
SIMULTANEOUSLY LIFTING MULTIPLE SETS

IN BINARY KNAPSACK INTEGER PROGRAMS

by

LAUREN ASHLEY KUBIK

B.S., Kansas State University, 2009

A THESIS

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial and Manufacturing Systems Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2009

Approved by:

Major Professor

Dr. Todd Easton

ABSTRACT

Integer programs (IPs) are mathematical models that can provide organizations with

the ability to optimally obtain their goals through appropriate utilization and allocation

of available resources. Unfortunately, IPs are NP-complete in the strong sense, and

many integer programs cannot be solved.

Introduced by Gomory, lifting is a technique that takes a valid inequality and strength-

ens it. Lifting can result in facet defining inequalities, which are the theoretically

strongest inequalities; because of this, lifting techniques are commonly used in com-

mercial IP software to reduce the time required to solve an IP.

This thesis introduces two new algorithms for exact simultaneous up lifting multi-

ple sets into binary knapsack problems and introduces sequential simultaneous lifting.

The Dynamic Programming Multiple Lifting Set Algorithm (DPMLSA) is a pseudo-

polynomial time algorithm bounded by O(nb) effort that can exactly uplift an arbitrary

number of sets. The Three Set Simultaneous Lifting Algorithm (TSSLA) is a polyno-

mial time algorithm bounded by O(n2) and can exact simultaneously up lift three sets.

The simultaneously lifted inequalities generated by the DPMLSA and the TSSLA can

be facet defining, and neither algorithm requires starting with a minimal cover.

A brief computational study shows that the DPMLSA is fast and required an average

of only 0.070 seconds. The computational study also shows these sequential simultane-

ously lifted inequalities are useful, as the solution time decreased by an overall average

of 18.4%. Therefore, implementing the DPMLSA should be beneficial for large IPs.

Contents

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Integer Programming . 2

1.2 Research Motivation . 3

1.3 Research Contributions . 4

1.4 Outline . 5

2 Background Information 7

2.1 Polyhedral Theory . 8

2.1.1 Cutting Planes . 10

2.2 Knapsacks and Covers . 13

2.3 Lifting . 18

iii

2.3.1 Sequential Lifting . 21

2.3.2 Simultaneous Lifting . 25

3 Simultaneously Lifting Multiple Sets 29

3.1 Dynamic Programming Multiple Lifting Set Algorithm (DPMLSA) . . . 30

3.2 Three Set Simultaneous Lifting Algorithm 43

3.2.1 Extensions of the TSSLA . 48

3.3 Sequential Simultaneous Lifting . 49

4 Computational Results 53

5 Conclusion and Future Research 58

5.1 Future Research . 59

List of Figures

2.1 Cutting Plane Method in Example 1 . 12

3.1 Affinely Independent Points for Example 3 42

v

List of Tables

2.1 Benefit and Weight of Objects . 14

4.1 Comparison of Solution Time with the DPMLSA to without 56

vi

Chapter 1

Introduction

Integer programming has been successfully applied to minimize costs and manage re-

sources in many industries. Integer programs (IPs) are mathematical models that can

provide organizations with the ability to optimally obtain their goals through appropri-

ate utilization and allocation of available resources.

One successful IP application by Delta Airlines saved approximately 100 million

dollars per year by implementing optimal fleet assignments. More than 2,500 domestic

flights and 450 airplanes per day are assigned by this IP [65]. Similarly, American Airlines

saves over 20 million dollars per year using an IP to determine the crew schedule every

month [1].

Many other successful IP applications have saved companies millions of dollars or

benefited society. For instance, IPs have been applied in many areas to obtain optimal

decisions, from researching genetics [14, 29] and fighting cancer [52, 53], to managing

1

portfolios [12, 59], transporting goods [2, 48, 61, 67], and developing sports schedules

[23, 68].

1.1 Integer Programming

As represented by the examples above, integer programming is a tool used to solve

various problems. Individuals can easily create a model to solve for optimal decisions.

Unfortunately, IPs are NP-complete in the strong sense [47], and even considering

substantial scientific and computational advancements, many integer programs cannot

be solved. Many times an IP may run for days without a solution being found. When

this situation arises, practitioners must decide what concessions must be made for a

solution. Many times the model must be altered and a non-optimal solution must be

evaluated for its feasibility and benefit.

The simplest way to solve an IP is to enumerate all valid combinations and find the

best value that satisfies the objective function. Though this enumeration provides the

optimal integer solution, the larger the problem, the less feasible it is to list all possible

answers. For every n binary variables, there are 2n possible combinations; clearly, the

number of combinations is even larger when the variables are not binary, and frequently,

this approach is not computationally viable.

The most common IP solution method is branch and bound [55]. This method is

an exhaustive search approach, which finds the optimal solution, if one exists. Once an

integer solution is found, the branch and bound method provides rules for disregarding

2

solution space, “branches”, that will not provide a better answer.

Unfortunately, bad branching choices could lead again to the full 2n solutions being

enumerated. Obviously, this method is not computationally viable in such a situation.

Therefore, both of these methods are exponential time solutions and not ideal for large

problems. To help improve the solution time of IP solutions, cutting planes are found.

The cutting plane method was first introduced by Gomory [30]. Cutting planes

are developed to limit the solution space by removing parts of the linear relaxation

without disregarding any feasible integer solutions. The valid inequalities generated by

the cutting plane method are useful only if they eliminate significant areas of the linear

relaxation without eliminating any feasible integer point. One common technique to

create useful cutting planes is lifting.

Lifting, first developed by Gomory [34], has been a significant area of research ever

since. Lifting requires a starting valid inequality and then seeks to make the inequality

stronger. This is done through one of the eight main lifting methods. This thesis focuses

on a particular version of lifting called exact simultaneous up lifting. This type of lifting

can result in facet defining inequalities, which are the theoretically strongest inequalities.

1.2 Research Motivation

Until recently, the only method to perform exact simultaneous up lifting was computa-

tionally intensive and required solving exponentially many integer programs. In 2005,

3

Hooker [44] developed a linear time method to exact simultaneously up lift a single set

into a cover inequality for the knapsack polytope. In 2007, Gutierrez’s [41] developed a

method to simultaneously up lift multiple sets into an arbitrary IP, but it required the

solution to a single integer program.

The motivation for this research is to intersect Gutierrez’s method with Hooker’s

method. Thus, the goal at the outset of this research was to develop a fast or polynomial

time method to simultaneously up lift a third set into a cover inequality for the knapsack

polytope. If this could be achieved, then new facet defining results for the knapsack

polytope could be quickly discovered.

1.3 Research Contributions

This thesis presents two new algorithms, a pseudo-polynomial time algorithm, the Dy-

namic Programming Multiple Lifting Set Algorithm (DPMLSA), and a polynomial time

algorithm, Three Set Simultaneous Lifting Algorithm (TSSLA). These algorithms com-

pute the exact simultaneously up lifted coefficient for multiple sets in binary knapsack

problems.

The first algorithm, the DPMLSA, works with an arbitrary number of sets which are

exact simultaneously up lifted to generate a new inequality. In certain instances, the

inequality produced by the DPMLSA may be facet defining. The significant advantage

presented by this thesis is that the DPMLSA only requires O(nb) effort and is a pseudo-

polynomial time algorithm. A small computational study shows that the DPMLSA is

4

fast and decreased the solution time to random knapsack instances by an average of

18.4%.

Similar to the DPMLSA, the TSSLA finds exact simultaneously up lifted coefficients.

The TSSLA may also produce facet defining inequalities, in certain instances, and re-

quires only quadratic effort. The TSSLA can be logically expanded for more than three

sets, and the effort required for such an increase changes the running time by an order

of n for every additional set.

This research exceeded the initial goals of the project. The presented algorithms, the

DPMLSA and the TSSLA, generate valid inequalities without requiring the input sets

to be covers. Additionally, the DPMLSA can exactly simultaneously lift an arbitrary

number of sets, in binary knapsack integer programs. From a theoretical view point,

simultaneous up lifting over binary knapsack polyhedra is now completely understood.

Fast algorithms and facet defining results exist due to this research. However, there

still exists ample work in computational results and determining what sets should be

simultaneously lifted as well as extensions to mixed integer programs.

1.4 Outline

Chapter 2 presents the basic concepts of polyhedral theory and integer programming,

and contains background information necessary for understanding the research presented

in this thesis. Some of the main topics covered in this chapter include the knapsack prob-

lem, polyhedral theory, cutting planes, cover inequalities, sequential and simultaneous

5

lifting, and facet defining inequalities. This information is formally defined and examples

are provided for further understanding.

Chapter 3 contains the advancements of this research. Both the DPMLSA and the

TSSLA are described. The facet defining results are presented in this chapter, as well. An

example problem, which is used for both algorithms, provides a facet defining inequality,

and consists of three sets that could each be defined as a minimal cover. Theorems and

proofs pertaining to the algorithms can be found in Chapter 3, along with the step by

step determination of the running time for each algorithm.

The computational results from the DPMLSA can be found in Chapter 4. This

chapter presents the results and trials of the testing, along with an interpretation of the

results. It also shows that simultaneously up lifting multiple sets are easy to find and

extremely useful.

Chapter 5 summarizes this thesis. This chapter also contains ideas and extensions

discovered during the development of the DPMLSA and the TSSLA that could be pur-

sued as future research.

6

Chapter 2

Background Information

The core concepts of this research are better understood after a brief review of the

fundamentals of integer programming, contained within this chapter. An interested

reader can find many more details in [55].

An Integer Program (IP) contains an objective equation that must be minimized or

maximized and a set of constraints which defines the solution space. An IP follows the

form maximize cT x, subject to Ax ≤ b, where x ∈ Zn, c ∈ �n, A ∈ �m×n and b ∈ �m.

This chapter provides information necessary to understand the advancements of this

research. The general fundamentals of polyhedral theory, including convex sets, half-

spaces, polyhedrons and polytopes, linear relaxations, dimension, and affine indepen-

dence, are discussed. These concepts of polyhedral theory combine to explain the use-

fulness of cutting planes, which are discussed in depth. The famous cutting planes,

cover inequalities, and their relationship to the knapsack integer program are explained.

7

Finally, a broad survey of the different lifting methods is presented.

2.1 Polyhedral Theory

The fundamental concepts of many optimization methods stem from polyhedral theory.

Polyhedral theory encompasses the feasible sets of linear programming problems. The

relevant definitions from polyhedral theory are discussed in this section, and further

information can be found in [55].

A set is a convex set if every point on the line segment connecting any two points

from the set is also in the set. Formally, S is convex if, and only if, λs1 + (1− λ)s2 ∈ S

for all s1, s2 ∈ S and λ ∈ [0, 1]. The convex hull of a set S is the intersection of all

convex sets containing S.

The solution space for a single linear inequality is known as a halfspace, i.e. all

x ∈ �n such that Σn
j=1ajxj ≤ b. A halfspace is clearly convex. A polyhedron is the

intersection of a finite number of halfspaces. Therefore, the feasible region of a linear

program {x ∈ �n
+ : Ax ≤ b} is a polyhedron and is also convex. A bounded polyhedron

is known as a polytope.

Define the set of feasible solutions to an integer program to be P . Equivalently,

P = {x ∈ Zn
+ : Ax ≤ b}. The solution space, P , consists of a countable set of points,

is not a continuous region and is therefore not convex. Fundamentally important to

cutting plane research is the convex hull of P , which is called P ch = conv(P). Observe

8

that P ch is a polyhedron.

Most of the methods employed to solve integer programs depend on the linear relax-

ation of the problem. The linear relaxation of an integer program is found by removing

the integer constraint from the IP. That is, given an IP of the form maximize cT x,

subject to Ax ≤ b, x ∈ Zn
+, the corresponding linear relaxation denoted by IPLR is

maximize cT x, subject to Ax ≤ b, x ∈ Rn
+. Define PLR to be the polyhedron of the

feasible solution space for the linear relaxation, PLR = {x ∈ Rn
+ : Ax ≤ b}.

