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Abstract 

Multi-objective optimization problems deal with finding a set of candidate optimal 

solutions to be presented to the decision maker.  In industry, this could be the problem of finding 

alternative car designs given the usually conflicting objectives of performance, safety, 

environmental friendliness, ease of maintenance, price among others.  Despite the significance of 

this problem, most of the non-evolutionary algorithms which are widely used cannot find a set of 

diverse and nearly optimal solutions due to the huge size of the search space.  At the same time, 

the solution set produced by most of the currently used evolutionary algorithms lacks diversity. 

 

The present study investigates a new optimization method to solve multi-objective 

problems based on the widely used swarm-intelligence approach, Particle Swarm Optimization 

(PSO).  Compared to other approaches, the proposed algorithm converges relatively fast while 

maintaining a diverse set of solutions.  The investigated algorithm, Partially Informed Fuzzy-

Dominance (PIFD) based PSO uses a dynamic network topology and fuzzy dominance to guide 

the swarm of dominated solutions. 

 

The proposed algorithm in this study has been tested on four benchmark problems and 

other real-world applications to ensure proper functionality and assess overall performance.  The 

multi-objective gene regulatory network (GRN) problem entails the minimization of the 

coefficient of variation of modified photothermal units (MPTUs) across multiple sites along with 

the total sum of similarity background between ecotypes.  The results throughout the current 

research study show that the investigated algorithm attains outstanding performance regarding 

optimization aspects, and exhibits rapid convergence and diversity.  
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CHAPTER 1 - INTRODUCTION 

 

Classical optimization algorithms have been widely used in various real world 

applications. They are methods that can find an optimal solution for a given function, either 

minimum or maximum depending on the optimized function.  Henceforth, we will refer in this 

thesis to this function as the objective function and without loss of generality we will assume that 

the optimization entails the minimization of the objective function. 

 

Typically, real world problems cannot be handled by classical methods, as they usually 

tend to be too complex.  An appropriate approach is to use meta-heuristic techniques, such as 

bio-inspired algorithms.  Bio-inspired computing (BIC) has been extensively used over the past 

decades to solve complex real world problems.  Most of BIC methods are meta-heuristic 

methods inspired from nature that continue to find the optimal solution of a given function 

iteratively.  Bio-inspired computing methods are stochastic, being characterized by maintaining 

non-deterministic behavior towards problem solving.  

1.1 Bio-inspired Computing 

 

When it comes to complex real world problems solving, bio-inspired techniques 

outperform classical methods.  They are characterized by many advantages over classical 

methods that qualify them to attain top notch title in solving such type of problems.  As an 

advantage, they are derivative free methods which give them the capability of addressing non 

differentiable problems and provide simplicity in finding optimum solutions,.  In addition, these 

techniques are population-based, allowing easy parallelization, as well as the ability to 

simultaneously sample different regions of the search space.  Typically, in bio-inspired 

techniques the goodness of a solution is measured in terms of the value of the objective function. 

This is referred to as its fitness.  Examples of such techniques are simulated annealing, artificial 

immune system, clonal selection principal and genetic algorithms (GAs).  PSO and ant colony 

optimization (ACO) are techniques based on swarm intelligence.  ACO is based on the ants’ 
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strategy where ants lay pheromones along their path to a food source, allowing pheromone trails 

to accumulate if an optimal path is chosen or evaporate if the path is least favorable by ants due 

to path’s high cost [1].  Simulated annealing is a method inspired from the cooling of metals in 

which the algorithm tends to be more exploitative, after exposing their molecules to a great 

amount of heat that tends to make the algorithm more explorative.  Artificial immune system is 

another adaptive and distributed approach in which the system is characterized by a memory.  

Such characteristic is beneficial for the system as it helps identifying patterns of the infection 

that have been experienced at earlier stages and allows it to produce antibodies against that 

infection.  The memory is also useful to classify patterns learned previously by the system [2].  

Clonal selection principle is similarly characterized by a memory set and cloning of antibodies 

that tend to be formed due to the infection of the system by a virus or bacteria and reselecting 

those antibodies to defeat such infection [3].  GAs are based on biological evolution where the 

idea is inspired from Darwin’s theory of evolution. In these algorithms, evolutionary operators, 

such as selection, crossover, and mutation play important roles [4].  Each chromosome within the 

population is evaluated and assigned a fitness value that measures how good a solution is.  The 

higher the fitness value of a chromosome, the higher the probability of the chromosome being 

selected for producing an offspring.  The fitness values of the chromosomes are sorted and the 

chromosomes with higher fitness values continue to survive to the next generation while the least 

fit ones get eliminated.  GAs operators’ are specialized depending on the application itself. 

1.2 Thesis Outline 

 

The contents of this study are outlined as follows.  PSO is discussed in detail in Chapter 

2.  In Section 2.1, standard PSO and its functionality are presented.  Fully informed PSO and 

how it varies from standard PSO is discussed in Section 2.2.  Multi-objective optimization, fuzzy 

-dominance concept, and the investigated algorithm are detailed in Chapter 3, followed by 

figures of simulation results of test problems.  Furthermore in Chapter 4, single objective 

optimization of modeled GRN problem and how PSO is applied to perform parameter 

estimation, minimizing the coefficient of variation in Arabidopsis thaliana ecotypes across 

different planting sites are presented.  Identifying confidence regions of the estimated parameters 

is also discussed.  Figures representing range of bolting dates of the selected ecotypes throughout 
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an entire year are presented as well.  Multi-objective GRN problems and how parameter 

estimation was performed for a wide number of ecotypes with interline similarities is discussed 

in Chapter 5.   Figures of the non-dominated solutions of the multi-objectives GRNs are 

presented.  Finally, Chapter 6 concludes the research results reported throughout the thesis.  

Suggestions of future work that could be applied to the proposed algorithm to furthermore 

improve its convergence rate are documented. 
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CHAPTER 2 - PARTICLE SWARM OPTIMIZATION 

 

This chapter opens by explaining basics of standard PSO, details its functionality, and the 

procedure of updating particles’ positions.  Also, fully informed PSO and various sufficient 

network topologies that could be adopted by the swarm to reach optimal solution of a given 

problem are discussed in detail. 

2.1  Standard PSO 

 

PSO is a continuous optimization method for non-linear functions, based on swarm-

intelligence that first has been proposed by Kennedy and Eberhart [5].  It is a population based 

method that is inspired from the social behavior of bird flocks, fish schools, or any other swarm 

of organisms.  It mimics swarm-based organisms’ means of exchanging information in solving 

problems.  PSO maintains a population of particles that explore the search space in order to find 

suitable optima for the optimized function.  The method is adaptive in which it simulates the 

stochastic movements of the particles.  Each solution vector of the problem is represented by a 

particle that explores the search space seeking global optima.  Each particle is accompanied by a 

certain velocity that controls the movement of that particle within the search space, which is the 

set of all feasible solutions to that problem.  The best candidate particle among the entire 

population is known as global best.  Each particle in the search space keeps track of the best 

position visited so far using its own memory and updates that position if a better one has been 

found during the exploration process, and is referred to as local best.  The global best candidate 

is updated iteratively until no better solution is found through the search process.  Further 

improvement can be achieved by maintaining balance between exploration and exploitation [6].  

