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 Abstract 

 

Recently, cost-effective and timely processing of large datasets has been playing an 

important role in the success of many enterprises and the scientific computing community. Two 

promising trends ensure that applications will be able to deal with ever increasing data volumes: 

first, the emergence of cloud computing, which provides transparent access to a large number of 

processing, storage and networking resources; and second, the development of the MapReduce 

programming model, which provides a high-level abstraction for data-intensive computing. 

MapReduce has been widely used for large-scale data analysis in the Cloud [5]. The system is 

well recognized for its elastic scalability and fine-grained fault tolerance.  

 

However, even to run a single program in a MapReduce framework, a number of tuning 

parameters have to be set by users or system administrators to increase the efficiency of the 

program. Users often run into performance problems because they are unaware of how to set 

these parameters, or because they don't even know that these parameters exist. With MapReduce 

being a relatively new technology, it is not easy to find qualified administrators [4]. 

 

The major objective of this project is to provide a framework that optimizes MapReduce 

programs that run on large datasets. This is done by executing the MapReduce program on a part 

of the dataset using stored parameter combinations and setting the program with the most 

efficient combination and this modified program can be executed over the different datasets. We 

know that many MapReduce programs are used over and over again in applications like daily 

weather analysis, log analysis, daily report generation etc. So, once the parameter combination is 

set, it can be used on a number of data sets efficiently. This feature can go a long way towards 

improving the productivity of users who lack the skills to optimize programs themselves due to 

lack of familiarity with MapReduce or with the data being processed. 
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Chapter 1 - INTRODUCTION 

MapReduce is a Google’s framework that provides Automatic parallelization and 

distribution, Fault-tolerance and I/O scheduling. Apache Hadoop is an Apache implementation 

of MapReduce framework that follows the design laid out in the original paper [1]. 

 

The main problem MapReduce addresses is processing large amount of data that requires 

lot of processing capability. MapReduce handles this problem by parallelizing and distributing 

the load over a number of commodity machines that are in clusters where the clusters are highly 

scalable. The other major property that MapReduce addresses is the automatic fault tolerance 

capability. 

 

MapReduce is used for processing and generating large data sets. The Map function takes 

a key/ value pair as input and generates a pair of intermediate key/value pairs. These 

intermediate values are supplied to the Reduce function via an Iterator. The Reduce function then 

aggregates these values and produces the required output key/value pair. In the MapReduce 

paradigm, the program is subdivided into M splits and is supplied to several machines for 

concurrent execution. In this, one acts as a Master and the others are considered as Workers. The 

master assigns map and reduce jobs to the workers. After the task has been completed, output of 

the MapReduce is supplies as a set of R output files. The master is embedded with a data 

structure that maintains the state and identity of every worker machine. It also pings every 

worker periodically in order to check if there are any failures. If it finds any failures in any 

worker, it re schedules the task for an idle worker. Periodic checkpoints in the master data 

structure allow the execution to run smoothly even if the master fails. The program can be re- run 

from the previous check pointed state. Sometimes there might be errors caused while debugging 

and also due to bugs in records. Such records are skipped.  

 

Many enterprises continuously collect large datasets that record customer interactions, 

product sales, results from advertising campaigns on the Web, and other types of information. 

Facebook collects 15 TeraBytes of data each day into its PetaByte-scale data warehouse [16]. 
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Powerful telescopes in astronomy, particle accelerators in physics, and genome 

sequencers in biology are putting massive volumes of data into the hands of scientists. The 

ability to perform scalable and timely analytical processing of these datasets to extract useful 

information is now a critical ingredient for success. A number of enterprises use Hadoop 

MapReduce in production deployments for applications such as Web indexing, data mining, 

report generation, log file analysis, financial analysis, scientific simulation, and bioinformatics 

research. MapReduce frameworks are well suited to run on cloud computing platforms. For 

programs written in this model, the run-time system automatically parallelizes the processing 

across large-scale clusters of machines, handles machine failures, and schedules inter-machine 

communication to make efficient use of the network and storage [4]. 

 

To run the program as a job in Hadoop, a job configuration object is created; and the 

parameters of the job are specified. Apart from the job configuration parameters, there are a large 

number of other parameters whose values have to be specified before the job can be run in a 

MapReduce framework like Hadoop. The settings of these parameters control various aspects of 

job behavior during execution such as memory allocation and usage, concurrency, I/O 

optimization, and network bandwidth usage. The submitter of a Hadoop job has the option to set 

these parameters either using a program-level interface or through XML configuration files. 

More than 190 parameters are specified to control the behavior of a MapReduce job in Hadoop. 

A fairly large subset of these parameters displays strong performance interactions with one or 

more other parameters. Even though the programming in MapReduce has emerged as a model 

for developing data-intensive processing applications, the configuration design-space of 

MapReduce has not been studied in detail [4]. A number of tuning parameters have to be set by 

users or system administrators to increase the efficiency of the MapReduce program. Users often 

run into performance problems because they are unaware of how to set these parameters, or 

because they don't even know that these parameters exist. With MapReduce being a relatively 

new technology, it is not easy to find qualified administrators. In this report, a framework that 

optimizes MapReduce programs that run on large datasets based on parameter combinations in 

proposed.  
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The proposed system will execute the given MapReduce program (Java Implementation) 

on a subset of the given dataset over a set of pre-executed parameter combinations and setting 

the best parameter combination to the input MapReduce program. Here the pre-executed 

parameter combinations are obtained by extracting the best two parameter combinations for each 

of the algorithms (Vector Space Model (indexing), PageRank (graph generation), Word Count, 

Distributed Word Sort (Sorting)) in the initial stage. The user can train the system to suit his 

domain by running the domain specific programs in the Contributor module of the proposed 

framework. We know that many MapReduce programs are used over and over again in 

applications like daily weather analysis, log analysis, daily report generation etc. So, once the 

parameter combination is set to the given MapReduce program, it can be used on number of data 

sets efficiently on daily basis.  The working and implementation of the frame work is discussed 

in detail in the later chapters. 

