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1.0 INTRODUCTION AND THE THEORY OF DIFFUSION

1.1 Ordinary Gaseous Diffusion

The phenomena of diffusion, viscosity, and thermal conductivity are

physically similar in that they involve the transport of mass, momentum and

energy, respectively. By using a simplified kinetic theory which involves

making many simplifying assumptions throughout, it is, nevertheless, possible

to obtain expressions which describe the primary dependence of these trans-

port coefficients upon the temperature, pressure, mass, and size of the

molecules in the gas. While the procedure for evaluating the coefficients

of diffusion, viscosity, and thermal conductivity are quite similar, only

the former will be considered in this paper.

The simplified kinetic theory of gases (42) is based upon the following

three assumptions which provide a simple model for a gas containing n mole-

cules per unit volume:

(i) The molecules are rigid, non-attracting spheres with diameter o.

(ii) All the molecules travel with the same speed; the usual choice

for the molecular speed is the arithmetic mean speed, v

(8kT/mT) , calculated from the velocity distribution function,

(iii) All the molecules travel in a direction parallel to one of the

coordinate axes. '

Since, by assumption (i) , the gas described by this model is composed

of impenetrable elastic spheres it is possible to introduce a quantity known

as the mean free path. The mean free path is the average distance traversed

by a molecule between collisions. By examining the dependence of the rate of V

collisions upon the size, number density, and average speed of the molecules



and using p = nkT from the ideal gas law, the mean free path length, £, can

be shown to be (29)

I = kT/(/2pa
2
). (1)

—8
For simple molecules, o is about 3x10 cm and at one atmosphere pressure

and 20°C the mean free path of a gas molecule is given as I = 10 /p cm where

p is in atmospheres. On the basis of this simple kinetic theory the diffusion

coefficient can be expressed in terms of the quantity £. By utilizing a more

rigorous approach to kinetic theory, the mean free path length does not, how-

ever, appear directly in the derivation of the diffusion coefficient.

The coefficient of diffusion, D, is the flux of molecules of a particular

species, due to a gradient in the number density of the molecules of that

species. The number density gradient may be caused by concentration, pressure,

and in some instances temperature gradients. For a fast one dimensional ap-

proach, the mean free path length concept suggested previously is utilized in

determining j. , the number of type i molecules moving in direction z, crossing

a perpendicular plane per unit area per unit time. This approach yields the

following relationship:

dn

Jiz 1
-< 1/3

>
v£ dT (2)

where v is the arithmetic mean speed. The diffusion coefficient, which is

accurately described as a self-diffusion coefficient when only one type of

gas is present, is defined in terms of the flux as follows:

dn.

j . _D _A . (3)J iz dz

A comparison of Eqs. (2) and (3) yields

D - (1/3) v* « (2/3) (TrmkT)
1/2

/iro
2
p (A)

where p » nm pm/kT is the density of the gas.



The expression for the diffusion coefficient is found from considerations

of rigorous kinetic theory for rigid sphere molecules to have the same general

form as Eq. (3) above. This more rigorous theory predicts however, that the

constant multiplier to the right hand side of Eq. (4) should be 3/8 instead of

2/3. Inserting this value into Eq. (A) produces

D - 2.6280xlO"
3
(T

3
/m)

1/2
/po 2

, cm
2
/sec (5)

where m = molecular weight,

T » temperature in K,

p » pressure in atmospheres,

a molecular diameter in A.

For a mixture of two species of gases the coefficient of diffusion, D
12 , for

the same rigid sphere model, according to Chapman (16) is

D
12

- 2.6280x10 (T(m
1
+m

2
)/2m

1
m
2
) /po

12
, cm /sec (6)

for which a.- - 1/2(0^+0-).

Although Eqs. (5) and (6) are sufficiently accurate for some considera-

tions they do not show the proper relationship for the diffusion coefficient

as a function of temperature and pressure. For an accurate description of

the diffusion coefficient as a function of pressure and temperature it is

necessary to incorporate in the model the effect of the interactions which

take place between real molecules. It is convenient to use the potential

energy of interaction to mathematically describe the physical interaction of

real molecules. Several such potential energy functions have been developed

for polar and non-polar molecules coupling the attractive long range forces

to the short range repulsive forces which exist between real molecules. Ac-

cording to Hirschfelder (42) , the Lennard-Jones potential energy function



and the Stockmayer potential are reasonably accurate for polar and non-polar

molecules, respectively. It is necessary to go to a detailed classical treat-

ment of the rigorous theory of dilute monatomic gases and mixtures to success-

fully describe the dependence of diffusion coefficients on the potential

energy function of molecular interaction.

A knowledge of the distribution function f (r.v^t) is the basis for the

rigorous development of the kinetic theory of gases. This function represents

the number of molecules of the i species which lie in a unit volume element

about the point r at time t and which have velocities within a unit range

about v.. If there are no gradients in the gas the distribution f
i
(r,v

i
,t)

reduces to the Maxwellian distribution. When the gaseous system is not at

equilibrium, the distribution must satisfy the Boltzmann integro-differential

equation. If the condition of a gas is only slightly different from equili-

brium, then the distribution function is nearly Maxwellian and the Boltzmann

equation can be solved by the perturbation method of Chapman and Enskog (16)

.

The solution to the Boltzmann equation can then be used to obtain expressions

for mass flux and diffusion coefficients. These expressions show that in

addition to the concentration gradient, as shown by simple kinetic theory, the

temperature gradient as a second order effect causes mass transfer as well.

Neglecting temperature effects, the first approximation to the coefficient of

diffusion of a binary mixture obtained from the Chapman-Enskog theory is

D
12

- 0.002628(T
3
(m

1
-hn

2
)/2m

1
m
2
)
1/2

/po^
2
n
i2
T*

2
(7)

2
where D-„ diffusion coefficient in cm /sec,

p - pressure in atmospheres,

T a temperature in K,



T*
12

= kT/s
12 ,

D.m_ molecular weights of species 1 and 2, respectively,

molecular potential energy parameters charj

1-2 interaction in A* and °K, respectively,

o._, e
12/

k " molecular potential energy parameters characteristic of

ft . - a complicated potential energy parameter which indicates the

deviation of any particular molecular model from the idealized

rigid-sphere model (42)

.

When Eq. (7) is written for a single component, the coefficient of self-

diffusion is obtained:

Dn - 0.002628(T
3
/m)

1/
%oJi

n
il

T*
1

(8)

2
where D - coefficient of self diffusion in cm /sec and the other parameters

are the same as for Eq. (7). It should be noted that D
12

is inversely propor-

tional to p, so that as the pressure is decreased, the diffusion coefficient is

increased. Also, the diffusion coefficient is approximately proportional to

(T) so that for a particular gas at a constant pressure, D
12

is clearly de-

pendent upon the temperature of the gas. Other formulae for the calculation of

diffusion coefficients in the moderate pressure or bulk flow range are avail-

able in the literature (16,17,21,42). The Chapman-Enskog kinetic theory Eq.

(7) has been widely adopted for moderate pressures and is considered adequate

for this study.

The Chapman-Enskog kinetic theory of gases produces results which are

limited in applicability to some extent by the underlying assumptions of the

theory. The consideration of only binary collisions causes the theory to be

inapplicable at high pressures where three body collisions are of importance.

The application of the theory to low temperature processes where quantum

mechanical considerations must be made is excluded by the use of classical



mechanics in the development of the theory. The first solution to the Boltz-

mann equation by the Chapman-Ens kog method (16), which provides a series

approximation to the distribution function, is valid only when relative changes

in concentration, velocity, and temperature are much less than unity across

a length of one mean free path in the gaseous medium (that is, £(3ln n/3z)«l).

The mean free path in a gas at greater than one atmosphere pressure is less

than 10 cm; consequently, at pressures greater than one atmosphere it is only

under conditions of extreme gradients that this assumption is unrealistic. On

the other hand, since the mean free path length varies inversely with pressure,

the theory loses its applicability at low pressures when only slight gradients

exist. Finally, the assumption that the dimensions of the constraints to the

gaseous system are large compared to the mean free path length causes the

reliability of the theory to be lost for flow conditions in rarefied gases.

Because this study is concerned primarily with mass transport of rarefied gases

it is appropriate to consider this difficulty in greater detail.

1.2 Knudsen Diffusion

Free-molecule or Knudsen flow occurs in the pressure region in which the .

mean free path I of the molecules is many times greater than the characteris-

tic dimension of any surface moving through the gas (14). The number of

collisions between molecules in the gas is negligible in comparison with the

number of collisions between gas molecules and the' surface; hence, there is

little mechanism for the establishment of local equilibrium. Such free-

molecule or Knudsen flow is really a process of diffusion, and takes place

for each constituent of a mixture along its own partial pressure or concen-

tration gradient. The characteristics of ideal Knudsen flow are reasonably



well understood (63)

.

Several attempts have been made to describe accurately and theoreti-

cally the behavior of gases in the transition range, (that density region

between a Knudsen gas and a moderately dense gas where Poiseuille or bulk

flow occurs) . Although several theoretical treatments presented for this

transition range are convincing (27,30,65,70,73), no single treatment has

been universally accepted. Experimental data for the transition range are

extremely scarce (32); hence, any rigorous or empirical equations for trans-

port coefficients in the transition range have not been tested with convinc-

ing experimental data.

Having discussed ordinary gaseous diffusion and described the problem

of gaseous diffusion in the transition range, it is appropriate to consider

the detail of Knudsen diffusion before proceeding to a survey of formulae

for diffusion in the transition pressure range. Knudsen diffusion results

in the flow or diffusion of gases through a capillary tube of radius r or

porous solid where the diameter of the tube or pore becomes much less than

I, the molecular mean free path. Qualitatively, this flow region appears

to occur when the Knudsen number K , which equals l/v, is greater than 10

(28) • At small pore diameters diffusion or flow is impeded by impact with

pore surfaces rather than by molecular interaction which causes the develop-

ment of collective flow behavior. Because the mean free path length is much

greater than r, it is possible to neglect intermolecular collisions. Since

the molecular flow is determined by collisions with the wall, the effect of

such a molecule-wall collision on the direction of movement of the molecule

must be investigated (25)

.

A specular reflection of a molecule colliding with the wall would only
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occur if the wall were perfectly smooth on the submlcroscoplc scale. Even

the condition of smoothness would not cause specular reflection if incident

molecules adhered to the reflecting surface. It is not surprising, there-

fore, that the experiments of Knudsen on the nature of reflection of molecules

from glass surfaces indicate almost 100 percent diffuse reflection (53,66).

If the actual irregular wall is replaced by a smooth mathematical sur-

face which reflects incident molecules diffusely, the number of molecules

reflected from a unit area of the wall per unit time in a particular direction

is equal to the number crossing the unit area of the mathematical surface in

that direction. This quantity is obtained by integrating over all the speeds

of the molecules within some solid angle about the path of the molecule as

it emerges from the mathematical wall. Using this expression for the distri-

bution of the molecules moving in a set direction, the net molecular transport

through a cross section of the tube can be calculated. The resulting formula

for the net transport of molecules per unit time through the tube is (66)

N* - -(2irr
3
v/3) & (9)

or converting to mean flow per unit area per unit time,

J - -(2vr/3) ^. (10)

An examination of Eq. (10) indicates that flow in a capillary tube is propor-

tional to the density gradient and opposite in direction; hence, the flow has

the characteristics of diffusion. The inferred Knudsen diffusion coefficient,

(2vr/3), is quite similar to the bulk range diffusion coefficient, (vfc/3),

and, as one would expect, has the tube diameter appearing in place of the

mean free path. It is noted that in Knudsen flow, the diffusion coefficient

1/2 x—
D is proportional to T , to the pore diameter, and is independent of the



total pressure. Using an assumed Maxwellian velocity distribution the result

becomes

1/2
D
k

- (2r/3)(8kT/™)
x'*

- 9700r(T/m)
1/2

cm
2
/sec, (11)

2
where D, - coefficient of Knudsen diffusion in cm /sec,

k

r pore radius in cm,

m - molecular weight of the species,

T absolute temperature in K.

For carbon dioxide at 25°C and at a pressure for which K
n
>10, D

fc

equals 1259

cm
2
/sec for a pore diameter of 1 mm. For the diffusion of C0

2
in N

2
at 25 C

in a pore of radius 0.05 cm, D, and D... become the same at a pressure of 89.2

microns. For diffusion at one atmosphere pressure the coefficients are equal

for a pore size of 588 A.

If Knudsen flow of a binary gas mixture occurs, the component gases will

diffuse along the tube independently and Eq. (9) can be applied to each gas

separately if n is assumed to refer to one species of molecules in the mix-

ture. For steady flow, N must be constant along the tube; therefore, the

density gradient ~ is uniform and can be replaced by An/L where An is the

difference in density between the ends and L is the tube length. Since An -

Ap/kT from Eq. (9), the flow rate in moles is

F(moles) - (D
k
irr

2
)Ap/LR*T (12)

where F applies to the component with partial pressure drop Ap, and R* is the

gas constant per gram. It is noted that the flux of a particular component

is inversely proportional to its molecular weight. These formulae for Knudsen

flow have a sound theoretical basis and have been verified by experimental
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work.

