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Abstract 

While watching a film, the viewer begins to construct mental representations of it, which are 

called events.  During the opening scene of a film, the viewer is presented with two distinct 

pieces of information that can be used to construct the event, namely the setting and an action by 

the main character.  But, which of these two constructs are first cognitively represented by the 

viewer?  Experiment 1 examined the time-course of basic level action categorization with 

superordinate and basic level scene categorization using masking.  The results indicated that 

categorization occurred in a course-to-fine manner, inconsistent with Rosch et al.’s (1976) basic 

level theory.  Interestingly, basic level action categorization performance did not reach ceiling 

when it was processed for a 367 ms SOA, suggesting that additional scene information and 

processing time were required.  Thus, Experiment 2 examined scene and action categorization 

performance over multiple fixations, and the scene information that was fixated for each 

categorization task.  Both superordinate and basic level scene categorization required only a 

single fixation to reach ceiling performance, inconsistent with basic level primacy, whereas basic 

level action categorization took two to three fixations, and led to more object fixations than in 

either scene categorization task.  Eye movements showed evidence of a person bias across all 

three categorization tasks.  Additionally, the categorization task did produce differences in the 

scene information that was fixated (Yarbus, 1967).  However, could basic level theory still be 

correct when subjects are given a different task?  When the same scene images were named, 

basic level action terms were used more often than basic level scene category terms, while 

superordinate level action terms were used relatively less often, and superordinate level scene 

category terms were hardly ever used.  This shows that linguistic categorization (naming) is 

sensitive to informative, middle-level categories, whereas early perceptual categorization makes 



  

use of coarse high level distinctions.  Additionally, the early perceptual advantage for scene 

categorization over basic level action categorization suggests that the scene category is the first 

construct that is used to represent events in scene images, and maybe even events in visual 

narratives like film. 
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Abstract 

While watching a film, the viewer begins to construct mental representations of it, which are 

called events.  During the opening scene of a film, the viewer is presented with two distinct 

pieces of information that can be used to construct the event, namely the setting and an action by 

the main character.  But, which of these two constructs are first cognitively represented by the 

viewer?  Experiment 1 examined the time-course of basic level action categorization with 

superordinate and basic level scene categorization using masking.  The results indicated that 

categorization occurred in a course-to-fine manner, inconsistent with Rosch et al.’s (1976) basic 

level theory.  Interestingly, basic level action categorization performance did not reach ceiling 

when it was processed for a 367 ms SOA, suggesting that additional scene information and 

processing time were required.  Thus, Experiment 2 examined scene and action categorization 

performance over multiple fixations, and the scene information that was fixated for each 

categorization task.  Both superordinate and basic level scene categorization required only a 

single fixation to reach ceiling performance, inconsistent with basic level primacy, whereas basic 

level action categorization took two to three fixations, and led to more object fixations than in 

either scene categorization task.  Eye movements showed evidence of a person bias across all 

three categorization tasks.  Additionally, the categorization task did produce differences in the 

scene information that was fixated (Yarbus, 1967).  However, could basic level theory still be 

correct when subjects are given a different task?  When the same scene images were named, 

basic level action terms were used more often than basic level scene category terms, while 

superordinate level action terms were used relatively less often, and superordinate level scene 

category terms were hardly ever used.  This shows that linguistic categorization (naming) is 

sensitive to informative, middle-level categories, whereas early perceptual categorization makes 



  

use of coarse high level distinctions.  Additionally, the early perceptual advantage for scene 

categorization over basic level action categorization suggests that the scene category is the first 

construct that is used to represent events in scene images, and maybe even events in visual 

narratives like film.
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Chapter 1 - Recognizing the Setting Before Reporting the Action: 

Investigating How Visual Events Are Mentally Constructed from 

Scene Images 

The opening shot of the film, The Dark Knight shows a cityscape (Nolan, Thomas, 

Roven, & Nolan, 2008).  A storyboard of the opening sequence is presented in Figure 1.1.  The 

camera approaches one of the buildings, then suddenly one of the windows shatters.  The second 

shot cuts to a man wearing a clown mask, holding a gun, next to the recently shattered window.   

The camera is positioned behind the armed man, looking over his shoulder, out the window onto 

the city.  The armed man inserts a grappling hook into his weapon and fires it through the hole in 

the window.  A jump cut presents the third shot.  It is the back of a man, holding a clown mask 

and a duffle bag, standing on a street corner.  The camera zooms in on the menacing clown 

mask.  A van enters the frame, and the menacing looking man gets in the van.   

The first three shots of the film begin by presenting two specific pieces of information to 

the viewer, namely the setting and action.  These two constructs must be used by the viewer in 

order to comprehend this sequence of shots.  From the beginning of the first shot, the viewer is 

introduced to the setting, the cityscape.  The end of the first shot introduces an action, the 

shattering of the window.  The second shot introduces the agent, namely a masked man holding a 

gun who is responsible for shattering the glass window.  Therefore, in these two shots, the 

viewer has begun to comprehend the situation in a specific temporal order.  First the viewer 

cognitively represents the setting followed by the action.  
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Figure 1.1 Story board of the first three shots from the film The Dark Knight (Nolan, Thomas, Roven, & Nolan, 2008).
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The beginning of the third shot appears to be unrelated to the previous two shots, since a 

brand new character, action, and setting are introduced.  Therefore, the viewer may perceive the 

first two shots as a separate event compared to what is currently viewed, which is presenting 

different character and location information (Zacks, Tversky, & Iyer, 2001).  An event is defined 

as a goal-related activity that has a beginning and ending (Kurby & Zacks, 2007; Zacks, Speer, 

Swallow, Braver, & Reynolds, 2007; Zacks, & Tversky, 2001).  As the viewer begins to 

comprehend the new event at the start of the third shot, both the setting and action information 

are available simultaneously.  Therefore, the viewer is allowed to comprehend the setting and 

action for the current event without the same temporal restrictions which were placed on the 

viewer during the first two shots.  This raises the question, how does the viewer begin to 

cognitively represent the event?  Does the viewer begin by representing the setting first, implied 

by the first two shots of the film, or the character’s action?  

Events in Visual Narratives: Is the Scene Category or Action Represented 

First? 

The identification of events has been investigated for many different tasks, including 

reading (Speer, Zacks, & Reynolds, 2007; Zacks, Speer, Reynolds, 2009), viewing pictorial 

narratives (Gernsbacher, 1985; Gernsbacher, Varner, & Faust, 1990), and watching short films 

(Zacks, Speer, Swallow, & Maley, 2010; Zacks, Tversky, Iyer, 2001).  According to current 

theory, important psychological processes occur during these perceived events.  Namely, at the 

start of an event, the viewer will begin to construct a working memory representation of the 

narrative, called an event model (Kurby & Zacks, 2007; Zacks, Speer, Swallow, Braver, & 

Reynolds, 2007).  According to event segmentation theory (EST), perceptual information from 

the visual narrative is used to construct the event model (Reynolds, Zacks, & Braver, 2007; 
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Zacks, Kurby, Eisenberg, & Haroutunian, 2011).  Once constructed, a gating mechanism 

prevents variability in the perceptual environment from directly affecting the event model’s 

representation.  Such a mechanism allows for the event model to remain stable for a given 

situation, even when perceptual information is occluded, or when perceptual encoding is 

inhibited due to saccadic suppression (Ross, Morrone, Goldberg, & Burr, 2001; Volkmann, 

1986).  Perceptual predictions are made based on the newly constructed event model.  If the 

event model’s predictions are upheld, then the same event is assumed to still be occurring since 

the mental representation is consistent with the incoming perceptual information in the observed 

narrative.  Conversely, if the model’s predictions are falsified, then a new event must be 

identified, because the current narrative is inconsistent with the mental representation of the 

narrative.  As a result a new event model begins to be constructed.  Therefore in Figure 1, the 

jump cut to the third shot, where a new character and a new location is introduced is likely to 

result in the identification of a new event and the construction of a new event model.   

Many studies have examined the factors used to identify a new event.  Some of these 

include perceptual features like changes in motion, based on research on film narratives (Smith, 

2012; Zacks, 2004; Zacks, Kumar, Abrams, & Mehta, 2009).  Others include breaks in coherence 

in conceptual/semantic features, based on research from written narratives.  The event indexing 

model proposes a set of semantic dimensions that are likely to result in a new model for the 

narrative, which include changes in the character, intentionality, causality, time, and place 

(Magliano & Zacks, 2011; Zacks, Speer, & Reynolds, 2009; Zwaan, Langston, & Graesser, 

1995; Zwaan & Radvansky, 1998).  The critical factors that are important for the current study 

are the spatio-temporal setting and the action of the character, with the latter being related to the 

dimensions of character and intentionality in the event indexing model (Zwaan, Langston, 



5 

 

Graesser, 1995; Zwaan & Radvansky, 1998).  Story grammar theories propose that narratives are 

organized such that the setting is introduced first (Mandler & Johnson, 1977; Thorndyke, 1977), 

since it establishes the place and time for subsequent actions to take place in.  Based on this idea, 

it would be reasonable to hypothesize that in real-time perception, viewers categorize the setting 

prior to categorizing the action.  Conversely, theories of narrative comprehension argue that 

narratives follow the actions and goals of a protagonist; thus attending to the actions of the 

character is absolutely critical to understanding the story (Mandler & Johnson, 1977; Rinck & 

Weber, 2003; Scott-Rich & Taylor, 2001; Thorndyke, 1977).  Based on this attentional bias to 

the character and their actions, it would be reasonable to hypothesize that in real-time perception, 

viewers would categorize the action prior to the setting.   

Although the event indexing model was developed specifically to account for written 

narratives, the same factors have been shown to be important for comprehending visual 

narratives as well (Zacks, Speer, & Reynolds, 2009).  For instance, event-related potential (ERP) 

studies have shown that the brain compares the semantic information that is currently being 

viewed with what was previously viewed in order to detect semantic incongruities, as evidenced 

by N300 and N400 ERPs (described below)(McPherson & Holcomb, 1999; Stinikova, 

Kuperberg, & Holcomb, 2003; West & Holcomb, 2002).  This detection of semantic incongruity 

also occurs when the action and setting changes in a picture story (West & Holcomb, 2002).  In 

that study, a series of picture stories was presented, and the last image of the story was either 

semantically congruent or incongruent with the story. ERPs were compared between those who 

viewed a congruent or incongruent final scene, and the incongruent image ERP produced a 

greater negativity at 300 ms (N300) and 400 ms (N400).  The N300 was suggested to indicate 

semantic incongruity for strictly pictorial stimuli (McPherson & Holcomb, 1999), whereas the 
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N400 identifies semantic incongruity for both text and pictorial information (McPherson & 

Holcomb, 1999; Stinikova, Kuperberg, & Holcomb, 2003; West & Holcomb, 2003).  Therefore, 

this suggests that changes in scene category and action information create difficulties for viewers 

in integrating such information with the previously viewed story narrative.  Assumedly, this is 

the sort of failure to fulfill predictions that event segmentation theory argues is used to signal the 

need for a new event model. 

Behavioral research on scene perception has shown that both the setting and action can be 

identified within the first eye fixation on the scene, referred to as scene gist.  Scene gist is 

typically operationalized as a person’s ability to categorize a briefly presented image with a short 

description or a one-word label (Bacon-Macé, Macé, Fabre-Thorpe, & Thorpe, 2005; Larson & 

Loschky, 2009; Loschky & Larson, 2010; Potter, 1976).  This could include a description like 

“dog with a frisbee” (Fei-Fei et al., 2007) or simply labeling a scene as a “beach” or “forest” 

(Larson & Loschky, 2009; Loschky & Larson, 2010; Rousselet, Joubert, & Fabre-Thorpe, 2005), 

which is more typical in scene gist research.  When a scene is processed for as little as 100 ms, 

using a 100 ms masking stimulus onset asynchrony (SOA), people’s performance for 

categorizing the scene is generally at ceiling (Bacon-Mace, Mace, Fabre-Thorpe, Thorpe, 2005; 

Biederman, Rabinowitz, Glass, & Stacy, 1974; Loschky, Sethi, Simons, Pydimarri, Ochs, & 

Corbeille, 2007; Loschky & Larson, 2010; Potter, 1976; Rousselet, Joubert, Fabre-Thorpe, 

2005).   However, scenes may be categorized at different levels of a scene taxonomy.  Namely, a 

general category label can be applied to a scene, called a superordinate category (e.g., Indoors), 

or a more specific label may be applied to the same image, called the basic level (e.g., Kitchen).  

Classic categorization studies have shown evidence for the basic level category being 

represented prior to the superordinate for scenes and objects (Rosch et al., 1976; Tversky & 
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Hemenway, 1983), while recent work has shown the opposite (Green & Oliva, 2009; Joubert, 

Rousselet, Fize, & Fabre-Thorpe, 2007; Loschky & Larson, 2010; Rogers & Patterson, 2007).  

The time-course of superordinate and basic level scene categorization was examined in the 

current studies, and extended by comparing it to the time course of action categorization. 

Actions are also processed during this same time frame.  For instance, people and animals 

can be detected when a scene image is briefly presented for 20-26 ms (Mace, Joubert, 

Nespoulous, & Fabre-Thorpe, 2009; Thorpe, Fize, & Marlot, 1996).  Indeed, animals can be 

detected just as easily when either one or two scene images are presented simultaneously 

(Rousselet, Fabre-Thorpe, & Thorpe, 2002) and when they are presented in the far periphery 

(Thorpe, Gegenfurtner, Fabre-Thorpe, & Bultoff, 2001).  More to the point, actions can be 

named quite well after masking a brief peripheral presentation of the scene.  Actions were named 

well for line drawings after a 300 ms masked presentation (Dobel, et al., 2007) and 150 ms 

masked presentation for real scene images (Glanemann, 2007).  Likewise, eye movement 

research suggests that the first saccade in a scene is likely to be directed to the person (Fletcher-

Watson, Findlay, Leekam, & Benson, 2008; Humphrey & Underwood, 2010; Zwickel & Võ, 

2010).  Thus, these studies suggest that the action may be categorized as quickly as the scene 

category, which raises the question of which of these constructs is recognized first? 

The first construct that is recognized should also be the first construct the viewer uses to 

construct an event model regarding the visual narrative.  For example, in the opening shot from 

the film, The Dark Knight, only the setting is present for the viewer to encode.  The viewer is not 

presented with a character and action until the start of the second shot.  Thus, these two 

sequential shots present the setting and action in a specified temporal order, such that the viewer 

constructs the event model from the setting first and then the actions of the character.  
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Conversely, the beginning of the third shot presents both a different setting and character which, 

presumably, is interpreted as a new event by the viewer; thus a new event model is needed.  The 

third shot presents the setting and character’s action simultaneously.  In this case, which 

construct does the viewer recognize first in order to begin constructing the event model?  

Experiments 1 and 2 examined the time course of image categorization within a single 

fixation and across multiple fixations, respectively.  In both experiments, scene images were 

categorized at either the superordinate scene category level (“Indoor” vs. “Outdoor” scenes), the 

basic level scene category (“Park,” “Kitchen,” “Yard,” and “Office”), or the basic level action 

category (“Eating” versus “Reading” in a Park).  Comparing the two scene categorization levels 

addresses a debate within the categorization literature, specifically which categorical level is 

represented first.  Rosch et al.’s (1976) basic level theory hypothesizes that the basic level should 

be categorized prior to the superordinate level.  For instance, the superordinate level is defined as 

a general category label, whereas the basic level allows for finer category distinctions to be 

differentiated.  Thus, in Figure 1, the third shot presents a scene, which could be labeled first as a 

“street” at the basic level and then “Outdoors” at the superordinate level.  Conversely, recent 

evidence has suggested that scenes are first represented at a coarse level, which then becomes 

more detailed over time, with the superordinate scene category being represented before the 

basic level (Joubert, Rousselet, Fize, & Fabre-Thorpe, 2007; Loschky & Larson, 2010; Macé, 

Joubert, Nespoulous, & Fabre-Thorpe, 2009; Rogers & Patterson, 2007).  These two levels of 

scene categorization are then compared to basic level action categorization, which may plausibly 

be hypothesized to be represented first due to a strong bias to immediately attend to people 

within scenes (Fletcher-Watson, Findlay, Leekam, & Benson, 2008; Humphrey & Underwood, 

2010).  Experiment 2 examined the fixation locations for these three different categorization 
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tasks.  Previous research has shown that a viewer’s task affects the information that is fixated in 

a scene (DeAngulus & Pelz, 2009; Yarbus, 1967).  Thus, based on this research, the 

categorization task should produce differences in the scene information that is fixated.  However, 

an alternative hypothesis is that eye movements are biased to fixate the person in a scene.  All of 

the scene images contained a person performing an action; thus the eye movements in the three 

categorization tasks should be the same, due to fixations falling on the person across all of the 

tasks. 

Experiment 3 then examined the descriptions that were used to label these same scene 

images in order to determine if image categorization differs between early perceptual 

categorization and later linguistic categorization (naming) processes.  Previous studies have 

shown that early perceptual categorization of scenes occurs at the superordinate level before the 

basic level.  Thus, it is hypothesized that scene images may be described according to the initial 

category that is recognized, namely the superordinate level scene category.  Conversely, later 

linguistic categorization processes may be biased to label objects and scenes according to finer-

level category distinctions.  Thus, an alternative hypothesis predicts that scenes will be described 

according to the basic level image descriptors rather than the superordinate level terms.  

