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Abstract
In some types of renewable energy systems such as wind turbines or solar power plants,

the optimal operating conditions are influenced by the intermittent nature of these energies.

This fact, along with the modeling difficulties of such systems, provides incentive to look

for non-model based adaptive techniques to address the maximum power point tracking

(MPPT) problem. In this thesis, a novel extremum seeking algorithm is proposed for systems

where the optimal point and the optimal value of the cost function are allowed to be time

varying. A sinusoidal perturbation based technique is used to estimate the gradient of the

cost function. Afterwards, a robust optimization method is developed to drive the system

to its optimal point. Since this method does not require any knowledge about the dynamic

system or the structure of the input-to-output mapping, it is cosidered to be a non-model

based adaptive technique. The proposed method is then employed for maximizing the

energy capture from the wind in a variable speed wind turbine. It is shown that without

any measurements of wind velocity or power, the proposed method can drive the wind

turbine to the optimal operating point. The generated power is observed to be very close

to the maximum possible values.
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Chapter 1

Introduction and Problem Statement

1.1 Introduction

Wind energy is currently the fastest-growing source of electricity in the world (Laks et al.

2009). Wind provides the energy industry with a clean and viable alternative for the gen-

eration of electric power. However, the portion of the energy generated by wind turbines is

currently limited due to several issues regarding the implementation and integration with

other resources. A good overview of the recent developments in advanced controllers for

wind turbines and wind farms as well as the open problems in the area of modeling and con-

trol of wind turbines can be found in Pao and Johnson 2009. Control problems associated

with wind turbines can basically be categorized into three levels. The first level involves

the control goal of capturing the maximum power from the wind turbine while decreasing

the stress and mechanical loads on the wind turbine. The second and third levels are the

farm level and the grid level, respectively. The control problems in these levels lie beyond

the scope of this study which focuses specifically on the power capture problem and is the

subject of this thesis.

One type of wind turbines that demonstrates great efficiency is the variable-speed wind

turbine. Variable-speed wind turbines have three main regions of operation. Region 1 is

where the wind speed is too low and no power is generated; region 2 is an operational mode

during which it is desirable to capture as much power as possible from the wind; region 3
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occurs to when the wind speed is so high that the turbine must limit the fraction of the

captured power to ensure safe electrical and mechanical loads (Johnson et al. 2004).

Before discussing the existing control strategies for maximum power point tracking

(MPPT) problem, it is important to identify the key issues which must be considered for the

control algorithm design. 1) Modeling the aerodynamic effects of wind is almost impossible

due to the turbulent nature of wind. Moreover, a precise model of a wind turbine is hard

to develop. 2) Although several technologies for measuring wind velocity exist, it is not

possible to have accurate measurements. This fact makes a control algorithm with little or

no dependency on wind measurements very interesting, from both technological and com-

mercial points of view. 3) Similar to wind velocity, direct measurements of captured power

is challenging; this factor specifically limits the application and performance of maximum

power point tracking algorithms. 4) The optimal operating points in a wind turbine are

not known because they highly depend on the wind turbine structure, installment, and the

atmospheric conditions. 5) The time varying nature of wind induces a time varying charac-

teristic to the optimal operating points. This issue necessitates that the developed control

strategy can identify the optimal points online. 6) According to technological and commer-

cial restrictions, consideration of mechanical stress, load, and fatigue during operation is

crucial. (see Chen and Spooner 2001 and Rodriguez-Amenedo et al. 2002)

This chapter is organized as follows. Section 1.2 provides a brief review of modern

energy systems to provide a broader view of control problems in this area. In section 1.3,

the problem addressed in this thesis is introduced and discussed. An overview of the thesis

and the contributions are provided in section 1.4.

1.2 Background on Modern Energy Systems and Mo-

tivation

Power infrastructure is an indispensable element of modern society. Policies towards reduc-

ing the impacts of global climate change, shortages of traditional energy resources, and the
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need for greater energy security have made the power industry face the largest challenges

in its history. A revolution with the goal of transition to more secure, sustainable and af-

fordable energy future is happening. Many national and international companies, as well

as research centers are invested in the common goal of revolutionizing the energy industry.

Consequently, a promising opportunity exists for researchers in the academic environment.

The following section identifies the dominant trends in power systems and lists some control

problems related to this area.

1.2.1 Trends in Power Systems

In this section three substantial trends in power systems are reviewed. First, the power

industry is commercializing the generation of power from renewable sources. Second, there

is a tendency towards distributed generation in which the power is generated close to the

consumer. Third, the tremendous advances in information technology are being utilized to

develop a reliable and intelligent power infrastructure.

1.2.1.1 Emergence of Renewable Energy

Conventionally, energy has been generated from fossil fuels and coal. Issues such as pollution,

availability, and generation costs, compounded by the increasing demand for energy are

forcing the energy industry to seek and achieve integration of new alternative energies.

Renewable energy sources may provide viable solutions due to their ubiquitousness and

clean nature. Accordingly, renewable energy sources have gained substantial attention in

recent decades. Many countries, particularly European countries and the United States,

are investing large amounts of money to enhance and develop several types of renewable

energies and corresponding technologies. Wind power, solar energy, hydropower, biomass,

biofuel, and geothermal energy are considered to be the main renewable sources of energy.

Despite all the advantages these clean energies present, there are still several issues and

constraints regarding implementation and integration of renewable energies. For example,

the intermittent nature of wind power has made the integration of wind turbines to the

3



main electric grid a very serious problem for the wind industry.

1.2.1.2 Distributed Generation

The second trend emerges from the tendency toward distributed generation (Ackermann

et al. 2001). There are three main steps in a power generation system. Power is first gen-

erated at a power plant. Then, it is transferred to the place where it will be used. Finally,

it is distributed among consumers. In conventional power systems, electricity is generated

in large centralized power plants. This kind of generation is very economical but there

are several shortcomings with the transmission and distribution process (Rabinowitz 2000).

Transmission is very expensive, has harmful environmental effects, and distribution is very

inefficient. Recently, distributed generation is proposed as a reliable and economical ap-

proach to the whole power process. In a distributed generation architecture, electricity is

generated in small scale facilities very close to the place of consumption. This approach

dramatically decreases costs associated with transmission and distribution. The small scale

distributed power generation sites are mostly connected together in larger grid and conse-

quently to the bulk grid. In this case, the power infrastructure will be a large-scale grid

which is geographically distributed (see, Hammons 2008, Lasseter and Paigi 2004, Coll-

Mayor et al. 2004). This type of grid requires more advanced technologies in management,

control, and communication than those currently used in conventional power infrastructure.

1.2.1.3 Information-Rich Grids

Over the past few decades, advances in communication and information technologies have

dramatically impacted the world in almost every respect. Like any other industry, the

power industry is trying to realize the potentials of utilizing information technologies. In

fact, current topics of power systems such as smart grid and wide area generation mainly rely

on information advances. Future power systems and their corresponding departments are

moving towards thorough networking of stations, associations, and corporations to enable

an intelligent power infrastructure to be feasible (Rabinowitz 2000). Consequently, this will

4



result in more secure and reliable generation, transition, and distribution. The goals of

the information architecture cannot be achieved unless synchronous monitoring, ample data

collection, information communication, and online processing are all performed successfully.

It should be noted that although these factors are integral parts of a system, each one

comprises a separate ongoing research topic.

1.2.2 Selected Control Problems in Modern Power Systems

In this section, some problems in modern power systems are listed which are important to

the control academic society.

1.2.2.1 Maximum Power Point Tracking

One of the extremely desirable factors for any energy system is for it to operate at the

optimal conditions. In an intermittent energy source, the optimal operating points are

constantly changing. Therefore, some kinds of mechanisms are required to rapidly track the

optimal operating points of the system. This topic is referred to as themaximum power point

tracking (MPPT) problem in power systems. It should be noted that MPPT mechanism is

totally separate from the mechanical approaches designated for the same goal (dan Zhong

et al. 2008). For instance, in photovoltaic systems there is a mechanical mechanism that

makes the cells track the position of the sun so that it is always perpendicular to the sunlight.

The online identification an tracking of the optimal operating points are crucial. An MPPT

mechanism that is simple and low cost, has quick tracking under changing conditions, and

ensures small output power fluctuation is highly desirable (Salas et al. 2006).

1.2.2.2 Connection to the Grid

During the past decades, renewable energy sources have been mostly limited to small scale

applications. Therefore, it was somewhat acceptable to ignore the impact of connecting

renewable energies to the power grid (Zavadil et al. 2005). As discussed earlier, trends in

energy systems are moving toward the use of more renewable sources of energy. Hence, a
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noticeable portion of the generated energy will be that of renewable sources. Consequently,

understanding of potential impacts of interaction between wind turbine plants and the bulk

power system is necessary. This problem deals with a highly nonlinear dynamic system

with a number of uncertainties and disturbances. Therefore, nonlinear, robust, or adaptive

control methods are good candidates for the control approach.

1.2.2.3 Decentralized Control of a Power Grid

Power systems are viewed as multi-input/multi-output systems with super-high dimension-

ality as well as many nonlinearities and uncertainties which are geographically distributed

over wide areas. The ideal scenario for control of power systems would consist of a central

decision-making station which can drive the system to the optimal operating conditions. In

this scenario, all the required information about the power system and the grid topology

should be instantly available to the central station. In addition, the central station should be

able to process the huge amount of collected data and solve for a multi-objective optimiza-

tion problem. With the current technology, a central scenario such as this is not possible and

decentralized schemes for control and optimization seem to be the only possible alternative.

