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1 Introduction

A theory of wave scattering by many small bodies embedded in a bounded domain
D filled with a material with known refraction coefficient was developed in Ramm
(2007a, 2007b, 2008a, 2008b). It was assumed in Ramm (2007a) that

d = O(a1/3), M = O(a−1),
∂uM

∂ν
= ζmuM on Sm, 1 ≤ m ≤ M,

where a is the characteristic size of the small particles, d is the distance between two
neighbouring particles, M is the total number of the embedded particles, Sm is the
boundary of mth particle Dm, ν is the unit normal to Sm directed out of Dm, and
ζm = hm/a, where hm, Imhm ≤ 0, 1 ≤ m ≤ M , are constants independent of a.

Let us assume that D is filled with a material with known refraction coefficient
n2

0(x), Imn2
0(x) ≥ 0, n2

0(x) = 1 in D′ := R
2\D, n2

0(x) is Riemann integrable.
The governing equation is

L0u0 := [� + k2n2
0]u0 = 0, in R

3, (1)

u0 = exp(ikx · α) + v0 (2)

where k is the wave number, α ∈ S2 is the direction of the incident plane wave, S2 is
the unit sphere in R

3, and v0 is the scattered field satisfying the radiation condition

lim
r→∞

r

(
∂v0

∂r
− ikv0

)
= 0 r := |x| → ∞, (3)

and the limit is attained uniformly with respect to the directions x0 := x/r.
Let n2(x) be a desired refraction coefficient in D. We assume that n2(x) is

Riemann integrable, Imn2(x) ≥ 0, n2(x) = 1 in D′. Our objective is to create
materials with the refraction coefficient n2(x) in D by embedding into D many small
non-intersecting balls Bm, 1 ≤ m ≤ M , of radius a, centred at some points xm ∈ D.
If one embeds M small particles Bm in the bounded domain D, then the scattering
problem consists of finding the solution to the following problem:

L0uM := [� + k2n2
0]uM (x) = 0 x ∈ R

3\ ∪M
m=1 Bm, (4)

∂uM

∂ν
= ζmuM on Sm := ∂Bm, 1 ≤ m ≤ M, (5)

uM = u0 + vM , (6)

where u0 solves problem (1)–(3), and vM satisfies the radiation condition.
The following theorem is proved in Ramm (2008b) under the assumptions

ζm = h(xm)/aκ, d = O(a(2−κ)/3), M = O
(
1/a2−κ

)
, κ ∈ (0, 1), (7)

where h(x) is a continuous function in D, Imh ≤ 0, κ ∈ (0, 1) is a parameter,
and one can choose h(x) and κ as one wishes. Below it is always assumed that
conditions (7) hold.

Theorem 1.1 (Ramm, 2008b): Assume that conditions (7) are satisfied, and Dm is
a ball of radius a centred at a point xm. Let h(x) in (7) be an arbitrary continuous
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function in D, Imh(x) ≤ 0, ∆p ⊂ D be any subdomain of D, and N (∆p) be the
number of particles in ∆p,

N (∆p) =
1

a2−κ

∫
∆p

N(x)dx[1 + o(1)], a → 0, (8)

where N(x) ≥ 0 is a given continuous function in D. Then

lim
a→0

‖ue(x) − u(x)‖C(D) = 0, (9)

where

ue(x) := u0(x) − 4π

M∑
j=1

G(x, xj)h(xj)ue(xj)a2−κ[1 + o(1)], a → 0, (10)

where minj |x − xj | ≥ a, and G(x, y) is the Green function of the operator L0 in
R

3, L0G = −δ(x − y) in R
3, G(x, y) satisfies the radiation condition. The numbers

ue(xj), 1 ≤ j ≤ M , are found from the following linear algebraic system:

ue(xm) = u0(xm) − 4π

M∑
j=1,j �=m

G(xm, xj)h(xj)ue(xj)a2−κ,

m = 1, 2, . . . , M, (11)

which is uniquely solvable for all sufficiently large M . The function

u(x) = lim
a→0

ue(x)

solves the following limiting equation:

u(x) = u0(x) −
∫

D

G(x, y)p(y)u(y)dy, (12)

where u0 satisfies equations (1)–(3),

p(x) := 4πN(x)h(x), (13)

n2(x) := 1 − k−2q(x), (14)

q(x) := q0(x) + p(x), q0(x) := k2 − k2n2
0(x), (15)

and n2
0(x) is the coefficient in (1).

In Ramm (2008b) a recipe for creating material with a desired refraction coefficient
is formulated.

The goal of this paper is to implement numerically the recipe for creating
materials with a desired refraction coefficient in a given domain D by embedding in
D many small particles with prescribed physical properties. These particles are balls
of radius a, centred at the points xm ∈ D, and their physical properties are described
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by the boundary impedances ζm = h(xm)/aκ. A formula for embedding the small
balls in D is given in Section 2.

We give an estimate for the error in the refraction coefficient of the medium
obtained by embedding finitely many (M < ∞) small particles, compared with the
refraction coefficient of the limiting medium (M → ∞). This is important because
in practice one cannot go to the limit M → ∞, i.e., a → 0, and one has to know
the maximal a (i.e., minimal M ) such that the corresponding to this a refraction
coefficient differs from the desired refraction coefficient by not more than a given
small quantity. In Section 3 we give an algorithm for finding the minimal number M
of the embedded small balls which generate a material whose refraction coefficient
differs from a desired one by not more than a desired small quantity. In Section 4
some numerical experiments are described.

2 Embedding small balls into a cube

In this section we give a formula for distributing small balls in a cube in such a way
that the second and third restrictions (7) are satisfied.

Without loss of generality let us assume that the domain D is the unit cube:

D := [0, 1] × [0, 1] × [0, 1]. (16)

Let

D = ∪n3

q=1∆q, n ∈ N, ∆i ∩ ∆j = ∅ for i �= j, (17)

where N is the set of positive integers, X is the closure of the set X , and ∆q,
q = 1, 2, . . . , n3, are cubes of side length 1/n.

Definition: We say that D has property Qn if each small cube ∆q contains a ball of
radius an, 0 < an < 1/n, centred at the centroid of the cube ∆q, and the following
condition holds

dn := min
q �=j

dist(Ban(xq), Ban(xj)) = γa(2−κ)/3
n , (18)

where xq is the centroid of the cube ∆q, q = 1, 2, . . . , n3,

Ba(x) := {y ∈ R
3 | |y − x| < a}, (19)

and γ > 0 is a constant which is not too small (see formula (25)).

From (17) and (18) one gets

dn = ln − 2an = γa(2−κ)/3
n , ln := 1/n. (20)

Since ln = 1/n, the quantity an solves the equation

γa(2−κ)/3 + 2a − 1/n = 0. (21)
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The function f(a) := γa(2−κ)/3 + 2a is strictly growing on [0,∞). Thus, the solution
to equation (21) exists, is unique, and can be calculated numerically, for example,
by the bisection method.

