
HYPERSIGN: AN INTERACTIVE
SIGN LANGUAGE DICTIONARY

by

HSING CHUNG LEE

M.S. Kansas State University, 1986

A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SQENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Approved by

Major Pr(^fessor

%1

1,^^ CONTENTS

1. Introduction 1

2. Background 4

2.1 Introduction 4

2.2 Features 6

2.2.1 Basic Units 6

2.2.2 Menus 7

2.3 HyperTalk 9

3. Documentation 13

3.1 Environment 13

3.2 How To Use HyperSign 13

3.2.1 Searching 13

3.2.2 Adding 14

3.3 Overall Organization 15

3.4 Menu Stack 15

3.5 Sign Stack 20

3.6 Button Functions 21

3.7 Programming 22

3.7.1 Button scripts 23

3.7.2 Menu Scripts 25

4. Discussion 29

4.1 HyperSign 29

4.2 Experience With HyperCard 31

4.3 HyperCard Limitations 33
4.3.1 Note 35
4.4 Conclusion 35

References 37

List Of Figures

Figure 1 HyperCard Hierarchy 10

Figure 2 Menu Card 16

Figure 3 Searching Card 17

Figure 4 Adding Card 18

Figure 5 Key Word Card 19

Figure 6 Sign Card 20

II

INTRODUCTION

This report presents the implementation of an application

called HyperSign. HyperSign is an interactive sign language

dictionary in which one can find a specific sign corresponding

to a key word. It is implemented in HyperCard, a user

information management system. The objectives of building

HyperSign are: (1) to have an interactive sign language

dictionary with faster access time than traditional paper sign

language dictionary. (2) to have an experience with HyperCard.

HyperCard is an user information management system for

Macintosh computers. It is different from traditional

programming environments or database management systems.

It is a combination of graphic tools, a graphical and a text

database management system, and a programming

environment. The programming language is called HyperTalk.

HyperCard can also connect to applications written in other

programming languages.

This report consists of 4 chapters, labelled Introduction, Background,

Documentation and Discussion. Some of the more important aspects of

HyperCard will be introduced in the Background. The detailed

description of HyperSign implementation is covered in the

Documentation. In the Discussion, I evaluate the implementation

experience using HyperCard.

HyperSign was designed to be easy to use. The user can navigate

almost entirely with a mouse. When searching for a particular sign, a user

can click an Alphabet button

then choose a Key word button BflSEBHLL

and the sign image will be brought up.

BASEBALL

New key words and corresponding signs can be easily added without

any knowledge of the HyperTalk programming language.

All of the sign images in HyperSign were digitized using a Macintosh

compatible scanner and then pasted into HyperSign Cards.

The Initial implementation consists of 700 words, organized into 27

stacks; composed of one Menu stack, which is management center with

about 200 lines of code, and 26 Alphabet stacks, which store the sign

images. Each sign is about 2 by 2 inches, with a resolution of 72 dpi and

a file size of 4 K with PICT format.

BACKGROUND

A short introduction of HyperCard is presented in this

chapter. The programming language HyperTalk is also

discussed.

2.1 Introduction :

According to Bill Atkinson, the creator of HyperCard,

HyperCard "is an authoring tool and an information organizer.

You can use it to create stacks of information to share with

other people or to read stacks of information made by other

people. So it's both an authoring tool and sort of a cassette

player for information." [2]. Apple calls it, "a personal toolkit

that gives users the power to use , customize, and create new

information using text, graphics, video, music, voice and

animation" [1]. HyperCard is viewed by many people as a

media, the so-called authoring tool, which combines text,

graphics sound and interaction to express ones idea.

HyperCard is not just a database, wordprocessor or

programming environment. HyperCard provides an interactive

environment for text, graphics, sound, programming, and

interactive buttons. The basic unit of HyperCard is a Card which

is a scornful of information. A collection of Cards is a Stack, the

file unit of HyperCard. HyperCard offers a powerful

4

programming language, HyperTalk. HyperTalk is interpreted.