Instead of centrally-coordinated decision schemes, the subsystems may be viewed as agents

in a multi-agent system with different cooperative or competitive objectives, depending on

the system-wide objectives and the structure of the system.

1.2.2.4 Control Over Networks in Power Systems

Future power infrastructure networks will consist of several layers including physical power

layer, service, information, and decision layers. This multi-layer network enables full control

over the whole infrastructure. In these multi-layer networks, communication and connections

will be conducted through both the individual layer as well as the inter-layer links. It is not

difficult to imagine how vital the network management task will be for such systems. Here,

it is worthwhile to note the difference between network control and control over network.

A network, such as the internet, requires to control and management to function. On the
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other hand, it is possible to utilize the communication capabilities of an information network

to allow control loops. Imagine data collection at a location through sensors. Then, the

collected data is transferred to another site in order to be processed. An appropriate decision

is made and sent out to the actuators which may be located at a different place. This whole

procedure is referred to as control over network. As mentioned earlier, control over network

is a hot topic in controls area. It is obvious that a sophisticated network like that of

power infrastructure can be a very interesting and also a challenging opportunity for control

researchers to work on.

1.3 Problem Statement

In this thesis, the maximum power point tracking problem for a wind turbine system is

addressed. As mentioned in Section 1.2.2.1, the MPPT is particularly required to have the

capability to identify and track the trajectory of the optimal point. Since the wind velocity

is constantly changing, the optimal rotor speed also varies. Furthermore, the maximum

power which can be captured depends on the wind velocity which is time-varying. Taking

into account the difficulty of wind velocity measurements and aerodynamic modeling of the

wind, it is very challenging to track the optimal operating point of the wind turbine system.

Below is the problem addressed in this thesis report.

Problem I: Consider a variable speed wind turbine and assume that the aerodynamic

interaction between the wind field and the turbine structure is poorly modeled. In addition,

the wind field conditions are constantly changing. Assume that there is no reliable measure-

ments of the wind velocity available. Design a maximum power point tracking algorithm

that has the capability to identify and track the trajectory of the optimal rotor speed.

One class of adaptive control methods is called extremum seeking control (ESC). Ex-

tremum seeking control algorithms are non-model based adaptive techniques which can

identify the optimum point of an unknown mapping. In extremum seeking control, the

states of a dynamic system are regulated to a point where cost function is maximized (or

7



minimized). ESC methods have been proposed for addressing several practical problems,

including the MPPT problem. Specifically, the ESC methods have been very successful

for the MPPT problem in photovoltaic plants (Brunton et al. 2009). Particularly for sys-

tems like wind turbines in which the aerodynamic interaction between wind and the turbine

structure is unknown, the ESC control methods can be a good candidate for addressing the

MPPT problem. However, there is one issue with wind turbines which tests the possibility

of application of conventional ESC methods. The current ESC methods are mostly used for

mappings with no dependency on time. However, persistent variations in wind velocity and

wind field conditions renders the power map time dependent. As a result, stable application

of current ESC methods to the MPPT problems demand long run averaging of the power

mapping. Consequently, efficiency is affected. A generalization of extremum seeking control

methods to address time-varying mappings is a promising development.

Problem II: Design an ESC algorithm for unknown time dependent input-to-ouput

mappings. The optimal point of the mapping is also time varying. The time variation

structures of the mapping and the optimal point are also unknown. Like other ESCmethods,

only the measurements of the mapping is available for the feedback purpose.

In the extremum seeking literature, there are some results for time-varying mappings (see

Ariyur and Krstic 2003). However, the variation is restricted to a very specific structure. In

addition, the time-dependency should be known. Therefore, designing an extremum seeking

algorithm where the mapping is time-dependent in a general form is an improvement on

previous results. As will be discussed later, such extremum seeking methods can be very

useful for the MPPT problem in wind turbines.

In Chapter 2, an overview of extremum seeking methods is provided. Chapter 3 is

devoted to designing the ESC algorithm in Problem II. This ESC algorithm is then employed

in Chapter 4 to address the main MPPT problem introduced in Problem I.
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1.4 Contributions and Thesis Overview

In this thesis, variations in the mapping are handled in the following approach. The varia-

tion of the optimal point is treated as a smooth disturbance. The disturbance is identified

using a robust identifier and then a gradient search law is introduced which can asymptoti-

cally converge to a time-varying optimum. The RISE gradient search law requires that the

gradient be known. The gradient is generated directly through sinusoidal perturbations and

a delay-based demodulator. An extremum seeking control algorithm is then built based on

the assumption that time scales for plant dynamics, sinusoidal perturbation, and the adap-

tation dynamics are separate. The designed ESC algorithm is then applied to the MPPT

problem in wind turbines.

The contribution of the current work is two-fold. First, the results in extremum seeking

control methods are extended to consider general time varying mappings. Second, the

proposed MPPT algorithm eliminates any unnecessary reliance on exact modeling of the

wind turbine system or wind velocity measurements. Since the proposed ESC method

is primarily designed for time-varying mappings, there is no need to use averaged power

mapping. This fact increases the efficiency of the MPPT method while maintaining the

robustness and stability of the closed loop system.
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Chapter 2

Extremum Seeking Control Method

2.1 Introduction

The objective of many control problems is to regulate the output of a dynamic system at

a prescribed set point or to track a prescribed trajectory. Accordingly, the mainstream

developments in linear, nonlinear, and adaptive control theories seek to achieve the same

objectives. However, in many control applications, the desired set point or trajectory is

not known and must be determined so that the output of the dynamic system reaches its

extremum (i.e., maximum or minimum) value. This class of control problems is known as

extremum seeking control (ESC) or self-optimizing control and the corresponding theory is

categorized as adaptive control methods (see, Krstic and Wang 2000, Tan et al. 2009, Tan

et al. 2008, Ariyur and Krstic 2004, Krstic 2000, Manzie and Krstic 2009, Ariyur and Krstic

2003, and the references therein). Extremum seeking control is a non-model based1 gradient

search method that dynamically seeks the optimal point of the input-output mapping of a

system. Being non-model based by nature makes these methods robust to modeling, which

is very appealing for many practical applications.

During the 1950’s and 60’s (much earlier than the emergence of adaptive control theory),

ESC methods were very popular among control researchers and provided noticeable appli-

1In the literature, there exists some model-based methods which are also referred to as extremum seeking

control. For more information on these methods, please refer to Guay and Zhang 2003. These methods are

not discussed in this report.
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Figure 2.1: Time line of extremum seeking publications (Tan et al. 2010)

cation in many practical problems. This interest was soon abandoned because no precise

stability analysis could be found despite all the efforts at that time. Several years later,

Krstic and Wang 2000 provided the first rigorous stability analysis for a class of ESC con-

trol problems through singular perturbation theory and averaging method. After their 2000

paper, the control community showed a renewed interest in ESC. As can be seen in Fig.

2.1, the number of publications on ESC experiences a jump after 2000. More information

about the extremum seeking control method may be found in the recent survey paper Tan

et al. 2010.

Consider the dynamic system:

̇ = ( ) (2.1)

 = ()

where  ∈ R is the state,  ∈ R is the control input,  ∈ R is the output. The functions

( ) and () determine the system dynamics and output, respectively.

Consider the following two problems:
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Problem 1. Design the control input  such that the state  regulates at the set point

0.

This problem is known as the regulation problem. There exists extensive results for this

problem in the literature. If the measurements of  are available for feedback, the problem is

specified as state feedback regulation. If only measurements of  are available, the problem

is known as output feedback regulation.

Problem 2. Design the control input  such that the state  regulates at the point ∗

where ∗ = (∗) is at its maximum value. The function () is unknown.

It is not possible to readily provide a closed loop solution to this problem. As can

be realized from the problem statement, this problem is a combination of regulation and

optimization problems. The question becomes how to formulate the problem so that the

extensive results in regulation problem and optimization techniques can be used. This

problem is known as the extremum seeking control problem in the literature.

The idea of extremum seeking control begins with introducing a new state  to the

system. The extremum seeking problem would then be split into two parts. 1) Regulation

of  at (), where () is a real function. 2) Optimization search for  to converge to ∗,

where ∗ is at its extremum (i.e. maximum of minimum) value. However, one might question

how these two processes are coupled.

2.2 Structure of Extremum Seeking Algorithms

A typical extremum seeking control loop consists of three major components, as illustrated

in Figure (2.2). The first component is the mapping, which maps the input  to the output

. The system to be controlled is embedded in the mapping. The second component is

responsible for the gradient estimation. In this component, the measurements of output 

is utilized to estimate the gradient of the mapping with respect to . The final component

uses the estimated gradient to perform an optimization search. In the following section,

these three main components of an extremum seeking loop are discussed in greater detail.
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Figure 2.2: Schematic of the structure of extremum seeking methods

The arguments provide some insights for understanding the underlying logic of extremum

seeking control and facilitate a comparative study of different ESC methods.

2.2.1 Mapping

The mapping relates the parameter  to the output . There are several aspects involved

in categorizing the mapping, including the mapping function structure, the dynamical char-

acteristic of the mapping, and time dependency. These aspects are used to give a precise

definition of the mapping in the analysis. These aspects are studied in greater detail.

Mapping Function Structure: A mapping should have an extremum point for the

ESC problem to make sense. Mostly, it is assumed that the mapping has a single optimal

point, however, a case with multiple local extrema was recently studied in Tan et al. 2009.