The dimension of a polyhedron is typically defined as the number of linearly inde-

pendent vectors contained in a polyhedron. The dimension of the polyhedron is critical

to determining P ch and cutting planes (defined in the next section). Considering that

P ch is derived from a collection of points, affine independence is required. A collection

of points x1, x2, x3, ..., xr ∈ Rn
+ are affinely independent if, and only if, Σr

j=1λjxj = 0

and Σr
j=1λj = 0 is uniquely solved by λj = 0 ∀j = 1, ..., r.

Affine independence is used to determine the dimension of the convex hull of a set

of discrete points. The dimension of such a convex set is calculated as the maximum

number of affinely independent points minus one. The subtraction of one is due to the

idea that one of these points represents the origin and linearly independent vectors can

be produced from this origin to the other affinely independent points.

9

2.1.1 Cutting Planes

Now that a polyhedron and its dimension have been defined, the concepts of cutting

planes, valid inequalities, faces, and facets can be introduced. This section covers the

concept of cutting planes and their importance to integer programming.

The purpose of a cutting plane or valid inequality is to eliminate a portion of PLR

without eliminating any points in P (a feasible integer solution). Thus, a cutting plane

removes non-integer solution space from consideration by the linear relaxation. Formally,

an inequality Σn
j=1αjxj ≤ β is valid for P ch if, and only if Σn

j=1αjx
′
j ≤ β is satisfied for

every x′ ∈ P .

Every valid inequality defines a face of a polyhedron. The face is the set of all

points in the polyhedron that meet the inequality at equality. Thus, the valid inequality

Σn
j=1αjxj ≤ β defines a face F ⊆ P ch of the form F = {x ∈ P ch : Σn

j=1αjxj = β}. If

F �= ∅, then F is said to support P ch.

When considering P ch the only inequalities necessary to describe P ch are the facet

defining inequalities. Facet defining inequalities have corresponding faces of P ch with

dimension exactly one less than the dimension of P ch. These faces of P ch are known as

facets of P ch.

Facet defining inequalities are important to researchers due to the fact that they are

both necessary and sufficient for the description of P ch. Thus, any inequality that is

not a facet defining inequality of P ch is redundant and not necessary in its description.

Determining P ch is critical to integer programming research, because solving a linear

10

program over P ch generates an optimal integer solution. Therefore, branch and bound

need not be applied and the optimal solution can be generated at the root node.

The following example depicts these concepts.

Example 1

Consider the following integer program:

Maximize

x1 + 2x2

Subject to

3x1 + 2x2 ≤ 12

3x1 + 4x2 ≤ 15

x1, x2 ∈ Z+.

Figure 2.1 provides a graphical view of this IP. The first constraint, 3x1 + 2x2 ≤ 12,

passes through points (0, 6), C, and D. The second constraint, 3x1 + 4x2 ≤ 15, passes

through the points A, B, C, and (5, 0). The linear relaxation of the IP is defined by

these two constraints, the x1 axis, and x2 axis. The large circles represent the feasible

integer points of the problem.

Looking at the graph, clearly there is space within the linear relaxation that is

outside the feasible integer points. The aim of a cutting plane is to remove this non-

integer solution space without eliminating any of the feasible integer points. The dashed

line represents the valid inequality x1 + x2 ≤ 4 and passes through the points (0, 4), B,

and D. This cutting plane eliminates the region BCD of the linear relaxation space

without cutting off any feasible integer points. Thus, it is a valid inequality.

By finding the dimension of P ch and the dimension of the cut’s faces, this cutting

11

� � � � � �

0 1 2 3 4 5

�

�

�

�

�

�

1

2

3

4

5

6

� � � �

� � �

� �

� �

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A
�

B

C
�

D

3x1 + 2x2 ≤ 12

3x1 + 4x2 ≤ 15
x1 + x2 ≤ 4

x1

x2

Figure 2.1: Cutting Plane Method in Example 1

12

plane can be classified as facet defining. The dimension of the polyhedron, P ch, defined

by the IP, is 2, which is found by listing three affinely independent points (0, 0), (0, 1),

and (1, 0). Next the dimension of the cut’s face is found by listing affinely independent

points that meet the inequality at equality; in this case, B and D can be used as the

points.

For this example, the other facet defining inequalities are x1 ≥ 0, x2 ≥ 0, and x2 ≤ 3.

If these inequalities are added, then the reader can see P ch, notice that all corner points

are integer.

This example shows the simplicity of finding the valid inequalities in a two dimension

integer programming problem. As the number of variables increases, so does the com-

plexity of finding valid inequalities and facet defining inequalities. Knapsack problems

are the simplest IPs with n variables and are the focus of the next section and this thesis.

2.2 Knapsacks and Covers

Of particular importance to integer programming research is the Knapsack Problem

(KP), a particular class of integer programs. The title “knapsack” refers to the analogy

of a camper packing a knapsack with the items needed for an outing. There are n items

available for consideration and each has an associated benefit, cj, and an associated

weight, aj which is limited by the overall weight constraint of b. The camper seeks the

items that give the most benefit while being restricted by the amount of weight he/she

can carry. Therefore, the camper must find the maximum benefit while still being able

13

to carry the knapsack.

For this research, the binary form of the KP is considered; the camper can decide to

take the item, xj = 1, or go camping without it, xj = 0. Therefore, an IP formulation

for the binary KP is as follows maximize Σn
j=1cjxj, subject to Σn

j=1ajxj ≤ b, xj ∈ B for

all j = 1, 2, ..., n. For the binary knapsack problem, PKP represents the set of feasible

solutions, and the convex hull of PKP = {x ∈ Bn : Σn
j=1ajxj} is represented by

PKP ch, which is a polyhedron.

The following example is used throughout this thesis and helps demonstrate this KP

formulation.

Example 2

Consider a camper debating taking 13 objects on a trip. The benefit and weight of

each item is in Table 2.1. For instance, x1 is a tent, observe that the benefit of bringing

the heaviest item is small, if it is a clear summer night. Similarly, x13 represents a box of

matches, the benefit of the lightest item is large, which indicates that having a campfire

and warm meal are important to the camper.

Object 1 2 3 4 5 6 7 8 9 10 11 12 13
Benefit 2 4 8 4 6 8 11 7 9 10 8 9 12
Weight 37 36 36 35 34 23 23 22 22 21 21 20 20

Table 2.1: Benefit and Weight of Objects

The objective maximizes the expected benefit, and the constraint enables the camper

to carry the weight. It is now straightforward to create an IP to solve this problem. Let

14

the decision variable be xj = 1 if the jth item is taken, and xj = 0 if not. The IP

formulation is

Maximize

2x1 + 4x2 + 8x3 + 4x4 + 6x5 + 8x6 + 11x7 + 7x8 + 9x9 + 10x10 + 8x11 + 9x12 + 12x13

Subject to

37x1 +36x2 +36x3 +35x4 +34x5 +23x6 +23x7 +22x8 +22x9 +21x10 +21x11 +20x12 +20x13 ≤ 152

xj = {0, 1} ∀j = 1, ..., 13 .

Much theoretical research has been done on cutting planes for the knapsack polyhe-

dron [4, 6, 7, 20, 45, 55, 56, 58, 63, 73]. The reason that the knapsack polyhedron is of

particular interest to IP researchers is that any single IP constraint can be modified to

become a KP. This transformation is done by changing any constraints of the ‘=’ or ‘≥’

type to the ‘≤’ type. An ‘=’ equation can be split into two constraints, one with ‘≥’ and

one with ‘≤’. The ‘≥’ constraints can then be multiplied by −1 to form ‘≤’ constraints.

If any coefficient aj < 0, then substitute (1 − x′j) for xj; the resulting inequality has

only positive coefficients. Therefore, any single binary IP constraint is a equivalent to a

knapsack constraint.

The most relevant work to this thesis involves covers of knapsack constraints. Valid

inequalities known as cover inequalities can be developed from the original knapsack

constraints to further define the solution space. A cover inequality is developed by

taking a subset of items that are too heavy to carry and then define a constraint to limit

the number of these items taken.

Formally, given a KP, a cover is any set C ⊆ N such that Σj∈Caj > b. That is, the

set C represents a set of points that is infeasible. Every cover defines a cover inequality,

15

of the form Σj∈Cxj ≤ |C| − 1 in PKP ch. Clearly, every cover inequality is valid.

A cover is minimal if Σj∈C\{l}aj ≤ b for each l ∈ C. Minimal covers always produce

inequalities of dimension at least |C| − 1 in PKP ch. This can be seen by taking the

points Σj∈C\{l}ej for each l ∈ C where ej is the jth identity point.

An extended cover is formally defined as E(C) = C∪{i ∈ N−C : ai ≥ maxj∈C{aj}}.

An extended cover is generated by taking the cover and adding the indices with coeffi-

cients greater than or equal to the largest coefficient in C. Clearly, an extended cover

inequality, Σj∈E(C)xj ≤ |C| − 1, is also a valid inequality.

Returning to the knapsack instance from Example 2, observe that a cover is {6, 7, ...,

13}, because the sum of the constraint coefficients is 20+20+21+21+22+22+23+23 =

172, which is greater than 152. Logically, because the sum of the coefficients of the eight

variables is greater than 152, they cannot all be selected at the same time. This logic

provides us with the cover inequality Σ13
j=6xj ≤ 8 − 1 = 7. This is a minimal cover,

because if any element of the cover is removed, the sum of the other 7 coefficients is less

than or equal to 152 and feasible.

The cover inequality for this example defines a face of dimension 7. The eight affinely

independent points are generated by setting each variable corresponding to an index in

the cover to zero, one at a time, with the other seven set to one. These points are

feasible and meet the cover inequality at equality. For example, when x13 (the smallest

coefficient) is set to zero adding all of the coefficients for x6 through x12 is less than

or equal to 152. Thus, the point (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0) is feasible and meets the

16

cover inequality at equality. Since this is true for x13 = 0 (the smallest coefficient),

setting any of the other indices to zero produces a similar result. The following points

are listed in matrix notation with the points being listed as columns. The set of 8 affinely

independent points show that this cover inequality defines a face of dimension at least

7 over PKP ch

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0 .

Even though this is a valid inequality defining a face of dimension 7, it can be

improved. The current cover inequality only considers eight of the thirteen variables

from the objective function and original constraint. The rest of the variables could be

added to the cover using the concept of an extended cover. The extended cover for

this problem would be Σ13
j=1xj ≤ 7. This inequality is valid because all coefficients from

x1 through x5, from the original inequality, are greater than 23, the largest associated

coefficient for the minimal cover. Though it is valid, the extended cover inequality still

defines a face of dimension 7, and is therefore not facet defining over PKP ch.

17

Clearly, the goal is to create an inequality of dimension 12, which would be facet

defining for PKP ch. It is possible that this minimal cover inequality may be modified to

become facet defining; if so, the coefficients of x1 through x5 must be changed. Lifting is

a technique that changes coefficients and can increase the dimension of the face defined

by the inequality.

2.3 Lifting

First introduced by Gomory [34], lifting is a common method used to increase the dimen-

sion of a cut. Lifting takes a valid inequality and, by changing some of the coefficients

and possibly the right hand side, makes the inequality stronger. Lifting is also used to

determine cutting planes with potential to be facet-defining inequalities. Many arcticles

present this topic [4, 6, 7, 8, 9, 10, 15, 18, 20, 21, 28, 38, 39, 50, 56, 58, 60, 72, 73].

The idea of a restricted space is fundamental to lifting. Define the restricted space

of P ch on the set of E variables to be P ch
E,K = conv{x ∈ P : xj = kj for all j ∈ N \ E}

where kj ∈ Z and K = {k1, k2, ..., k|N\E|}. Thus, rather than looking at the entire

polyhedron, the restricted space considers only a subset of the variables. In other words,

every variable with an index in E is forced to take on a fixed value, denoted by kj.

This thesis focuses on what is known as up lifting, which requires K = {0, 0, ..., 0}. To

simplify notation, define P ch
E to be P ch

E,K whenever K = {0, 0, ..., 0}.

An inequality can be classified as facet defining over the restricted space if all of

the facet defining requirements are satisfied when only considering the restricted space.

18

Once an inequality is facet defining on a restricted space, researchers try to maintain

the facet defining property while changing the restricted space to the entire space.