 

The rest of this paper first discusses background in chapter 2, and then discusses the 

related work in chapter 3. The implementation is described in detail in Chapter 4. Chapter 5 

describes how the system is evaluated and presents the results. Chapter 6 presents our 

conclusions and describes future work. 
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Chapter 2 - BACKGROUND 

 

 2.1 HADOOP 

In 2004, Google published papers describing their Google File System and MapReduce 

algorithms. Doug Cutting, a Yahoo employee and Open Source Evangelist, partnered with a 

friend to create Hadoop, an opensource implementation of GFS and MapReduce. Hadoop is a 

software system that could handle arbitrarily large amounts of data using a distributed file 

system, and distribute it to be worked on by an arbitrary number of workers, using MapReduce. 

Adding more storage or more workers is simply a matter of connecting new machines to the 

network—there is no need for larger devices or specialized disks or specialized networking. 

 

There are many subprojects in Hadoop but the two main parts of Hadoop that are 

required for this project are: 

1) MapReduce 

2) HDFS 

 

2.1.1 MapReduce 

Hadoop supports the MapReduce model, which was introduced by Google as a method of 

solving problems involving large data processing with large clusters of inexpensive machines 

executing map/reduce jobs. In simple words, it is a programming model for processing huge 

volume of data sets over set of machines. MapReduce is the key algorithm that the Hadoop 

MapReduce engine uses to distribute work around a cluster. The other major property that 

MapReduce addresses is the automatic fault tolerance capability. 
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2.1.1.1 Implementation 

 

The model is based on two distinct steps for an application: 

 Map: An initial ingestion and transformation step, in which individual input records can 

be processed in parallel.  

 Reduce: an aggregation or summarization step, in which all associated records, must be 

processed together by a single entity. 

 

The core concept of MapReduce in Hadoop is that input may be split into logical chunks, 

and each chunk may be initially processed independently, by a map task. The results of these 

individual processing chunks can be physically partitioned into distinct sets, which are then 

sorted. Each sorted chunk is passed to a reduce task. The reducer executes on the sorted chunk of 

data and outputs the data. 

 

Figure 1 – MapReduce Implementation Overview. 
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2.1.1.2 Execution Overview 

 

 The Map function takes a key/ value pair as input and generates a pair of intermediate 

key/value pairs. These intermediate values are supplied to the Reduce function via an Iterator. 

The Reduce function then aggregates these values and produces the required output key/value 

pair. In the MapReduce paradigm, the program is subdivided into M splits and is supplied to 

several machines for concurrent execution. In this, one acts as a Master and the others are 

considered as Workers. The master assigns map and reduce jobs to the workers. After the task 

has been completed, output of the MapReduce is supplies as a set of R output files. The master is 

embedded with a data structure that maintains the state and identity of every worker machine. It 

also pings every worker periodically in order to check if there are any failures. If it finds any 

failures in any worker, it re schedules the task for an idle worker. Periodic checkpoints in the 

master data structure allow the execution to run smoothly even if the master fails. The program 

can be re- run from the previous check pointed state. Sometimes there might be errors caused 

while debugging and also due to bugs in records. Such records are skipped. 

 

Figure 2 - MapReduce Execution Overview [1]. 
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2.1.2 HDFS (Hadoop Distributed File System) 

 

 The Hadoop Distributed File System (HDFS) is a distributed file system designed to run 

on commodity hardware. It has many similarities with existing distributed file systems. 

However, the differences from other distributed file systems are significant. HDFS is highly 

fault-tolerant and is designed to be deployed on low-cost hardware. HDFS provides high 

throughput access to application data and is suitable for applications that have large data sets. 

 

The architecture of HDFS is as simple as Master-Slave architecture, with the unique 

Master server, called as ―Name Node‖ takes care of the file operations like opening, closing and 

renaming, and the slaves, called as ―Data Node‖ are responsible for read and write operations 

over the files. 

 

The Name Node is the single point failure in HDFS and because of this HDFS does not 

provide High Availability. The file system will be offline when the name node goes down and 

the transactions will be repeated once the server is live again. However the secondary name-node 

periodically takes a snap shot of the primary name-node and saves in remote system for restoring 

the primary name-node once it returns back from failure. The key to be noted here is that the 

secondary name-node does not act as a backup for the primary; instead it helps to restore the 

primary to its latest transaction before its failure point. The Data Nodes are the large group 

clients that communicate within themselves through Remote Procedure Call (RPC) to keep the 

replication of the files intact and to make sure the high availability of the files over multiple 

nodes in the cluster [13]. 

  



8 

 

Figure 3– HDFS Architecture [7]. 