However, it is easy to derive an analytic asymptotic formula for an as n → ∞.
This formula is simple and can be used for all n we are interested in, since these
n are sufficiently large.

Let us derive this asymptotic formula. Since 1/3 < (2 − κ)/3 < 2/3, one has
a
 a(2−κ)/3 if a 
 1. Therefore,

an = [1/(nγ)]3/(2−κ)[1 + o(1)], as n → ∞, (22)

is the desired asymptotic formula for the solution to (21). Note that

lim
n→∞

an = 0 and lim
n→∞

nan = 0, (23)

as follows from (22) because 3/(2 − κ) > 1.
Note that an/dn 
 1, if n � 1, because (20) yields

an/dn = an/(γa(2−κ)/3
n ) = a(1+κ)/3

n /γ 
 1. (24)

Let us choose n sufficiently large so that

γ � (ln/2)(1+κ)/3, κ ∈ (0, 1), ln = 1/n, (25)

and make the following assumption:

Assumption A): The domain D has property QmP .
This assumption means that the following conditions are satisfied:
D = ∪P 3

q=1Ωq, Ωj ∩ Ωi = ∅ for j �= i, where each cube Ωq has side length 1/P ,
and m3 small balls are embedded in Ωq so that the following two conditions hold:

1 Each cube Ωq is a union of small sub-cubes ∆j,q:

Ωq = ∪m3

j=1∆j,q, ∆i,q ∩ ∆j,q = ∅ for i �= j, (26)

where ∆j,q, j = 1, 2, . . . , m3, q = 1, 2, . . . , P 3, are cubes of side length
1/(mP ),

2 In each sub-cube ∆j,q there is a ball of radius amP , 0 < amP < 1/(mP ),
centred at the centroid of the sub-cube ∆j,q, and the radius amP of the
embedded balls satisfies the relation

1/(mP ) − 2amP = γa
(2−κ)/3
mP , γ � [1/(2mP )](κ+1)/3, (27)

where γ > 0 is a fixed constant.

Lemma 2.2: If Assumption A) holds, then

lim
m→∞

Ma2−κ
mP = 1/γ3, (28)



Creating materials with a desired refraction coefficient 81

where M = (mP )3 is the total number of small balls embedded in the unit cube D,
γ > 0 is fixed, and

amP = [1/(γmP )]3/(2−κ)[1 + o(1)] as m → ∞. (29)

Proof: Relation (29) is an immediate consequence of (27). Using this relation, one
obtains

lim
m→∞

Ma2−κ
mP = lim

m→∞
(mP )3a2−κ

mP

= lim
m→∞

(mP )3 [1/(γmP )]3[1 + o(1)]

= lim
m→∞

(1/γ3)[1 + o(1)] = 1/γ3. (30)

Lemma 2.2 is proved. �

3 A recipe for creating materials with a desired refraction coefficient

In this section the recipe given in Ramm (2008b) is used for creating materials with a
desired refraction coefficient by embedding into D small balls so that Assumption A)
holds.

Step 1: Given the refraction coefficient n2
0(x) of the original material in D and the

desired refraction coefficient n2(x) in D, one calculates

p(x) = k2[n2
0(x) − n2(x)] = p1(x) + ip2(x), (31)

where

p1 := Re p(x) and p2(x) := Im p(x).

Choose

N(x) = 1/γ3, (32)

where γ is the constant γ in Assumption A).

Step 2: Choose

h(x) = h1(x) + ih2(x), (33)

where the functions h1(x) and h2(x) are defined by the formulas:

hi(x) = γ3pi(x)/(4π), i = 1, 2, (34)

and the functions pi(x) are defined in Step 1.

Step 3: Partition D into P small cubes Ωp with side length 1/P , and embed m3 small
balls in each cube Ωp so that Assumption A) holds.
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Then

N (Ωp) =
1

a2−κ
mP

∫
Ωp

N(x)dx = |Ωp|/(γ3a2−κ
mP ) = 1/

[
γPa

(2−κ)/3
mP

]3
, (35)

where N (∆p) is the number of the balls embedded in the cube Ωp, κ ∈ (0, 1), amP

is the radius of the embedded balls, and |Ωp| is the volume of the cube Ωp.
Since

amP = [1/(mγP )]
3

2−κ [1 + o(1)] as m → ∞,

it follows that

lim
m→∞

N (Ωp)
m3 = 1. (36)

By Assumption A) the balls are situated at the distances γa
2−κ

3
mP , γ > [1/(mP )]

1+κ
3 .

Therefore, all the assumptions, made in Theorem 1.1, hold. Thus,

max
x∈D

|ue(x) − u(x)| → 0 as M → ∞, (37)

where ue(x) is defined in (10) and u(x) solves (12). Let us assume for simplicity that
n2

0(x) = 1, so that

G(x, y) = g(x, y) := exp(ik|x − y|)/(4π|x − y|).

Then

ue(x) = u0(x) − 4π

M∑
j=1

g(x, xj)h(xj)ue(xj)a2−κ
mP , |x − xj | > amP ,

M := (mP )3, (38)

and the limiting function

u(x) = lim
M→∞

ue(x)

solves the integral equation

u(x) + Tu(x) = u0(x), (39)

where

Tu(x) :=
∫

D

g(x, y)p(y)u(y)dy, (40)

g(x, y) := exp(ik|x − y|)/(4π|x − y|), (41)
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M := (mP )3, h(x) = h1(x) + ih2(x), hi(x), i = 1, 2, are defined in (34),

p(x) = k2[n2
0(x) − n2(x)] = 4π[h1(x) + ih2(x)]N(x)

= 4π[h1(x) + ih2(x)]/γ3, (42)

and the function u0(x) in (38) solves the scattering problem (1)–(3).
It follows from (37) that

max
1≤l≤M

|u(xl) − ue(xl)| → 0 as M → ∞, (43)

where ue(x) and u(x) are defined in (38) and (39), respectively. Here and throughout
this paper D := ∪M

j=1Dj , M := (mP )3, Dj (j = 1, 2, . . . , M ) are cubes with the side
length 1/(mP ), Dj ∩ Dl = ∅ for j �= l, and xj denotes the centre of the cube Dj .
In the following paragraphs we derive the rate of convergence in (43). We denote

‖u‖∞ := sup
x∈D

|u(x)| and ‖v‖CM := max
1≤j≤M

|vj |, v :=




v1
v2
...

vM


 ∈ C

M ,

where C is the set of complex numbers.
Consider the following piecewise-constant function as an approximate solution

to equation (39):

u(M)(x) :=
M∑

j=1

χj(x)uj,M , (44)

where uj,M (j = 1, 2, . . . , M) are constants and

χj(x) :=
{

1, x ∈ Dj ,
0, otherwise.

