N+l)*N*{N+1)*R*#N#DSIN(N#T+2*TT)—{X(N+11

ENE(+L)*RF*FENADCOS INAT+2%TT})

TTWE={(1=-VV)&TTHUM) /(64.0)

WRTI (3, 1L10R,T,TT yHlikhy TNM,I

72 HRITI(3,112)TTM, TTWM
62 CONTINUE
. WRITE(3,117) ' :

CHANGE THE FOLLOWING CARD WHEN DIFFERENT NUMBERS OF POGINTS ARE USED

DO 122 1=165,238 3

R=CRII(T)

. T=CAN(I)

TT=CANR{I)

RSLOPE=2&W (1) #R€U{2)1%DCOS(TI+V{2)EDSTHIT) #W(2) %3 %R #%25DCOSITI+X(2)
1¥3%R &= 2EDSIN( T +4%R¥%3

PO 132 N=2,NS : : :

132 RSLOPE=RSLOPE+U (N+1)#N#R%%* (N—1)*DCOS (N*T} +V(N+L)#N*R*#(N-11*DSININ
1T )41 (N+1) % (N+2) %R %% (N+ 1) EDCOSINHT) + X (N+ 1) = (N+2 PR *®={N+ L) ¥DSIN (N*T
1) ’ :

PSLOPE=4*R&%x3xDCOSITT)I+W (L) *¥R*2#DCOS(TT)+U(2)=DCASIT+TTI+VI2)*DSIN
LITHTT)+W(2) #R&%2% (25DCCS{T) #DCOS(TT)+DCOSITHTT) J+X (2)#R*%2*{2*DSIN

L{T}*DCOS(TT)+DSIN(T+TT)) '

DG 142 N=2,NS _

142 PSLOPE=PSLOPE+U (N+1)&N%R#%%x(N-1)*DCOS (N*T+TT)+V{N+1)EN¥R¥F(N-1)*DSI
__1N[H*T+TT)+w{N+1)*R**tN+1}*(Z*DCOS(N*T}*DCUS(TT}+N*DCDS(N*T+TT))+X(
IN+L I ERE#(N+L) = (2%DSININTI*DCOS(TT ) +N*DSIN(N*T+TT) )
122 WRITE(3,11&4)R,TTT4RSLCPE,PSLOPE, I .
. STOP -
END
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=

WOV DW=

r

1.58823490
1.56944847
1.51405334
1.42356110
1,263€2896
1.12C99552
1.03€663349
1.C0CO0CCO
1.COCCCCCO
1.0000C000
1.C0CCGCCO
l.C0CCCCCC
1.C0C00CCO
1.00C00000
1.COCCCCCO
1.00cCCCCCC
1.00C00000
1.C0CcCCOCO
1.CCCCCCCO
1.0000C000
1.00CCCOCO
1.CCCCO0CO
1.000C00CO
1.0000G000
1.C0C0CCCO
l.CCCcCCCo
1.00CC00C0

1.00000000

1.COCCCO00
1.C0OCCGCCO
1.00000000
1.00CCCOCO
1.398C4935
1.49478626
1.55895138

CASE I

0.0

0.09199873
0.17994565
0.26009887
0.39429474
0.58313787
0.78539937
1.052042C1
1.30859906
1.57079983
1.74532986
1.51985989
2.09439945
2.26892948
2.44345951
2.€1798954

2.87978335

3.05432987
3.22885513
3.40339565
3.57792568
3.75245571
3.92698574
4,18878937
4,45058537
4.62512589
4,79965591
4,97418594
5.,23568957
5.49798584
5.75958920
-0.36044776
~0.27680981
-0.20076752
-0.11453408

0.0

0.25706393
0.51818699
0.79194361
0.657T741769
0.46890461
0.26664245

[ ] [ ] - L ) (] L] [ ] L ] ® [ ] - L] a L [ ] . [ ] L] [ ]

0000000 OoO0O0O0O0OO0COO0O0OOCOOQO

OO0 0DOoCO0O0CO0O0O0LODODODDOO0O00OO0O

0.0
-0.85765344
-0.584625178
-0.32179922
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L]

OO0 = DN e

r

1.58823490
1.56944847
1.51405334
1.42356110
1.26362896
1.12099552
1.03£663349
1.00CCCQ00
1.0C00C3C0O
1.000GCCCO
1.00CG00000
l1.c0Ccocoo
l1.CQCCOcCe
1.0000C000
1.C0COCCGO
1.C0CCCCCC
1.C0COCCCO
1.000C0000
1.0CCGCCCC
1.00CCQACCO
1.00000000
1.00CCCCCC
l.CCCCCCCO
1.COCCCCCC
1.0000C000
1.Cc0CcCCQcCO
1.COCCCOCO
1.60C00CCO
1.G0ccCoco
1.00CCCOCO
1.co0CCCCCO
1.00000000
1.39804935
1.49478626
1.55895138

CASE 11

0.0
0.09199870
C.17954565
0.26CC988E7
0.39429474
0.58313787
C.78539997
1.052042C1
1.30859906
1.57C679983
1.74532986
1.91985989
2.09439945
2.26892948
2.44345951
2.61798954
2.87978935
3,05432987
3.22885513
3.40339565
3.57792568
3.75245571
3,92698574
4.,18878937
4.45058537
4.62512589
4.79965591
4.97418594
5.23598957
5.49798584
5.75958920
~-0.36044776
-0.27680981
~-0.2C076752
~0.11453408