 

 

 

 

 

2.1.3 Hadoop Stack 

Figure 4– Hadoop Framework Stack [13]. 
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 2.1.4 Applications 

 

There are many fields where Hadoop is being used. Some of the real time applications are 

given below in the figure. Hadoop processes and analyzes variety of new and older data to 

extract meaningful business operations intelligence. 

 

Figure 5– Hadoop Applications [14]. 

 

 

 

  



10 

 

Chapter 3 - RELATED WORK 

The MapReduce programs are generally executed in two stages. The user configures and 

submits a MapReduce job to the framework, which in turn will decompose the job into a set of 

map tasks; shuffles, a sort, and a set of reduce tasks. The framework manages the distribution, 

executions of the tasks, collects the output, and report the status to the user. 

Figure 6– Parts of MapReduce Job [2]. 
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The Job configuration parameters play a vital role in the performance of the MapReduce 

programs. To provide some empirical evidence to demonstrate differences in job running times 

between good and bad parameter settings in Hadoop, we take help from the paper ―Towards 

Automatic Optimization of MapReduce Programs‖ by Shivnath Babu, Duke University.   

 

The environment used for the experiment consisted of a Hadoop cluster running on 17 

nodes, with 1 master and 16 worker nodes. Each node has a dual core 2GHz AMD processor, 

1.8GB RAM, 30 GB of local space, and runs Linux in a Xen virtual machine. Each worker node 

was set to run at most 4 mapper tasks and 2 reducer tasks concurrently. Table below lists the 

subset of job configuration parameters that were considered in their experiments. The 

MapReduce program that was used for the experiment was Terasort. 

 

Figure 7– A subset of Job Configuration parameters in Hadoop [4]. 

 

 

 

The experiments were conducted on two data sets, 50GB and 75GB. The data sets have 

been generated using TeraGen program from the TeraSort package. The three parameters, 

mapred.reduce.tasks, io.sort.record.percent and io.sort.factor, are varied in these figures while all 

other job configuration parameters are kept constant. When executed over the datasets, the 

following results were obtained. 
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Figure 8 – Response Surface of Terasort MapReduce program in 1D and 2D over 50GB 

dataset with varying parameters [4]. 

 

 

 

Figure 9 – Response Surface of Terasort MapReduce program in 1D and 2D over 75GB 

dataset with varying parameters [4]. 
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Table 1 - Performance of Hadoop 50GB TeraSort when the mapred.reduce.tasks, 

io.sort.factor, and io.sort.record.percent parameters are varied [4]. 

 

 

It is evident from the above results that the row#10 gets the best results,  

 

The empirical evidence from above results suggests that the performance of a 

MapReduce job J is some complex function of the job configuration parameter settings. In 

addition, the properties of the data as well as the resources allocated to the job in the cluster will 

impact its performance. There exists some function FJ such that: 

 

--  Eq(1) 

 

Here, y represents a performance metric of interest for J (e.g., J's running time). pˆ 

represents the setting of the job configuration parameters for a run of J. rˆ represents the 

resources allocated for the run, and dˆ represents the statistical properties of the data processed 
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by J during the run. The response surfaces shown in Figure 8 and Figure 9 are partial projections 

of Eq(1) for the TeraSort MapReduce program when run on our cluster. 

The major problem here is when given an input dataset and resource allocation for running a 

MapReduce job, we can think of pˆ which represents the setting of the job configuration 

parameters for a run of J - as specifying an execution plan for J. Different choices of the 

execution plan give rise to potentially different values for the performance metric of interest for 

J. The problem addressed in the paper is to automatically and efficiently choose a good execution 

plan for J given an input dataset and resource allocation. For this they suggested a few 

approaches in the paper. The following is the brief description of the approaches [4]. 

 

Database query-optimizer style approach: 

Query Optimizers in database management systems also focus on identifying an efficient 

execution plan for declarative SQL queries. This is usually achieved by query optimizers by 

maintaining statistics about input data provided and using them in conjunction with cost models 

for cost estimation of these plans. These execution plans have operators such as index scan, sort, 

hash join, etc. that represent various performance metrics of interest for the SQL query. A good 

execution plan that is supported by the database’s search engine is identified using a search 

algorithm. This approach is extended to Map Reduce paradigm. The disadvantage of this 

approach is that the complete MapReduce functionality is written in languages such as java, c++, 

python that are not restrictive or declarative like SQL. Next the lack of Statistics about the input 

data before hand and finally, it is tedious to translate algorithms from SQL query optimizers for 

optimizing Map Reduce programs as the execution plan space for SQL is different as compared 

to parameters for Map Reduce Programming. 

 

Dynamic Profiling: 

Missing data required for optimization can be gathered before the execution of the actual job 

to overcome the issues faced in the above approach. The idea of Dynamic Profiling can be 

applied to parameter configuration of MapReduce jobs. But this in turn has its own drawbacks: 

 An assumption made for sampling based partitioning is that data type and distribution of 

key in the input data does not differ from the data generated by the map function which 

may not hold for all Map Reduce Programs 
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 Certain restrictions are placed on how the input data is accessed in the Map reduce 

paradigm whereas sample sort and probabilistic splitting assume that input data can be 

assembled by sampling at various levels 

Designing the perfect sampling method for dynamic profiling is the crucial tasks in this approach 

as there is always a chance of generating deviating estimates that degrade the performance. 

Hence a sampling technique should be adopted that gives highly desirable probabilistic error 

guarantees. 