Furthermore, if image descriptions focus on the basic level, then are the descriptions based on 

the action or the scene category?  Thus, a final alternative hypothesis is that basic level actions 

would be used more to describe scene images, based on research that shows that the first eye 

movement in a scene is biased to fixate people.  The results from all three experiments are then 

discussed in terms of their contribution to research on scene perception, and extended to 

implications for research on event perception and comprehension of visual narratives. 
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Chapter 2 - Experiment 1 

The classic study supporting the idea of basic level superiority by Rosch et al. (1976) 

showed that it was easier for people to name the basic level category of an object compared to 

naming its superordinate or subordinate category.  For example, indicating an object was a “dog” 

was shown to be faster than describing it as an “animal” (superordinate level) or a “German 

Shepherd” (subordinate level).  The basic level hypothesis has been supported by numerous 

studies (e.g., Gosselin & Schyns, 2001; Jolicour, Gluck, & Kosslyn, 1984; Murphy & Smith, 

1982).  Rosch’s theory reasoned that the basic level was easier to access since the features shared 

at the basic level were not likely to be shared by other object categories, thus it is inclusive.  

However, the basic level must also be cognitively economical, since it would be impractical to 

have a different name for every single discrete object.  Therefore, the basic level has properties 

of being both general and inclusive.  For example, the features of dogs allow them to be 

recognized as a separate category than birds, which have very different features.  Therefore dog 

is inclusive of a specific type of animal.  However, the category dog is also a general term, since 

it includes all types of dogs, from Golden Retrievers to Chihuahuas.  However, superordinate 

categories (e.g., animal), would be harder to recognize because objects contained in a 

superordinate category share few perceptual features, and thus are more difficult to recognize 

than basic level categories.  Rosch et al. (1976) showed that recognizing objects at the basic level 

produced faster reaction times than at the superordinate level.  Thus, according to the theory, 

object categorizing occurs first at the basic level, and then the object’s superordinate category is 

inferred from its basic level category (e.g., we know that Fido is an “animal” by virtue of the fact 

that he is a “dog” and the fact that all “dogs” are “animals”).   
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The basic level advantage was also found with environmental scenes (Tversky & 

Hemenway, 1983).  Participants were able to list significantly more scene parts (perceptual 

features) and actions (behaviors consistent with the environmental scene) when categorizing 

basic level scenes (e.g., Park or Home) compared to superordinate level scenes (e.g., Outdoors 

and Indoors).  However, there was no increase in identifying parts and actions when categorizing 

scenes at the subordinate level (e.g., City Park or Apartment).  Additionally, when participants 

were asked to name different environmental scenes, basic level scene category names were more 

frequent than superordinate or subordinate scene categories.  On the basis of this study and 

Rosch et al.’s theory, then, one can hypothesize that basic level scene categories should be 

recognized more accurately and faster than the superordinate level scene categories; however, 

based on Rosch et al.’s theory, it is unclear how basic level action categories and scene 

categories relate to each other in terms of a processing hierarchy.   

Importantly, however, recent research has begun to challenge the basic level advantage 

hypothesis.  Oliva and Torralba (2001) theorized that scene categorization occurs in a global-to-

local fashion based on a computational model they proposed that first identifies global scene 

properties and then makes more finer scene category distinctions.  Scenes would first be 

represented by only a very gross categorical distinction (Natural/Man-made), and over time, finer 

category distinctions would be made (e.g., open field vs. beach)(Greene & Oliva, 2009).  The 

same theorized order of categorization was proposed by Rogers and Patterson’s (2007) Parallel 

Distributed Processing theory.  Rogers and Patterson (2007) showed that superordinate object 

representations were recognized prior to the basic level when participants were forced to make a 

speeded response.  However, when participants were allowed to respond at their own pace, then 

the basic level was better recognized than the superordinate object category.  Further behavioral 
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evidence for such coarse-to-fine categorization has been shown when participants rapidly 

categorized objects contained in scenes.  Specifically, categorizing scenes as containing an 

animal versus non-animal (superordinate categorization) was faster than categorizing the animal 

as a bird or a dog (basic level categorization)(Macé, Joubert, Nespoulous, & Fabre-Thorpe, 

2009; Poncet, Reddy, & Fabre-Thorpe, 2012).  These experiments briefly presented scene 

images and required participants to categorize the object, similar to the procedures used in 

studying the speed at which scene gist is recognized.  Finally, a recent study compared scene 

categorization at the superordinate versus basic level (Loschky & Larson, 2010).  The results 

showed that superordinate level gist was categorized more quickly than the basic level.  For 

example, when given a 12 ms masking SOA to process the category of a scene image at the 

superordinate level (Natural or Man-made), sensitivity reached .75, as measured by A’, a non-

parametric signal detection measure of sensitivity.  However, in order to reach the same level of 

sensitivity when categorizing scene gist at the basic level (e.g., Street or Highway), about 24 ms 

SOA was required (Loschky & Larson, 2010).  These studies show that rapid scene 

categorization begins at a coarse level, and further processing allows for finer distinctions to be 

made.  For example, an object is recognized as an “animal” prior to being recognized as a “dog,” 

or a scene is recognized as being “outdoors” before it is recognized as being a “street” scene.  

These studies would suggest the hypothesis that a scene’s superordinate category should be 

recognized more accurately at an earlier processing time than either the basic level or 

action/event level.   

A third competing hypothesis can be proposed based on recent eye-movement research, 

which shows that the eyes are biased to attend to people in scene images (Fletcher-Watson, 

Findlay, Leekam, & Benson, 2008; Humphrey & Underwood, 2010).  For instance, Fletcher-
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Watson, Findlay, Leekam, & Benson (2008) presented two images simultaneously on a computer 

screen, to the left and right of fixation.  One of the scenes contained a person, while the other 

scene did not.  On half of the trials, subjects were told simply to look at the pictures, while on the 

other half of the trials, subjects were told to identify the gender of the person in the image.  

When participants were given the free viewing task, their first saccade went to the image with 

the person 67.0% of the time.  The authors also created a measure of bias that took into account 

both the probability of fixating a region and the relative size of that region, and showed that the 

first fixation on the person-present scene was more biased to target the person’s face than the 

scene background.  According to the Sequential Attention model, this indicates that prior to the 

initiation of the saccade, covert attention moved to the spatial location of the person, which was 

followed by an eye movement to the same location (Henderson, 1992).  Thus, these results show 

that there is a strong bias to process people in an image during the very first fixation on a scene, 

even when the people appear in the viewer’s visual periphery.   

There are also studies suggesting that a simple event can be recognized within a single 

fixation, which is similar to the processes and time-course used to recognize scene gist.  Dobel, 

Gumnior, Bölte, and Zwitserlood (2007) presented masked action scenes in the visual periphery 

for durations varying from 100-300 ms.  During the experiment, the computer screen was 

divided into four equally sized quadrants, and a scene was presented in one of them, while the 

subject fixated the center of the screen—thus scenes were always presented in parafoveal or 

peripheral vision and the subject did not know where to expect them.  When given the task of 

identifying the location of the person performing the action (i.e., the agent), performance reached 

asymptote (74% correct) when a scene was presented for 200 ms, indicating the semantic 

relationship between characters in the scene had been categorized.  However, when given the 
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task of naming the action, performance was worse, varying from 19 % correct when scenes were 

presented for 100 ms, to 46 % correct when scenes were presented for 300 ms (Dobel, Gumnior, 

Bölte, & Zwitserlood, 2007).  Interestingly, only two different actions were used in the study 

(Shooting vs. Giving), suggesting that basic level action identification in the visual periphery is 

quite poor.  However, Glanemann (2007) briefly presented real-life action scenes in the 

periphery and examined whether assigning agent/patient roles in a scene was the result of 

identifying the action.  If so, then performance on these two tasks should be similar.  Scenes 

were constructed around twelve different actions and the scenes were presented for 150 ms.  The 

results showed that patient was correctly detected 93% of the time, however this was not due to 

correctly identifying the action, since basic level action naming only reached 58% correct when 

the image was presented for 150 ms.  Thus, both studies showed that basic level action naming 

does occur in briefly presented scenes in the visual periphery, though it appears that agent/patient 

categorization is even faster than action naming.   

An interesting question is the degree to which the action-naming results of Dobel et al 

(2007) and Glanemann (2007), which were rather poor at short scene durations, bear on 

predictions of basic level action recognition.  In fact, there are several reasons why action 

recognition performance may be better than action naming.  First, recognition tasks are less 

cognitively taxing than recall tasks, and therefore action recognition performance should be 

better than action naming.  Second, the scenes in Glanemann (2007) and Dobel et al., (2007) 

contained no background scene information, and thus cannot speak to comparisons between 

action or event recognition and scene gist recognition.  Furthermore, previous studies have 

shown that person and object recognition improves when they are contained in a congruent scene 

background compared to an incongruent scene background (Davenport & Potter, 2004; Palmer, 
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1975).  Therefore, the results for action recognition reported in these action naming studies may 

be a lower bound on performance, and action recognition in natural scene contexts should be 

even better than reported by Dobel et al. (2007) and Glanemann (2007).  In sum, since attention 

is biased towards people in scenes during the first fixation, and actions are recognized within a 

single fixation, these results suggest the hypothesis that action categorization may occur prior to 

either basic level or superordinate level scene gist recognition.  

The current experiment examined which level of image categorization is processed first 

during briefly presented scenes.  Specifically, is the scene category, at the superordinate or basic 

level, or the action category, at the basic level, recognized first in a scene?  Previous research has 

suggested three competing hypotheses regarding which level of categorization is processed 

earliest.  Specifically, recent studies have found a coarse-to-fine processing order for scene 

categorization, which suggests that the superordinate level scene categorization will be processed 

earlier than either basic level scene categorization or basic level action categorization.  However, 

numerous studies over the last 30 years have found evidence of a basic-level advantage for 

objects as well as scene categorization, which predicts that basic level recognition should be 

processed earliest.  Finally, eye movement studies have found a bias to attend to people in 

scenes, and other studies have shown that basic level actions are processed very rapidly, which 

suggests that the basic level action should be recognized first.   

Method 

Participants 

A total of 59 undergraduate students (23 Females) enrolled in General Psychology 

participated in the study.  The mean age of the participants was 20.53 (SD = 4.88) years old and 
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all had at least 20/30 visual acuity.  Participants signed an informed consent sheet prior to 

participating in the study.  All participants received course credit for their participation. 

Materials 

Images were collected using on-line image databases (Flicker, Google Images, etc.) or by 

taking pictures with a digital camera.  All images contained a person performing one of two 

basic level actions in a specific scene location that could be categorized at either the 

superordinate level (indoor vs. outdoor) or basic level (kitchen, office, yard, or park).  Basic level 

actions in Kitchen scenes were either Cooking or Washing Dishes, and in Office scenes were 

either Phoning or Typing; basic level actions in Yard scenes were either Raking or Mowing, and 

in Parks were either Reading or Eating.  Example scene images are presented in Figure 1.2.  

There were 34 images per basic level action category and each had a resolution of 1024 x 768 

pixels.  All of the experimental images were converted to monochrome and their mean 

luminance and contrast were equalized across the entire image set.  Texture masks were 

generated from all 240 target scene images, based on the texture generation algorithm of Portilla 

and Simoncelli (2000).  Previous studies have used texture masks and have found them to be 

strong masks due to sharing 2nd order and higher order image properties with scene images 

(Loschky, Hansen, Sethi, & Pydimarri, 2010).  Scene images were presented on a Samsung 

SyncMaster 957 MBS monitors (17 inch) (85 Hz refresh rate) and were viewed at a distance of 

53.34 cm using a chin rest, from which they subtended 37.78° x 29.03° of visual angle.   
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Figure 2.1 Example scene images for each basic level action category, basic level scene 

category, and superordinate level scene category. 

Two images per basic level action category were used to familiarize participants with the 

image categories on which they would be tested and another two images per basic level action 

category were used for practice trials.  These images were not used in the actual experiment.  

 Procedures and Design 

The experiment used a 3 (Categorization level [Basic level action, Basic level scene, or 

Superordinate level scene]) x 5 (Stimulus Onset Asynchrony: SOA [24, 60, 106, 200, and 365 

ms]) mixed design, with categorization level as a between-subjects factor, and SOA as a within-

subjects’ factor.  Participants were randomly assigned to the between-subjects factor of the 

categorization level.  Processing time for each scene image was equally distributed between the 

five masking SOAs, which is a measure of processing time for the image.   



18 

 

As in Loschky and Larson (2010, Exp. 2) image categories were blocked throughout the 

experiment, so that in each block only two image categories were tested.  The pair of image 

categories was always from the same parent scene category.  In this way, the next higher 

categorization level could not be used to provide information about the category being tested.  

For example, “Washing” and “Cooking” were always in the same block since both occurred 

within the same “Kitchen” basic level parent scene category.  Thus, knowing that the scene was a 

“Kitchen” would not help in discriminating whether the person in the scene was “Washing” or 

“Cooking.”  Similarly, participants categorizing images according to their basic level scene gist 

categories always viewed “Kitchen” and “Office” scenes within the same block, since they came 

from the same “Indoor” superordinate level parent scene category.  The superordinate level scene 

categorization task only had one block, since there were only two scene categories, “Indoor” and 

“Outdoor.”  Thus, although the same set of 240 target scene images was used for all 

categorization tasks, there were four separate blocks in the basic level action categorization task, 

two blocks in the basic level scene categorization task, and one block for the superordinate level 

scene categorization task.  The five different SOAs were presented equally often and randomly 

within each block. 

Before beginning the experimental trials, participants were familiarized with the scene 

categories by seeing sixteen images, in which the name of the image category was presented and 

the participant pressed the “NEXT” button to view the images.  Each image was presented for 

two seconds.  After familiarization, participants were given 32 practice trials, which shared the 

same design parameters as the actual experiment.    
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Figure 2.2 Trial schematic for the tachistoscopic presentation of scene images in 

Experiment one. The Inter-Stimulus Interval (ISI) is the duration between the onset of the 

grey screen and the onset of the mask.  The Stimulus Onset Asynchrony (SOA) is the target 

duration plus the ISI.  

 

In the experiment, a total of 240 trials were presented.  Figure 2.2 shows the events that 

occurred within a single trial.  An instruction screen indicated the pair of scene categories that 

were presented in each block.  Participants pressed the “Next” button, and a white fixation dot 

was presented on a neutral gray background.  When participants were ready for the trial to begin, 

they pressed the “Next” button again.  A target image was presented for 24 ms.  If the SOA was 
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greater than 24 ms, then a grey screen was presented (for ISIs of 36, 82, 176, and 341 ms).  If the 

SOA for the trial was 24 ms, then the mask was presented immediately after the target (ISI of 0 

ms).  A texture mask image was randomly paired with the target scene image and was presented 

for 24 ms, followed by a grey screen for 750 ms.  A post cue was presented on the screen until 

participants made a response.  Validly cued trials would present a scene category that matched 

the post cue.  If participants believed the post cue matched the scene category presented, then 

participants were instructed to press the “Yes” button; otherwise, if the cue word was invalid 

(i.e., the cue did not match the scene category viewed), they were to press the “No” button.  Half 

of the trials within each block were randomly selected to be validly cued, while the other half 

was invalidly cued.  

Results 

Two mixed factorial ANOVAs with a 3 (Categorization task [Superordinate level scene 

category, basic level scene category, or basic level action category]: Between-subjects) x 5 (SOA 

[24, 60, 106, 200, and 365 ms]: Within-subjects) design were used to analyze sensitivity and 

response bias, as measured by signal detection theory’s d’ and c (Macmillan & Creelman, 

2005)
1
.  Figure 2.3 shows the sensitivity and response bias for the three categorization conditions 

as a function of processing time (SOA).  Tables 2.1 and 2.2 present the descriptive statistics for 

sensitivity and bias by the categorization task for each level of processing time.  As can be seen 

in Figure 2.3, as expected, categorization sensitivity increased monotonically with increasing 

processing time (F (4, 224) = 40.17, p < .001), and appears to reach asymptote at 200 ms SOA 

for all three tasks.  There was no difference between 200 ms and 365 ms SOA for any of the 

three categorization tasks (ts (37) ≤ 1.39, ps ≥ .18).  Of greater interest, the scene image 

                                                

1
 Sensitivity (d’) is calculated as Z(Hit) - Z(False Alarm).  Bias (c) is calculated as -0.5[Z(Hit) + Z(False Alarm)]. 
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categorization task level had a large effect on sensitivity (F (2, 56) = 45.71, p < .001).  

Sensitivity was greater for the superordinate Indoor/Outdoor scene category distinction than the 

basic level categorization task (t (37) = 4.50, p < .001), and greater for the basic level scene 

categorization task than the basic level action categorization task (t (37) = 10.09, p < .001).  

There was no interaction between the categorization tasks and processing time on categorization 

sensitivity (F (8, 224) = 1.22, p = .29). 

 

Figure 2.3 Sensitivity (d prime) and bias (c) for the three categorization tasks as a function 

of processing time as measured by SOA.  Error bars represent the standard error. 

 

Table 2.1 Sensitivity (d’) descriptive statistics for categorizing events and scene gist, at the 

basic and superordinate level, at each SOA. 

 Stimulus Onset Asynchrony (ms) 

24 ms 58 ms 108 ms 200 ms 365 ms 

Categorization 

task 
M SD M SD M SD M SD M SD 

Action 1.52 0.45 1.72 0.46 2.02 0.68 2.58 0.62 2.47 0.65 

Basic 2.26 0.79 2.55 0.75 2.88 0.75 3.21 0.78 3.17 0.68 

Superordinate 2.81 0.92 3.51 0.89 3.95 0.72 4.19 0.66 3.91 0.88 
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Table 2.2 Bias (c) descriptive statistics for categorizing events and scene gist, at the basic 

and superordinate level, at each SOA. 