(45)

Substituting u(M)(x) for u(x) in (39) and evaluating at points xl, one gets the
following Linear Algebraic System (LAS) which is used to find the unknown uj,M :

ũ(M) + Td,M ũ(M) = u0,M , (46)

where Td,M is a discrete version of TM , defined below,

ũ(M) :=




u1,M

u2,M

...
uM,M


 ∈ C

M , u0,M :=




u0(x1)
u0(x2)

...
u0(xM )


 ∈ C

M , (47)



84 S.W. Indratno and A.G. Ramm

u0(x) solves problem (1)–(3), and

(Td,Mv)l :=
M∑

j=1

∫
Dj

g(xl, y)p(y)dyvj , l = 1, 2, . . . , M, v :=




v1
v2
...

vM


 ∈ C

M .

(48)

Multiplying the lth equation in (46) by χl(x), l = 1, 2, . . . , M, and summing up over
l from 1 to M , one gets

u(M)(x) = u0,(M)(x) − TMu(M)(x), (49)

where u(M)(x) is defined in (44),

u0,(M)(x) :=
M∑

j=1

χj(x)u0(xj), (50)

and

TMu(x) :=
M∑

j=1

χj(x)
∫

D

g(xj , y)p(y)u(y)dy, M = (mP )3. (51)

It was proved in Ramm (2009) that equation (49) is equivalent to (46) in the sense
that {uj,M}M

j=1 solves (46) if and only if function (44) solves (49).

Lemma 3.1: For all sufficiently large M equation (46) has a unique solution, and
there exists a constant c1 > 0 such that

‖(Id,M + Td,M )−1‖ ≤ c1, ∀M > M0, (52)

where M0 > 0 is a sufficiently large number.

Proof: Consider the operators T and TM as operators in the space L∞(D) with the
sup-norm. Let ‖(T − TM )u‖∞ := supx∈D |(T − TM )u(x)|. Then

‖(T − TM )u‖∞ ≤ max
i

sup
x∈Di

M∑
j=1

∫
Dj

|(g(x, y) − g(xi, y))p(y)u(y)| dy

≤ ‖u‖∞‖p‖∞ max
i

sup
|x−xj |≤ 1

mP

M∑
j=1

∫
Dj

|g(x, y) − g(xi, y)|dy

≤ O(1/(mP )). (53)

This implies

‖T − TM‖ = O(1/(mP )) = O(1/M1/3) → 0 as M → ∞. (54)
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The operator I + T is known to be boundedly invertible if k > 0, so

‖(I + T )−1‖ < c,

where c > 0 is a constant. Therefore,

I + TM = (I + T )[I + (I + T )−1(TM − T )]. (55)

By (54) there exists M0 such that

‖(I + T )−1(TM − T )‖ ≤ c‖TM − T‖ < δ < 1, ∀M > M0, (56)

where δ > 0 is a constant. From (56) we obtain, ∀M > M0,

‖[I + (I + T )−1(TM − T )]−1‖ ≤ 1
1 − ‖(I + T )−1(TM − T )‖ ≤ 1/(1 − δ). (57)

Therefore, it follows from (55) that I + TM is boundedly invertible and

(I + TM )−1 = [I + (I + T )−1(TM − T )]−1(I + T )−1, (58)

so there exists a constant c0 > 0 such that

‖(I + TM )−1‖ ≤ c0, ∀M > M0. (59)

Since (49) is equivalent to (46), it follows that the homogeneous equation

v + Td,Mv = 0

has only trivial solution for M > M0, i.e., N (Id,M + Td,M ) = {0} for M > M0,
where N (A) is the nullspace of the operator A, Id,M is the identity operator in C

M

and Td,M is defined in (48). Therefore, by the Fredholm alternative equation (46)
is solvable for M > M0. This together with (59) yield the existence of a constant
c1 > 0 such that

‖(Id,M + Td,M )−1‖ ≤ c1 for M > M0.

Lemma 3.1 is proved. �

Define Td : C2(D) → C
M as follows

(Tdw)l := (Tw)(xl) =
M∑

j=1

∫
Dj

g(xl, y)p(y)w(y)dy, l = 1, 2, . . . , M, (60)

and

uM :=




u(x1)
u(x2)

...
u(xM )


 ∈ C

M , (61)
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where T is defined in (40) and u(x) solves (39). Then it follows from (39), (60)
and (61) that the following equation holds

uM + Tdu = u0,M , (62)

where u0,M is defined in (47). Using equations (46) and (62), we derive the following
equality:

(Id,M + Td,M )(ũ(M) − uM ) = (Id,M + Td,M )ũ(M) − (Id,M + Td,M )uM

= u0,M − (Id,MuM + Td,MuM )
= u0,M − uM − Td,MuM = Tdu − Td,MuM , (63)

where ũ(M) and u0,M are defined in (47),

Id,Mv = v, ∀v =




v1
v2
...

vM


 ∈ C

M . (64)

Using relation (63), one gets

ũ(M) − uM = (Id,M + Td,M )−1(Tdu − Td,MuM ). (65)

Lemma 3.2: Let Assumption A) hold (see Section 2 below (25)). Suppose u(x)
solves (39) and p(x) ∈ C1. Then

‖ũ(M) − uM‖CM = O(1/M2/3) as M → ∞, (66)

where uM and ũ(M) are defined in (61) and (47), respectively.

Proof: By (65) and estimate (52) we obtain

‖ũ(M) − uM‖CM ≤ ‖(Id,M + Td,M )−1‖‖Tdu − Td,MuM‖CM

≤ c1‖Tdu − Td,MuM‖CM , (67)

where Td,M and Td are defined in (48) and (60), respectively. Let us derive an
estimate for ‖Tdu − Td,MuM‖CM . We have

‖Tdu − Td,MuM‖CM = max
1≤l≤M

∣∣∣∣∣∣
M∑

j=1

∫
Dj

g(xl, y)p(y)(u(y) − u(xj))dy

∣∣∣∣∣∣
≤ J1 + J2, (68)

where

J1 := max
1≤l≤M

∣∣∣∣
∫

Dl

g(xl, y)p(y)(u(y) − u(xl))dy

∣∣∣∣
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and

J2 := max
1≤l≤M

∣∣∣∣∣∣
M∑

j=1,j �=l

∫
Dj

g(xl, y)p(y)(u(y) − u(xj))dy

∣∣∣∣∣∣ .