1.3 Transition Range Diffusion

In many chemical processes the diffusion of gas through capillaries or

through the fine channels of porous solids is of considerable importance. As

has been shown, the transport of gas through a small channel may occur in

three ways. When the Knudsen number based upon the equivalent radius and mean

free path is less than 0.1, i.e., K <0.1, transport may take place because of

Poiseuille flow if a pressure gradient exists, or by ordinary diffusion if a

partial pressure gradient exists. When K is greater than 10 transport occurs

by Knudsen flow in the presence of either a total or partial pressure gradient.

When gas flow occurs in the transition range, i.e., 0.1<K <10, the mechanism

for diffusive transport must be a combination of intermolecular collisions,

molecule-wall collisions, and the resultant viscous effects which cause a

velocity profile in the tube. The flow of gases at ordinary temperatures and

pressures through many commercial porous catalysts occurs in the intermediate

or transition range. Also the frictional drag of rarefied gases upon ballis-

tics (conditions prevalent when space capsules re-enter the atmosphere of the

earth) is dependent in part upon the mechanism for gas flow in this transition

range (71,76). Thus, today the problem of gas flow in the transition range

holds special interest for theoreticians and experimentalists.

At the high pressure end of the transition range it is necessary to dif-

ferentiate two distinct limiting forms of the gas transport through a tube.

The two mechanisms are hydrodynamic viscous flow and gaseous diffusion. The

hydrodynamic flow occurs only when a gradient in the total pressure exists.

From the usual treatment of hydrodynamic flow of a viscous fluid in a long
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cylindrical tube, the molecular flow G is given as (52)

G - nvr
2
(U - (r

2
/8n ) £> < 13 >

where n is the viscosity, n the molecular density, and U
q

the "slip" velocity

at the tube wall. Using the values of n, P, and U
q ,

from simple kinetic

theory, Eq. (13) may be written in the form

G - (irr
3
/m^ + (3irr

3
/8ra^)r/£) |j.

< 14 >

By Eq. (14) it is clear that the effect of "slip" at the tube wall increases

the flow as the Knudsen number increases. In the low pressure limit, Eq. (14)

reduces to the slip flow correction term (66) which has the same form as Knud-

sen flow but is smaller. If the specific flow is plotted versus mean pressure

and the equation for Knudsen flow considered, it is possible to infer a mini-

mum in the specific flow curve at low pressure.

The case of gaseous diffusion at the high pressure side of the transition

regime occurs at uniform total pressure and represents transport due to random

motion without drift. This transport due to interdiffusion of molecules can

be given by the relation

G - -(«r
2
D
12

/kT) ^ (15)

where P] _

is the partial pressure of the species 1 and D
12

is the diffusion

coefficient of the gas. It is noted that Eq. (15) is essentially the same as

Eq. (11) for Knudsen flow. As has been shown, the effective diffusion coef-

ficient for the transition range D
e

, appropriate to Eqs. (12) and (15) in the

limiting cases, is dependent upon a diffusion process of mixed character. A

summary of the results of existing treatments for D
g

is given below.

Bosanquet (9) has given an additive resistance law
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1/D - 1/D, + 1/D19 (16)
e k 1/

which states that the resistance to transport is the sum of the resistance

caused by wall collisions and by intermolecular collisions. Bosanquet's

additive resistance law was originally obtained by an elementary mean free

path argument but it appears to be in agreement with more sophisticated

calculations (30,65) and with the limited experimental data available (29).

Wheeler (87) has proposed an empirical combination as

D
e

" D
l 2 [

1-exp( -D
k
/D

12
) D

(17) '

This equation has been deduced from intuitive reasoning but it does give

a smooth transition between the two extremes. For the system CO^ in N
2
at

25°C this effective diffusion coefficient is shown in Fig. 1 as a function

of pressure for diffusion through a one millimeter tube. It is noted that

in the range of three to three hundred microns of mercury pressure that these

combination rules of Bosanquet and Wheeler disagree. This, in essence, com-

prises the transition range.

In another treatment based upon elementary momentum transport theory,

Scott (73) has shown that a complicated log-mean expression involving the

actual fluxes should be employed to define the effective diffusion coefficient

as follows

D
e

' D
12

/X
LM

< 18)

Bosanquet (9) considers the diffusion process in the tube as a random

walk process in which the succesive steps of the individual molecules are

terminated either by collisions with other molecules or with the tube wall.

The mean step size is then related to the mean free paths for wall collisions

and gas collisions by taking the total collision frequency to be v/l. Know-

ing that the frequencies of the two types of collisions are additive and

that D, and D._ can be taken proportional to v times the mean step size, the

additive resistance law is derived.
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\ " **» +W
A
a " ^la + D

12
/D

k«

a - 1 + N^,
Y, ,Y,^ - mole fractions of species 1 at each end of the diffusion
la lb

path,

N
1
,N_ - total rate of transport of species 1 and 2 in moles per unit

time per unit area, respectively.

This expression reduces to the additive resistance law if the diffusion is

countermolal . At the present time Scott's data are only for catalyst type

materials where some averaging parameters are necessary for any application

of the analysis.

Using the Stefan-Maxwell momentum balance method, Rothfeld (70) derived

an equation for constant pressure binary diffusion through a porous medium

equivalent to Eq. (18). He has presented data for five different binary gas

systems (five different trace gases diffusing against helium) diffusing

through porous cylindrical pellets which seem to fit his model. His data,

like Scott's, require the use of some averaging parameters characteristic of

the catalyst type material.

Evans (30) has derived a combining rule similar to Bosanquet's by apply-

ing the rigorous kinetic theory of multicomponent gases to his "dusty gas"

model for gas molecules in a porous medium. In this model the porous medium

is assumed to be a collection of stationary giant molecules through which

the real gas molecules flow. The entire pressure range is covered by letting

the mole fraction of real gas molecules vary between zero and one. The

relationship given is



o
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1/D
e

- l/(D
12

) eff
+ l/(D

lk) eff
(»)

where (D
12

> e£f
- P*D

12
/q

Here p* is the porosity and q the tortuosity factor for the medium while K
(

is a representative Knudsen length for the medium. These quantities must be

obtained by experiment for a particular medium. Evans (29) also has a limited

amount of data to support his model.

The effect of tube length on the diffusion coefficient has been considered

by Pollard and Present (65) in their treatment of gaseous self-diffusion in

long capillary tubes. The diffusion coefficient in the Knudsen limit is shown

by involved formulae to be smaller for a tube of finite length than for an

infinite tube by the factor (l-3r/8L) . It is shown that the diffusion coef-

ficient in all tubes longer than a given value L should be the same at

pressures for which 1<H, where H is the half-length of the tube. For a

tube of infinite length D
fi

is given as

D - (v*/3) [l-3*/8r + (6i/*r)Q(r/t)] (20)

where Q(r/A) - ir/3(3/16 - r/2£ + r
2
/* - r I/t )

,

I - 1.2264 - (3/4)ln(2yr/*),

Y Euler's constant.

For the two limiting cases for an infinite tube:

(a) Knudsen range (X-»r)

D - (2vr/3)(l-rI/£) + ... (21)

e

(b) bulk range (*.«r)

D - (v£/3)(l-3i/8r).
e

(22)
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Eqs. (21) and (22) are in agreement with Eqs. (11) and (4) respectively. For

a tube of finite length at a pressure for which fc>H>>r, D
e

is given as

D - (3vr/8)(l-3r/4H - (r/*) (0.4764 + 0.75 ln(H/2r)). (23)
e

A very close agreement has been shown to exist between these relations for

D and the additive resistance law of Bosanquet.
e

DeMarcus (24) has computed some flow amounts under various conditions

of roughness for pore walls. He does not give an expression for the effective

diffusion caused by a combination of the two asymptotic flow mechanisms.

Wakao, Otani, and Smith (85) have derived equations for the effect of

simultaneous total pressure and concentration gradients which apply in Knud-

sen number ranges from Knudsen to Poiseuille flow. Knudsen's original data

for C0
9
and new measurements on nitrogen in a glass capillary are in close

agreement with the equations presented. This account does not, however,

give any new information concerning the effective diffusion coefficient for

constant total pressure in the transition range.

It is the purpose of the present study to examine an experimental method

which can be used to determine the effective diffusion coefficients for

various binary mixtures in this transition range.
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2.0 EXPERIMENTAL THEORY

2.1 Introduction

In order to measure diffusion coefficients it becomes necessary to

establish a concentration gradient for the desired component. Generally

two methods are applied to bring about this result: (I) a steady-state

type of experiment in which flow streams of different compositions pass on

opposite sides of a barrier through which diffusion occurs, or (II) a

transient experiment whereby diffusion eliminates a zero-time concentration

difference between two parts of a closed batch system. Method (I) requires

a large amount of material as well as precise flow control and is losing

some of its popularity to Method (II) . Early measurements by Method (I)

were made by Buckingham (13) on porous soil; more recent measurements on

catalysts and adsorbents include those of Scott and Dullien (73), Otani and

coworkers (62) , Evans and coworkers (30) , and Wakao and Smith (84) . The

difficulty with Method II has been the measurement of the concentration as

a function of time, but the advances of radioisotope detection and avail-

ability have made their use very feasible for this type of experiment. In

particular, the recent development of semiconductor radiation detectors has

made the internally isolated detection of tagged materials very possible.

Measurements of gaseous mutual diffusion and self-diffusion coefficients

have usually been made at moderate pressures where the mean free path length

is much smaller than the dimensions of the vessel in which the measurements

were made. Only in recent years have attempts been made to measure thege

diffusion coefficients at low pressures when the gas movement is confined to
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tiny channels in porous beds or capillary tubes. The apparatus used in this

study was designed to measure diffusion through a capillary tube in the tran-

sition pressure range by utilizing a radioactive tracer. While radioactive

tracers have been used by several experimenters to measure diffusion coeffi-

cients, the use of a semiconductor detector as the radiation sensing device

in conjunction with such experiments is believed to be novel. The advantages

of this method are illustrated by a review of earlier techniques.

2.2 Methods of Measuring Diffusion Coefficients

The classical method for determining diffusivity in gaseous systems is

to measure the time required to produce a concentration change when two

different gases are allowed to diffuse into each other after an initial separa-

tion. Early measurements based on this classical approach utilized the method

of Loschmidt (18,57). Loschmidt used a glass tube 97.5 cm in length and 2.6

cm in diameter supported vertically and divided at the center into two parts

by a partition. The top half of the tube was filled with the light gas and

the bottom half with the heavy gas, both at the same temperature and pressure.

The mutual coefficient was found by comparing the observed average concentra-

tion changes in both tube sections to a solution of the second order partial

differential equation describing the diffusion process in the Loschmidt appara-

tus. If the same apparatus is used and the pure gases are replaced by gas

mixtures of slightly different concentrations the slight variation of D with

concentration can be neglected and one obtains a diffusion coefficient based

upon the mean composition of the initial mixtures. The concentration of gases

in the diffusion tube can be measured by several methods of gas analysis such

as gravimetric analysis after reacting and/or absorbing the gases in a solid,
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by thermal conductivity methods or by a spectrometer. Tordai (82) has pre- '

sented a comprehensive study of the errors in diffusion measurements by the

Loschmidt method indicating potential accuracies to within 0.3%. Strehlow

(77) used a modified Loschmidt cell to study the temperature dependence of

the mutual diffusion coefficient for four gaseous systems. He reported D

values with less than 2% error.

In 1951, Boyd, Stein, Steingrimsson, and Rumpel (10) described a new

type of experimental method for accurately measuring gaseous mutual diffusion

coefficients which was based upon the Loschmidt geometry. To trace the

change in composition, they measured the refractive index of the gas at a

fixed position in their rectangular diffusion cell (12.6 cm x 2.2 cm x 38.1

cm) with an interferometer. Their method allowed several determinations of

D, accurate to within 0.5Z, during one experimental run. The diffusion data

was taken from photographs of interference fringes occuring at specified

times

.

In 1962 Giddings and Seager (34) suggested a method similar in operation

to chromatographic techniques for making rapid determinations of binary gaseous

diffusion coefficients. The apparatus used consisted of a gas chromatography

unit, with an empty tube replacing the packed column. They reported binary

coefficients for eleven different gas mixtures which agreed to ± 1% with

other values reported in the literature. While this apparatus is being modi-

fied to improve the accuracy of the coefficient measurements and to broaden

the applicability to other diffusion problems, it is unlikely that this tech-

nique can be utilized to determine gas diffusion coefficients in the transition

pressure range.