 Stimulus Onset Asynchrony (ms) 

24 ms 58 ms 108 ms 200 ms 365 ms 

Categorization 

task 
M SD M SD M SD M SD M SD 

Action -0.22 0.20 -0.12 0.24 -0.23 0.29 -0.12 0.27 -0.09 0.27 

Basic -0.05 0.26 -0.01 0.25 -0.11 0.21 -0.03 0.31 -0.26 0.23 

Superordinate -0.02 0.23 0.00 0.20 0.07 0.21 0.02 0.18 0.00 0.15 

 

There was no effect of image processing time on response bias (F (4, 224) = 1.19, p < 

.318). As shown in Figure 2.3, participants tended to be unbiased.  However, there was a small 

but statistically significant liberal bias for basic level action categorization compared to both 

scene category recognition tasks (F (2, 56) = 9.15, p < .001).  Scene processing time and 

categorization task did interact with respect to response bias (F (8, 224) = 2.31, p = .021), which 

was driven by the increase in “Yes” responses in the basic level scene categorization task at 365 

ms SOA.  This is shown by the fact that the categorization task x SOA interaction became non-

significant (F (6, 168) = 0.78, p = .58) when the 365 ms SOA condition was removed from the 

analysis.  

Discussion 

Experiment 1 examined the time course of categorizing basic level actions and scene 

categories at the superordinate or basic level within a single fixation.  The data shows that the 

superordinate scene categorization task resulted in greater sensitivity than both the basic level 

scene categorization task and the basic level action categorization task.  Interestingly, this 
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advantage was seen at every processing time, including the processing time (367 ms) that 

exceeds the average fixation duration (generally 330 ms)(Rayner, 1998).  

Previous studies examining eye-movements in scenes found that if there is a person in a 

scene, then the first saccade in an image is strongly biased to go to it (Fletcher-Watson, Findlay, 

Leekam, & Benson, 2008; Humphrey & Underwood, 2010; Zwickel & Võ, 2010).  This shows 

that during the first fixation on a scene, attention is biased to select information about people 

prior to the execution of a saccade to that spatial location (Henderson, 1992).  Thus, if we are 

biased to attend to people in scenes, we might expect that basic level action categorization should 

be processed earlier than either the basic level or superordinate level scene categorization tasks.  

However, the current data are inconsistent with this person bias hypothesis.  Likewise, the basic 

level advantage, first proposed by Rosch et al., (1976), specifies that the basic level should be 

categorized first, for objects as well as for scene categories (Tversky & Hemenway, 1983).  The 

basic level theory predicts that the superordinate category is inferred from the basic level 

category after that is determined.  The data are also inconsistent with the predictions based on the 

basic level theory.   

Recent research has begun to question the assumption of basic level superiority, by 

showing that early visual processes are better able to distinguish between superordinate level 

categories before distinguishing between basic level categories (Large, Kiss, & McMullen, 2004; 

Loschky & Larson, 2010; Macé, Joubert, Nespoulous, & Fabre-Thorpe, 2009; Rogers & 

Patterson, 2007).  For instance, contrary to the basic level theory, a picture would be categorized 

as an “animal” prior to being categorized as a “dog,” or a picture of a scene would be categorized 

as “Man-made” before the same image was categorized as a “Street.”  The data from the current 

experiment supports the coarse-to-fine hypothesis that scene images are categorized first at the 
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superordinate level scene category prior to the basic level scene category, which is also 

categorized prior to the basic level action.  As the viewer is given more processing time with a 

scene image, they are able to make finer scene category distinctions (Large, Kiss, & McMullen, 

2004; Loschky & Larson, 2010; Macé, Joubert, Nespoulous, & Fabre-Thorpe, 2009; Rogers & 

Patterson, 2007).  According to the present data, the scenes were categorized at the superordinate 

level quite well with an SOA of 23 ms (d’ = 2.5).  For the basic level scene categorization task, 

that same level of sensitivity was not reached until 80 ms of processing, and it was not reached in 

the basic level action categorization task until around 200 ms of processing.  Therefore, this 

shows that coarse category distinctions require less processing time than distinguishing finer 

scene categories.  It is expected that this superordinate scene category advantage would also be 

present for other superordinate scene categories, such as distinguishing between “Natural” versus 

“Man-made” scene images.  It seems likely that the superordinate advantage, found for scene 

categorization, would also be found for action categorization, though that is an empirical 

question.   

As noted earlier, other recent studies have also found an advantage for processing the 

superordinate level prior to the basic level (Rogers & Patterson, 2007; Large, Kiss, & McMullen, 

2004; Macé, Joubert, Nespoulous, & Fabre-Thorpe, 2009; more).  Rogers and Patterson (2007) 

showed better recognition of superordinate object categories than the basic level, when 

participants were forced to make a speeded response.  However, when participants were not 

forced to make a speeded response, the basic level category was superior to superordinate object 

categorization.  Rogers and Patterson (2007) explained their results in terms of a parallel 

distributed processing network in which conceptual representations are searched for in a 
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semantic space and the search enters the superordinate level prior to the basic level.
2
   A similar 

coarse-to-fine pattern of categorization has been theorized for scene gist recognition (Oliva & 

Torralba, 2001) and supported by empirical research on human scene perception (Greene & 

Oliva, 2009; Mace, Joubert, Nespoulous, & Fabre-Thorpe, 2009; Loschky & Larson, 2010).  

Large, Kiss, and McMullen (2004) also found evidence supporting a superordinate advantage for 

objects.  Specifically, ERPs distinguished the superordinate categories earlier than the basic level 

categories, and basic level categories earlier than subordinate level categories.   

These findings conflict with the basic level superiority hypothesis (Gosselin & Schyns, 

2001; Jolicour, Gluck, & Kosslyn, 1984, Rosch et al., 1976; Tversky & Hemenway, 1983).  As 

shown by previous research (Gosselin & Schyns, 2001; Jolicour, Gluck, & Kosslyn, 1984, Rosch 

et al., 1976; Tversky & Hemenway, 1983), the basic level is more informative than categorizing 

an object or scene at the superordinate level.  For example, Rosch et al., (1976) presented 

category names and asked participants to list attributes that were representative of that category.  

For instance, features representative of “bird” would include wings, beaks, and feathers.  They 

showed a significant increase in the number of attributes listed for basic level category names 

than for superordinate names or subordinate names.  Thus, the basic level category names elicit a 

greater number of features for an object than a superordinate category name, making the basic 

level more informative than the respective levels.  Additionally, when asked to categorize 

objects, reaction times were faster for basic level categorization than the superordinate level 

(Rosch, 1976, Experiment 7).  This was taken as evidence that the basic level was represented 

prior to the superordinate level.  However, the objects were presented until a response was made.  

                                                

2 The speeded categorization task limits the amount of processing time in which competing object concepts (i.e., 

basic level and superordinate level concepts) can become activated.  Therefore, in this task, categorizing an object 

according to its superordinate representation is more accurate because the proportion of activation for the 

superordinate concept is greater than the proportion of activation for the basic level concept.   
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Therefore, as predicted by the parallel distributed processing model, proposed by Rogers and 

Patterson (2007), when not forced to respond quickly, the basic level is recognized first; however 

if required to make a speeded response, a superordinate advantage is observed.  By manipulating 

the amount of image processing time in study 1, via masking SOA, our task may be conceptually 

similar to requiring a speeded response in Rogers and Patterson’s (2007) study.  This appears to 

be the case, as shown by better superordinate categorization than basic level categorization at 

earlier image processing times.   

Nevertheless, Rogers and Patterson (2007) would predict that all three category 

representations should be activated when a sufficient amount of processing time is allowed.   Our 

results show that each representation is not equally available within the processing time of a 

single fixation, especially in the basic level action categorization task.  This suggests that a single 

fixation is not a sufficient amount of processing time to categorize the basic level action.  In 

addition, the visual information extracted regarding the person, and the object that is being 

manipulated, may not be sufficiently detailed to categorize the basic level action.  Therefore, the 

person shown in the scene may need to be fixated in order to extract a sufficient amount of 

detailed visual information, and allow more processing time, in order to categorize the basic 

level action.  Study 2 examined the number of fixations required in order to reach ceiling 

performance for basic level action categorization compared to both scene categorization tasks at 

the superordinate and basic levels, and the visual information needed to categorize basic level 

actions accurately, as shown by what viewers fixated.   

Chapter 3 - Experiment 2 

The human visual field can be divided into two distinct regions—central vision and 

peripheral vision.  A small area extending out to 5° eccentricity around the point of fixation is 
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known as central vision, and includes both foveal vision (out to 1° eccentricity) and parafoveal 

vision (between 1° and 5° eccentricity).  Information encoded in this region contains high-

resolution visual information, like sharp edges.  However, as the eccentricity in degrees of visual 

angle from fixation increases, visual resolution decreases (Peli & Geri, 2001; Séré, Marendaz, & 

Hérault, 2000; Strasburger, Rentschler, & Juttner, 2011).  This large region beyond central vision 

is referred to as peripheral vision.  Although the resolution of visual information varies over the 

visual field, useful information can still be extracted within a single eye fixation.  For instance, 

the brief masked presentation of a scene for ≤ 100 ms is more than enough information to allow 

for accurate scene gist recognition (Bacon-Mace, 2005; Potter, 1976; Loschky et al., 2007; 

Beiderman, Rabinowitz, Glass, & Stacy, 1974).  In the case of scene gist recognition, high 

resolution scene information from the central 5° of a scene can be completely removed, such that 

scene information is only viewed using peripheral vision, with no decrease in scene gist 

recognition compared to a fully intact scene image (Larson & Loschky, 2009).  

Study 1 was able to show that scene gist categorization at the basic and superordinate 

level was good with as little as 200 ms of processing.  However, even when given 365 ms of 

processing, which is slightly longer than the average duration for an eye fixation, the basic level 

action categorization task was unable to reach the same level of performance as either scene 

categorization task.  This suggests that the scene information needed to increase basic level 

action categorization performance is either a) insufficient when presented in peripheral vision 

(assuming that the important information for basic level actions are presented in the visual 

periphery, specifically the person and the object they are manipulating), or b) requires more time 

to process, or c) a combination of both a) and b), namely, critical scene information needs to be 
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foveated (i.e., looked at with central vision), in addition to needing more time processing that 

information.   

If additional foveal scene information is required to recognize a basic level action, then 

the question becomes what information is needed to improve it?  Glanemann (2007) suggested 

that the body posture of a person had a large effect on participant’s ability to name the action.  

Their analysis of action naming showed that the more stereotypical body postures (e.g., Kicking) 

were more easily identified than ambiguous body postures (e.g., helping).  An additional source 

of information for identifying an action would likely be the object that is being manipulated by a 

person in the scene.  An important question then becomes whether or not useful object 

information contained in the visual periphery can be encoded.   

Several eye-movement studies have examined how well objects can be recognized in our 

visual periphery.  Henderson, McClure, Pierce, and Schrock (1997) examined whether foveal 

vision was necessary to categorize an object.  The study used a gaze-contingent Scotoma 

paradigm.  During the experiment, participant’s gaze was tracked and, in the Scotoma-centered 

condition, visual information that was within 1.2° eccentricity from fixation was removed from 

view.  Thus, only objects outside the visual scotoma (i.e., in parafoveal vision or beyond) were 

presented.  A second condition presented the Scotoma to the right of a fixation, allowing foveal 

information to be encoded.  A control condition allowed for normal object viewing with no 

Scotoma.  The results showed that object recognition in the Scotoma-centered condition was no 

different from the control condition or the off-centered condition.  This study showed that foveal 

vision is not needed to identify objects, however, in the Scotoma centered condition, objects 

were only 2.4° eccentricity from fixation, well within parafoveal vision.   
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Studies examining priming have been able to show that objects presented in the visual 

periphery decreased the naming latency to the target (Henderson, Pollatsek, & Rayner, 1987; 

Pollatsek, Rayner, & Collins, 1984).  Pollatsek, Rayner, and Collins (1984) presented objects at 

either 5° or 10° eccentricity, and participants were asked to make a saccade as quickly as 

possible to the object.  While the eye was performing the saccade, the visual system is 

suppressing visual encoding (Chekaluk, & Llewellyn, 1990; Ross, Morrone, Goldberg, & Burr, 

2001), and during that saccade, the object was either changed to a different object or was 

presented unchanged.  The results show that when the object was changed, naming latency for 

the object increased by around 100 ms compared to when the object was unchanged, suggesting 

that the visual periphery was processing object information prior to the execution of a saccade.  

When the object was changed during the saccade, additional processing time, as indicated by an 

increase in object naming latency, was required to process the new object, compared to when the 

object remained unchanged.  A similar procedure was used by Henderson, Pollatsek, and Rayner 

(1987), which also required participants to make a saccade to an object in the periphery.  The 

study manipulated the presence of a peripheral object as well as its relationship with a foveal 

object.  Specifically the foveal object could be related (for example a hand and a foot) or 

unrelated (a hand and a rodent) to the peripheral object.  The results show that fixating a related 

object decreased the naming latency of the peripheral object.  However, there was no difference 

in the amount of priming when the peripheral target was present or not.  This suggests that 

priming occurs between two subsequent fixations, but priming is not the result of the presence of 

a related peripheral object.  Thus, it seems that identifying an object during the current fixation 

can help to speed the identification of a related object on the next fixation.  However, similar to 

the Henderson et al. (1997) study, a limitation of these studies is that only the line drawn objects 
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were presented, and they were not part of real-world scenes.  Thus, since there was a lack of 

foveal information present to encode, attention may have been able to quickly deploy to the 

spatial location of the peripheral object resulting in a large priming effect.  However, if the 

peripherally presented object were part of a real-world scene image, it is unclear if any peripheral 

object information would be encoded due to the presence of scene information at the fovea. 

The extreme limit of scene perception in peripheral vision was tested in another study 

using an animal detection task (Thorpe, Gegenfurtner, Fabre-Thorpe, & Bultoff, 2001).  

Participants were asked to detect animals in real-world scenes presented at varying eccentricities 

from the center of fixation ranging from 0°-60° eccentricity.  The results showed that animals 

could still be detected at above chance levels in the far visual periphery (60° eccentricity).  These 

studies show that objects presented in the periphery can be encoded to some degree (Thorpe, 

Gegenfurtner, Fabre-Thorpe, & Bultoff, 2001).   

The results from study 1 may indicate that some object information was likely encoded 

from parafoveal and peripheral vision during the brief presentation of the scene image, but was 

insufficient to recognize the basic level action.  Thus, it may be necessary to allow viewers to 

make eye-movements within the scene.  A fixation on the object that the person is manipulating 

would allow for high-resolution details to be encoded in order to differentiate between two 

different events occurring in the same basic level scene category (e.g., cooking or washing the 

dishes in a kitchen).  Due to the relatively worse performance in the basic level action 

categorization task in Experiment 1, it is hypothesized that the basic level action categorization 

requires a fixation on the manipulated object in the scene.  If so, then as one allows viewers to 

make from one to several (e.g., 2, 4, or 8) fixations on a scene, their performance on basic level 

action recognition should increase monotonically with increasing numbers of fixations. 
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It may be expected that different areas of a scene will be fixated when given a 

superordinate or basic level scene categorization task versus a basic level action categorization 

task.  Evidence for such differences have been found in previous eye-movement studies that have 

shown different parts of an image were fixated when the participant’s task differed (DeAngulus 

& Pelz, 2009; Yarbus, 1967).  In the classic study by Yarbus (1967), the same scene image was 

presented to a participant while different questions were asked about the scene.  For instance, if 

asked to “estimate the material circumstances of the family shown in the picture,” then 

participants fixated the clothing of the women and the furniture in the scene.  Conversely, if 

asked to “estimate the ages of the people shown in the picture,” then participants fixated people’s 

faces (pp. 192).  A limitation of the work by Yarbus (1967) is that the conclusions were based on 

one participant and no quantitative data was reported.  However, a recent study by DeAngelus 

and Pelz (2009) replicated Yarbus’ (1967) study with 17 participants and reported quantitative 

eye-movement results.  Overall, DeAngelus and Pelz (2009) confirmed most of the conclusions 

drawn by Yarbus.  Specifically, different participants fixated similar locations for six of the 

seven questions asked.  For instance, when asked to “estimate the financial state of the family,” 

then faces were fixated most, followed by the furniture and clothing, which is exactly what 

Yarbus (1967) observed.  These findings from DeAngelus and Pelz (2009) confirm the top-down 

task effects described by Yarbus (1967), as well as showing, quantitatively, that these eye-

movement patterns are similar between participants.  Therefore, due to the task requirements, 

eye-movements may differ between the event and scene categorization tasks.  Specifically, when 

categorizing the scene gist, saccades may be more likely to fixate background scene information 

than the person or the object being manipulated by that person, whereas when recognizing the 

basic level action, saccades to the person and object may be more likely.   
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An alternative hypothesis is that eye-movements made when categorizing scene gist at 

the basic and superordinate levels will be very similar to those made for event categorization due 

to the person bias when viewers look at real-world scenes (Fletcher-Watson, Findlay, Leekam, & 

Benson, 2008; Humphrey & Underwood, 2010; Zwickel & Võ, 2010).  Namely, people may 

spend most of their fixations looking at the person regardless of the task.  This person bias is also 

observed in the results described above by DeAngelus and Pelz (2009), who state that “the faces 

of the people in the image were invariably fixated, regardless of the task” (p. 804).  This could be 

especially true since scene categorization, whether at the superordinate or the basic level, can be 

acquired in the first fixation.  All of the remaining fixations on the scene may be influenced by 

the presence of the person in the scene, which would result in participants fixating similar 

regions of an image regardless of the task that they are given.   