In addition, the mapping is assumed to be a smooth function of . Being smooth is not a

necessary condition for having an extremum but it makes the analysis much more straight

forward. A typical mapping is assumed to have the following form (Ariyur and Krstic 2003)

 = () = ∗ +∗( − ∗)2 (2.2)
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at least locally. The conditions for a non-local analysis has been stated as

(∗) = 0 (
∗)  0 (2.3)

(
∗ + )  0 ∀ 6= 0 (2.4)

Note that condition (2.3) is the necessary condition to have a maximum for a smooth

function. Condition (2.4) is a sufficient condition for having a single maximum point (Tan

et al. 2006).

Dynamical Characteristics: As discussed earlier, the mapping embeds the regula-

tion process. In this context, the mapping from  to () is always dynamic in practice.

However, for the analysis, the mapping can be considered static with the assumption that

the regulation is much faster than the adaptation process for the parameter . In other

words, the regulation process is assumed instantaneous. A general nonlinear mapping was

rigorously analyzed in Krstic and Wang 2000 where the system mapping has the following

form

̇ = ( ) (2.5)

 = ()

and  = ( ) exponentially regulates the system states at  = (). The plant had to

be very fast (quasi-static). The authors used a singular perturbation analysis to go from

a quasi-static mapping to a static mapping. Krstic 2000 extended the results for static

and quasi-static input-to-output mappings by considering input and output dynamics. A

mapping of the form ()()() is considered, where () and () are the input and

the output dynamics which are exponentially stable and proper. The proposed algorithm

benefits from designing a dynamic compensator in the control loop.

Time Dependency: The optimal points of a mapping can be constant or time-varying.

Almost all of the results in the literature concern a case where the optimal point and the

optimal value are constant through time. Correspondingly, these methods are suitable only

14



for systems where the variations of the mapping are very slow. Krstic 2000 considered

time-varying mappings where the structure of the variation through time is known, namely,

L(∗()) = ∗Γ() (2.6)

L(∗()) = ∗Γ() (2.7)

where Γ() and Γ() are known transfer functions and 
∗
 and 

∗
 are unknown constants.

To date, no results have been reported for the general case of time dependent mappings. In

this thesis report, the existing assumptions about the time dependency of the mapping are

removed and results are provided for time dependent mappings in a very general form.

2.2.2 Gradient Approximation

There are several methods for approximating the gradient when only the input-to-output

mapping is available. The simplest numerical method for approximation of the gradient is

the finite difference method. In this method, a perturbation is applied to one variable and

then the corresponding gradient value is approximated by measuring the rate of change of

the output with respect to the applied perturbation. The finite difference method gives

a very good approximate of the gradient vector. However, for an  dimensional state,

the finite difference method requires 2 measurements to compute the gradient vector.

This requirement increases the computation cost and limits the application of this method.

Another similar method is called Finite Difference Stochastic Perturbation (FDSA). In this

method, all the components of the state are perturbed at the same time in a random

direction. Therefore, regardless of the dimension of the state, this method requires only two

measurements for gradient approximation. The approximated gradient is less accurate than

the one from the finite difference method. However, it is shown that in a gradient search

the approximation is unbiased.

In continuous time extremum seeking methods, use of dither signal for gradient ap-

proximation is very common. Among different possible types of dither signals, sinusoidal
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and stochastic perturbation are more popular. Sinusoidal perturbation method for gradient

approximation is used in this thesis.

2.2.3 Optimization

The easiest optimization method is the steepest descent, expressed in the following form

+1 =  + ̂ (2.8)

where ̂ is the estimate of the gradient vector at time step  and  is the search update

rate. The continuous version of the steepest descent optimization method is commonly used

in most of the extremum seeking algorithms, which has the following form

̇ = ̂() (2.9)

There is also much literature on the nonlinear programming optimization methods. Some

nonlinear programming methods have the capability of optimizing when noisy measurements

of the input-output mapping are available. Teel and Popovic 2001 made use of this idea for

developing extremum seeking algorithms and the consequent analysis.

2.3 How an Extremum Seeking Control MethodWorks

2.3.1 Introduction

A typical extremum seeking control problem has the following form. Consider a general

nonlinear system of the form (2.1). Assume that a control law

 = ( ) (2.10)

is available which asymptotically stabilizes (2.1) at

 = () (2.11)

The design of a strategy to drive  to the optimal points ∗, such that  = () is at its

extremum value is desired, where () is defined as the composition of (·) and (·), i.e.,

() , () (2.12)
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In this section, two extremum seeking algorithms which are different in nature are con-

sidered and the idea of why each algorithm works is discussed. The goal of this section is

to examine the idea behind the ESC algorithms rather than to investigate them in full.

2.3.2 Extremum Seeking Control Based on Numerical Optimiza-

tion Method

Numerical methods for optimization are basically discrete. In methods of extremum seeking

control based on numerical optimization, the control approach is as follows:

1. Select a suitable 0 and set  = 0.

2. Use a controller that asymptotically regulates the system state at  = ().

3. Wait until state  is sufficiently regulated at (). At this point, the output ̂() is

measured.

4. Use a numerical optimization technique to find +1 according to the values of  and

the outputs ̂(),  = 0  . Increase  to  + 1.

5. Continue to step 2.

Remark 1. During the regulation process in step 3,  will not exactly equal (). As a

consequence, the measured output will be slightly different from () = (). The longer

the regulation process, the more accurate the estimates. However, devoting a long time to

regulation for each update will increase the extremum seeking run time. Methods of nonlinear

programming can be used to overcome this issue (Teel and Popovic 2001). Several nonlinear

programming methods can solve the optimization problem even with measurement errors

on the output. By devoting less time to the regulation process, the resultant errors can be

considered as noise on the measurements. Hence, the extremum seeking convergence rate is

enhanced.
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Figure 2.3: First order extremum seeking algorithm (Tan et al. 2006).

2.3.3 Continuous Time Extremum Seeking Control Based on Si-

nusoidal Perturbation

A schematic of the first order extremum seeking control algorithm is depicted in Figure

(2.3). The analysis is based on the singular perturbation method and averaging method.

The first order extremum seeking algorithm can be written in the following closed form

̇ = ( ( ̄ +  sin())) (2.13)
·
̄ = () sin()

The closed loop system (2.13) will be in the form of a standard singular perturbation problem

(see Khalil 2002) by defining  = , i.e.





= ( ( ̄ +  sin())) (2.14)

̄


= () sin() (2.15)

According to the standard singular perturbation method, the dimension of the state space

is reduced by setting  = 0 in the equation (2.14). Therefore, the differential Eq. (2.14)

becomes an algebraic equation:

( ( ̄ +  sin())) = 0
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which implies  = (̄ +  sin()) Substituting for  in Eq. (2.15), the reduced system will

be obtained as

̄


= (̄ +  sin()) sin() (2.16)

where the subscript  denotes the reduced system.

An averaging method can be used to further understand the dynamic behavior of reduced

system (2.16). The averaged system can be written as

̄





= (̄



) (2.17)

(̄


) =
1

2

Z 2



(̄


 +  sin()) sin() (2.18)

It is possible to find an approximation for (̄


) using the Taylor series expansion for (̄


+

 sin()) as the following:

(̄


 +  sin()) = (̄


) + 0(̄


) sin() +(2) (2.19)

Substituting (2.19) for (̄


) in (2.18) and neglecting the higher order terms results in

(̄


) =


2
0(̄



) (2.20)

Consequently, the equation (2.17) can be expressed as

̄





=
1

2
0(̄



) (2.21)

which is the continuous version of the steepest descent method. The above deductions show

that the averaged dynamics for the reduced variable ̄ reaches the optimal value. Later

deductions correspond between the reduced system and the actual system.

2.3.4 Time Scale in Extremum Seeking Control

The structure of an extremum seeking control method is built upon the separation of time

scales in the control loop. It is very important to understand time scales exist in the overall

dynamic behavior of an ESC loop. In a typical extremum seeking strategy, three separate

time scales exist that can be expressed by (Tan et al. 2010):

19



1. Fast time variations: the internal dynamics of  state asymptotically regulate to

().

2. Intermediate time variations: the dither signal  sin() perturbs the searching

state  to explore the mapping in a small neighborhood of ̄.

3. Slow time variations: The adaptation of the averaged state ̄ to gradually converge

to the optimal value.

The behavior of an ESC loop can be understood according to the existing separate time

scales.
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Chapter 3

RISE Extremum Seeking Control for

Systems with Time-Varying Optimal

Point

3.1 Motivation and Problem Statement

Most of the extremum seeking control methods in the literature consider time-invariant

input-to-output mappings. In Chapter 2, the time scales in a typical ESC process were

discussed. The mapping dynamic is the fastest. The perturbation has intermediate dynam-

ics while the adaptation is the slowest. If the mapping and consequently, the extremum,

are time-varying, there is a limitation for the current extremum seeking methods to work

properly. It is essential that the time variations of the mapping are much slower than the

adaptation dynamics (Tan et al. 2010). Krstic 2000 proposed an extremum seeking algo-

rithm for time varying mappings. However, the structure of the variation should be known.

An open problem persists in case where the input-to-output mapping is time varying with

a general form and with no strong assumptions on the variation structures.

Aside from its academic importance, generalizing the ESC results to time-varying map-

pings might be useful in many practical applications. For example, in a wind turbine the

variations of the power map are considerable and also very difficult to model. Therefore,

a successful maximum power point tracking method should have the capability to identify

and track the time-varying optimal operating points. It is conceivable that an ESC algo-
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rithm which assumes time-invariant mappings might not perform properly if applied to this

problem.

