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1. Introduction.

Scientists are freguently interested in investigating the relation-
ship between some response or dependent variable, denoted by y, and a
vector of independent variables, denoted by x. Assume the reiationship
is postulated to be some function f involving a vector of parameters 8, as
y=f(x,8).
For an experimental situation where y is a random variable, the assumed
relationship is
E(y)=f(x,8)
and the model with additive error structure can be expressed as
y=f(x,8)+e.
Thus over the course of n observations, we construct the model
y=f(x,8)+e,
where y, f(x,8), and ¢ are nx] vectors.
In order to more accurately classify the type of models to be ana-
lyzed, we present the following definitions ([9]):

Definition 1.1 A model is y=f(x;683e), where y is the value of an observed

random variable which is to measure the phenomena under study (dependent
variable), x is a vector of constants or other observed random variables
(independent variables), & is a vector of unknown parameters, ¢ is a vec-
tor of unobserved random variables with some assumed distribution, and

f(*,",") s some known mathematical function of x, @, and ¢.

Definition 1.2 A model is defined to be a linear model if y=f(x,8)+h(c),

where f(x,8) is a linear function of the elements of s.

Note the additive error structure implied in the above definition of a



linear model. An example is y=8,+8;x+8,X%+e.

Definition 1.3 A model is defined to be essentially linear if there

exists a transformation £(y)=2(f(x,0,e)) such that 2(y)=g(x,8)+h{c),
where g(x,8) is a linear function of 8, and h(e) is a function of ¢ only.

An example of an essentially linear model is

y=(®0e%1%) (¢)
as In(y)=e,+e;x+In{e). The model y=exp(6y+8;x)+e is nonlinear because we
cannot make a transformation to a linear model retaining an additive
error structure. The additive error structure is important in order to
apply least squares to making interval estimates about & and examining
various distributional properties.

Definition 1.4 Any model y=f(x,8,c) that is not linear or essentially

linear is defined to be nonlinear.

Statistical theory offers many techniques for obtaining estimators
of g from the model y=f(x,p)+e, including maximum likelihood, Bayesian,
and least squares. For an account of general methods of obtaining esti-
mators see [10](Chapter VII). For most techniques some objective function
of g, say o(g), is to be optimized. Examples of ¢ include risk functions
(Bayesian estimation), likelihood functions (maximum 1ikelihood estimation),
and sums of squares (least squares estimation). In this paper we restrict
ourselves to obtaining least squares estimators for g from the model
y=Ff(x,8)+e, where f is generally a nonlinear function in 8. These estima-
tors are also maximum 1ikelihood estimators when normality is assumed.
Since Tinear estimation is a special case of nonlinear estimation, all

results discussed will apply equally to linear and nonlinear estimation.



In our study we will begin with a general formulation of a tech-
nique of finding a least squares estimator é_for g in y=f(x,8)+c. The
technique utilizes a Taylor series linear approximation to f and develops
an iterative scheme to approach é, The scheme is generally referred to
as the Gauss-Newton or Taylor series method. We then study three modi-
fications to the general technique of the Gauss-Newton method. These in-
clude the modified Gauss-Newton [6], the Marquardt [8], and the Spiral [7]
algorithms. These modifications are based on the premise that a procedure
that converges in fewer iterations and/or with less computational effort
is an improvement.

Section 3 is devoted to several examples and the problem of para-
meter estimation under constraints is considered in Section 4. The appen-
dix documents a computer program developed by the author incorporating
the algorithms of the modified Gauss-Newton, Marquardt, and Spiral tech-
niques. The results of Section 4 are included in the program so that con-
strained estimation is possible using either the modified Gauss-Newton
or Spiral algorithms. The appendix includes a user's guide to the program
along with sample output.

In this study all theorems are quoted without proof and often with

Tess than complete rigor. The reader is referred to the references for

detail.



2. Formulation of model and technique.
2.1 General technique.

Consider the model

y=f(x1,)(2,... ,XR;el ’929--0 ,9 )+E-

P

By letting x=(x;,...,x. )" and g=(ey,...,6 )" , the above model can be

P
expressed as
(2.1) y=f(x,8)+e.
If there are n observations of the form YyoX1qoXagoneeaXpg for
i=1,...,n, the above model can be written as
yi=f(x11""’in;el""’ep)+si’

or, following the notation of (2.1),
(2.2) (X804
Letting 5;(51,...,an)', we make the usual assumptions that E(e)=0
and E(ee' )=021, i.e., that the errors are identically distributed with
zero means, equal variances, o2, and zero covariances. For the purpose
of obtaining confidence intervals and testing hypotheses, we will later
assume ¢ is normally distributed as eaM(0,021), but this assumption is
not necessary for estimation purposes.

The least squares procedure involves determining a value of 8
which minimizes the sum of squared deviations of the observations from

their expected value., The objective function can be expressed as

(2.3) ¢(g)=ig1{yi~f(51 ,8))2.

Since y, and x, are observations, only g is an unknown variable in ¢(p).



We define the least squares estimator of 9, denoted by é, as that value
which minimizes ¢(8). From [4] we note that under the assumption
eanl{0,6%1), é_can also be shown to be the maximum likelihood estimator
of s.

To determine a suitable value for §J we differentiate (2.3) with

respect to 6, providing the p normal equations fin é, a solutiqn,

. y-Flx; )rf(* ")} -0
i=1 -
a0

J =g

for j=1,...,p, which are to be solved for é, This is generally not an
easy task as direct solutions are not available and an iterative process
must be used. Not only are the equations difficult to solve, but frequently

multiple solutions exist ([4]).
2.1.1 Taylor series technique (Gauss-Newton procedure).

Suppose we have a preliminary estimate of g, denoted by

87=(e9,68,...,00)

obtained from previous experience or know1edge, or as the result of

,8)

intelligent guessing. For & sufficiently close to 8%, expansion of f(x

in a Taylor series about 8°, keeping only first order terms, yields

p :
(2.4) flxg0)2Fxg000+ 2 (2P0 | g 00y,
j=1 20 5 ) !

ok
af(x ,8)
Letting f3=f(x,,80), 50 (a —e° ), and ?0 = "
8=e

the first order approximation of the medel in (2.2} becomes



p
_f0 & 070 .
(2.5) y1 fi 2 E 6jzij+ﬂ.i ) 1 1,...,“.
J=1
Writing 20 = [79," " Z?p
D svs ]
200 10 |

g?(yl,...,yn)', §P=(6?,...,5g)', and j?=(f?,...,fg)',
a matrix form of (2.5) is
(2.6) (y-£0)=208%+c,
which is a model linear in the unknown parameters §0. The normal equa-
tions for (2.6) are
(2.7) 2012080=20"(y-£0)
which, on assuming Z° is of full rank, have solutions
(2.8) 89=(20120)7170" (y-£) .

In using (2.4), we have approximated the nonlinear
function f by a plane in the region of‘é. Letting g}=g9+§°, the
vector é? can be thought of as a correction vector giving a new estimate,
ol, of éﬁ which is the best estimate obtainable under the linear approx-
imation, If ¢{g!)=0, then g}=§_and we have a solution. In all 1ikelihood
this is not the case, so we now let 6! be our new estimate, or inftial

value, and repeat the procedure, deriving a new correction vector and

hence a new estimate 82. In general

(2.9) I phiidaalizd) g (yeed),
with obvious notation.

We continun the process until convergence is reached. Following [8]
the process will be considered to have converoed unon obtaining a cor-

rection vector gﬁ such that ]dgl <g » for i=1,...,p, and some small >0,

v+]ed]



3. The presence of t is to allow the

say 10_5, and some small 1, say 10~
test under the possibility éi=0 for some 1.
For the special case where y.=f(x,,8)+¢ is a linear model, 8'=0,
i.e. the process converges in one step (although most programs written for
1
the procedure will calculate 820 anywav).
From [4],referring to the general process described above,
" The linearization procedure has possible draw-backs for
some problems in that
1. It may converge very slowly; that is, a very large num-

ber of iterations may be required before the solution stabhil-

izes even though the sum of squares...may decrease consistently

as J increases. This sort of behavior is not common but can occur.

2. It mav oscillate widely, continuously reversina direc-
tion, and often increasina, as well as decreasing the sum of
squares. Nevertheless the solution may stabilize eventuallv,

3. It may not converqge at all, and even diverge, so that

the sum of squares increases iteration after iteration without

bound. "

Despite these serious draw-backs, the technique, commonly referred to as
the Gauss-Newton procedure, is useful, and will work sucessfully on a
wide variety of noniinear problems ([4]).

To circumvent the problem of wide oscillation and diverqgence, we
discuss three proposed modifications to the general technique. But first
the method of steepest descent is discussed as two of the modifications
partially incorporate it into their modifications. As in the above dis-
cussion, the development of the method of steepest descent 1s from (4],

A more general and theoretical development is found in [1],
2.1.2 Method of steepest descent.

From some initial guess, g?, it is desired to seek an fterative value

g§+1, such that @(g§+1)<¢(§?) in a sequential manner that leads to con-



vergence. From elementary calculus we know that the direction in which

o{g) decreases lies along the vector

38, 205 20 J

(2.10) a*=[(- selg) _wele) | aele) i]
ﬂ p T
Thus if §J=p§f for 0<pS1, then for some o, o(d+¢ )§¢(§;). Hence at the
jth step, 8* is searched by varying p until we find a point at which
o(ad+ s%)%o(s7).

By this process we avoid the possibility of divergence or wild
oscillation mentioned in the discussion of the Taylor series technique.
But often the method of steepest descent converges very slowly, so slowly,
in fact, as to make the method unadvisable as a sole technique. The
problem occurs for models whose sums of squares surface consists of a

long, narrow trough in the vicinity of the minimum. An example of this

is the model

(2.11) flx;)=ay+e®2ite,  for x>0,

since 3f =1 and 3f =xiexp(92x1) which can be very large. Thus a small
ELH 90,

change in 8, will produce a much Targer change in the sums of squares

function than will a similar change 1in 6.

To illustrate the differences between the Taylor series and steepest

descent vectors produced, consider the function

(2.12) yi=5+e‘5x1 where x;=1, Xx,=2, and x3=3.

Figure 2.1 qgraphs ¢(g) for various values of g in the vicinity of the

true values 8,=5, 8,=.5. Suppose, not knowina g, we supply as initial
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guesses 69=4,2, 68=.8. As can be seen in Figure 2.1, ¢(0")=35.07.