 

Reacting Through Late Binding: 

The dependence on cost models can be reduced through late binding approaches that 

delay the setting of one or more parameters until after some part of the execution has been 

observed. This approach can be applied for parameters whose value can either be changed during 

job execution, or does not have to be set until part of the execution is complete. Hadoop uses a 

late-binding approach to decide whether to partially aggregate the output of a mapper task. The 

concept of speculative execution can be useful here if some part of the execution can be done 

and then undone efficiently, then reactive setting can be applied to a larger class of parameters 

while keeping the performance impact low. However, there is a risk of thrashing. Currently, 

MapReduce frameworks have support for speculative execution only at the granularity of full 

mapper and reducer tasks (which is aimed at lowering the chances of some slow or failed tasks 

increasing the overall job completion time). 

 

Competition-based Approaches: 

The idea here is (i) to start multiple instances of the same task concurrently, with each 

instance having a different setting of the job configuration parameters; (ii) to quickly identify the 

best instance; and (iii) to kill all the other instances. Similar ideas have been used for adaptive 

processing of queries in database systems. The speculative execution feature of MapReduce 

frameworks is potentially useful here. Currently, the speculative instances are run with the same 

parameter configuration as the main instance. While the reactive and competitive approaches 

reduce or eliminate the need for cost models, the reality is more subtle. The problem with 

reactive and competitive approaches is that they have to predict the performance of an entire job 

run by observing only an initial part of the execution [4]. 
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Chapter 4 - IMPLEMENTATION 

We have seen in the previous section how the job configuration parameters impact the 

performance of a MapReduce program. Here we implement a project that is aimed at optimizing 

the MapReduce program performance by setting the parameters that would make the program 

execute in less or equal amount of time than the default job configuration parameter setting. 

 

The first step in the project is to select the job configuration parameters and see how each 

parameter is affecting the performance of the MapReduce program. The configuration 

parameters that were considered are: 

1) Number of mappers 

2) Number of reducers 

3) mapreduce.task.io.sort.factor 

4) mapreduce.task.io.sort.mb 

5) io.file.buffer.size 

6) io.sort.record.percent 

 

For testing the parameter impact we have considered four algorithms which are belonging 

to different applications, namely 

1) Vector Space Model (Indexing) 

2) PageRank (Graph) 

3) Word Count (Text Processing) 

4) Distributed Sort (Sorting)  

 

Each of the algorithms is executed over parameter combinations in which only one 

parameter is varied each time and the rest of parameter combinations are left to default value. 

The results and evaluation of these executions are dealt in the next chapter. 
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The idea behind the project is to gather the parameter combination that would give a 

better or equal execution time compared to the default combination. For this, I considered six 

above mentioned parameters with ranges specified in figure below. 

Table 2 – Job configuration parameters considered for the project along with their ranges. 

Parameter Name Description & Use Default  Considered Range 

mapred.map.tasks Number of Mappers 2 [2, 5,10,25,50] 

mapred.reduce.tasks Number of Reducers 1 [1, 5,10,25,50] 

mapreduce.task.io.sort.factor Number of sorted streams to merge at 

once during sorting 

10 [10, 20, 50] 

mapreduce.task.io.sort.mb Size in MegaBytes of map-side buffer 

for sorting key/value pairs 

100 [100, 150, 200] 

io.file.buffer.size Buffer size used to read/write 

(intermediate) sequence files 

4K [4K,8K] 

io.sort.record.percent Fraction of io.sort.mb dedicated to 

metadata storage 

0.05 [0.05, 0.10, 0.15] 

 

  

This project consists of two parts: 

 Optimizer – optimizes the MapReduce Program by setting job configuration parameters 

 Contributor – helps to train the project to suit the domain. 

 

Before going into details about the parts, first we need to do some preliminary executions 

to help the optimizer to be ready for different kind of applications. 

  

First, I generated all possible combinations of parameters combinations within the 

specified ranges and stored in a file. This file is called allParameterCombinationsFile. The four 

above mentioned algorithms are individually executed iteratively for each of the parameter 

combination in the allParameterCombinationFile. The execution times for each algorithm are 

sorted and the two best parameter ranges of each of the algorithm are stored in a file. This file is 

called the parameterCombinationFile. This file has a fixed number of parameter combinations. 

For this project, eight combinations is the fixed limit. This is limitation is incorporated to ensure 

that the optimizer doesn’t have to run more than eight time so as to see that this optimizer 
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overhead is not dampening the overall efficiency of the project. The file is modified by the 

contributor if the user wants to train the system. This file will be used by the optimizer.  Below is 

the overall diagram of the system. 

 

Figure 10– Architecture of the Project. 
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Let us see how the project works with detailed description of the two parts. 

 

 4.1 Optimizer 

 

 The optimizer module as its name suggests takes care about optimizing the MapReduce 

program. The working in the optimizer module is split up into three phases,  

1) Execution 

2) Sorting 

3) Setting 

 

In the execution phase the module takes the input MapReduce program and data set 

(partial) provided by the user and executes it over each and every parameter combination from 

the parameterCombinationFile that was obtained in the preliminary executions of the algorithms 

or through training from the contributor.   

 

 The execution times of each of the parameter combinations are stored in a file. Each 

parameter combination and its corresponding line number are stored in a hashtable where key is 

the line number and the value is the parameter combination.  The execution times file is 

forwarded to the sorting phase after finishing the execution of all the parameter combinations. 