The method of Stefan (55) has been used in recent years to measure



20

diffusion coefficients in gaseous systems (15) . By this method the dif fu-

sivity of a gas pair is determined by observing the steady-state evaporation

of the liquified gas into a tube containing the other gas. The distance

between the liquid level and the top of the tube, the total pressure on the

system, the vapor pressure of the liquid, and the temperature of the system

must be determined to allow calculation of the diffusion coefficient. The

volume of liquid evaporating during a certain time period reflects the diffu-

sivity of the gas pair. Several defects can be attributed to this method

of determining gas-phase diffusivities. Convection effects may occur if the

vapor of the evaporating liquid is lighter than the gas in the column. Also

due to the liquid phase miniscus the length of the diffusion path will vary

across the tube diameter. The cooling effect of the liquid evaporation is

probably the most significant defect of this method.

Using a Loschmidt cell Boardman and Wild (8) were the first to simulate

the conditions for self-diffusion by using gases with molecules of equal

mass. Using mixtures of nitrous oxide and carbon dioxide, D^ for either

gas was found to be 0.0107 cm /sec at 288°K and 76 cm pressure. They also

reported values of D-- for hydrogen, nitrogen and carbon dioxide calculated

by the method of Kelvin triads using their diffusion data for H
2
~N

2
, N

2
~C0

2 ,

and CO.-H- systems. In the method of Kelvin triads, the coefficient of

mutual diffusion is determined for each of the three pairs which can be

chosen from three gases. The corresponding a.j can be determined from equa-

tions based on the rigid elastic sphere model. Since o
12

1/2 (o^. + a^

the values of o
11

for each of the three gases in the triad can be found.

Substitution of 0-
1

into the appropriate formula (see Eq. 5) gives D ..

Knudsen (53), Gaede (33), and Adzumi (1) were the first investigators
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to study the flow of gases through long capillary tubes. In the Knudsen

apparatus, the capillary tube was connected between two chambers having

volumes of approximately 1000 cc each. The flow of gas from one chamber to

another was interrupted by means of a mercury cut off valve. Knudsen demon-

strated that a minimum specific flow occurred when r/l was approximately

equal to 0.3. Gaede, using similar apparatus with a rectangular slit in

place of the capillary tube, verified Knudsen' s findings of the existence

of a minimum specific flow, but erroneously attributed the minimum to the

formulation of an adsorbed layer on the channel wall restricting flow. The

investigation of Adzumi which verified Knudsen' s results also duplicated that

of Knudsen but was accomplished for several tube diameters at both low and

intermediate pressures.

The closest approximation to real self-diffusion is accomplished by the

use of isotopic molecules. The intermolecular forces and molecular cross

sections for the interaction between isotopic molecules are essentially the

same as for the interaction between identical molecules of the isotopic

pair. Harteck and Schmidt (38) were the first to use this method to find

D
ni

for a gas. They used the Loschmidt method with para-hydrogen diffusing

into normal hydrogen. The concentration change was determined by thermal

conductivity measurements. Applying the same technique, Groth and Harteck

(36) determined D._ for krypton and xenon mixtures using isotopes.

In 1943 Ney and Armistead (59) developed a more accurate method for

making isotopic-diffusion measurements. Their apparatus was similar in de-

sign to that of Knudsen, but incorporated the use of a mass spectrometer for

concentration measurements. Since the Ney-Armistead technique has been used

for nearly all subsequent measurements of self-diffusion, including the
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present one, it is described in considerable detail below.

The Ney-Armistead apparatus was similar to that of Knudsen in that two

large chambers were used with a straight tube connecting them. In the ori-

ginal apparatus two copper tubes with a short section of neoprene tubing

between them connected the two diffusion bulbs having volumes of 925 and

«<jr O O Q

259 cc. One chamber was charged with U F, and the other with U ' F
&

,

both at the same temperature and pressure. When the clamp on the rubber

tube was released the diffusion process started and samples from one chamber

were bled through an adjustable capillary leak to a mass spectrometer. The

decrease of gas pressure in the open chamber did not cause diffusion measure-

ments to be in error by more than 1%. The reported cumulative error in

measurements of the geometrical constants was about 3% while the error in

pressure measurements (approximately 1000 microns) was less than 1%. Dif-

fusion coefficients were reported to within 4%. This method had two definite

advantages over the Loschmidt technique: (I) greater compactness, thus re-

ducing the errors associated with temperature gradients and (II) the facility

for making continuous concentration measurements and, thereby, several dif-

fusion coefficients during one run.

The theory for the Ney-Armistead technique is based on certain simplify-

ing assumptions. The diffusion equation used assumes the diffusion coefficient

to be independent of concentration which is justified for the case of self-

diffusion, but not for mutual diffusion. According to kinetic theory the

mutual diffusion coefficient is independent of concentration only in the first

approximation. The experimental theory for this method is based upon three

additional assumptions; namely (i) the concentration gradient in the connect-

ing tube -varies linearly with £ist.sx*ce along the tube, i.e., «c/«z const.,'
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(ii) perfect continuous mixing exists in the flasks, the concentration gra-r

dient being confined to the connecting tube, (iii) the volume of the connect-

ing tube is negligible compared with the chamber volume. A discussion on

the validity of these assumptions including the corrections necessary have

been presented by Paul (64) . The small correction necessary for assumption

(i) is proportional to the ratio of the volume of the capillary tube to the

volume of the chambers. The second assumption that the gradient exists only

in the connecting tube is justified provided a small end correction is made.

The magnitude of the correction for the analogous electrical case has been

shown by Maxwell (58) and Rayleigh (78) to be an increase in L, the tube

length, by 0.82 times the radius. A correction for assumption (iii) is made

by adjusting the concentration in both chambers to account for the effect

of the tube volume. Using the above assumptions, Fick's second law (19) is

used to write an equation describing the transport of the trace gas through

the capillary tube. The resulting second order partial differential equa-

tion is solved for the appropriate boundary conditions and utilized in
*

determining the diffusion coefficient from the concentration data.

Nearly all recent measurements have utilized isotopes and the Ney-

Armistead apparatus. Winn and Ney (90) investigated methane self-diffusion

while the N^N1
-N

1
N system was investigated by Winn (88) , both using

the Ney-Armistead apparatus.

Hutchinson(47) has shown that the self-diffusion coefficient of a gas

can be obtained from the coefficient of diffusion of one isotope into another

by the following relation:

D
lx

- [2m
2
/(m

1
-ha

2)]
1/h

12
. (24)

He determined the coefficient for argon (46) at five different temperatures
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between -183°C and 53.5°C by observing the diffusion of A into argon with

a modified Ney-Armistead apparatus. Two metal chambers, each of about 100 cc

volume, were connected by a straight tube 0.475 cm diameter and 2.85 cm

long drilled through a steel block containing a sliding valve used to close

41
off the connecting tube. The concentrations of A in both chambers were

determined by the ion currents drawn to insulated electrodes inserted into

each chamber. Using non-radioactive isotopes for A, Ne, N_, 0-, C0
2

and CH^,

Winn (89) also studied the temperature dependence of self-diffusion coef-

ficients. His apparatus avoided the use of a cutoff valve in the capillary

tube by filling both chambers simultaneously to the same pressure with dif-

ferent concentrations of isotopes.

The radioactive tracer, C has been used frequently to measure dif-

fusion coefficients. Recently, Winter (91), Visner (83), Amdur and coworkers

(3), Timmerhaus and Drickamer (81), Jeffries and Drickamer (48), O'Hern and

14 41
Martin (60) and Amdur and Schatzki (2) have used C

2
or A as a trace

gas in modified Loschmidt and Ney-Armistead cells. Amdur measured diffusion

coefficients within 2% for C0
2
-C0

2
, C0

2
~N

2
0, Xe-Xe, and A-Xe systems using

a Loschmidt device. The ionization currents from two collecting electrodes,

one in each section of the diffusion chamber, were used to measure concen-

tration changes. The work of Drickamer utilized a scintillation detector

in a modified Loschmidt cell to measure diffusion coefficients of C0
2
~C0

2

and C0„-CH, systems over a pressure range from 0.5 to many atmospheres. The

diffusion tube was filled with several types of packing to accommodate the

higher pressures; therefore, it was necessary to overlap the runs to deter-

mine the effective path length for each type of packing. Diffusion coef-

ficients for carbon dioxide were determined by O'Hern and Martin from
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to 100 C and at pressures to 200 atm. The data reported demonstrated that

the diffusion coefficient is approximately proportional to the reciprocal

of the density within the ranges of conditions considered. The diffusion

cell used was similar to that of Hutchinson, using ionization chambers to

determine concentration changes. It differed in that a porous metal plug

was inserted in the diffusion chamber and no means existed for closing the

diffusion opening when the two chambers were filled with gases. The entire

system was filled with carbon dioxide before the radioactive gas was added

to one chamber. Winter used a Ney-Armistead apparatus to measure diffusion

coefficients of C0
2

, 0. and N_. The diffusion cell contained a large bore

stopcock, at one end of the capillary tube connecting the flasks. After

filling both flasks with the heavy gas the capillary valve was closed and

the gas in one flask withdrawn and replaced with an equal amount of the

normal gas. The accuracy of the measurements reported was within ± 1%.

Visner (83) has made the only study of gas diffusion in the transition pres-

sure range using a diffusion tube with well defined dimensions, i.e., an

empty capillary tube instead of a chamber packed with porous material. He

used a modified Ney-Armistead cell with end-window Geiger counters installed

in both flasks to follow concentration changes. The self-diffusion coef-

ficient of xenon was measured for capillaries of 0.0025 cm and 0.025 cm

radius in tubes of three lengths for pressures corresponding to radius to

mean free path ratios from 0.001 to 65. The trace gas was injected into one

flask after filling the flasks to the desired pressure with normal gas by

breaking a tiny glass bulb of gas at the correct pressure to prevent the

creation of a pressure gradient across the capillary tube.

An apparatus called a diffusion bridge was used by Bendt (A) to measure
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3 4
the diffusion coefficient for He -He and H_-D_ at one atmosphere pressure

and temperatures from 1.74°K to 296 K. The measurement was made while steady-

state flow existed through four capillaries and through the diffusion tube

which joined the supply and exhaust capillaries in the temperature bath.

The pressure gradient in the diffusion tube was made as small as possible

by adjusting the flow rates of the gases through the capillary feed lines.

The exhaust capillaries were alternately connected to a mass spectrometer

for gas analysis. Small fluctuations in the flow rates and in the sensitiv-

ity of the mass spectrometer limited the accuracy of the measurements to an

error of 2-6 %. The correction factors used were the Rayleigh tube length

correction and the mass correction formula (Eq. 24) for isotopic self-

diffusion measurements.

Recently, a new method (69,86) has been designed for making diffusion

measurements of gases at elevated temperatures. In this method a point

source of trace gas is injected into a slow uniform stream flowing through

a conduit. The variations in the concentration as a function of radius and

time are measured to determine the diffusion coefficient. The primary use

of this method has been to study gaseous diffusion at high temperatures

and pressures.

The above survey has included a discussion of all common techniques

used to measure diffusion coefficients. The Ney-Armistead method has been

emphasized because it allows a simple and accurate means of studying gas

diffusion in the transition pressure range. Additional surveys of recent

experimental and theoretical work on the diffusion of gases have been made

by Liley (56) and Johnson (49,50,51). A discussion of information on dif-

fusivity needed by the chemical and process industries has been presented •
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by Friend and Adler (32)

.

2.3 Analysis

The transient-type diffusion apparatus used in this study was similar

to the Ney-Armistead apparatus described above. Figure 2 is a schematic

representation of the one-dimensional diffusion system employed. Flasks I

and II were filled with gas at the same pressure and temperature, while the

gas in flask I contained a trace quantity of radioactive gas. When the

capillary valve "10" was opened a process of one dimensional diffusion was

established in which molecules of flask I intermixed with molecules of flask

II, finally resulting in a system of constant composition. The amount of

self-diffusion occurring was determined by observing the change in radio-

activity in flask I as a function of time with a semiconductor radiation

detector.

All of the assumptions presented above for the Ney-Armistead apparatus

were applicable to the apparatus pictured in Fig. 2 except that the tube

volume was not considered to be negligible. Based upon these assumptions

it was possible to represent the one dimensional diffusion process by utiliz-

ing Fick's second law (19). The resulting partial differential equation for

diffusion through the capillary tube was

{£ . D 1% (25)

with C - the concentration of trace gas at time t, D = the diffusion coef-

ficient, and z - the coordinate along which the diffusion was occurring.

Equation (25) was solved for the boundary conditions:

t - 0, z>0, C - < 26>
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rt

t>0, z - 0, C

z-0
' C

o - 1/V
1

-D(,R
2
) £dz

t>0, z - L, C

z - L
CoYV

2 - CV
1
/V

2

dt
z-0

- 1/V,

z-0

(27)

C(irIT)dz (28)

where V. - volume of the tagged reservoir

V» - volume of untagged reservoir

L - effective tube length

R - radius of tube

C
q

- concentration of tagged material at zero time in the tagged

reservoir.

C - concentration of tagged material as a function of t and z.