3.1.1 Extremum Seeking for Time Dependent Mappings

Numerous optimization problems seek the optimal value of  where (∗) = ∗ is the

maximum value of . A possible extension can be described as follows. Consider the case

where the cost function is not only a function of , but also a function of another variable

 = () ∈ R , i.e.,  = ( ). In this case, the optimal value of  depends on the value

of , i.e. ∗ = ∗(). The optimization problem would be to find the optimal value of  at

each time. The extremum seeking problem is stated in the following.

Problem 1. Consider a time dependent mapping ( ()) : R × R → R. The optimal

variable ∗() is defined so that

(∗() ())  ( ())  6= ∗() (3.1)

We denote the optimal value by ∗() , (∗() ()). The mapping ( ), the optimal

variable ∗(), the optimal value ∗(), and the signal () are all unknown. Design an

extremum seeking control loop such that the variable  very nearly reaches the optimal value

∗(). The measurements of () and () = ( ()) are available.

In this thesis, an extremum seeking control similar to the classic extremum seeking

architecture is proposed. Specifically, a sinusoidal perturbation is applied to excite the

searching variable ̄() to estimate the gradient. Afterwards, a gradient search is developed

for robust tracking of the optimal point. The structure of the control loop is shown in

Figure. 3.1. As can be seen, there are two components, namely, gradient search and

gradient estimation, in the loop which should be appropriately designed.

3.1.2 Gradient Search for Tracking a Time Varying Optimal Point

In classic extremum seeking control methods, an effective update law for the variable ̄ is the

continuous steepest descent method. This update law results in asymptotic convergence to
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Figure 3.1: Schemactic of extremum seeking control loop for mappings with time-varying

optimal point.

a constant optimal point. However, in the case of time-varying optimal point, only bounded

error can be obtained. In this thesis, we are looking for alternative gradient search methods

which can guarantee asymptotic convergence to a time-varying optimal point.

Problem 2. Consider an update law for ̄ of the form

·
̄ = F() (3.2)

Design F() such that ¯̄
̄ − ∗()

¯̄
→ 0 as →∞ (3.3)

The measurements of ̄() and (̄ ) are available for feedback.

There are several challenges associated with this problem. For example, since the optimal

point ∗() is completely unknown, no feed-forward term is available to be used in the control

law for asymptotic tracking of the optimal point. One possible approach is to consider the

variations of ∗() as unstructured uncertainties and to use the ideas of robust tracking

techniques.
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3.1.3 Real-time Gradient Estimation

In classic extremum seeking methods, the gradient of the cost function emerges in the

averaged system. However, the gradient search method in this section requires the gradient

directly, a necessity discussed later. Therefore, we are interested in a strategy to extract the

gradient signal at any given point in time.

Problem 3. A sinusoidal perturbation is added to ̄. The measurements of  = (̄ +

 sin ) are available. Design a strategy to extract (̄ ) at any given point in time.

The proposed strategy in this chapter is implemented through the introduction of a

delayed signal.

3.1.4 Chapter Overview

In this chapter, the method of sinusoidal perturbation is first utilized to extract the gradient

in Section 3.2. In Section 3.3, a robust gradient search technique is proposed so that the

trajectory of the optimal point can be asymptotically tracked using the gradient information.

Afterwards, the gradient estimator and the gradient search method are combined to establish

an extremum seeking control algorithm in Section 3.4. The proposed extremum seeking

method has the ability to seek the optimal values of a static mapping where both the

optimal point and the optimal value of the cost function are allowed to evolve over time.

3.2 Delay-Based Dynamic Estimation of Gradient Vec-

tor

In this section, a strategy for estimation of the gradient  is provided. The gradient

estimation strategy is realized by adding a sinusoidal perturbation and introducing a delayed

signal. The main focus in this section is to quantify the estimation error. Particularly, it

is of interest to see how the time variations of the mapping  will affect the estimation

accuracy.
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Lemma 3.1. For  =
2


, the following equality is valid

1

2

Z 

−
sin( + ) sin( + ) =

1

2
cos( − ) (3.4)

Lemma 3.2. Assume that the time derivative of a given function () is bounded, i.e.,

|̇| ≤ ̇ (3.5)

where ̇ ∈ R≥0 is a non-negative constant. Define the signal () as

() = () sin() (3.6)

Generate the signal () by high-pass-filtering the signal (), i.e.,

() =


+ 

() sin() (3.7)

Define an error function

 = ()− ()() (3.8)

where () is generated as

 =


+ 

sin() (3.9)

Neglecting the transient period, the error function () can be bounded as

|| ≤ ̇

1p
2 + 2

 (3.10)

Proof. Define () and () respectively as

() , ()− () (3.11)

() , sin()− () (3.12)

According to the above definitions, (3.7), and (3.9),

() =


+ 

() sin() (3.13)

() =


+ 

sin() (3.14)
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From (3.14), it can be concluded that

|()| ≤ p
2 + 2

 (3.15)

According to the definition of () in (3.8),

() = ()− ()()

= (()− ())− () (sin()− ())

= (()()− ()) + (()− () sin())

= ()()− () (3.16)

From (3.13) and (3.14),

̇() = −() + () sin() (3.17)

̇() = −() +  sin() (3.18)

Taking the derivative of  and using (3.17) and (3.18),

̇() = ̇()() + ()̇()− ̇()

= ̇()() + () {−() +  sin()}

− {−() + () sin()}

= ̇()()−  {()()− ()}

+ {() sin()− () sin()}

= ̇()()−  (3.19)

Based on (3.19), () can be rewritten as

() =
1

+ 

̇()() (3.20)

Therefore, || can be bounded as

|| ≤ 1



̇

p
2 + 2

= ̇

1p
2 + 2

 (3.21)

according to (3.20), (3.5), and (3.15).
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Remark 2. Lemma 3.2 will be used in subsequent analysis to quantify the error induced by

variations in the mapping. According to Lemma 3.2, if the time-variation of function ()

is small, a good estimate for () defined in (3.7) can be given as ()(), where () is

defined in (3.9).

Definition 1. A system is constructed as follows:

1. The signals ̄() ∈ R and () ∈ R are functions of time with bounded variation rates,
i.e.,

|
·
̄()|+ |̇()| ≤  (3.22)

2. A sinusoidal dither signal with perturbation amplitude  and the frequency  is added

to the signal ̄() to generate (), i.e.,

() = ̄() +  sin() (3.23)

3. The signal () = (() () is generated by a smooth function ( ) : R× R→ R

and its measurements are available at any given point in time.

4. The signal () is passed through a high-pass filter


+ 

to generate the signal

(() ()), i.e.,

( ) ,


+ 

( ) (3.24)

5. The signal (() ()) is generated as

(() ()) , 1

2

1− −


{( ) sin( + )}  (3.25)

where  =
2


and  ∈ [0 2) is the demodulation phase angle.

To facilitate the subsequent analysis, following assumptions are made.

Assumption 1. The perturbation amplitude  is small.

Assumption 2. The values of (̄() ()) and (̄() ()) remain bounded.
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Assumption 3. The variations of ̄() and () satisfyZ 

−
(̄ ) sin(+ ) ∼= 0 (3.26)

where (̄ ) is generated by high-pass-filtering of the signal (̄ ).

Remark 3. Assumptions 1 is a common assumption for developing an extremum seeking

algorithm (Ariyur and Krstic 2003). Assumption 2 will be used in the subsequent analysis.

Assumption 3 indicates that the variations of (̄ ) with the frequency  are negligible.

Theorem 3.3. Consider the system constructed in Definition 1. Assume that Assumptions

1-3 hold. The signal ( ) defined in (3.25), can be determined as

(̄ ) =
1

2
 cos(− )(̄ ) + (·) (3.27)

where  and  are the magnitude scale and angle shift caused by the high-pass frequency

filter and the estimation error (·) is

(·) = O(
2
+

2


) (3.28)

Proof. Using the Taylor expansion for multi-variable functions, ( ) can be expanded at

(̄ ) as

( ) =

∞X
=0

(



)

¯̄̄̄
(̄)

 (3.29)

where according to (3.23),  ,  sin(). By substituting for  in (3.29), we get

( ) = (̄ ) + (̄ ) sin() + 1(·) (3.30)

where

1(·) = 2(̄ ) sin
2() +  = O(2) (3.31)

According to the system description and Assumption 2, the time derivative of (̄ )

in (3.30) will be bounded. Hence, the following inequality is true¯̄̄̄



(̄ )

¯̄̄̄
≤  (3.32)
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where  is a positive constant.

The filtered signal ( ) can be approximated by

( ) = (̄ ) + (̄ ) sin(+ ) + 2(·) (3.33)

where

2(·) , O(2  1p
2 + 2

) (3.34)

according to Eq. (3.31) and Lemma 3.2.