 

PSO starts with a randomly initialized population whose values are within a certain range 

which control how it functions.  The velocity of each particle is also initialized randomly 

following a uniform distribution U[0,1].  The initialized population begins exploring the entire 
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search space.  In order for the particles to converge to a suitable optimum, each particle’s 

position is updated iteratively using the equation shown below, 

 

 1 2[0,1] ( ) [0,1] ( )t t 1 lb t gb tC U C Uv v x x x x  (2.1) 

[0,1]U  is a multi-dimension uniformly random distribution between 0 and 1 and its dimensions 

are determined based on the solved problem,  denotes element by element multiplication while 

 denotes regular multiplication.  In each iteration, all the particles are influenced by their 

current position, the particle’s local best, and the population’s global best.  The particles’ 

position is then updated by adding the new velocity calculated in equation (2.1) above to the 

particles current position which results in 
1tx , 

 

 
1t tx x 1tv  (2.2) 

The termination criterion of the algorithm depends on the solved problem.  For instance if 

the problem is a benchmark problem where its global minima is known in advance, the 

termination criteria could be either applied by setting a specific error measure between the value 

of the estimated function and the global minima or limiting the number of function evaluations to 

a fixed value.  On the other hand, when it comes to real world problems neither of the two stated 

criteria are applicable since a global optimum is not known a priori, and instead a number of 

function evaluations is determined adaptively and henceforth computational resources are saved 

[7]. 

2.2  Fully Informed PSO 

 

Fully informed PSO on the other hand varies from the standard PSO in the sense that the 

particle is influenced by some or all of its neighbors rather than only the global best, depending 

on the topology used.  The influence of the particle’s neighbors does not require a specific 

topology or how the particles are connected together, rather it states how they interact in general 

[8].  Mendes et al stated that a particle could be connected to its neighbors using several 

topologies such as ring, complete graph, pyramid, and others.  In Figure 2.1, examples of the 

network topologies are shown:        
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           (a) Ring topology                (b) Complete graph  

    

 

                

                     

 

          (c) Pyramid topology                            (d) Random topology 

 

 

 

Figure 2.1 Examples of different network topologies 
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Many topologies have been investigated by Mendes et al. [8] because according to the 

no-free lunch theorem (NFL) [9], there is no single approach that is better than all others in 

solving all the problems.  The first step towards solving a problem is to accurately model the 

problem since finding an optimal solution to a wrong model is completely useless.  

 

None of the network topologies investigated by Mendes et al performed very well on all 

test problems [8]; some have showed good results over others, depending on the type of the 

function being solved and the topology used.  For instance, if we are solving for a multi-modal 

function, an adopted topology such as the complete graph could be deceptive and trap the 

particles into local minima which prevents them from reaching the desired optimum solution and 

results in premature convergence.  Figure 2.2 shows the difference between a local minimum and 

a global minimum of a given function.  The function has three local minima at x equal to 2, 4, 

and 7. However the value of the function ( )f x  is equal to –1, –2, and –3.5 respectively, which 

implies that the  local minimum at x = 7 is the lowest value and henceforth it is the global 

minima of the function.  Some other topologies would have slow convergence rate on the 

population where a particle is connected to two neighbors and information is passed on in slow 

rate, such as ring topology.  
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Figure 2.2 Illustration of the difference between a local minimum and a global minimum of 

a given multi-modal function 
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A random topology has been adopted by the proposed algorithm in the thesis and the topology 

has proven to show great results for the test problems presented in Chapter 3 and GRN problem 

in Chapter 5.  The results and the detailed algorithm are explained in the next chapter.
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CHAPTER 3 - MULTI-OBJECTIVE OPTIMIZATION 

 

Multi-objective optimization involves solving complex real world problems with two or 

more objectives simultaneously.  Meta-heuristic techniques have proved to solve efficiently 

various types of multiple-objective as well as single-objective problems.  Some meta-heuristic 

methods are also combined with analytical methods such as gradient descent to solve such 

problems [10]. 

 

 In multi-objective optimization a solution vector in an n-dimensional search space maps 

to an objective vector in the objective space.  Figure 3.1 illustrates the mapping between the 

solution space and the objective space.  When dealing with optimization problems with multiple 

objectives, the conventional concept of optimality does not hold [11].  Instead, the concepts of 

dominance and Pareto-optimality are applied.  Without a loss of generality, let us assume that the 

multi-objective problem entails the simultaneous minimization of all M objectives, fi(.), 

Mi ...,,1 .   Let the solution space be denoted as n .  A solution x  is said to dominate 

another solution y  if and only if },,,2,1{ Mi   ( ) ( )i if fx y  with at least one of the 

inequalities being strict, i.e., x  is as good as y  for all objectives and better for at least one.  This 

relationship is written x y .  In the set of all feasible solutions, that subset whose members are 

not dominated is called the Pareto set.  In other words, if P is the population, the Pareto set is 

| , ( )P Px y x y .  Its corresponding image in the space of all objective functions is 

known as the Pareto front, as shown in Figure 3.2. 

 

Since all the solutions in the Pareto set are non-dominated, they must be treated as 

equally good.  Therefore, the goal of an effective multi-objective optimization algorithm is to 

find candidate solutions whose images in the objective function space are (i) as close to the true 

Pareto front as possible, and (ii) as spread out and evenly spaced as possible, thereby sampling 

an extensive region of the Pareto front.  These two conditions are usually referred to as 

convergence and diversity, respectively.  Examples of convergence and diversity are shown in 
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Figure 3.1, where 
1f  and 

2f  are to be minimized.  Accomplishing good convergence and 

diversity are the two crucial aspects of any multi-objective optimization algorithm, including 

PSO.  Fuzzy ε-dominance is a recently proposed scheme that combines convergence and 

diversity into one single measure, allowing multi-objective optimization problems to be treated 

as though they involved only a single objective.  Fuzzy ε-dominance is an extension of fuzzy 

dominance that has been modified to take into account.  Both are discussed next in this section. 

(a) Search space (b) Objective function space 

Figure 3.1 Mapping between the solution vector in the search space to the objective 

function vector in the objective function space 

solution vector 

objective function 

    vector 
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(a) true Pareto front 

1f

 
 

2f

 

2f

 

1f  

2f

 

2f

 

 

(b) poor convergence and diversity 

1f

 
 

2f

 

2f

 

(c) good convergence and diversity 

Figure 3.2 Examples of convergence and diversity concepts in multi-objective optimization 
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3.1  Fuzzy -Dominance Based PSO 

 

A monotonically non-decreasing function ( )dom

i  ranged between [0, 1], where 

},,2,1{ ni  , a solution x  i-dominates another solution y  only if ( ) ( )i if fx y .   The 

relationship is denoted as F

ix y  and the degree of fuzzy i-dominance is equal to 

( ) ( )dom dom F

i i i i if fx y x y .  The concept is regarded as a fuzzy relationship  between x  

and y .  Solution x  is said to fuzzy dominate y , for all objectives, if and only if 

{1,2, , },i M
F

ix y  and the relationship is denoted as F
x y .  In order to compute the 

degree of fuzzy dominance, the concept of fuzzy intersection using t-norm is used, 

 