Since u(x), p(x) ∈ C(D), we get

J1 ≤ 2‖p‖∞‖u‖∞ max
1≤l≤M

∫
Dl

1
4π|xl − y|dy ≤ c(p, u)

∫ √
3/(2mP )

0
r dr

=
3c(p, u)
2(2mP )2

, (69)

where c(p, u) := 2‖p‖∞‖u‖∞. Using the identity

u(y) − u(xj) = u(y) − u(xj) − Du(xj)(y − xj) + Du(xj)(y − xj)

and applying the triangle inequality, we get the estimate

J2 ≤ I1 + I2, (70)

where

I1 := max
1≤l≤M

∣∣∣∣∣∣
M∑

j=1,j �=l

∫
Dj

g(xl, y)p(y)(u(y) − u(xj) − Du(xj)(y − xj))dy

∣∣∣∣∣∣ (71)

and

I2 := max
1≤l≤M

∣∣∣∣∣∣
M∑

j=1,j �=l

∫
Dj

g(xl, y)p(y)Du(xj)(y − xj)dy

∣∣∣∣∣∣ . (72)

Let us derive an estimate for I1. Using the Taylor expansion, one gets

I1 ≤ ‖p‖∞ max
1≤l≤M

M∑
j=1,j �=l

∫
Dj

|g(xl, y)| sup
0≤s≤1

|D2u(sy + (1 − s)xj)||y − xj |2dy.

(73)

Since p ∈ C1(D), u ∈ C2(D),
∫

D
|g(x, y)|dy < ∞ and |y − xj | ≤

√
3

2mP for y ∈ Dj ,
it follows from (73) that

I1 = O(1/(mP )2) = O(1/M2/3), as M → ∞. (74)

Estimate of I2 is obtained as follows. Since xj is the centre of the cube Dj , one has

∫
Dj

(y − xj)dy = 0,
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so it follows that∫
Dj

g(xl, xj)p(xj)Du(xj)(y − xj)dy = 0, j = 1, 2, . . . , M. (75)

Therefore, using (75), I2 can be rewritten as follows:

I2 = max
1≤l≤M

∣∣∣∣∣∣
M∑

j=1,j �=l

∫
Dj

(g(xl, y)p(y) − g(xl, xj)p(xj))Du(xj)(y − xj)dy

∣∣∣∣∣∣ . (76)

Let

gl(y) := g(xl, y), (glp)(y) = gl(y)p(y), l = 1, 2, . . . , M. (77)

Then the formulas

|(glp)(y) − (glp)(xj)| =
∣∣∣∣
∫ 1

0

∂

∂t
(glp)(ty + (1 − t)xj)dt

∣∣∣∣
≤ sup

0≤t≤1
|Dy(glp)(ty + (1 − t)xj)| |y − xj | (78)

and

Dy(glp)(y) = p(y)Dygl(y) + gl(y)Dp(y),

yield the following estimate:

I2 ≤
√

3‖Du‖∞
2mP

max
1≤l≤M

‖p‖∞

∫
D

sup
0≤t≤1

|Dygl(ty + (1 − t)xj)||y − xj |dy

+
√

3‖Du‖∞
2mP

max
1≤l≤M

‖Dp‖∞

∫
D

sup
0≤t≤1

|gl(ty + (1 − t)xj)||y − xj |dy

≤ c(k)‖Du‖∞
(mP )2

max
1≤l≤M

‖p‖∞

∫
D

(
1

4π|xl − y| +
1

4π|xl − y|2

)
dy

+
c̃‖Du‖∞
(mP )2

max
1≤l≤M

‖Dp‖∞

∫
D

1
4π|xl − y|dy = O(1/(mP )2)

= O(1/M2/3), (79)

where c̃ > 0 is a constant and c(k) is a constant depending on the wave number k.
Here the estimates |y − xj | ≤

√
3/(2mP ) for y ∈ Dj ,

∫
D

1
4π|xl−y|β dy < ∞ for β < 3,

and |xl − y| ≤ 2|xl − s| for y ∈ Dj , j �= l, s = txj + (1 − t)y, t ∈ [0, 1], were used.
The relation (66) follows from (67), (68), (69), (70), (74) and (79).

Lemma 3.2 is proved. �

Lemma 3.3: Let the Assumption A) hold. Consider the linear algebraic system for
the unknowns ue(xl):

ue(xl) = u0(xl) − 4π

M∑
j=1,j �=l

g(xl, xj)h(xj)a2−κ
mP ue(xj), l = 1, 2, . . . , M, (80)



Creating materials with a desired refraction coefficient 89

where p(x) = 4πh(x)N(x) ∈ C2(D), N(x) = 1/γ3, M = (mP )3, and g(x, y) is
defined in (40). Then

‖ũ(M) − ue,M‖CM = O

(
log M

M2/3 + |1 − γ3Ma2−κ
mP |

)
as M → ∞, (81)

where ũ(M) is defined in (47),

ue,M :=




ue(x1)
ue(x2)

...
ue(xM )


 ∈ C

M , (82)

and ue(xj), j = 1, 2, . . . , M , solve system (80).

Proof: Let us rewrite (80) as

ue(xl) = u0(xl) −
M∑

j=1,j �=l

g(xl, xj)p(xj)
a2−κ

mP

N(xj)|Dj |
ue(xj)|Dj |

= u0(xl) − (Teue,M )l, l = 1, 2, . . . , M, (83)

where p(x) = 4πh(x)N(x), |Dj | = 1/(mP )3 is the volume of the cube Dj , N(x) =
1/γ3, and

(Tev)l :=
M∑

j=1,j �=l

g(xl, xj)p(xj)
(
γmPa

(2−κ)/3
mP

)3
|Dj |vj , v =




v1
v2
...

vM


 ∈ C

M ,

(84)

l = 1, 2, . . . , M .
Let us derive an estimate for ‖ũ(M) − ue,M‖CM . Using equations (46) and (83),

we obtain

(Id,M + Td,M )(ũ(M) − ue,M ) = (Id,M + Td,M )ũ(M) − (Id,M + Td,M )ue,M

= u0,M − ue,M − Td,Mue,M

= Teue,M − Td,Mue,M , (85)

where ũ(M) and u0,M are defined in (47), ue,M , Td,M and Te are defined in (82), (48)
and (84), respectively. Relation (85) implies

‖ũ(M) − ue,M‖CM ≤ ‖(Id,M + Td,M )−1‖‖Teue,M − Td,Mue,M‖CM

≤ c1‖Teue,M − Td,Mue,M‖CM , (86)

where estimate (52) was used.
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Let us derive an estimate for ‖Teue,M − Td,Mue,M‖CM . Using definitions (48)
and (84), one gets

‖(Te − Td,M )ue,M‖CM

= max
1≤l≤M

∣∣∣∣∣∣
M∑

j=1,j �=l

gl(xj)pamP
(xj)ue(xj)|Dj | −

M∑
j=1

∫
Dj

gl(y)p(y)dy ue(xj)

∣∣∣∣∣∣
= max

1≤l≤M

∣∣∣∣∣∣
M∑

j=1,j �=l

∫
Dj

(gl(xj)pamP
(xj) − gl(y)p(y)) dy ue(xj)

−
∫

Dl

gl(y)p(y)dy ue(xl)
∣∣∣∣ .