As presented in section 2.1.1, we form the matrix of partials,

72 r'af(xl,g) 5f(x1,8)
- 38, 38,
af(x5,8) 8f(x;,8)
38, 36,
af(x3,6) 8f(x3,6)
| 98, 969 B
or 1= E x;e02%1 ]
1 xpe%2%2
1 xze%2%3 |,

and the vector fO= [f(x,,80)
fxz,80)

From the given data, we compute y= | 6.6487
7.7183
9.4817

Thus ol=90+(Z'Z) 717" (y-f0)= (4.77, 0.608)'. ¢{p1)=2.407, and so by the
Taylor series techinque we have found a new point 8! such that e(el)< #(s?),

and hence we have a successful iteration.
Following the method of steepest descent,

§*=(-6.95, -203.47)".
This correction is too severe to allow graphing in Figure 2.1, so we use
p=.001, and compute §l=ps*= (-. 00695, -.20347)'. Thus gl= gl+sl=
(4.19, .5965)', and o{el)=0.9496.
Our two updates serve to illustrate fairly universal properties

of the two techniques: the update g! by steepest descent produces a



1A

greater reduction in the objective function, but the 6! of the Taylor
series method 1s "closer” to 8 in terms of units of 8, and 6,. One
should note how the steepest descent corrections i1l begin a hemstitch
pattern across the sums of squares trough depicted in Fiqure 2.1 as it
continually moves across the valley in the direction of steepest slope.
When 6%, the initial guess, is "far enough” away from é, steepest
descent updates are more satisfactory than corrections produced bv the
Taylor series method, but as 8 approaches §J Newtonian steps are more

satisfactory, as illustrated above.
2.2 Hartley's modified Gauss-Newton procedure.

Intuition tells us that, given "enough" time (i.e., iterations),
the method of steepest descent will ultimately lead us to a minimum in
o(8), albiet a spurious, local minimum is always a possibility. However,
this is not the case with the Gauss-Newton procedure. If the linear
approximation of ¢(8) in the vicinity of gﬁ is a particularly noor one,
the method can easily lead to divergence, due mainly to an inappropriate
step size rather than an inappropriate direction., An obvious "solution"
exists; go some portion of the distance of the fauss-lewton correction
vector, as, for some gﬁ correction obtained by the Gauss-Newton method,
there exists p, 05p=1, such that ¢(g§+ §J)§¢(§j). The proof of existence
and subsequent convergence of the procedure is given in [6]. Hartley
shows that if 30 is within a bounded convex set S of the parameter space
spanned by 8, and if, for

0=1im inf o(x,0),
g
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vhere S is the complement of S, there exists a o* in the interior of S
such that
o(x,8%) <0,

then the process as modified above will converge (to at least a loca)
minimum, if 6% is not properly chosen).

In application Hartley suggests that ¢(§;+p§?) he evaluated at
p=0, p=%, and p=1. The three values describe a parabola in o, from
which a minimum is obtained from

pran=isti(0(p=0)-2(p=1) )/ (#(p=1}-26(p=%)+e(p=0) )

min
If
h, A 3
(874 1,87 )>e(87),
then the computations are repeated using %g?, and continued until an

appropriate pminis found.
2.3 Marquardt's nrocedure.

As previously discussed, Newtonian steps are to be preferred to those
in the direction of steepest descent. Marquardt and others ([8]) have ex-
amined a number of nonlinear problems and found that typically the cor-
rection vectors produced by a Gauss-Newton method and the direction of
steepest descent are 80-900 apart. This is seen also in our earlier ex-
ample {see Figure 2.1). But a small enough step in the direction of
steepest descent will always produce a reduction in the objective func-
tion, ¢(e), whereas no suitable correction may be found alona the vec-
tor given by the Taylor series approximation (at least not along the

part searched by most computer programs). Hence it seems desirable that
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as we reach a point in our search for é where a Mewtonian step does not
produce a suitable sten, we would use corrections aiven by steepest
descent until Newtonian steps can be resumed. Marquardt ([g])suggests an
algorithm that interpolates between the correction vectors of the Rauss-
Newton procedure and steepest descent. The theoretical basis for the

th iteration, let

algorithm is as follows: At the j
a2z and wm(y-£).

Then the Gauss-Newton correction vector, which we will now denote by §,,

is given by the solution of

(2.3.1) as=(z1)'y

and the direction of steepest descent lies along the vector gg, vhere

(2.3.2) §_g=(£j)'y_.

The following three theorems are due to Marquardt (see [8] for proofs).
Theorem 1. Let 220 be arbitrary and let ¢ satisfy the equation

(2.3.3) (AL e=(2' )y,

where ] is the identity matrix of size pxp, p being the number of para-

meters to be estimated. Then § minimizes #(8) on the sphere whose radius

15,.]

satisfies  [|s,|]2= |]8]]2
Theorem 2. Let §(A) be the solution of (2.3.3) for a given A, Then
[16{2x)}|[2 is a continuous decreasing function of X, such that as A+,
[18(2) |20,
Theorem 3. Let y be the angle hetween § and 8qe Then y is a contin-
uous monotone decreasing function of x such that as A=, y+0. Since gg is

independent of A, it follows that § rotates toward as k=,

&
Examining (2.3.3) we see that for a=0 (2.3.3) is equivalent to (2.3.1),

that is, 6=84, and we take a Newtonian step. As A becomes large (2.3.3)
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can be approximated by (2.3.2) (that is, » dominates the maximum charac-
teristic root of A), so that for large A we move approximately in the
direction of steepest descent. For x=0 the step size is that produced by
the Gauss-Newton procedure. Theorem 2 tells us that as A increases, the
step size decreases asymptotically to zero, so that we will always obtain
a suitable step gﬁ such that

o(g7+s7)%e(s")
for an appropriate choice of A, and hence convergence is guaranteed
(even if only to a local minimum).

One additional step 1s necessary before we have a viable procedure.

Adding A to each diaaonal element of A (as in (2.3.3) ) will not be useful

if the elements are of widely varying orders of maonitude. To circumvent

the problem of needing to add a different ) to each diagonal element, Mar-
quardt suggests rescalirg the A matrix in terms of the standard deviations
of the first partials. This amounts to a rescaling of the parameter space.
As an added effect, we succeed in stabilizing A for the purpose of inver-

sion. Letting g = Z'y), define A* and g* by

3y 5
ﬂ*:(a‘]{‘j):( S S ) and
| " %%
g=(ap=( % ).
"4
Solving for the fiauss-Newton correction &%, we use
A*st=g*,
and
=5 V=( &%
'G_t-(aj)—(?:j:: )-
%33

th

The algorithm is now clear. At the j~ step (iteration) construct
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(2.3.4) (Axdaadp) sx=gn]
d

and solve for GJ-( j 51
1
Ay

As before, ej ]=§F+£j,

1f we have selected AJ so that
(2.3.5) ¢(e’+1 o(87).

It is clear from the theorems that a (large) A always exists such
that (2.3.5) is satisfied, unless g? is already at é, the minimum (global
or local, as the case may be) of #(g). But constant use of a large A
will produce results similar to the steepest descent technique. Thus,
when the sums of squares surface, ¢(s), is reasonahly well approximated
by linearization, we wish to use a small A so that we take Mewtonian
steps, and use a large A for gradient steps only as necessary for con-

vergence. Accordingly, Marquardt gives the following strategy:

Let u>1,
Let Aj'l denote the value of 1 from the previous iteration (where
20=.01, say, initially). Then the trial values for aJ are A3"1/y and

Aj”}.

(1) compute o(e3" 1,131 /0) and o(e3* AT1). 1 o(63 AT /020 (0T)
Jayd=1 .

(11) 1f o(03* 23 sudseted) and o(e™! 037 1)%0(63), then ad=ad-

then av=
-1

(ii1) Otherwise, increase x successively by multiplying by v until
for the smallest integer w, ¢(91 1 - w)s ¢(e ); then use Aj=13'1uw_
From [8]:

Typically, condition (i11) is met only rarely. Thus it is
most often required that (2.3.4) be solved for two values of
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13 at each iteration. One such solution is required for the

standard Taylor series method. The extra Tinear equation solu-
tion is aenerally much less computational effort than the
evaluation of the A* matrix, so that the small proportional in-
crease in computation per iteration is more than offset by
the gain in the power of an iteration.

To which we add: if the number of parameters is fairly "small" in rela-

tion to the number of observations.
2.4 Spiral algorithm.

Jones, [7], agrees that Newtonian steps are preferable and that
steepest descent corrections should only be used as necessarv, but he
sees a major disadvantaae in Marquaﬁdt's'procedure in that a matrix
inversion is required to generate each search point. Thus, he proposes
an algorithm which searches roughly the same area as Marquardt's (this
deserves further comment later in the déveTopment), but which generates
search points between Newtonian and steepest descent corrections by
vector addition rather than by matrix inversion. Though not specifically
mentioned as a goal, we will note that his proposal also returns to a
true Newtonian step immediately, rather than waiting a few iterations until
the operation xjfu reduces ) sufficiently. This feature probably accounts
for much of the improved performance Jones claims over Marquardt's pro-
cedure {(on problems for which Newtonian steps are successful for a large
majority of iterations).

The essence of the Spiral aloorithm Jones proposes is as follows:

In agreement with Marquardt's procedure, j§+1 alwavs exists in the
plane formed by the Taylor series correction vector and the line of

steepest descent such that
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o(71)3a (o).
Figure 2.2, drawn in this defined plane, shows the point (0, which is gﬁ;
the vector OT, which is the Taylor series correction vector, and the

vector 0D, where D is chosen along the path of steepest descent such that

|07 |=| [0D]]. /

Fiqure 2.2

As we wish to proagress as much as possible at each iteration and
keep computations at a minimum, strateqy demands that §F+1 be as far from

gq as possible and the numher of evaluations of #(e) (and hence f(x,s) )

i+ will be chosen as the first point such

be kept to a minimum, Hence 8
that o(a3 )20 (ed).

It follows that the point T in Figure 2.2 is the first to be investicated.
If this does not produce a reduction in ¢(s), then a linear approximation
of ¢(8) does not extend well to T from 0. Hence ¢(8) has some minimum
"trough" that curves in one of the two directions shown by the hatched
curves in Figure 2.2. At this point Jones claims "Since the overall strat-

egy tends to give base points [point n, that is, g?] on the outside

shoulder of the valley, it is reasonable to assume that the valley is
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moving away from the 1ine 0T." Thus he suagests the search be conducted
next along the spiral 0TS, as to be described shortly, in order to trv to
intercept the "valley" (trough). The example discussed in section 2.1.2
can be shown to be an exception to this idea. Hence we suqqest that the
line OT be searched as in the modified Gauss-Newton procedure of section
2.2 before attempting a search elsewhere., This strateay is incorporated
in the computer proqram described in the appendix.

When no suitable correction is found at T (or along OT), we must
search the area between OT and 0D, as in Marquardt's procedure. As with
Marquardt's procedure, we need to approach 00 in such a fashion that the
step size approaches zero, so that convergence can again be guaranteed.
Jones suggests a search along the sniral 0TS and has found the most suit-
able spiral to be {expressed in polar coordinates, see Fioure 2.2) aiven
by

r=ry(1-¢cosg-(1-ycosg) (¢/y)?)
where r is the distance 0S, and ry is the distance 0T. The sequence of
points S to be investiqated are defined from a sequence of points L gen-
erated on TD in the ratio u:(1-u) (see Figure 2.2). Jones sugaests that
successive values of u be computed from
Wna1=2u,/ (140
so that the points {Ln} become closer tooether as they approach D on TD.