The syntax is similar to Pascal with a nice user interface. The

programming system has some features found in object

oriented programming languages. HyperTalk has objects,

message passing, and event handlers but HyperTalk lacks the

ability to create new class.

The concept of HyperCard is derived from Hypertext. Jeff

Conklin [7] defined Hypertext as "Windows on the screen are

associated with objects in a database, and links are provided

between these objects, both graphically (as labelled tokens)

and in the database (as pointers)". The implementation of

HyperCard is very similar to the NoteCards system [8]

developed at Xerox PARC in Xerox Lisp environment. NoteCards

has been used for authoring, programming, personal

information management, project management, and

engineering design.

HyperCard was written by Bill Atkinson with support from

Dan Winkler who helped to write HyperTalk. To make

HyperCard practical in terms of size and speed, Atkinson

developed proprietary algorithms for fast searching and for the

compression and decompression of graphics images. HyperCard

can run on Macintosh computers with 1 mega byte Ram and

two 800K-byte floppy disk drives. A hard disk and extra

memory are most essential for smooth operation.

2.2 Features :

The user interface of HyperCard is consistent with the

Macintosh style of pull-down menus. To let inexperienced users

feel comfortable and to protect the application from

unwarranted alteration, HyperCard allows 5 different user

levels:

Level Powers And Abilities

Browsing just browsing through cards; no alteration of

contents

Typing adds text entry and editing on cards.

Painting adds access to the Painting Tools.

Authoring adds access to Button and Field tools.

Scripting adds access to HyperTalk scripts (programming).

2.2.1 Basic Units :

The basic units of HyperCard are stacks, background, cards,

fields and buttons. Each of these has properties which can be

manipulated either directly by users or by HyperTalk. A

HyperCard application as a collection of stacks. A stack is a

ordered collection of cards. A card can contain a combination of

text, graphics, fields, and buttons. A field is just like a

rectangular window in which text can be displayed and

6

entered. The style of a field can be controlled by user and there

are facilities for searching text. Fields give HyperCard some

data base features. The major function of a button is to carry

out actions according to the content of the HyperTalk script

assigned to that button. A script is a piece of HyperTalk code.

Buttons are activated by clicking the mouse. Each unit has

many properties attached to it, including font, name, location

and script.

The resolution of HyperCard is limited to 342 high by 512

wide pixels. Only one card can be open (displayed) at any time.

A background can contain graphics, text, buttons and fields. It

can be shared by many cards.

There are standard Macintosh menu bars for accessing all

the HyperCard tools, including a complete script editor for the

scripts in the basic units.

2.2.2 Menus :

The menu bars are context sensitive. When a certain subject

is chosen, the functions in the menu bars change accordingly

that relate to this particular subject . For example, when a

pencil tool is chosen from the menu:

File Edit Go Tools Objects

iSo
r — T
1 1 P &
i ^ \
'a 1 1 u
<5» o o
A o a

the menu will changed into

^ File Edit Go Tools Paint Options Patterns

iiDii:

o 1:::::::

r —

T

1 1

1. — ^ ^%
i ^ \
% 1 1 O
^ o OP

A O a.

Similarly, when the Button Tool is chosen, the active object in

the menus becomes buttons.

The functions in the menu bar can be manipulated through

programming. A script can mimic the action of a user. For

example:

on mouseUp
doMenu "New Card"

doMenu "Print Stack"

click at 100, 200 ==> click at coordinate

choose oval tool

set linesize to 2

set centered to false

drag from 200, 50 to 140, 300
end mouseUp

2.3 HyperTalk :

Each of the five basic units can have its own HyperTalk

script. HyperTalk can modify the existing properties of the

basic objects, but one can not create new properties for objects.

The syntax of HyperTalk is similar to that of a traditional

programming language like Pascal, with assign statement,

control, loop and operators. There are many powerful functions

for arithmetic, sound, file and screen manipulation. Messages or

events can be passed between objects, and the handlers will

then carry out action accordingly. For example:

on openCard

send "doMenu Delete Card" to stack "Home"
send "mouseUp" to bkgnd button "Next" of stack "Home"
PrintWelcomeMessages

end OpenCard

If an object does not have a message handler for a message, the

object will pass the message to another object according to the

hierarchy of HyperCard objects. The hierarchy diagram is

redrawn from [4].