 
1

( ) ( )
M

dom F dom F

i i

i

x y x y  (3.1) 

The membership functions ( )dom

i  in another implementation are classified to be zero for 

negative arguments [12]. Therefore, the degree of fuzzy dominance F

ix y   is necessarily 

evaluated to zero whenever ( ) ( )i if fx y .  In the current study, we allow non-zero values in 

accordance with [13] [14].  Trapezoidal membership functions are used resulting in nonzero 

values whenever their arguments are to the right of a threshold ε, as shown in Figure 3.3, 

 

                                  ( ( ) ( ))dom f fy x  

 

 

 

 

 

 

Figure 3.3 Fuzzy membership function used to compute ε-dominances 
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The memberships can be defined mathematically as, 

 

 

0 if

( ) / if

if

i

dom

i i i i i i

i i

f

f f f

f

  (3.2) 

where, ( ) ( )i i if f fy x .  In a given set of particles P , a solution Py  is fuzzy 

dominated in P  if and only if another solution Px  fuzzy dominates y .  In this case, the 

degree of fuzzy dominance can be computed by performing a union operation over every 

possible dom F
x y , carried out using t-co norm as, 

 

 ( ) ( )dom F dom F

P

P
x

y x y  (3.3) 

In this manner, each solution can be assigned a single measure to reflect the amount it 

dominates others in a population.  Better solutions within a set will be assigned lower fuzzy 

dominances, although unlike in [12] non-dominated solution may not necessarily be assigned 

zero values.  The union and intersection operators follow the standard min and max definitions 

[15].  

 

Typically, in multi-objective PSO, an external archive A maintains all the non-dominated 

solutions found.  The velocities of the particles in the population are redirected towards the 

archived solutions.   As new solutions for a given problem are discovered along the search 

process, the fit ones are inserted into the archive, while the least fit are discarded.  The same 

strategy applies here.  In each iteration, the population of particles is merged with the archive, 

and the fuzzy dominances computed.  The archived solutions and the population are sorted in 

ascending order of their fuzzy dominances, and the best A size solutions are the archive for the 

next iteration.  The global best used in equation (2.1) is the archive solution with the lowest 

fuzzy dominance.  The local best 
lbx of particle i, is updated only when the i

th
 particle dominates 

its own earlier stored local best, in which case 
tx (i) replaces 

lbx (i). 
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3.2  Fully Informed Fuzzy -Dominance Based PSO 

 

The new algorithm investigated in the study is a hybrid of the two methods, fully 

informed and fuzzy -dominance PSO.  Partially informed fuzzy -dominance (PIFD) PSO 

combines between how particles are informed by their neighbors to achieve convergence and 

using fuzzy -dominance concept to maintain diversity among particles.   PIFD also uses an 

archive to store the non-dominated solutions.  The best A size solutions are obtained by merging 

the non-dominated solutions of the current iteration and the archived solutions from prior 

generations.  The solutions are sorted ascending based on their computed fuzzy dominance 

values. 

 

Each particle is affected by a number of particles n to update its current position.  The 

number of particles to be determined, n, follows a normal distribution and is denoted as 

2~ ( , )n N , where is the mean and 2  is the variance.  The global best proposed in this 

algorithm is calculated randomly upon the determination of n, where the weighted sum of the n 

non-dominated particles selected from the archive is multiplied by 1 minus their fuzzy 

dominance values.  The weights of the n selected particles are calculated randomly following a 

multi-dimensional uniform distribution [0,1]U  between 0 and 1.  The global best proposed in this 

algorithm is expressed as, 

 

 1

1

(1 ) [0,1] ( )

(1 ) [0,1]

n
dom

i

i
n

dom

i

i

U A i

U
gbx  (3.4) 

The particles’ velocities are updated using equation (2.1) as discussed in Chapter 2. 

 

The main PIFD algorithm is detailed below. 

1. Set iteration = 1. 

2. Initially start with an empty archive. 

3. Randomly initialize a population of P solutions with random velocities. 
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4. Set the initial archive to the current population. 

5. Evaluate the objective function for each particle. 

6. Update each particle’s local best. 

7. If neither of the two solutions dominates each other for all objectives, randomly 

pick one of them. 

8. Merge the current population with the non-dominated solutions in archive A 

9. Evaluate the fuzzy dominance for the merged population and update archive A 

with P solutions. 

10. Update the population’s global best. 

11. Update velocity using equation (2.1). 

12. Update positions of the current population according to equation (2.2). 

13. Increment the value of iteration by 1. 

14. If iteration  maximum iteration go to step 5, otherwise terminate. 

3.3  Test Problems 

 

In order to test the functionality of the proposed algorithm, some of the benchmark 

problems found in the literature have been tested to assure the performance of PIFD.  These 

problems are commonly used to test different multi-objective optimizers in finding the Pareto 

front.  

 KURSAWE : 

   
1

2 2

1 1

1

( ) 10exp( 0.2 )
n

i i

i

f x xx  

           (3.5) 

0.8 3

2

1

( ) ( 5sin( ) )
n

i i

i

f x xx  

where n = 3 and the decision variables lie in the interval [–5, 5].  

 

ZDT 1: 

   
1 1( )f xx  
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2

9( )

( ) 1
( 1)

n

i

i

x

g
n

x       (3.6) 

2 1( ) ( )(1 ( ( ) / ( ))f g f gx x x x  

where n = 30 and the decision variables lie in the interval [0, 1]. 

 

ZDT 3:  

1 1( )f xx  

2

9( )

( ) 1
( 1)

n

i

i

x

g
n

x       (3.7) 

2 1 1 1( ) ( )(1 ( ( ) / ( ) ( ( ) / ( ))sin(10 ( )))f g f g f g f xx x x x x x  

where n = 30 and the decision variables lie in the interval [0, 1]. 

 

 ZDT 6: 

6

1 1 1( ) 1 exp( 4 )sin (6 )f x xx  

0.25

2

( ) 1 9 / ( 1)
n

i

i

g x nx     (3.8) 

2

2 1( ) ( )(1 ( ( ) / ( )) )f g f gx x x x  

where n = 10 and the decision variables lie in the interval [0, 1]. 

3.4  Simulation Results 

 

The results in this section are shown for the benchmark problems mentioned above. The 

figures and table of results are presented.  For all the simulation runs, the population size of the 

PIFD algorithm is set to 100, and the external archive size A is set to the same value.  
1C  and

2C  

are both equal to 2, the constriction coefficient  is set to 0.6.  Multiple values of the 

constriction coefficient have been tested in order to analyze their compatibility with the new 

proposed method of calculating gbest, however the chosen value showed the best results.  The 

values of  and 2  are 2 and 4 respectively.  The number of function evaluations for all the test 
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problems was set to 10,000 evaluations.  Figures of the Pareto front for all the problems stated 

above are detailed below. 

 

 As a performance measure, we used the spacing metric to measure how diverse the non-

dominated solutions are in the produced Pareto front.  The method was proposed by Schott [16] 

and is used here to measure how distributed the non-dominated solutions maintained in the 

archive A.  Equation (3.9) below explains how the spacing metric is calculated, 

 

 2

1

1
( )

( 1)

n

i

i

SP E E
n

           (3.9) 

The lower the value of SP, the better distributed the solutions are, with a value of 0 implying 

perfectly even distribution. Another quantity, 
iE  given by, , 

  

 ,

1

min ( ) ( )
M

i i i j k k

k

E f i f j   

             (3.10) 

 
1

1 n

i

i

E E
n

 

measures the difference between a solution i and all the non-dominated solutions across all the 

objectives and picks the minimum value of the absolute sum to consider it the distance between 

particle i and its closing neighbor. 