The coordinates of L, (£,¢), can be derived as

tang= usiny "
1-pt+ucosy
and
- E=rgusiny

sing
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If 0 is the oriain, the coordinates s of S are given by the coord-
inates t of T and d of D by

s=r{ud+(1-p)t).
3

As shown, each of the successive search points S is generated by a
weighted sum of two vectors, as opposed to the matrix inversion required
in HMarquardt's procedure. As previcusly suagested, we stop as soon as we
find a point § such that

s(a+s)0(e7).

One should see that since the spiral is searched at only a discrete
set of points, it is possible to jump from one side of the trough to the
other. Jones suagests that an "interpolation be performed whenever three
consecutive sums qf squares along the spiral are convex downwards, the
sum of squares being regarded as a function of u."

Work with this algorithm has led us to suggest two refinements, in
addition to the one already mentioned. First, it is a distinct possi-
bility that the trouch of the surface ¢(p) curves through OT in Fiqure
2.2, contrary to Jones' statement. If the ancle y is fairly large, the
search along the spiral OTS will often lead to points {Sn} far away from
the trough. Machine limitations on magnitudes of numbers enter into play,
as ¢(§;+§) can become very large, overflowing many machines. Hence the
computer program in the appendix suspends any overflow messages produced
by the IBM 370 FORTRAN IV compiler, and sets ¢(§;+§) to a predetermined
constant (1074). Secondly, if for two consecutive search points H and
S+ Ve have

o(el+s, ,1)230(eM+s )2e(e)),
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then the angle 8 (see Figure 2.2) is cut in half and a new spiral is searched
that now lies closer to the line OT (g is initially set to half of vy, as
suggested by Jones). These two suggestions are not theoretical faults of

the algorithm, but are necessary for implementation on computers with

finite computational capabilities.
2.5 Distributional properties of parameter estimates.

For the model
y;=flxy,00+es,
we assume that the ei's are independent, identically, normally distributed
with mean zero and variances o2, i.e.,

_C_WN(_Q_;'Uz_) .

Hence Ely;)=f(x;.8).
The density function for an observation \Z is given by
- 1
g_i(_\q-,_e_)=(21rcz) “exp{ -— (Jf.i“f(l_(_i,_ﬂ_))z} .
202

Thus, the 1ikelihood function for s, LH(s), is (for a sample of size n)

f 1 n
LH(g)=(2no?) 2exp{- = .21(5/1'-1’(11 8) )21,
1=

and the log of the likelihood function, written L(8), is

n n 1 n
L(g)=- = In(2n)- - Ino?-—— 1 (y,-f(x,.8))?
2 2 202 i=1
n n 1
== — {2}~ — Ino? - — o(s).
2 2 202

It is now apparent that to maximize the Tikelihood function by suit-
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able choice of 8, we can minimize #(8) by choice of 6. Thus the Teast
squares estimate of § is also the maximum likelihood estimate for s.

Since é_is a maximum 1ikelihood estimate for g, a central limit
theorem gives us that asymptotically,

eV (8,V),

where v=a2(2'2)".
(Note that (gjg)‘T is evaluated at ¢, the true, but unknown, parameter
value.) It can be shown that é_is a consistent estimator of ¢

and thus Z'Z| = is a consistent estimator of Z'Z| . It follows that

—

(y;-Flx;,0) )2

is a consistent estimator of o2, and that

~

U=02(2'7] .2)!

is a consistent estimator of V. A (1-0)100% asymptotic approximate conf-

idence interval about a's for a given vector a is
' - X o~
g_g;tulz(n-p)/gfigA.

The computer program in the appendix provides the residual sums of
squares, from which 62 can be obtained, and (g};)’] evaluated at the
last iterative estimate for é, so that confidence intervals involving g

can be formed.



22

3. Some examples.

Four examples of application of the three algorithms developed in
the previous section are now presented. The algorithms are incorporated
in a computer program, NONLIN, written by the author and documented in
the appendix along with a user's guide. It is important to notice that
none of the algorithms are completely successful in that performance is
related to starting values and the type of nonlinear function.

Initial parameter estimates provide the most critical problem; all of
the theory for the procedures is dependent on starting the iterative
process within the sphere of convergence for the least squares solution.
Hence a successful estimator is often not ohtained until after much search-
ing for satisfactory starting values, if at all. Reasonable values can
often be selected from a knowledge of the process, previous work, or, in
the case of a few parameters and a relatively simple function, by using
a few data points and solving for the unknown parameters.

The first examnle comes from animal science and involves estimating
the parameters for a simple exponential arowth curve, modeling weight of
cows versus time. The model is
(3.1} y',fel-azexp(-93:«1)+;:,i
where ¥y is the weight of the animal at time X; (time measured to the
nearest month after birth). Data for a particular animal is given in
Table 3.1. After 18 months a cyclical pattern dominates the data due to
yearly calvina. The model makes no attempt to account for this{ fittina,
instead, a curve through something akin to an average weight through the

cycle,



Table 3.1
Data for Growth Curve Model, Eq. (3.1)

Month®  Weight (1bs) Month  Weight (1bs)
0 64 36 640
2 100 37 630
3 130 38 540
4 160 39 610
5 205 20 670
6 270 41 720
7 305 42 745
8 310 42 775
9 310 a4 775
10 346 44 780
1 315 46 745
12 375 47 680
13 380 48 690
14 415 48 665
15 450 50 645
16 535 51 635
17 550 52 690
19 540 53 690
20 660 54 750
21 730 55 770
22 700 56 820
23 650 56 825
24 670 58 780
25 610 59 855
26 470 60 830
27 610 61 800
28 615 62 640
29 675 63 770
29 700 64 810
3] 715 65 875
32 710 66 905
33 690 66 935
3¢ 650
*
34 670 Month after birth.
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Starting values for this example present no particular problem.
First, the function is sufficiently well-behaved that any reasonable
guess will lead to convergence for all three alcorithms. Secondly, note
that as x (time) approaches infinity, v approaches 8;, so that an initial
qguess far 8; should be the maximum weight suspicioned for the animal. At
time zero (birth), y=6,-6,, so 6, should be estimated by subtracting birth
weight from the guess for 6,. A little forethought leads to selecting 64
in the range from .01 to .1.

For the data in Table 3.1, the initial quess used was:

09=900, 08=836, 69=.05
The results for the three algorithms are summarized below:
Mod. Gauss-Newton Marquardt Spiral

Mo. of iterations 9 5 6
SS Residual 307,763.8970870435 307,763.8969855355 307,763.8969043224

91 800.11853 800.1177 800.12045

0 768.5799%6 768.57663 768.57561

03 05594 .05594 .05594

There is not enough disparity among the three concerning the final
residual sums of squares (SS Pesidual) or final parameter estimates, hence
for this model the Marquardt procedure is preferred, having taken the
fewest iterations, Note that 51-52 does not estimate birth weight very
well, The animal scientist may, then, reject these estimates and, thus,
the model as unrealistic. It is possible to conduct the search under the

constraint 6,-8, = birth weight. A procedure is discussed in Section 4.

Next we look at a texthook example which was selected so that com-
puter results from the program NONLIN could be verified with published
viork. The model is ({11}
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(3.2) y1=exp(-e,xliexp(-ezlxzi) )+€1

(a model of the fraction remaining at time x, qf a chemical compound under-

going a first order reaction, where x, s the absolute temperature of the

system, The equation is obtained as a solution to the differential equation
dy/dx =-ky.)

Data for the model is given in Table 3.2. Following [1], the initial quess

is 8{=750, 69=1200. Results for the three algorithms were:

Mod, Gauss-Newton Marquardt Spiral
No. of iterations 9 10 11
SS Residual .039806054412401  .039806054421774  .039806054415955
8, 813.87105 813.85866 813.86754
82 961.00245 960.99876 961.00090

These results are in close agreement with [1]. It appears the ohjec-
tive function has a long narrow trough in the vicinity of éﬁ so that
Newtonian steps lead to quickest convergence, and any step toward either

side of that direction is not as efficient.

The next example utilizes a more complicated function that is an
intermediate result in work on segmenting two sigmoidal ogrowth curves,
More detail is found in Section 4, where this topic is discussed as an
example of constrained estimation. The equation is
(3.3) y;=({e1(1-0 exp(-65x3) )+ey , xiéy

61(1—e3exp(-92y2)+5293exp(-7292)(1—exn(~eh(xi—y2) )+ei’ X;>Ye
o
Rather than trying to fit this model to real data (which was done success-

fully after this example}, we generate, with zero error, data using the

values 6,=.2, 8,=.004, 03=.4, 0,=.009, y=11.18,
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Tahle 3.2

Data for Example from Bard, Eq. 3.2

Experiment Time Temperature Fraction
Number, 1 X1 (hr) X2 (oK) remaining, y,
1 0.1 100 0.980
2 0.2 100 0.983
3 0.3 100 0.955
4 0.4 100 0.979
5 0.5 100 0.993
6 0.05 200 0.626
7 0.1 200 0.544
8 0,15 200 0.455
9 0.2 200 0.225
10 0.25 200 0.167
n 0.02 300 0.566
12 0.04 300 0.317
13 0.06 300 0.034
14 0.08 300 0.016

0.1 300 0.066

—
[$2]
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The generated data is

X hA X Y X .4

1 .12032 8 .13807 15  .164728
2 12127 9 .14214 16 .16641
3 .12283 10 .14367 17 .16811
4 ,12496 11 .150638 18 .16945
5 .12761 12 .15487 19  .17046
6 .13073 13 .15853 20 .17123
7 .13424 14 .16166

Using as an initial quess the values
6{=1.0, 89=.01, 89=1.0, 6f=.01,

all three algorithms converged to §f(.2,.004,.4,.009)' with zero residual
sums of squares. The numher of iterations necessary for convergence was
12, 13, and 7 for the modified Gauss-Newton, Marauardt, and Spiral algo-
rithms, respectively, Thus the Spiral routine performed significantly
better than the other two. An initial auess of

69=5.0, 8d=.1, 8%=-2.0, 8=.01

did not lead to convergence for any of the three algorithms.

In our Tast example, from chemical engineering, we are trying to
model reaction rate (y;) as a function of temperature, °K, (x14) nitro-
benzene concentration (x21), hydrogen concentration (x3i)’ and analine

concentration (x“i)' The equation is ([12])

(3.4) y;=01exp(-0,/Rx1 )x33x3y

1+&5XE?

Data for a particular experiment is given by Table 3.3. The thesis from
which this example is obtained erroneously estimated the parameters, but
we use the estimates provided there as "reasonable" quesses for starting

values.