It is easy to show that

( ) =
1

2

1− −


{( ) sin( + )}

=
1

2

Z 

−
( ) sin( + )

= (̄ ) +
1

2

Z 

−
(̄ )

sin( + ) sin( + ) + 3(·) (3.35)

where

3(·) , 1

2

Z 

−
2(·) sin( + )

= O(
2


 

1


p
2 + 2

) (3.36)

Using the relations in Lemma 3.1, it can be shown that (see Appendix for the proof)

1

2

Z 

−
(̄ ) sin( + ) sin( + )

=
1

2
 cos(− )(̄() ()) + 4(·) (3.37)

where

4(·) , O( 1
2
) (3.38)

Based on Assumption 3, (̄ ) is negligible. Therefore, ( ) can be expressed as

( ) =
1

2
 cos(− )(̄() ()) + (·) (3.39)
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where

(·) , 4(·) + 3(·)

= O(
2


 

1


p
2 + 2

 
1

2
)

= O(
2
+

2


) (3.40)

In this paper, we use the first order high-pass filter of the form

 () =


+ 

 (3.41)

in the control loop. In addition we select the demodulation phase angle  = 0. By such

choices, the values computed for  and  are obtained as

 =
p

2 + 2
  =



2
− tan−1( 



) (3.42)

Furthermore, the cos(− ) term in (3.39) can be calculated as

cos(− ) = cos() = cos(


2
− tan−1( 



))

= sin(tan−1(




)) =
p

2 + 2
 (3.43)

Therefore, neglecting the higher order error terms in (3.39), ( ) can be expressed as

follows

( ) ' 1

2



2 + 2
(̄ ) (3.44)

Note that according to the statements in Theorem 3.3, it is feasible to generate the

signal ( ). In the future developments and simulations, the signal ( ) is generated

for estimating the gradient (̄ ) according to Eq. (3.44).

Example 3.1. Select the function ( ) as

 = 4()3 − ()(()2 − ())2
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Figure 3.2: System signals ̄() (blue) and () (red) in Example 3.1.

According to this function, an expression can be derived for the gradient of  as

 = −4()()(2()− ())

The signals ̄ and  are generated through low pass filtering random pulses and are shown

in Fig.3.2. A perturbation with the frequency  = 3 with the amplitude  = 01 is added to

the signal ̄. The high-pass-filter frequency is selected as  = 2 The gradient estimation

algorithm in Theorem 3.3 is employed to estimate the gradient. The real and estimated

gradient signals are shown in Fig.3.3.

3.3 RISE Gradient Search

3.3.1 Problem Formulation

If ∗() = ∗ is constant through time, it can be shown that the update law

F() =  (3.45)
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Figure 3.3: Actual (red) and estimated (blue) gradient in Example 3.1.

with  being a positive scalar, will make ̄ asymptotically converge to the optimal point.

The asymptotic tracking for general time varying case is much more challenging. If ∗ is a

function of time, the update law (3.45) will result in bounded tracking error.

Prior to proceeding to the next theorem which proposes the control law for solving the

time-varying case, assume the following.

Assumption 4. The first partial derivative  exists and at the optimal point, 
∗ is equal

to zero. The second partial derivative  exists at the optimal point 
∗ and is negative.

Furthermore,

(
∗ +  ())  0 for every  6= 0, (3.46)

where  ∈ R is defined as
 , ̄ − ∗ (3.47)

Remark 4. Condition (3.46) implies that there is only a single maximum and the gradient

is zero only at the maximum point. Having the second partial derivative ∗ negative is a
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sufficient condition, but not a necessary condition, for having maximum. However, since in

the future analysis the optimum is searched only using the gradient, having ∗ negative is

required to guarantee asymptotic convergence to the extremum.

Since ∗ exists and is negative, the function ∗() defined as

∗() = − lim
→0

(
∗ +  )


= −∗ (3.48)

exists and is always positive. Furthermore, the function ( ) defined as

( ) =

⎧⎨⎩ −
(

∗ +  )


  6= 0

∗()  = 0
(3.49)

also exists and is positive.

Based on the definition (3.47),

̇ = F()− ̇
∗
() (3.50)

According to (3.50) and the definition of  in (3.47), the optimization problem can be

reduced to a robust stabilization problem for the system in (3.50). Here, the term ̇
∗
()

should be considered as an uncertain disturbance. A successful method for solving robust

stabilization with uncertain disturbances was developed in Makkar et al. Oct. 2007, Xian

et al. July 2004. Since Patre et al. 2008, this control strategy is termed as Robust Integral

of the Sign of the Error (RISE). The RISE control method has the significant ability to

enable asymptotic stability in the presence of sufficiently smooth disturbances. In this

section, a relevant method to design a robust gradient search method is used. The following

assumptions allows for application of a RISE strategy to the gradient search problem.

Assumption 5. The function ( ) is strictly greater than a positive value, i.e.,  ≥ 0 

0, in a bounded interval  containing the origin. Furthermore, the partial derivatives  and

 are bounded.

Remark 5. The term ( ) is always positive. In a bounded interval , ( ) has a

minimum greater than zero. Therefore, the above assumption is reasonable. Boundedness

of  and  are used in the future analysis.
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Assumption 6. The first three derivatives of ∗ are bounded, i.e., ̇
∗
 ̈
∗
,
...

∗ ∈ L∞. We

denote the upper bounds by ̇
∗ ̈

∗, and ... ∗, respectively. In addition, ̇ is also bounded,

i.e., ̇ ∈ L∞.

Remark 6. In this section, we are looking for a gradient search which can asymptotically

track the extremum. The smoothness of ∗ is a key point in the subsequent analysis.

The following controller is designed for the gradient search problem introduced in Section

3.3.1,

F() = 1 + Φ− 1̄ (3.51)

Φ̇ = 21 + 2() (3.52)

where 1 2 1 2 are positive design gains to be determined later.

In the following section, the error system is developed and then the stability analysis is

provided.

3.3.2 Error System Development

According to the definition of ( ) in (3.49), the following is true

 = −( ) (3.53)

In the subsequent analysis, the positiveness of ( ) is used. The term in (3.52) can be

expressed as

() = (−) = −() (3.54)

for ( ) is positive. Using (3.53) and (3.54), the controller (3.51) can be rewritten as

F() = −1 + Φ− 1̄ (3.55)

Φ̇ = −21 − 2() (3.56)

Define a filtered signal  ∈ R as

 , ̇ + 2 (3.57)
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where 2 ∈ R0 is a positive constant. The derivative of  can be obtained using (3.55-3.57)

as

̇ = −1̇ − 1̇ − 21 − 2()

−1
·
̄ − ̈

∗
+ 1̇ + (2 − 1)̇

= −1(( − 2) + ̇) − 1 − 2()

−1̇∗ − ̈
∗
+ (2 − 1)( − )

= −1 − 2() +() + ̃() (3.58)

where the last two terms are

̃() = −1 + 21
2

−1̇ + (2 − 1)( − 2) (3.59)

() = −̈∗ − 1̇
∗
 (3.60)

Based on the definition of () in (3.60) and Assumption 6, () can be bounded as

|()| ≤ ̈
∗ + 1̇

∗ ≤ 
 (3.61)

Similarly, ̇() obtained as

̇() = −
...

∗ − 1̈

∗
 (3.62)

is bounded by ¯̄̄
̇()

¯̄̄
≤ ... ∗ + 1̈

∗ ≤ ̇
 (3.63)

Based on (3.59) and the boundedness of , , and ̇,
¯̄̄
̃()

¯̄̄
can be bounded as¯̄̄

̃()
¯̄̄
≤ (kk) kk  (3.64)

where (kk) is an invertible positive non-decreasing function and  is defined as

 , [ ]  (3.65)
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3.3.3 Stability Analysis

Theorem 3.4. Consider the gradient search problem described in Section 3.3.1. Suppose

that Assumptions 4-6 hold. The controller (3.51) makes ̄ in the system (3.2) asymptotically

track the optimal value ∗(), provided that the control gains 1 2 1 2 are designed so that

2 
1

2
 2  

+
1

2
̇

(3.66)

and 1 is sufficiently large.

Proof. Let D ⊂ R4 be a domain containing Y() = 0, where Y() ∈ R3 is defined as

Y() , [ (),
p
 ()] where () = [ ] , and the auxiliary function  () ∈ R is defined

as

 () , 2 |(0)|− (0)(0)−
Z 

0

() (3.67)

where 2 ∈ R is nonnegative by design. In (3.67), the auxiliary function () ∈ R is defined
as

() , (() + 2()) (3.68)

Since () = −() the time derivative of  () can be written as

̇ () = −() = −(()− 2()) (3.69)

Provided that

2  
+
1

2
̇

 (3.70)

the following inequality can be obtained (see Xian et al. July 2004 for the proof):Z 

0

() ≤ 2 |(0)|− (0)(0) (3.71)

Hence, (3.71) can be used to conclude that  () ≥ 0.
Let  (Y ) ∈ R be a continuously differentiable positive definite function defined as

 (Y ) , 1

2
2 +

1

2
2 + (3.72)
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where  ∈ R0 is a positive constant.

Function  (Y ) in (3.72) can be bounded as

1

2
min{ 1} kYk2 ≤  (Y ) ≤ max{

2
 1} kYk2  (3.73)

The time derivative of  (Y ) is

̇ = ̇ + ̇ + ̇

= ( − 2) + (−1 − 2() +()

+̃())− (()− 2())

= −2
2 + − 1

2 + ̃() (3.74)

by using (3.57), (3.58), and (3.69).