Sources of messages Receivers of messages

Mouse

Menu items

Message box

System

Script of

FIELD

T

Script of

BUTTON

I
Script of current CARD

I
Script of current

BACKGROUND

Script of current

STACK

I
Resource fork of current

STACK

J.

Script of HOME stack

I
Resource fork of

HOME stack

I
Resource fori< of

HyperCard Application

I
Resouece fori< of

System file

I
HyperCard J

Fig. 1 Inheritance Hierarchy of HyperCard

10

One of the major features of HyperTalk is the ability to

generate or modify a script. For example:

on openCard

put "on mouseUp" & return into newScript

put "go next" & return after newScript

put "end mouseUp" & return after newScript

set the script of button 1 to newScript

end OpenCard

In HyperCard programming, there is no main program as in

traditional programming languages like Pascal. The occurring

event dictates the flow of the program. The following script is

contained in the Stack script:

On openStack

DoSomething
end openStack

When the stack is opened, HyperCard looks into the Stack's

script to find out what to do or what messages to send.

HyperCard can start from any stack and activate other objects

which in turn can activate other objects.

To communicate with other programming environments like

Pascal, C or Assembly, HyperCard supports two types of

external routines, XCMDs work like HyperTalk message

handlers that can be called without or with arguments. They

11

can not return values. The XFCNs, work like user defined

functions which can pass arguments and return values [3].

12

DOCUMENTATION

The design, structure, and implementation of HyperSign are

described in this chapter.

3.1 Environment :

The basic requirement needed to run HyperSign is a

Macintosh computer with 1 mega bytes of RAM, 2 mega bytes

of hard disk, HyperCard 1.0, System 5.2 and Finder 5.2. A

Macintosh compatible flat bed scanner with a resolution up to

300 dpi was used to digitize the sign images from [9]. The

format used was PICT. Each file contains 6-8 sign images.

The format of the file containing the original sign image,

needed to add new sign, is PICT.

A desk accessory such as Artisto, is used to cut images scanned

image files and put them into the clipboard for later pasting to

the new sign card. The Multifinder must be turned off in order

to run Artisto.

3.2 How to use HyperSign :

3.2.1 Searching :

To open HyperSign, double click the Menu file Menu under

Finder. The first card of Menu stack will show up on screen. To

13

search the sign image with a key word, click the Sign Die

button ^'^"^^'^ in the Menu Home card of Menu stack. This will

bring up the Searching card. Then click the appropriate Letter

button "^ ^
, corresponding to the first letter of a key

word. The Key Word card will then be brought up. Clicking the

Key Word button will cause the desired sign image card to be

brought up.

3.3.2 Adding :

When adding a new key word and the corresponding sign

image one need to click the Add Word button ^DD vord
-^^ ^j^^

Menu card. This will bring up the Adding card. Then click the

appropriate Letter button After clicking the Letter

button, a window will prompt for the key word. A new Key

Word button will be put into the Key Word card. Another

window will prompt the user to click the Import Paint

button "'"PO'-tPaini, A blank new card with the name of the new

key word will be created in the Sign stack. The desk accessory,

Artisto, can then be used to cut and paste the corresponding

14

sign image into the card. The time required to add a new key

word and the corresponding sign image is about 40-60 seconds.

3.3 Overall Organization :

HyperSign consists of 27 stacks.

Menu

M

V X

H

The reason to use 26 separate Letter stacks is for distribution.

The combined size of all 27 stacks is much more than a floppy

disk can hold. So each Letter stack has all the sign images

corresponding to the key words which start with the same

letter.

3.4 Menu stack :

The Menu stack is a management center containing the

facilities of searching and adding new key words. There are 29

cards in Menu stack.

15

The purpose of card 1, the Menu Home card, is to let user go

to the Adding or Searching card.