Table 3.3

Data for Chemical Engineering Example
{ Eq. {3.4) )

Concentrations (gm-moles/cc)

Reaction rate (y.) Temp. Nitrobenzene Hydrogen Analine
(10*gm-moles/min-am) X14 (oK) xzi(xloa) x3i(x107) xqi(xloa)

2.15 433 21.19 78.06 0
0.96 423 20.93 81.98 0
3.64 443 18.01 78,53 0
2,42 436 20.26 75,04 0
1.76 427.5 21.79 78.67 0
2.04 431 21.61 78.03 0
2.44 436 21.36 77.13 0
3.32 433 41.18 117.48 Q
13.98 448 62.69 265.40 0
5.49 423 65.61 265.40 0
1.67 426 72.76 76.99 0
1.60 426 37.40 78.37 0
1.78 426 27.50 78,76 0
1.59 426 20.95 78.69 0
0.83 426 31.00 32,55 0
1.58 426 30.75 61.51 0
2.00 426 30.82 93.99 0
2.38 426 30.65 129.14 0
1.98 426 128.18 72,97 0
1.98 426 hY, 12 78.09 0
1.45 426 10.04 77.22 0
2,20 426 38.88 78.70 0
1.03 426 16.62 36.16 0
1.36 426 77.70 80.37 0
1.85 426 116.30 85.80 0
1.78 426 38,29 77.35 0
2.18 435 37,583 75.80 0
3.01 445 36.69 74.10 0
0.53 426 28.24 26,97 0
1.20 426 32.18 48.09 0
1.40 426 31:13 68.43 0
2.08 426 29.27 11.74 Q
1.92 426 114.50 87.05 0
1.11 426 26.66 79.03 3.06
0.95 426 40.66 78.66 4.66
1.01 426 35.62 78.83 4.09
1.35 426 22,13 79.33 2.54
1.44 426 21,88 79.38 251
0.23 426 16.56 38.79 39..55
0.52 426 12.58 38.90 30.01
0.36 426 14.63 38.76 34,78
0.24 426 15.34 36.26 36.64
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Using,
89=190.50742, 09=14719.64130, 09=.05386, 6£=1.01018, ¢8=.00421, oQ=.25189,
and R, the universal gas constant, 1.9869 cal/Cmole, we obtain the

following results:

Mod. Gauss-Newton HMarquardt Spiral

No. of iterations 50% 50% 1+

$S Residual 209,844 ,885.6128651 212,585,078.6659825 218,569 ,377.1400358
8, 209.63174 191.3244 190.50742
8 14,714.2779 14,714.51367 14,719.64130
6 .04487 .05316 .05386
oy, 1.01482 1.01043 1.01018
95 .00001 .00030 .00471
8g 56116 .37345 .23189

*No convergence after 50 jterations.
+No successful correction vector along path of steepest descent.

We cannot say that the Spiral algorithm led to convergence in view
of the results of the other two procedures. Though neither the modified
Gauss-Newton nor the Marquardt routines coverged in 50 iterations, we shall
see below that the modified Gauss-Newton was near converaence.

To avoid endless loops, all three routines require some arbitrary
stopping point in searching for a suitable correction vector. (This idea
is not to be confused with stopping the routine because the new, updated
estimate for 6 does not significantly differ from the previous estimate.
Under this condition we say the procedure has converged.) When such a
condition is reached, as was the case for the above starting value using
the Spiral routine, NONLIN terminates the procedure with an appropriate
message. When one encounters this condition, additional starting values
should be tried to insure that a potential convergence point has indeed

been reached. To illustrate, the following starting values were tried,
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89=195, 9=14700, 9=.0551, 6Q=1.011, 68=1.0, of=.05

with results as follows:

Mod. Gauss-Newton Marquardt Spiral
Mo. of iterations 35 50% Did not
SS Residual 209,844,915.1111224 215,846,225.5368481  converge.,
81 209,57059 191.03260
8, 14,714.27215 14,716.61624
83 .04489 05345
By 1.01481 1.01031
85 .00001 .00202
8 56173 .27874

*No convergence after 50 iterations.
Using starting values:
89=100, 09=10,000, @9%=.01, of=1.0, Q=.001, eQ=.5,
the Marquardt and Spiral routines did not converge, but the modified
Gauss-Newton converged to
éf(209.5945], 14,714.15046, .04487, 1.01482, .000N1, .56111)'
in 34 iterations with a residual sums of scuares equal to
209,844,879.8751693. Changing 84 and 8, to .05 caused all three routines
to not converge. Additional starting values tried, none of which Jed to
convergence, were:
(100, 1000, 0, 1, .05, .5)'
(10, 10000, .5, 2, 1, .01)*
(1000, 100, .25, 3, 5, 2)'
(1, 100, 1, 5, 10, 5)°'.
It is apparent, now, that the starting value problem is critical.
The problem is best handled by having prior information about the model

and physical limitations of the parameters so that reasonable values can
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be obtained. Here the statistician, or modeler, must be in close contact
with the experimenter, particularly for the more complicated nonlinear

functions such as (3.4).
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4. Constrained parameter estimation.

Qutside factors, such as physical or management constraints, or the
desire to test some hypothesis about 6 (e.g., see [3]), lead to the need
for least squares estimates, é, in

y=f(x.8)+¢
constrained by
91(8)=g2(8)=...=q,.(8)=0.
From the theory of Lagranaian multipliers, we can achieve least squares
estimators for 8 by minimizing

(4.1) 2(0,))= : (yy-flx;.0) )2+ :
=1 s=1

2x 9. (e)
with respect to 8 and i, an rx] vector of multipliers. Differentiating
(4.1) with respect to 6 and A and setting the results equal to zero yields

the p+r normal equations

3¢(8,1) n r
(4.2) oo -zizlf(yi-f(i,- ,8) )af(x;.8)} +2551Asags(_e_) 03 421,
J —
39{8,1)
= 95(§)=0; s=i,...,r.
3(2?\5)

Given some initial estimate of ¢, say 8% expansion of f(ﬁﬁ,g) in a
Taylor series about 89 yields the first order approximation

p
+ 0 0
F(xg,8)2F(x; 8 )+_218f(51 804,

- , where
3= 58
]

dj=(ej-aj) for some EJ.

o]

Similarly, 95 ()29 (7)+ 1 29(80)d;
29
j
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tet d=[(d)]; & t[(ags(gﬁ) )}; g%=[(a (8% )]s and v, Z be defined
q*1 o L —55—
J
as before. Then upon substitution into (4.2), usina our expanded approx-
imations, we obtain
-27'v422" 2+26' =0
g°+6d=0 ,

which can be rewritten as

(4.3) rz &[] [Zv
RN
a linear system from which a solution for d (our Gauss-Newton type cor-
rection vector) may be found. If we rewrite (4.3) as
Wy=h,
with obvious notation, then d consists of the first p elements of y,where
r=Wn.
Once d s obtained, we compute §! = g%+d, as before, and we begin the
process again, using ! as our "initial guess”.

If g.(8), for s=1,...,r , is a linear function of g, then qs(gﬁ)=0

will be satisfied at each iteration and thus we need only ¢(g§+])§¢(g_3)

r
as I gs(gﬁ)=0 in (4.1). If gs(g), for some s, is a nonlinear function of
s=1

8, then this is not the case, and we should verify that

oo™ 1 A1) 263 ,00),
noting that (4.3) allows for solutions of A, as well as d. The program
NONLIN, described in the appendix, computes @(gq+]) instead of ¢(g§+]’5?+1),
assuming gs(§;+1) to be sufficiently close to zero. This has presented no
problems thus far, as demonstrated by the next example, which involves

fairly nonlinear constraints. The program allows the cheice of a modified
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Gauss-Newton or a Spiral type search for é_in the contsrained parameter

space,
4.1 An example using growth curves.

Most growth curves are sigmoidal, i.e., symmetric, about some in-
flection point and thus are inappropriate to describe phenomena that are
influenced by different factors at different times in their growth. Thus
we may see a rapid growth in an animal until puberty, sav, to be followed
by a growth which is much less rapidly changing. A possible model for this
type of behavior is to deseribe pre-puberty growth with one curve and
maturity with another curve. Thus we are talking of the problem of seg-
menting two (or more) growth curves.

As an example, consider the dependent variable, y, to be a segmented
function of two sigmoidal growth curves as

(4.4) Y= AI(T'CleXD(-51Xi2) )+Ei for xigy .
FrAz(1-Coexp(-Byx,2) J+ey for xo>y.

Realistically, we require continuity and differentiability of y at x=y,

giving the two constraints

(4.5) A (1-Ciexn( -Byjy2) ) = F+A,(1-Coexp(-Byy2) )
2A,B,Cyyexp(-Byy2) =2A,B,C,Texp(-Boy?)

Equation (4.5) becomes

{4.6) F = A (1-Ciexp{-Byy2) )-A,(1-Coexp(-Byy2) )

Age BBk exp(-y(B,-B,)).
B2Cs

Substitution of (4.6) into (4.4) yields
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(4.7) yi=  [MO-Crexp(-Byx;2) J+ey x5,

A1(1-Crexp(~B1y2)+B1Cy exp(-y2B) (1-exp(-Ba(x;2-vy2) ) ) +e;,

e

B Xq> ¥

which is (4.4) constrained by the continuity and differntiability restric-
tions of (4.5).

Suppose in (4.7) we let xy=1, i=1,...,20 , A;=0.2, B,=0.004, C,=0.4,
and B,=0.009. From ([5] 1t is seen that for the growth curve

y;=A1(1-Crexp(-B1x,2) ),

the inflection point is 1//2B; . We wish to generate data from (4.7), but,
for realism, we do not want the data to "flatten out" past the first in-
flection before beginning the part of the data produced by the second curve.
Thus we fix y=1//2B; for generation. This is not necessary in the fitting
of (4.7). 1f data actually contained a relative "plateau", the procedure
should handle 1t; and.in fact we will not restrict y=1//2B; in our search
for y, merely 1in the generation of the data. The data correspondina to
(4.7) is that given after (3.3); in fact, (3.3) is (4.4) after reparameter-
izing to account for the constraints in (4.5). Ye should be ahle to estimate
6 with zero error, and this is the case using the program NONLIN (see dis-
cussion after (3.3) ).

If our technique for constrained estimation is valid, we should be
able to estimate all the parameters in (4.4) using the constraints of

(4.5). Using the starting values

Al -25, B]I:.o]g C1=05’ F=-1, A2=-2, B2=.0]’ C2=05, Y=.|5,
the program NONLIN, using the modified Gauss-Newton option converged to
Ay=.2, By=.004, C;=.4, F=-.02706, A,=.20011, B,=.009, C,=.33196, y=11.18034

in 18 iterations with zero residual error. Using the Spiral option, the
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routine failed to converge. Fixing y=11.18034 and estimating the remaining
seven parameters allowed both options to converge in 10 iterations te the

values listed above with zero residual error.
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APPENDIX

A User's Guide for NONLIN

The following control cards are needed to use the program NOMLIN, which

is documented following this gquide:

1. Title card. Anything punched on the first control card (80 characters)
is printed at the beginning of the output (once) for

identification.