 

Table 3.1 shows the spacing metric of the simulation results for 30 runs; the numeric 

values represent the average of the runs.  In Figure 3.4, the plot shows the non-dominated 

solutions of the KUR test function produced by the PIFD algorithm.  The figure is obtained from 

one of the runs. 
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Figure 3.4 Pareto front for KUR produced by PIFD 
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The ZDT1 test function is shown in the figure below, which is obtained from a single run as 

well. 

 

 

 

 

 

Figure 3.5 Pareto front for ZDT1 produced by PIFD 
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The ZDT3 test function is shown in the figure below, which is obtained from a single run as 

well.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

Figure 3.6 Pareto front for ZDT3 produced by PIFD 
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The ZDT6 test function is shown in the figure below, which is obtained from a single run as 

well. 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Pareto front for ZDT6 produced by PIFD 
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Table 3.1 Results of Spacing metric values obtained by PIFD against multiple approaches 

 

 

Problem 

 

PIFD  

 

Random Hybrid 

 

MOPSO 

KUR 0.0956 0.6091 0.1904 

ZDT1 0.00724 0.0686 0.0256 

ZDT3 0.015 0.0541 0.0092 

ZDT6 0.0068 0.1969 0.0763 

 

 

 

The table shows the numeric mean value of the spacing metric obtained from the 

simulation runs for the corresponding test problem.  Comparison of PIFD against multiple 

approaches is presented in the table, showing better results of PIFD for almost all test problems.  

In addition, the proposed algorithm proved to converge faster by running all test problems for a 

number of 10,000 function evaluations.  However other listed approaches used 12,000 function 

evaluations and some test problems did not fully converge to the correct Pareto front. 

 

Further applications are proposed and illustrated in Chapter 5, where PIFD is used to 

optimize a multi-objective GRN problem, and perform parameter estimation on an enormous 

number of plant ecotypes.  The results produced by the algorithm tend to be very promising.
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CHAPTER 4 - SINGLE-OBJECTIVE GRN 

 

A single-objective GRN and a photothermal model to be fit to lines of Arabidopsis 

thaliana to predict flowering time are introduced in this chapter.  Standard PSO was used to 

solve the single-objective GRN parameter estimation problem for those lines.  In Section 4.1, 

confidence PSO (CPSO) [17] is explained and used to compute the confidence region of the 

estimated parameters.  Simulation figures represent the confidence regions of the estimated 

parameters are illustrated in Section 4.2.  Finally, figures are shown for several lines predicting 

the number of days to bolting for plants germinating on different dates.  These are called “MTTY 

curves,” where the acronym stands for “marching through the year.”  

  

Although many graphical models of Arabidopsis thaliana flowering time control have 

been proposed, there are very few quantitative models [13].  In general, three coupled genes are 

responsible for this floral process, TERMINAL FLOWERING 1 (TFL1), APETALA 1 (AP1), and 

LEAFY (LFY) [18].  AP1 and LFY have a switch-like function that turns on after being 

sufficiently stimulated by the environment. 

 

In order to fit different lines of Arabidopsis thaliana and predict their floral time, a 

photothermal model was created [18] which measures developmental units by accumulating a 

sum of environmental-determined increments on an hourly basis.  Photothermal models assume 

that once the developmental units of a plant accumulate to a certain switching threshold, floral 

initiation occurs.  The specific developmental units used in the [18] model are named modified 

photothermal units (MPTUs).  MPTUs are the product of photothermal units (PTUs), which 

relate to daylength, temperature, and a vernalization (chilling) fraction.  Flowering threshold and 

switching threshold will be used interchangeably in this chapter.  The floral initiation process in 

Arabidopsis thaliana is controlled by a network of genes organized into four pathways 

(photoperiod, vernalization, gibberellin, and autonomous).  The model was implemented to fit 

many different lines of Arabidopsis thaliana. However, in this project parameter estimation was 
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applied to only five lines: COLUMBIA (Col), GIGANTEA (gi), Col-FRIGIDA (Col-FRI), 

VERNALIZATION-INSENSITIVE-3 (vin 3), and LUMINIDEPENDENS as autonomous.  

 

Naming of each line is based on gene functionality.  All lines differ from each other in 

their behavior towards floral initiation depending on the gene’s status, active or inactive.  For 

instance, the line gi with lower case letters implies that the gi gene is inactive and is named so, 

while on the contrary the line Col-FRI with upper case letters implies that the FRI gene is very 

active.  Every line comes from a different pathway background than the other, for instance gi, is 

responsible for communicating the line’s diurnal clock and insensitive to long day photoperiod, 

while vin3 is unable to respond to vernalization.  The lines are good selection for modeling 

purposes and have specific defects that relate to measurement of photoperiod and vernalization.  

A diagram of interactions between pathways is shown in Figure 4.1.  All of the mentioned lines 

were sowed at several different planting sites, thus experiencing various climatic conditions.  

These sites were Oulu, Finland; Cologne and Halle, Germany; Norwich, UK; and Valencia, 

Spain.   
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Figure 4.1 Interactions of genes among different pathways that control flowering time 

 

For any planting, the MPTUs accumulate in one hour  for any line and is expressed by 

the product of three components: vernalization, photoperiod, and temperature as depicted in 

Figure 4.2.  
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  The following detailed set of equations from [18] defines the model.  Equation (4.1) 

shows the factors used to calculate the MPTU, 

 

 ( ) ( ) ( ) ( )mptu Vern Phot Thrm  (4.1) 

  

The vernalization factor is computed in equation (4.2) as, 

 

 
,( )(1 ) / ( )

( )
1, otherwise

b h b sat h satF Vr F Vr Vr Vr
Vern  (4.2) 

where ( )hVr  is expressed as, 

 
1

min max( ) exp( )[ ( ) ] [ ( )]h V V

s n

Vr T s T T T s   

The value of ( )hV for line vin3 is always set to zero, since it is insensitive to low degree 

temperature. The other factors, thermal and photoperiod, are given by, 

 
,( ) ( )

( )
0, otherwise

b bT T T T
Thrm  (4.3) 

 

 

, ( , )

( ) , ( , )

[ ( , ) ]( ) / ( ), otherwise

SD

LD

SD LD SD

D dl S CSDL

Phot D dl S CLDL

D dl S CSDL D D CLDL CSDL

 (4.4) 

the number of MPTUs accumulates until the bolting threshold is reached.  Equation (4.5) shows 

the accumulation of MPTUs from the sowing hour until plants bolt, 

  

 
0

( )
nB

B

ST mptu  (4.5) 

This study focused on the most sensitive parameters as identified by [18].  Table 4.1 

shows the values of other literature parameters that were held constant. 
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Table 4.1 Constant Parameters Used to Compute MPTUs 

 

Parameter Value 

CSDL 10 

CLDL 14 

LDD  1 

satV  960 

bT  3 

 –5.17 

 2.23 

 1 

minVT  –3.5 

maxVT  6 

 

 

 

The model assumes that when a fixed (although unknown) number of MPTUs are 

obtained, the plant initiates flowering.  The most visible sign of floral initiation is the emergence 

of an inflorescence.  This event is called “bolting”, a term that will be used herein as 

synonymous with flowering.  Because the switch genes had the same form in these lines, it was 

able to assume that this number was constant across the lines.  Therefore, on the day that bolting 

occurred for each line, it should have accumulated a certain number of MPTUs.  Therefore, a set 

of parameter values was sought that makes the numbers of MPTUs on the bolting dates as 

similar as possible across plantings – that is, that had the minimum coefficient of variation.  