^ A 10:21 AM
1

Menu S*arehin9

^
L*«'s Horn* O B

Sign Die Add Word

oo GO BACK

Fig. 2

16

The purpose of card 2, the Searching card, is to present all the

26 Letter buttons. When a Letter button is clicked, the card

containing all the key words starting with this letter will be

brought up.

&
M*nu

i^
Sftrching

WHICH WORD TO LOOK FOR

CLICK THE FIRST LETTER

fl E 1

/ s

M Q u V

B F J N R
[

]
z

C G K

/ > / ^

s U)

oo
Fig. 3

<3
GO BACK

17

The lay out of card 3, the Adding card, is the same as Searching

card, but the alphabet buttons have different scripts that lead

users into Key Word cards in adding mode.

M»nu Sfarehinq

ADD WORD & PICTURE
CLICK FIRST LETTER

H E 1 M Q U V

B F J H R u

•

Z

C G K

r -^

f 1

S

r \

Ul

D H L p T

oo
^

GO BACK

i^i^|i|IiflM
I I I I IIII II I I I IIII

Fig. 4

18

Cards 4 through 29 are Key Word cards which contain all the

key words with the same first letter. These 26 cards are in

alphabetical order.

M»nu

ABOUT

RBOUE

ACCEPT

ACROSS

ADMIT

AFTERNOON

AGREE

RLL

Starching

ALMOST

ALONE

ALUJAVS

AMBITION

AMERICA

AND

ANGER

ANNOUNCE

ANOTHER

ANSWER

ANV

ANVUJAV

APPOINTMENT

ARGUE

AROUND

RRRIUE

ASK

ASHAMED

Import Piint

ASSOCIATE

AUTUMN

Fig. 5

19

3.5 Sign stack :

Each stack is named by a letter of alphabet. Each card is

named with the key word of the sign image. All the cards in

Sign stacks share the same format except for the sign image.

Fig. 6

20

3.6 Button functions :

All of the cards shared 5 common buttons:

Menu Menu Home button: goes to the first card of Menu

Stack.

Searching Search Menu button: goes to the Searching card in the

Menu Stack.

^^ ^^ Direction buttons: go to previous or next card in the

same stack.

GO BACK Go Back button: goes back to the previous card, the

last closed card which could be in different stack.

o
SIGN Die

sigjj Dictionary button: goes to the Searching card.

ADD \/ORD
Add Word button: goes to the Adding card.

21

c
B

^

v_ -^ Letter button: goes to the Key Word card containing

all the key words starting with this letter.

BflSEBRLL Key Word button: goes to the card containing the

corresponding sign image.

Import Paint Import Paint button: If HyperSign is in adding

mode, this will prompt the user to import a sign image.

Otherwise, it will show a warning message.

s2.
Sort Stack button: The purpose of this button, only in

Sign stack cards, is to sort the stack by the name of the cards.

3.7 Programming :

Because each object can have its own scripts and usually in

an application there are many objects, it is ideal to be able to

do most of the programming in one place. Also, according to the

scoping rules of HyperCard that a shared event handler must

be in a higher hierarchy. So In HyperSign, Menu stack served

as a management center. Most of the event handlers is in stack

script. Fig. 1, so that these event handlers can be shared by

other objects with lower hierarchy.

22

3.7.1 Button scripts :

All the button scripts are shown bellow:

Home

on mouseUp
go to stack "Menu"

end mouseUp

Sign Menu

on mouseUp
go to card id 3314

end mouseUp

on mouseUp
go to prev card

end mouseUp

CO
on mouseUp
go to next card

end mouseUp

<3
GO BACK

on mouseUp
go back

end mouseUp

23

o
SIGN Die

on mouseUp
go to card id 3314

end mouseUp

ADD VORD

on mouseUp
go to card id 5854

end mouseUp

on mouseUp
gotargetcard -- in searching card, go to the Key Word card

-- starting with "B"
end mouseUp

on mouseUp
addbutton -- in adding card, go to the Key Word card

-- starting with "B" and begin adding procedure
end mouseUp

BHSEBRLL

on mouseUp
gotarget - go to the target card

end mouseUp

24

I
\tnpori Paint

on mouseUp
importpaint ~ start import paint procedure

end mouseUp

a
Sort Stack

on mouseUp
sort by field "name"

end mouseUp

3.7.2 Menu scripts:

Following is the script of the Menu stack, the event handler

for all events used in HyperSign. Note that comment statements

start with "--"