2. Limits card. Enter problem limitations as follows:
cc 1-3: Number of observations (a value of the dependent
variable along with its associated values of the
independent variables constitute one observation).
c¢ 5-6: Number of parameters to be estimated.
cc 8-9: Number of independent variables in model.
cc 11 : Number of method to be used,
1-Modified Gauss-Newton
2-Marquardt
3-Spiral
cc 13-14: Haximum number of iterations to be attempted.
cc 16-17: Humber of parameter constraints supplied.

3, Initial parameter estimates. Enter initial quesses sequentially as deci-
mal numbers, using cc 1-10 for 8;, cc 11-20
for 6,, etc.; continue on next card if
necessary. Use TPANS(B) subroutine to trans-

form initial quesses 1f it is necessary to
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rescale due to format limitations.
4. Format. FORTRAN format statement for data to follow, e.q.,
(F3.0,2X,3F4.0,1X,F10.0)
5. Data. Read in one observation at a time, with the dependent variable

read in first.

SUBROUTINE TRANS(B): A user supplied FORTRAN subroutine (optional) in
which the user can change (e.g., rescale) any of the
parameters or variables read in., TRANS(B) is called

once upon completion of reading in the data.

SUBROUTINE FUNC(B,F): A user supplied subroutine (mandatory} which gives the
form of the model to be used. Parameters are in array
B, independent variables are in array X. Vhen more
than one independent variable is present, all of the
first variable is stored sequentially in X, followed
by all of the second variable, etc. To address the
1th value of the third variable, address the
({2xno. of obs.)+'i)th member of X. The function is
written as F( )=..., F containing the “predicted"
value of Y using the current parameter estimates in B,
An example of the model in £q. (3.2) s given in
SUBROUTINE FUNC(B,F) in the documentation following
this guide.

SUBROUTINE LGRANG(B,R): A user supplied subroutine (optional) used to enter

any parameter constraints. The constraints should be

written as 0={constraint). The first constraint is
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then entered as G(1)=(constraint), etc. As an ex-
ample, to use the two constraints 6,=8, and 8,=1/8,,

enter G{1)=B(1)-B(2) and G{2)=B(1)*B(2)-1.

Output: The user supplied title, initial parameter estimates, limitations,
and data, as read in, are printed on the first page of output. To
print transformed estimates or data, include the appropriate WRITE
statements in SUBROUTINE TRANS(B).

After each iteration, updated estimates of the parameters are
printed along with the SS Residual using these estimates.

If the program terminates normally, the inverse of the sums of
squares and cross products matrix ((;jg)‘]) is printed as evaluated

at the final parameter estimates.

Limitations: The following 1imitations (maximums) are employed in NONLIN,
as listed. They may be expanded by changing appropriate array

sizes and formats. If array sizes are altered, the user must

be sure to change all affected arrays.

No. of observations: 100
No. of parameters: 15
No. of indep. variables: 15

No. of constraints: 15



ILLEGIBLE
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0001
0002
0003
0004

0005
0006
Qoo7
0008
0009
0010
oolt

gol2
0013
0014

(11 B
00Lé
AQ0L7
ool18
0015
0020
0021
0022

0023
ac24
0025
0026
Q027
0023
0029
0030
¢c31
0022
0033
0034
Q035

IS THE VECTCOR OF OBSERVATIONS OF THE DEPENDENT VARIABLE

1S THE MATRIX OF O8SERVATICNS NF THE INDEPENDENT VARIABLES

IS THE VECTOR OF CURRENT PARAMETER ESTIMATES

15 THE VECTOR [F FUNCTION VALUES USING CURRENT PARAMETER ESTIMATES
IS THE MATRIX OF PARTIAL DERIVATIVES OF F EVALUATED AT B

IS THE [INVERSE OF p'p
T IS THE TRANSPOSE OF P

OO0
T UM

TMPLICIT REAL*B[{A~H,0-%}
REAL*B LAMRBDA
COMMON X{1500),Y(100)Y,DELTA{L15},SSNOBS NVAR NPARM N ,NCCNST
DIMENSICN TITLE{2D) 4FRMTI20}+F(100),BL151,PU1500),PT{1500),
1AC225),L{15).MI15)
LAMBDA=0.,01D0
READ (5,1000) TITLE
1000 FORMAT (20A4)
WRITE (&6,100t) TITLE
1001 FORMAT {1H1,T25,20A4)
READ (9,1002) NOBS;NPARM NVAR M IETH, NITER,NCONST
1002 FORMATII41X 121X 41241Xe1141Xe0251%412)

NOBS~ NUMBFR 0OF OBSERVATIONS

NPARM~ NUM3ER OF PARAMEYERS TC BE ESTIMATED

NVAR- NUMBFR OF INDEPENDENT VARIABLES

NMETH- METHOD TO BE USED FOR NONLINEAR ESTIMATION
1- MIDIFIED GAUSS-NEWTON [H.O. HARTLEY, TECHNOMETRICS, MAY 1961)
2~ MARQUARDT (D.W. MARQUARDT, SIAM, 1963, P 461}

3- SPIRAL [A. JCNES, CCMPUTER JOJRNAL, AUG, 1970}

NITER- MAXIMLM NUMBER OF ITERATINANS TO BE ATTEMPTED

NCONST- NUMBER OF PARAMETER CONSTRAINTS

OO0 OO0O00

GO TO [ 101,102,103},NMETH
101 WRITE(6,2000)
2000 FORMAT('ONCNLINEAR ESTIMATION USING MODIFIED GAUSS-NEWTON PROCEDUR
1E.*)
GO TO 100
102 KRITEL6,2001)
2001 FORYAT{'ONONL INEAR ESTIMATION USING MARQUARDT PROCEDURE.')
GO TO 100.
103 WRITEL6,2002)
2002 FORMAT{fONCNLINEAR ESTIMATION USING SPIRAL PROCEDURE.!)
100 WRITE(E ,2003)NIBS,NPARM MVAR,NITER yNCCNST
2003 FNAMAT(10ONO. OF DBS.= 'y 13,5%X,'N0. CGF PARAMETERS= *,12,5%,
1*KNC. OF INDEP, VAR .= ',12/% MAXIMUM NO, OF ITERATIONS= ",02,2X%,
2 'NO. OF USER-SUPPLIED COANSTRAINTS= ',121})
READ {5,10031(B{1),1=14NPARM}
1003 FORMATI(8F10.5)
WRITELH,2004)
2004 FORMAT{'0ORIGINAL PARAMETER EST[MATES. }
WRITE(6,2005) LI ,1=]1,NPARM)
2005 FORMATIL2%,1245(18X%X,12))
WRITE{6,2006)}(8{1),I=1,NPARM)
2006 FORMAT(LIX46F20.5)
READ (54,1004) FRMY
1094 FURMATI?0A4)
WRITE (6,10C5)
1005 FORMAT {(32HODATA AS INPUT TO PROGRAM NJINL IN)
ng 2 i=1,NCAS

[
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0036 N={NVAR-1) *NOBS+I
C
c DEPENDENT VARIABLE IS READ IN FIRST
C . 1f MORE THAN CNE INDEPENDENT VARIABLE, MATRIX X 1S STORED AS A STRING
c .
0037 READISFRMTIY{ EV 4 IX(J) o d=1,N, NOBS)
0038 2 HRITE({642006)Y{T) 0 X{J)yJ=1,N,NOBS}
c
C USE TRANS{B) TO FORM ANY NEW VARIABLES, OR CHANGE VALUES OF VARIABLES WHICH
C ARE BEYDND FORMATS, TRANS(B) 1S CALLED CNLY ONCE.
C :
0039 CALL TRANSI(R)
0040 CALL FUNCI(B F)
0041 §5=5S5Q5(F)
0042 WRITE(6,2006) SS
0043 1006 FURMATI1HO,23HINITIAL SUM DF SQUARES=4+1X,F40.15)
0C44 N=NPARMENPARM
0045 ITER=0
0046 5 ITER=ITER*]
0Qav IF(ITERLGT.NITER} GO TO 70
0048 CALL DERIVIP:F,B)
0C4S 1ERR3 =1
0050 1TERM=0
0051 GO TO (10,20,30},NMETH
oes2 10 CALL GAUSS(P,F,B:TERR3)
0053 GN Ta 40 .
0054 20 CALL MQDT{P.B4sLAMBDA,F)
00546 GO TO 40
0056 30 CALL SPIRAL{P,F,B,IERR3}
C
c CHECK FOR CCONVERGENCE
c
0cs57 40 DO 50 1=1,NPARM
0058 IFL{DABSIDELTAIL) )}/ {.0D1D0+DABSIB{T))])GT1lD~6} GO TO 51
0059 S0 CONTINUE : .
0060 GO TO 52
0061 51 ITERM=1
Q062 52 WRITE{&6,1007) ITER
0Ccé3 1007 FARMAT(IHO+T20,13HITERATICN NOay 13}
0064 WRITE(&,10(8)
0065 1008 FORMAT(1X,16HPARAMETER VALUES)
0066 WRITE{6,41006)1{ 14 1=1,NPARM]
Q06T 1009 FORMATI12X,12,5(18X,12})
0068 WRITE(64+1010)(B{1)s1=1,NPARM)
Q069 1010 FORMAT{L1X,56(F20.5))
0C70 WRITEL6,1011) SS
0071 1011 FORMAT(' SUM OF SQUARES= ',F40,15)
C
c 1ERR3 POINTS TO APPROPRIATE TERMINAT ION MESSAGE
c
0072 GO 7D I5%,75,71)1,1ERR3
0Cc73 55 IF{ITERM.GT.0) GO TOD 5
anTa 60 WRITE(S,1012)
0C75 1012 FORMAT(92HDEST IMAT[ON PROCECURE TERMINATED DUE TO APPARENT CONVERG
1ENCE TO THE LISTED PARAMETER VALUFS.)
Q076 GO TO BO
oct? 70 WRITE(6,1013) NITER

007 1013 FORMAT{3IHOPROCENURE DOESN'T CCNVERGE AFTER,I3,12H ITERATIONS.)
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0079 GO TO 80 .