 

The standard PSO was applied in order to perform parameter estimation for the five lines 

to minimize the coefficient of variation of their MPTUs across all plantings.  The coefficient of 

variation is calculated as in equation (4.6), 
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 CV  (4.6) 

where  and  are the mean and the standard deviation of MPTUs across plantings.  The 

objective function to be minimized is described in equation (4.7), 

 

 ( ) min ( ( ))f CV STxx x  (4.7) 

Prior parameter estimation work with this model in [18], used  Microsoft Excel Solver, 

obtaining a value of 10.75% for the CV.  An identical CV was obtained with standard PSO, a 

valuable cross check on the prior results.  A solution vector x  that consists of four parameters 

were to be estimated, 
bF  for all of the five lines and

SDD .  However, all the lines share the same 

value of
SDD  that corresponds to (1)x , Col and gi share the same value of 

bF , (2)x , 
bF for Col-

FRI and vin3 is common as well, (3)x , and finally the 
bF  for the autonomous line that maps to 

(4)x .  These parameters all have value between zero and one. 

 

4.1  Calculating Confidence Region Using C-PSO  

 

This section describes the work done to calculate the confidence intervals for the 

parameters estimated above regarding the five lines Col, gi, Col-FRI, vin3, and autonomous 

using C-PSO [17].  At each iteration, the region is calculated based on the best CV found so far.  

Whenever a set of parameters results in a CV that is lower, the specific set of parameters is 

retained and the border is recalculated.  Parameter sets that fall outside the updated border are 

removed.  The border is defined based on a formula for confidence limits of CV estimates [19].  

Points with CV values greater than the upper limit (first term in equation (4.8)) were deemed to 

have parameter values outside the desired 95% confidence region.  Equation (4.8) shows how the 

confidence intervals are calculated.  

 

1/2 1/2

2 21 1 2 22 2
1 , 1

1 1

u u u u
CI      (4.8) 
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Normally single-objective PSO is expected to converge to single optima, so incorporating 

a perturbation operator is necessary to aggregate particles into a “cloud” shape that represents the 

confidence region.  Equation (4.9) presents how this perturbation operator, called mutation, is 

implemented. 

 

'

1 1 1[ 1,1]t t tUv v v         (4.9) 

The perturbation process applied on the particles’ velocities acts as turbulence and creates 

cloud regions. However, this turbulence moved some particles outside the confidence region our 

region so crossover was applied to replace them with better values.  The crossover operator 

replaces the worst particle with a new particle with better fitness using equation (4.10), 

 

 ' [0.5,1] (1 [0.5,1])w g

t t tU Ux x x  (4.10) 

If one application of crossover was insufficient to move an outlier back into the region, then the 

point was discarded.  The uniform random number U in both equations (4.9) and (4.10) is multi-

dimensional, depending on the dimensions of the objective function. 

       

The steps of the algorithm to obtain the confidence region are detailed as follows. 

  

1. Set iteration = 1. 

2. Initially start with an empty archive. 

The archive is meant to maintain solutions that are only below the value of CI 

evaluated in (4.8). 

3. Randomly initialize population with random positions and velocities. 

4. Evaluate the objective function for each particle. 

The objective function in (4.7) is evaluated for entire population. 

5. Archive only solutions that have CV less than CI computed in (4.8). 

The archived solutions form the cloud at the end of the run. 

6. Replace outlier particles with fit ones using crossover in (4.10). 

The outlier particles, worst solution vectors, are replaced with better ones. 

7. Update each particle’s local best and population’s global best. 
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8. Re-evaluate the value of CI and remove archived solutions above new CI. 

9. Update velocity using equations (2.1) and (4.9).  

10. Update positions of the current population according to equation (2.2). 

11. Increment the value of iteration by 1. 

12. If iteration  maximum iteration go to step 4, otherwise terminate. 

 

4.2  Simulation Results 

 

Two different simulation runs, each of a population size of 80 particles, are presented in 

this section.  The total number of function evaluations of the first run was set to 13,000 and the 

second to 10,000, with a 95% confidence interval.  The reason two simulation runs were 

performed is twofold.  First, sensitivity of the confidence limits to the amount of computational 

resources was assessed.  Secondly, it was noted that solutions were being duplicated, indicating a 

waste of computational effort.  Therefore runs with reduced number of iterations were 

performed.  The results of the first run produced an archive of size 1541 solutions, and the 

second of 933.  The figures obtained below represents the cloud of particles formed by CPSO.  

The solutions for both runs are plotted on the same figure for all the lines (Figures 4.3 – 4.5). 
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Figure 4.3 Confidence region of Col and gi represented by both populations 
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Figure 4.4 Confidence region of Col-FRI and vin3 represented by both populations 
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Figure 4.5 Confidence region of autonomous represented by both populations 
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4.3  MTTY 

 

MTTY is a graphical representation of the predicted number of days needed to bolt, 

assuming that germination occurs at different times.  MTTY curves were first presented in [18]; 

however, confidence limits were not provided for those curves.  Since a slight difference in the 

parameter set values or a small change in the climate would result in significant variation in the 

number of days to bolt, it is desirable to predict the range in which bolting days may vary, 

instead of simply having a point estimate.  The curves in Figures 4.6 – 4.10 show the upper and 

lower envelopes of the runs. 

 

           Archived solutions of both populations from Section 4.1 were used to propose those 

graphs.  The curves were obtained by accumulating the MPTU values for each line on hourly 

basis until a threshold of 2604 units is reached, which is an approximate value at which isogenic 

lines bolt.  Once the desired MPTU is reached, the program terminates and stores number of 

minimum and maximum hours needed for each line to bolt across the Norwich site. 
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Figure 4.6 Representation of bolting days for Col through 2006 
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Figure 4.7 Representation of bolting days for gi through 2006 
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Figure 4.8 Representation of bolting days for Col-FRI through 2006 
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    Figure 4.9 Representation of bolting days for Col through 2006 
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Figure 4.10 Representation of bolting days for autonomous through 2006 
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The variation of predicted number of bolting days is represented using the upper and 

lower envelopes in Figures 4.6 – 4.10.  To obtain these envelopes, the model makes use of the 

insensitive parameters listed in table 4.1 along with the archived solutions.  Then the model runs 

through every single solution and calculates the number of hours needed by a line for a specific 

day of the year.  This process is done until an interval of one year is carried out.  
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CHAPTER 5 - MULTI-OBJECTIVES GRN 

 

Chapter 4 discussed (i) how a photothermal model was used to fit different isogenic lines 

in Arabidopsis thaliana and (ii) how parameter estimation of single-objective GRN was 

implemented using PSO.  This chapter discusses how the same model is used to fit 50 lines, each 

varying in its developmental units accumulation as its elements respond differently to weather 

conditions.  The detailed weather data, temperature, photoperiod and vernalization that were 

used in Chapter 4 are used here as well.  PIFD was applied to optimize the objective functions 

and perform parameter estimation for those lines.  Two objectives were used.  The first objective 

was to minimize the coefficient of variation of lines' MPTUs expressed in equation (4.7), while 

the second objective related the differences between the parameters assigned to different lines to 

the background genomic similarities between those lines.  (The words “ecotypes” and “lines” 

will be used interchangeably in this chapter).  Estimation of similarity measurement between 

isogenic lines is also explained in this chapter.  Simulation results of the model and the resulting 

Pareto front are presented in Section 5.2 with histogram figures for the optimized lines’ 

individual CVs. 