Returning to Example 2, the minimal cover is facet defining over the restricted space

defined by x6 through x13. The dimension of the inequality would remain 7 which would

be one less than the dimension of the restricted space. The eight affinely independent

points defining the dimension (listed vertically) would be as follows:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0 .

With lifting, the goal clearly is to modify a valid inequality to make it facet defining

over P ch. By starting with a restricted space facet defining inequality, lifting modifies

the inequality to create an inequality, which may be facet defining for P ch.

There are multiple types of lifting [6, 7, 42, 57, 69, 70, 73] such as sequential, simulta-

neous, exact, approximate, up and down lifting techniques. Therefore, there are at least

eight different types of lifting and include exact sequential up lifting, exact sequential

down lifting, approximate sequential up lifting, approximate sequential down lifting, ex-

act simultaneous up lifting, exact simultaneous down lifting, approximate simultaneous

19

up lifting, and approximate simultaneous down lifting.

Formally, let Σj∈N\Eαjxj ≤ β be a valid inequality of P ch
E,K , then lifting seeks to

create a valid inequality of P ch that takes the form Σj∈Eα′jxj + Σj∈N\Eα′jxj ≤ β′. The

values of α′, β′ and E determine the aforementioned types of lifting.

Exact lifting requires that all coefficients are as strong as possible. Thus, any increase

in a lifted coefficient on the left hand side or a decrease in the right hand side results in

an invalid inequality. Typically, exact lifting requires the solution to some optimization

problem, which is typically an integer program. Thus, exact lifting can require too

much computational effort to be effective, although some individuals have developed

polynomial time algorithms to perform exact lifting on the knapsack polytope [8, 26, 63].

Since solving optimization problems can be computationally intensive, many re-

searchers have provided results on approximate lifting. Approximate lifting seeks to

remove the computational complexity associated with exact lifting. So rather than find

the best possible lifting coefficients in a long time, a fast heuristic will generate coeffi-

cients that maintain a valid inequality, but these coefficients may be able to be improved.

Some approximate lifting results include sequential lifting [6] and sequence independent

lifting [5, 40, 64, 71], which can be considered an approximate simultaneous lifting tech-

nique. Other approximation work has used a linear relaxation or just a portion of the

original problem to approximate the lifting coefficients [62, 70].

Up versus down lifting refers to the values of K and β′. For up lifting, it is assumed

that every element in K is equal to zero. In such a case, β′ = β. Down lifting considers

20

each element of K to be equal to its upper bound. Down lifting usually decreases the

right hand side of the inequality. There is also middle lifting, which considers K values

to be between zero and the upper bound and is a combination of up and down lifting.

Sequential and simultaneous lifting are distinguished by the size of E. Sequential

lifting assumes |E| = 1, while simultaneous lifting has |E| > 1. Thus, a sequentially up

lifted inequality assumes Σn
j=2αjxj ≤ β is valid for P ch

{1},{0} and seeks an inequality of

the form α1x1 + Σn
j=2αjxj ≤ β that is valid for P ch. Typically, sequential lifting is an

exact lifting technique, which seeks to find the strongest α1 possible. Therefore, exact

sequential up lifting finds the maximum value of α1 that still maintains the validity of

the inequality. If such a value of α1 is obtained, then the dimension of the face induced

by the sequentially lifted inequality typically increases by at least 1 when moving from

P ch
{1},{0} to P ch.

Simultaneous lifting considers the entire set of E variables when determining the

coefficients and requires |E| ≥ 2. The most common type of simultaneous lifting assumes

that αj = α for every j ∈ E. However, other versions are possible. The main idea behind

simultaneous lifting is to lift many variables at the same time rather than lifting one

variable at a time.

2.3.1 Sequential Lifting

Of the types of lifting, sequential lifting is the most widely studied and used. Sequential

lifting adds a variable to the original valid inequality individually and determines the

21

coefficient necessary for that variable. Sequential lifting requires |E| = 1; therefore,

sequential up lifting assumes that Σn
j=2αjxj ≤ β is valid for P ch

{1} and seeks to create a

valid inequality for P ch of the form α1x1 + Σn
j=2αjxj ≤ β. By iteratively performing

sequential lifting, researchers can start with a facet defining inequality of a restricted

space and end with a facet defining inequality of the whole space as long as P ch is full

dimensional.

Exact sequential up lifting of a binary variable, xj, requires the solution to the

following IP.

z∗ = Maximize Σn
j=2αjxj

Subject to: Ax ≤ b

x1 = 1

x1 ∈ {0, 1}, x2, ..., xn ∈ Zn

Once the optimal solution is obtained, α1 = β − z∗.

Applying sequential lifting to Example 2 creates a facet defining inequality for

PKP ch. Recall that the original integer program is

Maximize

2x1 + 4x2 + 8x3 + 4x4 + 6x5 + 8x6 + 11x7 + 7x8 + 9x9 + 10x10 + 8x11 + 9x12 + 12x13

Subject to

37x1+36x2+36x3+35x4+34x5+23x6+23x7+22x8+22x9+21x10+21x11+20x12+20x13 ≤ 152

xj = {0, 1} ∀ j = 1, ..., 13.

The valid cover inequality, Σ13
j=6xj ≤ 7 is facet defining over PKP ch

{6,7,...,13}. In the next

few paragraphs, sequentially up lifting the other five variables is discussed.

To sequentially up lift x1, solve the integer program: Maximize Σ13
j=6xj, Subject to

22

37x1 + 36x2 + ... + 20x13 ≤ 152, x1 = 1, and x in {0, 1} ∀ j = 2, ..., 13. The value for the

objective z∗ = 5. Therefore, α1 = 7−5 = 2 and the new sequentially up lifted inequality

is 2x1 + Σ13
j=6xj ≤ 7.

Next x2 can be lifted in the same manner, using the new inequality, 2x1+x6+x7+x8+

x9 +x10 +x11 +x12 +x13 ≤ 7, as the objective function. The z∗ = 5 and α2 = 7− 5 = 2.

Continuing for the rest of the variables, for x3 the z∗ = 6 and α3 = 7− 6 = 1, for x4 the

z∗ = 6 and α4 = 7 − 6 = 1, and for x5 the z∗ = 6 and α5 = 7 − 6 = 1. The final exact

sequentially up lifted inequality is 2x1 + 2x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +

x11 + x12 + x13 ≤ 7.

This inequality is facet defining for PKP ch. The thirteen affinely independent points

necessary to prove this are

1 1 1 1 1 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 1 0 1 1 1 1 1 1
0 0 0 0 0 1 1 0 1 1 1 1 1
1 0 0 0 0 1 1 1 0 1 1 1 1
1 0 0 0 0 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 0 .

Balas [7] developed guidelines for both exact and approximate lifting coefficients.

Theorem 2.3.1 provides his result.

23

Theorem 2.3.1. Let C = {j1, ..., jr} be a minimal dependent set with j1 < j2 < ... < jr.

Let μh = Σh
k=1 ajk

for h = 1, ..., r; also let μ0 = 0 and λ = μr − b ≤ 1. Every valid

inequality of the form

Σj∈N\C αjxj + Σj∈C xj ≤ |C| − 1

that represents a facet of conv(S) satisfies the following conditions:

i. If μh ≤ aj ≤ μh+1 − λ, then αj = h.

ii. If μh+1 − λ + 1 ≤ aj ≤ μh+1, then

(a) αj ∈ [h, h + 1] and

(b) there is at least one facet of the form Σj∈N\C αjxj + Σj∈C xj ≤ |C| − 1 with

αj = h + 1.

Observe that Balas’ Theorem divides the coefficients into two distinct classes. The

first is assigned a fixed integer coefficient and the second has a coefficient within a

specified range. This result is critical for the computational study of the DPMLSA and

is revisited in Chapter 4.

Sequential lifting is order dependent; in the example above x1 was considered first

and the elements were added in order. There are 5! = 120 different order combinations

that could have been attempted. If the order was varied, the sequentially up lifted

minimal cover inequality could result in only seven different inequalities. The resulting

inequalities (including the example’s) are

2x1 + 2x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 ≤ 7,

24

2x1 + x2 + 2x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 ≤ 7,

2x1 + x2 + x3 + 2x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 ≤ 7,

2x1 + x2 + x3 + x4 + 2x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 ≤ 7,

x1 + 2x2 + 2x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 ≤ 7,

x1 + 2x2 + x3 + 2x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 ≤ 7, and

x1 + x2 + 2x3 + 2x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 ≤ 7.

Each of these inequalities is facet defining and necessary in the description of PKP ch.

Taking the average of the coefficients for each x results in a single valid inequality. The

inequality is 11
7
x1+

10
7
x2+

10
7
x3+

10
7
x4+

8
7
x5+x6+x7+x8+x9+x10+x11+x12+x13 ≤ 7. The

next section discusses simultaneous lifting and generates an inequality that dominates

this average sequential up lifted inequality.

2.3.2 Simultaneous Lifting

Simultaneous lifting requires |E| ≥ 2. Therefore, instead of performing sequential lifting

|E| times, all of the variables in E can be lifted at one time. In 1978, Zemel [72] provided

the first exact technique to simultaneously lift. Zemel’s technique is limited to sets of

binary variables and requires solving an exponential number of integer programs. Zemel’s

method works by finding the extreme points of the polar created from the solutions to

these integer programs, and yields numerous inequalities. Clearly, Zemel’s method is far

too computationally intensive to ever be an effective tool.

Later on comments, but no algorithms, were provided by researchers regarding the

existence and importance of exact simultaneous lifted inequalities [8, 39]. Gu, et al.

[40] developed a linear time algorithm to perform approximate simultaneous up lifting,

25

which is called sequence independent lifting.

Recently, much work has been done at KSU on exact simultaneous lifting. Easton

and Hooker developed a linear time algorithm to exactly simultaneously up lift sets of

variables into a cover inequality for PKP ch [26]. Gutierrez’s master’s thesis presents an

exact technique to simultaneously up lift sets of variables to general integer programs.

Her method requires the solution to a single integer program. Sharma’s thesis improved

Easton and Hooker’s work and could identify what sets should be lifted and improved the

facet defining results. Her algorithm ran in quadratic time, generated many inequalities

and had impressive computational results.

The premise of all of this work at KSU is to guess an inequality that may be invalid,

but has the facet defining property. If the inequality is shown to be invalid, by the

existence of a feasible point that violates this inequality, then the inequality is changed

to make this point satisfy the inequality at equality. Gutierrez’s method is presented

here to demonstrate this concept.

The input to Gutierrez’s method is a lifting set E and a valid inequality Σj∈N\Eαjxj ≤

β over P ch
E . Her method can also take a weight function, but the simpler version is

presented here. The exact simultaneously up lifted inequality takes the form αΣj∈Exj +

Σj∈N\Eαjxj ≤ β. Her algorithm sets α = M >> 0 and solves an integer program

of the form maximize αΣj∈Exj + Σj∈N\Eαjxj ≤ β, subject to Ax ≤ b, x ∈ Zn. The

optimal solution to this problem is Z∗, x∗. If Z∗ > β, then the next value of α becomes

β−Σj∈N\Eαjx∗j
Σj∈Ex∗j

. Thus, the feasible point x∗ meets this new inequality at equality. This

26

process repeats until Z∗ ≤ β, then the inequality αΣj∈Exj + Σj∈N\Eαjxj ≤ β is valid

and α is reported as the lifting coefficient.

Returning to Example 2 demonstrates how Gutierrez applies this method to create

simultaneously lifted inequalities. Recall that the primary example in this thesis is

37x1 +36x2 +36x3 +35x4 +34x5 +23x6 +23x7 +22x8 +22x9 +21x10 +21x11 +20x12 +20x13 ≤ 152

xj = {0, 1}∀ j = 1, ..., 13.

The valid cover inequality, Σ13
j=6xj ≤ 7 is facet defining over PKP ch

{1,2,3,4,5}; the other five

variables are now simultaneously up lifted.

To simultaneously lift x1 through x5, set α = M and solve the IP

Maximize

Σ13
j=6xj + Σ5

j=1Mxj

Subject to

37x1 + 36x2 + ... + 20x13 ≤ 152

xj = {0, 1} ∀ j = 1, ..., 13

The value for the objective, z∗ = 4M , is obtained with x∗ = (0, 1, 1, 1, 1, 0, 0, 0, 0,

0, 0, 0, 0). Since z∗ > β, the inequality Σ13
j=6xj + Σ5

j=1Mxj ≤ β is not valid due to x∗. A

new α is obtained by plugging the x∗ value into the constraint and solving for α when

the constraint is at equality. Thus, α =
β−Σj∈N\Eαjx∗j

Σj∈Ex∗j
, so α = 7−0

4
= 7

4
.