0080 71 WRITE(6,1015)

0081 1015 FORMAT(' PROCEDURE YERMINATED. N SUCCESSTFUL CORRECTION VECTOR FOU

IND ALONG PATH OF STEEPEST DESCENT.*/* POSSIBLE CONVERGENCE POINT H
2AS BEEN REACKEDN.Y)

0082 GO T0 80

0083 75 WRITE(6,1014}

0084 1014 FORMAT(*OPRCGRAM TERMINATED. NO SUCCESSFUL CORRECTION VECTOR FOUND
1 ALONG TAYLDR-SERIES PATH, POSSIBLE CCNVERGENCE POINT HAS BEEN REA
2CKEDLY)

g
€ COMPUTE ZtZ INVERSE AND PRINT
c

0cas 80 CALL FUNC{B;F)

0C86 CALL DERIVIP,F,8)

0087 JI=0

0ces DO 20 I=1,NCBS

0039 1J=1-NOBS

0c90 DO 90 J=1,NPARM

0091 [J=1J+NOBS

0097 JI=JI+1

0093 90 PT(JT1}=P(1J)

0094 CALL MMULT(A,PT,P,NPARM,NOBS,NPARM)

0095 CALL DMINV(A/NPARM, Dyl 4 M)

0c9% WRITE(6,1016}

0097 1016 FORMAT(*OINVERSE 0F S$S £ CROSS PRODUCTS MATRIX OF PARTIALS EVALUAT
1ED AT FINAL B:1/)

0058 K={NPARM=1)%NP ARM

0099 D0 91 I=1,NPARM

0100 K=K+l

0101t 91 WRITE(&,1017)10AC) oJ=T,N,NPARN]

0102 1017 FORMAT{1X, 10E12,5)

0103 sTop

0104 . END
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0001 FUNCTICN SSCS(F)
0002 IMPLICIT REAL*BLA-H,.0-%)
0003 COMMON X(1500),Y{100),DELTA(L1S)ySSyNOBS NVARNPARM,N,NCONST
0004 DIMENSICN FINOBS])
C
c SUBRCUT INE CCMPUTES ERROR SUM OF SQUARES FOR A PARTICULAR VALUE OF B
c
0005 CALL ERRSET{207y256,-1,1)
0006 55Q5=0.0
0co7 DO 1 I=1,NCBS
0008 SS5QS=SSQAS+(Y(TI-FLIYIXLYLL)-F{TI))
0009 CALL OVERFLIJ) )
0alo IFLJ.EQ.1) GO TO 2
0011 1 CONT INUE
0oLz G0 70 3
0013 2 S5Q5=1.D74
aonle 3 CALL ERRSETI{20792564256,2)
0015 RETURN

0016 END
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000l SUBROUTINE DERIV(P,.F,8]
Qo2 IMPLICIT REAL%8LA-H,D-5)
0003 CCMMON X{1500),Y{100},DELTA{15}45S,NORS,NVAR,NPARM,N,NCONST
0004 DIMENSICN B{15)4B0(15),F(100),+FO{L00),4P(1500)
C
c SUBROUTINE CCMPUTES MATRIX OF PARTIAL DERIVATIVES, P
c
0005 DO 3 [=1,NPARM
0006 : D0 1 J=1.NPARM
0007 1 BotJ) =8I}
0008 H=B(1)%.00100
ocos Hl=1.DO/H
0010 BO(IN=B{[I}+H
goltl CALL FUNC(BO,FO)
0012 DO 2 J=1,NDBS
0013 2 P{{I-1)*NOBS+J)=(FO(J)-FLJ)])*H1
0014 3 CCONTINUE
0015 RETURN

0016 END
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oool
0002
0003
0004
0005
0006
0007
0008
0009
0010
001l
0012

L N e

21 MMULT

SUBROUT INE MNMULTIAB,AyBsLoMyN}
IMPLICIT REALXB(A-H,0-%)
DIMENSTION AB(L N),A[L,M),B{M;N]
oo 3 I=19L

DO 2 J=14N

AB(T1,J)=0,0

DO 1 K=1,M
ABIT+J)=A0T4KI¥B(KsJI+AB{1,4J]
CONT INUE

CONT I NUE

RETURN

END

DATE

T6005

46

21713708
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FORTRAN IV G LEVEL 21 GAUSS DATE = 76005 21/13/08
0001 SUBROUT INE GAUSS(P,F,B,TERR3)
0002 TMPLICIT REAL®B(A-H,0-%)
0003 COMMON X(1500},Y(100) 4DELTA{1S5) 455 +NOBSNVAR,NPARM,N NCONST
0004 DIMENSTON P{1500),F(100},B{15),A0225),PT(1500)+YF(10J),TEMP(30),
L L(30),MI30),B1(15),B2(15),W(900),G{15),GCDERIV(225),DELTAL(30}
c
C FOLLOWEING ROUTINE CALCULATES PT FROM P
[ '
0005 JI1=0
0006 DO 1 1=1,NDOBS
0Co7 1J=1-NOBS
0008 DO 1 J=1,NPARM
0ca9 1J=1J+NCBS
oolo JI=Jl+1
0011 1 PT(II)=P(1J)
c
C YF IS Y-F
c
0qQlz D0 5 1=1,NCBS
0013 5 YF{I)=Y(1)-F(1)
0014 CALL MMULTIUTEMP,PT,YF,NPARM,;NOBS, 1)
Cc
c A=PT*P
' ;
0015 CALL MMULT(A,PT4P,NPARM,NOBS,NPARM)
0016 IFINCONST.EQ.0) GO TO 180
C
c IF NCONST NOT O, NEED TO BUILO AUGMENTED MATRIX
c
0017 N=NPARM+NC CAST
0013 : N2=N#*N
0g0le 00 100 I=1,N2
0020 100 wW{I})=0.D0
oozl ) CALL LGRANG(B,G) )
0022 CALL LGRDRV{B,G,GDERIV)
0023 DC 130 I=1,NPARM
0024 K=(I-1}*N
ac2s Kl=(I-1)%NPARM
0026 K2=(1-1)*NCCNST
0027 00 110 J=1,NPARM
0cz28 110 WiK+J)=A(KL+J)
0029 K=K+NPARM
09030 DO 120 J=1,NCONST
0031 120 WIKeJ)=GDERIVIK2+J)
0032 130 CONTINUE
0C33 K=NPARM%N
0034 no 150 1=1,NCONSY
0075 KI=(1-1)%NPARM
09036 K2=(I-1)*N
necaz DO 140 J=1,NPARM
0038 140 WIK¢KZ2+J ) =CRERIVI(J-L)*NCONST+[}
0039 150 CONTINUE
0049 § WRITE(L,3000)
0041 BC 151 T1=1,N
Qca2 N1={N=1)*N+I[
G

c WRITE AUGMENTED MATRIX, VALUE CF CONSTRAINTS, AND LAGRANGE MULTIPLIERS SO
C USEPR CAN CHFCK IF CDNSTRAINTS ARE NEAR JZ[LRQO AT CCNVERGENCE
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0043
0044
0045
0046
acat
0048
0049
0050
0051
04052
0053
0054
0055
0056
0057

0058
0059
0c&a0
0061
0062
0063
0064
QCe5
0cCs6
0Ca7
0068
00569
0070
ocTl
ag72
0a73
0074
0a7s
0076
ocTT
0078
0c79
0080
oogl
ocsz2
oga3

C

c
C
c

151
3000
3001

4000
160
170

4001

180
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21 GAUSS DATE = 76005 21/13/708

WRITE(6,3001){W(d),J=T,NL,N)

FORMAT(//7' AUGMENTED MATRIX = */})
FORMATILXS{L1X4EL2.5))

CALL DMINV{WsN4O¢L, M)

DO 160 I=1,ACNST

WRITE(644000)[,46GL1T)

FORMAT('OVALUE OF CONSTRAINT NO. *,124% = *,E12.5)
TEFP{ NPARM+1)==G(1)

CALL MMULTIDELTAL, W, TEMP ;NyN, L)

PO 170 I=1,.NPARM

DELTA(I)=DELTAL(I)
WRITE(6,4001)({DELTALIK+NPARMY, K=1,NCONST)
FORMAT('OLAMBOA= Y /1X,9ELl2.5)

GO TO 190

CALL DMINV(A,NPARM, D,L4M)

DELTA=(PT*P) INVERSE*PT#{Y-F) (SEE DRAPER & SMITH, 1966, P 263}

130
&

10

20

30
40

50
60

CALL MMULT(DELTA+A, TEMP ,NPARM NPARM,1)

v=1.00 .

V1=,5D0%V

DO 10 TI=1,NPAR¥
BL{I)=RB{1)+VLI=DELTALI)
B2(1)=B{1)+V*DELTAILI}
CALL FUNC(BI1,F)
S51=5SQ5{F}

CALL FUNC(B2,F}
552=S55QS(F)
V1=(.500+,2500%[55-852)/(552-551-551+55) }*V
DO 20 I=1,NPARM
8L(1)=BlI)+VI*DELTALLD)
CALL FUNCI{R1,F)
551=55QSI(F}
IF{$S1.LT.S55) GO TO 30
IF{V.LT..0100) GO TO 50
V=,5D0*Y

GO T0 &

DO 40 I=1,NPARM
BE(D)=BL{T)

$5=551

GO TO &0

TERR3=2

RETURN

END
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0001
Q002
0003
0Co4
0005

0006
0007
ncos
0009
oclo
0011
ool2
0013
0014
0gl5
00l&
0017
ools

0019
0020
o0o21
co22
0023
0024
0025

0026
0027
0028
0029
0030
0031
o032
Qg33
0034
0035
D036
0037
0038
0Q39
0C40
0C41
aca2
0043
0C44

!

(s XN o]

(g NaXe

[zEzlg
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21 MQDT DATE = 76005 21/13/08

SUBROUTINE FQADTIP+8,LANBDA,F)

IMPLICIT REAL=8(A-H,0-%)

REAL*8 LAMBCA,LAML

CCMMON X{1500),Y{100},DELTA{15},55,NOBS ,NVAR,NPARM, N, NCONST
DIMENSION P(1500),F{100}),8015),A0225),PT(1500}TEMP{L15)4YF{10C0),

LACGLD(225) ,B1(15},B82(15)

FORM SSCP MATRIX OF PARTIALS AND STORE IN A

3

JI1=0

DO 1 I=1,NCBS

1J=1-NORS

0O 1 J=1,NPARM

[J=1J+NORS

Ji=Ji+1

PT(JII=P(1J)

CALL MMULT{A.PT,P,NPARNNCBS, NPARM)
no 2 I=1,NOBS

YF{I}=Y(1)-F{I)

CALL MMULF{TEMP,PT,YF,NPARM,NOBS,1}

.00 3 I=14N

AQLDLI)=ALL1}

PERFORM SCALE TRANSFORMATION CON MATRIX DOF PARTIALS, A

4

DO 4 [=1,NPARM

T1={I-1)%NFARM

RCOT=DSQRT (ACLD(LI+I))

TEMPLI)=TEMP(T)/ROOT

DO 4 K=1,NFARM

1J=11+K

A{1JY=AOLDCIJY/(ROOT#DSQRT [AOLD(IK-2)%NPARM+K) ) }

BEGIN MARQUARDT ITERATIVE PROCEDURE

10

LAML=LANMBOA%0.1D0

CALL MQDT2(4,8,B2,TEMP,LAM]1,S552,F,AOLD)
IF{552.LE. 55} GO TO 10

CALL MQDT2({A,B,RL+TEMP,LAMBCA,SS1,F,ACLD}
[F{SS1.LE.SS5) GO TO 7

LAFBDA=LAM3CA*10.0D0

CALL MQDT2{A,B,B1,TEMP,LAMBDA,S51,F,AQLD}
IF{SS1.LE.S5) GO TO- 7

GO TD 5 '

55=552

LAMACA=LAML :

D0 & I=1,NPARM

BlIY=82(1)

.G0 10 9

$5=551

D0 8 1=1,NPARM
BII)=B1{1)
RETURN

END
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aool
0co2
0003
0004
ocos

Qo006
acov?
0008
0co9
gaoto
0oLl
gol2

0al3
0ol4
oCt5
0016
oel?
ools
0019
0020

OO0

1V G LEVEL

10
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21 MQDT2 DATE = 76005 21713708

SUBROUT INE MQDT2{A,B,D1,TEMP+LAMBDA,SSQ+F,ANLD}

IMPLICIT REAL*8{A-H,0-%}

REAL*=H LAMBDA,LAML

COMMON X(ISOOI'Y(IOOI'DELTAG151'SS.NDBS.NVAQ NPARM Ny NCONST
DIMENSIGN A{225)4F{100),B{15)+BLELS),TENP(L5)AL(225),L0 15} M 15},

1 AOLD{2251}

.