5.1  Similarity Background 

 

It is quite possible for different sets of parameters to result in similar or identical 

flowering time predictions under the same weather conditions, a situation called equifinality.  A 

solution to this problem would be adding additional information to the optimization in order to 

narrow the range of feasible estimates.  One way to do this is to assume that genetically similar 

plants have similar parameter values, although the reverse is not necessarily true.  

 

There are two complementary ways in which genetic similarity can be evaluated.  The 

first is by direct comparison of the DNA sequences of genes known to influence flowering time.    

The advantage of this approach is the close bearing that these genes are known to have the trait 

of interest.  The disadvantages are that there may be other yet undiscovered genes that either 



 44 

intermediate the effects of the known genes or affect flowering time in altogether unknown 

ways.  Thus, a sole focus on known genes may overstate the similarities involved.  An additional 

difficulty is that detailed sequence information for all the lines used was not readily available to 

the study. 

 

The second approach, which was investigated within this study, was to look at what 

might be termed “background similarity,” that is, general relatedness as determined by 

examining patterns of genetic markers distributed across the genome.  Markers are 

distinguishable DNA sequences occurring at specific locations that can be used to categorize 

individuals.  Given a genomic location where different marker types exist in a population, 

different individuals will have different markers depending on which particular sequence they 

may inherit from their parents.  If two, closely-spaced, adjacent markers originated from the 

same parent, it is possible to assume that all DNA in the intervening region did as well.  If two 

adjacent markers are from different parents, then somewhere between them will be a crossover 

point with DNA from one parent on one side and DNA from the second parent on the other.   

The greater the amount of agreement between the markers of two lines, the higher the degree of 

agreement one can assume between the two lines DNA.  

 

Two sources of data were used in this study.  As previously mentioned in Chapter 4, the 

first was flowering time data from a large, multi-site study involving nine plantings at five sites 

spanning the European range of A. thaliana (described in Wilczek et al., 2009).  Each planting 

included between 240 and 360 distinct lines.  Micrometeorological data was recorded in close 

proximity to the plants.  

 

The second source was published marker data on a large set of A. thaliana ecotypes.  

Data scoring of single-nucleotide polymorphisms (SNPs) on 92 A. thaliana accessions was 

provided [20] in order to estimate the background similarity between ecotypes.  Col and Ler lines 

were used as a reference for all ecotypes.  For all accessions, SNPs were observed and either the 

Ler (L) allele or the Col (C) allele was recognized.  The reason that these two lines were used as 

a reference is that they are the most common lab-strains, widely employed by researchers and 

enormous data amount pertaining them exists.  In a few cases both marker types were present; 
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these were coded “H” for “heterozygous.”  In other cases a location would have neither marker 

(i.e., it was some other type) and these were coded “U” for “unknown.”  In addition to Col and 

Ler, 50 other ecotypes overlapped between the two sets of data and these were the ones used in 

the present study. 

 

The similarity metric is the calculated *
K  matrix of pairwise kinship coefficients [21].   

*

,i jK  represents fraction of shared alleles between lines i and j.  The formula needed to estimate 

*

,i jK  is given in equation (5.1), 

 

               * 1

1

G

ij ijg

g

G kK              (5.1) 

where kijg is equal to one if lines i and j have the same marker state at location g and, zero 

otherwise.  G is the total number of known markers excluding those that are “unknown.”  (That 

is, markers whose states were not clearly established by laboratory procedures were not 

counted.) *
K  is highly effective at describing multiple levels of relatedness.  Each of the 52 lines 

was compared to every other line at all loci and a corresponding 
*

,i jK  value was estimated.  

Among the ecotypes, some were very similar to Col, others were very similar to Ler, and others 

were intermediate. 

 

Multi-objective GRN problems can be categorized under two main categories in terms of 

their objective functions: data-oriented and energy-oriented.  Data-oriented functions are based 

on the observed error of lines’ phenotypes when they reach their floral initiation, while energy-

oriented ones are based on the squared differences of the corresponding parameters on the basis 

of inter-line similarities.  Recalling from Chapter 4, the data-oriented function is represented by 

the CV in equation (4.6); the energy-oriented is analogous to the energy content stored in 

metaphorical springs constraining corresponding parameters of inter-line similarities.  The 

amount of energy resides between inter-line similarities of two different lines reflects the 

similarity measure between those lines.  For instance, two lines with similar parameters imply 

that the metaphorical spring binding both lines is rather stretched and energy content tends to be 
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of great value; however, the extreme case is unnecessarily true.  Two lines bound with a shrunk 

spring could still possess similar parameters.   

 

Both of the optimization problem classes involve sum of individual error terms.  A 

decision of which terms are included in each sum is rather challenging.  Due to technical reasons, 

separate sums over all sowings for each line  parameter would not be a good idea, as weight 

distribution of terms would be challenging.  Another thought would be to sum all residual terms, 

no matter which class they belong to; however, this is rather problematic.  Presumably, if all the 

data residual terms are represented into one sum, and all energy residual aggregated into another.   

The objective function can be represented by the lump sum equation below, 

 

 ( ) ( ) ( )D Ef f fx x x  (5.2)          (5.2) 

It is very unlikely that the right hand side terms of the equation would have the same magnitude.  

It is more likely that one of the terms is much larger than the other.  This issue can be resolved 

by assigning weights to the terms of the above equation and convert the problem to a trade-off 

optimization problem as equation (5.3) explains, 

 

     ( ) ( ) ( )D D E Ef f fx x x                        (5.3) 

A problem that would cross someone’s mind is which values should be assigned to 
D

, 
E

. 

Which point would be a balance between both coefficients? 

5.2  Energy-oriented Objective 

 

A clever approach to solve this uncertainty is to deal with each objective independently 

as an objective.  The first objective is a data-oriented one, relevant to the coefficient of variation 

of the lines’ MPTUs (from Chapter 4), while the second objective, energy-oriented, is associated 

with the total sum of background similarity between ecotypes.  The energy-oriented objective 

was initially represented by the sum of absolute difference squared of all lines’ parameters 

(CSDL, 
bF , and 

SDD )  multiplied by the appropriate similarity value of these two particular lines 
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obtained from the kinship matrix.  Equation (5.4) demonstrates how the energy-oriented 

objective is calculated, 

 

 
2

*

2 ,

1 1 1

( ) ( ) ( )
j iL U

i j i j

i j k

f l k l kx K  (5.4) 

 

The main concern was to fit as many as ecotypes as possible in the 5 20% range, 

henceforth different formulas of the second objective were implemented.  The reason for using 

these formulas is twofold; first to identify the level of effectiveness of parametric differences on 

ecotypes and observe their reaction to that difference. Secondly to use them as being the desire to 

provide multiple alternatives for how influential large and small values are on the total sum.  