To determine if this is the correct α value, the coefficient M is replaced by the new α

value, 7
4
, and the IP is solved again. The objective value z∗ = (7

4
)(4) = 7 is obtained with

the same point, and 7
4
x1+

7
4
x2+

7
4
x3+

7
4
x4+

7
4
x5+x6+x7+x8+x9+x10+x11+x12+x13 ≤ 7

is valid for PKP ch and is the exact simultaneously up lifted inequality. Notice that

27

this inequality dominates the average of the sequentially lifted inequalities, which is

11
7
x1 + 10

7
x2 + 10

7
x3 + 10

7
x4 + 8

7
x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 ≤ 7.

Simultaneously up lifted inequalities may be facet defining, but are not guaranteed to

be facet defining, as is the case for sequentially up lifted inequalities. In this example, the

simultaneously up lifted inequality is facet defining. The thirteen affinely independent

points that show this are

0 1 1 1 1 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 1 0 1 1 1 1 1 1
0 0 0 0 0 1 1 0 1 1 1 1 1
0 0 0 0 0 1 1 1 0 1 1 1 1
0 0 0 0 0 1 1 1 1 0 1 1 1
0 0 0 0 0 1 1 1 1 1 0 1 1
0 0 0 0 0 1 1 1 1 1 1 0 1
0 0 0 0 0 1 1 1 1 1 1 1 0 .

The first five columns give the affinely independent points that were added by si-

multaneous lifting. These points increase the dimension from seven to twelve, making

the simultaneously up lifted inequality facet defining. Observe that these five affinely

independent points were generated using the point x∗ from above.

The purpose of this research was to extend the concepts of simultaneous up lifting

to consider multiple sets in polynomial time for PKP instances. Thus, this research

attempts to intersect Gutierrez’s work with Hooker’s work.

28

Chapter 3

Simultaneously Lifting Multiple Sets

This research stems from results by Gutierrez [41], Hooker[26], and Sharma[63]. The

goal of this research was to develop fast methods to exact simultaneously up lift a third

set into a cover inequality for the knapsack polytope. This initial goal was exceeded by

the algorithms presented below. The DPMLSA algorithm provides a method for lifting

an arbitrary number of sets, and both the DPMLSA and the TSSLA generate valid

inequalities without requiring the sets to be covers. Furthermore, the TSSLA can be

expanded to more sets, but the running time would increase by the order of n with each

added set.

This chapter provides an in depth explanation of both the pseudo-polynomial time

algorithm, the DPMLSA, and the polynomial time algorithm, the TSSLA. Both algo-

rithms generate exact simultaneously up lifted inequalities, and facet defining examples

are provided after each algorithm. The supporting theorems are also presented in this

29

chapter.

3.1 Dynamic Programming Multiple Lifting Set Al-

gorithm (DPMLSA)

The input to the DPMLSA is a knapsack constraint Σn
j=1ajxj ≤ b, a lifting set Ep ⊂ N

and a valid inequality Σj∈N\Epαjxj ≤ β over PKP ch
Ep

. For simplicity let N \ Ep be

partitioned into sets E1, E2, ..., Ep−1 such that Σj∈N\Epαjxj = Σp−1
i=1 αi Σj∈Ei

xj. In other

words, each Ei consists of all of the indices of the variables that have identical coefficients

in the valid inequality.

The DPMLSA’s basic idea is to create an array T = (t0, ..., tb) of size b + 1 and have

tj represent the maximum that the left hand side of the valid inequality can be if the

right hand side of the knapsack is changed to j. For simplicity of notation, tj < 0 with

j < 0 does not exist, and as such, the evaluated condition is never true.

Once T is correctly calculated, the k smallest a values associated with indices in Ep

are subtracted from b and set equal to j. Next, an upper bound on α is determined by

subtracting tj from β and then dividing by k. This step is repeated for all k = 1, ..., |Ep|

and the minimum α value is reported.

Dynamic Programming Multiple Lifting Set Algorithm (DPMLSA)

Initialization

30

Let T be an array T = (t0, t1, ..., tb) with all elements set to 0.

For i = 1 to p− 1

Update T by calling CreateTableValues (T , Ei).

End For

Let Fp = {fp
1 , ..., fp

|Ep|} where Fp is Ep sorted in ascending order based upon

the corresponding a values of the knapsack constraint.

αp := ∞.

Main Step

For k = 1 to |Ep|

if (β − tb−Σk
q=1a

f
p
q

)/k < αp, then αp = (β − tb−Σk
q=1a

f
p
q

)/k.

End For

Output

Report α∗p as the exact simultaneously up lifted coefficient when α∗p = αp.

Subroutine CreateTableValues (T , Ei)

Initialization

S := T , sj = tj for all j = 0, ..., b.

Main Step

Let Fi = {f i
1, ..., f

i
|Ei|} where Fi is Ei sorted in ascending order based upon the

31

corresponding a values of the knapsack constraint.

k := 1.

While k ≤ |Fi|

j := 0

While j < b

if sj < tj−Σk
q=1a

fi
q

+ αik, then sj = tj−Σk
q=1a

fi
q

+ αik.

j:=j+1.

end While

k:=k+1

end While

Termination

T := S, tj := sj for all j = 0, ..., b.

Report T as the updated table values.

To determine the running time of the DPMLSA, the algorithm is systematically

evaluated. First, consider the subroutine CreateTableV alues. The Initialization step

takes O(b) effort. Within the Main Step, sorting Ei requires O(|Ei|log(|Ei|)) and the

while loop clearly takes O(|Ei|b) effort. The Termination requires O(b). So, overall, the

subroutine CreateTableV alues requires O(|Ei|(b + log(|Ei|))) effort.

32

Returning to the DPMLSA portion of DPMLSA, Initialization requires O(b). Using

amortized analysis, the loop containing the CreateTableV alues subroutine becomes

O(Σp−1
i=1 (|Ei|(b)+|Ei|log(|Ei|))). The final step in the initialization takes O(|Ep|log(|Ep|).

Clearly, Σp
i=1|Ei| can be at most O(n), and so, overall, the initialization requires at most

O(nb + nlog(n)) effort.

The Main Step requires O(|Ep|), and finally, the termination requires O(1). There-

fore, this algorithm, DPMLSA, runs in O(nb + nlog(n)) effort. Furthermore, it can

be argued that b > log(n) in most instances and the running time can be reasonably

reported as O(nb) effort.

The following theorem proves that correctly implementing the DPMLSA results in

a constraint that is a valid inequality of PKP ch. Thus, one can iteratively apply the

DPMLSA numerous times until all variables have been simultaneously up lifted. For-

mally,

Theorem 3.1.1. The inequality Σp
i=1αiΣj∈Ei

xj ≤ β is valid as long as αp ≤ α∗p where

α∗p is reported from the DPMLSA.

Proof: For contradiction assume that Σp
i=1αiΣj∈Ei

xj ≤ β is not valid. Then there exists

an x′ such that Σn
j=1ajx

′
j ≤ b, x′ ∈ {0, 1} and Σp

i=1αiΣj∈Ei
x′j > β (†). Now define,

qi = |{x′j = 1 : j ∈ Ei}| for i = 1, ..., p. Observe that qp ≥ 1.

Let s = Σp
i=1Σ

qi

j=1af i
j

and s′ = Σp−1
i=1 Σqi

j=1af i
j
. Clearly, s′ ≤ s ≤ b. Since tj is monoton-

ically nondecreasing through each step in the DPMLSA, ts′ ≥ Σp−1
i=1 αiqi. Furthermore,

α∗p is nonincreasing and tb−Σ
qp
j=1

ap
fj
≥ ts′ . The main step calculates an upper bound on

33

α∗p to be
β−t

b−Σk
q=1a

f
p
q

qp
≥ β−ts′

qp
. Thus,

β−ts′
qp

qp + ts′ = β, which contradicts (†) and the

result follows.

�

Therefore, the DPMLSA runs with O(nb) effort, and generates the valid inequality

Σp
i=1αiΣj∈Ei

xj ≤ β. Furthermore, these inequalities may be facet defining, which is focus

of the remainder of this section.

In order to generate some theoretical or facial defining results of these simultaneously

lifted inequalities, some additional information must be recorded by the DPMLSA. For

validity, the only thing that is important is whether or not there exists a feasible point

that violates the inequality. For facial defining results, it is also important to know how

many points meet an inequality at equality. The bases for these points will be referred

to as q′ji
where j = 0, ..., b and i = 1, ..., p and can easily be obtained by modifying the

DPMLSA.

The idea is to modify the CreateTableV alues subroutine by changing the ‘then’

condition, which comes after the ‘if’ condition (if tj < tj−Σk
q=1a

fi
q

+αik). Assume that the

CreateTableV alues subroutine is called using the set El and that this routine is in the

kth loop. If the ‘if’ condition is true, then value of tj is the same as CreateTableV alues

and the values of q′ change as follows. Let q′jl
= k and q′ji

= q′
j−Σk

q=1a
fi
q i

for i = 1, ..., l− 1

where and f i
q is again the sorted order of the Ei set according to its a coefficients.

The main idea behind the q′ is to know how many elements from each set must

have variables set to one in order for Σl
i=1Σj∈Ei

αixj = β. That is, the q′ are generated

34

such that Σl
i=1q

′
ji
αi = β. Thus, the dimension of the simultaneously up lifted inequality

increases its dimension by at least the number of affinely independent points that meet

these q′ restrictions for each set. Regardless, this dimension is guaranteed to increase

by at least one. Formally,

Theorem 3.1.2. If Σn
j=1ajxj ≤ b is a knapsack constraint, a finite α∗ is taken from

the DPMLSA and Σj∈N\Epαjxj ≤ β defines a face of dimension r over PKP ch
Ep

, then

Σj∈Epα
∗xj + Σj∈N\Epαjxj ≤ β defines a face of at least r + 1 in PKP ch

Ep
.

Proof: Assume Σn
j=1ajxj ≤ b is a knapsack constraint, a finite α∗ is taken from the

DPMLSA and Σj∈N\Epαjxj ≤ β defines a face of dimension r over PKP ch
Ep

. Since this

is a face over PKP ch
Ep

, there exist r + 1 affinely independent points that have xj = 0 for

all j ∈ Ep and each point satisfies Σj∈N\Epαjxj = β . Therefore, it suffices to find a

single feasible point, x∗ such that Σj∈Nαjx
∗
j ≤ β and there exists at least one j ∈ EP

such that xj∗ = 1.

Since α∗ < ∞, the ‘if’ condition if tj < tj−Σk
q=1a

f
p
q

+ αik had to be satisfied for some

j. Thus, there exists a feasible point x∗ ∈ P such that Σj∈Epx
∗
j ≥ 1 and Σj∈Nαjx

∗
j = β.

This point has precisely q′bl
variables set to one where the variables correspond to the

indices in El with the smallest coefficients for l = 1, ..., p and the result follows.

�

Besides generating a valid inequality, the DPMLSA also guarantees to increase the

dimension of the face by at least one in the expanded polyhedron. Under some more

restrictive conditions, as seen in the next theorem, a facet defining result is possible.

35

Theorem 3.1.3. If Σn
j=1ajxj ≤ b is a knapsack constraint, a finite α∗ is taken from

the DPMLSA and Σj∈N\Epαjxj ≤ β is a facet defining inequality over PKP ch
Ep

, then

Σj∈Epα
∗xj + Σj∈N\Epαjxj ≤ β is facet defining over PKP ch if the following conditions

are met:

(i) 1 ≤ q′bp
≤ |Ep| − 1,

(ii) Σ
q′bp

+1

j=2 afp
j

+ Σp−1
i=1 Σ

q′bi
j=1af i

j
≤ b and

(iii) afp
|Ep|

+ Σ
q′bp
−1

j=1 afp
j

+ Σp−1
i=1 Σ

q′bi
j=1af i

j
≤ b as long as q′bp

≤ |Ep| − 2.