 

 In the sorting phase, the execution times file is read for execution time of each parameter 

combination. The minimum of the execution times is obtained and the corresponding line 

number for minimum execution in other words, the efficient execution is obtained. This line 

number is forwarded to the setting phase. 

 

 In the setting phase, the line number of the efficient execution time is used to get the 

corresponding parameter combination which is stored in the hashtable. This combination is set to 

the input program and the program is outputted.  
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 Now, after setting the parameter combination to the input program, this program can be 

used to execute over a large dataset. The results of this can be seen in the next chapter. Below is 

the optimizer module diagram. 

 

Figure 11– Design of the optimizer. 
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 4.2 Contributor 

 

 The contributor part in this project helps to train the project towards the domain. As 

mentioned earlier, many MapReduce programs are used over and over again in applications like 

daily weather analysis, log analysis, daily report generation etc. So, if we make the optimizer 

more suitable to the domain, the more efficiently the parameters can be set to the MapReduce 

parameters. This can be attained by executing few domain specific programs on the contributor. 

Let us see in detail how the contributor works. 

 

The contributor is split up into three modules. They are 

1) Execution 

2) Sorting 

3) Replacement 

 

In the execution phase the given input MapReduce program and data set is executed over 

all the parameter combinations from the allParemeterCombinationsFile. Each parameter 

combination and its corresponding line number are stored in a hashtable where key is the line 

number and the value is the parameter combination.  The execution times file is forwarded to the 

sorting phase after finishing the execution of all the parameter combinations.  

 

In the sorting phase, the execution times file is read for execution time of each parameter 

combination. The minimum of the execution times is obtained and the corresponding line 

number for minimum execution in other words, the efficient execution is obtained. This line 

number is forwarded to the replacement phase. 

 

Here in the replacement phase, the line number of the efficient execution time is used to 

get the corresponding parameter combination which is stored in the hashtable. This combination 

is written in the parameterCombinationFile used in the optimizer by replacing one of the 

parameter combinations. 
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For the replacement of parameter combination in the parameterCombinationFile, many 

algorithms are considered. The first one was the LRU (Least Recently Used). For this whenever 

the optimizer uses the parameterCombinationFile and sets a parameter combination to an input 

MapReduce program, that particular combination is shifted to the top of the file. Now, if a 

contributor is run with an algorithm, then the last parameter combination will be replaced by the 

new combination from the contributor. The problem arises when we run the contributor 

consecutively. Here when we run consecutively, the last parameter combination (which has been 

replaced by contributor before) in the parameterCombinationFile is replaced with the new one 

from contributor thereby making the previous combination from the contributor deleted. So, the 

main objective of the contributor, i .e, to make the project more domain specific fails. 

 

To avoid the drawback, the Least Frequently Used replacement algorithm is considered.  

Every parameter combination in the parameterCombinationFile is given a counter. Whenever the 

optimizer sets a particular combination, that combination’s counter is increased. Now, if a 

contributor is run with an algorithm, then the parameter combination with least count will be 

replaced by the new combination from the contributor. The problem arises when we run the 

contributor consecutively. Here when we run consecutively, the parameter combination with 

least count in the parameterCombinationFile is replaced with the new one from contributor 

thereby making the previous combination from the contributor deleted because it hasn’t been 

used once. So, the count will be zero and it would be replaced.  Even this method fails. 

 

So, to stick to the objective of the contributor, i. e, to make the project more domain 

specific, another hybrid method has been considered. This is a mixture of the above two methods 

would be suggested. Every parameter combination in the parameterCombinationFile is given a 

counter. Whenever the optimizer sets a particular combination, that combination’s counter is 

increased. Here whenever the contributor is run with an algorithm, then the new parameter 

combination is put above the parameter combinations that are not used before. So, it would 

replace a parameter combination that is either lesser count or equal count. Even this has 

limitations, but lesser than LRU or LFU methods. 
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Figure 12– Design of the contributor. 
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Chapter 5 - RESULTS AND EVALUATION 

 

The four algorithms mentioned earlier are executed with one varying parameter and rest 

others are kept to default values. The parameter ranges for this experiment are listed in the figure 

below. 

 

Table 3 – Job configuration parameters considered for making an empirical study of 

parameter impact on MapReduce program performance. 

Parameter Name Description & Use Default  Considered Range 

mapred.map.tasks Number of Mappers 2 [2, 5, 10, 15, 25, 50, 
75, 100, 150, 200] 

mapred.reduce.tasks Number of Reducers 1 [1, 5,10, 15, 25,50, 
75, 100, 150, 200] 

mapreduce.task.io.sort.factor Number of sorted streams to merge at 

once during sorting 

10 [10, 20, 50, 100, 
150, 200] 

mapreduce.task.io.sort.mb Size in MegaBytes of map-side buffer 

for sorting key/value pairs 

100 [100, 125,150, 175, 
200] 

io.file.buffer.size Buffer size used to read/write 

(intermediate) sequence files 

4K [4K,8K,16K,32K] 

io.sort.record.percent Fraction of io.sort.mb dedicated to 

metadata storage 

0.05 [0.05, 0.075, 0.10, 
0.125, 0.15] 

 

Table 4 – System Configuration used for running the project. 