 Method 

 Participants 

A total of 70 General Psychology students (33 female) participated in the study.  The 

mean age of the participants was 19.93 (SD = 3.52) years old and all had normal or corrected-to-

normal vision (20/30 visual acuity).  Two participants were removed from the analysis, one was 

removed due to low sensitivity and the other was removed due to a computer error which failed 

to record all of their trials during the experiment.  Participants signed an informed consent sheet 

prior to participating in the study.  All participants received course credit for their participation. 

 Materials 

Six images per event category were added to the image set used in study 1 for a total of 

288 scene images used.  Target images were used to create texture masks.  All scene targets and 

masks were converted to grey scale and the mean luminance (lum = 126.84) and contrast was 
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equalized (RMS contrast = 0.38).  Images were presented on a 17” ViewSonic Graphics Series 

CRT monitor (Model G90fb) with a refresh rate of 85 Hz.  Images were viewed at a distance of 

60.96 cm, resulting in the scene image subtending 33.67° x 25.50° of visual angle.  An EyeLink 

2000 (SR research) was used to track eye-movements throughout the experiment.  Fixations and 

saccades were detected by using algorithms developed by SR research.  Specifically, saccades 

were detected by the velocity of a saccade exceeding 30° per second and/or an acceleration of 

greater than 8,000° per second
2
, while fixations are periods of time that are not classified as a 

saccade or an eye blink.   

Procedures and Design 

The experiment used a 3 (Categorization level [Basic level Action categorization, Basic 

level scene categorization, or Superordinate scene categorization]: Between-subjects) x 6 (scene 

processing durations [24 ms, 200 ms, or 1, 2, 4, or 8 fixations]: Within-subjects) mixed factorial 

design.  Participants were randomly assigned to a categorization level.  All participants were 

presented with all of the 288 scene images, which were divided equally among all scene 

processing durations, and counter-balanced across subjects.  Scene image categories were 

blocked as in Experiment 1.  Sixteen scene images were presented to participants in order to 

familiarize them with the basic level action or scene category names.  Afterword, participants 

performed 32 practice trials prior to starting the experiment.  None of the images presented 

during the familiarization and practice phase were included in the actual experiment.  

Participants were calibrated to the eye-tracker with a nine-point calibration screen.  Calibration 

was considered acceptable if the mean spatial error was less than .5° and the maximum spatial 

error was less than 1.0° of visual angle.   
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A total of 288 trials were presented.  Figure 3.1 presents a trial schematic for the events 

that occurred in Experiment 2.  For trials involving tachistiscopic image presentations, the trials 

and procedures were the same as in Experiment 1. 
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Figure 3.1 Experiment 2 trial schematic.  The left side represents the events occurring during a two fixation-dependent image 

presentation, whereas the right side represents the events occurring during a tachistoscopic image (24 ms) presentation.  

Fixations are indicated by white circles and the arrow indicates a saccade.
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When scenes were presented for either a single or multiple fixations, then scene images were 

presented until the onset of the second, third, fifth, or ninth saccade was detected (resulting in 

one, two, four, or eight fixations on the scene, respectively), and then followed by a 24 ms 

texture mask, a 750 ms grey screen, and a cue word which was presented until the participant 

made a response.  However, due to a programming error in the fixation condition, scene images 

were presented for 1, 3, and 7 full fixations.  The programming error was identified and 

corrected for a future replication study and follow-up studies.  

 Results 

The Effect of Processing Time on Scene Image Categorization  

Two Mixed Factorial ANOVAs with a 3 (Categorization task [Superordinate level scene 

category, basic level scene category, or basic level action]: Between-subjects) x 5 (processing 

[24, 200 ms SOA, 1, 3, and 7 fixations]: Within-subjects) designs were used to analyze 

sensitivity and bias, as measured by signal detection theory (McMillen & Crealman, 2005).  

Figure 3.2 shows sensitivity (d’) and bias (c) for each categorization task as a function of 

processing time for the image.  Tables 3.1 and 3.2 present the descriptive statistics for sensitivity 

and bias at each processing time for the three categorization tasks.  The data shows a main effect 

for processing time (F (4, 256) = 110.91, p < .001), where sensitivity significantly increased 

from the 23 ms SOA to a single fixation (ts (66) ≥ 5.60, ps < .001).  There was no difference in 

sensitivity when the image was viewed for one, three, or seven fixations (ts (66) ≤ 0.07, ps ≥ 

.95).  There was also a main effect for the categorization task on sensitivity (F (2, 64) = 15.25, p 

< .001), where sensitivity was not different between the Superordinate and Basic level scene 

categorization tasks (t (42) = 1.89, p = .065), although both tasks produced greater performance 

than the basic level action categorization task (ts (43) ≥ 3.20, ps ≤ .003).  There was a significant 
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interaction between the categorization task and processing time (F (8, 256) = 7.88, p < .001).  

Bonferroni-corrected t-test were used to examine the significant differences between the image 

categorization tasks at each processing level (critical p-value = .003).  The Superordinate and 

Basic level scene categorization tasks were significantly better than the basic level action 

categorization task for the sub-fixation processing times (24 and 200 ms SOAs)(ts (43) ≥ 4.82, ps 

< .001).  When the image was processed for a fixation, superordinate level scene categorization 

was better than basic level action categorization (t (43) = 4.13, p < .001), but neither was 

different from the basic level scene categorization task (ts (42) ≤ 1.78, ps ≥ .082).  When the 

scene image was processed for three fixations or more, basic level action categorization 

sensitivity converged with the superordinate and basic level scene categorization tasks (ts (42) ≤ 

1.20, ps ≥ .238).   

 

Figure 3.2 Sensitivity (d’) and bias (c) performance for the three categorization tasks as a 

function of the processing time for the image (as measured in SOA and the number of 

fixations).  Error bars represent standard errors. 
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Table 3.1 Sensitivity (d’) descriptive statistics for categorizing the basic level action and 

scene category, at the basic and superordinate level, at each SOA. 

 Image Processing (SOA and fixations) 

24 ms 200 ms 1 fixation 3 fixations 7 fixations 

Categorization 

task 
M SD M SD M SD M SD M SD 

Action 1.74 0.44 2.91 0.49 3.73 0.60 4.09 0.41 4.09 0.49 

Basic 2.76 0.80 3.74 0.65 4.06 0.84 4.00 0.69 3.96 0.65 

Superordinate 3.02 0.76 3.96 0.63 4.45 0.57 4.14 0.50 4.17 0.52 

 

Overall, participants’ mean response bias was near zero.  There was no difference in response 

bias between the three categorization tasks (F (2, 64) = 1.24, p = .30) or between processing 

times (F (4, 256) = 1.35, p = .25).  There was also no interaction between the categorization task 

and processing time on response bias (F (8, 256) = 0.64, p = .74).    

Table 3.2 Bias (c) descriptive statistics for categorizing the basic level action and scene gist, 

at the basic and superordinate level, at each SOA. 

 Image Processing (SOA and fixations) 

24 ms 200 ms 1 fixation 3 fixations 7 fixations 

Categorization 

task 
M SD M SD M SD M SD M SD 

Action -0.05 0.16 -0.02 0.35 0.05 0.29 -0.11 0.25 -0.02 0.25 

Basic -0.07 0.32 -0.06 0.19 0.03 0.25 0.03 0.21 -0.02 0.27 

Superordinate 0.02 0.28 0.00 0.25 0.09 0.25 0.03 0.27 -0.02 0.20 

 

 Precursors to the Eye Movement Analyses 

Eye movements were analyzed to determine if top-down, task effects would influence the 

information that was fixated in scene images.  Five interest areas were created for each scene 

image.  These interest areas included the body, head, hands, the object that the person was 

manipulating, and the scene background.  To determine the size and eccentricity of each interest 
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area, the smallest possible rectangular box needed to completely encompass a particular feature 

was drawn around it, thus constituting an interest area for that feature.  The size of each interest 

area was determined by using the height and width of the rectangular interest area to compute the 

length of the hypotenuse of a right triangle for that respective interest area (i.e., the distance from 

the bottom-left corner to the top-right corner of each interest area).  Interest area eccentricity was 

computed by determining the distance from the center of the image to the center of each 

respective interest area.  This distance, in pixels, was then calculated into degrees of visual angle, 

and the average eccentricity of each interest area was computed.  Table 2.3 presents descriptive 

statistics for the eccentricity and size of each of the interest areas.  The grand average distance 

for all interest areas was 9.31°, with the smallest average distance being 8.35° (for bodies), thus 

all interest areas were, on average, in the visual periphery (> 5° eccentricity).  Likewise, the body 

was the largest interest area, on average, followed by the head, which was similar in size to the 

object being manipulated.  The smallest interest area was the person’s hands.  The rectangular 

interest areas were used only to estimate the size and eccentricity of each semantic feature but 

they were not used in the following eye movement analysis, which instead used more precise 

free-hand drawn interest areas.  

Table 3.3 Descriptive statistics for the average size and eccentricity of each interest area in 

the scene images. 

 Interest Areas 

 Body Object Head Hands 

Degrees of 

Visual Angle 
M SD M SD M SD M SD 

Size 19.19 6.31 7.42 4.67 7.74 3.63 3.34 1.79 

Eccentricity 8.35 5.06 8.63 5.44 11.34 6.26 8.90 7.32 
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Another set of interest areas were created to analyze eye movements.  Namely, free-hand 

tracings were made for each respective semantic feature.  These free-hand interest areas 

completely encompassed only that respective semantic feature.  Importantly, free-hand interest 

areas were mutually exclusive—an area encapsulated by one interest area did not overlap with 

any other interest area.  The following eye movement analyses are based on the free-hand 

interest areas.   

 Attentional Selection and Encoding Processes in Eye Movements  

Attention plays a large role in selecting a subsequent fixation location in a scene image 

(Carmi & Itti, 2006; Henderson, 1992; Rizzolatti, Riggio, Dascola, & Umilta, 1987; Torralba, 

Oliva, Castelhano, & Henderson, 2006).  Thus, attentional selection processes in scene images 

can be investigated by examining the differences between the categorization tasks on 1) the 

percentage of fixations on different semantic scene features and 2) the amount of time that was 

required to first fixate that semantic information, called the fixation latency.  If the categorization 

task affects the attentional selection processes for eye movements, then different semantic scene 

information may be more useful for certain categorization tasks (DeAngelus & Pelz, 2009; 

Yarbus, 1967).  As a result, the percentage of fixations on each interest area should differ.  

Likewise, the fixation latency to these interest areas should also differ, with faster latencies to 

interest areas important for a given categorization task. 

Additionally, encoding processes, as measured by the average fixation durations and the 

total amount of time spent fixating an interest area (i.e., dwell time), may be affected by the 

informativeness of different scene information.  Namely, informative scene information may 

result in longer fixation durations than non-informative scene information.  Thus, if the 

categorization task influences attentional selection processes, it may also affect the perceptual 
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encoding of scene information, which should produce differences in fixation durations or dwell 

times for different semantic scene features.  These analyses are presented later in the results 

section.   

In the present study, when participants were allowed to make more than a single fixation 

on the scene, we assume that attentional selection processes were used to select the location of 

the subsequent fixation.  Attentional selection processes affected by gist processing should be 

strongest for the first eye movement in the scene.  Therefore, the impact of the categorization 

task on the attentional selection processes in eye movements were assessed by examining the 

percentage of fixations on the five semantic features first fixated (i.e., the body, head, hands, 

object, or scene background) and the first fixation latency on each feature.  The first eye 

movement was analyzed from the trials that allowed participants 3 and 7 fixations to view the 

scene image.  The first fixation condition was eliminated from the analysis since participants 

were fixated at the center of the image and did not have an opportunity to execute a saccade and 

fixate any other area of the scene image.  Later on in the results section, encoding processes were 

analyzed by including all of the eye movements in the data analysis except of the first fixation 

duration on the scene.  If encoding processes differed between the three categorization tasks, the 

average fixation duration, or dwell time, on each interest area should differ.     

 Effects of the Categorization Task on the First Eye Movement 

The percentage of fixations per interest area for the first eye movement on the scene was 

analyzed using a 3 (categorization task [basic level Action, Basic level scene, and Superordinate 

scene categorization task]) x 5 (Interest Area [Head, Body, Hands, Object, and Background 

areas]) Mixed Factorial ANOVA.  Figure 32.3 and Table 32.4 present the descriptive statistics 

for the percentage of fixations on each interest area.  There was a significant difference in the 
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percentage of fixations falling in each interest area (F (4, 256) = 339.94, p < .001).  Bonferroni-

corrected t-tests were used to determine the significant differences in the percentage of fixation 

on each interest area (critical p-value = .005).  The scene background had the greatest percentage 

of fixations compared to all other interest areas (ts (62) ≥ 16.81, ps < .001).  This result is 

unsurprising, since the scene background comprised, on average, 82.7% of the image.  The body 

received the second greatest percentage of fixations and was significantly greater than the 

percentage of fixations on the head, object, and hands (ts (66) ≥ 4.41, ps < .001).  There was no 

difference in the percentage of fixations between the head and object (t (66) = 1.71, p = .093), 

however both were greater than the percentage of fixations on the hands (ts (62) ≥ 6.74, ps < 

.001).   

Of critical interest, the interest area first fixated differed depending on the categorization 

task being performed (F (8, 240) = 4.14, p < .001), thus supporting the task-based hypothesis.  

This is consistent with the results of Yarbus (1967) and the more recent replication by Angelus 

and Pelz (2009) showing that there are top-down task-based effects on where people look in 

scenes.  Bonferroni-corrected t-tests were used to determine the significant differences between 

each categorization for each interest area (critical p-value = .003).  The basic level action 

categorization condition had a greater percentage of fixations on the object than the basic level 

and superordinate scene categorization tasks (ts (40) ≥ 4.18, ps < .001).  Additionally, the basic 

level action categorization task had a greater percentage of fixations for the hands than the basic 

level scene categorization task (t (40) = 3.53, p = .001).  The superordinate scene categorization 

task had a greater percentage of fixations on the body than the basic level action categorization 

task (t (42) = 3.95, p < .001).  There were no other significant comparisons.   
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Figure 3.3 The mean percentage of fixations on each interest area between the three 

categorization conditions.  Data represents only the first eye movement in the scene.  Error 

bars represent the standard error. 

 

Table 3.4 Descriptive statistics for the percentage of first fixation on each respective 

interest area for the Basic level Action, Basic, and Superordinate scene categorization 

tasks. 

 Interest Areas 

Body Object Head Hands Background 

Categorization 

task 
M SD M SD M SD M SD M SD 

Action 16.73 4.62 16.00 7.95 9.33 6.07 6.02 3.00 51.92 9.21 

Basic 19.06 5.46 7.81 3.40 15.36 9.12 3.21 1.91 54.56 12.02 

Superordinate 22.17 4.49 6.55 3.36 15.42 11.52 4.28 1.91 51.58 12.31 
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As shown in Figure 3.3, the scene background was the most likely of the five interest 

areas to be fixated.  However, since the scene background composed a greater percentage (M = 

82.7%) of scene image compared to the other areas, one could predict that the background would 

receive a greater percentage of fixations, if only by chance.  Following the same logic, the body, 

object, head, and hands should be less likely to be fixated by chance since these areas compose a 

smaller total percentage (M = 17.3%) of the scene image.  Thus, based solely on chance, the 

percentage of fixations to land on each respective interest area is clearly expected to be 

dependent on the size of that interest area.  Therefore, a follow-up analysis was conducted based 

on the procedures described by Fletcher-Watson et al. (2008), in order to control for the effect of 

relative image area on the percentage of fixations on each interest area.  To do this, a new metric 

was calculated by dividing the percentage of fixations within each interest area by the percentage 

of the total image area that each interest area encompassed in the scene image.  This ratio will be 

referred to as the domain-relative ratio.  If the domain-relative ratio produced a valued of one, 

then the interest area was fixated as much as would be expected by chance for the size of that 

area.  For example, if the background composed 50% of the scene, then it would be expected 

that, by chance, the background would be fixated 50% of the time.  In this case, a domain-

relative ratio of 1.0 would be expected by chance.  However, a value greater than 1.0 indicates 

that there must be a bias to process that semantic information at a rate greater than chance.   

The Fletcher-Watson analysis of domain-relative fixation ratio for the first eye movement 

on the scene image was analyzed using a 3 (categorization task [Basic level Action, Basic scene 

category, and Superordinate scene category]) x 5 (Interest Area [Head, Body, Hands, Object, and 

Background areas]) Mixed Factorial ANOVA.  Figure 3.4 shows the domain-relative ratios per 
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interest area for each image categorization task.  Descriptive statistics are presented in Table 3.5.  

There was no significant difference in the domain-relative ratios between the three categorization 

conditions (F (2, 60) = 1.63, p = .21).  However, there was a difference in the domain-relative 

ratios between the five interest areas (F (4, 240) = 39.18, p < .001).  Bonferroni-corrected t-tests 

were used to compare the domain-relative ratios between interest areas (critical p-value = .005).  