~ set the adding mode to false

~ preventing from accidently activate

- the import button

on OpenStack

global adding

~> declaring a global variable

put false into adding
--> initial mode to be false

end OpenStack

-- go to the card by the name of the
-- button being clicked and the stack
~ by the name of the present card

25

on gotarget

get the short name of this card

—> only the card name
put it into targetstack

get the short name of target

~> only the target <-> button name
put it into targetcard

go card targetcard of stack targetstack

~>go to the sign card being searched

end gotarget

~ go to the alphabet card, in same stack

— go to the card by the name of the button-

~ being clicked

on gotargetcard

get the short name of target

~> get the name of the button clicked

put it into targetcard

go card targetcard

~> go to that card

end gotargetcard

-- add the key word button, set the name --

— of the button according to user's input -

on addbutton
"> ** preparations **

global adding

put true into adding
~> adding mood is in effect

global buttonname
--> key word for user input,

~> will be used globally, for important
~> for the new key word button
-> for the name of the new sign card
~> for the field name of the new sign card
~> script for new button

26

put "on mouseUp" & return & "gotarget" & return & -i

"end mouseUp" into -i

buttonscript

-> press option and "L" for -i,

~> continuation of a new line

—> ** end of preparation **

~> ** action starts here **

gotargetcard

~ go to the alphabet card, in same stack

~ go to the card by the name of the button

~ being clicked

~> things to do with new button

get the number of buttons

~> get the number of buttons in present card

put it into bnumber
choose button tool

doMenu "New Button"

~> add new new button

set style of button (bnumber +1) to transparent

~> no outline

set showName of button (bnumber +1) to true

~> show button name => key word
ask "what is the name of the button"
~> ask user for the key word
put it into buttonname
~> buttonname to be used in many places

set the name of button (bnumber + 1) to buttonname
set the script of button buttonname to buttonscript
--> self-generating code, script for new button

answer "Drag button to desired position, -> add new card"
choose button tool

—> do it for user

get the location of button buttonname
click at it

—> highlight the new button

put false into adding
—> return to none-adding mode

end addbutton

27

for importing new sign image

on importpaint

global adding

—>if in adding mode
if adding is true then

global buttonname

get the short name of this card

put it into targetstack

go stack targetstack

doMenu "New Card"

set the name of this card to buttonname
put buttonname into field "name"
--> sen the name of this card and show it in

~> a field of the card according to

-> the key word which is user input in "addbutton"
answer "Now import paint, ->Artisto

"

~> remind user to user DA, Artisto,

~> to import paint

else answer "Need to start from Adding Menu"
~> not adding mood

end importpaint

28

DISCUSSION

In this chapter the issues of designing and implementation

of HyperSign is discussed. The experience of using HyperCard is

also discussed.

4. 1 HyperSign :

The approach of designing HyperSign was to mimic the way

a dictionary is used. Using HyperSign should be natural for

anyone who has used a dictionary. I tried to minimize the

effort required to learn and use HyperSign. The difference

between HyperSign and a traditional sign language dictionary

is that HyperSign is more flexible, in that the user easily can

add new words and signs.

The initial implementation of HyperSign is over 700 signs

and key words. The average size of the 26 Letter Stacks is

about 50 K bytes, and Menu Stack is less than 100 K bytes. The

total size of HyperSign is about 1,500 K bytes before any data

compression. The size of HyperSign is a very reasonable for

distribution. A medium level sign language dictionary is about

1,200 different words and a advanced-level one is about 2000

different words. Only five mega bytes will be needed to

implement a advanced level dictionary in HyperSign. Thus,

making a marketable HyperSign is very feasible.