These boundary conditions mathematically represent the physical requirements

of the system. Equation (26) indicates that at zero time the capillary tube

contains none of the tagged isotope. Equation (27) shows that the composi-

tion of the tagged isotope in flask I is the original amount less the total

amount leaving flask I by diffusion into the capillary tube. Boundary condi-

tion Eq. (28) states that the composition of trace gas in flask II, under

conditions of uniform mixing, represents the amount of material diffusing into

the tube from flask I less the amount still remaining in the capillary tube.

The complete solution to Eq. (25) is

00

X(t,0 - S [a + S + as]
_1

-
\ [exp(- A*x)]

[
A
q

cos A
&
+ B sin a! .

Ta cosU
nQ - A

n
sin(A

n
ol {\* ("uA^'^cos A

q) (a + & + aB - A*)

- sin A
n
(l + l/2(a + B))] J"

1
(29)
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where A are the non zero roots of
n

tan A - A (a + 6)Ta
2

- agl'
1

. (30)
n n L n J

A detailed solution of Eq. (25) by the method of Laplace transforms is

given in Appendix A.

The time response of this system can be seen from Fig. 3 where the

concentration in the CO.-N- system at 25 C is shown as a function of pres-

sure for both the bulk and Knudsen range coefficients. The Knudsen line

corresponds to a pressure of 89.2 microns of mercury where the diffusion

coefficients are identical. It can be noted that for this size tube the

diffusion is retarded enough so that extremely accurate short time measure-

ments are not required. The response of the system is easily changed by

varying the tube length.

Equation (29) relates the concentration of the tagged gas to time at

a position z inside the cell in terms of the diffusion coefficient, D, and

the cell dimensions. An application of least squares analysis (61) to the

concentration versus time data using Eq. (29) and the appropriate system

parameters yields an evaluation of the diffusion coefficient. A detailed

discussion of the procedure for applying least squares analysis to the

evaluation of D is given in Appendix C. In this experiment the tube length

was determined by measuring and applying the Rayleigh end-correction used

by Ney and Armistead. The other system parameters were measured as out-

lined in section 2.6.

Based upon the assumption of continuous mixing at the pressure of the

measurement, which has been shown to be valid by Visner (83) , the radio-

activity measured by the surface-barrier detector was linearly proportional
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to the concetration of C0_ in flask I. Due to the rapid response, the thin

window, and the high counting efficiency of the detector it was not neces-

sary to make dead time or other corrections on the activity data. The pro-

perties of semiconductor detectors are discussed in section 2.4.

2. A Semiconductor Radiation Detectors

During the last five years rapid development of solid-state semiconduc-

tor detectors (11,20,23,43,44,67) has gained for this type of detector

prominence in the field of nuclear radiation detection. Semiconductor de-

tectors have several characteristics which give them advantages over gas

and scintillation counters for many applications. The chief advantage is

that these detectors approximate an ideal ionization chamber wherein the

usual gas has been replaced with a semiconducting solid having high stopping

power. The number of free charge carriers produced by the absorption of an

amount of energy (approximately one free electron-hole pair per 3.5 ev. of

particle energy) is independent of the mass and the total energy of the

incident radiation; therefore, the electric signal response is linearly pro-

portional to the energy deposited by a particle in the sensitive region

(depletion region) of a detector. These detectors can be constructed to

have the additional advantages of small size, low weight, rigidly controlled

sensitive depth and geometry, thin window thickness, long term stability and

durability, low operating voltage, and rapid time response.

The junction between an n-type, or donor-rich, region and a p-type, or

acceptor rich, region is utilized in forming semiconductor detectors (75,80).

A reverse bias applied to the interface between an n-type and p-type material

causes the development of a charge-deficient, highly resistive region called
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the depletion region. This depletion region is formed by movement of elec-

trons from the n-type material toward the p-type material and holes from

the p-type material toward the n-type material. The separation of holes and

electrons causes a space-charge region due to an unbalanced concentration of

filled electron acceptor sites and positively charged empty donor sites on

opposite sides of the junction. The space-charge region is the sensitive

volume of the detector in which electron-hole pairs produced by ionizing

radiation are collected; thus, causing the origination of the output signal.

The depth of the sensitive volume is proportional to the square root of the

product of applied bias voltage and dielectric resistivity. The depletion

depths range from 2000-3000 microns and depend upon the type of detector

used.

The three types of semiconductor detectors are (i) silicon-diffused

junction detectors, (ii) lithium-drifted silicon or germanium detectors,

and (ii) silicon surface-barrier detectors. A diffused junction detector

is made by diffusing n-type phosphorus into p-type (boron doped) silicon

while the surface-barrier detector is made by evaporating a thin p-type

layer of gold on the surface of n-type silicon. The thickest depletion

layers occur in the lithium-drifted detectors which are formed by forcing

n-type lithium ions deep into p-type silicon or germanium. Each detector

type has characteristics which give it distinct advantages for certain

applications (6,7). In the experimental work of this study, a silicon

surface-barrier detector was the radiation sensing device employed. An

excellent discussion of the properties and applications of the three types

of semiconductor detectors is given by F. S. Goulding (35).

The surface-barrier detector will count' any charged particle which is
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incident upon the sensitive gold surface if it arrives with sufficient energy

and at the proper angle to penetrate the gold surface and at least a small

portion of the depletion region in the silicon. When the charge carriers

created by an incident radiation are separated by the electric field they

attain a drift velocity in the silicon toward the electric poles. The motion

of the carriers induces a charge in the external circuitry. Use of a pre-

amplifier with a charge sensitive input circuit having negative capacitive

feedback results in a voltage pulse which is approximately independent of

detector capacitance.

Noise sources are present in the detector and the amplifier and the

accuracy of measuring the size of the signal is directly related to the

ratio of real signal to noise. Microplasma breakdown, edge leakage currents,

and charge carrier generation and recombination in the depleted region are

the primary contributors to detector noise. These factors are minimized by

selecting a quality detector that has a thin, small volume depletion region

and by operating at minimum temperature. On the other hand, the detector

electrical capacity must have a low value to give a good signal-to-noise

ratio. The detector capacity varies directly with the detector area and

inversely with detector thickness. Obviously, a compromise must be made in

selecting the depletion layer thickness and it depends largely upon the in-

tended use of the detector. A discussion of the fundamentals of low-noise

preamplifiers is given by Fairstein (31), while a guideline for preamplifier

selection is given by Radeka (68)

.

Since the surface-barrier detector is a highly sensitive instrument,

several rigid requirements are necessary to insure proper operation. All

signal leads and the detector must be shielded to prevent electronic pickup.
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The cable between the detector and preamplifier should be as short as pos-

ible to minimize input capacitance. The bias voltage must come from a

well-filtered, stable, and well-regulated supply. All electronic equipment

must be tied to a common ground to avoid ground loop problems. The detector

is photosensitive and must, therefore, be installed in a light tight en-

closure.

To guarantee full detector operating capability it is necessary to

monitor the noise level when applying the bias. After an initial increase,

the noise level of the detector increases with bias voltage until a break-

down voltage is reached. However, a sufficiently high electric field is

required to insure fast and efficient charge collection, so that an optimum

bias setting value must be chosen. The noise level can be measured with a

RMS voltmeter, an oscilloscope, or a multichannel analyzer.

To prevent damage, several precautions must be observed when using the

surface-barrier detector. The sensitive gold surface must not be touched

when handling the detector. A mechanical stress, such as is caused by chang-

ing the ambient pressure on the detector, and an electrical stress, such as

changing the detector bias, should not be applied simultaneously. Any stress

applied should be gradual. Care must be taken to avoid chemical contamina-

tion from mercury and oil vapors or other contaminants. The detector is

damaged by continued exposure to high radiation fluxes, and should, there-

fore, be shielded from unnecessary radiation. And finally, one should always

prevent the application of excessive bias voltage which produces irreversible

damage to the semiconductor material.



36

2.5.0 Experimental Facilities

A diffusion cell apparatus and an electronic counting system comprised

the experimental facilities used in making all measurements. With a radio-

active component diffusing from one flask to a second flask joined by a

capillary tube, the radioactivity in the charged flask provided a continuous

measurement of the diffusion occurring through the opening in the capillary

tube. The diffusion cell employed had similarities to those of earlier

investigators, especially to those of Hutchinson (46), O'Hern and Martin (60),

Winter (91) , Ney and Armistead (59) , and Timmerhaus and Drickamer (81)

.

Figures 4, 5, and 6 illustrate the diffusion cell and auxiliary apparatus.

The electronic counting system, diagrammed in Fig. 7 and pictured in Fig. 8,

consisted of a semiconductor radiation detector and a scaling circuit.

2.5.1 Diffusion Cell and Auxiliary Apparatus

A top view of the Pyrex glass diffusion cell mounted in the unfilled

water bath is shown in Fig. 5. Referring to either Fig. 4 or Fig. 5, flask

I represents the side of the system charged with radioactive carbon dioxide

and containing the surface-barrier semiconductor radiation detector. The

detector was installed in flask I, suspended from two No. 22 tungsten wire

leads passing through a removable S 34/45 ground glass cover. The capillary

tube and a pressure equalization tube "11" provided vacuum tight connections

between flask I and flask II. The length and the internal diameter of the

precision bore capillary tube were found to be 10.120 cm and 0.1027 cm re-

spectively. The diameter was determined by measuring the length and mass

of a thread of mercury inside the tube (22) . High vacuum stopcocks were
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Fig. 6 Surface - barrier radiation detector before

insertion into operating position

.
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Fig. 7. Block diagram of complete counting system
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used to control gas flow through the six orifices in flask I and II, through,

the pressure equalization tube, and to the thermocouple vacuum gauge tube

"6" (See Appendix B for detailed experimental procedure) . Flasks I and II

had volumes of 545 ml and 512 ml, respectively. The capacities of these

flasks, up to the bottom of the ground glass joint (see Fig. 4), were deter-

mined by filling with a measured quantity of water.

A stiff molybdenum wire passing through a spherical ground glass joint

provided a lever arm for operation of the capillary tube valve "10". A small

piece of polyethylene was fastened to the end of the wire so that it covered

the end of the capillary tube when the valve was in the closed position.

Although this valve did not provide a vacuum-tight seal on the capillary

tube, it did reduce the flow through the tube to negligible quantities dur-

ing short waiting periods when the valve was closed. This capillary tube

valve, which differed from those of many earlier diffusion set-ups, was

designed to prevent any discontinuities or irregularities along the diffusion

path.

Radioactive and nonradioactive carbon dioxide flowed to flask I through

stopcocks "4" and "9" respectively. The nonradioactive gas (greater than

99% pure) was purified in a tube of Drierite, silica gel, and magnesium per-

chlorate. A glass ampoule supplied by Volk Radiochemical Company containing

i a 14
0.10 mc of CO having specific activity lmc/mM (0.01 % vol C

2
) ,

pro-

vided the trace gas for all measurements made. After the diffusion cell was

purged three times with natural carbon dioxide and the desired equilibrium

pressure obtained, trace gas was throttled into flask I through the Hoke

capillary valve "3".

A Kenney thermocouple vacuum gauge (Model KTG-1) was utilized in measur-



43

ing the carbon dioxide pressure in the diffusion cell. The installation of

gauge tube "6" in series with stopcock "5" and stopcock "11" allowed measure-

ment of the equilibrium pressure when stopcock "11" was open and of the

pressure in flask I when stopcock "11" was closed.

An upright McLeod vacuum gauge (range 0.05 to 500 microns) connected

to flask II, "14", was used in calibrating the thermocouple gauge. A linear

relationship was found to exist for the calibration between the gauge read-

ing and absolute pressure in the range of interest (0 - 500 microns) . The

vacuum gauge meter could be read approximately to ± 1% between 5 and 10

microns, to ± 5% between 70 and 200 microns, to ± 7% between 200 and 300

microns, and to ± 10% at higher pressures. The absolute accuracy and repro-

ducibility of the gauge was stated by the manufacturer to be ± 10% at 50

microns

.

A 12 gallon tank filled with water served as a constant temperature

(20°C) bath for the diffusion cell (95% immersed) . Constant temperature

regulation to ± 0.5°C was provided by a thermoregulator and relay which con-

trolled a low wattage heating element. Tap water (16.5 C) running through

a coiled copper tubing served as the heat sink.

The diffusion cell, together with all auxiliary equipment containing

radioactive gas, was housed in a high velocity hood to guard against exposure

to radiation. A liquid nitrogen trap installed between stopcock "13" and

the two-stage, oil sealed mechanical vacuum pump prevented the escape of

radioactive gas through the pump exhaust. The cold trap was periodically

14
removed to allow accumulated C O.-COj solid to sublime and be expelled

slowly through the hood exhaust.
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2.5.2 Electronic Counting System

The ability of an electronic counting system to detect low energy beta

particles, such as those emitted by carbon-14 (E - 156 kev (54)) has beenr ' J max

shown to be dependent upon the signal to noise ratio of the amplified detec-

tor output. If noise amplitude is high compared to signal amplitude, it is

usually not possible to separate the spurious counts from those that are real.