Applying the triangle inequality to the above equation, we obtain

‖(Te − Td,M )ue,M‖CM ≤ max
1≤l≤M

∣∣∣∣
∫

Dl

gl(y)p(y)ue(xl)dy

∣∣∣∣

+ max
1≤l≤M

∣∣∣∣∣∣
M∑

j=1,j �=l

∫
Dj

gl(y)(p(y) − p(xj))ue(xj)dy

∣∣∣∣∣∣

+ max
1≤l≤M

∣∣∣∣∣∣
M∑

j=1,j �=l

∫
Dj

gl(y)(p(xj) − pamP (xj))ue(xj)dy

∣∣∣∣∣∣

+ max
1≤l≤M

∣∣∣∣∣∣
M∑

j=1,j �=l

pamP (xj)
∫

Dj

(gl(y) − gl(xj))ue(xj)dy

∣∣∣∣∣∣
≤ max

1≤l≤M
(J0(l) + J1(l) + J2(l) + J3(l)), (87)

where gl(y) := g(xl, y), pamP
(x) := p(x)

(
γmPa

(2−κ)/3
mP

)3
,

J0(l) :=
∫

Dl

|g(xl, y)p(y)ue(xl)| dy, (88)

J1(l) :=
M∑

j=1,j �=l

∣∣∣∣∣
∫

Dj

g(xl, y)(p(y) − p(xj))ue(xj)dy

∣∣∣∣∣ , (89)

J2(l) :=
M∑

j=1,j �=l

∫
Dj

|g(xl, y)(p(xj) − pamP
(xj))ue(xj)| dy, (90)

and

J3(l) :=
M∑

j=1,j �=l

|pamP
(xj)|

∣∣∣∣∣
∫

Dj

(g(xl, y) − g(xl, xj))ue(xj)dy

∣∣∣∣∣ . (91)
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Using the estimate |xl − y| ≤
√

3/(2mP ) for y ∈ Dl, one gets the following estimate
of J0(l):

J0(l) ≤ ‖p‖∞‖ue‖CM

∫
Dl

|g(xl, y)|dy

≤
(∫

B√
3/(2mP )(xl)

1
4π|xl − y|dy

)
‖p‖∞‖ue‖CM

=

(∫ √
3/(2mP )

0
r dr

)
‖p‖∞‖ue‖CM

=
3‖p‖∞‖ue‖CM

2(2mP )2
= O(1/M2/3), (92)

where Ba(x) is defined in (19).
Let us estimate J1(l). Using the identity

p(y) − p(xj) = p(y) − p(xj) − Dp(xj) · (y − xj) + Dp(xj) · (y − xj) (93)

in (89) and applying the triangle inequality, one obtains

J1(l) ≤ J1,1 + J1,2, (94)

where

J1,1 :=
M∑

j=1,j �=l

∣∣∣∣∣
∫

Dj

g(xl, y)[p(y) − p(xj) − Dp(xj) · (y − xj)]ue(xj)dy

∣∣∣∣∣ , (95)

and

J1,2 :=
M∑

j=1,j �=l

∣∣∣∣∣
∫

Dj

g(xl, y)Dp(xj) · (y − xj)ue(xj)dy

∣∣∣∣∣ . (96)

To get an estimate for J1,1, we apply the Taylor expansion of p(x) and get

J1,1 ≤ ‖ue‖CM

2

M∑
j=1,j �=l

∫
Dj

|g(xl, y)| sup
0≤t≤1

|D2p(ty + (1 − t)xj)||y − xj |2dy

≤ 3‖D2p‖∞‖ue‖CM

8(mP )2

M∑
j=1,j �=l

∫
Dj

|g(xl, y)|dy

= O(1/(mP )2) = O(1/M2/3) as M → ∞, (97)

where Ba(x) is defined in (19), and the estimate |y − xj | ≤
√

3/(2mP ), y ∈ Dj , was
used.

Using the identity∫
Dj

g(xl, xj)Dp(xj)(y − xj)ue(xj)dy = 0, j = 1, 2, . . . , M, (98)
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one gets

J1,2 =
M∑

j=1,j �=l

∣∣∣∣∣
∫

Dj

(g(xl, y) − g(xl, xj))Dp(xj) · (y − xj)ue(xj)dy

∣∣∣∣∣ .

Using the assumption p ∈ C1(D), one derives the following estimate of J1,2:

J1,2 ≤ ‖ue‖CM

M∑
j=1,j �=l

∫
Dj

|(g(xl, y) − g(xl, xj))Dp(xj) · (y − xj)| dy

≤
√

3‖Dp‖∞‖ue‖CM

2mP

M∑
j=1,j �=l

∫
Dj

|g(xl, y) − g(xl, xj)|dy

≤
√

3‖Dp‖∞‖ue‖CM

2mP

M∑
j=1,j �=l

∫
Dj

sup
0≤t≤1

|Dg(xl, ty + (1 − t)xj)||y − xj |dy

≤ c(k)‖Dp‖∞‖ue‖CM

(mP )2

M∑
j=1,j �=l

∫
Dj

sup
0≤t≤1

1
4π|xl − ty − (1 − t)xj |2

dy

+
c(k)‖Dp‖∞‖ue‖CM

(mP )2

M∑
j=1,j �=l

∫
Dj

sup
0≤t≤1

1
4π|xl − ty − (1 − t)xj |

dy

≤ c(k)‖Dp‖∞‖ue‖CM

(mP )2

∫
B√

3(xl)

(
1

4π|xl − y| +
1

4π|xl − y|2

)
dy

= O(1/(mP )2) = O(1/M2/3) as M → ∞, (99)

where c(k) is a constant depending on the wave number k and Ba(x) is defined
in (19). Here the estimates |y − xj | ≤

√
3/(2mP ) for y ∈ Dj ,

∫
D

1
4π|xl−y|β dy < ∞

for β < 3, and |xl − y| ≤ 2|xl − s| for y ∈ Dj , j �= l, s = txj + (1 − t)y, t ∈ [0, 1],
were used. Applying estimates (97) and (99) to (94), we get

J1(l) = O(1/M2/3), as M → ∞. (100)

Let us derive an estimate for J2(l). From (90) and the definition pamP
(x) =

p(x)(γmPa(2−κ)/3)3 we get

J2(l) ≤ ‖ue‖CM

M∑
j=1,j �=l

∫
Dj

|g(xl, y)||p(xj)||1 − (γmPa(2−κ)/3)3|dy

≤ ‖ue‖CM ‖p‖∞|1 − (γmPa(2−κ)/3)3|
M∑

j=1,j �=l

∫
Dj

|g(xl, y)|dy

≤ ‖ue‖CM ‖p‖∞|1 − (γmPa(2−κ)/3)3|
∫

B√
3(xl)