29

One of the concerns about HyperSign performance is the

speed of searching a sign. It should be much faster than using a

traditional sign language dictionary to satisfy our objective. I

did a rough measurement, using a Macintosh II with a 40 mega

byte hard disk which had an average access time of 29 ms. To

start up a Macintosh II takes about 12 seconds. The speed of

searching depends on 2 major factors: human and machine.

Opening the HyperSign stack took about 4 seconds. I tested

myself how much time, on the average, it would take me to

locate a sign. The result was about 5-8 seconds, which I

considered pretty fast. Adding a new key word and the

corresponding image, on average, took me about 40-60 seconds

which I think it is very reasonable time.

There are a lot of possibilities of further development of

HyperSign. First, one can add multiple links to a Sign card to

link with words with close relations. For example, one can link

the key words with similar meanings or with similar signs.

Animation is another possibility. Flashing few cards in a roll

can allow a user to better understand what a signing sequence

should be. However the size and complexity of a animated

HyperSign will be greatly increased.

4.2 Experience with HyperCard :

30

Learning to program a Macintosh computer is not a very

easy job. The learnning curve of programming a Macintosh user

interface is steep. Before I started this project, I only had very

limited experience with Macintosh computers. The experience

of learning HyperCard and building HyperSign was exciting to

me. The friendly interface of HyperCard helped to minize the

frustration, common in using new environments. The

HyperCard interface is consistent with the Macintosh system. It

only took me few hours to understand almost all the features

about HyperCard. During the learning period, I worked with

HyperCard and consulted Danny Goodman's book [2] only when

I encountered something I could not understand. It is a very

nice reference book about HyperCard. The official Apple

HyperCard User's Guide [1] that came with the HyperCard is not

adequate; it only mentioned HyperTalk once in the entire

manual.

Writing HyperTalk script is very natural to me. HyperTalk is

very comprehensive. Whenever I needed some functions, those

functions were there and I did not need to write complex

procedures or XCOMDs just for some simple operation.

At the beginning, I manually imported the sign images but

soon I found out that all the mechanical steps could be

programmed. That saved me a lot of time when I was

31

importing hundreds of pictures. The built-in routines whcih can

manipulate the functions in the menu bar by using HyperTalk

scripts were most useful to me.

Before I automated all the steps in creating New Key word

buttons and the corresponding Sign cards, I had to manually

write the same short script for each new Key Word button. I

soon discovered a great feature of HyperTalk, its dynamic

programming environment. Since a script is a property of an

object, the script can be assigned, accessed and modified. A

newly assigned or modified script immediately carries out its

function. In this way, I could assign a script to each newly

created button through programming. This dynamic

programming environment is a very nice feature; it is a key to

making HyperSign user friendly.

During the period of 5 months using HyperCard, I

encountered few bugs. At first I tried to run on a Macintosh

with less 1 than mega byte of RAM and it gave me a message

about not enough RAM. Printing gave me some difficulty, but I

solved the problem by changing the printer driver to newer

version. Some times Artisto, the desk accessory, clashed with

HyperCard; and that could have been the result of insufficient

memory.

32

4.3 HyperCard Limitations :

Unlike most Macintosh applications HyperCard has modes,

which are certain states in which that only limited functions

can be performed. For example, one has to be in button mode

to modify buttons, but in button mode other objects can not be

modified. Switching back and forth is a hassle when creating or

modifying objects.

HyperCard automatically saves the whole stack to disk

erasing the original file after each step, like moving a button or

finishing typing script for a object. Only one step of undo is

provided by HyperCard which makes going back to the original

file impossible unless there is a back up copy.

Modifying the icons of a button is not an easy task as a

resource editor is needed. The resolution of the HyperCard is

only 72 dpi, fixed at 342 by 512 pixels. That is low compared

to 300 dpi of most Macintosh publication applications. The size

of the card is fixed, only about 3 by 5 inches, and can not be

re-sized as is possible for windowing in most Macintosh

applications. Only one card can be opened at any time that

works against the window metaphor. The five built in objects

are the only object available. There is no facility to create new

object classes and that also limits the power of HyperCard.