If, on the other hand, the signal-to-noise ratio is large it is possible to

electronically discriminate against the noise pulses and count only the pulses

produced by radiation incident upon the detector. For the case of polyener-

getic C beta particle detection, part of the real signal is always discrimi-

nated out with the noise. Thus, the detection system used in this experiment

was designed to develop a minimum amount of noise. It is most important that

the production of noise is prevented at that point in the counting system

where the real signal is the smallest, i.e., at the detector where the signal

is created.

Because the surface-barrier radiation detector was extremely sensitive

to electromagnetic radiation, it was necessary to construct an electrical

and a light shield surrounding the glass flask housing the detector. A

fine-mesh brass screen jacket built around flask I (see Fig. 6) and grounded

to the preamplifier chassis was effective in shielding against stray elect-

rical signals. The complete outer surface of flask I, except for small

parts of stopcocks "4", "5", and "9", was painted with black Glyptal paint.

Since the capillary tube served as a light pipe between the two flasks, part

of flask II was also painted. Detector surface leakage was avoided by hand-

ling the detector with extreme care. Thermal noise in the detector was

minimized. by maintaining the detector as a constant temperature.
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A five inch long microdot shielded cable connected the detector leads

to an ORTEC low noise preamplifier (Model 101) . This cable was made as

short as possible to reduce input capacitance since the signal voltage was

inversely proportional to the sum of the effective detector capacitance and

all other input capacitances. The preamplifier utilized a charge-sensitive

input circuit and a voltage amplifier provided with a negative feedback path

allowing it to simulate a charge-to-voltage transducer. Signals emerging

from the preamplifier had an amplitude of several millivolts.

The preamplifier was connected to the ORTEC low noise amplifier (Model

201) through a shielded cable. This amplifier chassis contained the power

supplies, the 60 cycle test pulse generator, the discriminator bias cir-

cuit, and the main and post amplifiers. A microammeter measuring detector

current leakage and a Tektronix oscilloscope (Type 545) with visual display

of the amplified signal were used simultaneously to monitor the noise level

as the detector bias was increased. The proper discriminator setting was

selected by observing the scope display in the absence of a radioactive

source. The positive signal output of the post amplifier was inverted and

attenuated by a Tektronix power supply (Type 132) with CA plug in unit to

make it compatible with the 256 TMC multichannel analyzer (scaler mode)

.

A square wave from a Hewlett-Packard low frequency generator was used

as the external time base for the analyzer. The wave frequency was variable

between 0.001 and 150 cycles per second. The paper tape containing the

experimental data was printed with a Hewlett-Packard digital recorder (Model

561-B) . Serious ground loop and line transient problems were alleviated by

connecting all electronic equipment, excluding the scope, to a well regulated

Beckman power supply.
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2.6.0 Reduction of Data

2.6.1 Preparation of Data for Analysis

Several operations on the data were required before the computer pro-

gram could be applied to solve for the diffusion coefficient. It was, of

course, necessary to associate a time with the activity represented by each

channel of the multichannel analyzer. The dimensionless variables used in

the solution to the one dimensional diffusion equation required that the

14
counts per channel, which represented the concentration of C

2
in flask

I, be normalized to the count rate at time zero when no diffusion had

occurred. The technique for eliminating a pressure gradient in the diffusion

cell (see Appendix B) allowed some radioactive gas to flow into flask II and

thereby increased the equilibrium count rate to a value larger than that

predicted by the mathematical model. Thus, without violating any of the

assumptions made in the analysis, a background count rate was subtracted

from the data. The procedure for performing these operations is outlined

in the following paragraphs.

Before designating a time to each of the 256 counting rates produced
.

by the 256 channel analyzer, the data points were divided into groups of ten

and added. This procedure decreased the number of data points without al-

tering the profile of the diffusion process which had occurred and substan-

tially decreased the computer time required for the analysis. When some of

the channels in a group were missing because the analyzer "dropped" counts,

the counts present were added and their magnitude adjusted to represent ten

channels. The time associated with each group of counts was determined by

using the constant time increment per channel controlled by the time base
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generator. Each group was given the time associated with its middle chan-

nel. A sample set of analyzer output and the corresponding reduced data

are given in Tables I and II.

The unequal volumes of flasks I and II caused the normalized equili-

brium concentration, C /Cn , to equal 0.51562 if flask II contained no radio-

14
active gas at time zero. Since in the actual experiment some C C>

2
did

escape to flask II before the zero-time concentration in flask I was mea-

sured, the experimental normalized equilibrium concentration was larger

than 0.51562, e.g., 0.5950 in the sample data set. In adjusting the data

to fit the model a constant, x, was subtracted from each number of counts.

The constant was determined by using the following relationship

(Cts(») - x)/(Cts(0) - x) - 0.51562 (31)

where the equilibrium number of counts, Cts(«), was taken as the average

of the last several data points at which the diffusion process had reached

equilibrium. After subtracting the "background" count from each datum

point, the data were normalized by dividing each by the corrected number

of counts at zero time. A sample set of normalized concentration versus

time data is given in Table III. It is noted that the data in Table I, II,

and III correspond to a common experimental run at a pressure of 210 microns.

An application of least squares analysis to the sample data yielded 319.4

2 '

cm /sec for the diffusion coefficient.

2.6.2 Error Associated with the Determination of

D by Least Squares Analysis

Errors incurred in the experimental measurements of count rate caused

considerable scatter of the data about the mathematical curve representing
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Table 1. Sample multichannel analyzer output

Channel Counts Channel Counts

1 0000 47 1576

2 2057 48 1614

3 2062 49 1526

4 2110 50 1611

5 0013 51 1580

6 2051 52 1526

7 2021 53 1600

8 2017 54 1543

9 1185 55 1522

10 1672 56 1576

11 1974 57 1558

12 1848 58 1533

13 1538 • 59 1485

14 1800 60 1548

15 1932 61 1503

16 1910 62 1493

17 1855 63 1595

18 1842 64 1492

19 1868 65 0399

20 1851 66 0160

21 1832 67 1508

22 1833 68 1544

23 1720 69 1436
,

24 1729 70 0442

25 1756 71 1476

26 0694 72 1506

27 1802 73 0008

28 1743 74 1448

29 1720 75 1484

30 1815 76 1483

31 1707 77 0384

32 1712 78 0426

33 1701 79 1398

34 1730 80 1426

35 1697 81 1407

36 1713 82 1417

37 1633 83 1411

38 1707 84 1424

39 1729 85 1436

40 1593 86 1392

41 1625 87 1354

42 1703 88 1409 •

43 1611 89 1355

44 1595 90 1384

45 1646 91 1351
46 1588 92

t

1379
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Table I (continued)

Channel Counts Channel Counts

93 1390 139 1296
94 1351 140 1307
95 1363 141 0007
96 1395 142 1298
97 1360 143 1312
98 1328 144 1328

99 1432 145 1310
100 1404 146 0212
101 1340 147 1272
102 1373 148 1289

103 1375 149 0201
104 1414 150 1298
105 1326 151 1258
106 1381 152 1264
107 1367 153 1315

108 1338 154 0226
109 1366 155 1326

110 1327 156 1282

111 1374 157 1284

112 1355 158 1292

113 1345 159 1253

114 1339 160 1288

115 1305 161 1255

116 1313 162 1302

117 1335 163 1257

118 1322 164 1267

119 1404 165 1207

120 1305 166 1239

121 1343 167 1280

122 1307 168 1352
123 1295 169 1208
124 1350 170 0130
125 1311 171 1299
126 1327 172 1300

127 1294 173 0223 .

128 1229 174 1309
129 1252 175 1266

130 0018 176 1287

131 1284 177 1300
132 1329 178 1260

133 1284 179 1251

134 1333 180 1207
135 1345 181 1183
136 1317 182 1307
137 1296 183 1282
138 0000 184 1247
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Table I (continued)

Channel Counts Channel Counts

185 1280 229 1116

186 1298 230 0143

187 1273 231 1184

188 1198 232 1240

189 1257 233 0187

190 1256 234 1153

191 1262 235 1202

192 1272
' 236 1270

193 0000 237 1205

194 0000 238 1287

195 1248 239 1240

196 1217 240 1275

197 0000 241 1182

198 0008 242 1226

199 1230 243 1244

200 1250 244 1226

201 0132 245 1219

202 0032 246 1276

203 1262 247 1229

204 1239 248 1240

205 0000 249 1242

206 0012 250 1238

207 1302 251 1194

208 1292 252 1296

209 1265 253 1186

210 1281 254 1201

211 1240 255 1281

212 1230 256 1254

213 1257

214 1281

215 1292 •

216 1238
217 0022

218 0180

219 1256

220 1251

221 0278
222 0154
223 1267

224 1195
225 1182
226 0245
227 1213

228 1242
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Table II. Sample set of counts versus time data

taken from the analyzer output

Counts Time (sec) Counts Time (sec)

20763 12947 2520

18038 120 13080 2720

18196 320 11278 2920

17364 520 12687 3120

16555 720 12815 3320

15686 920 12603 3520

15314 1120 12580 3720

14860 1320 12393 3920

14252 1520 12711 4120

13728 1720 12313 4320

13747 1920 11929 4520

13497 2120 12344 4720

13285 2320
•

Table III. Sample set of normalized data with

background subtracted used in the

determination of D.

Normalized Normalized

Counts Time (sec) Counts Time (sec)

1.00000 .5521 2520

.8433 120 .5582 2720

.8524 320 .4546 2920

.8045 520 .5356 3120

.7580 720 .5430 3320

.7080 920 .5308 3520

.6866 1120 .5294 3720

.6605 1320 .4959 3920

.6256 1520 .5145 4120

.5955 1720 .4*909 4320

.5965 1920 .4700 4520

.5822 2120 .4953 4720

.5700 2320
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the diffusion process. A normal distribution was assumed for errors in

measurement of count rat' while time measurements were assumed to have

negligible error. The -accuracy of a determination of the diffusion coef-

ficient was decreased by these errors. Confidence limits on the individual

diffusion coefficients were based upon the residues of the curve from which

each D was determined. An explanation of the method employed is given in

this section.

Given the relationship

X = f(t,D) (32)

where D is a dependent variable of the measured quantities X and t, the error

of D due to errors in measurement is given by the theory of propagation of

errors. Letting D equal diffusion coefficient, t equal time, X equal nor-

malized count rate, and variances of the quantities X, D, and t equal

2 2 2
o , o , and o , respectively, the relationship given is

•,
2 <^V + <^>

2

\- <»>

2
Since o can be set equal to zero if the measurement of t has negligible

error, the variance of D calculated from N data points is given as

2-,-l

>S >S &V> Y <»>

Using Eq. (34) and the "t test" it is possible to ascribe a confidence inter-

val to the D value.

2
BrowriLee (81) has presented a formula for an estimate -of a based upon

the residuals between the least squares fit and the data. The best estimate

of the variance of X is given by

N
2 ,„ x -1

o
x

(N-c)
-J

-

I (Xc
±

- Xe^ (35)
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2
where (N-c) number of degrees of freedom associated with o

c e number of variables, which was one for this analysis.

Thus, from Eqs. (34) and (35) the standard deviation for D is

o
D

- {(N-l)-
1 ^ (XCi - Xei)

2

[£ (iig^
]

} (36)

A 67 percent confidence limit corresponding to one standard deviation was

placed on the diffusion coefficient values by using the "t test" with the

appropriate number of degrees of freedom. The diffusion coefficient was

reported as

D ± t*o
D

where t* was taken from a table of the "t" distribution.
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3.0 RESULTS AND DISCUSSION

3.1 General Discussion

The purpose of this study was to demonstrate the feasibility of measur-

ing diffusion coefficients with a tracer technique in a modified Ney-Armistead

cell containing a semiconductor detector. The apparatus was used to measure

diffusion coefficients in the transition diffusion regime because very lit-

tle data exist for diffusion at pressures which cause transitional behavior

to occur. Results given in this section illustrate the success of the experi-

mental method employed. A sample set of raw data for a typical diffusion run

are presented in Table III.

Experimentally determined self-diffusion coefficients in the transition

pressure range for carbon dioxide at 20°C are presented in Table IV and Fig.