The term  can be upper bounded as

 ≤ 1
2

¡
2 + 2

¢
 (3.75)

Using the relations (3.64) and (3.75), Eq. (3.74) becomes

̇ ≤ −(2 − 1
2
)2 +

1

2
2

−102 + (kk) kk ||  (3.76)

Let us write the control gain 1 as

1 =


0
+



0
 (3.77)

to get the following relation

̇ ≤ −(2 − 1
2
)2 − ( − 1

2
)2

−2 + (kk) kk ||

≤ −(2 − 1
2
)2 − ( − 1

2
)2

− ¡ ||2 − (kk) kk ||¢  (3.78)
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The last term in (3.78) can be written as

 ||2 − (kk) kk || =



µ
||− (kk)

2

¶2
− 2(kk)

4
kk2  (3.79)

Therefore, the derivative of the Lyapunov function will be

̇ ≤ −1 kk2 + 2(kk)
4

kk2

≤ −2 kk2  (3.80)

where

1 = min{(2 − 1
2
) ( − 1

2
)} (3.81)

2 = 1 − 2(kk)
4

 (3.82)

Selecting 2 
1
2
and 1 as large enough, 1 and 2 will be positive. Specifically, the function

2 kk2 is positive semi-definite on the domain

D = {Y ∈R3 | kYk ≤ −1(2
p
1)} (3.83)

This proves that kk → 0 as  → ∞ in a subset of D (see Theorem 8.4 in Khalil 2002).

Having kk→ 0 as →∞ indicates that
¯̄
̄ − ∗

¯̄
→ 0 as → 0.

Example 3.2. A control law is desired to be designed so that ̄ in (3.2) track the time-

varying optimal point of the mapping

 = (3 + sin())
£
3− ( + 1− 4 sin())2¤  (3.84)

Only measurements of  and  = −2(3+2 sin())(̄+1− sin()) are available for feedback.
Based on the cost function (3.84), the optimal trajectory of () and the maximum value of

 at each time are

∗() = 4 sin()− 1 (3.85)

∗() = 3(3 + sin()) (3.86)
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Figure 3.4: RISE gradient search performance in Example 3.2. The obtained value of the

cost function is shown in red and its maximum value ∗() is plotted in blue.

As can be seen in Fig.3.4, the RISE gradient algorithm enables asymptotic tracking the opti-

mal values. A simulation has also been performed using the algorithm (3.45) for comparison.

As predicted, it can be observed in Fig.3.5 that bounded result is achieved.

3.4 RISE Extremum Seeking Control Loop

3.4.1 Extremum Seeking Loop Design

A RISE extremum seeking control is designed as follows. A perturbation is applied to the

variable ̄ and the delay-based gradient estimation method discussed in Section 3.2 is used

to estimate the gradient. The estimated gradient is then fed into the RISE gradient search

controller, designed in Section 3.3, which updates the estimates ̄. A schematic of the control

loop is shown in Fig.3.6.

The logic behind the control loop design relies on the assumption of the separation of
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Figure 3.5: Steepest descent gradient search performance in Example 3.2. The obtained

value of the cost function is shown in red and its maximum value ∗() is plotted in blue.
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Figure 3.6: Schematic of RISE Extremum Seeking Control Loop

40



the time scales of the gradient estimation and the adaptation dynamics. Since there exists

the estimation error (·) specified in Eq. (3.28), between the estimated and the actual
value of the gradient, the searching variable ̄ will not asymptotically reach the extremum

trajectory ∗() but it will reach close enough if the estimation error is small.

Theorem 3.5. Consider a mapping ( ) : R × R → R that satisfies Assumptions 4-5.

Suppose that ∗ and  satisfy Assumption 6. In the system

 = (̄ +  sin() ) (3.87)

 =


+ 

 (3.88)

 =
1

2

1− 


{ sin()} (3.89)

 , 2
2 + 2


 (3.90)

Φ̇ = 21+ 2() (3.91)
·
̄ = 1+ Φ− 1̄ (3.92)

where  =
2


 the signal ̄() closely reaches the optimal trajectory ∗() if the control gains

are selected properly according to Theorem 3.4, the perturbation amplitude  is small, and

the perturbation frequency  is high with respect to the variations of  and ̄.

Proof. If the perturbation frequency  is high with respect to the variations of  and ̄

and the perturbation amplitude  is small, the gradient estimation component, which is Eq.

(3.87-3.90), estimates the gradient with small error according to the error term specified

in Eq. (3.28). Comparing (3.89) with (3.25) and (3.44), it is concluded that  ' (̄ )

in (3.90). Therefore, the estimated gradient is fed into the RISE gradient search according

to Eq. (3.91-3.92). The gradient search moves the signal ̄ towards the optimal value.

However, since there is some small error in the estimated gradient, the signal ̄() reaches

close proximity to the optimal trajectory ∗().

Example 3.3. The proposed RISE extremum seeking control method is applied to the fol-
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Figure 3.7: The optimal trajectory tracking of the first order extremum seeking control

method. The optimal variable ∗() is shown in blue while the generated variable ̄() is

shown in red.

lowing static mapping

 = −( − ∗ + 2)2 (3.93)

where the optimal trajectory ∗() is arbitrarily time-varying as shown in blue in Fig.3.7.

The results of the classic first-order extremum seeking method, shown in Fig. 2.3, are

presented in Fig.3.7 and Fig.3.8. The control gains are selected as  = 01,  = 8, and

 = 02. Simulations have been performed using the RISE extremum seeking control loop

in Fig.3.6. The control constants are chosen as  = 01,  = 8, 1 = 001, 2 = 005,

1 = 005, 2 = 06. Fig.3.9 indicates that the robust ESC makes the variable track the

optimal trajectory very close. Fig.3.10 shows that the cost function  almost achieves its

optimal value.
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Figure 3.8: The values of the cost function  as a function of time, generated by the first

order extremum seeking control method.
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Figure 3.9: The optimal trajectory tracking of the proposed RISE extremum seeking control

method. The optimal variable ∗() is shown in blue while the generated variable ̄() is

shown in red.
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Figure 3.10: The values of the cost function  as a function of time, generated by the

proposed robust extremum seeking control method.
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Chapter 4

Maximization of Power Capture in a

Variable Speed Wind Turbine

4.1 Introduction

Early results on maximizing the power capture can be found in Xin 1997. One drawback of

the method proposed there is that the optimal operating point is assumed to be known. The

most used maximum power point tracking algorithms in the literature are those introduced in

Datta and Ranganathan 2003, and Koutroulis and Kalaitzakis 2006, where several numerical

techniques, comparisons, and decisions are to be made in order to estimate the optimal

operation conditions. Johnson et. al. proposed a nonlinear controller (Johnson 2004,

Johnson et al. 2006, and Johnson et al. 2004) where a control gain is adaptively tuned

based on an estimation of the captured power. This approach had an adaptation on the

order of hours and a convergence time on the order of days. To maximize wind energy

captured in variable speed wind turbines at low to medium wind speeds, a robust control

strategy is presented in Iyasere et al. 2008. The proposed strategy simultaneously controls

the blade pitch and tip speed ratio, via the rotor angular speed, to an optimal point at which

the power coefficient is maximum. The control method allows for aerodynamic rotor power

maximization without the restrictions of exact wind turbine model knowledge. The proposed

tracking method in Pan et al. 2008 combines the ideas of sliding mode control (SMC) and

extremum seeking control (ESC). The only input needed in this method is the output active
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power of the generator. It avoids some difficult problems in traditional tracking algorithms,

such as measuring the wind velocity, the need of the wind-turbine model and parameters,

and detecting the gradient of power versus rotor speed.

The extremum seeking strategy proposed in Krstic and Wang 2000 has recently been

used for the maximum power point tracking problem. For MPPT problem in solar energy

systems, the ESC method is experimentally tested (Brunton et al. 2009). The method shows

a remarkable improvement in comparison with the previous methods for the same problem.

For wind turbines, the power maximization problem is addressed in Creaby et al. 2009

based on similar extremum seeking control strategy. This paper seeks to find the optimal

control torque while only measurements of power are available. However, some instabilities

were observed due to variation in the mapping (Chen et al. 2010). To compensate for the

variations of the mapping, Chen et al. 2010 considered input and sensor transfer functions

in the ESC control loop and provided a robustness analysis.

In this chapter, the RISE extremum seeking method proposed in Chapter 3 is applied to

design a maximum power point algorithm for wind turbines. The aerodynamic effect of the

wind is considered as an unstructured uncertainty. This also addresses other uncertainties

of the modeling. A strategy is provided to compute a filtered signal of the power, which is

then employed in the control loop. Hence, the proposed controller does not need any wind

or power measurements. The optimal point is assumed unknown and to be time-varying.

As a consequence, the control algorithm is very robust in respect to any uncertainty in the

modeling and measurement process.

4.2 Wind Turbine Modeling

4.2.1 Dynamic Model of a Variable Speed Wind Turbine

Several models have been proposed for wind turbines. The simplest one, a 1DOF model, is

used in this thesis. The 1DOF dynamic model of the wind turbine is (Johnson et al. 2006,

Iyasere et al. 2008)
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̇ = − −   +  (4.1)

where  is the rotor speed,  is the net rotating inertial,  is the net damping coefficient,

 is the wind torque, and   is the control torque.

The torque generated from the wind times the angular velocity is the captured wind

power, namely,

 =  (4.2)

At steady state conditions, the captured power has the following relation to the wind velocity

 =
1

2
 ( ) 

3 (4.3)

where  is wind velocity and  is tip-speed ratio defined as

 , 


 (4.4)

In the above relations  is the length of the blades which have the pitch angle ,  is the

area swept by the blades and  is the air density. In Equation (4.3), the power coefficient

 ( ) is a function of the tip-speed ratio and the pitch angle and determines the efficiency

of power capture. The objective of maximum power point tracking algorithms is to maximize

this coefficient.

In this section we assume that neither the wind velocity nor the power coefficient are

measurable. In addition, we are interested in the case that the wind velocity varies through

time. Hence, the maximum power point tracking problem in this case will be an extremum

seeking control problem where both the optimal operating point and the maximum power

capture are time-varying.