-

COoO00000DOCDO0O0O0O0OODOOOODOOCO0O0O0COOO0O0O0
CO0CD0DO0O0OO0OOOQ0OOLOO00O0OCOOO0O0COOCOOOODOQO0OO

e & ® % ® ® ® & ® 8 ®F e » W @ W & 9 € @ @ PP e B P B @ & b € e @ ¢ 2
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e

W= O N

r

1.58823490
1.56944847
1.51405334
1, 42356110
1.26362896
1.12099552
1.03€63349
l.CcocCCCCC
1.G0CCCCLO
1.C0C0CQC0
1.00CGCCCC
1.00CCCOCO
1.00000000
1.COCCCCCO
l.CGCCCQCC
1.00C0GC0CO
1.0000C000
1.C0CCCCCO
1.CCCCCCCO
1.00000000
l.CoCCcCocCo
1.C0C0OCCCC
1.0000C0CO

' 1.00000000

1.C0CCCCCO
1.CCCCCCCO
1.00CCCOCO
1.000C00G0
L.COCCCCCO
1.CO0CCO0CO
1.00000000
1.13324451
1.39804935
1.49478626

1.55895138

CASE III

0.C
0.0919987¢C
0.1799456>
0,260G98687
£.39429474
0.58313787
0.78539997
1.C52042C1
1.30859506
1.57079983
1.74532986
1.51985989
2.09439945
2.26B92948
2.44345951
2.€£1798954
2.87978935
3.05432987
3.22885513
3.40339565
3.57792568
3.752455171
3,92698574
4,18878937
4,45058537
4.62512589
4,76965591
4.,97418594
5.23568957
5.49798584
5.75958920
-0.36754555
-0.27680G61
~-0.20076752
-0.11453408

0.0

0.25706393
0.51818699
0.79194361
0.65774769
0.46890461
0.26664245

- - L] L] - - [ ] [ ] [ ] - [ ) [ - L] [ ] L] L ] L] L]

OO0 O0OVOOCOCODODOO0O0O0O00O00O00O00C

0000000000000 O0O0O0O0O

0.0
-0.85765344
-0.58462578
-0.32179922

42



o=k

OO -dOWN D WN

r

1.58823450
1.56944847
1.51405334
1.42356110
1.26362896
1.12099552
1.03€663349
1.00CC0CCO
1.00C00000
1.C0COCCCO
1.00C0GCCO
1.00C0C000
1.06CCCCCO
1.C0CCCCCO
1.00CCCCCO
1.00000000
1.CGCCCO00
1.€0C0CCCO
1.C0C0GCO00
1.000CCCOC
1.00COCCCO
1.00CCCCCO
1.00000000
1.CCCOGCCO
1.CCCCCCCO
1.00CCCOCO
1.00006000
1.C0C0C00C
1.00CCCCCO
1.03663349
1.12099552
1.26362896
1.42356110
1.51405334
1.56944847

CASE IV

¢.C
0.091998730
0.179G45¢5
0.260C9E87
0.39429474
0.58313787
0.785359G7
1.C52C42C1
1.308999C6
1.5707G9€3
1.74532986¢
1.9198598%
2.09433945
2.26892648
2.44345G651
2.61798954%
2.87978935
3.C5432987
-3.C5432987
-2.87978935
-2.€1738954
—2.44345951
—-2.268929348
—2.09433945
-1.51985984
-1.74532986
-1.57079983
-1.30899%0C6
-1.052042C1
-0.78539997
-0.58313787
=0.39429474
-0.26009887
=-0.179945065
-0.C9199817C

0.0

0.25706393
0.51818699
0.79194261
0.6577476%
0.46890461
0.26664245

[eNeolleNololofolajoReNoRleoloNoRoNoNeNoloNe Nl o
. . [ ) - [ ] L] L] L a [ ] - [ ] L] L] L] L L] L] [ ] *
loNollosNolsfoNoNoReloBoleNoloNoNoNolNeoNe Ro e

-0.26664245
-0.46890461
-0.65774769
-0.79194361
-0.518186%99
-0.25706393
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==

0~ PN

r

1.5882349C
1.5589513¢E
1.49478626
1.39804935
1.C0CCCCCC
1.CCCCGCCO
1.COCCCCC0
1,00CC0000
1.C0CCCCOO
l1.C0CCcCCOO
1.000C0000
l.C0CCCCCO
1.C0CcCCCCe
1.C0000C00
l1.GCCCceeco
1.C0CCCCCO
l1.C0CCCOoCO
1.00000000
l1.Co0CcCoCC
1.00C0C0CO
1.00000000
1.0CCCCCCO
l1.cococcco
l.GCccCcooo
1.C0C0OC000
l.CCCOCOCOC
1.00CCCOGCO
1.00000000
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In this report the method of point matching is appiied to the analysis
of a plate of irregular geometry. Both single and double poles of expansion
are used and the advantages and disadvantages of each method are investigated.
Also, a comparison is made between the accuracy obtained for symmetric cases
and unsymmetric cases. The results of this report show that in order to
obtain reasonable results for irregular cases, a sufficiently large number
of collocation points must be used and the points must be equally spaced
according to arc length. The results also show that considerably less accuracy
can be expected when working with completely unsymmetric shapes than when work-
ing with relatively uniform symmetric shapes. A multiple-pole scheme is sug-
gested whenever an irregular shape can be separated into more uniform regular
shapes. The investigation of the addition of thé least squares technique to the

point matching method is recommended for further research.