Results of all different formulas are presented in Section 5.3. 

 

Equation (5.5) shows a different formula of the second objective, 

 

 
*

2 ,

1 1 1

( ) ( ) ( )
j iL U

i j i j

i j k

f l k l kx K         (5.5) 

 

Another experiment was conducted is that to change the value of CLDL while fixing a different 

formula for the second objective.  The formula in equation (5.6) calculates the sum of the 

absolute difference of ecotypes divided by their relative sum as given below, 

 

*

2 ,

1 1 1

( ) ( )
( )

( ) ( )

j iL U
i j

i j

i j k i j

l k l k
f

l k l k
x K          (5.6) 

The above formula does not apply any penalties on the optimized parameters. 

 

Finally, the last experiment conducted was to cube the absolute difference of parameter 

values to heavily penalized ecotypes that were genetically similar.  The formula is stated in 

equation (5.7), 
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3

*

2 ,

1 1 1

( ) ( ) ( )
j iL U

i j i j

i j k

f l k l kx K        (5.7) 

 

In Section 5.3, the results of the simulation runs are presented and figures of Pareto front 

are proposed.  The optimizer (PIFD) was developed in MATLAB while the objective function 

was implemented in C++.  Since computational time is very essential, the intention for this is to 

minimize the complexity run of the model and reduce the number of computational resources 

while decreasing the amount of memory space needed.  MATLAB includes a compiler that is 

capable of compiling any C++ file and outputs another mex file that is executed by the optimizer 

in MATLAB.  

5.3  Simulation Results 

 

In this section, the results of the simulation runs will be proposed and illustrated in 

details.  The photothermal model was used to fit 50 ecotypes excluding Col and Ler, as 

previously mentioned the set of parameter for these two lines has been optimized earlier [18].  

The model was run for all experiments 250 iterations and produced figures of the runs are 

presented below; most of the investigated energy-oriented formulas would require more 

iterations, such that solutions produce Pareto front figures.  In Figures 5.2 – 5.12, the archived 

(non-dominated) solutions obtained by PIFD are presented for both objectives accompanied by 

histogram figures of individual CVs range. Figure 5.1, tends to shows that all candidate solutions 

converged to a point where a “single” optimum has been reached,  
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Figure 5.1 Compressed figure of Pareto front of multi-objective GRN when summing the 

squared difference of parameters  
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The above figure is detailed in Figure 5.2 to show how the diversity of solutions within 

the search space is maintained.  Multiple values for the parameter CLDL were proposed in prior 

work where a grid search was applied in order to specify a fixed value for that particular 

parameter.  Unfortunately, all lines’ receptors differ from each other in their behavior and 

responding to photoperiod where some require a specific number of hours while others require 

less or more, depending on the ecotype’s characteristic.  Initially the simulation started off with a 

mean value for all ecotypes of 4 that was added to CSDL, assuming that all ecotypes would use 

the same number of hours.  Based on that assumption, the model was run and results are shown 

in Figure 5.2. The figure corresponds to the formula in equation (5.4). 
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Figure 5.2 Pareto front for multi-objective GRN produced by PIFD when summing the 

squared difference of parameters and histogram of ecotypes’ individual CVs 

(a) Pareto front of multi-objective GRN where CLDL = CSDL + 4 

(b) Histogram of individual CVs 
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The x-axis of Figure 5.2 (a) is named Average CVs and it represents the mean value of all 

individual CVs.  The graph in Figure 5.2 (b) is right-skewed which implies that most individual 

CVs are similar; most ecotypes reside in the 5 20% range.  The Pareto front in Figure 5.2 is 

detailed using the sequence of Figures 5.3 through 5.6, given the formula of equation (5.4).  The 

sequence demonstrates the journey of search space individuals throughout the optimization 

procedure until convergence is achieved.
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Figure 5.3 Particles formed by PFID after 25 iterations 
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Figure 5.4 Particles formed by PFID after 50 iterations 
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Figure 5.5 Particles formed by PFID after 100 iterations 
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Figure 5.6 Particles formed by PFID after 150 iterations 
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Figure 5.7 Particles formed by PFID after 200 iterations 
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 Figure 5.8 reflects the formula stated in equation (5.5), changing the value of CLDL to CSDL + 

2. The figure is presented below. 
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Figure 5.8 Pareto front for multi-objective GRN produced by PIFD when summing the 

absolute difference of parameters and histogram of ecotypes’ individual CVs 

(a) Pareto front of multi-objective GRN where CLDL = CSDL + 2 

(b) Histogram of individual CVs 
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In Figure 5.8 the value of CLDL was changed to CSDL +2.  The graph appears to be right-

skewed as well.  In Figure 5.9 below, the CLDL is set back to CSDL + 4 while maintaining the 

same formula as in equation (5.5). 
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Figure 5.9 Pareto front for multi-objective GRN produced by PIFD when summing the 

absolute difference of parameters and histogram of ecotypes’ individual CVs  

(a) Pareto front of multi-objective GRN where CLDL = CSDL + 4 

(b) Histogram of individual CVs 
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The next experiment to be conducted is changing the energy-oriented objective to the 

corresponding formula in equation (5.6), and setting CLDL to CSDL + 2.  Figure 5.10 shows the 

Pareto front of the simulation run and histogram of individual CVs. 
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Figure 5.10 Pareto front for multi-objective GRN produced by PIFD when summing the 

absolute difference of parameters/relative sum and histogram of ecotypes’ individual CVs 

(a) Pareto front of multi-objective GRN where CLDL = CSDL + 2 

(b) Histogram of individual CVs 
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The individual CVs in the above figure also appear to be right-skewed.  In the figure below, the 

value of CLDL is changed to CSDL + 4 using the same formula of equation (5.6). 
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Figure 5.11 Pareto front for multi-objective GRN produced by PIFD when summing the 

absolute difference of parameters/relative sum and histogram of ecotypes’ individual CVs 

(a) Pareto front of multi-objective GRN where CLDL = CSDL + 4 

(b) Histogram of individual CVs 
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The results of the last run tend to be very promising as the majority of ecotypes lie in the desired 

range.  By observing the previous figures and performing data analysis, it is believed that CLDL 

= CSDL + 4 outputs better results for all formulas.  Finally, the last experiment brings in the 

energy-oriented objective described in equation 5.7, and allows for the ecotypes that were 

genetically similar to suffer penalties for parametric differences.  Results are presented in Figure 

5.12. 
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Figure 5.12 Pareto front for multi-objective GRN produced by PIFD and summing the 

cubed difference of parameters histogram of ecotypes’ individual CVs 

(a) Pareto front of multi-objective GRN where CLDL = CSDL + 4 

(b) Histogram of individual CVs 
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Surprisingly, the cubing of absolute difference of parameter values did not force any penalty on 

similar ecotypes.  Again, in the above figure the results are appeared to be right-skewed and most 

of ecotypes managed to remain in the desired range of CVs. 