Operating System Microsoft Windows XP 

Number of Cores  2 (Intel(R) Core(TM) 2 Duo)  

RAM 3.21 GB 

Speed  3.16 Ghz 

Hard Disk 297 GB 

Hadoop Version  Hadoop-0.20.2 

Eclipse Eclipse- Helios 
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 5.1 Vector Space Model Evaluation 

 For the experiment, we have considered the Cranfield Data Set (5.48 MB). The preprocessing 

and indexing is done using MapReduce. The results of varying parameters are as follows. 

 

Varying Number of mappers: 

Figure 13 – Graph for varying maps in VSM. 

 

 

Varying Number of Reducers: 

 

Figure 14 – Graph for varying reducers in VSM 
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io.sort.factor: 

Figure 15 – Graph for varying io.sort.factor in VSM 

 

 

 

io.sort.record.percent: 

 

Figure 16 – Graph for varying io.sort.record.percent in VSM 
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mapreduce.task.io.sort.mb: 

 

Figure 17 – Graph for varying mapreduce.task.io.sort.mb in VSM 

 

 

 

io.file.buffer.size: 

 

Figure 18 – Graph for varying io.file.buffer.size in VSM 
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 5.2 PageRank Evaluation 

 For the experiment, we have considered the afwiki data set (65 MB). The link graph generation 

and page rank calculation is done using MapReduce. The results of varying parameters are as 

follows. 

Varying Number of mappers: 

Figure 19 – Graph for varying maps in PageRank. 

 
 

Varying Number of reducers: 

Figure 20 – Graph for varying reducers in PageRank 
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io.sort.factor: 

 

Figure 21 – Graph for varying io.sort.factor in PageRank 

 
 

io.sort.record.percent: 

 

Figure 22 – Graph for varying io.sort.record.percent in PageRank 
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mapreduce.task.io.sort.mb: 

 

Figure 23 – Graph for varying mapreduce.task.io.sort.mb in PageRank 

 
 

io.file.buffer.size: 

 

Figure 24 – Graph for varying io.file.buffer.size in PageRank 
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  5.3 Word Count Evaluation 

 For the experiment, we have considered the Cranfield Data Set (5.48 MB). Tokenizing and 

counting the words is done using MapReduce. The results of varying parameters are as follows 

 

Varying Number of mappers: 

Figure 25 – Graph for varying maps in Word Count. 

 

 

 

Varying Number of Reducers: 

Figure 26 – Graph for varying reducers in Word Count. 
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io.sort.factor: 

 

Figure 27 – Graph for varying io.sort.factor in Word Count. 

 

 

 

io.sort.record.percent: 

 

Figure 28 – Graph for varying io.sort.record.percent in Word Count 
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mapreduce.task.io.sort.mb: 

 

Figure 29 – Graph for varying mapreduce.task.io.sort.mb in Word Count 

 

 

 

io.file.buffer.size: 

 

Figure 30 – Graph for varying io.file.buffer.size in Word Count 
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  5.4 Sort Evaluation 

 For the experiment, we have considered the Cranfield Data Set (5.48 MB). Tokenizing, counting 

the words and sorting the words are done using MapReduce. The results of varying parameters 

are as follows. 

 

Varying Number of mappers: 

 

Figure 31 – Graph for varying maps in Sort 

 

Varying Number of Reducers: 

 

Figure 32– Graph for varying reducers in Sort 

 

 
 

 

152000

152200

152400

152600

152800

153000

153200

0 25 50 75 100 125 150 175 200

Ex
e

cu
ti

o
n

 t
im

e
s 

(m
s)

Number of Maps

152000

152500

153000

153500

154000

154500

0 25 50 75 100 125 150 175 200

Ex
ce

u
ti

o
n

 t
im

e
 (

in
 m

s)

Number of Reducers



35 

 

io.sort.factor: 

 

Figure 33 – Graph for varying io.sort.factor in Sort 

 

 

 

io.sort.record.percent: 

 

Figure 34 – Graph for varying io.sort.record.percent in Sort 
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mapreduce.task.io.sort.mb: 

 

Figure 35– Graph for varying mapreduce.task.io.sort.mb in Sort 

 

 

 

 

io.file.buffer.size: 

 

Figure 36 – Graph for varying io.file.buffer.size in Sort 
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From the above graphs we can see that the performance of the MapReduce programs vary 

based on the parameter combination. Along with this it is evident that each of the algorithms 

behaves differently for different parameters based on the type of work and dataset they work on. 

Now let us see the results of MapReduce programs that have been optimized by the optimizer. 
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 5.5 Optimizer Evaluation 

5.5.1 Anagram Evaluation 

 

 Anagrams are nothing but words obtained by rearranging the letters of a word or phrase 

to produce a new word or phrase, using all the original letters.  We have taken a MapReduce 

program to find out all the anagrams in the given data corpus. For this we considered the 

Cranfield Data Set.  The algorithm is sent to the optimizer to get the efficient parameter 

combination and after setting that parameter combination to the algorithm, it is run three times 

and the execution times are aggregated to dampen the effect of scheduling overhead and other 

external factors. The results of the executions are as follows. 

 

 

Figure 37 – Anagram Execution time on Cranfield Data Set comparison graph. 
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Table 5 – Execution Times of Anagram MapReduce Program on Cranfield Data Set 

 

Execution Default Parameter Combination 

Execution time (ms) 

Obtained Efficient Parameter 

Combination Execution time (ms) 

Execution 1 156622 144309 

Execution 2 155502 144159 

Execution 3 155541 144050 

Average Execution  155888.3 144172.6 

 

 

 

 

Trained on 2% Cranfield Data Set. 