9. These results have been compared with theoretical values' of D
e

for Bosan-

quet's additive resistance law and Wheeler's empirical relationship given in

Eqs. (16) and (17), respectively. Values of Du used in the theoretical cal-

culations were taken from the theory of Chapman and Cowling (see Eq. (7))

while those for D. were calculated by Eq. (11). To simplify calculations,

D was evaluated for p - 760 mm and T = 39.6°C and a knowledge of the inverse

relationship between D., and p and of the proportionality between Dn and

T
3/2

was applied to the calculation of Dn at reduced temperatures and pres-

sures. All diffusion data were taken at 20°C. The reported experimental

values of D were calculated from Eq. (24) using experimental measurements
e

of D
12 , the diffusion coefficient of C

l4
2

in C0
2

. Using the atomic masses

14.008 for C
1A

, 12.010 for C, and 16.000 for 0, the correction factor was

1.011.
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Table IV. Experimental and itheoretical results for
the self-diffusion icoefficient of carbon
dioxide in the transition pressure range

Run P
2

D (cm /sec) D (cm
2

,

/sec)
2

D (cm /sec)
2

D (cm /sec)
No Microns

c
12

e e e

Experimental Experimental
self-diffusion

Bosanquet Wheeler

1 10 868 • 878 + 63 1085.5 1160.3
2 12 873 883 + 110 1057.6 1143.3
3 16 982 993 + 68 1005.6 1110.1
4 17 820 829 + 52 993.6 1102.1
5 28 804 813 + 50 876.8 1018.3
6 31 1111 1123 + 109 849.6 997.0
7 36 1050 1062 + 94 807.8 962.8
8 50 742 750 + 68 710.0 875.5
9 52 782 791 + 35 697.9 863.9

10 57 919 930 + 81 669.4 936.0
11 64 641 648 + 26 633.3 799.0
12 68 664 672 + 27 614.3 778.9
13 86 763 772 + 31 545.0 701.3
14 87 803 812 + 34 537.8 693.0
15 90 584 591 + 27 527.5 680.7
16 95 602 608 + 22 511.0 661.0
17 99 611 618 + 40 498.6 645.7
18 106 565 572 + 22 478.3 620.4
19 123 608 615 + 26 435.2 565.0
20 128 451 456 + 25 423.9 550.1
21 161 469 474 + 13 362.2 466.0
22 . 167 369 373 + 8 352.9 452.9
23 167 326 329 + 11 352.9 452.9
24 191 392 396 + 8 319.9 406.4
25 210 319 323 + 15 297.8 374.9
26 242 278 282 + 7 266.8 330.7
27 260 283 286 + 10 252.1 309.7
28 340 254 256 + 7 202.4 240.1
29 409 213 215 + 8 172.9 200.3

. 30 417 237 240 + 22 170.1 196.5
31 477 201 203 + 6 151.3 172.0

•
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The deviation reported for each experimental diffusion coefficient was

the standard deviation which corresponds to 67% confidence limits. This

deviation reflects the accuracy of the least squares fit of the data. It

is not a complete measure of the accuracy of the diffusion coefficient, since

as is shown subsequently, the accuracy of the diffusion coefficient for a

selected pressure depends upon accuracy in the knowledge of pressure and

certain system parameters. These standard deviations represent errors of

approximately 3.5% at pressures higher than 50 microns and errors from 6 to

12% for data below 50 microns.

The degree of agreement between experiment and theory is shown in Fig.

9. At pressures greater than 40 microns experimental diffusion coefficients

were in general well within the limits set by the theories of Bosanquet and

Wheeler. Such observation is convincing evidence that this experimental tech-

nique offers promise as a research tool for the study of transition range

diffusion. Four experimental values were less than those predicted by the
^

additive resistance law at pressures of 10-30 microns, while two data points

between 30 and 50 microns were larger than the expected values. It is noted

that this scatter in the data occurs on the low pressure side of the transi-

tion range where Knudsen diffusion is predominant and the diffusion process

is quite fast. This fact was used to explain the disagreement between ex-

periment and theory over this range.

Most previous investigators suggest that Bosanquet' s theoretical rela-

tionship gives the best estimate of transition range diffusion coefficients

while others prefer Wheeler's empirical relationship. In view of this, one

would expect close agreement between the theoretical curves presented and
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the experimental data. Since no experimental D,. values for transitional

self-diffusion of C0_ in a diffusion cell with well defined geometry have

been reported, it is impossible to compare these results with the work of

others. The analysis of possible errors in measurement is discussed below..

Pressure control and measurement accounted for the largest single

source of experimental error. As was discussed in section 2.5.1, accurate

reading of the gauge dial was impossible and reproducibility of the gauge

readings was no better than ± 10%. While the pressure measurement was not

an input to the diffusion coefficient determination, it was used as the

dependent variable in the functional relationship between D... and p presented

in Fig. 9. These factors could very well account for much of the scatter of

D-, values above 50 microns. The absence of reproducibility and the possible
'

presence of gauge tube drift at pressures below 20 microns might account for

some error in the low D..
1
values for that range.

The technique applied to eliminate a pressure gradient in the diffusion

cell after charging with the tracer gas is presented in Appendix C. Pres-

sure readings in flask 1 at zero and "equilibrium" times indicated that for

several runs a slight pressure gradient did exist. Any existing pressure

gradient would have increased the measured diffusion coefficient. This

effect was most likely at the higher pressures since more time would have

been required to equalize the pressures by the technique employed. A facility

for measuring the pressure in flask 11 would have been useful to prevent any

question about the elimination of a pressure gradient.

The capillary tube valve used to prevent diffusion through the tube

before the diffusion run was started did not provide a vacuum tight seal.

14
It is possible that a measurable quantity of C diffused out of flask 1
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while the initial concentration was being measured. This would have caused

a decrease in the measured diffusion coefficient. While it is unlikely that

such an error would have been introduced at pressures above 50 microns, it

is possible that this effect distorted measurements at lower pressures where

diffusion through tiny openings is quite rapid. The surprisingly low values

reported for D... at pressures below 20 microns may be partially explained

by this source of error. An additional explanation of these low values may

be the statistical error in the radioactive count rate associated with the

decrease in number of C
14

2
molecules present at the lower pressures. The

standard deviation for these diffusion coefficients illustrate the effect

of reduced count rate. Both of these sources of error could be lessened

by making a modified capillary valve and by using a trace gas with higher

specific activity.

Calculations were performed on a set of theoretical concentration

2

versus time data for L - 10.0 cm, R = 0.0513 cm and D - 95 cm /sec to demon-

strate the effect of inaccurate volume and effective tube length measurements

upon the measured diffusion coefficient. A 5 percent change in the theo-

retical tube length caused a corresponding change of 4 percent in the

measured diffusion coefficient. A volume measurement of flask I in error

by 2 percent (approximately 11 cc) caused a corresponding error in the dif-

fusion coefficient of 2.4 percent. In measuring the volumes of the experi- .

mental flasks with water some error was probably introduced by the presence

of flask side arms and the solid state detectors. These volume measure-

ments could not have been in error by more than 5 cc (0.9 percent). The

measured tube length was adjusted by applying the Rayleigh end-correction

which is the accepted procedure for determining the effective tube length.
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This correction does not allow for expected changes in the diffusion length

as Knudsen diffusion becomes predominant. Presently no relationship exists

for the change in effective tube length as a function of pressure.

It should be mentioned that the presence of trace gas in flask II at

time zero required an adjustment in the data obtained to make it satisfy

the mathematical model. The adjustment consisted of subtracting a back-

ground count from all count rate measurements. It was believed that this

operation did not affect the results.

3.2 Conclusion

The discussion and results presented above have shown the advantages

and disadvantages of this experimental apparatus. Based upon the results

it is possible to arrive at several conclusions concerning the use of this

experimental technique.

The feasibility of using a semiconductor detector in a modified Ney-r

Armistead diffusion cell to measure diffusion coefficients has been demon-

strated. While the measurements taken were designed primarily to perform

a feasibility study of the experimental method, transition range diffusion

coefficients for CO- were found to compare within 10 percent at pressures

from 50 to 400 microns with the theories of Bosanquet and Wheeler. This

fact suggests that refinement of the apparatus will produce a useful re-

search tool to be used in studying the mechanism of diffusion in the

transition pressure range. As has been discussed previously, the present

day need for such a device is great.
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4.0 SUGGESTIONS FOR FURTHER STUDY

A first extension of this study would be to modify the diffusion cell

as suggested in section 3.0. This would include the installation of a

tighter valve on the capillary tube and a pressure gauge in flask. II. It

would be advisable to use high precision pressure gauges in order to get

the most accurate pressure measurements possible. The flask volumes should

be measured with a gas instead of a liquid and the constant temperature

control should be improved to within ± 0.01°C. If smaller bore capillary

tubes are used the diameter should be determined by optical or viscosity

measurements

.

Since the technique for removing a pressure gradient across the capillary

tube caused radioactive gas to enter flask II, the data had to be modified

to fit the mathematical model. The one-dimensional diffusion equation should

be re-solved for the same boundary conditions modified to include the assump-

tion of an initial concentration in flask II. The use of two detectors, one

in each flask, and a new mathematical model ignoring the tube volume would

simplify the reduction of data and allow several diffusion measurements dur-

ing one run, but greatly complicate the electronics.

After improving the accuracy of this experimental method, self-diffusion

coefficients could be determined as a function of pressure or temperature for

many gases, e.g., surfur dioxide, methane and other hydrocarbons. The measure-

ment of binary diffusion coefficients and the study of simultaneous pressure

and concentration gradient diffusion could be accomplished without modifica-

tion of the experimental apparatus. Transitional flow parameters have been

measured for only a very few gases. By changing the capillary tube it would



62

be possible to determine the effect of the tube length upon the measure-

ment of the diffusion coefficients. Such a study might lead to an under-

standing of the mechanism for diffusion in the transition pressure range.

By the use of multiple tracers, future work could include the study of

ternary diffusion.
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7.1 APPENDIX A

Solution to the D fferential Equation for

Diffusion Thro>" i a Capillary Tube

i

Based upon the assumption thai, ick's second law is valid for the pro-

cess of gaseous diffusion in a capillary tube, the partial differential

equation which described gaseous diffusion in the system under study was

3C _ 3
2
C

92

(A-l)

In this section, Eq. (A-l) is solved by the method of Laplace transforms (92)

for the three following boundary conditions:

t - 0, z>0, C (A-2)

- 0, c ,c -v-1

z-0 ° 1
J

't
„ „2 3C

"DirR
Si

dt

z -

(A^3)

r
L

z L
* C

o
V
l
V
2

1
" W?

z «
L

L
CttR dz. (A-4)t>0, z = L, C

To transform Eq. (A-l) and the boundary, conditions to dimensionless

o

equations let X - C/C , £ - z/L, and t - tD/L . These definitions, when

applied to the format of Eqs. (A-l), (A-2), (A-3) , and (A-4), yield

.2.
3X(t.Q . 9 X(t.Q

3T H2
'

while the boundary conditions become

T - 0, 5>0, X -

rx

T>0, ? 0, X 1 - o
3X(t,0) .

3£

(A-5)

(A-6)

(A-7)
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r>0, e - 1,

(T

X(t,1) - - B{
9X(t,0) _

95
x(T,e)de} (A-8)

2 1 2-1
where = uR LV and a = ttR LV

X
.

boundary conditions (A-6) , (A-7)

,

Equation (A-5) , with the accompanying

and (A-8), is transformed with respect to the independent variable t, thus

letting

^T[x(x,o] - X(s,0,

and using Eq. (A-6), Eq. (A-5) becomes

sX(s,£) " 2
(A-9)

Solving this ordinary second order differential equation, it is found

that

X(s,0 = A(s) sinh(XO + B(s) cosh(XO (A-10)

!/ 2
where X s

To determine the coefficient functions A(s) and B(s) it is observed that the

Laplace transforms of boundary conditions (A-7) and (A-8) are

(A-ll)-1 -1 dX(s.O)
t>0, 5 = 0, X(s,0) = s + as

d £

and

a -1 dX(s.O) R
t>o, e. =» i, x(s,i) - - 6s —Je " e X(s,Od5- (A-12)

Taking the derivative of Eq. (A-10) and applying boundary condition (A-ll),

B(s) = s +
-1 ,

-1 dX(s.O)
d5

- s
_1 + as"

1 [A(s)X cosh(0) + B(s) sinh(0)] (A-13)
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thus

IXs)-*-
1

Ue) A"
1

.
(A-13A)

Applying boundary condition (A-12) to Eq. (A-10)

A(s) sinh(Xl) + (s » aA(s)X~ ) cosh(Xl) =

- 6A(s)X
_1

-8 [a(s) sinh(XO + (s
_1

aA(s)X
_1

cosh(XO] «• C^-l*)

After performing the indicated integration and simplification of Eq. (A-14)

,

the coefficient function A(s) is found to have the form

A(s) - - X
_1

(X coshX + S sinhX) [(aS + s) sinhX +

(ctB + BX) coshX]"
1

.
^A_15)

Substituting the expressions for A(s) and B(s) into Eq. (A-10) and simplify-

ing gives the solution for X(s,0 as a function of the variables s and K

as follows:

X(s,5) = s"
1 cosh(XO

-{s
_1

(X cosh X + 3 sinh X) (X sinh(XO + ot cosh(XO)

f(aB + s)sinh X + (a + B)X cosh x] }.
(A-16)

In order to use one of Heaviside's expansion theorems in finding the

inverse of Eq. (A-16), it is necessary to find the unrepeated roots of both

the first and second terms of the equation. Clearly, zero is a root of both

terms and only the second term has non-zero roots of higher order. These

roots are found by equating the denominator of the second term to zero as

follows:

s|"(aB + s) sinh X + (a + B)X cosh xj - (A-17)
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which leads to the expression

tanh X = - X
n
(o+ B)/(aB+ X

2
) . <A"18>

n n

Equation (A-18) has an infinite number of imaginary roots designated by ^
Finding the inverse of Eq. (A-16) by Heaviside's formula using the roots

given above yields

« -^•"i
r
ist u

»*' r* I zero i

where

X(t,
:erm

root

>»'-l f2nd term
+^ [zero root J

1^-1 {"2nd term
+0^ negative roots

J

-1 Plst term m x
"^

I zero root

J

-1 ("2nd term = Q/
J

<KT zero root!
x
2 -o

(A-19)

(A-20)

(A-21)

where

X
2
T

6 = -(X cosh X + B sinh X)(X sinh (XO + a cosh (XO«

<|>
- (aB + X

2
)sinh X + X(a + B)cosh X

+ X
2

f(2X)"
1
(aB + X

2 + a + B)cosh X + (l/2(a + B)+l)sinh x]

so that

6/t = - a(l + B)/(aB + a + 6)

(A-22)

X -1 2nd term
negative roots n=l n n

(A-23)

where

X
2
x

6* = X (cosh X + B sinh X) (X sinh(X £) + <*' cosh (X
nO> .

n n n n n
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a* - \
2

f(2Xn)
-1

(a + B + oB + A ) cosh X

n n L

+ (l/2(a + g) + l)sinh xl .