Proof: Assume Σn
j=1ajxj ≤ b is a knapsack constraint, a finite α∗ is taken from the

DPMLSA and (i), (ii) and (iii) are true. Furthermore, assume Σj∈N\Epαjxj ≤ β defines

a facet over PKP ch
Ep

. Thus there exist |N \Ep|+ 1 affinely independent points in PKP

that satisfy Σj∈Epα
∗xj + Σj∈N\Epαjxj = β and have xj = 0 for all j ∈ Ep. So it suffices

to find an additional |Ep| affinely independent points in PKP that meet this inequality

at equality.

If q′bp
= 1, then afp

|Ep|
+ Σp−1

i=1 Σ
q′bi
j=1af i

j
≤ b and conditions (ii) and (iii) are met. Thus

the point efp
|Ep|

+ Σp−1
i=1 Σ

q′bi
j=1ef i

j
is in PKP where ej is the jth identity point. Due to the

sorted order of Ep, efp

j′
+ Σp−1

i=1 Σ
q′bi
j=1ef i

j
is in PKP for any j′ ∈ Ep. Clearly, each of these

|Ep| points satisfy Σj∈Epα
∗xj + Σj∈N\Epαjxj = β and this case is shown.

If q′bp
= |Ep| − 1 ≥ 2, then Σ

q′bp
+1

j=2 afp
j

+ Σp−1
i=1 Σ

q′bi
j=1af i

j
≤ b by (ii). Thus, Σ

q′bp
+1

j=1 afp
j
−

afp

j′
+ Σp−1

i=1 Σ
q′bi
j=1af i

j
≤ b for any j′ = 1, ..., |Ep| due to the sorted order of Fp. Thus, the

points Σ
q′bp

+1

j=1 efp
j
− efp

j′
+ Σp−1

i=1 Σ
q′bi
j=1ef i

j
are in PKP for any j′ = 1, ..., |Ep|. Additionally,

these points meet Σj∈Epα
∗xj +Σj∈N\Epαjxj ≤ β at equality and are affinely independent

36

and the result follows.

For the final case, if q′bp
< |Ep| − 1 and q′bp

≥ 2, then Σ
q′bp

+1

j=2 afp
j

+ Σp−1
i=1 Σ

q′bi
j=1af i

j
≤ b

(ii). Thus, Σ
q′bp

+1

j=1 afp
j
− afp

j′
+ Σp−1

i=1 Σ
q′bi
j=1af i

j
≤ b for any j′ = 1, ..., q′bp

+ 1 due to the

sorted order of Fp. Thus, the points Σ
q′bp

+1

j=1 efp
j
− efp

j′
+ Σp−1

i=1 Σ
q′bi
j=1ef i

j
are in PKP for

any j′ = 1, ..., q′bp
+ 1. Additionally, these points meet Σj∈Epα

∗xj + Σj∈N\Epαjxj ≤ β at

equality.

To find the remaining |Ep|−q′bp
points observe that afp

|Ep|
+Σ

q′bp
−1

j=1 afp
j
+Σp−1

i=1 Σ
q′bi
j=1af i

j
≤

b. Thus, afp

j′
+ Σ

q′bp
−1

j=1 afp
j

+ Σp−1
i=1 Σ

q′bi
j=1af i

j
≤ b for any j′ ≥ |Ep| − q′bp

+ 1. Consequently,

the points efp

j′
+ Σ

q′bp
−1

j=1 efp
j

+ Σp−1
i=1 Σ

q′bi
j=1ef i

j
are in PKP for any j′ ≥ |Ep| − q′bp

+ 1 and

meet Σj∈Epα
∗xj + Σj∈N\Epαjxj ≤ β at equality.

These points are clearly affinely independent and the final case follows.

�

Therefore, it has been shown that the DPMLSA runs with O(nb) effort, and generates

the valid inequality Σp
i=1αiΣj∈Ei

xj ≤ β. The DPMLSA also guarantees to increase the

dimension of the face by at least one in the expanded polyhedron, and a facet defining

result is possible.

To create an example problem where three sets can be simultaneously lifted, the IP

from Example 2 is expanded by introducing more variables. The example can be found

below.

Example 3

37

Now let A = [37, 36, 36, 35, 34, 23, 23, 22, 22, 21, 21, 20, 20, 15, 15, 15, 14, 14, 14, 13, 13, 13,

12, 12, 12] and b = 152. Let the sets be E1 = {1, 2, ..., 5},E2 = {6, 7, ..., 13} and

E3 = {14, 15, ..., 25}. Observe that each of these sets is a cover. Here we detail the

generation of one simultaneously lifted inequality. This inequality starts from the cover

inequality generated from E1 and simultaneously lifts E2 and then E3. Thus, the final

inequality takes the form Σ5
j=1xj + α2Σj∈E2xj + α3Σj∈E3xj ≤ 4.

The table from E1 must be generated in order to lift E2. Since the smallest a value

in E1 is 34, the value of Σ5
j=1xj is zero as long as the right hand side is less than or equal

to 33. Thus, tj = 0 ∀j = 0 to 33. Once the right hand side is between 34 and 68, at

most one of the variables (x5 = 1) corresponding to an index from E1 can be set to one,

so tj = 1 for all j = 34 to 68 (x5 = 1). Continuing this logic yields tj = 2 for all j = 69

to 104, tj = 3 for all j = 105 to 140, tj = 4 for all j = 141 to 152. Observe that these

ranges are the sums of the smallest coefficients in E1.

To determine α2 let F2 be E2 sorted in ascending order. Thus, the a values of the

F2 indices are (20, 20, 21, 21, 22, 22, 23, 23). Set α2 = ∞ and k = 1. Now af1 = 20

and b − af1 = 132, so β−t132
1

= 4−3
1

= 1, which is less than ∞. So α2 is changed to

1. Similarly, af2
1

+ af2
2

= 40 and b − af2
1
− af2

2
= 112, so β−t112

2
= 4−3

2
= 1

2
and α2 is

set to 1
2
. Continuing this pattern for the smallest three through the smallest 7 indices

of E3 does not change the value of α∗2 because β−t91
3

= 4−2
3

= 2
3
, β−t70

4
= 4−2

4
= 1

2
,

β−t48
5

= 4−1
5

= 3
5
, β−t26

6
= 4−0

6
= 4

6
, and β−t3

7
= 4−0

7
= 4

7
, which are all larger than

1
2
. So simultaneously lifting E2 into the cover inequality generated by E1 results in

38

x1 + x2 + x3 + x4 + x5 + 1
2
x6 + 1

2
x7 + 1

2
x8 + 1

2
x9 + 1

2
x10 + 1

2
x11 + 1

2
x12 + 1

2
x13 ≤ 4.

In order to simultaneously lift E3, T is updated with E2. Now that α∗2 = 1
2
, T can be

updated by adding the α2 value to the table. This is done by evaluating the statement

if tj + α2 ≥ tj+f2
1
, then tj+f2

1
= tj + α2. First, consider updating the table with af2

1
.

Compare t0 +α∗2 to t20, since (t0 +α∗2 = 1
2
) > (t20 = 0), t20 = 1

2
. Incrementing j results in

t20 to t33 being updated and set equal to 1
2
, t54 to t68 updated to 11

2
, t89 to t104 updated

to 21
2
, and t125 to t140 updated to 31

2
and all the remaining values of T remain the same.

To continue updating T , the sum of the smallest two coefficients corresponding to

indices from E2 are considered. Observe that the sum of these two coefficients, af2
1
+af2

2
,

is 40, which is larger than any element in E1 and indicates that no updates should be

generated from this pair. The first check would be to compare (t0+f2
1 +f2

2
= t40 = 1) to

(t0 + 2α2 = 1) and observe that no update occurs.

Continuing this logic, no additional updates to T occur from elements in E2, and T

becomes tj = 0 ∀j = 0 to 19, tj = 0.5 ∀ j = 20 to 33, tj = 1 ∀ j = 34 to 53, tj =

1.5 ∀ j = 54 to 68, tj = 2 ∀ j = 69 to 88, tj = 2.5 ∀ j = 89 to 104, tj = 3 ∀ j = 105 to

124, tj = 3.5 ∀ j = 125 to 140, and tj = 4 ∀ j = 141 to 152.

To determine α3 let F3 be E3 sorted in ascending order. Thus, the a values of the

F3 indices are (12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15). Set α3 = ∞ and k = 1. Now

af3
1

= 12 and b − af3
1

= 140, so β−t140
1

= 4−3.5
1

= 1
2

and α3 = 1
2
. Again, af3

1
+ af3

2
= 24

and b − af3
1
− af3

2
= 128 so β−t128

2
= 4−3.5

2
= 1

4
and α3 = 1

4
. This process is continued

to find the remaining changes; they are β−t116
3

= 4−3
3

= 1
3
, β−t103

4
= 4−2.5

4
= 3

8
, β−t90

5
=

39

4−2.5
5

= 3
10

, β−t77
6

= 4−2
6

= 1
3
, β−t63

7
= 4−1.5

7
= 5

14
, β−t49

8
= 4−1

8
= 3

8
, β−t35

9
= 4−1

9
= 1

3
,

β−t20
10

= 4−.5
10

= 3.5
10

, and β−t5
11

= 4−0
11

= 4
11

. The minimum has α∗3 = 1
4
.

So the final simultaneously lifted inequality is Σj∈E1xj +α∗2Σj∈E2xj +α∗3Σj∈E3xj ≤ 4,

which is Σ5
j=1xj + 1

2
Σ13

j=6xj + 1
4
Σ25

j=14xj ≤ 4. The following discussion shows that this

inequality satisfies Theorem 3.1.3 and is therefore facet defining for this polytope.

Example 3 starts with the set E1 which is a minimal cover of PKP ch. As a minimal

cover, the dimension of the cover inequality is 4 in PKP ch
E2∪E3

. The first five columns

of Figure 3.1 below give the five affinely independent points necessary to prove this

dimension.

By simultaneously lifting E2 into the cover inequality, this dimension of the restricted

space is expanded to 12. The α∗2 = 1
2

occurs by combining the three smallest elements

of E1 with two elements of E2, thus q′b1 = 3 and q′b2 = 2. Consequently, having three

variables in E1 and two variables in E2 set to one results in Σ5
j=1xj + 1

2
Σ13

j=6xj ≤ 4 being

met at equality.

The next eight columns of affinely independent points show that the dimension is

increased to 12 by E2 being lifted. From Theorem 3.1.3, (i) is clearly met since q′b2 = 2 <

7. Since q′b1 represents the number of elements of E1 to be set to 1 and q′b2 represents

the same for E2, these points meet the inequality (ii) at equality. The sixth point,

[0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] is feasible, because the sum of

the coefficients of the elements is 36 + 35 + 34 + 23 + 20 = 148 which is less than 152,

which satisfies condition (iii). Clearly, if this point is feasible, then replacing the element

40

x6 with any other element of E2 is feasible. Therefore, the seventh through tenth points

are feasible by the sorted order.

Similarly, the eleventh point [0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

is feasible. The sum of the coefficients for this point is 36 + 35 + 34 + 21 + 20 = 146

which is less than 152, thus condition (ii) is met. Since this point is feasible, the twelfth

and thirteenth points are also feasible by the sorted order of aj.

The set E3 is then simultaneously lifted into the inequality, and the lowest α value

occurs with two elements of E3, one element of E2, and two elements of the original

cover inequality, E1. Thus, q′b1 = 3, q′b2 = 1, and q′b3 = 2.

This combination of elements clearly satisfies condition (i) of Theorem 3.1.3. Since

the points listed in the columns below meet (ii) at equality, condition (ii) is met. Points

fourteen through twenty two are feasible. This can be shown by proving point fourteen,

[0, 0, 1, 1, 1,0, 0, 0, 0, 0, 0, 1,1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], is feasible, because the sum of

the coefficients 36 + 35 + 34 + 20 + 15 + 12 = 152, which satisfies the constraint. Points

twenty three, twenty four, and twenty five are feasible; this is shown by proving the

largest is feasible. Point twenty three is feasible because the sum of the coefficients

36 + 35 + 34 + 20 + 12 + 12 = 149 which is less than 152.