Tested data set: Cranfield Data Set (5.48 MB). 

Execution time of optimizer: ~ 24 sec 

ExecTime of Anagram (Default) = 155888.3 ms 

ExecTime of Anagram (Obtained) = 144172.6 ms 

Time gained on each execution = 11715.7 ms 

Num of Exec to overcome optimizer over head (24000/11715.7) = 2.048 ~ 3 iterations  

 

We have seen from the above results that the obtained parameter combination gives 

better results. The time taken to execute the optimizer for this algorithm is ~ 24 seconds. So, to 

cover up the overhead caused by the optimizer the algorithm has to run for ~ 3. As we know that 

many MapReduce algorithms we be executed over and over again on daily basis, this is an 

efficient solution. 
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Figure 38 – Anagram Execution time on NSF Data Set comparison graph. 

 
 

 

 

 

Table 6 – Execution Times of Anagram MapReduce Program on NSF Data Set 

 

 

Execution Default Parameter Combination 

Execution time (ms) 

Obtained Efficient Parameter 

Combination Execution time (ms) 

Execution 1 465906 443735 

Execution 2 464600 440531 

Execution 3 460969 440125 

Average Execution  463825 441463.67 
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Optimized on 2% Cranfield Data Set. 

Tested data set: NSF Abstracts (16 MB). 

Execution time of optimizer: ~ 24 sec 

ExecTime of Anagram (Default) = 463825 ms 

ExecTime of Anagram (Obtained) = 441463.67 ms 

Time gained on each execution = 22361.33 ms 

Num of Exec to overcome optimizer over head (24000/ 22361.33) = 1.07 ~ 2 iterations 

 

We have seen from the above results that the obtained parameter combination gives 

better results. The time taken to execute the optimizer for this algorithm is ~ 24 seconds. So, to 

come over the overhead caused by the optimizer the algorithm has to run for ~ 2. As we know 

that many MapReduce programs are written once and executed over and over again it is an 

efficient solution. 
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5.5.2 Distributed Grep Evaluation 

 

The distributed Grep program has the same general functionality as the well-known 

command line program. It tests every line of the input files with a given pattern which is defined 

by a regular expression. The map function emits a line if it matches a given pattern. The reduce 

function is an identity function that just copies the supplied intermediate data to the output. For 

this we considered the Cranfield Data Set.  The algorithm is sent to the optimizer to get the 

efficient parameter combination. The efficient parameter combination is set to the MapReduce 

program and executed three times to dampen the effect of external sources. The results of the 

executions are as follows. 

 

 

Figure 39 – Grep Execution time on Cranfield Data Set comparison graph. 
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Optimized on 3% Cranfield Data Set. 

Tested data set: Cranfield Data Set (5.48 MB). 

Execution time of optimizer: ~ 34 sec 

ExecTime of Grep (Default) = 151283.7 ms 

ExecTime of Grep (Obtained) = 149289 ms 

Time gained on each execution = 1194.7 ms 

Num of Exec to overcome optimizer over head (34000/ 1194.7) = 28.46 ~ 29 iterations 

 

 

We have seen from the above results that the obtained parameter combination gives 

slightly better results. The time taken to execute the optimizer for this algorithm is ~ 34 seconds. 

To overcome the overhead from the optimizer, the Grep program needs to run for ~ 29 times 

(34000/1194.7 = 28.46).  Grep is very much used for searching in systems, so this above 

parameter combination can be said as an efficient one. 

 
Figure 40 – Grep Execution time on NSF Data Set comparison graph. 
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Table 8 – Execution Times of Grep MapReduce Program on NSF 

Execution Default Parameter Combination 

Execution time (ms) 

Obtained Efficient Parameter 

Combination Execution time (ms) 

Execution 1 363703 358782 

Execution 2 364344 359719 

Execution 3 365640 358672 

Average Execution  364562.33 359057.66 

 

 

 

 

 

Optimized on 3% Cranfield Data Set. 

Tested data set: NSF Abstracts (16 MB). 

Execution time of optimizer: ~ 34 sec 

ExecTime of Grep (Default) = 364562.33 ms 

ExecTime of Grep (Obtained) = 359057.67 ms 

Time gained on each execution = 5504.66 ms 

Num of Exec to overcome optimizer over head (34000/ 5504.66) = 6.17 ~ 7 iterations 

 

We have seen from the above results that the obtained parameter combination gives 

slightly better results. The time taken to execute the optimizer for this algorithm is ~ 34 seconds. 

To overcome the overhead from the optimizer, the Grep program needs to run for ~ 7 times.  As 

we know that many MapReduce algorithms we be executed over and over again on daily basis, 

this is an efficient solution. 
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  5.6 Testing 

The project has been developed in stages and at each stage there are new set of 

requirements that were being handled. These requirements are developed and tested and 

integrated with the main program. So, we can say that the project has been developed in a spiral 

model. 

 

The testing done in this project can be grouped under three different kinds of testing. They are 

1) Unit Testing.   

2) Functional Testing (Black-box) 

3) Integration Testing. 

 

Each of the modules that are developed has been tested as a unit and then the 

functionality of the module is tested by giving test cases. This module is then integrated with the 

main program and the main program after integration is tested for integration errors as well as for 

functionality with sample test plans. 