1
4π|xl − y|dy

=

(∫ √
3

0
r dr

)
‖ue‖CM ‖p‖∞|1 − (γmPa(2−κ)/3)3|

=
3
2
‖ue‖CM ‖p‖∞|1 − γ3Ma

(2−κ)
mP | = O

(
|1 − γ3Ma

(2−κ)
mP |

)
, (101)
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where Ba(x) is defined in (19). Estimate of J3(l) is derived as follows. Using the
identity∫

Dj

Dg(xl, xj)(y − xj)ue(xj)dy = 0, j = 1, 2, . . . M, (102)

one gets the following estimate:

J3(l) =
M∑

j=1,j �=l

|pamP (xj)|
∣∣∣∣ue(xj)

∫
Dj

[
g(xl, y) − g(xl, xj) − Dg(xl, xj) · (y − xj)

]
dy

∣∣∣∣

≤ ‖p‖∞‖ue‖CM γ3Ma2−κ
mP

2

M∑
j=1,j �=l

∫
Dj

sup
0≤t≤1

|D2g(xl, ty + (1 − t)xj)||y − xj |2dy

≤ 3cM

8(mP )2

M∑
j=1,j �=l

∫
Dj

sup
0≤t≤1

|D2g(xl, ty + (1 − t)xj)|dy

≤ c(k)cM

(mP )2

M∑
j=1,j �=l

∫
Dj

sup
0≤t≤1

1
4π|xl − ty − (1 − t)xj |

dy

+
c(k)cM

(mP )2

M∑
j=1,j �=l

∫
Dj

sup
0≤t≤1

1
4π|xl − ty − (1 − t)xj |2

dy

+
c(k)cM

(mP )2

M∑
j=1,j �=l

∫
Dj

sup
0≤t≤1

1
4π|xl − ty − (1 − t)xj |3

dy

≤ c(k)cM

(mP )2

∫
1/(2mP )<|xl−y|<

√
3

(
1

4π|xl − y| +
1

4π|xl − y|2 +
1

4π|xl − y|3

)
dy

≤ c(k)cM

(mP )2

∫ √
3

1/(2mP )

(
r + 1 +

1
r

)
dr

≤ 2c(k)cM

(mP )2
[
1 + log(

√
3) − log (1/(2mP ))

]

=
2c(k)cM

M2/3

[
1 + log(

√
3) − log

(
1/(2M1/3)

)]
= O

(
log M

M2/3

)
, (103)

where cM := ‖p‖∞‖ue‖CM γ3Ma2−κ
mP , c(k) is a constant depending on the wave

number k. Here the estimates |y − xj | ≤
√

3/(2mP ) for y ∈ Dj , and |xl −
y| ≤ 2|xl − s| for y ∈Dj , j �= l, s = txj + (1 − t)y, t ∈ [0, 1], were used. Using
estimates (97), (99), (101) and (103), one gets relation (81).

Lemma 3.3 is proved. �

The following theorem is a consequence of Lemmas 3.2 and 3.3.

Theorem 3.4: Suppose that the assumptions of Lemmas 3.2 and 3.3 hold. Then

‖uM − ue,M‖CM = O

(
log M

M2/3 + |1 − γ3Ma2−κ
mP |

)
as M → ∞, (104)

where uM and ue,M are defined in (61) and (82), respectively.
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To get the rate of convergence (104) we have assumed that p(x) ∈ C2(D).
If p(x) ∈ C(D) then the rate given in Theorem 3.4 is no longer valid. The rate of
‖uM − ue,M‖CM when p(x) ∈ C(D) is given in the following theorem.

Theorem 3.5: Let Assumption A) hold and p ∈ C(D) satisfies

|p(x) − p(y)| ≤ ωp(|x − y|), ∀x, y ∈ D, (105)

where ωp is the modulus of continuity of the function p(x).Then

‖uM − ue,M‖CM = O

(
log M

M1/3 + |1 − γ3Ma2−κ
mP | + ωp(1/M1/3)

)
, (106)

where uM and ue,M are defined in (61) and (82), respectively.

Proof: We have

‖uM − ue,M‖CM ≤ ‖uM − ũM‖CM + ‖ũM − ue,M‖CM . (107)

Let us estimate ‖uM − ũM‖CM . From (67) we have

‖uM − ũM‖CM ≤ c1‖Tdu − Td,MuM‖CM , (108)

where c1 is defined in (52). Using the similar steps given in (68) we get the following
estimate for ‖Tdu − Td,MuM‖CM :

‖Tdu − Td,MuM‖CM ≤ 3‖p‖∞‖u‖∞
2(mP )2

+ I1 + I2, (109)

where I1 and I2 are defined in (71) and (72), respectively. It is shown in (74)
that I1 = O(1/M2/3). Since p(x) ∈ C(D), the steps (76)–(79) are no longer valid.
The estimate of I2 can be derived as follows. Since p ∈ C(D) and u ∈ C1(D),
it follows from (72) that

I2 ≤ ‖p‖∞‖Du‖∞ max
1≤l≤M

M∑
j=1, �=l

∫
Dj

|g(xl, y)||xl − y|dy

≤
√

3‖p‖∞‖Du‖∞
2mP

max
1≤l≤M

∫
B√

3(xl)

1
4π|xl − y|dy

= O(1/(mP )) = O(1/M1/3). (110)

This together with (109) and I1 = O(1/M2/3) yield

‖uM − ũM‖CM = O(1/M1/3). (111)

Let us estimate ‖ũM − ue,M‖CM . From (86) we have

‖ũM − ue,M‖CM ≤ c1‖Teue,M − Td,Mue,M‖CM , (112)
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where c1 is defined in (52). By definitions (48) and (84), and use the triangle
inequality, we get

‖Teue,M − Td,Mue,M‖CM ≤ J1 + J2, (113)

where

J1 := max
1≤l≤M

∣∣∣∣
∫

Dl

g(xl, y)p(y)dy ue(xl)dy

∣∣∣∣ (114)

and

J2 := max
1≤l≤M

∣∣∣∣∣∣
M∑

j=1,j �=l

∫
Dj

(g(xl, xj)pamP
(xj) − g(xl, y)p(y)) ue(xj)dy

∣∣∣∣∣∣ , (115)

pamP
:= p(x)(γmPa(2−κ)/3)3. It is proved in (92) that J1 = O(1/M2/3). The

estimate of J2 is derived as follows. By the triangle inequality we obtain

J2 ≤ J2,1 + J2,2, (116)

where

J2,1 := max
1≤l≤M

∣∣∣∣∣∣
M∑

j=1,j �=l

∫
Dj

(g(xl, xj) − g(xl, y))pamP
(xj)ue(xj)dy

∣∣∣∣∣∣ (117)

and

J2,2 := max
1≤l≤M

‖ue‖CM

M∑
j=1,j �=l

∫
Dj

|g(xl, y)||pamP
(xj) − p(y)|dy. (118)