Equation (A-23) is simplified by redefining X* to have a positive value.

This operation requires the substitution of -X* for X* in Eqs. (A-18) and

(A-23). Using the identities

tanh ix = i tan x,

cosh ix - cos x,

sinh ix = i sin x,

and the definition for X*. causing X
n

to equal iX
n>

Eqs. (A-18) and (A-23)

reduce to

tan X
n

- - X
n
(a + 8)/(aB - X

n)
(A-24)

and

~r
-i 2nd term

negative roots
-

I ei(xn>
e.T)/^(An.e,x)

n-l

(A-25)

where

8^(X
n
,e,T) = e

_V [ocos(X
nO- *

n
sin<X

n5)]

fx cos X +8 sin X
"

n n n
j

cos X + S sin X
r

.-1,

*n
(Xn^'

T) ~ n * (2V ( ° + 6 + ° S " V C°8
*n

- [l/2(o + 6) + l] sin Xj .

The eigenvalues X
fl

of Eq. (A-24) are solved accurately by Newton's method

(41) given a close approximation to the actual X
r
values. The first order

solution \
1

is given by
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tan X. » X
x

- X
x
(o + S)/(X

2
- aB)

*

1/2
so that X, « (o + 3 + OB) •

Approximations to higher order values of X
r

are obtained by use of the

algorithm X X n + tr.
n n— J.

Thus the solution to the partial differential equation (A-5) ,
given

by Eq. (A-19) , can be written

00

X(t,0 - 3/(a + 6 + 00) - I *n (V 5 * T)
*n

(X
n*

C ' T)
(A"26)

n=l

where X
2

is a solution to the transcendental equation (A-24) .
Equation

n

(A-26) shows the change in concentration gradient at a distance variable

point z with respect to time as a function of the system parameters V^V^

R,L, and D.
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7.2 APPENDIX B

Experimental Procedure

Several preparatory operations were necessary to insure a knowledge

of the conditions existing upon the diffusion cell (37) .
The constant tem-

perature bath was set to maintain a constant temperature (20°C) by adjusting

the thermoregulator to the appropriate setting. It was observed that the

control maintained the desired temperature with variations of ± 0.5°C.

After carefully installing the surface-barrier detector the system was

outgassed with all valves except "9" open (See Fig. 4). Three days of

outgassing caused the pressure increase with stopcock "13" closed, due to

leakage and desorption of gases from the system walls, to be less than 0.1

14

microns per four hour period at a pressure of 1 micron. With the C
2 -,

charging flask "1" evacuated, stopcock "2" and needle valve "3" were closed.

The charging flask containing the ampoule of C
l4

2
was removed, the ampoule

tip was broken with a short glass rod housed in the charging flask, and the

flask was again connected to the vacuum system. The system was purged with

C0
2
and evacuated to 15 microns four times before beginning the thermocouple

vacuum gauge calibration. This calibration was performed by charging the

diffusion cell with CO,,, evacuating to the desired pressure, closing stop-

cock "13", and allowing 10 minutes for the system to reach an equilibrium

pressure throughout before the pressure was measured with the McLeod gauge

(26). Calibration data points were taken from 1 to 500 microns and used

to construct a calibration curve for the thermocouple gauge. Each day

before operating the diffusion cell the vacuum system was checked for leaks
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and periodically the calibration was "spot" checked to determine whether or

not the thermocouple gauge was drifting. No drift was noticed if the gauge

was turned on at least one hour before operating, but the reproducibility

of the pressure readings varied considerably when the system was alternately

charged and evacuated.

It was necessary to use a well-regulated power source for the amplifiers,

the detector bias supply, the reverse bias discriminator, the time base gene-

rator, and the multichannel analyzer to remove transients and ground loop

noises from the electronics system. When installing the electronics all plug

ground lines were connected to receptacle ground lines and a small grounded

copper cable was soldered to each component chassis. The diffusion cell was

charged with CO and evacuated to approximately 200 microns before slowly

raising the detector bias voltage. To determine the proper detector bias

setting the oscilloscope and microammeter were employed while the preamplifier

was set for x6 amplification, the main and post amplifiers for x4, and the

discriminator for 0.0 volts discrimination. The noise signal had an ampli-

tude of several volts and a frequency of 120 cycles/sec before the electrical

shield was placed around flask I housing the detector (See Fig. 2). The

minimum noise signal was then found to occur at a detector bias setting of

50 volts. This noise signal could be totally removed by a discriminator

setting of 0.21. The frequency of the square wave used to trigger the chan-

nel advance was calibrated with a stopwatch.

The actual diffusion data was taken by performing the following steps:

1. The system was evacuated to less than 1 micron and needle valve

"3" closed. Stopcock "14" was closed while the system was purged

with CO, through stopcock "9" three times and evacuated to the
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desired pressure for the diffusion measurement.

2. Stopcock "13" was closed. After t.ne gas reached equilibrium in

the flasks the capillary valve "10" was closed and stopcock "2"

was cracked momentarily to allow radioactive gas to fill the

volume between "2" and "3". The capillary valve "10" was posi-

tioned by centering the ground glass joint handle between three

stationary reference points.

3. The frequency of the square wave was set to a predetermined rate

appropriate to the gas pressure in the flasks. This varied be-

tween 0.2 and 0.025 cycles per second. With the preamplifier,

main and post amplifiers set at x6, x4, and x4, respectively,

the detector bias was applied and all background counts eliminated

by observing the oscilloscope and changing the discriminator ad-

justment. The correct discriminator setting varied between 0.19

and 0.24.

4. All electronic settings, the pressure of the gas, and the tempera-

ture of the water were recorded.

5. With stopcock "4" open, radioactive carbon dioxide was throttled

slowly into flask I. At the instant pulses were observed on the

oscilloscope, stopcock "4" and the needle valve were closed. After

a period of approximately 10 seconds, stopcocks "11", "5", and "12"

were closed, the pressure was noted, and the multichannel analyzer

and a stopwatch were started. After allowing several scaling chan-

nels to collect counts without diffusion occurring, the capillary

valve was opened and the time noted.

6. After counts were recorded in all 256 channels, the digital printer
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automatically printed each channel number with its corresponding

number of counts on a paper tape. Using the visual display of the

analyzer it was possible to evaluate the apparent reliability of

the data and whether or not equilibrium conditions had been reached,

Another trace of the activity as a function of time was provided

for those runs in which equilibrium had not been reached. The

final gas, pressure, and water temperature were recorded after

stopcocks "5", "11", and "12" were opened.
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7.3 APPENDIX C

Data Analysis for the Diffusion Coefficient

The values of the diffusion coefficient for each run were determined

by finding the least squares fit of a mathematical representation of the

diffusion process to the concentration versus time data. The solution (see

Eq. 30) to the diffusion equation which described the process occurring in

the diffusion cell was nonlinear in D; consequently, it was necessary to

employ an iterative procedure in determining the least squares fit of the

data. The application of least squares analysis to the data, the numerical

approximations utilized in constructing the computer program, and the com-

puter program used to perform the iterations are discussed in the following

paragraphs.

7.3.1 Least Squares Analysis and Numerical Approximations

In the method of least squares (99) the sum of the squares of deviations,

Re, between the observed values, Xe., and the predictions, Xc , are minimized

to find the values of Xc. which give the minimum error. Applying this me-

thod of analysis to the diffusion data the expression for the residue, Re,

is

N
Re =

I
(Xe - Xc )* (C-l)

i=l

where Xe^ and Xc. are the i experimental and calculated values of X at

See Nomenclature, p. vi.
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time ^ respectively, and N is the number of data points. The minimum squared

error is found by differentiating Re with respect to D and setting the re-

sultant equal to zero; thus,

9Re
3D

N 3Xc
-2 J (xe

±
- Xc

±
> -j± - 0. (C-2)

i-1

Setting f
Q

equal to rrr— after dividing through by minus two and approximating

f
D

by the first tw0 terms of a Taylor's series expansion (82) the result is

3f.

f
D
=f

D
+AD

3D
o

D

and where f should be zero by Eq. (C-2) so that

-1 -1

AD = - f.
D

o •-
3D

To evaluate the right hand member of Eq. (C-4) use

(C-3)

(C-4)

3f N

i=l
3D

3
2
Xc

(Xe
±

- Xc
±
)

3D

3Xc. 2
i _

(
i)

v 3D ' (C-5)

where

3Xc
i

N
2 ? + +

r - I ttS/i/Ka^e.o/^tt,,,?,!)
i-l

3D n" n' n n (C-6)

3
2
Xc1 Xc

i
N

(C-7)

The value of D with minimum error can be determined by using the algorithm

D
n+1

- D
q
+ AD and iterating upon D until AD is sufficiently small.
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7.3.2 Computer Program

The least squares analysis was performed by using an IBM-1A10 computer.

The program was written in FORTRAN IV(83) and required approximately ten

minutes of computer time to yield a solution. A symbol table (see Table III)

and the object program containing explanatory comment statements are pre-

sented in this section. The main program, DATA ANALYSIS, which performed

the least squares analysis and one subroutine, XCALC, which computed Xe^^

constitute the two major divisions of the program.



Table V. Symbols used in the least squares

fit of the data
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Symbol Meaning

NSETS

NDATA

Z

R

XLO

XDO

VI

V2

ERR1

ERR2

XEXP(K)

T(K)

XC(1,1,J)

PXCD(J)

PXCDD(J)

XDIF(J)

RSIDU

SIGM2

PFDD

ADELD

G

Number of sets of data

Numbers of data points in a set

Distance variable along tube, Z

Radius of capillary tube, R

Effective length of capillary, tube, L

Diffusion coefficient, D

Volume of flask I

Volume of flask II

Error criterion for main program

Error criterion for subprogram

Normalized experimental count rate at data point K

Time associated with data point K

Xc. for XL(1) and XD(1) at time T(J) where J equals i

Partial derivative of Xc. with respect to D when J equals i

Second partial derivative of Xc. with respect to D when

J equals i

Difference between experimental and calculated values

Residue

Standard deviation of calculated diffusion coefficient

Partial derivative of f
Q
with respect to D

AD

L
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Table V (continued)

Symbol

D

T

SUM

DERD

SDERD

M

ALP

BET

XI

TAU

Z(I)

Meaning

D

Time, t

Xc
i

Analytical derivative of Xc with respect to D

Second partial derivative Xc
±
with respect to D

Mode control
= 1 for first SUM calculation
- 2 for all following SUM calculations

a

6

T

A where (I) corresponds to n
n
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C THIS PROGRAM PERFORMS A LEAST SQUARES ANALYSIS ON DIFFUSION DATA.

MONSS JOB DATA ANALYSIS J
MONSS COMT COMPILE, MISTLER NE DEPT, 10 PAGES, 15 MINUTES
MON$$ ASGN MGC16
MON$$ ASGN MJB,12
MONSS VCDE GO.TEST

S MCNSS EXEQ FORTRAN, ,,12,,,, DATANAL
C INPUT DATA ARE LISTED IN THE FOLLOWING ORDER—FIRST CARD,NSETS»
C Z*R,V1,V2,ERR1 * SECOND CARD,ERR2 * THIRD CARD»NDATA, XLO, XDO*
C AND ALL FOLLOWING CARDS, XEXP ( K ), T ( K ) . IF THERE ARE MORE THAN
C ONE SET OF DATA THE THIRD CARD IS REPEATED AND THE DATA CARDS
C ADDED.
C ***NSETS=NO. OF SETS OF DATA *** Z=DISTANCE VARIABLE
C ***NDATA=NO. OF DATA POINTS IN SET *** R=RADIUS OF TUBE
C ***XLO=EFFECTIVE DIFFUSION LENGTH *** Vl=VOLUME OF FLASK 1

C ***XDO=INITIAL GUESS OF D VALUE *** V2=VOLUME OF FLASK 2
C ***ERR]=ERROR CRITERION OF MAIM PROGRAM*** T(K)=TIME OF K DATA PT.
C ***FRR2=ERROR CRITFRION OF SUBPROGRAM
C ***XFXP(K)=NORMALIZED ACTIVITY AT EACH K DATA PT.