The twenty five affinely independent points in Figure 3.1 below prove that the in-

equality generated by the DPMLSA, Σ5
j=1xj + 1

2
Σ13

j=6xj + 1
4
Σ25

j=14xj ≤ 4, is valid and facet

defining for PKP ch.

41

1 1 1 1 0
1 1 1 0 1 0
1 1 0 1
1 0 1
0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0
0 1 1 0
0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1

Figure 3.1: Affinely Independent Points for Example 3

The DPMLSA provides a fast method for finding valid simultaneously up lifted in-

equalities, and the inequalities have the potential to be facet defining. The DPMLSA

runs in pseudo-polynomial, O(nb), effort, which is fast in most instances. In some in-

stances, b may be exponentially large; for these instances a polynomial time algorithm

would be better suited for generating the simultaneously up lifted inequality, which is

the topic of the next section.

42

3.2 Three Set Simultaneous Lifting Algorithm

In some instances, b can be exponentially large, which forces the O(nb) effort of the

DPMLSA to be computationally intractable. For these instances, an algorithm that

runs independently of b is desirable. The effort required for the TSSLA depends on the

number of sets simultaneously up lifted; for three sets, the TSSLA requires O(n2).

The input to the Three Set Simultaneous Lifting Algorithm (TSSLA) is a knap-

sack constraint Σj∈Najxj ≤ b, a lifting set E3 ⊂ N and a valid inequality of the form

α1Σj∈E1xj + α2Σj∈E2xj ≤ β over PKP ch
E3

where E1, E2 and E3 are all disjoint.

Three Set Simultaneous Lifting Algorithm

Initialization

Let Fk = {fk
1 , ..., fk

|Ek|} where Fk is Ek sorted in ascending order based upon the

corresponding a values of the knapsack constraint for k = 1, ..., 3.

α3 := ∞.

Main Step

For r = 1 to |E3|

p := 0, q := 0 and sum := Σr
k=1af3

k
.

While sum ≤ b and p ≤ |E1|

p := p + 1

sum := sum + af1
p

43

flag := feasible

End While

sum := sum− af1
p

and p := p− 1

While p ≥ 0 and q ≤ |E2|.

if sum ≤ b, then

if (β − pα1 − qα2)/r < α3, then α3 = (β−pα1−qα2)
r

.

q := q + 1 and sum := sum + af2
q
.

else

sum := sum− af1
p

and p := p− 1.

End While

End For

Output

Report α3 as the simultaneous lifting coefficient.

To determine the running time of the TSSLA the algorithm will be evaluated step

by step. First, consider the Initialization Step. The sorting of the three Ep sets requires

O(|E|log(|E|)) where |E| = max{|Ei| : i = 1, 2, 3}. So, overall, the Initialization requires

O(|E|(log(|E|))) effort.

Next, the Main Step is evaluated. The summation of elements in E1 requires O(|E1|),

44

and the next while loop requires O((|E1|+ |E2|)(|E3|)). Finally, the termination requires

O(1). Using amortized analysis, the TSSLA runs in O((|E1| + |E2|)(|E3|)) effort which

is bounded by O(n2) effort.

Implementing the TSSLA results in simultaneously up lifted inequality that is a valid

inequality of PKP ch. An additional benefit of this inequality is that its dimension in

PKP ch is larger than the dimension of the original inequality in PKP ch
E3

. Formally,

Theorem 3.2.1. Let Σn
j=1ajxj ≤ b be a knapsack constraint and E1, E2 and E3 be

nonempty, disjoint subsets of N . If α1Σj∈E1xj + α2Σj∈E2xj ≤ β is a valid inequality

over PKP ch
E3

, then the inequality α1Σj∈E1xj + α2Σj∈E2xj + α3Σj∈E3xj ≤ β is valid for

PKP ch as long as α3 is taken from the TSSLA. Furthermore, if α1Σj∈E1xj+α2Σj∈E2xj+

α3Σj∈E3xj ≤ β defines a face of dimension r over PKP ch
E3

, then α1Σj∈E1xj +α2Σj∈E2xj +

α3Σj∈E3xj ≤ β defines a face of dimension at least r + 1 over PKP ch.

Proof: Assume Σn
j=1ajxj ≤ b is a knapsack constraint, E1, E2 and E3 are nonempty,

disjoint subsets of N , α1Σj∈E1xj + α2Σj∈E2xj ≤ β is a valid inequality over PKP ch
E3

,

and the TSSLA returns α3 as the lifting coefficient. For contradiction, assume that

α1Σj∈E1xj + α2Σj∈E2xj + α3Σj∈E3xj ≤ β is not valid for PKP ch. Thus, there exists an

x′ ∈ PKP such that α1Σj∈E1x
′
j + α2Σj∈E2x

′
j + α3Σj∈E3x

′
j > β.

Let q′i = |{x′j = 1 : j ∈ Ei}| for i = 1, ..., 3. Clearly, q′3 > 0 since α1Σj∈E1xj +

α2Σj∈E2xj ≤ β is a valid inequality over PKP ch
E3

. In the TSSLA loop when r = q′3, there

is an iteration that has p = q′1 and q = q′2. Since this point is feasible, α3 ≤ (β−pα1−qα2)
r

=

(β−q′1α1−q′2α2)

q′3
. However, this implies that x′ does not violate α1Σj∈E1xj + α2Σj∈E2xj +

45

α3Σj∈E3xj ≤ β, a contradiction.

To show that the dimension of the face defined by α1Σj∈E1xj+α2Σj∈E2xj+α3Σj∈E3xj ≤

β increases by at least one, observe that the point with the variables set to one for the

smallest q′i elements in each Ei for i = 1, ..., 3 meets this inequality at equality. Since

q′3 > 0, the dimension must increase by at least one since the space is expanding from

PKP ch
E3

to PKP ch.

�

Implementing the TSSLA provides the same exact simultaneously up lifted inequality

as the DPMLSA. This is due to the fact that the same three sets, E1, E2, E3, are lifted

in the same order. Therefore, the inequality generated by the TSSLA is facet defining

by Theorem 3.1.3 for the same reasons as the inequality generated by the DPMLSA.

The following example shows how to implement the TSSLA.

Example 4

The problem from Example 3 is used for this example of the Three Set Simultaneous

Lifting Algorithm.

Recall that A = [37, 36, 36, 35, 34, 23, 23, 22, 22, 21, 21, 20, 20, 15, 15, 15, 14, 14, 14, 13,

13, 13, 12, 12, 12] and b = 152. The sets are E1 = {1, 2, ..., 5}, E2 = {6, 7, ..., 13}, and

E3 = {14, 15, ..., 25}, and each set defines a cover. The starting equation is Σ5
j=1xj +

1
2
Σ13

j=6xj ≤ 4, which is equivalent to x1 + x2 + x3 + x4 + x5 + 1
2
x6 + 1

2
x7 + 1

2
x8 + 1

2
x9 +

1
2
x10 + 1

2
x11 + 1

2
x12 + 1

2
x13 ≤ 4. Notice that this equation could have been found by lifting

in E2 in linear time with Hooker’s or Sharma’s method.

46

The first step of the TSSLA would be to add the elements of E1 to af3
1

until they

are greater than the right hand side of the inequality, b = 152. The sum starts off

as af3
1

= 12 and elements of E1 are added to the sum until sum = 153. Then, the

last element added is removed, decreasing the sum to 117; this ensures that the largest

number of variables set to 1 in E1, in this case 4, are used while keeping the sum less

than b.

Next, an equation is evaluated to see if the value is less than α3; if so, α3 is modified

to reflect the new value. For this example,
4−3(1)−0(1

2
)

1
= 1; therefore, α3 = 1. Now, an

element of E2 is added to make sum = 137,
4−3(1)−1(1

2
)

1
= 1

2
, and α3 = 1

2
. The next

coefficient of an element of E2, 20, is added to make sum = 157; since this is greater

than 152, the else statement comes into effect and an element of E1 is removed. Now,

sum = 121,
4−2(1)−2(1

2
)

1
= 1, and α3 is not updated. This process is repeated for all

critical combinations of E1 and E2 with the first element of E3. The process continues

as follows: sum = 142 and
4−2(1)−3(1

2
)

1
= 1

2
, sum = 163 so an element of E1 is removed,

sum = 128 and
4−1(1)−4(1

2
)

1
= 1, sum = 150 and

4−1(1)−5(1
2
)

1
= 1

2
, sum = 172 so the last

element of E1 is removed, sum = 138 and
4−0(1)−6(1

2
)

1
= 1, and finally sum = 161. One

complete loop of the Main Step is completed, with α3 = 1
2
.

This cycle is completed with an additional element of E3 each time until all elements

of E3 have been combined and evaluated. With two elements from E3 and three elements

of E1, sum = 129 to begin with. The process continues as follows: sum = 129 and

4−3(1)−0(1
2
)

2
= 1

2
, sum = 149,

4−3(1)−1(1
2
)

2
= 1

4
, and α3 = 1

4
, sum = 169 so an element

47

of E1 is removed, sum = 133 and
4−2(1)−2(1

2
)

2
= 1

2
, sum = 154 an element of E1 is

removed, sum = 119 and
4−1(1)−3(1

2
)

2
= 3

4
, sum = 140 and

4−1(1)−4(1
2
)

2
= 1

2
, sum = 162

and the last element of E1 is removed, sum = 128 and
4−0(1)−5(1

2
)

2
= 3

4
, sum = 150 and

4−0(1)−6(1
2
)

2
= 1

2
, and sum = 173. This loop of the Main Step resulted in α3 = 1

4
.

The other ten cycles of the Main Step would be conducted in the same way and

the final result would remain α3 = 1
4
. This would provide the final valid inequality of

α1Σj∈E1xj +α2Σj∈E2xj +α3Σj∈E3xj ≤ 4, which is Σ5
j=1xj + 1

2
Σ13

j=6xj + 1
4
Σ25

j=14xj ≤ 4. As

shown in Example 3, for the DPMLSA, the final valid inequality is facet defining over

PKP ch.

The TSSLA produces valid simultaneously up lifted inequalities. The inequality

generated by the TSSLA is facet defining if the conditions of Theorem 3.1.3 are met. The

TSSLA generates inequalities in polynomial, O(n2), effort. This is fast in all instances

and is preferable to the DPMLSA if b is large.

3.2.1 Extensions of the TSSLA

The algorithm, TSSLA, can be expanded to include an arbitrary number of sets. In

order to extend this algorithm to multiple sets, another loop statement would need to

be added to accommodate the additional set E4. The effort required would increase

by the order of n for every additional set. Therefore, in general, the effort required to

implement this algorithm is at most O(np−1) for p sets.

Observing that these p sets are bounded by n, the running time is at most O(nn−1).

48

However, recognizing that these p sets partition n elements, this running time can be

reduced further. The maximum running time occurs by solving maxΠp
i=1|Ei| subject to

∪p
i=1Ei = N and Ei ∩Ej = ∅ for all i �= j. The maximum occurs when each Ei contains

√
n elements. Thus, regardless of the number of partitions, the TSSLA is bounded by

O(
√

n
√

n
) effort.

3.3 Sequential Simultaneous Lifting

One of the most significant results of this research is the introduction of a new type

of lifting, sequential simultaneous lifting. For all the examples in this thesis, the sets

were evaluated in the same order: E1, then E2, and then E3. This was kept consistent

because the inequality generated by these algorithms is sequence dependent. If the three

sets were lifted in a different order each time, up to 3! = 6 distinct inequalities could be

reported by the DPMLSA or the TSSLA.

Theoretically, a problem with p sets could provide p! distinct exact simultaneously

up lifted inequalities. This would require the lifting order of the sets be changed for

every evaluation. For example, the six lifting combinations for a problem with three

sets would be (1st, 2nd, 3rd), (1st, 3rd, 2nd), (3rd, 1st, 2nd), (2nd, 1st, 3rd), (3rd, 2nd, 1st), and

(2nd, 3rd, 1st).