The domain-relative ratios for the object, hands, and head were not significantly different from 

each other (ts (62) ≤ 1.55, ps ≥ .13).  However, these three interest areas had a greater domain-

relative ratio than the body and scene background (ts (62) ≥ 5.26, ps < .001).  Additionally, the 

domain-relative ratios for each interest area depended on the categorization task (F (8, 240) = 

3.38, p = .001).  Bonferroni-corrected t-tests were used to compare domain-relative ratios for 

interest areas within each categorization task (critical p-value = .001).  For the basic level action 

categorization task, the domain-relative ratios were not different between the object and hands (t 

(22) = 0.09, p = .93).  The domain-relative ratio for the object was greater for the head, body, and 

scene background (ts (22) ≥ 3.78, ps ≤ .001), whereas the domain-relative ratio for the hands was 

only greater than for the body and scene background (ts (22) ≥ 4.60, ps < .001).  Finally, the 

domain-relative ratio for the head was greater than for the body and background (ts (22) ≥ 3.95, 

ps ≤ .001), and the body was greater than for the background (t (22) = 6.41, p < .001).  For both 

the basic level and superordinate level scene categorization tasks, the domain-relative ratios for 

the head, object and hands are not significantly different from each other (basic: ts (18) ≤ 2.22, 

ps ≥ .04, superordinate: ts (20) ≤ 1.28, ps ≥ .21).  The object and hands had a greater domain-

relative ratio than the body and background (basic: ts (18) ≥ 3.12, ps ≤ .006, superordinate: ts 

(20) ≥ 3.92, ps ≤ .001).  Lastly, the body had a greater domain-relative ratio than the scene 

background (basic: t (18) = 8.30, p < .001, superordinate: t (20) = 10.22, p < .001).  The only 
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difference between the two scene categorization tasks was that the domain-relative ratio for the 

head was not different from the body in the superordinate task (t (20) = 2.41, p = .026), however 

the domain-relative ratio for the head was significantly larger than for the body in the basic level 

scene categorization task (t (18) = 4.38, p < .001).  Importantly, this shows that for the first eye 

movement in the scene, attention selects different semantic features depending on the 

categorization task.  Namely, for the two scene categorization tasks, the object, head, and hands 

received a similar percentage of fixations relative to the area they subtend.  On the other hand, 

for basic level action categorization, attention primarily selects the object and the hands to be 

fixated with the first eye movement on the scene.  This supports similar findings of the task 

affecting the selection of semantic scene features (DeAngulus & Pelz, 2009; Yarbus, 1967). 

 

Figure 3.4 The mean domain-relative ratio for the first eye movement on each interest area 

between the three categorization tasks.  Error bars represent the standard error. 
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Table 3.5 Descriptive statistics for the domain relative ratios for first fixation on each 

respective interest area for the Basic level Action, Basic level scene, and Superordinate 

scene categorization tasks. 

 Interest Areas 

Body Object Head Hands Background 

Categorization 

task 
M SD M SD M SD M SD M SD 

Action 1.60 0.68 6.29 3.25 3.09 1.73 6.21 4.73 0.63 0.11 

Basic 1.92 0.55 4.13 2.44 4.54 2.69 3.45 2.23 0.66 0.15 

Superordinate 2.21 0.63 4.26 2.74 4.72 4.65 5.18 2.25 0.62 0.15 

 

 It is clear that the categorization task affected the semantic information that was first 

fixated on the scene.  However, does the categorization task also effect the time it takes to fixate 

that information, namely the latency to fixate?  The average latency to fixate on an interest area 

was analyzed using a 3 (categorization task [Basic level Action, Basic level scene, and 

Superordinate scene categorization task]) x 5 (Interest Area [Head, Body, Hands, Object, and 

Background areas]) Mixed Factorial ANOVA.  Figure 3.5 presents the data and Table 3.6 

presents the descriptive statistics.  There was no difference in the average latency to fixate an 

interest area between the three categorization tasks (F (2, 64) = 0.66, p = .52).  However, the 

average latency to fixate did differ between the five interest areas (F (4, 256) = 14.69, p < .001).  

Bonferroni-corrected t-tests were used to compare mean fixation latencies between each interest 

area (critical p-value = .005).  The scene background was fixated prior to the head, body, object, 

and hands (ts (66) ≥ 3.43, ps ≤ .001).  This is predictable due to the large visual area that the 

scene background encompassed relative to the other interest areas.  Overall, the latency to fixate 

the head was not different from the body (t (66) = 2.22, p = .030), but it was significantly faster 
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than the object and hands (ts (66) ≥ 3.53, ps ≤ .001).  There was no difference between the 

latency to fixate the object and hands (t (66) = 0.67, p = .51).   

Critically, there was evidence that the average latency to fixate a particular interest area 

significantly depended on the categorization task that was performed (F (8, 256) = 2.21, p = 

.027).  To explore this interaction, Bonferroni-corrected t-tests were used to compare the average 

latency to fixate between categorization tasks for each interest area (critical p-value = .001).  For 

the basic level action categorization task, the scene background had a marginally faster latency 

than the body (t (22) = 3.51, p = .002) and head (t (22) =3.41, p = .003).  All other comparisons 

between interest area latencies were not significantly different (ts (22) ≤ 2.66, ps ≥ .014).  

Conversely, for the basic level categorization task, the latency to fixate the scene background 

was significantly faster than the latency for body, object, and hands (ts (21) ≥ 4.18, ps < .001).  

Additionally, the latency to fixate the head was marginally faster than the latency to fixate the 

object (t (21) = 3.49, p = .002).  This is consistent with previous research regarding the person 

bias (Fletcher-Watson, Findlay, Leekam, & Benson, 2008).  For the superordinate categorization 

task, the scene background latency was significantly faster than the latency to the hands and 

object (ts (21) ≥ 3.97, ps ≤ .001).  Additionally, the latency to fixate the object was significantly 

slower than to the body (t (21) = 4.49, p < .001) as well as marginally slower than to the head (t 

(21) = 3.53, p = .002).   
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Figure 3.5 The mean latency to fixate each interest area between the three categorization 

tasks.  Error bars represent the standard error. 

 

Importantly, the latency to fixate an interest area varies depending on its importance to 

the categorization task.  For example, in the superordinate task, the latency to the object is much 

greater than the latency to the person and head, which indicates the object is not a critical feature 

to attend to when performing the superordinate scene categorization task.  However, when 

categorizing the basic level action, the latency to the object is as fast compared to the person, 

head, and hands.  This shows that the object is an important semantic feature to be fixated in 

order to categorize the basic level action.  
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Table 3.6 Descriptive statistics for the latency (in ms) to first fixate an interest area for each 

image categorization task. 

 Interest Areas 

Body Object Head Hands Background 

Categorization 

task 
M SD M SD M SD M SD M SD 

Action 1142.38 717.63 930.94 526.97 923.62 186.48 1020.34 450.01 743.35 276.70 

Basic 987.12 345.91 1122.00 367.40 854.39 339.74 1191.89 642.81 775.45 357.58 

Superordinate 996.85 409.96 1283.26 446.86 959.54 368.13 1266.41 674.18 836.74 337.03 

 

Comparison of Eye Movements between Categorization Tasks 

The eye movement analyses based on the first saccade in the scene show an effect of 

what was fixated and when it was fixated.  Thus, the categorization task has a strong effect on 

attentional selection of different semantic features in the scene image.  However, will these 

effects change, or become stronger, when all of the eye movement data is included in the 

analysis?  All eye movements were analyzed from the trials that allowed participants 3 and 7 

fixations to view the scene image.  The first fixation condition was eliminated from the analysis 

since participants were not allowed to make an eye movement.  The percentage of fixations 

falling on each of the five respective interest areas was analyzed with a 3 (categorization task 

[Basic level Action, Basic level scene, and Superordinate level scene category]) x 5 (Interest 

Area [Head, Body, Hands, Object, and Background areas]) Mixed Factorial ANOVA.  Figure 3.6 

and Table 3.7 present the descriptive statistics regarding the percentage of fixations on each 

interest area for each categorization task.   
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Figure 3.6 The mean percentage of fixations on each interest area between the three 

categorization tasks.  Error bars represent standard errors. 

 

Table 3.7 Descriptive statistics for the percentage of fixations on each interest area for each 

categorization task. 

 Interest Areas 

Body Object Head Hands Background 

Categorization 

task 
M SD M SD M SD M SD M SD 

Action 15.08 3.59 15.22 5.08 16.42 6.43 4.53 1.37 48.75 6.29 

Basic 16.44 3.12 6.45 2.74 18.52 9.31 2.26 1.21 56.33 10.69 

Superordinate 18.59 3.55 7.26 2.41 17.99 8.26 2.68 0.94 53.48 9.07 
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As intended, there were no significant differences in the number of fixations between 

each categorization task (F (2, 64) = 0.58, p = .56).  This was as intended because the number of 

fixations allowed on the scene image was manipulated as a key independent variable in the 

study.  However, there was a main effect for the interest area that was fixated (F (4, 256) = 

587.25, p < .001).  Bonferroni-corrected t-tests were used to determine the differences between 

the percentage of fixations falling in each interest area (critical p-value = .005).  Similar to the 

previous analysis examining the percentage of fixations on each interest area for the first eye 

movement, a greater percentage of fixations were on the scene background compared to the 

head, hands, body, and object (ts (66) ≥ 17.85, ps < .001). The fixation percentage on the body 

and head were not significantly different from each other (t (66) = 0.82, p = .42), however both 

had a greater fixation percentage than that for the object (ts (66) ≥ 6.61, ps < .001).  The smallest 

fixation percentage was on the hands compared to the other four interest areas (ts (66) ≥ 11.96, 

ps < .001).   

Critically, the interest areas that were fixated depended on the categorization task that 

was being performed (F (8, 256) = 5.86, p < .001), which was very similar to the results 

regarding the fixation location for the first eye movement in the scene.  Bonferroni-corrected t-

tests were used to compare the percentage of fixations on each interest area between the three 

categorization tasks (critical p-value = .003).  Basic level action categorization resulted in a 

greater percentage of fixations on the object and hands compared to the basic and superordinate 

scene categorization task (ts (43) ≥ 5.25, ps < .001).  This indicates that the key object and hands 

were critical semantic features for basic level action categorization, whereas basic and 

superordinate scene categorization may not emphasize or require these semantic features.  One 

explanation for why fixations were greater for the hands in the basic level action categorization 
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task could simply be due to the proximity of the hands to the object.  However, an alternative 

hypothesis provided by research on embodied cognition would suggest that showing the hands 

manipulating the object in a scene context allows the viewer to understand the intentions of the 

person (Iacoboni et al., 2005).  However, the current data cannot distinguish these two alternative 

hypotheses.  Additionally, superordinate scene categorization resulted in a greater percentage of 

fixations on the body compared to basic level action categorization (t (43) = 3.30, p = .002). 

To account for the fact that the percentage of fixations on each type of interest area 

depended on the size of that area, domain-relative ratios were once again calculated and analyzed 

using a 3 (categorization task [Basic level Action, Basic level scene category, and Superordinate 

level scene category task]) x 5 (Interest Area [Head, Body, Hands, Object, and Background 

areas]) Mixed Factorial ANOVA.  Figure 3.7 and Table 3.8 show the descriptive statistics for the 

domain-relative ratios for each categorization task and interest area.  Domain-relative ratios were 

different between the three categorization conditions (F (2, 64) = 13.88, p < .001).  Namely, the 

basic level action categorization task had greater domain-relative ratios than the basic and 

superordinate tasks (ts (43) ≥ 4.00, ps ≤ .001); however there was no difference between the 

basic and superordinate domain-relative ratios (t (42) = 1.11, p = .28).  This indicates that those 

in the basic level action categorization task processed the scene image differently than those 

performing the scene categorization tasks.  There was also a significant main effect for the 

interest area (F (4, 256) = 91.03, p < .001).  Bonferroni corrected t-tests were used to determine 

the significant differences between interest areas on domain-relative ratios (critical p-value = 

.005).  The head had overall greater domain-relative ratios than any other interest area (ts (66) ≥ 

3.16, ps ≤ .002).  There was no overall difference in the domain-relative ratios between the 

object and hands (t (68) = 2.81, p = .007), however both interest areas had greater domain-
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relative ratios than the body and background (ts (66) ≥ 7.56, ps < .001).  The body also had a 

greater domain-relative ratio than the background (t (66) = 16.99, p < .001).  These data are 

consistent with the person bias reported by Fletcher-Watson et al. (2008).  Specifically, there is a 

greater tendency for fixations to fall on a person compared to the other information present in the 

scene image.  Interestingly, this person bias was more pronounced in the present analysis than 

the results from the first eye movement.  Limiting the analysis to the first eye movement 

produced a weaker person bias, since the domain-relative ratio for the head was not different 

from the hands or object.  This indicates that allowing more fixations on the scene image may 

produce a stronger person bias.  However, certain areas of the person were more likely to be 

attended then other areas, particularly the face.   

 

Figure 3.7 The mean domain relative ratio for each interest area between the three 

categorization tasks.  Error bars represent the standard error. 
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Of particular importance, the amount of processing devoted to each interest area 

significantly varied depending on the categorization task that was being performed (F (8, 256) = 

9.15, p < .001).  Bonferroni-corrected t-tests were used to assess significant differences for each 

interest area between each categorization task (critical p-value = .003).  Basic level action 

categorization had greater domain-relative ratios for the object and hands than the basic (ts (43) 

≥ 5.35, ps < .001) and superordinate scene categorization tasks (ts (43) ≥ 3.37, ps ≤ .002).  

Indeed, the basic level action categorization task produced a domain-relative fixation ratio for the 

object that was six times greater than would be predicted by chance, and that was more than 

twice that of either of the two scene categorization tasks.  There were no differences in the 

domain-relative ratios between the basic and superordinate categorization tasks (ts (42) ≤ 2.92, 

ps ≥ .006).  This shows that the categorization task clearly affected the deployment of eye 

movements, and thus attention, in the scene.  Specifically, basic level action categorization 

resulted in a greater percentage of fixations on the object and hands relative to the basic and 

superordinate conditions, particularly when the size of each interest area was controlled.  These 

findings amplify and clarify the previous analyses of the first eye movement in the scene.   

Table 3.8 Domain relative ratio descriptive statistics for each categorizing condition at each 

interest area. 

 Interest Areas 

Body Object Head Hands Background 

Categorization 

task 
M SD M SD M SD M SD M SD 

Action 1.43 0.40 6.26 2.57 5.11 2.25 4.44 1.66 0.59 0.08 

Basic 1.47 0.28 2.57 0.85 5.68 3.20 2.13 1.19 0.69 0.13 

Superordinate 1.78 0.41 2.78 1.26 5.42 2.99 3.04 1.05 0.65 0.11 
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Overall, the image categorization task had a clear effect on what viewers fixated in the 

scene image.  However, did the categorization task affect the perceptual encoding of these 

different types of semantic features?  To answer this question, the average fixation duration in 

each interest area, and the total amount of time spent fixating each interest area, referred to as the 

dwell time, were examined.  

The average fixation duration on each interest area for each categorization task was 

computed and analyzed using a 3 (categorization task [basic level Action, Basic level scene 

category, and Superordinate level scene category]) x 5 (Interest Area [Head, Body, Hands, 

Object, and Background areas]) Mixed Factorial ANOVA.  Figure 3.8 and Table 3.9 present the 

average fixation duration per interest area for the three categorization tasks.  There were no 

differences in the average fixation duration between the three categorization tasks (F (2, 64) = 

2.50, p = .090).  However, there was a difference in the fixation durations between the five 

interest areas (F (4, 256) = 4.36, p = .002).  Bonferroni-correct t-tests were used to compare 

fixation durations between interest areas (critical p-value = .005).  The average fixation durations 

for the object and background areas were greater than the average fixation duration for the body 

(ts (66) ≥ 3.16, ps ≤ .002).  No other comparisons approached significance.  This effect for 

fixation duration did not interact with the categorization task being performed (F (8, 256) = 

0.172, p = .994).  Therefore, the categorization task did not have an effect on the average fixation 

duration, and it did not interact with the interest area which was fixated.  However, the dwell 

time, defined as the total amount of time spent fixating a given interest area across multiple 

fixations, may vary depending on the categorization task.   
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Figure 3.8 The mean fixation duration on each interest area between the three 

categorization tasks.  Error bars represent the standard error. 

 

Table 3.9 Descriptive statistics for the average fixation duration (ms) on each respective 

interest area for the Action, Basic, and Superordinate scene categorization tasks. 

 Interest Areas 

Body Object Head Hands Background 

Categorization 

task 
M SD M SD M SD M SD M SD 

Action 300.29 131.74 334.75 102.01 326.70 94.68 305.16 113.16 357.38 216.42 

Basic 283.13 103.96 313.66 104.48 309.82 75.95 266.24 65.40 314.21 100.33 

Superordinate 338.09 155.61 388.63 170.49 381.86 130.84 347.52 176.32 390.90 161.86 

 

 

The average dwell time spent in each interest area for each categorization task was 

analyzed using a 3 (categorization task [Basic level Action, Basic level scene, and Superordinate 
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level scene task]) x 5 (Interest Area [Head, Body, Hands, Object, and Background areas]) Mixed 

Factorial ANOVA.  Figure 3.9 and Table 3.10 present the descriptive statistics for the average 

dwell time on each interest area for the three categorization tasks.  There was no main effect for 

the total time viewing interest areas between the three categorization tasks (F (2, 64) = 1.87, p = 

.16)
3
.  Again, this is unsurprising since the number of fixations allowed to view the scene image 

was manipulated as an independent variable and held constant across the three categorization 

tasks.  However, there was a main effect for interest area on dwell time (F (4, 256) = 46.19, p < 

.001).  Bonferroni-corrected t-tests were used to determine the significant differences in dwell 

time between the five interest areas (critical p-value = .005).  Dwell time for the background was 

significantly greater than the dwell times for the body, head, hands, and object (ts (66) ≥ 5.89, ps 

< .001).  There was no difference in dwell times between the body, head, and object (ts (66) ≤ 

1.35, ps ≥ .18), however they were significantly greater than the dwell time for the hands (ts (66) 

≥ 4.98, ps < .001).  There was no interaction for dwell time between the interest areas and the 

categorization tasks (F (8, 256) = 0.93, p = .49).  Therefore, similar to the fixation duration 

analysis, the categorization task had no effect on the total amount of time spent in each interest 

area, although the background did have a greater dwell time than the other interest areas.  