DIMENSION XEXP ( 40) ,T ( 40 ) ,XL ( 3 ) ,XD ( 3 ) ,XC( 3 ,3,40 ) ,PXCD(40) ,PXCDD(40)
B*XDIF(40)
COMMON R,V1,V2»Z,ERR1,ERR2

1 FORMAT(23H DIFFUSION COEFF I C I ENT= , E14. 8

)

2 FORMAT(2F12.8)
3 FORMAT( I5,5F15.7/E14.8)
4 FORMAT( I5,2F15.7)
5 FOPMAT( 7H NSETS= , I 5/5X ,2HZ= ,F10.4/5X , 2HR= ,F10.6/4X ,3HV1= ,F10 .4/4X
B,3iiV2=,F10.4/7H ERR1= , E14.8///6H XLO=,F10.4/6H XDO= , F10.4/7H ND
CATA=,15//18X,4HDATA,/6X,14HC0NC. GRAD1 ENT »7X »4HT I ME

)

6 FORMAT (1H »6X *F10.4 , 8X ,F10 . 4

)

7 FORMATC35H ITERATION DIFFUSION COEFFICI ENT= E14 .8

)

8 FORMAT(9H ADFLD= »E14. 8

)

9 F0RMAT(14H RESIDUE =,E14.8)
10 FORMAT

(

10X,1HT,13X,3HEXP»13X,2HXC)
11 F0RMAT{10X,F10.4,5X,F10.6,5X,F10.6)
12 F0RMAT(10X,12HSUM OF PXCD= , E14. 8 , 5X, 19HSUM OF SQRS OF PXCD»E14.8)
13 FORMAT(10X*7HSIGMA =,E14.8)
14 FORMAT( 1GX,7HSIGM2 =,E14.8)

READ(1,3)NSETS,Z»R»V1»V2*ERR1 ,ERR2
JSET=1

15 READ(1,4)NDATA,XLC,XD0
RFAD( 1,2) (XEXP (K),T(K) ,K=1,NDATA)
WRITE(3,5)NSETS,Z,R,V1,V2,ERR1 »XLO ,XDO*NDATA

24 WRITE(3»6) (XEXP(K) ,T(K) * K=1,NDATA)
C THE VALUES NEEDED FOR THE SUBPROGRAM FOLLOW.
C #*-#*****)<•##

25 XL( 1 )=XLO
XD(1)=XD0

C #**##**#*•##
C THE FOLLOWING CARD INITIALIZES THE SUBPROGRAM FOR THE FIRST XC.
C CALCULATION

CALL XCALF(0.,0.,0.,0.,0.,0.,1)
C THIS SECTION CALCULATES THE PARTIAL DERIVATIVES OF XC.
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c ***********
DC 20 J=1,NDATA

20 CALL XCALF(XL(1 ) »XD( 1) ,T< J) >XC(1,1>J) ,PXCD( J) »PXCDD( J) »2)

c ***********
c THIS SECTICN EVALUATES THE DIFFERENCES BETWEEN EXPERIMENTAL AND

c CALCULATED VALUES AND CCMPUTES THE RESIDUES FCR EACH ITERATION.

c ***********
DC 50 J=1,NDATA
XDIF(J)=XEXP( J)-XC( 1 ljJ)

50 CCNTINUE-
WR f TF(3»10)
WRiTE(3»ll) (T( J)»XEXP(J)'tXC(l»l»J) »J = 1»NDATA)
RSIDU=0.0
DC 30 J=1,NDATA

30 RSIDU=XDIF(J)**2 + RSIDU
WRITE(3»9)RSIDU

c ***********
c THIS SECTICN CALCULATES THE STANDARD DEVIATICN* SIGM2.

c ***********
DPXCD=0.0
SPXCD=0.0
DC 31 J=] »NDATA
DPXCD=PXCD( J)+DPXCD

31 SPXCD=(PXCD( J)**2)+SPXCD
WRITE(3»12)DPXCD»SPXCD
DATA=NDATA
SIGM2 = SQRT(RSIDU/( ( DATA-1 . ) *SPXCD ) )

WRITE(3*14)SIGM2
c ***********
c THIS SECTICN SUMS THE PARTIAL DERIVATIVES CF FD CVER ALL DATA

c PCINTS AND FINDS THE SUM CF THE FDC VALUES FCR EACH SET CF DATA.

c ***********
PFDD=0.0
FDC=0.0
DC 75 J=l .NDATA
PFDD= ( XDI F ( J ) *PXCDD ( J ) -PXCD ( J ) **2 ) +PFDD
FDC=XDIF( J)*PXCD( J)+FDC

c ***********
75 CCNTINUE

c THIS SECTICN CALCULATES THE DELTA D VALUE AND CHECKS TC SEE IF IT

c IS SUFFICIENTLY SMALL. IF IT IS TCC LARGE ADELD IS ADDED TC D

c AND ANCTHER ITERATICN IS PERFCRMED. WHEN IT IS SUFFICIENTLY SMALL
c THE D CALCULATION TERMINATES AND ANCTHER SET CF DATA IS READ IN.

c *********** *•

ADELD=-FDC/PFDD
WRITF(3»8) ADELD
IF(ABS(ADELD/XDC).GT.ERR1)GC TC 150

200 WPITF(3.1)XDC
IF( JSET.LT.NSETSJGC TC 201
GC TC 155

201 JSL"T =JSET+1
GC TC 15

150 XDC=XDO+ADELD
WRITE(3»7)XDC
GC TC 25

c ***********



89

155 ST~P
END

S MCNSS EXEO FORTRAN, ,, 12 ,», »XCALF

C THIS SUBPROGRAM CALCULATES THE VALUE OF XC GIVEN L, D, AND T.

SUBROUTINE XCALF ( G »D ,T ,SUM ,DERD ,SDERD,M

)

C ***G=EFFECTlVE TUBE LENGTH *** T=TIME
C ***D=DIFFUSlON COEFFICIENT *** R=RAOIUS OF CAPILLARY
C ***SUM=XC *** S=DISTANCE VARIABLE Z

C ***vi AND V2= VOLUMES OF FLASKS
DIMENSION Y(20) ,Z(20)
COMMON R,V1»V2»S»ERR1»ERR2

69 FCRMAT(22X»13HXCALC VALUE =,E14.8)
TANF(X)=SIN<X)/CCS(X )

c crppi y i = i /(C'>C (X)**2)
C THE FOLLOWING SECTION SETS L,D, AND T EQUAL TO ZERO DURING THE
C FIRST SUM CALCULATION FOR A SET OF INPUT DATA BUT RETAINS
C PREVIOUS VALUES OF L,D» AND T DURING OTHER SUM CALCULATIONS,
C THIS FACILITY IS PROVIDED TO HELP MINIMIZE THE NUMBER OF
C SOLUTIONS TO THE TRANSCENDENTAL EQUATION.
C #*#*## &#*##

GO TO (5,6) »M
5 GS=0.

DS = 0.

TS=0.

RETURN
C THIS SECTION EVALUATES ALPHA , BETA , X I , AND TAU AND DETERMINES
C WHETHER OR NOT IT IS NECESSARY TO OBTAIN A SOLUTION TO THE
C TRANSCENDENTAL EQUATION. IF IT IS NOT NECESSARY, THE PROGRAM
C PROCEEDS TO THE CALCULATION OF XC. OTHERWISE, A NEW EIGENVALUE
C IS CALCULATED.

6 ALP=3.141592654*(R**2)*G/V1
BET=( 3. 141592654* (R**2)*G) /V2
C=ALP+BET
Q=ALP*BET
E=C+Q
XI-S/G
A=UET/(Q+C)
TAU=T*D/(G**2)
1 = 1

SDERD=0.0
DFRD=0.0
DFRC<=0.0
SUM = A

IF(G.NE.GS) GO TO 270
IF(D.NE.DS) GO TO 270
GO TO 38 •

C THE FOLLOWING SECTION CALCULATES THE SOLUTION TO THE TRANSCENDENTAL
C EQUATION BY NEWTONS ITERATIVE METHOD.

270 DO 999 1=2,20
999 Y( I >=0.0

Y(l)=-1.0
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1 = 1

278 IF(Y( I ) )25*27,38
25 Y( 1 )=E

GO TO 200
27 Z( I )=Z( 1-1 )+3. 141592654

GC TC 28

200 Z(I )=SQRT(Y( I ) )

28 X = Z( I )

U=(Z( I >**2)-Q
W=U**2

C CARD 29 IS NEWTCNS FORMULA APPLIED TC THE TRANSCENDENTAL EQUATION.
2 9 Z( I )=X-( ( (W*TANF(Z( I ) ) )-(U*C*Z( I ) ) )/( ( U* ( U*SEC2F ( Z < I )

) -C ) ) + ( 2.*Z ( I

B)**2*C)))
Y( I )=Z( I )**2
IF(ARS( ( l.-X/Z( I ) ) ) .GT.FRR2) GC TC 28

r ****•*#*•«-«••»#

C THE FOLLOWING SECTION CALCULATES XCDERD,AND SDERD USING THE

C NUMBER OF TERMS NECESSARY TC SATISFY THE ERROR CRITERION. WHEN

C ADDITIONAL EIGENVALUES ARE NEEDED THE CONTROL RETURNS TC THE

C PRECEDING SECTION.
Q *#####**•#*#

38 H=SQRT(Y( I ) )

CK = Y( I )*TAU-
IF(CK-225. 0)39*39, 902

902 TERM=0.0
GC TC 42

3 9 TERM=( (l./(EXP(Y( I )*TAU) ) ) * ( H*CCS ( H ) + ( BET*S I N ( H ) ) )*( ( ALP*CCS ( H*X I

)

B)-(H*SIN(H*XI ))))/(Y(I)*(((l./(2.*H) )*(CCS(H) ) * ( C+Q-Y ( I ) ) )-( (SIN(H

C) )*(l. + ( .5*C) ) ) ) )

C DERD EQUALS THE FIRST DERIVATIVE OF XC WITH RESPECT TC D.

DFRD=(Y( I )*T/G**2)*TERM+DERD
DERCK=SDERD

C SDERD EQUALS THE SECOND DERIVATIVE OF XC WITH RESPECT TC D.

SDERD=-< (Yd )*T/G**2 )**2 )*TERM+SDERD
42 SU f, = SUM-TERM

IFiABS(DERCK/SDERD).GT.ERR2)GC TO 44

IF(ABS(TERM/SUM)-ERR2 ) 47 ,47,44
44 1=1+1

47

M

GO TO 2*^8

GS=G
DS = D

TS = T
#**#***##»*

RETURN
END
CN$$ EXEQ LINKLCAD

CALL DATANAL
CN$$ EXEQ DATANAL»MJB
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ABSTRACT

The purpose of this experimental study was to doiv.oar,trate the feasi-

bility of using a modified Ney-Armistead diffusion cell to obtain reliable

transition range diffusion coefficients for C0
2

at 20°C utilizing a radio-

active tracer technique. Existing theory concerning gaseous diffusion in

the bulk, Knudsen and transition pressure ranges was summarized. A survey

was presented on the advantages and disadvantages of all existing methods

for measuring diffusion coefficients. The properties and characteristics

of semiconductor detectors were discussed to show their applicability to

isotopic diffusion measurements in this type of diffusion apparatus. Con-

siderable care was taken in presenting the apparatus and calculational

procedures used to evaluate diffusion coefficients. A thorough analysis

of the potential sources of experimental error was made and recommendations

were presented for improving the system.

The diffusion apparatus used consisted of two flasks having volumes

of 545 and 512 cc joined by a 0.1027 cm I. D. and 10.12 cm long capillary

tube. The large flask contained a surface-barrier radiation detector. A

solution to the one dimensional diffusion equation was derived for diffusion

through this capillary tube using the effective diffusion length given by

the Rayleigh correction factor. Least squares analysis was applied to ob-

tain the diffusion coefficient measurement from the concentration versus

time data. The use of a semiconductor detector was shown to combine the

advantages of high counting efficiency and short time response to the con-

venience of internal detection of the tagged molecules. Diffusivity

measurements on C
14

demonstrated that this new apparatus can be used as

a valuable research tool in the study of transition range diffusion.



Reported self-diffusion coefficients of CO- at 20 C between 50 and

400 microns agreed within 10 percent with the theory of Bosanquet and

Wheeler for transition range diffusion. Measurements at pressures below

50 microns disagreed with theory by as much as 16 percent. The percentage

error of the diffusion coefficients predicted by the residues of the least

squares fit were approximately 3.5 percent at pressures between 50 and

400 microns while for lower pressures they were as high as 12 percent.

These errors suggested the need for refinements in the capillary tube

valve and the pressure measuring device.