 

It is concluded that the change in the background similarity between ecotypes has no 

effect on their individual CVs.  Different spectra of the energy-oriented objective have no effect 

on ecotypes. All figures above (Figure 5.2 (b), Figure 5.8 (b) – 5.12 (b)) are roughly right-

skewed which implies that most ecotypes reside in the desired range i.e. similar. 
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CHAPTER 6 - CONCLUSION & FUTURE WORK 

 

Despite the fact that classical optimization techniques solve optimization problems; they 

are not adequate when it comes to solving complex problems.  However, evolutionary algorithms 

based on swarm-intelligence well address complex real-world multi-objective problems.  This 

chapter presents in essence the overall conclusions that have been observed throughout this 

study. 

6.1  Research Conclusion 

 

 The Partially Informed Fuzzy-Dominance (PIFD) based PSO method proposed in this 

study proved to maintain a diverse set of solutions along with a remarkable improvement in 

convergence rate.  Diversity among candidate solutions is maintained by the adoption of fuzzy 

dominance concept, leading to only archive non-dominated individuals while discarding non-

qualified ones.  Convergence is implemented by making use of a dynamic network topology 

where particles are guided by a randomly generated number of elite individuals selected from the 

archive.  This group of particles follows a normal distribution with specific mean and variance.  

 

Testing of the proposed algorithm has been implemented as discussed in Chapter 3 using 

four benchmark problems.  All four test problems, KUR, ZDT1, ZDT3, and ZDT6 have shown 

remarkable results in terms of convergence rate and diversity among individuals.  Their 

corresponding Pareto fronts have been presented and explained as well.  They clarify how 

rapidly individuals converge given the test problems, using fewer number of fitness function 

evaluations.  Performance measures such as spacing metric have been used to measure how 

spread the solutions are in the produced Pareto fronts.  A table of readings shows an outstanding 

results regarding diversity aspect. 

 

In Chapter 4, a photothermal model was used to fit wide number of ecotypes in A. 

thaliana plant.  It controls flowering time of A. thaliana in which three entangled genes are 
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responsible for the floral process.  The model implies that once a plant’s developmental units 

accumulate to a certain threshold, floral initiation occurs.  Estimates of the confidence regions of 

ecotypes’ parameters were performed by making use of C-PSO, along with the discussed model.  

The algorithm produced two populations of individuals and whose confidence intervals for five 

ecotypes are shown in Section 4.2, each of a different pathway background.  C-PSO was also 

used to minimize the coefficient of variation of single-objective GRN across the nine plantings 

used in this study. Within the same chapter, the produced populations were used to calculate 

ecotypes’ envelope curves by running the model and making use of the archived individuals.  

Maximum and minimum number of hours needed for each ecotype to bolt throughout the year 

experiencing various weather data plotted in Figures 4.6 through 4.10, which are known as 

MTTY curves. 

 

Chapter 5 defines what similarity background is and how it is calculated among ecotypes.  

The chapter presents Pareto front figures of multi-objective GRN that branches to two objectives, 

data-oriented and energy-oriented.  Figures were produced using the photothermal model and 

RFID algorithm to optimize the multi-objective GRN problem. Many formulas of the energy-

oriented objective were investigated in order to determine effectiveness variation of parametric 

differences on ecotypes.  All formulas of energy-oriented objective produced right-skewed 

histograms of individual CVs implying that penalty or freedom of ecotypes that are genetically 

similar for parametric differences has no consequences. The same conclusion holds for the total 

sum of ecotypes where parametric differences of genetically similar ecotypes have no role. 

6.2  Future Work 

 

In addition to the results presented throughout this study for single and multi-objective 

GRN using the investigated algorithm, further experiments can be conducted in future research 

opportunities that include the following. 

 

 Study the effect of applying dynamic network topologies of neighbors on search 

space individuals using different probability distributions.   
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 Incorporate algorithmic improvements to maintain diversity among solutions, and 

analyze the rate of convergence of the algorithm with reduced number of fitness 

function evaluations.  

 Optimize insensitive parameters used to compute MPTUs, using an appropriate 

method.   

 Compare the obtained parameters to older ones and observe the effect of change 

on MPTU values.  

  Further study of the effect of change on the coefficient of variation and total sum 

of energy-oriented objective after plugging in the new parameters, observing the 

ones that contribute to the change. 
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Appendix A - Notations 

 

 

    Constriction coefficient that maintains particles’ stability 

1C
    Cognitive constant 

2C
    Social constant 

SDD     Short day development rate 

LDD     Long day development rate 

CSDL     Critical short day length in hours 

CLDL     Critical long day length in hours 

bT     Base temperature 

bF     Baseline repression level 

U
    Number of line parameters 

ijgk
    Value of gene g for lines i and j; one if identical, zero if not 

G
 Total number of markers present within an ecotype 

excluding unknown markers 

    Overall scaling factor
 

minVT     Minimum vernalizing temperature 

maxVT     Maximum vernalizing temperature
 

    Constant value of 0.01 

    Exponent on difference from 
minVT  

    Exponent on difference from 
maxVT  

L
    Total number of ecotypes 

M
    Number of objectives in a given function 
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E     Mean of all the 
iE  

iE  Minimum difference between a solution i and its closing 

neighbor for all objectives 

SP  Spacing metric for measuring diversity between non-

dominated solutions 

ST  Threshold value at which plants bolt  

satVr     Number of hours needed to saturate vernalization 

    Updated value of CV  estimate after each iteration 

 Degrees of freedom for calculating a specific CI  

if  Difference between fitness function values of two particles 

for objective i  

i
 Difference between maximum and minimum values for 

objective i 
 

[0,1]U
    Uniformly distributed random number between 0 and 1 

2( , )N
 Normally distributed random number with mean  and 

variance 
2

 

P     Population of solutions  

A     External archive that holds non-dominated solutions 

( )f i       Fitness value of particle i 

    Turbulence factor 

    Solution space 

,i j     Similarity value that corresponds to lines i and j 

i
    Marker presented in a specific line i 

    Instant in time 

0B     Sowing hour of a specific gene 

nB     Bolting hour of a specific gene 

CI  Confidence interval of an estimated parameter 
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Df  Data-oriented objective 

 

Ef  Energy-oriented objective 

D
 Relative weight to data-oriented objective 

E
 Relative weight to energy-oriented objective 

il     Denotes line i 

1u     Lower bound of the confidence interval 

2u     Upper bound of the confidence interval 

dom

i     Membership function value of particle i 

( F

ix )y    Solution vector x  dominates solution y  for objective i 

( )F
x y    Solution vector x  dominates solution y  for all objectives 

tx
    Particle’s current position at t time 

lbx
 Particle’s best position during search process, local best 

gbx
    Population’s best candidate, global best 

tv
    Current velocity at t time 

'

1tv     Velocity after applying turbulence 

w

tx     Outlier particle with worst fitness value 

g

tx     Best fitted particle used in crossover to replace w

tx  

'

tx     Newly created particle that replaced w

tx  

*
K     Matrix of pairwise kinship coefficients 

 