00 10 T=1,AM

AL(L)=ALL}

DO 1 I=14NPARM

TT=(I-1)%NFARM+I

AI{TIE}=AL{T11)+LAMBDA

CALL ODMINV{AI,NPARM,D,L M)

CALL MPULT{DELTA, Al.TEFP NPARV, NPARH'II

RESCALE CORRECTION VECTOR, DELTA

DO 4 [=1,NPARM

DELTA(I)=DELTA(I)/DSQRT CAOLC({(I-1)%NPARM+I[})
DO 5 [=1,NPARM

BLIT}=B(I)+DELTA(L])

CALL FURNCIBL,F)

55Q=SSQS(F) '

RETURN

END
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0001
000z
0003
0004

0005

0co0&
09007
0008
0cos
0010
goll
o012
0013
0014
0015
0016
ooL7
ooLs
0cCi9
0020
0021
0022
0023
0024
0C25
0026
0c27
0028
0029
0030
0031
0032
0033
0034
0G35
0036
0037
0038
0039
0040
0041
0042
Qca3
0044
0045
0css
0047
0048
0C49
0csgQ
0csl1

c I

1100

1110

1120
1130

1140
1150

1151
3000
3001

4000
1160
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SUBROUTINE SPIRAL(P,F,B,TERR3)

IMPLICIT REAL*B(A-H,0-%)

COMMON X{1500},Y{100)+DELTAL{LS5},SS+NOBS,NVARy,NPARMyNNCONST

DIMENSION P{1500),PT{1500},A{225),FI100)} YFIL100)B{15),TEMP(30},
1B1(15),5{15),550(10),W(900),G(15),GDERIV(225),DELTAL{30),L(301},
2M(30)

REAL¥*8 U{10)/.1D0,,1818181818181818, ,307692307922306,
1.470588235294115,,6400,.7A0487804878049,.076T712328T&67122,
2+934306569343064,.9660377358490554.982725527831093/

NITIAL PART CF ROUTINE IS SIMILAR TC GAUSS ROUTINE

J1=0 )

pn 1 I=1,NCBS

1J=1-NOBS

DO 1 J=1,NPARM

I1J=1J+NOBS

JI=JI+]l

PT(JI)=P(1J)

CALL MMULT{A,PT,P,NPARM;NOBS ,NPARM)
00 2 I=1,NCBS . , s
YF(LY=Y(T)-FL{ I

CALL MMULT(TEMP,PT,YF+NPARMyNUBS, 1}
IF (NCCNST.EQ.OQ} GO TO 3
N=NCONST+NPARM

K2=N¥N

DO 1100 I=1,N2

W{I})=0.D0

CALL LGRANGI(B,G)

CALL LGRDRVIB,G,GDERIV]

CO 1130 I=14NPARM

K=({1-1)%xN

K2=(I-1)*NCCNST

K1={I-1)*NPARM

DO 1110 J=1,NPARM

WIK+d}=A[K1+d)

K=K+ NPARM

DO 1120 J=14NCONST
WIK+J)=GDERIVIKZ#+J])

CONTINUE

K=NPARM*N

DO 1150 I=1,NCCNST

Ki={1-1}*NPARM

K2={I-1)%N

DO 1140 J=1,NPARM
WiK+K2+J)=COERIVI{J-LI%RNCCNST+I)
CONT INUE

WRITE(643000)

DO 1151 I=1,N

Rl=(h=1}*N+1T
WRITE(643001) 0 w{J)4J=14N1,N)
FORMAT(//Y AUGMENTED MATRIX = /)
FCRMAT{1X,9{1LX+E12.5))

CALL OMINVIWsN.D,L,M)

Cn 1160 I=1,NCONST

WRITE(644000) [,G(I)
FORMAT('OVALUE OF CCNSTRAINT NO., 402, = ?,E1l2.5)
TEMPINPARM+[)==GI(1)
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o0cs2 CALL MMULT(DELTALsW,TEMP,NyN,s1}
0053 00 L1170 I=1,NPARM
0054 1170 DELTA(1)=DELTALLI)
0055 WRITE(E +400L) [NELTAL{K+NPARM) 4K=1,NCONST)
0056 4001 FORMAT{'CLAMBDA= "/1X,9EL2.5)
0057 : GD TO 4
ocse 3 CALL MMULTIDELTA4A STENP,NPARN,NPARM, 1}
0059 CALL DMINVIA,NPARM,D,L4M)
0060 4 1FLAG=0
0061 : S D 10 I=1,NPARM
0062 10 BL{I)=BUI)+DELTA{I)}
0C63 CALL FUNCI(B1,F)
0064 $52=5S0QS5(F)
Q065 1IF{SS2.LT.S55) GO TO 40
0066 DO 20 I=1,NPARM
0067 20 BL(I}=B(1)+.50C*DELTA(IL}
0068 CALL FUNCI(BLl,F)
0069 551=5SSCS(F1
0070 1F{S5S1.LT.SS) GO TQ 50
0C71 V=,500+.25D00*%(S55-552)/(S52+55-551-551)
0072 DO 39 I=14APARM
0073 30 BL{I)}=R(I)+Vv*DELTA(L)
0074 CALL FUNCIB1l,F)
0015 SS1=5S5QS5(F}
0076 1IF(S51.LT.55) GO TO 50
oc?7 GO TO 80
0a78 40 $5=5§2
ac79 GO TO &0
QCRO 50 $5=5S1 :
Q081 60 DO 70 I=1,NPARM
oga2 DELTA(I)=BL{I)-B{I)
0083 70 B{I1)=BLl(1}
co084 GO YO 230
c
C BEGIN SEARCH ALONG THE SPIRAL
(o
085 80 T=¢,D0
0086 GRAD=0.00
ocat DO 85 [=1,NPARM
0gB8 85 DELTA(I)=DELTA(TI}>V
c
C TEMP VECTOR LIES IN DIRECTICN OF SYEEPEST CESCENT. NEED TU GET LENGTH OF
c TEMP £ RESCALE TC LENGTH OF DELTA WHICH [S GAUSS—-NEWTON CORRECTICN -
c
0cs9 89 DC 90 1=1,NPARM
009¢C T=T+DELTA{ 1V*DFLTALI)
0091 90 GRAD=GCRAD+TEMP{I¥%TEMP{I)
0c92 TD=DSQRTI{T)}/DSCRT{GRAD)
0c¢9? DO 100 I=14+NPARM
acg9s 100 TEMP(I}=-TENFP{I)*TD
0095 TMIND=0.NO
c
C THIS SECTION IS STRAIGHTFCRWARD APPLICATION OF SPIRAL ALGORITHM AS
c PUBL ISHED BY JNNES
c
auas N 110 =1 ,APARM
0097 110 THIND=TMINND«(TEMP{T)-DELTA{I))*ITEMP(I)-DELTA(I))

2091 CNSG=1aCO-{(TMINDIZ(T+T))
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FORTRAN 1V G LEVEL 21 SPIRAL DATE = 76005 21/13/08

0093 GAMMA=CARCCS(COSG)
0100 SING=DSIN{GAMMA)
0101 I=0
olg2 120 [=1+1
0103 CALL SPRLZ(TENMP,B4BL,U{I) V14+55Q01)},GAMMA,SING+COSGyS5,F)
0104 $51=55Q(1}
o105 TF(S51.LT.58) GO TO 200
0106 TF(I.LT.3) GO 70O 120
olo7 Il=1-1
oics 12=1-2
o0l109 IFISSQ{IL)6T.55QE12).0R.55Q(11}).GT.551) GO TO 130
Q110 ul=utizi .
o1l Uz=u{1l)
o112 ua=utrl
oL13 L4 =U1-U2
0ll4 US=U1*U1-U2*y2
o115 U6=ul-uU3
0l16 UT=Ul*Ul-U3*y3
QLL? UB=1(SSOIT2)-SSATILII*UT-¢SSN{12)1~551)1%U5) /{Us*UT-U6=US)
o118 UB=—UA*US/ (5SS (12)-55Q( 11 )-Ub+uU4)
o119 CALL SPRLZ(TEMP,3,BL+lU8B,VL,S5S1+sGANMA,SING,COSG+SyF)
0120 IFISS1.LT.SS5) GO TO 200 :
0121 130 CONTINUE
0122 TF(ULI+1) LY. 5700} GO TO 120
0123 IFLAG=IFLAG*]
0124 TF(IFLAG.GT.3) GO TQ 145
c
c IF NO SUCCESSFUL POINT IS FCUND, HALVE THE LENGTH OF DELTA & REPEAT
C {uP TO 3 TIMES)
c
0125 DO 140 I=1 hPARM
0126 140 DELTA[T)=,500*DELTAL])
0127 GO TO a9
0128 145 SLCNG=0
0129 DN 150 I=1,NPARM
0130 150 SLCONG=SLCNG+S{I)*S{I}
0131 T™N=1.D0/TD
o132 SG=TO*DSQRAT(SLCNG)}/DSQRTIGRAD])
0133 DO 160 1=1,hPARM
0134 160 TEMP{I}=TEMP{I)*SG
0135 170 DO 180 I=1.NPARM
0136 TEMP(II)=.5D0«TEMP(L}
0t3? 180 BL{1)=B(I)+TEMP(I]}
al3s CALL FUNCIBL,F}
olL39 $S51=53QS{F}
0140 IF{S51.LT.53) G0 TO 200
olal 00 190 I=1.hNPARM
0142 TF(YEMP{I)4GT.1.0-6) GO 7O 170
0143 190 CONT INUE
0144 GO 1O 220
0145 200 0N 210 I=1.NPARM
0l46 DELTA(I)=81(1)-B(I)
0t4z 210 At =81 1)
0148 §5=551
0149 GO 1O 230
oLs0 220 1ERR3=3
06t 230 RETURN