4.2.2 Discussions on Power Coefficient Function

The power coefficient function has a unique maximum in a wide range of tip speed ratio and

blade pitch angle. A typical  mapping is shown in Fig. 4.1 (Iov et al. 2004). According

to this surface, the optimal values are ∗ = 78, ∗ = −1◦, ∗ = 04727.
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Figure 4.1: The power coefficient  surface as a function of the tip speed ratio  and pitch

angle .

There also exists some analytic expressions for approximation of the ( ) mapping.

For example, Agarwal et al. 2010 used the below expression to develop a novel rapid MPPT

algorithm.

( ) = 0

µ
1


− 2 − 3

1 − 4

¶
−2 (4.5)

where

 =

µ
1

− 5
− 6

3 + 1

¶−1
 (4.6)

and

0 = 073 1 = 151 2 = 058 3 = 0002

4 = 132 5 = 002 6 = 0003

1 = 214 2 = 184

The optimal values for map (4.5) are ∗ = 0 ∗ = 7054 ∗ = 044. For  = 0, the Eq.

(4.5) becomes

() = 0

³1

− 4

´
−2 (4.7)
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Figure 4.2: Characteristics of  function.

Using the expression in (4.7), the values of ,



2

2
, and −

−∗ are calculated for

3 ≤  ≤ 10 and plotted in Fig. 4.2. Note that even though
2

2
is both positive and

negative, −

−∗ is strictly positive for 3 ≤  ≤ 10.

4.3 Active Control Methods of Wind Turbines

4.3.1 Classic Control Methods for Active Power Control

The power capture in Eq. (4.3) can be further manipulated to get the following form.

 =
1

2
 ( ) 

23 (4.8)

=
1

2

 ( )

3
53 = ( )3 (4.9)

where the new variable ( ) is defined as

 , 1

2
5

 ( )

3
 (4.10)
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In terms of , the aerodynamic torque  can be written as

 = 2 (4.11)

Consider the case where the pitch angle is fixed. In this case, assume that the optimal

value of , i.e.,

∗() =
1

2
5

 (
∗)

∗3
(4.12)

is known. By selecting the control input  ,  +   as

 = ∗()2 (4.13)

the value of  will move to the point where  = ∗ (see Johnson et al. 2004). The problem

with this method is that the optimal value ∗ must be known. However, in most of the

practical cases it is not possible to have such information.

For practical applications, Johnson et al. 2004 proposed the controller

 = 2 (4.14)

where the control gain  is adaptively updated so that the average captured power is

maximized.

By selecting the controller (4.14), the system (under some conditions) goes to the point

where

() =  (4.15)

In Figure (4.3), the mapping () → () is plotted for 3 ≤  ≤ 10 using the equation
(4.7) and 1

2
 = 1.

4.3.2 RISE Control Algorithm for Robust Speed Tracking

In rotor speed tracking problem, it is desired to design control laws for the input torque

such that the rotor speed tracks a desired trajectory (). However, as can be seen in Eq.

(4.1), the rotor speed is influenced by the aerodynamic torque. Since, there is no authority
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Figure 4.3: ()− () curve.

over the aerodynamic impact of the wind, the rotor speed tracking control must necessarily

be robust to aerodynamic torque. Considering the aerodynamic torque as an unstructured

disturbance, Hawkins 2010 and Iyasere et al. 2008 used RISE method to design the robust

speed tracking algorithm. The design procedure is as follows.

To facilitate the controller design, equation (4.1) is rewritten as the following

̇ = −


 − 1


  +

1


 (4.16)

which can further be simplified to get the following form

̇ = + () (4.17)

where

 , −


 − 1


  () ,

1


 (4.18)

An identifier is proposed as

̂() = (1 + 1) (̃()− ̃(0)) +

Z 

0

(1 + 1)̃() + 2(̃()) (4.19)

where

̃ ,  −  (4.20)
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  1
2
 and 1 and 2 are two big positive gains. By selecting the control input  as

 = ̇ − ̂() (4.21)

it can be proved that this control guarantees a semi-global asymptotic stability (See Hawkins

2010 or Iyasere et al. 2008 for similar proof).

4.4 MPPT Control Loop Development

As indicated earlier this thesis uses the RISE extremum seeking for the maximum power

point tracking problem in a wind turbine. To complete the control loop development, three

components of the control loop must be chosen. The first one is the searching variable . It

must be determined which parameter is going to be updated to reach the optimal value. The

next component is employing the internal stabilization method so that the rotor speed of

the wind turbine is regulated corresponding to the searching variable . The last remaining

component is the output. The captured power is usually a good candidate for this purpose.

However, there is often no direct measurements of the captured power available for the

feedback purpose. Therefore, an estimation or a filtered signal might be used.

In this thesis, the searching variable  is selected as the desired rotor speed . Therefore,

the control loop will be the following. A sinusoidal perturbation is added to the signal ̄.

Then, an appropriate control torque is applied to the wind turbine to track the desired rotor

speed. The generated power is then fed into the gradient estimation unit. The estimated

gradient is then used in the RISE gradient search to update the desired rotor speed. With

an appropriate arrangement of the control loop parameters, the desired rotor speed will

converge to the optimal rotor speed at which maximum power is generated.

The internal stabilization control method is chosen as the RISE robust tracking strategy

described in Section 4.3.2. It should be noted that the aim of the internal stabilization is to

make the input-to-output mapping have a quasi-static dynamical characteristic. Therefore,

the control gains should be selected so that the tracking task is performed relatively much
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faster than the adaptation process. In practical application, the speed control of wind

turbine blades is restricted by the large inertia of the blades and limited acceptable control

torque. However, in this thesis, these practical limitations are not considered.

As discussed earlier, the desired output for maximization is the captured power. Hence,

a suitable choice of output can be  = . However, since the measurements of  are not

available, it is not possible to select  =  as the measurable output. In the subsequent

analysis it is shown that

 =


+ 
 (4.22)

is measurable where  is a filter constant.

Lemma 4.1. According to dynamic model (4.17) for a variable speed wind turbine, it is

possible to obtain the following output

 =


+ 
 (4.23)

only based on the measurements of the rotor speed and the control input measurements.

Proof. Multiplying both sides of (4.17) by , we will get

̇ =  +  (4.24)

which is equivalent to





µ
1

2
2
¶
=  +  (4.25)

Writing the above equation in Laplace domain and multiplying both sides by 

+
results in



+ 
 =



+ 
(
1

2
2)− 

+ 


=


2
2 − 

+ 
(


2
2 + ) (4.26)

Since the rotor speed  and the control input , as designed in Eq. 4.21, are measurable,

 = 

+
 is measurable.
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Component Selection

Searching Variable 

Internal Controller RISE Stabilizer

Output 1
+



Table 4.1: MPPT control loop components.

Remark 7. The filtering constant  in (4.23), can be selected to have any positive value.

Considering the nature of the output power of a wind turbine,  should be selected small

enough to get rid of the high frequency variations caused by wind turbulence and, at the

same time, big enough to avoid losing any generated power during the optimization process.

Table 4.1 shows the control loop component selection.

4.5 Simulation Results

In this section, the developed MPPT algorithm in Section 4.4 is tested through numerical

simulations. The software package used for the simulation purpose is the "Wind Turbine

Blockset V.3" for Simulink created by Iov et. al. (see Iov et al. 2004). This software provides

several blocks which can be easily used in Simulink/MATLAB. For the simulations in this

section, the "Wind Model SB-1" block and the "Wind Turbine Rotor Variable Pitch" block

are used. The "Wind Model SB-1" block generates the wind signal. The wind signal can be

specified by the average wind velocity and the turbulence percentage. The "Wind Turbine

Rotor Variable Pitch" is used for simulation of the wind turbine. The inputs to this block

are the pitch angle, rotor speed, and the wind velocity. The block uses a look-up table

for the  ( ), shown in Figure (4.1), to compute the generated torque. The generated

torque is then used in the 1DOF model (4.1). The parameters which have been used in the

simulation are shown in Table 4.2.

4.5.1 Simulation Results

Three simulation results are provided to demonstrate the performance of the RISE extremum

seeking algorithm. In the simulations, it is assumed that the wind has 10% turbulence. The

54



Parameter Symbol Value

Net Rotating Inertia  105 kgm2

Net Damping Ratio  0 kgm2 s−1

Blade Pitch Angle  −1◦
Blade Radius  40 m

Average Wind Velocity ̄ 10 m s−1

Air Density  125 kgm−3

Table 4.2: Wind turbine parameter setup for simulation.

wind velocity profile is shown in Figure (4.4).

Simulation 1. RISE ESC for desired rotor speed adaptation. The RISE ex-

tremum seeking algorithm proposed in Chapter 3 is used to make the desired rotor speed

̄() to achieve the optimal value ∗() = ∗


. The only measurable data is (). In

Figure (4.5), the generated ̄ and the actual optimal value 
∗() = ∗


are plotted for

the proposed RISE extremum seeking algorithm. The actual and the maximum possible

values for the captured power are depicted in Figure (4.6). It can be observed that the cap-

tured power is very close to the maximum possible value using the RISE extremum seeking

method. In Figure (4.7), the aerodynamic torque and the control torque are presented.

Simulation 2. Classic ESC for desired rotor speed adaptation. Classic ESC

method is used for adaptation for the optimal ̄. In Figure (4.8), the generated ̄ and

the actual optimal value ∗() = ∗


are plotted. It can be easily observed that the classic

ESC method is not very successful in identifying and tracking the optimal rotor speed. The

justification is that the optimal value is time-varying, and therefore, cannot be tracked well

using classic ESC method.