However, this is most likely a result of the scene background composing, on average, 82% of the 

entire scene image.  Therefore, a domain-relative ratio was computed for dwell time to determine 

if it was affected by the categorization task, after controlling for the size of each respective 

interest area.  

                                                

3 Participants in each categorization task viewed scene images for an equal number of fixations.  Thus, Figure 3.9 

suggests that dwell times were slightly longer for the superordinate scene categorization compared to the other two 

categorization tasks.  However, The dwell times for the superordinate scene categorization task were not 

significantly greater than the other two categorization tasks. 
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Figure 3.9 The mean dwell time per interest area for each of the categorization tasks.  

Dwell time is measured as the total time spent fixating an interest area.  Data is from 

conditions with > 1 fixation.  Error bars represent the standard error. 

 

Table 3.10 Descriptive statistics for the average dwell time (ms) on each respective interest 

area for the Action, Basic, and Superordinate scene categorization tasks.  Dwell time 

measures the total amount of time spent in each interest area. 

 Interest Areas 

Body Object Head Hands Background 

Categorization 

task 
M SD M SD M SD M SD M SD 

Action 422.01 214.41 508.73 219.04 467.64 152.44 341.11 171.18 818.51 532.75 

Basic 452.68 214.87 356.61 125.84 482.08 171.02 285.78 99.76 778.85 348.00 

Superordinate 596.67 403.84 518.66 329.02 577.94 259.52 330.80 163.21 924.03 514.18 
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The domain-relative ratio was computed by dividing the percentage of time each interest 

area was fixated by the percentage of area that the interest area encompassed within the image.  

The average dwell time domain-relative ratio was analyzed using a 3 (categorization task [Basic 

level Action, Basic level scene, and Superordinate level scene task]) x 5 (Interest Area [Head, 

Body, Hands, Object, and Background areas]) Mixed Factorial ANOVA.  Figure 3.10 and table 

3.11 present the descriptive statistics for the dwell time domain-relative ratio.  A significant main 

effect for the categorization task (F (2, 64) = 7.29, p = .001) resulted from greater dwell time 

domain-relative ratios for the basic level action task than both the basic level and superordinate 

scene categorization task (ts (43) ≥ 2.78, ps ≤ .008).  Additionally, there was a significant main 

effect for the interest areas (F (4, 256) = 53.21, p < .001).  Bonferroni corrected t-tests were used 

to determine the different dwell time domain-relative ratios between the interest areas (critical p-

value = .005).  There was no difference in the dwell time domain-relative ratios for the object 

and head (t (66) = 0.14, p = .89), however both regions were greater than the hands, body, and 

background (ts (66) ≥ 3.87, ps < .001).  Likewise, the dwell time domain-relative ratio for the 

hands was greater than the person and background (ts (66) ≥ 4.98, ps < .001). Finally, the dwell 

time domain-relative ratio for the person was greater than the scene background (t (66) = 16.42, 

p < .001).  Critically, there was a significant interaction for dwell time domain-relative ratios 

between the categorization tasks and interest areas (F (8, 256) = 6.80,  p < .001).  Again, 

bonferroni corrected t-test were used to determine the differences between dwell time domain 

relative ratios between each categorization task for a given interest area (critical p-value = .003).  

The dwell time domain-relative ratio for the object was greater in the basic level action 
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categorization task than the two scene categorization tasks (ts (43) ≥ 4.43, ps < .001).  No other 

comparisons were significant.   

 

Figure 3.10 The mean dwell time domain-relative ratios for each interest area and 

categorization task.  Data is from conditions with > 1 fixation.  Error bars represent the 

standard error. 

 

 

Table 3.11 Descriptive statistics for the average dwell time domain-relative ratios for each 

interest area and categorization task. 

 Interest Areas 

Body Object Head Hands Background 

Categorization 

task 
M SD M SD M SD M SD M SD 

Action 3.17 1.11 22.05 10.23 12.16 8.22 9.02 4.71 0.69 0.37 

Basic 3.13 1.10 7.74 4.61 14.79 12.27 4.94 5.76 0.81 0.44 

Superordinate 3.94 1.49 10.66 6.55 13.19 10.65 7.38 7.92 0.69 0.24 
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The domain-relative ratio for dwell time shows that the relative amount of time spent 

fixating specific scene information, when considered in proportion to its area within the scene, 

depended on the categorization task being performed.  This is consistent not only with the idea 

that viewing task affects what viewers look at in scenes (DeAngulus & Pelz, 2009; Yarbus, 

1967) but also the time spent processing that information.  Additionally, the effect of the task on 

relative viewing time was limited to the object being manipulated, with the effect on the relative 

time spent viewing the hands being much weaker.  This is interesting since the previous analysis 

examining the domain-relative ratio for the percentage of fixations on each interest area did 

indicate an effect for the hands.  These two analyses seem to suggest that the hands may be 

fixated more frequently when categorizing the action, however spending time fixating the hands 

is not as critical as fixating the object being manipulated.  Evidence for processing the person is 

also evident in the relative dwell time domain-relative ratios.  Namely, regardless of the 

categorization task being performed, more processing time was devoted to the head compared to 

the other interest areas, unless categorizing the action.  This person processing bias is also 

consistent with the previous literature (Fletcher-Watson, Findlay, Leekam, & Benson, 2008; 

Humphrey & Underwood, 2010; Zwickel & Võ, 2010).  Overall, the eye movement results show 

that the categorization task affected attentional selection processes in eye movements, and 

encoding processes, after controlling for the size of the interest areas.  

Discussion 

Experiment 2 examined the scene image information that was fixated and the number of 

fixations that were required for each image categorization task, therefore extending the results 

from Experiment 1, which was limited to scene image processing times within a single fixation.  

Specifically, consistent with previous research on scene gist recognition a single fixation was 
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sufficient processing time for the basic level and superordinate level scene categorization tasks to 

reach ceiling performance (Biederman 1972; Potter 1976; Eckstein, Drescher, & Shimozaki 

2006; Greene and Oliva 2009; Mace, Joubert et al. 2009; Loschky and Larson 2010).  These 

results are inconsistent with the research supporting basic level theory (Gosselin & Schyns, 

2001; Jolicour, Gluck, & Kosslyn, 1984, Rosch et al., 1976; Tversky & Hemenway, 1983), 

which would predict that the basic level categorization task would be better than the 

superordinate scene categorization task.  In contrast to this prediction, however, performance 

was similar between the two scene categorization tasks at each processing time.  The results are 

also inconsistent with our person-bias hypothesis that the attentional bias to people in scenes 

would result in better categorization for the basic level action relative to the scene categorization 

tasks.  In fact, basic level action categorization required two to three fixations in order for ceiling 

performance to be achieved.  However, these results are most consistent with the hypothesis 

predicting coarse-to-fine processing for the scene image.  Although superordinate level scene 

categorization was not better than basic level scene categorization, the data was in the predicted 

direction.  Likewise, consistent with Experiment 1, both scene categorization tasks were better 

than the basic level action categorization task, which required more than a single fixation to 

reach ceiling performance.  The current results are consistent with previous studies that have 

found a course-to-fine processing strategy for both objects and scene images (Large, Kiss, & 

McMullen, 2004; Loschky & Larson, 2010; Macé, Joubert, Nespoulous, & Fabre-Thorpe, 2009; 

Poncet, Reddy, & Fabre-Thorpe, 2012; Rogers & Patterson, 2007).   

Since basic level action category distinctions required more than a single fixation to reach 

ceiling performance, it could be expected that the information fixated in the basic level action 

categorization task would differ from the information fixated in the two scene categorization 
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tasks.  This is consistent with previous research showing that the task plays a role in determining 

where eye movements go in scenes (DeAngulus & Pelz, 2009; Yarbus, 1967).  However, an 

alternative hypothesis predicted that eye movements between the three categorization tasks 

would be similar, based on the fact that scene categorization at the basic and superordinate level 

requires only a single fixation, and research showing the person bias in scene viewing (Fletcher-

Watson, Findlay, Leekam, & Benson, 2008; Humphrey & Underwood, 2010; Zwickel & Võ, 

2010).  Thus, after acquiring the scene category in the first fixation, viewers would be free to 

fixate the person in all of the categorization tasks, resulting in similar fixation patterns.  

Although there was very clear evidence both for the person bias in all three task conditions, and 

that scene categorization took only a single fixation to reach asymptote, there was nevertheless 

strong evidence of a task effect on attentional selection processes and encoding processes in eye 

movements, particularly in the basic level action categorization task, consistent with previous 

research (DeAngelus & Pelz, 2009; Yarbus, 1967). 

The top-down effect of the categorization task on eye movements was evident in the first 

eye movement in the scene.  Namely, for the basic level action categorization task, a greater 

percentage of fixations fell on the object and hands than in both scene categorization tasks.  This 

effect was even stronger after controlling for the size of each respective interest area in the scene.  

Likewise, the categorization task affected the latency to fixate different semantic regions of the 

scene.  In the basic level action categorization task, the latency to fixate the object and hands 

were no different from any of the other interest areas.  Conversely, in the basic level scene 

categorization task, the latency to fixate the object was slower than the time to fixate the head.  

Furthermore, for the superordinate task, the latency for the object was slower than the head and 

body.  These results provide strong evidence for the effect of the task on what and when 
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information was fixated in the scene image.  These two dependent variables provide strong 

evidence that the categorization task affected attentional selection processes for eye movements.  

Namely, prior to initiating a saccade, covert attention selects a new spatial location in the image, 

which is then followed by a saccade to that location (Henderson, 1992; Rizzolatti, Riggio, 

Dascola, & Umilta, 1987). Thus, the current study shows that attentional selection of semantic 

scene information differs between action and scene categorization.  Specifically, basic level 

action categorization places more importance on object information than the two scene 

categorization conditions.  

These effects seen when analyzing the first fixation became stronger when all of the eye 

movements were included in the analysis.  These analyses showed that, besides the scene 

background, the body and head were most likely to be fixated.  This shows direct evidence of a 

person bias when viewing a scene image (Fletcher-Watson, Findlay, Leekam, & Benson, 2008; 

Humphrey & Underwood, 2010; Zwickel & Võ, 2010).  When the relative physical image area 

of the respective interest areas were controlled for, fixations in all three categorization conditions 

were most biased to process the person’s head relative to its size, again consistent with previous 

research (Fletcher-Watson, Findlay, Leekam, & Benson, 2008).  However, as seen with the eye 

movement analysis based on the first fixation, the part of the person that was fixated differed 

depending on the categorization task being performed.  Namely, the object and hands received a 

greater percentage of fixations, relative to their size, when categorizing the basic level action 

compared to the two scene categorization tasks.  Furthermore, the categorization task did not 

have an effect on the average fixation duration and dwell time in each interest area.  However, 

when computing the domain-relative ratio for the dwell times for each respective interest area, 

then the categorization task had an effect on the encoding processes for different semantic 



66 

 

feature in the scene.  Namely, when categorizing the basic level action, more time was spent 

encoding the object being manipulated compared to the two scene categorization tasks.  Thus, 

encoding the details of the object was critical when categorizing the basic level action.  Thus, the 

current study shows that the top-down influences what, when, and for how long semantic scene 

information was processed.  Namely, the task influenced both the attentional selection and 

perceptual encoding processes involved in eye movements.  When categorizing the basic level 

action, one could make an argument regarding the importance of the object information versus 

the hands.  One simple explanation for the increased fixations for the hands is due to their 

proximity to the object.  Since the hands are involved in manipulating the object, which is critical 

for categorizing the basic level action, then fixations may have a greater opportunity to land on 

the hands, possibly due to inaccuracy in saccade execution (or measurement).  Conversely, it has 

been proposed that the hands are useful cues for perceiving events in everyday actions in 

dynamic film (Smith, 2012).  Likewise, research has shown that the hand and object being 

manipulated in a specific context allows the observer to interpret the intentions of the individual 

(Iacoboni, Molnar-Szakacs, Gallese, Buccio, Mazziotta, & Rizzolatti, 2005).  According to these 

studies, fixations on the object and hands would be critical to the identification of the basic level 

action in the scene image.   

The lack of a sensitivity advantage for the superordinate level task over the basic level 

task at the very earliest stage of processing (24 ms) in Experiment 2 is inconsistent with the 

results of Experiment 1 and previous findings regarding the superordinate advantage at early 

processing times (Joubert, Rousselet, Fize, & Fabre-Thorpe, 2007; Loschky & Larson, 2010; 

Macé, Joubert, Nespoulous, & Fabre-Thorpe, 2009).  This failure to replicate our previous effect 

may be related to the range of processing times examined between experiments.  Experiment 1 
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used a range of processing times within a single fixation, whereas Experiment 2 had a much 

larger range for processing times spanning up to 7 fixations.  This difference in the range of 

processing times may have produced different levels of motivation between the two studies.  

Namely, participants in Experiment 1 were presented with short processing times for the images, 

which made the task more difficult.  As participants progressed through Experiment 1, they may 

have become aware of the difficulty of the task, and therefore been less motivated to give their 

best effort.  Conversely, the range of processing times selected for Experiment 2 was much 

larger, and this experiment may have been perceived as being easier.  The greater ease of 

Experiment 2 may have resulted in participants trying harder to do well in the task, especially for 

the 24 ms SOA condition.  This motivation hypothesis would explain the differences seen in the 

Experiment 1 for the superordinate and basic level scene categorization performance, and the 

lack of the same effect in Experiment 2.  If this hypothesis is correct, then Experiment 1 would 

show performance at early processing times when viewers are giving less effort, and would 

indicate that the easier scene categorization task is indeed at the superordinate level. 

Chapter 4 - Experiment Three 

When reading a story or viewing a film, the story follows the actions and goals of one or 

more characters.  The importance of the character’s goals and actions can been seen in theories 

of story grammars and in the event indexing model (Mandler & Johnson, 1977; Rinck & Weber, 

2003; Scott-Rich & Taylor, 2001; Thorndyke, 1977), recognition memory for a sequence of 

actions (Brewer & Dupree, 1983; Lichtenstein & Brewer, 1980), and the perception of events 

within stories (Zacks & Tversky, 2001; Magliano & Zacks, 2011).  Specifically, story grammar 

theories decompose a story based on the events that involve a character, and the goals and 

actions taken by the character (Mandler & Johnson, 1977; Thorndyke, 1977).  Studies show that 



68 

 

when a character is introduced in a written narrative, ratings of coherence and cohesion 

decreased and reading time increased, relative to changes in the time and location of story 

events.  This indicates that a change in the narrative character disrupts integration of that new 

information with previous story information, thus more time is required to integrate the new 

information with the previous event representation (Rinck & Weber, 2003; Scott-Rich & Taylor, 

2001).  Similarly, recall memory is better for goal-directed activities than activities that were not 

related to the goal (Brewer & Dupree, 1983; Lichtenstein & Brewer, 1980).  Likewise, events 

tend to be goal-directed activities, like “Washing a car” or “Making lunch,” which suggests that 

the basic level actions that are observed, and the inferred goals that guide them, are central to 

understanding the event and being able to identify a new event (Zacks & Tversky, 2001; 

Magliano & Zacks, 2011).  Thus it would have been reasonable to expect that the first semantic 

construct recognized in a scene would be the basic level action.  However, the results of 

Experiments 1 and 2 shows that image categorization starts with global scene representation at 

the superordinate level, then more specific basic level scene category distinctions, and finally the 

basic level action.  Thus, image categorization occurs in a global-to-local fashion.   

This global-to-local processing order replicates work by other recent research examining 

object and scene recognition categorization (Large, Kiss, & McMullen, 2004; Loschky & 

Larson, 2010; Macé, Joubert, Nespoulous, & Fabre-Thorpe, 2009; Rogers & Patterson, 2007).  

However, this processing order is at odds with previous research showing that the basic level is 

categorized prior to the superordinate level (Gosselin & Schyns, 2001; Jolicour, Gluck, & 

Kosslyn, 1984, Rosch et al., 1976; Tversky & Hemenway, 1983).  So how can these two 

apparently contradictory results be reconciled?  One explanation is in terms of the cognitive 

processes used to categorize the scene image in a given experimental task.  In rapid scene 
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categorization tasks in the scene gist recognition literature, the processes are fast, early, 

perceptual categorization mechanisms that deal with visual stimuli in a course-to-fine order.  In 

the types of tasks used more commonly in the categorization literature, the processes involve a 

somewhat slower, later, linguistic categorization system that is sensitive to the communicative 

informativeness of categories, which favors the basic level.    

The classic studies by Rosch et al. (1976), for object categorization, and Tversky and 

Hemanway (1983), for scene categorization, show that more attributes are listed for basic level 

categories than for superordinate categories.  Thus, the basic level allows for a substantial 

increase in the informativeness of communication about the object or scene being viewed.  