The 25 variable example used throughout this thesis would produce six distinct

inequalities, if the right hand side is changed to b = 149. The six inequalities are

49

(1) Σ5
j=1xj + 1

2
Σ13

j=6xj + 1
4
Σ25

j=14xj ≤ 4,

(2) Σ5
j=1xj + 1

3
Σ13

j=6xj + 1
3
Σ25

j=14xj ≤ 4,

(3) 7
5
Σ5

j=1xj + Σ13
j=6xj + 3

5
Σ25

j=14xj ≤ 7,

(4) 5
3
Σ5

j=1xj + Σ13
j=6xj + 1

2
Σ25

j=14xj ≤ 7,

(5) 2Σ5
j=1xj + 3

2
Σ13

j=6xj + Σ25
j=14xj ≤ 11, and

(6) 5
2
Σ5

j=1xj + 5
4
Σ13

j=6xj + Σ25
j=14xj ≤ 11.

Given that all the inequalities produced by these methods are valid, the potential for

facet defining inequalities exist. The simultaneously up lifted inequalities would need

to be evaluated with Theorem 3.1.3. Thus, this thesis introduced sequence dependent

simultaneous up lifting.

In Examples 3 and 4, the initial set, E1, is a minimal cover. This set is chosen

because, as a minimal cover, it is facet defining over the restricted space PKP ch
E2∪E3

.

After lifting sets E2 and E3, the exact simultaneously up lifted inequality would be facet

defining over PKP ch. However, it is not necessary for the DPMLSA or the TSSLA to

start with a minimal cover, and it is possible to still achieve facet defining results.

For example, consider the constraint from Examples 3 and 4. If x1 is removed, A =

[36, 36, 35, 34, 23, 23, 22, 22, 21, 21, 20, 20, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12] for x2 to

x25 and let b be increased by 1, b = 153. Therefore, E1 = {2, ..., 5}, E2 = {6, 7, ..., 13},

and E3 = {14, 15, ..., 25}. Clearly, the starting equation Σ5
j=2xj ≤ 4 has dimension 0

in P ch
E2∪E3

, since the only point that meets it at equality is [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,

50

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Following either the DPMLSA or the TSSLA results in the same α values and the

final valid inequality is Σ5
j=2xj +

1
2
Σ13

j=6xj +
1
4
Σ25

j=14xj ≤ 4. The set of affinely independent

points necessary to show this inequality is facet defining are

1 0
0 1 1 0 1
0 1 0 1
1 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0
0 1 1 0
0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 .

This example provides a significant result of exact simultaneous up lifting. It shows

the ability of the DPMLSA and the TSSLA to increase the dimension of the starting

inequality, dimension of 0, to facet defining over PKP ch. This improvement is significant

because the dimension increases by 23 by only simultaneously lifting 20 variables. Thus,

51

simultaneous lifting may increase the dimension of the polyhedron beyond the number

of lifted variables.

52

Chapter 4

Computational Results

The most important result of this research is the ability to exact simultaneously up lift

multiple sets in pseudo-polynomial and polynomial time. The purpose of this section is

to provide computational results to support the findings of this research. The compu-

tational results show that valid inequalities generated by the DPMLSA are easy to find

and can decrease the time required to solve an IP.

The computational study was conducted on a Pentium 4 3.40 GHz processor with

1.0 GB of RAM and times are reported in seconds. The study contained problems with

100 to 750 variables. All integer programs are solved using CPLEX at default settings.

The basic idea of the problems is to follow the spirit of the theoretical results [17, 45]

to create difficult knapsack instances. These theoretical results have a b value that is

exponential in the size of the instance and since the DPMLSA’s computational time relies

on the order of b, sufficient memory is not available on KSU’s computers to implement

53

this algorithm. Thus, the key ideas of these theoretical results are used to generate

problems that CPLEX cannot trivially solve nor does it take CPLEX days to solve.

Various classes of instances were attempted before a suitable class of problems was

discovered. This class of problems is a randomly generated multiple knapsack problem

with two constraints. A multiple knapsack problem (MKP) is a KP with additional

constraints. These constraints may represent the volume or budget requirements that

further restrict the camper’s choice. Thus, the IP formulation for this computational

study follows the form maximize Σn
j=1cjxj subject to Σn

j=1a1jxj ≤ b1, Σn
j=1a2jxj ≤ b2,

and xj ∈ {0, 1} ∀j ∈ {1, ..., n}.

The constraint coefficients, aij, are random integers taken from a uniform distribution

between 0 and 1, 000 for all i ∈ {1, 2} and j ∈ {1, ..., n}. Each objective function

coefficient, cj, is calculated by adding the column coefficients and a uniform random

integer between 0 and 5, cj = a1j + a2j + u where u is a uniformly distributed integer

between 0 and 5. The right hand side of each constraint is one tenth of the sum of the

row’s coefficients rounded down to the nearest integer, �Σn
j=1

a1j

10
� = b1 and �Σn

j=1
a2j

10
� =

b2.

The computational study was conducted using n variables, with n equal to 100, 250,

500, and 750. To avoid anomalies with random instances, 30 instances of each size

problem were generated and the averages are reported.

The DPMLSA was coded in C to generate an exact simultaneously lifted inequality

for each of the two constraints. No effort was made to find good sets that eliminated the

54

root nodes of the linear relaxation. Rather, a minimal cover was obtained by taking a

minimal cover consisting of the smallest a coefficients for that constraint that are larger

than 450. With this cover Balas’s result [7] partitioned the variables into two classes,

those that have fixed integer coefficients and those that are not fixed. Those with fixed

integer coefficients are assigned to the correct value. The variables that are not fixed

are used to form sets for the simultaneous up lifting as follows.

If the entire set of not fixed variables for a particular range is used for the DPMLSA,

then the α value tended to be low. By dividing this set into several subsets, various

α values were obtained. For instance, in one instance, lifting all of the set resulted in

the inequality 2 Σ2
j=1xj + 1 Σ30

j=3xj + 0
∑50

j=31 xj+ ≤ 5. Once this was partitioned,

the inequality became 2 Σ2
j=1xj + 1.5 Σ10

j=3xj + 1 Σ30
j=11xj + 1

2
Σ36

j=31xj + 1
3

Σ42
j=37xj +

0
∑50

j=43 xj+ ≤ 5, which is clearly dominant.

After the α values are found, the two simultaneously up lifted inequalities, one for

each constraint, are added to the original KP and solved using CPLEX 10.0 [66] at its

default settings. For comparison, the program is run a second time without adding the

two simultaneously lifted inequalities. Table 4.1 gives the average preprocessing time,

the average solution time, and the percent improvement between these two runs.

To help validate that the computational study implemented the the DPMLSA cor-

rectly, the objective function value from CPLEX and the DPMLSA with CPLEX were

compared. For these 120 instances the objective values were identical. This helps to

confirm that the code successfully implemented the DPMLSA.

55

DPMLSA with Percent
CPLEX 10 at default CPLEX 10 at default Improvement

Preprocessing Average Standard Average Standard Average
Time Time Deviation Time Deviation Time

n = 100 0.00 13.36 8.86 18.30 13.45 26.99%
n = 250 0.02 29.28 24.46 34.05 21.55 13.99%
n = 500 0.07 98.90 71.03 121.02 153.02 18.28%
n = 750 0.18 206.73 209.87 253.27 267.27 18.38%

Average 0.069 87.07 134.11 106.67 179.0 18.4%

Table 4.1: Comparison of Solution Time with the DPMLSA to without

Very little of the total running time can be attributed to the DPMLSA. The num-

ber of variables has a direct impact on the right hand side, b, which increases the time

the DPMLSA takes to generate valid inequalities. The average preprocessing time for

100 variables was 0.00632 seconds; 250 variables, 0.0219 seconds; 500 variables, 0.0738

seconds; and 750 variables took 0.1779 seconds. As expected, an increasing trend is ap-

parent with the increase of the number of variables and the right hand side, b. However,

the DPMLSA is still extremely fast.

Overall, adding the two inequalities from the DPMLSA provided a significant im-

provement over CPLEX alone. This computational study shows that the DPMLSA is

indeed fast, and the solution time to random knapsack instances decreased by an over-

all average of 18.4%. Another benefit of adding the constraints from the DPMLSA is

that the standard deviation on the time required to solve each problem decreases, as

expected.

A decrease of 18.4% is quite impressive given the random nature of the problems and

the lack of effort to find a quality cover and useful sets. We attribute this success to

56

the fact that nearly all coefficients are non zero, simultaneously lifted inequalities tend

to dominate the average of sequentially lifted inequalities, and these inequalities tend to

be “further away” [46] from the axes than sequentially lifted cover inequalities.

At this point one may question why a computational study of the TSSLA was not

performed. For starters, the TSSLA would generate the same inequality and so only the

preprocessing time would change. Since this time is so small, it seems unnecessary to try

and reduce this preprocessing time. Second, the DPMLSA simultaneously lifted 9 sets

(3 for each set of ranges within Balas’ result). Thus, the TSSLA would become a O(n8)

algorithm and it is anticipated to require more preprocessing time than the DPMLSA.

Thus, a computational study was not performed on the TSSLA.

57

Chapter 5

Conclusion and Future Research

The goal of this thesis was to develop fast methods to exact simultaneously up lift a

third set into a cover inequality for the knapsack polytope. The algorithms presented in

this thesis achieve this goal and surpass it. Additionally, this thesis presents a new type

of lifting called sequential simultaneous lifting.

The Dynamic Programming Multiple Lifting Set Algorithm is solvable in O(nb +

nlog(n)) effort. It could be argued that in most instances b ≥ log(n), and therefore,

O(nb) effort is required. The DPMLSA can be used for an arbitrary number of sets, but

is primarily restricted by the size of b.

The Three Set Simultaneously Lifting Algorithm is solvable in O(n2) effort. This

algorithm could be logically extended, with an additional loop statement for each addi-

tional set. This extension would require an order of n for every additional set.

The DPMLSA and the TSSLA will generate the same inequality, if identical sets

58

are lifted in the same order. Neither algorithm requires the starting set to be a cover,

and when the conditions of Theorem 3.1.3 are met, sequential simultaneously lifted

inequalities generated by the DPMLSA and the TSSLA are facet defining.

5.1 Future Research

From a theoretical view point, simultaneous up lifting over binary knapsack polyhedra

is now completely understood. Due to this research, fast algorithms and facet defining

results now exist, and no further research into sequential simultaneous up lifting over

binary knapsack polyhedra is necessary.

However, there still exists ample work for future research in computational results

and determining what sets should be simultaneously lifted. Research could also be

conducted on extending these concepts to down lifting and non binary problems. Future

research could also be conducted to extended these concepts to mixed integer programs.

Opportunities for research within polyhedral theory and combinatorial optimization

are abundant, and only a few are discussed in this chapter. When considering lift-

ing techniques, the goal is to achieve facet defining valid inequalities; unfortunately, a

common challenge of researchers is to find these inequalities in a reasonable amount of

time.

Clearly, being able to find the various sequential simultaneously lifted inequalities

would be a valuable tool for researchers. Thus a research topic would be to develop

59

an algorithm to find many of the p! sequential simultaneously lifted inequalities at one

time.

Another option would be to expand the algorithms, or develop new ones, to generate

valid inequalities for knapsack problems with multiple constraints. Future research could

also extend to developing these concepts for general integer programs with negative

constraints.

60

Bibliography

[1] Anbil R., Gelman E., Patty B., and Tanga R. (1991), ”Recent advances in crew

pairing optimization at American airlines,” Interfaces 21, 62-74.

[2] Arunapuram, S., K. Mathur and D. Solow (2003). “Vehicle routing and scheduling

with full truckloads,” Transportation Science, 37, n 2, May 2003, 170-82.

[3] Atamtürk, A., G. Nemhauser and M. Savelsbergh (2000). “Conflict graphs in solving

integer programming problems,” European Journal of Operational Research, 121,

40-55.

[4] Atamtürk, A. (2003). “On the facets of the mixed-integer knapsack polyhedron,”

Mathematical Programming, 98 (1-3), 145-175.

[5] Atamtürk, A. (2004). “Sequence independent lifting for mixed-integer program-

ming,” Operations Research, 52 (3), 487-491.

[6] Balas, E., (1975). “Facets of the knapsack polytope”, Mathematical Programming,

8, 146-164.

61

[7] Balas, E and E. Zemel (1978). “Facets of the knapsack polytope from minimal

covers,” SIAM Journal of Applied Mathematics, 34, 119-148.