 

 5.6.1 Unit Testing 

 

―Unit testing refers to those tests that verify the functionality of a specific section of the 

code, usually at the function level. In an object oriented environment this is usually at the class 

level and the unit tests include the constructors and the destructors. The primary goal is to take 

the smallest piece of testable software, isolate it from the rest of the code and check if it is 

behaving exactly as expected. Each unit is tested separately before integrating them into modules 

to test the interfaces between modules.‖ [17]  

 

Each module of the project has been tested for errors and functionality. Each phase in 

optimizer, contributor have been tested. In the optimizer, we have the execution module which is 

intended to read the parameters from the parameterCombinationFile execute the given 

MapReduce program over the parameters and write the execution times on to the execution times 
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file. This has three units, reading, executing and writing. Each of the unit is tested for 

functionality manually by seeing the outputs from each of the unit. The next phase consists of the 

sorting. Here the execution time file is sorted with keeping track of the parameter combination 

that it belongs to. 

 

For example, the first two execution times of the file after sorting are: 

 Execution time: 33489 ms 

 Execution time: 33631 ms 

 

We can see that the execution times are sorted.  Each of the units is tested and checked for 

outputs in the above manner. 

 

 

 5.6.2 Functional Testing (Black Box) 

  

―Functional testing is a type of black box testing that bases its test cases on the 

specifications of the software component under test. Functions are tested by feeding them input 

and examining the output, and internal program structure is rarely considered.‖[18] 

 

Each of the modules is tested for its functionality but executing the module with sample 

inputs and then checking the output manually. 

 

For example, the comparisons of the execution times from the optimizer are: 

 Anagram model output (Default): 155888.3 ms 

 Anagram model output (Obtained): 144172.6 ms 

 

The Anagram program is executed over the Cranfield Data Set with the default parameter 

combination and the obtained parameter combination from the optimizer. We can see that the 

obtained parameter combination has given an efficient solution. So, we can say that the optimizer 

is functionally working. 
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 5.6.3 Integration testing: 

 

 ―Integration testing is the phase in software testing in which individual software modules 

are combined and tested as a group. It occurs after unit testing and before system testing. 

Integration testing takes as its input modules that have been unit tested, groups them in larger 

aggregates, applies tests defined in an integration test plan to those aggregates, and delivers as its 

output the integrated system.‖[19] 

 

 As mentioned earlier in the implementation, optimizer and contributor have three phases 

each. Each of the phases is developed individually and then integrated with the other phases to 

form the optimizer and contributor. So, after each of the integrations the outputted phases have 

been tested with sample inputs. The output is checked manually for the required output. 

 

For example, after integration the optimizer output looks like: 

 Grep output (Default): Execution time: 3484 ms 

 Grep output (obtained): Execution time: 3360 ms 

 

The Grep program is executed over the 3% of Cranfield Data Set with the default 

parameter combination and the obtained parameter combination from the optimizer. Here we can 

see that an optimized output has resulted from the optimizer. So, the integration is successful and 

the output is as desired. 
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Chapter 6 - CONCLUSION and FUTURE WORK 

 CONCLUSION 

A framework for optimizing the MapReduce has been discussed in this report. This 

framework is a partial brute force approach and helps to work towards automatic optimization of 

MapReduce programs. The evaluation of various algorithms has been done to show empirical 

evidence on how the parameters affect the performance of the MapReduce programs. The 

evaluation results from the optimizer set parameter combinations for the Grep and anagram 

programs show that this approach gives efficient solutions.  So, we can say the this approach 

gives a better solution but not the best as the parameter combinations in the optimizer are limited 

and these combinations may give not be the best combinations for a given MapReduce program. 

 

If the optimizer sets the default parameter combination as the efficient combination for a 

program from the parameterCombinationFile, then the approach fails. So, to write it in the form 

of an equation: 

 

Execution Time (Eop)  <= Execution Time (E default)  

 

Here Eop is the execution time from obtained efficient parameter combination and E default 

is the execution time from the default parameter combination.  

 

As mentioned earlier that the MapReduce programs are used over and over again on 

different data sets for various applications helped to lay the objective for this project. The 

repetitive use of a MapReduce program helps to eliminate the overhead caused by the optimizer 

and then save the execution time of the application from there onwards except in the case where 

the efficient combination is the default combination. 
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 LIMITATIONS 

 As this is a partial brute force approach, there are few limitations in this project. They are 

as follows: 

  

 As mentioned earlier, if the efficient combination is the default combination then the 

overhead of optimizer execution will be wastage of time and resources. 

 The initial parameterCombinationFile doesn’t contain parameter combinations from 

machine learning and Data base related MapReduce programs. 

 This project only considered a subset of job level configuration parameters. But there are 

many other configuration parameters to be considered at the cluster and file system level. 

 The user needs to provide the partial data set to the optimizer by himself rather than the 

optimizer obtaining it directly from the complete dataset. 

 

 FUTURE WORK 

 Incorporating parameter combinations in parameterCombinationFile from machine 

learning and Data base related MapReduce programs. 

 Implementing the project with larger data sets and on cluster with various algorithms. 

 Providing the users an interface to specify the range of the parameter values for the 

parameters as different users have different cluster configurations. For example, number 

of mappers and reducers play differently by the number of nodes available for execution. 

 Making the optimizer to obtain the input data from the given complete data set. 

 Fine graining the optimizer by considering the execution times of mappers and reducers 

individually. 
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