Interestingly, Rosch et al. (1976, Exp. 7) also found the basic level advantage in a perceptual 

categorization task, in which basic level object categorization was quicker than superordinate 

and subordinate level categorization.  This apparently contradicts the above proposal that the 

basic level advantage is absent for fast, early, visual categorization processes.  However, a closer 

look at the methods used in Rosch et al. (1976, Exp. 7) call this into question.  Specifically, at the 

beginning of a trial, a cue word was presented 500 ms prior to the onset of the object, which then 

remained in view until the participant made a “Yes” or “No” response regarding whether the 

object matched the pre-cue.  As reported by Rosch et al. (1976, Exp. 7), the average reaction 

time for “Yes” responses to the basic level category was 535 ms and 578 ms for “No” responses.  

Thus, participants were allowed to process the stimulus for more than half a second, which is 

slightly over 22 to 24 times longer than the earliest processing time tested in Experiment 1. 

The lack of a basic level advantage when viewers are given very short processing times 

has been further elucidated by Rogers and Patterson (2007).  Initially, Rogers and Patterson 

(2007) replicated the basic level advantage for an object categorization task.  However, in a 
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follow-up experiment, when the same object categorization task required a speeded response 

from participants, the effect changed and an advantage was found for the superordinate category.  

Thus, it seems that at the early stages of visual categorization, a perceptual advantage is found 

for superordinate categorization, but as more time is given to categorize the object, a later 

(presumably linguistic) advantage is found for the basic level.  An MEG study by Löw et al., 

(2003) has proposed a similar distinction between perceptual and linguistic categorization 

mechanisms.  Between 170 and 210 ms after object onset, brain activity was found to be 

correlated with superordinate object categories in the right occipital-temporal lobe, while 

between 200 and 450 ms, these same distinctions were made in the left temporal hemisphere.  

Löw et al., (2003) claim that these spatially distinct brain areas are representing a quick 

perceptual categorization in the right temporal cortex, followed by a later, linguistic/semantic 

categorization in the left temporal cortex.    

Therefore, the above distinctions between the time-course of linguistic and perceptual 

categorization suggests a way of reconciling the findings from Experiments 1 and 2 and those 

used to support Rosch et al.’s (1976) basic level theory.  The findings presented in Experiments 1 

and 2 are consistent with a fast, early, perceptual categorization mechanism that begins by 

making superordinate level scene category distinctions.  Conversely, a slower, later, linguistic 

categorization system may be more concerned with communicating informative image 

constructs, captured by basic level scene and basic level action representations, and least 

concerned with coarse-level scene representations.  Evidence for this slower linguistic 

categorization mechanism can be found for scene and object naming tasks that show basic level 

terms are used more often than superordinate terms, since the basic level is more informative 

(Rosch et al., 1976; Tversky & Hemenway, 1983).  In fact, when participants were asked to 
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name scene images, Tversky and Hemenway (1983) found that participants never used 

superordinate category names like “Indoor” or “Outdoor” and subordinate names were used 

infrequently (pp. 137).  Likewise, the basic level advantage is also present for events (Morris & 

Murphy, 1990; Rifkin, 1985), with events being more likely to be named at the basic level than 

the superordinate level (Morris & Murphy, 1990).  Thus, if linguistic descriptions of scenes are 

sensitive to more informative scene constructs, then participant descriptions should report more 

basic level image descriptors than superordinate descriptors. 

Additionally, a separate argument can be made for the importance and informativeness of 

basic level actions, based on research on the person bias shown by eye movements.  These 

studies show that the first saccade is likely to move toward the person (Fletcher-Watson, Findlay, 

Leekam, & Benson, 2008; Humphrey & Underwood, 2010).  This could be taken as evidence 

that the most important construct in the scene is the action being performed.  This is even more 

evident in the research examining how eye movements are linked to verbal descriptions of 

images.  Namely, scene information was verbally reported within a second of that information 

being fixated (Griffin & Bock, 2000; Meyer, Sleiderink, & Levelt, 1998).  If so, then it could be 

hypothesized that the basic level action category would be reported more often than the basic 

level and superordinate level scene categories.  Furthermore, this hypothesis can be specified to 

predict that the basic level action would be reported more often than the superordinate level 

action, which would be consistent with research showing a basic level advantage for events 

(Morris & Murphy, 1990; Rifkin, 1985).  

Conversely, an alternative hypothesis would predict that the first image category 

activated is the first term used to describe the image.  Experiments 1 and 2 show that the scene 

category is activated before the basic level action.  Likewise, the superordinate level scene 
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category is recognized prior to the basic level, which is consistent with previous studies on scene 

categorization and object categorization (Large, Kiss, & McMullen, 2004; Loschky & Larson, 

2010; Macé, Joubert, Nespoulous, & Fabre-Thorpe, 2009; Rogers & Patterson, 2007).  This 

superordinate advantage was also found when participants were asked to name scene images 

(Fei-Fei, Iyer, Koch, & Perona, 2007).  Namely, when scene image processing was limited by 

scene masking, then superordinate terms were used more often than finer level scene terms.  This 

was especially evident for Outdoor scenes, however Indoor scenes were just as likely to be 

described as “Indoor” versus an finer-level indoor category term.  Likewise, if fixations are 

tightly liked to verbal descriptions for a scene (Griffin & Bock, 2000; Meyer, Sleiderink, & 

Levelt, 1998), then the scene category should be reported first since it is represented during the 

first fixation in the scene image.    

Experiment 3 asked participants to describe the scenes used in Experiments 1 and 2.  

Participant’s responses were coded to determine the proportion of superordinate level and basic 

level scene and action terms.  If the linguistic categorization system is biased to report the most 

informative construct present in the scene, then basic level terms should be use more often than 

superordinate terms.  However, if the informativeness of the image is dependent on the action, 

then the basic level action should be used more than the superordinate action and basic level 

scene terms.  Alternatively, if the terms that are used to describe the scene are dependent on the 

first image category activated, then the exact opposite pattern should be observed.  Namely, 

superordinate scene category terms should be used more than basic level scene category terms, 

and both superordinate and basic level action categorization terms.   



73 

 

 

Method 

 Participants 

549 Participants (247 female) completed an on-line survey posted on Mechanical 

turk.com (https://www.mturk.com/mturk/welcome)
4
.  All participants were self-reported native 

English speakers, with a mean age of 28.8 (SD = 10.4).  Participants’ age ranged between 16 and 

71.  All participants received 16 cents for completing the on-line survey. 

 Materials 

The same 288 images used in Experiments one and two were used for the naming study. 

Participant responses were collected through an on-line survey on Mechanical Turk.  Each 

participant was limited to viewing one image from each of the 8 basic level action categories.  If 

more than one image per basic level action category had been presented to each participant, then 

it is likely that the response for one basic level action category image would influence the 

response for a second image from the same basic level action category.  In order to avoid such a 

bias, only one scene image per basic level action category was presented to each participant, for 

a total of 8 scene image presentations per participant.  Furthermore, each participant was only 

allowed to participate in the study once.   

 Procedure 

Restrictions were placed on the sample that could participate in the study.  Namely, 

respondents were selected to be from North America.  Native English speakers were specified in 

the title of the survey on Mechanical Turk.  Prior to beginning the survey, participants were 

                                                

4 15 descriptions for each of the 288 images were sought.  This would produce 4, 320 total descriptions.  However, 

since participants were presented with eight images, a total 540 participants were required.  
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asked to report demographic information, including their age, gender, and native language.  If the 

participant reported that their native language was not English, they were not permitted to 

participate in the study.  Afterwards, participants were instructed to name each image with “a 

very simple and common one word label or short phrase that best describes the scene image.  We 

do not want elaborate or creative answers.  Instead, we want the most simple, obvious, direct sort 

of label or description that ordinary people would give for each picture.”  These instructions 

were modified from Tversky and Hemenway’s (1983) instructions.  After an image had been 

labeled, the next image was presented until a label was given for the scene image.  This process 

continued until all eight scene images were labeled. 

Results 

 Precursors 

Participant responses were only analyzed if they reported English as their native 

language.  All other responses were removed from the analysis and data for their dataset was re-

collected.   

The 4,392 image descriptions were coded regarding the relative frequency of each of the 

three categorical levels examined in Experiments 1 and 2 and an additional categorical level, 

superordinate level actions.  Superordinate actions were general terms like “Working,” “Chores,” 

“Cleaning,” and “Busy.”  As defined by Rosch et al. (1976), members of a superordinate 

category share few attributes due to their inclusiveness, whereas members of a basic level 

category have the most attributes in common.  Therefore, these superordinate action descriptors 

are more inclusive of numerous actions and thus, share few attributes, whereas basic level action 

descriptors share many perceptual features.  This exact result was found by Rifkin (1985), where 

events at the basic level have a greater number of shared attributes than superordinate events.  
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Responses were coded for the use of superordinate or basic level scene category terms, and 

superordinate or basic level action category terms.  Additionally, coders identified if the 

description identified an object or person in the scene.  All scene category terms were limited to 

nouns specifying a location, whereas action terms were limited to responses containing a verb or 

a gerund which described an action occurring in the scene.  Coding of participants’ responses 

was not mutually exclusive.  Specifically, if a response contained an object or person, a basic 

level action term, a superordinate action term, a basic level scene category term, and a 

superordinate scene category term, then each response was coded regarding its categorization 

level.  For example, a response such as “A person outdoors doing yard work mowing their 

lawn,” would be coded as containing a response from each of the five categorization levels.  

Finally, responses that were deemed incorrect/inappropriate were also calculated.  For instance, 

responses like “fun time” and “Gazing” were counted as incorrect.   

Participant responses were coded by two coders naïve to the hypotheses of the study.  

Their inter-rater reliability was measured using Cohen’s Kappa.  The inter-rater reliability was 

acceptable (Cohen’s Kappa ≥ .764) and all remaining disagreements were resolved through 

discussion between the two coders and the author.   

 Analysis 

The frequency of image descriptors used to label the scene images were analyzed using a 

3 (Action descriptor [Absent, Basic level, superordinate level]) x 3 (Scene Category Descriptor 

[Absent, Basic Level, Superordinate level]) chi-square.  Figure 4.1 and Table 4.1 present the 

frequencies and percentages for the frequency of action descriptors x scene descriptors.  

Responses that contained neither a scene nor action term (the absent/absent column in Fig 3.1 or 

cell in Table 3.1) were composed of incorrect responses (479 out of 1288), a reference to an 
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object or person (499 out of 1288), or neither an incorrect response nor a reference to an 

object/person (310 out of 1288).  In Figure and Table 3.1, these categories were collapsed into a 

single variable (absent/absent).  These responses appear to be quite frequent, however they are 

simply the sum of both correct and incorrect image descriptions that were neither an action nor a 

scene category term, for example object or person descriptions.  Thus, analyses presented later 

examined the conditional probability of using an object/person term when either an action or 

scene category term was provided.  The frequency of the action terms differed depending on the 

level of the scene term used (χ
2
 (4) = 44.09, p < .001).  A series of chi square test of independent 

frequencies were used to make specific comparisons to test our proposed competing hypotheses.   

The frequency of basic level and superordinate level terms was compared in order to 

determine the level of detail that was used to label the scene images.  If viewers provided more 

informative descriptions of the image, then this hypothesis predicts that the basic level 

descriptors would be used more often than superordinate level descriptors.  Alternatively, the 

perceptually earliest categorization level recognized could be used to describe the scene image.  

This predicts that the superordinate descriptors would be used more than basic level descriptors.  

A chi square test of independent frequencies showed that a greater frequency of basic level 

descriptors (2,569
5
 out of 3,180) were used to label the image than superordinate level 

descriptors (611
6
 out of 3,180)(χ

2
 (1) = 1205.59, p < .001)  This supports the basic level theory 

showing that later, linguistic image categorization uses more informative image terms to describe 

                                                

5 The total frequency of basic level terms used was calculated by summing the total number of basic level scene 

terms (241 + 201 + 77 = 519) and total number of basic level action terms (2,028 + 22 = 2,050) for a total of 2,569 

basic level terms.   

6 The total frequency of superordinate level terms used was calculated by summing the total number of 

superordinate level scene terms (12 + 22 + 1 = 35) and total number of superordinate level action terms (499 + 77 = 

576) for a total of 611 superordinate level terms.   



77 

 

scene images.  The frequency of action and scene descriptors were compared and the results 

showed that a greater frequency of action descriptors (2828 out of 3382) were used to describe 

images compared to scene descriptors (554 out of 3382)( χ
2
 (1) = 1376.99, p < .001). 

 

Figure 4.1 The percentage of scene and action descriptors used to label scene images 

 

Table 4.1 Frequency and percentage of image descriptors used by basic level, 

superordinate level and both taxonomies used (Percentages in parentheses) 

 Scene descriptor 

Action Descriptor  None Basic Superordinate 

None 1288 (29.35) 241 (5.52) 12 (0.27) 

Basic 2028 (46.42) 201 (4.60) 22 (0.50) 

Superordinate 499 (11.42) 77 (1.76) 1 (0.02) 

Note. 4,369 total responses are presented in the table.  An additional 23 response contained both 

a basic and superordinate action term, like “Busy talking on the phone.” 
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Furthermore, two additional comparisons were made to determine if a greater frequency 

of basic level terms were used for both action and scene descriptions.  Two chi square tests were 

performed comparing the frequency of basic level descriptors versus superordinate level 

descriptors for both action and scene category terms.  The results show that action terms were 

more frequently reported at the basic level (2,028 out of 2,527) than at the superordinate level 

(554 out of 2527)(χ
2
 (1) ≥ 925.14, p < .001).  The same results is shown when comparing basic 

level scene terms (241 out of 253) with superordinate scene terms (12 out of 253)(χ
2
 (1) ≥ 

207.28, p < .001).  This shows that the basic level advantage was present for both scene and 

action categories.  Furthermore, a greater frequency of basic level action terms (2251 out of 

2770) were used to describe the scene images compared to basic level scene category terms (519 

out of 2770)(χ
2
 (1) ≥ 207.28, p < .001).  This indicates that the linguistic description of our scene 

images was primarily focused on the person and the action that was being performed in the 

scene, which supports the findings regarding the person bias in eye movements (Fletcher-

Watson, Findlay, Leekam, & Benson, 2008; Humphrey & Underwood, 2010).   

Additionally, consistent with Tversky and Hemanway’s (1983) findings, superordinate 

level scene descriptors, like “Indoors” and “Outdoors,” were almost never used to label scene 

images (35 out of 4,369 responses, M = 0.80%), however superordinate action terms were used 

fairly regularly (577 out of 4,369 responses, M = 13.21%).   

Further analyses were computed to examine the detail in which participants described 

scenes.  First, since each image provided a scene category and an action, a comparison was made 

between the percentage of scene and action terms given that the participant used an action or 

scene term, respectively.  The results show that the conditional probability for actions given a 

scene term (M = .56, SD = 0.45) was greater than the conditional probability for scenes given an 
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action term (M = .17, SD = 0.17)(t (311) = 18.27, p < .001).  This shows that when a response 

included an action descriptor, it was less likely to contain a superordinate or basic level scene 

term.  However, if the image label contained a scene category, then it was likely to also contain 

an action term.  This is consistent with the overall frequency in which action terms were used 

over scene category terms.    

After reviewing participant’s responses, it was found that 33% of the responses contained 

a reference to an object in the image.  The object information may imply the action that is 

depicted in the image.  If true, then viewers might be less likely to provide an action category 

term when an object term is used, because the object term could take the place of the action.  

Therefore, it was hypothesized that object terms would be used more often with a scene category 

term than an action category term.  A t-test was used to compare the conditional probability of 

using an object term given that an action term was used compared to when a scene term was 

used.  Contrary to the hypothesis, the conditional probability for reporting an object was greater 

when given an action term (M = .35, SD = .34) compared to a scene category term (M = .19, SD 

= .37)(t (311) = 9.51, p < .001).  Specifically, action descriptions tended to specify the object 

being manipulated, whereas scene descriptions were less likely to identify an object in the image.    

 Discussion 

Experiments 1 and 2 found evidence that was inconsistent with Rosch et al.’s (1976) 

basic level theory, showing that the superordinate scene category was recognized before the 

basic level.  However, based on brain imaging studies (Löw et al., 2003), it was hypothesized 

that the previous studies showing a basic level advantage were based on a linguistic 

categorization system, which is biased to communicating informative scene information.  

Therefore, it was hypothesized that if participants were asked to describe an image, their use of 
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their linguistic categorization system would lead them to report more detailed, informative scene 

constructs.  Specifically, the basic level descriptors would be used more than superordinate 

descriptors (Morris & Murphy, 1990; Rosch et al., 1976; Tversky & Hemenway, 1983).  

Conversely, an alternative hypothesis was that the first category activated during perception of a 

scene would be the primary category verbally reported.  This suggested that superordinate level 

categorization would occur more often than basic level categorization for both scenes and objects 

(Large, Kiss, & McMullen, 2004; Loschky & Larson, 2010; Macé, Joubert, Nespoulous, & 

Fabre-Thorpe, 2009; Rogers & Patterson, 2007) and presumably also for actions.   

An additional hypothesis was that action terms would be reported more often than scene 

category terms, due to the person bias.  This hypothesis was independent of the categorization 

level hypothesis since it would be possible to have any of four possible outcomes (more basic 

level scene terms, more superordinate level scene terms, more basic level action terms, or more 

superordinate level action terms).    