[8] Balas, E. and E. Zemel, (1984). “Lifting and complementing yields all the facets of

positive zero-one programming polytopes,” in Mathematical Programming, Proceed-

ings of the International Conference on Mathematical Programming, R.W. Cottle

et al., eds., 13-24.

[9] Balas, E. and S. M. Ng (1989). “On the set covering polytope. II, Lifting the facets

with coefficients in 0,1,2,” Mathematical Programming, 45 (1), 1-20.

[10] Balas, E. and M. Fishetti (1993). “Lifting procedure for the asymmetric traveling

salesman polytope and a large new class of facets,” Mathematical Programming, 58

(3), 325-352.

[11] Beasley, J. ”The OR Library”, http://people.brunel.ac.uk/ mastjjb/jeb/info.html.

[12] Bertsimas, D., C. Darnell and R. Soucy (1999). “Portfolio construction through

mixed-integer programming at Grantham, Mayo, Van Otterloo and Company,” In-

terfaces, 29, 1, Jan.-Feb. 1999, 49-66.

[13] Bixby, R., S. Ceria, C. McZeal and M. Savelsbergh. ”The MIP-LIB Library,”

http://www.caam.rice.edu/ bixby/miplib/miplib.html.

[14] Brown, D. and I. Harrower (2004). “A new integer programming formulation for the

pure parsimony problem in haplotype analysis,” Algorithms in Bioinformatics. 4th

62

International Workshop, WABI 2004. Proceedings Lecture Notes in Bioinformatics

3240, 254-65.

[15] Cho C., D., M. Padberg, and M. Rao (1983). “On the uncapacitated plant location

problem. II. Facets and lifting theorems,” Mathematics of Operations Research, 8

(4), 590-612.

[16] Computational Infrastructure for Operations Research Website (COIN-OR),

http://www.coin-or.org/.

[17] Chvátal, V. (1980). “Hard knapsack problems,” Operations Research, 28(6), 1402-

1412.

[18] Dahan, X., M. Maza, E. Schost. W. Wu, and Y. Xie (2005). “Lifting techniques for

triangular decompositions,” Proceedings of the 2005 International Symposium on

Symbolic and Algebraic Computation ISSA ’05.

[19] Dantzig, G., D. Fulkerson, and S. Johnson (1954). “Solution of a large-scale traveling

salesman problem,” Operations Research, 5, 266-277.

[20] De Farias Jr, I., E. Johnson, and G. Nemhouser (2002). “Facets of the complimen-

tarity knapsack polytope,” Mathematics of Operations Research, 27 (1), 210-227.

[21] De Simone, C., (1990). “Lifting facets of the cut polytope,” Operations Research

Letters 9 (5), 341-344.

[22] Douglas, K. (2004). WESP retention report to the College of Engineering, Kansas

State University, Manhattan, KS.

63

[23] Easton, K., G. Nemhauser and M. Trick (2003). “Solving the traveling tournament

problem: A combined integer programming and constraint programming approach,”

Practice and Theory of Automated Timetabling IV. 4th International Conference,

PATAT 2002, Selected Revised Papers (Lecture Notes in Comput. Sci. Vol.2740),

2003, p 100-9.

[24] Easton, T. and P. Surve (2006), Trees and the linear arrangement problem, Pro-

ceedings of Industrial Engineering Research Conference, May 21-23, Orlando, FL.

[25] Easton, T. and K. Chinn (2006), Weighted matchings and the vehicle routing prob-

lem Proceedings of Industrial Engineering Research Conference, May 21-23, Or-

lando, FL.

[26] Easton, T. and K. Hooker, “Simultaneously Lifting Sets of Binary Variables into

Cover Inequalities for Knapsack Polytopes,” Discrete Optimization, Special Issue:

In Memory of George B. Dantzig, 5(2) May 2008, 254-261.

[27] Easton, T., K. Hooker and E. K. Lee, (2003) “Facets of the Independent Set Poly-

tope,” Mathematical Programming, Series B 98(1-3), 177-199.

[28] Felici, G., and C. Gentile (2003). “Zero-lifting for integer blocks structured prob-

lems,” Journal of Combinatorial Optimization,7 (2), 161-167.

[29] Ferreira, C., C. de Souza and Y. Wakabayashi (2002). “Rearrangement of DNA

fragments: A branch-and-cut algorithm,” Discrete Applied Mathematics, 116, (1-

2), 15 Jan. 2002, 161-77.

64

[30] Gomory, R. E., (1958). “Outline of an algorithm for integer solutions to linear

programs,” Bulletin of the American Mathematical Society, 64, 275-278.

[31] Gomory, R. (1960). “Solving linear programming problems in integers,” Combina-

torial Analysis, R.E. Bellman and M. Hall, Jr. eds., American Mathematical Society

211-216.

[32] Gomory, R. (1963). “An algorithm for integer solutions to linear programs,” Recent

Advances in Mathematical Programming, R. Graves and P. Wolfe, eds. McGraw-Hill

269-302.

[33] Gomory, R. (1963). “An all-integer programming algorithm,” Industrial Scheduling,

J.F. Muth and G. Thompson, eds. Prentice-Hall 193-206.

[34] Gomory, R. (1969). “Some polyhedra related to combinatorial problems,” Linear

Algebra and its Applications, 2, 451-558.

[35] Gomory, R., (2007). “The atoms of integer programming ’ Annals of Operations

Research, 149, 99-102.

[36] Gomory, R. and E. Johnson (1972). “Some continuous functions related to corner

polyhedra,”Mathematical Programming, 3, 23-85.

[37] Gomory, R. and E. Johnson (1973). “The group Problem and subadditive func-

tions,” Mathematical Programming, T. Hu and S. Robinson, eds. Academic Press,

157-184.

65

[38] Gu, Z., G. Nemhauser, and M. Savelsbergh (1998). “Lifted cover inequalities for

0-1 integer programs: computation,” INFORMS Journal on Computing, 10 (4),

427-437.

[39] Gu, Z., G. Nemhauser, and M. Savelsbergh (1999). “Lifted cover inequalities for 0-1

integer programs: complexity,” INFORMS Journal on Computing, 11 (1), 117-123.

109-121.

[40] Gu, Z., G. Nemhauser, and M. Savelsbergh (2000). “Sequence independent lifting in

mixed integer programming,” Journal of Combinatorial Optimization, 4, 109-129.

[41] Gutierrez, Talia, (2007) “Lifting general integer variables,” MS Thesis, Department

of Industrial and Manufacturing Systems Engineering, Kansas State University.

[42] Hammer, P., E. Johnson, and U. Peled, (1975). “Facets of regular 0-1 polytopes,”

Mathematical Programming, 8, 179-206.

[43] Hooker, K. and T. Easton, (2007) “Using Hyperstars to Create Facial Defining

Inequalities of General Binary Integer Programs,” The International Journal of

Operations Research, 4 (3), 138-145.

[44] Hooker, Kevin, (2005) “Hypergraphs and integer programming polytopes, Ph.D.

Dissertation, Department of Industrial and Manufacturing Systems Engineering,

Kansas State University.

66

[45] Hunsaker, B. and C. Tovey (2004). “Simple lifted cover inequalities and hard knap-

sack problems,” Technical Report: Industrial Engineering, University of Pittsburgh,

Pittsburgh, PA 1-13.

[46] Huschka, Bryce, (2007) “Finding adjacent facet-defining inequalities,” MS Thesis,

Department of Industrial and Manufacturing Systems Engineering, Kansas State

University.

[47] Karp, R. (1972). “Reducibility among combinatorial problems,” in Complexity of

Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New

York 85-103.

[48] Kaufman, D., J. Nonis, and R. Smith (1998). “A mixed integer linear programming

model for dynamic route guidance,” Transportation Research, Part B (Methodolog-

ical), 32B (6), Aug. 1998, p 431-40.

[49] Kayarat, Dheeraj (2005) “The quadratic polyhedral clustering algorithm A new

method To cluster microarray data,” MS Thesis, Department of Industrial and

Manufacturing Systems Engineering, Kansas State University.

[50] Koster, A., S. Hoesel, and A. Kolen (1998). “The partial constraint satisfaction

problem: facets and lifting,” Operations Research Letters, 23 (3), 89-98.

[51] Land, A.H. and A.G. Doig (1960). “An automatic method for solving discrete pro-

gramming problems,” Econometrica, 28, 497-520.

67

[52] Lee, E. and M. Zaider, (2000). “Mixed integer programming approaches to treat-

ment planning for brachytherapy – Application to permanent prostate implants,”

Annals of Operations Research, Optimization in Medicine, 2000, 147-163.

[53] Lee, E., T. Fox and I. Crocker, (2003) “Integer programming applied to intensity-

modulated radiation treatment planning optimization,” Annals of Operations Re-

search, Optimization in Medicine, 2003, 119: 165-181.

[54] McAdoo, Michael, (2007) “Three set inequalities in integer programming,” MS

Thesis, Department of Industrial and Manufacturing Systems Engineering, Kansas

State University.

[55] Nemhauser, G. and L. Wolsey, (1988). Integer and combinatorial optimization, John

Wiley and Sons, New York.

[56] Nemhauser, G. L. and P. H. Vance, (1994). “Lifted cover facets of the 0-1 knapsack

polytope with GUB constraints,” Operations Research Letters,16 (5), 255-263.

[57] Padberg, M. (1973). “On the facial structure of set packing polyhedra,” Mathemat-

ical Programming, 5, 199-215.

[58] Park, K. (1997). “Lifting cover inequalities for the precedence-constrained knapsack

problem,” Discrete Applied Mathematics, 72 (3), 219-241.

[59] Pinto, R. and B. Rustem (1998) “Solving a Mixed-Integer Multiobjective Bond

Portfolio Model Involving Logical Conditions,” Annals of Operations Research, 81,

1998, 497-513.

68

[60] Richard J., I. De Farias, and G. Nemhauser (2003). “Lifted inequalities for 0-1

mixed integer programming: Superlinear lifting,” Integer Programming, 98 (1-3),

115-143.

[61] Ruiz, R., C. Maroto and J. Alcaraz (2004). “A decision support system for a real

vehicle routing problem,” European Journal of Operational Research, 153 (3), 16

March 2004, 593-606.

[62] Santanu, S. D. and P. R. Jean-Philippe, (2006). “Linear programming based lift-

ing and its application to primal cutting plane algorithms,” School of Industrial

Engineering, Purdue University.

[63] Sharma, Kamana, (2007) “Simultaneously lifting sets of variables in binary knap-

sack problems,” MS Thesis, Department of Industrial and Manufacturing Systems

Engineering, Kansas State University.

[64] Shebalov, S. and D. Klabjan, (2006) “Sequence independent lifting for mixed integer

programs with variable upper bounds,” Mathematical Programming, 105 (2-3), 523-

561.

[65] Subramanian, R., Scheff R., Quillinan J., Wiper D. S., and Marsten R. (1994)

“Coldstart: Fleet Assignment at Delta Air Lines.” INTERFACES, 24, January-

February 1994, 104-120.

[66] The CPLEX Solver on ILOG’s Home Page, http://www.ilog.com/.

69

[67] Toth, P. (1997). “An exact algorithm for the vehicle routing problem with back-

hauls,” Transportation Science, 31 (4), Nov. 1997, 372-85.

[68] Urban, T. (2003). “Scheduling sports competitions on multiple venues,” European

Journal of Operational Research, 148 (2), 16 July 2003, 302-11.

[69] Wolsey, L.A. (1975). “Faces for a linear inequality in 0-1 variables,” Mathematical

Programming, 8, 165-178.

[70] Wolsey, L.A. (1976). “Facets and strong valid inequalities for integer programs,”

Operations Research, 24, 367-372.

[71] Wolsey, L.A. (1977). “Valid inequalities and superadditivity of 0/1 integer pro-

grams,” Mathematics of Operations Research, 2, 66-77.

[72] Zemel, E. (1978). “Lifting the facets of 0-1 polytopes” Mathematical Programming,

15, 268-277.

[73] Zemel, E. (1989). “Easily computable facets of the knapsack polytope,” Mathemat-

ics of Operations Research, 14, 760-764.

70