It is proved in (103) that

J2,1 = O

(
log M

M2/3

)
. (119)

To estimate J2,2, we apply the triangle inequality and get

J2,2 ≤ ‖ue‖CM max
1≤l≤M

M∑
j=1,j �=l

∫
Dj

|g(xl, y)||pamP
(xj) − p(xj)|dy

+ ‖ue‖CM max
1≤l≤M

M∑
j=1,j �=l

∫
Dj

|g(xl, y)||p(xj) − p(y)|dy

≤ |γ3Ma2−κ
mP − 1|‖p‖∞ max

1≤l≤M
‖ue‖CM

M∑
j=1,j �=l

∫
Dj

|g(xl, y)|dy

+ max
j

sup
y∈Dj

ωp(|xj − y|)‖ue‖CM max
1≤l≤M

M∑
j=1,j �=l

∫
Dj

|g(xl, y)|dy

= O
(
|γ3Ma2−κ

mP − 1| + ωp(1/M1/3)
)

, (120)
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where ωp is the modulus of continuity of p(x). This together with J1 = O(1/M2/3)
and (119) yield

‖ũM − ue,M‖CM = O

(
log M

M2/3 + |γ3Ma2−κ
mP − 1| + ωp(1/M1/3)

)
. (121)

Relation (106) follows from (107), (111) and (121).
Theorem 3.5 is proved. �

It has been mentioned in the introduction that our main goal is to develop an
algorithm for obtaining the minimal number of the embedded small balls which
generate a material whose refraction coefficient differs from the desired one by
not more than a desired small quantity.

Let us derive an approximation of the desired refraction coefficient n2(x)
generated by the embedded small balls. We rewrite the sum in (38) as

M∑
j=1

g(x, xj)pamP
(xj)u(xj)|Dj |, (122)

where |x − xj | > amP , j = 1, 2, . . . , M , |Dj | = 1/(mP )3 is the volume of the cube
Dj , and

pamP
(x) := 4πh(x)N(x)(γmPa(2−κ)/3)3, N(x) = 1/γ3. (123)

Since (γmPa(2−κ)/3)3 → 1 as m → ∞, it follows that (122) is a Riemannian sum
for the integral

∫
D

g(x, y)p(y)u(y)dy, where p(x) = 4πh(x)N(x). This motivates us
to define the following approximation of the refraction coefficient n2(x):

n2
amP

(x) := n2
0(x) − k−2pamP

(x), (124)

where pamP
is defined in (123). We are interested in finding the largest radius amP

(or the smallest M = (mP )3) such that

e(M) := max
1≤l≤M

|n2(xl) − n2
amP

(xl)| ≤ δ/k2 := δ(k), (125)

where k is the wave number, δ > 0 is a given small quantity and n2
amP

(x) is defined
in (124).

An estimate of the error e(M), defined in (125), is given in the following theorem.

Theorem 3.6: Suppose Assumption A) holds and N(x) = 1/γ3. Then

max
1≤l≤(mP )3

|n2(xl) − n2
amP

(xl)| ≤ k−2‖p‖∞

∣∣∣1 − (γmPa
(2−κ)/3
mP )3

∣∣∣ , (126)

where xl is the centre of the lth small ball, p(x) is defined in (41), n2(x) = n2
0(x) −

k−2p(x), and n2
amP

is defined in (124). Consequently,

lim
m→∞

max
1≤l≤(mP )3

|n2(xl) − n2
amP

(xl)| = 0. (127)
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Proof: Let

Il := |n2(xl) − n2
amP

(xl)|.

Then

Il = k−2|p(xl) − p(xl)[γmPa
(2−κ)/3
mP ]3| ≤ k−2|p(xl)||1 − [γmPa

(2−κ)/3
mP ]3|

≤ k−2‖p‖∞|1 − [γmPa
(2−κ)/3
mP ]3|. (128)

This together with relation (22) yield (127).
Theorem 3.6 is proved. �

Using Theorem 3.6 one can calculate the smallest M satisfying (125) by the following
algorithm:

Algorithm

Initialisations: Let the wave number k, the constant δ > 0, n2
0(x) and n2(x) be given.

Fix P > 1, m = m0 := 1, κ ∈ (0, 1), γ > [1/(2P )](κ+1)/3 and N(x) = 1/γ3. Partition
D into P 3 cubes Ωq, D = ∪P 3

q=1Ωq, Ωj ∩ Ωi = ∅ for j �= i, where each cube Ωj has
side length 1/P .

Step 1: Solve the equation

γa
(2−κ)/3
mP + amP − 1/(mP ) = 0 (129)

for amP .

Step 2: Embed m3 small balls of radius amP in each cube Ωq so that
Assumption A) holds.

Step 3: Compute

p(xl) = k2(n2
0(xl) − n2(xl))

and

pamP
(xl) = p(xl)[γmPa

(2−κ)/3
mP ]3, l = 1, 2, . . . , (mP )3,

where xl is the centre of the lth small ball and k is the wave number.

Step 4: If max1≤l≤(mP )3 |p(xl) − pamP
(xl)| > δ, then set m = m + 1 and go to

Step 1. Otherwise the number M = (mP )3 is the smallest number of the
balls embedded in D such that inequality (125) holds, and amP is the
radius of each embedded ball.
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4 Numerical experiments

In this section we give the results of the numerical experiments. Suppose the
refraction coefficient of the original material in D is n2

0(x) = 1 and the desired
refraction coefficients are:

Example 1: n2
1(x) = 5,

Example 2: n2
2(x) = 5 + exp(−|x − x0|2/(2σ2))/(

√
2πσ), where x0 = (0.5, 0.5, 0.5)

and σ =
√

3
2M1/3 . Here M is the smallest number of the embedded small balls taken

from Example 1.

Example 3: n2
3(x) = 1 + 0.5 sin(x1), where x1 is the first component of the vector x,

Example 4: n2
4(x) = 1 + 0.5 sin(100x1), where x1 is the first component of the

vector x.

Example 5: n2
5(x) = n2

3(x) + iε, where n2
3(x) is defined in Example 3, i =

√
−1 and

ε is a small positive number.

By the recipe we choose

p(x) = k2(n2
0(x) − n2(x)) = k2(1 − n2(x)), k > 0. (130)

Let us take

P = 11, κ = 0.99, γ = 10
√

k[1/(2P )](1+κ)/3, m0 = 1, (131)

where k is the wave number and m0 is the initial number of small balls described
in the algorithm. Here the parameters P = 11 and m0 = 1 are chosen so that the
approximation error in Lemma 3.2 is at most c(k)10−4, where c(k) is a constant
depending on the wave number k. We apply the algorithm given in Section 3 to
get the minimal total number of small balls embedded in the cube D such that
inequality (125) holds for various values of δ, where the quantity δ was defined in
the Algorithm (see the Initialisation and Step 4 of the Algorithm).