Experiment 3 clearly showed an advantage for basic level action descriptions over other 

image descriptors.  Overall, these results show the exact opposite pattern than was found in 

Experiments 1 and 2.  Namely, scene image descriptions using the linguistic system produced 

categories that were more finely detailed than coarse.  Furthermore, basic level action terms were 

more likely to be used than basic level scene terms, indicating that the detailed descriptions were 

more focused on the people in the scene images and the tasks they performed.  Likewise, basic 

level action and scene category terms were more frequently used than superordinate action and 

scene category terms.  Furthermore superordinate scene category terms were virtually absent, 

consistent with Tversky and Hemenway (1983).  This shows that the linguistic categorization 

system is more concerned with the pragmatics of providing informative terms regarding the 
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scene, as predicted by the basic level theory for objects, scenes, and actions (Gosselin  & Schyns, 

2001; Jolicour, Gluck, & Kosslyn, 1984, Morris & Murphy, 1990; Rifkin, 1985; Rosch et al., 

1976; Tversky & Hemenway, 1983).   

Chapter 5 - General Discussion 

To summarize, Experiment 1 showed that superordinate scene categorization occurs prior 

to basic level scene categorization, which also occurs prior to basic level action categorization.  

Although the sensitivity results from Experiment 2 were not as strong as those presented in 

Experiment 1, the data still converged with the conclusions from Experiment 1.  This supports 

the previous findings that rapid image categorization occurs in a global-to-local fashion 

(Loschky & Larson, 2010; Macé, Joubert, Nespoulous, & Fabre-Thorpe, 2009; Poncet, Reddy, & 

Fabre-Thorpe, 2012; Rogers & Patterson, 2007).  Specifically, a scene image is recognized first 

according to its membership in a superordinate category.  When given more time, a finer basic 

level distinction can be made, while discriminating the basic level action requires even more 

time.  This effect directly contradicts the research showing that the basic level is categorized 

prior to the superordinate (Rosch et al., 1976; Jolicour, Gluck, & Kosslyn, 1984; Murphy & 

Smith, 1982).  However, when participants were asked to describe the images used in 

Experiments 1 and 2, basic level descriptors were used more often than superordinate 

descriptors, which supported basic level theory.  Additionally, basic level descriptions were 

based on the action more often than the scene category, which supports the research based on the 

person bias.   

The effects shown in Experiments 1 and 2 appear to oppose the effect shown in 

Experiment 3.  However, these contradictory effects may be representative of two distinctive sets 

of processes.  Namely, the superordinate advantage shown in Experiments 1 and 2 is 



82 

 

representative of early perceptual processes, whereas the basic level advantage is representative 

of a later, linguistic categorization processes.  Thus, these two effects are not opposing, but 

identify important psychological processes that occur at different stages of scene categorization.  

This line or reasoning is analogous to the discussion within the text comprehension literature 

regarding the importance of the task of the reader, reader’s goals, and other variables used to 

examine apparent contradictory findings between on-line versus off-line comprehension (Rapp & 

Mensink, 2011).  Regarding the current studies, the apparently contradictory results are, in fact, 

highly informative of the categorization processes which occur over time.  Namely, Experiments 

1 and 2 represent early perceptual scene categorization processes used to comprehend the scene 

image when given a specific categorization task.  Conversely, Experiment 3 represents the later 

linguistic categorizations which are the product of comprehending and communicating 

informative parts or dimensions of the scene image.   

This distinction between early perceptual categorization and later linguistic 

categorization may be explained by different brain mechanisms.  Specifically, an MEG study 

proposed that early activation in the occipital-temporal junction was involved in perceptual 

categorization, whereas later activation in the left temporal lobe was specific to linguistic 

categorization (Löw, et al, 2003).  This distinction is consistent with behavioral results indicating 

that early perceptual categorization first makes distinctions between superordinate categories, 

whereas linguistic categorization focuses on somewhat finer distinctions.  Namely, superordinate 

categorization of objects and scenes is best at the earliest stages of processing (Loschky & 

Larson, 2010; Macé, Joubert, Nespoulous, & Fabre-Thorpe, 2009; Rogers & Patterson, 2007), 

but the basic level is best later in processing when naming or describing objects and scenes 

(Rosch et al., 1976; Tversky & Hemenway, 1983).   
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The results also showed that basic level action categorization required 2-3 fixations on 

the scene image, whereas scene categorization required only one fixation at both the 

superordinate and basic levels.  This shows that distinguishing between basic level actions 

occurring in the same scene context requires that the viewer foveate additional information in the 

scene, specifically the object involved in the action, and the pictured person’s hands 

manipulating the object.  These eye movement results were consistent with the categorization 

task affecting the scene information that was fixated.  Namely, basic level action categorization 

resulted in a greater percentage of fixations to the hands and object compared to both scene 

categorization tasks.  Likewise, the eye movement results are also somewhat consistent with the 

person bias (Fletcher-Watson, Findlay, Leekam, & Benson, 2008; Humphrey & Underwood, 

2010; Zwickel & Võ, 2010), which suggested that the eyes should fixated similar locations in the 

scene.  Evidence of this is shown by the similar percentage of fixations and domain-relative 

ratios on the head and person across all three categorization tasks.  In addition, the results 

showed that top-down information, specifically the categorization task, biased the scene 

information that was fixated, consistent with previous research (DeAngelus & Pelz, 2009; 

Malcolm, Nuthmann, & Schyns, 2011; Yarbus, 1967).     

Theoretical Contributions and Implications 

These experiments begin to lay the ground work for integrating what is known about 

cognitive processing occurring within a single fixation, namely scene gist processes, with the 

higher-level processes occurring over multiple fixations during event perception.  Most 

importantly, Experiment 1 showed that the scene category, at both the superordinate and basic 

level, is recognized prior to the basic level action.  This suggests that the scene category could be 

the first semantic information that is integrated into a new event model.  Event Segmentation 
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Theory (EST) has described the circumstances in which an event model is updated, as well as 

proposing a neurological circuit that allows this updating process to occur (Zacks et al., 2007).  

In addition, the Event Indexing Model (EIM) identifies a set of dimensions within text and visual 

narratives that are attended to and lead to an increase in the likelihood of an event model being 

updated (Magliano, Miller, & Zwaan, 2001; Magliano & Zacks, 2011; Zacks, Speer, & 

Reynolds, 2009; Zwaan, Langston, & Graesser, 1995; Zwaan & Radvansky, 1998).  While the 

EIM does not describe how an event model is formed, EST hypothesizes that that low-level 

visual and auditory information are combined, in working memory, to form an event model 

(Kurby & Zacks, 2007; Zacks, Speer, Swallow, Braver, & Reynolds, 2007).  EST also predicts 

that top-down information, including previous experiences in similar situations (Avrahami & 

Kareev, 1994), will also influence the construction of the model (Kurby & Zacks, 2007; Zacks, 

Speer, Swallow, Braver, & Reynolds, 2007).  However, the current study on rapid scene and 

action categorization delineates key semantic information acquired during the first fixation and 

its time course of acquisition.  It also shows how immediately following fixations gather 

information to build upon that foundation for the event model.  Thus, the current study lays the 

theoretical and empirical ground work for how an event model is constructed while looking at a 

scene.  The scene category, or the spatiotemporal setting of a visual narrative, is likely 

recognized first, after which, the protagonist’s action is recognized.  This should allow the 

viewer to infer the character’s goal(s), based on their prior knowledge, and, according to EST, 

make predictions about what should occur next in the visual event.  

Future studies will need to examine both the bottom-up effects of how scene gist is 

incorporated in an event model, and the top-down effects of the event model on scene gist.  To 

our knowledge, this is the first study to investigate how both the scene category and an 
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action/event taking place in the scene is recognized over the course of both a single and multiple 

fixations.  A related question is how consistent scene constructs may contribute to action 

categorization.  For instance, is an action easier to categorize in an appropriate scene context or 

does the scene context have no effect on action categorization?  Conversely, knowledge of the 

processes occurring during event perception can also be incorporated into our understanding of 

how scene gist is recognized.  For example, EST describes the variation in cognitive processing 

of perceptual information over the course of an event.  The bottom-up and top-down processes 

involved in scene gist recognition can be compared by presenting scene image stimuli either in 

the form of a coherent picture story or in randomized order.  The randomized order condition 

would present the same perceptual information as the picture story condition.  However, by 

randomizing the image order, any higher level structure regarding the observed actions could not 

be used to predict the action in the next scene image.  Conversely, in the coherent story 

condition, being able to accurately predict the action or scene category that is about to be 

presented should prime that information, resulting in faster recognition of the to-be-presented 

scene.   

By presenting scene image information in the form of a visual narrative, then it is 

hypothesized that the narrative should begin to be parsed into separate events, similar to the 

segmentation processes reported for reading (Speer, Zacks, & Reynolds, 2007; Zacks, Speer, 

Reynolds, 2009), pictorial narratives (Gernsbacher, 1985; Gernsbacher, Varner, & Faust, 1990), 

and film (Magliano & Zacks, 2011; Zacks, Speer, & Reynolds, 2009).  Theories of event 

segment on written narratives have identified some of the factors that increase the probability of 

perceiving a new event.  These factors are also used when viewing visual narratives.  These 

perceptual factors that identify the beginning of a new event may contain information regarding 
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the action being performed than compared to actions that typically occur during the middle or the 

end of an event.  Previous research comparing memory for the perceptual information at the 

event boundary versus the middle of an event has found that recognition memory is better for the 

boundary (Newston & Engquist, 1976; Swallow et al., 2009; 2010).  Information presented at the 

boundaries also contains critical information for summarizing the visual narrative (Schwan & 

Garsoffky, 2004).  Summaries produced from a visual narrative only containing the event 

boundaries did not differ from summaries produced from viewing the entire film (Schwan & 

Garsoffky, 2004).  These studies suggest that the perceptual information viewed during the event 

boundary is more diagnostic of an action than perceptual information during the middle of an 

event.  This diagnostic information may include the body posture, as noted by Glanemann 

(2007).  One can imagine a “Kicking” action where one raises their foot behind themself, in 

preparation to kick, as seen on the left side of Figure 4.1.  This may be a better example of 

kicking compared to the same action where the foot is slightly in front of the body, as shown on 

the right side of Figure 4.1.   

Figure 5.1 Diagnostic and non-diagnostic body posture information for a "Kicking" action. 

Similarly, there may be differences in scene and action categorization for frames that are 

from an event boundary versus frames from a non-boundary.  Future research could compare 
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rapid scene and action categorization using scene images from event boundaries versus non-

event boundaries.  One hypothesis would predict that scene categorization would be better during 

the event boundary since the perceptual information encoded during that time is being used to 

construct a predictive event model.  Conversely, it could be argued that having a predictive event 

model would allow a viewer to have an expectation for the scene gist that will be presented next.  

In this case, it would be predicted that scene category would be recognized faster during the non-

boundary, which has a fully constructed event model that can prime the gist, compared to the 

event boundary, which is in the process of constructing the event model, when the gist may have 

to be acquired from scratch based only on bottom-up input.   

The present study showed how the categorization task affected sensitivity within a single 

fixation and multiple fixations.  Namely, these categorization tasks resulted in vastly different 

time-courses for scene category and action category information.  Likewise, top-down effects 

were evident in the fixation locations for the three categorization tasks.  For action 

categorization, a greater percentage of fixations were on the object and hands than for the two 

scene categorization tasks, indicating the importance of these features for categorizing the action.  

These two features were, on average, contained in the visual periphery, thus an eye movement 

was required to foveate this information.  Therefore, a ceiling level of categorization sensitivity 

required 2-3 fixations.  However, one possible limitation to this study is that the visual 

eccentricity of the objects and hands were not controlled.  Given that object and hand 

information appeared to be required for fully accurate action categorization, the time-course for 

categorizing the action may vary as a function of the visual eccentricity at which that information 

is presented.  Thus, if the objects and hands were presented at the fovea at the onset of the trial, 

then no saccade would have to be planned and executed, presumably resulting in ceiling 
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performance occurring on the first fixation on the scene image.  However, the current results can 

be argued to be representative of real-world viewing, since it is unlikely that the spatial location 

of an object and the hands would always fall on the fovea at the onset of viewing a scene.  It is 

more likely that an object will fall outside of the fovea and central visual field, simply based on 

the percentage of viewable area that these two regions subtend relative to the visual periphery.   

Further research could examine the relative importance of scene context and object 

consistency on the time-course of action categorization.  Previous research has found that the 

scene category interacts with object perception and vice versa (Davenport & Potter, 2004; 

Palmer, 1974).  For example, a loaf of bread in a kitchen is easier to categorize than a mailbox in 

the same kitchen, even though the loaf of bread and mailbox share perceptual features (i.e. 

shape).  Thus, object recognition is affected by the scene context in which it is presented.  

However, no research to our knowledge has been done to investigate the relative importance of 

the scene background on action categorization.  The same set of action scene images could be 

presented in context versus with no context.  The scene images in the no context condition could 

be PhotoShopped such that the scene background would be removed from the image, leaving 

only the person and the object that was being manipulated.  Conversely, the context condition 

would present the entire scene image with the scene background, person, and object.  It could be 

hypothesized that the scene context plays a role in categorizing the action at early processing 

times, based on the current study’s findings showing that the scene category is categorized prior 

to the action.  Research by Barker (1968) indicates that actions are typically performed in certain 

settings.  For example, cooking typically occurs more often in the Kitchen than in a Bedroom.  

Thus, knowledge of the location may make categorizing an action easier if it is consistent with 

the setting.  Relating to the current action and scene categories, mowing and raking are limited to 
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yards, thus the setting may have helped to identify those actions.  Conversely, actions which are 

less typical for a given setting show have less of an impact of the scene category on action 

categorization.  For example, it may be more difficult to categorize the actions of eating and 

reading in a park since both of these actions can occur in multiple scene categories.  Thus, the 

scene category may be having an impact on the viewer’s ability to categorize actions.  For 

instance, potential action categories could be eliminated from consideration based on an early 

superordinate scene category distinction.  Knowing that a scene image is an “Indoor” scene may 

help to eliminate “outdoor” action categories such as raking.  Therefore, lacking the scene 

context would produce worse action categorization at early stages of scene processing than if the 

action was presented in context.  Conversely, an alternative hypothesis would predict that action 

categorization is better with no scene context.  By presenting action scenes in no context, there is 

very little perceptual information to interfere with the encoding and processing of the person and 

object via crowding (Chung, Levi, & Legge, 2001; Pelli, Palomares, & Majaj, 2004), relative to 

the context condition.  Additionally, the person and object would not have to be parsed from the 

scene background, therefore all attentional resources could be focused on perceptual processing 

of the body and object producing better performance.  Evidence consistent with the latter 

prediction was shown by Davenport and Potter (2004) where object naming was best when 

presented without a scene context.  Lastly, there may be no difference between action 

categorization in the appropriate scene context versus in no-context.  This hypothesis is based on 

the findings of Hollingworth and Henderson (1998; 1999) suggesting that processing of objects 

is functionally isolated from scene processing (Hollingworth & Henderson 1998; 1999).  This 

was based on findings showing that object recognition sensitivity was no different when 
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presented in an appropriate scene context versus in an inappropriate scene context.  Therefore, it 

is an open question as to how scene context influences action categorization.   

Another critical visual cue that was missing from the current experiments is motion.  In 

the real world, an action rarely occurs without motion, and research has shown that motion onset 

captures attention (Abrams & Christ, 2003; Mital, Smith, Hill, & Henderson, 2011) and motion 

helps to identify the onset of a new event (Speer, Swallow, & Zacks, 2003; Smith 2012; Zacks et 

al. 2006).  Therefore, will motion information in short video clips have an impact on the time-

course of action and scene categorization?  The onset of motion would likely capture attention, 

resulting in the first eye movement being made toward the moving stimulus.  This would result 

in quicker latencies to fixate the moving features (object and/or person) relative to a static scene 

image.  Likewise, if this information is critical for action categorization, then it would be 

expected that action and scene categorization performance would converge at the second 

fixation.  Alternatively, attentional capture to motion may bias the perceptual processing of the 

image to only the motion/action information.  It may be possible that this attentional capture 

could interfere with the processing of the scene category, with useful scene information 

contained in the periphery (Larson & Loschky, 2009), which would result in action 

categorization occurring prior to scene categorization.   

The perceptual similarity of action categories is a potential factor that could affect the 

time course of action categorization.  If action categories are more perceptually similar, then 

more detailed perceptual information should be needed to discriminate between them.  

Conversely, if action categories are more perceptually distinct, then diagnostic features may be 

able to quickly distinguish one category from another.  For example, in the present study 

distinguishing between “Typing” and “Phoning” in an office may have only been discriminable 
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by fixating the keyboard or phone.  However, actions like “Typing” and “Greeting a visitor” in 

the office may have been more discriminable by the body position.  Typing usually requires one 

to be sitting in a chair, whereas greeting a visitor usually requires the person to be standing.  

Using this diagnostic feature to distinguish between actions may have increased the percentage 

of fixations made to the body.  Conversely, if that diagnostic feature is sufficiently large in the 

visual field, then no fixation would be required to encode and categorize the scene, but instead it 

could be recognized using peripheral vision (Larson & Loschky, 2009).   

The working hypothesis in the current studies is that scene gist, gathered in the first 

fixation on a scene, is the first piece of semantic information that is used to construct an event 

model.  The current research has provided evidence consistent with this hypothesis based on the 

time course of rapid scene and action categorization, but these studies have not provided 

evidence showing how scene gist is utilized in constructing an event model.  Future research will 

be needed to investigate that question.  If the hypothesis that scene gist is used to construct an 

event model is supported, then the “bottom-up” processes involved in scene gist can be 

incorporated into the emerging theories and research on event model construction and event 

perception.  Likewise, the “top-down” knowledge contained within event models can then help 

to guide theories of scene gist recognition and scene perception.   
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