Simulation 3. Classic ESC for control gain adaptation. The optimal control gain

is constant. The classical extremum seeking algorithm is utilized for finding the optimal

control gain  in   = 2. According to Eq. (4.12), the parameters values in Table (4.2),
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Figure 4.4: The wind velocity profile as a function of time with 10% turbulence.

and the  curve, the optimal value for the control gain is

∗ =
1

2
5

 (
∗)

∗3

= 5× 125×  × 405 × 4727

783
= 200 277Nm2 sec2 

In Figure (4.9), the obtained control gain is shown. Since the optimal point in this case is

time-invariant, the classic ESC method can reach the optimal value. The captured power

with this method and the maximum capturable power are depicted in Figure (4.10).

4.6 Concluding Remarks

In Table 4.3, some adaptation strategies for the MPPT problem in wind turbines are listed.

The peak-seeking algorithms in the first three references are based on numerical optimization

methods. The methods used in these references necessarily require time-invariant mappings.

Since the power map in a wind turbine is by nature time-varying, some approaches have been

devised for successful implementation of the MPPT algorithms. Specifically, Johnson 2004
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Figure 4.5: The actual optimal value ∗() (blue) and the generated ̄ (red) by the proposed

RISE extremum seeking algorithm.
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Figure 4.6: Maximum possible power capture versus the actual captured power using the

RISE extremum seeking algorithm. The captured power is shown in red and the maximum

possible value is plotted in blue.
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Figure 4.7: The aerodynamic torque and the control torque input using the RISE extremum

seeking algorithm.
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Figure 4.8: The actual optimal value ∗() (blue) and the generated ̄ (red) by a classic

extremum seeking algorithm.
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Figure 4.9: Control gain adaptation using the classic ESC method. The red line represents

the optimal value.
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Figure 4.10: Maximum possible power capture versus the actual captured power using clas-

sic ESC method for gain adaptation. The captured power is shown in red and the maximum

value is plotted in blue.
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calculated the average of the long term power capture, and then used the averaged value in

the steepest descent algorithm. In this way, the mapping which is used for the numerical

search is almost time-invariant. Therefore, the numerical optimization operates properly.

Hawkins 2010 assumed that the wind velocity is measurable and instead of the power map,

the power coefficient  map was used. The power coefficient map is time-invariant so the

numerical optimization can be successfully employed. Iyasere et al. 2008 provided results

for the case where the wind velocity is constant. If the wind speed is constant, the power

map is time-invariant which allows the Powel’s method to be used.

The MPPT algorithms in Creaby et al. 2009, Chen et al. 2010, and the current work are

based on continuous time extremum seeking control methods. The ESC method which is

used in Creaby et al. 2009 is for time-invariant mappings. As discussed earlier, this method

performs satisfactorily for time-varying mappings if the time variation of the mapping is

much slower than the adaptation dynamics. However, in a wind turbine, the time variations

of the system are considerable and should be properly handled. As a consequence, unstable

results are observed in Creaby’s method (see Chen et al. 2010). Chen et al. 2010 considered

dynamic mapping for power maximization in wind turbines. Making use of the ESC method

enhanced the performance.

As reported in Chapter 2, an extremum seeking control method is developed for mappings

where the optimal point and the optimal value are functions of time in Krstic 2000. However,

the structure of the variation by time must be known. Because of the turbulent nature of

wind, it is not possible to propose an accurate model for the variations of the wind. In

this thesis, the variation of the mapping is considered completely unknown. The power

mapping is allowed to be varying by time in a very general form. However, we assume

that the optimal point is changing smoothly. Therefore, sudden changes in wind speed and

persistent high frequency variations of the wind might deteriorate the performance of the

proposed MPPT algorithm.
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Mapping Reference Searching Method Application Limita-

tion

 → ̄ Johnson et al. 2006 Steepest descent Very slow convergence

( )→  Hawkins 2010 Switching step search Wind velocity measure-

ment

( )→  Iyasere et al. 2008 Powel’s method Constant wind velocity

(  )→  Creaby et al. 2009 ESC Instability of results due

to mapping variations.

  →  Chen et al. 2010 ESC with mapping dy-

namics

 →  Current work RISE ESC Complicated control

loop.

Table 4.3: Peak-seeking control methods for MPPT problem in wind turbines.
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Chapter 5

Conclusion and Future Work

5.1 Summary and Conclusion

In this thesis, the maximum power point tracking (MPPT) problem in wind turbines is

addressed. For a given wind velocity, the amount of the captured power is dependent on the

rotor speed. There is an optimal rotor speed at which the captured power is maximum for the

given wind velocity. This optimal rotor speed is dependent on the wind velocity. In practice,

the wind field is constantly changing. As a consequence, the optimal operating point of the

wind turbine is also varying. Finding the optimal point is challenging, specifically due to

several technological limitations for direct measurements of the wind velocity. In this thesis,

an MPPT algorithm is proposed to identify and track the optimal rotor speed trajectory

without any measurements of the wind velocity. Furthermore, direct measurements of the

captured power are not essential for the implementation of the MPPT loop.

For designing the proposed MPPT algorithm, a new extremum seeking method is used.

In an extremum seeking algorithm, the system states are derived to a point where a map-

ping is at its extremum (maximum or minimum) value. All the existing extremum seeking

algorithms are for the systems where the mapping is time-independent. If a mapping is time-

dependent, then the time-variation must be very slow or the structure of the variation must

be known. The extremum seeking algorithm developed in this thesis does not make such

assumptions about the mapping variations. The mapping is allowed to be time-dependent
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in a very general form. The optimal point is assumed to be varying smoothly over time.

The extremum seeking control method in this thesis basically consists of two separate

components, i.e., 1) gradient estimation and 2) RISE gradient search. The gradient estima-

tion is realized through adding a sinusoidal perturbation to the searching signal and then

demodulating the measured output. A delay-based strategy is developed to extract the

gradient. The estimated gradient signal is then fed into the RISE gradient search method.

The developed RISE gradient search method is proved to move the searching signal toward

the optimal value. Some simulations are provided to show the performance of the proposed

extremum seeking algorithm.

The proposed RISE extremum seeking method is applied to the maximum power point

tracking problem in wind turbines. The simulation results show that the designed MPPT

algorithm can keep the wind turbine system operating at the optimal rotor speed. The

performance is then compared with classic extremum seeking methods for rotor speed adap-

tation and control gain adaptation.

5.2 Suggestions for Future Work

The RISE extremum seeking algorithm which is introduced in this thesis is proved for single

dimensional search. It will be interesting to extend the results to cases where the searching

signal is multi-dimensional. In this report, each component of the extremum seeking control

loop is designed based on the assumption of the separation of time-scale. The output of

each component is consistent with the input requirements of the next component. However,

the analysis for quantifying the separation of time-scales are not presented. To obtain this,

the closed-loop system should be analyzed as a whole. Another assumption of the proposed

extremum seeking algorithm is that the mapping is static. Therefore, the method can only

be applied to quasi-static mappings. Enhancing the capabilities of the RISE extremum

seeking for dynamic mappings can be a topic for future work.

All the extremum seeking methods primarily rely on introducing dither signals in the
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control loop. In practice, the frequency of the dither signal might induce fatigue in the

turbine structure. As a result, this fact can be considered as a drawback of these methods.

The variations of the wind velocity due to turbulence has already been used for the MPPT

problem (Munteanu et al. 2008). The idea is that when the wind velocity changes, the

tip speed ratio will also change. This could be used as a natural perturbation to the

searching signal (here, the tip speed ratio). The problem with this method is that a reliable

measurement of the wind velocity must be available. Another approach which might be

useful is to use the persistent tower vibrations in a wind turbine as a dither signal.
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Appendix A

Appendix

Proof of (3.37-3.38).

Using the Mean Value Theorem, there exists a time 0 ∈ (  ), where



|=0 = ()−()

− 
. (A.1)

Therefore, (̄() ()) can be expressed as

(̄() ()) = (̄() ()) +



|=0( − ) (A.2)

Substituting for (̄() ()), the following is ture

1

2

Z 

−
(̄() ()) sin( + ) sin( + ) =

1

2

Z 

−

n
(̄() ()) + ̇(

0)( − )
o
sin( + ) sin( + ) =

1

2
(̄() ())

Z 

−
 sin( + ) sin( + ) + 4(·) (A.3)

where

4(·) = 1

2
̇(

0)
Z 

−
( − ) sin( + ) sin( + ) (A.4)

The first integral term in (A.3) can be calulated as

1

2
(̄() ())

Z 

−
 sin( + ) sin( + ) =

1

2
 cos(− )(̄ ) (A.5)
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Based on (A.3) and (A.5) the following is concluded

1

2
(̄() ())

Z 

−
 sin( + ) sin( + ) =

1

2
 cos(− )(̄ ) + 4() (A.6)

Hence, the Eq. (3.37) is proved.

The integral term in (A.4) can be compouted asZ 

−
( − ) sin( + ) sin( + ) =

−
22

{sin(2+  + ) + 2 cos(− )} (A.7)

Based on (A.4) and (A.7), the error term 4(·) can be expressed as

4(·) = −
42

̇(
0){sin(2+  + ) + 2 cos(− )} (A.8)

According to Eq. (A.8) and Eq. (3.32),

4(·) = O( 1
2
) (A.9)

which is similar to Eq. (3.38). Hence the proof.
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