The smallest number of the balls embedded in D increases as δ decreases.
The radius amP and the ratio amP /dmP decrease as M increases, which agrees with
the theory. The results are shown in Tables 1–6. In these tables we define

dmP := min
1≤i,j≤M,i �=j

dist(BamP
(xi), BamP

(xj)), (132)

where Ba(x) is defined in (19), and

Ej := max
1≤l≤M

|n2
j (xl) − n2

j,amP
(xl)|

= max
1≤l≤M

|n2
j (xl) − n2

0(xl)||1 − γ3Ma2−κ
mP |, (133)

where n2
j,amP

(x) := n2
0(x) − k−2pj,amP

(x), pj,amP
(x) := pj(x)γ3Ma2−κ

mP , M is the
smallest total number of small balls embedded in the domain D, amP is the radius
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Table 1 Example 1

k = 1

δ m M amP amP /dmP E1

5.000 × 10−2 1 1.331 × 103 3.768 × 10−4 5.467 × 10−2 4.953 × 10−2

5.000 × 10−3 4 8.518 × 104 6.206 × 10−6 1.372 × 10−2 3.276 × 10−3

k = 5

δ m M amP amP /dmP E1

5.000 × 10−2 2 1.065 × 104 4.457 × 10−6 5.489 × 10−3 1.177 × 10−3

5.000 × 10−3 5 1.664 × 105 2.932 × 10−7 2.196 × 10−3 1.935 × 10−4

Table 2 Example 2

k = 1

δ m M amP amP /dmP E2

5.000 × 10−2 2 1.065 × 104 4.852 × 10−5 2.742 × 10−2 1.812 × 10−2

5.000 × 10−3 6 2.875 × 105 1.862 × 10−6 9.149 × 10−3 3.904 × 10−3

k = 5

δ m M amP amP /dmP E2

5.000 × 10−2 3 3.594 × 104 1.337 × 10−6 3.660 × 10−3 9.765 × 10−4

5.000 × 10−3 9 9.703 × 105 5.116 × 10−8 1.220 × 10−3 1.891 × 10−4

Table 3 Example 3

k = 1

δ m M amP amP /dmP E3

5.000 × 10−2 1 1.331 × 103 3.768 × 10−4 5.467 × 10−2 5.052 × 10−3

1.000 × 10−4 8 6.815 × 105 7.923 × 10−7 6.862 × 10−3 8.768 × 10−5

k = 5

δ m M amP amP /dmP E3

5.000 × 10−2 1 1.331 × 103 3.490 × 10−5 1.098 × 10−2 4.698 × 10−4

1.000 × 10−4 12 2.300 × 106 2.177 × 10−8 9.150 × 10−4 3.618 × 10−6

of the embedded small balls and xl is the centre of the lth small ball. In Example 1
we choose a constant refraction coefficient n2(x). For k = 1 the total number of
small balls M increases by 8.385 × 104 when the error level δ is decreased by 4.5%,
while for k = 5 the value of M increases by 1.558 × 105 as the error level δ decreases
by 4.5%, as shown in Table 1.

In Example 2 we add a Gaussian function to the constant refraction coefficient
n2

1(x) considered in Example 1. Since |n2
0(x) − n2

1(x)| ≤ |n2
0(x) − n2

2(x)|, it follows
from (133) that E1 ≤ E2. Therefore, in this example one may need to embed more
small balls to reach the same error level δ as in Example 1. The numerical results
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Table 4 Example 4

k = 1

δ m M amP amP /dmP E4

5.000 × 10−2 1 1.331 × 103 3.768 × 10−4 5.467 × 10−2 6.188 × 10−3

1.000 × 10−4 9 9.703 × 105 5.584 × 10−7 6.099 × 10−3 8.289 × 10−5

k = 5

δ m M amP amP /dmP E4

5.000 × 10−2 1 1.331 × 103 3.490 × 10−5 1.098 × 10−2 5.754 × 10−4

1.000 × 10−4 13 2.924 × 106 1.716 × 10−8 8.446 × 10−4 3.681 × 10−6

Table 5 Example 5 with Imn2
5(x) = 0.02

k = 1

δ m M amP amP /dmP E5

5.000 × 10−2 1 1.331 × 103 3.490 × 10−5 1.098 × 10−2 4.703 × 10−4

1.000 × 10−4 8 6.815 × 105 7.923 × 10−7 6.862 × 10−3 8.778 × 10−5

k = 5

δ m M amP amP /dmP E5

5.000 × 10−2 1 1.331 × 103 3.490 × 10−5 1.098 × 10−2 4.703 × 10−4

1.000 × 10−4 12 2.300 × 106 2.177 × 10−8 9.150 × 10−4 3.622 × 10−6

Table 6 Example 5 with Imn2
5(x) = 0.2

k = 1

δ m M amP amP /dmP E5

5.000 × 10−2 1 1.331 × 103 3.768 × 10−4 5.467 × 10−2 5.626 × 10−3

1.000 × 10−4 8 6.815 × 105 7.923 × 10−7 6.862 × 10−3 9.714 × 10−5

k = 5

δ m M amP amP /dmP E5

5.000 × 10−2 1 1.331 × 103 3.490 × 10−5 1.098 × 10−2 5.232 × 10−4

1.000 × 10−4 13 2.924 × 106 1.716 × 10−8 8.446 × 10−4 3.424 × 10−6

show that the values of M in Example 2 are higher than the values of M of
Example 1, see Table 2. The refraction coefficients n2(x) considered in Examples 3
and 4 are periodic. In Example 3 for k = 1 the total number of the embedded
small particles M increases by 6.802 × 105 as the error level δ decreases by 5%.
A significant increment of M is obtained for k = 5. These results are shown in
Table 3.

In Example 4 the angular frequency of the sine function is 100 times the angular
frequency of the sine function given in Example 3. In this case we get that for k = 1
the value of M increases by 9.690 × 105 as the error level δ decreases by 5% which



Creating materials with a desired refraction coefficient 101

is higher than the increment given in Example 3. Similarly, for k = 5 the increment
of M in this example is higher than the increment of M obtained in Example 3.

In Example 5 we add a small positive imaginary part to the refraction coefficient
n2

3(x) defined in Example 3. We observe that if the value of the small imaginary ε is
chosen from the interval (0, 0.2) then the values of M obtained in this example are
equal to the values of M obtained in Example 3. For simplicity we show only the
results of n2

5(x) with Imn2
5(x) = 0.02 in Table 5. The value of M starts increasing

when k = 5 and the value of the small positive imaginary part ε is equal to 0.2
as shown in Table 6.
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