33

I think, that in order to make scripts look somewhat like

plain English, the HyperTalk syntax was made rather complex.

The scripts may look like English at first sight, but scripts

looked unnecessarily complicate to me when I actually started

programming. The reserved word "to" is sometime optional and

sometime required. I think that is unnecessary. There are 4

types of "if and 6 types of "repeat". For example, the format of

"if" statement:

(1) if <true/false> then <command>
(2) if <true/false> then <statement>

else <statement>

(3) if <true/false> then

<statement 1>

<statement 2>

end if

(4) if <true/false> then

<statement 1>

<statement 2>

else

<statement 1>

<statement 2>

end if

The example above is more complicated than Pascal or C. I

think the syntax of HyperCard is a little bit wordy and noisy.

The limitation of one statement per line unless there is a "-i" at

the end of a line, makes the syntax complicated.

34

The interpretive programming environment mades

prototyping easy and the debugging straight forward. The

debugging environment is primitive in that it only gives an

error message when an error occures in the HyperTalk script.

4.3.1 Note :

Silicon Beach Co. just announced SuperCard, a second

generation version of HyperCard. SuperCard support colors, an

object-oriented drawing environment, multiple windows and it

can import drawing formats like PICT, PICT2, TIFF and

Encapsulated Postscript Format (EPSF). The shapes, icons and

cursor for pushing buttons can all be customized. It has a

compiler to produce a stand-alone applications.

4.4 Conclusion :

With HyperCard, I was able to build a pratical application,

HyperSign, in a short period of time. Overall, I like the concept

of HyperCard and its nice implementation. There are similar

programs, but HyperCard is the first one avaiable to many

people in a personal computer environment.

35

REFERENCES

(1) HyperCard User's Guide, Apple Computer Inc. Cupertino,

CA., 1988.

(2) Danny Goodman, "The Complete HyperCard Handbook,"

Bantam Books, New York, 1987

(3) Keith Weiskamp and Namir Shammas, "Mastering

HyperTalk," John Wiley & Sons, Inc., New York, 1988.

(4) Gregg Williams, "HyperCard, First Impression," Byte, vol.

12, Number 14, pp. 109-117, Dec.1987.

(5) Salvatore Parascandolo, "A wild Card," Macuser, pp. 205-

p211, Feb. 1989.

(7) Jeff Conklin, "Hypertext: An Introduction and Survey,"

IEEE. COMPUTER, pp. 17-41, SEP. 1987.

(8) E.G. Halasz, T.P. Moran, and T.H. Trig, "NoteCards in a

Nutshell" Proc. of the ACM Conf. on Human Factors in

Computing System, Torontoto, Canada, April 1987.

(9) Communicative Skill Program, Terrence J. O'Rourke,

36

Director, "A Basic Course in Manual Communication" The

National Association of the Deaf, Silver Spring, Maryland

20910, 1979.

37

HYPERSIGN: AN INTERACTIVE
SIGN LANGUAGE DICTIONARY

by

HSING CHUNG LEE

M.S. Kansas State University, 1986

AN ABSTRACT OF A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SQENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

ABSTRACT

This report presents the implementation of an application

called HyperSign. HyperCard is an interactive sign language

dictionary in which one can find a specific sign according to the

key word.

One purpose in building HyperSign was to have an

experience with HyperCard. HyperCard is a user information

management system that is different from traditional

programming environments or database management system.

It is a combination of graphic tools, graphical and text database

management system, and programming environment.

HyperCard can also connect to applications written in other

programming languages.

HyperSign was designed to be easy to use. The user can navigate

almost entirely with a mouse. When searching for a particular sign, the

user clicks a Letter button, chooses the Key Word button, and then the

sign image will be brought up.

Initial implementation of HyperSign consists of 700 words. New key

words and corresponding signs can also be easily added without any

knowledge of HyperTalk, the programming language of HyperCard.