0152 END
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FORTRAN 1V G LEVEL 21 SPRL2 DATE = 76005 21713708

0001 SUBROUTINE SPRLZ(TEMP4B,Bl,UyV1+SSL+GAMMA,SING,COSGeSyF}
0002 IMPLICIT REAL*B[A-H,0~8%)
0003 COMMON X{L500),Y(100) 4DELTACL15)455,NOBS,NVAR,NPARMs N, NCONST
0004 DIMENSION TEMP(15) ,B(15),BL(15),5(15),F{100)
c
c THIS SUBROUTINE COMPUBTES COORDINATES CF POINYT ON SPIRAL TO BE SEARCHED.
c SEE JONES FOR DETAIL
c
0005 BINCR=,5D0
0006 CO 1 I=1,NPARM
acov BLII)=R(1)+TEMFLT]
ooas L S(1}=B(I)+DELTA{])
0009 THETA=DATANI(U*SING}/(1.D0-U+U*L0S5G) )
0c10 3 COSa=DCCSIGAMMAXBINCR)
ool TG=THETA/GAMMA
ogl2 T1={1.00-THETA=C0SB-(1.00-GAMMA=*COSB)*TG*TG)
0013 XS5I=U*SING/DSINITHETA)
0014 XSI=T1/Xs1
001s DO 120 I=1,NPARHM
0016 S{I)=XSI#«{ L*TEMP(1)+(1.00-U}*DELTA{I))
0017 120 BLITI=B{I)+S5(1) )
ocia CALL FUNCI(BL,4F)
0019 S51=55Q5(F)
0020 IF{5S1.LT.1.D74) GO TO 2
C
c GET HERE WHEN WE HAVE OVERFLOWED S5QS FUNCTION. NEED TO DECREASE
c INCIDENT ANGLE OF SPIRAL
C
oo2t BINCR=BINCR2.5C0
0022 GO TO 3
0023 2 RETURN

0C24 END
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0Qo1
0002

0003

0004
aCos5
0006
ocar
0008
Q09
nova

OO0 0000000000000 N000

OO0 A0 OO0
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21 MAIN CATE = 76005 21/13/08
MINV
SUBROUTINE MINV DMINV MINYV
. MINV
PURPCSE MINY
INVERT A MATRIX MINV
] MINV
USAGE MINY
CALL MINVIA,N4D,L M} MINY
MINV
DESCRIPTICN OF PARAMETERS MINV
A - INPUT MATRIX, DESTRCYED .IN COMPUTATION AND REPLACED 8Y MINVY
RESULY ANT [NVERSE. MINY
D - RESULTANT DETERNINANT MINY
L = WORK VECTOR OF LENGTH N MINY
M = WCRK VECTOR OF LENGTH N MINY
MINV
REMARKS MINY
MATRIX A MUST BE A GENERAL MATRIX MINY
MINV
SUBROUT TNES AND FUNCTICN SUB: ROGRAMS REQUIRED MINV
NONE ’ MINV
’ ' : MINY
METHOD MINV
THE STANDARD GALSS-JNRDAN METHOD IS USED. THE DET ERMINANT MINV
1S A4LSO CALCULATED. A ODETERMINANT OF ZERO INDICATVES THAT MINV
THE MATRIX IS SINGULAR. MINV
MINY
..ll.‘....Q.'.........'I..-.'......-..I......'...I...Ill..l..l'l"'q‘hv
MINV

SUBROUT INF CMINVIA,N,D,L,M}
DIFENSION A{225),L(15),M{15}

MINV

l..‘..“.!...............Ol..'...0.‘...0....0‘......IO.I.'!....HINV

MINY

IF A DOUBLE PRECISICN VERSION OF THIS ROUTINE [5 DESIRED, THE MINV

C IN COLUMN 1 SHOULD BE REMOVED FROM THE DUOUBLE PRECISICN MINV

STATEMEKT WHICH FOLLCWS. MINV

MINY

DOUBLE FRECISICN A,DyBIGA,HCLD,DABS MINV

MINY

APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS HINY

ROUTINE. MINY

MINY

THE DOURLE PRECTISION VERSICN OF THIS SUBROUTINE MUST ALSD MINY

CONTAIN DUOUBLE PRECISICN FCRYRAN FUNCTIONS. ABS IN STATEMENT MINY

10 MUST BE CHANGED YO DABS. MINV

MINV

I E X R R R R R R R R R R N R R R R R R R RN R N R R NI E N E R R LR .0.0.-“‘INV

MINY

SEARCH FCR LARGEST ELENMEANT MINV
MINY

D=1.0 MINY

ME==N MINV

D0 80 K=14N MINY

AK=NK+N MINY

LiK}=K MINY

M{K}=K MINV

KK=RK+K : MINY

Qo3
004
305
0cs
a07
(o]0} ]
009
010
o1l
oi2
Q13
tia

D17
03 8]
o019
020
021
022
023
D24
025
0248
027
Q248
029
03¢0

032



FORTRAN IV G LEVEL

0o1l1l
0012
0013
0014
0015
0016
0017
cola
colL9g
0020

0c21
0022
0023
0024
0025
0026
0027
0028
ocz29

0030
0031
0032
0033
0C34
0035
0036
0037
0038

0cag
0040
0041
0042
0043
0C44
0045
0C46

0047
0048
0C49
0050
0051
0cs?
0053
0C54
0055

aon

[z¥zRal

aNalelal

laNelnl

10
15

20

25

30

35

38

40

45
46

48
50
55

60
62

21 DMINV DATE = 76005

BIGA=A(KK])

N0 20 J=K,4N

1Z=N*{J-1)

Do 20 I=K,N

1J=11+1

IF(DABS{BIGA)-DABSI{A(LJ}) ) 15,20,20
BIGA=A(IJ)

LIKI=1I

M{K)=J

CONTINUE

INTERCHANGE RCHWS

J=L{K}

IFUJ-K) 35,35,25
KI=K=-N

DO 30 T=1,.K
KI=KI+N
HOLD=—A(KT}
JI=KI=K+J
ALKII=A(JI)
ACJI) =HOLD

INTERCHANGE COLUMNS

I1=M(K)

TF{I-K} 45,45,38
JP=Nx{]-1)

DO 40 J=1,4N
JK=NK+J

JI=JP+J
HOLD==A{JK}
ACJK) =A{JT)
AlJl} =HOLD

DIVIDE COLUMN BY MINUS PIVCT (VALUE OF PIVOT ELEMENT 1§
CONTAINED IN BIGA)

IF(RIGA) 48,446,418
D=0.,0

RETURN

DO 55 I=1,4N

IF(I-K) 50,455,50
TK=NK+1 '
A{TK)I=A(IK) /(=-BIGA)
CCNT TAUE y

REDUCE MATRITX

DO 65 1=1,N
TK=NK+!
HOLO=A{ 1K)
14=1-M

0O 65 J=14N
[J=TJ+N

IF{1-K) 60,65,60
[FLJ-K) 62365462
Kd=1J4-1+K
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MINV
MINY
MINY
MINV
MINV
MINV
MINV
MINV
MINV
MINY
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINY
MINV
MINV
MINY
MINV
MINV
MINV
MINV
MINY
MINV
MTNY
MINY
MINY
MINV
MINY
MINV
MINV
MINY
MINY
MINY
MINV
MINV
MINV
MINV
MINY
MINY
MINY
MINV
MTNV
MINV
MINV
MINV
MINV
MINV
MINY
MINV
MINY
MINV
MINV
M NV

083
0564
065
066
067
68
269
aro
ori
012
c73
074
075
0¢
077
ora
are
030
081
082
083
284
Q85
036
097
os8s
049
Q90
031
092
0992
Q94

‘095

296
097
034
255
100
101
102
103
104
135
106
107
108
13
110
111
12
112
MO1L
114
s
11
17
L1e
K
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FORTRAN IV G LEVEL 21 DM INY DATE = T6005 21/13/08
0056 ACTJ)=HOLD®A(KJI+ATTI) MINV MOz
0057 65 CONTINUE MINV 121

¢ MINV 122

c DIVIDE ROW BY PIvVOT MINV 123

t MINY 124
0c¢s8 KJ=K=N . MINV 125
0059 DO 75 J=1,N MINV 126
0060 KJ=KJ+N MINV 127
0061 IF{J=-K) T70,75,70 MINV 128
0062 : 70 A(KJI)I=A{KJI)/BIGA MINV L29
0083 75 CONTINUE . _ MINV 130

C : MINV 121

' PRODUCT OF PIVOTS MINY 172

c _ MINV 1313
0064 D=0%81GA MINY 134

¢ MINV 1235

c REPLACE PIVCT BY RECIPROCAL MINV L3

C MINY 127
0CES A{KK)=1.0/BIGA MINV 132
0066 80 CONTINUE MINV 1139

c ' - , . MINV 140

C FINAL RCW ARD COLUMN LATERCHANGE MINV 141

C MINY 142
0CeT K=R MINY 143
co&s 100 K=(K-1) . . MINV 146
0069 IF(K) 150,150,1C5 - MINV 145
0070 105 I=L{K) MINV 146
0071 IF{I-K) 120,120,1C8 MINV 147
0c72 108 JC=N#{K-1} MINY 148
0073 JR=N¥(T-1) MINV 14°
0074 0O 110 J=1.N MINY 150
0C75 JK=4Q+J MINV 151
0076 HOLD=A{ JK) MINV 152
0077 JI=JR+J MINV 152
0078 ALJK)=—ALJT) ‘ MINY 154
0079 110 A{JI) =HOLD MIKNY 155
0080 120 J=M(K) MIKV 156
0cBl IF(J-X) 100,100,125 MINY 157
0082 125 KI=K-N MINV 15R
cces DO 130 I=1l,A , MINY 15€
0084 KI=KI+N , MINV L&C
0085 HOLD=A(K1) MINV 161
0084 JI=KI{-K+J MINV 162
0087 A(KE)=-ALJI) : MINY 162
0083 130 AlJI} =HOLD : MINY 164
0C89 GO TQ 100 MINV 1é&5
0c90 150 RETURN MINY 164

ocs1 END : MINY 167
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IV G LEVEL 21 LGRDRV DATE = 76005 21/13/08

Ooon

SUBRCUT INE LGRORV{8,G,GDERIV)

IMPLICIT REAL*2{A-H,C~-§)

COMMON X(1500),Y{100V,DELTACLS),SSyNOBS,NVAR,NPARM,N,NCONST
DIMEMSTICN B(15)¢B2(15),G(15)+GO(15),GOERIV{225)

SUBRCUT INE CCMPUTES DERIVATIVES OF CONSTRAINTS WeR.T. PARAMETERS

DO 3 1=1,NPARM

DG 1 J=l¢NFARM
1 solJ)=B{4}
H=8{1)%.00100
H1=1.D0/H
BO(I)=B{(1)+H
CALL LGRANG(80,G0)
M=(1=-1)%NCONST
DO 2 J=1,MCONST
GDERIVIM+JI=({GOIJ)-G{J} }*H1
CONT [NUE
RETURN
END

[T,



FORTRAN IV 6 LEVEL 21 TRANS DATE = 76005 21713708

0001 SUBROUTINE TRANSIB)

0002 IMPLICIT REAL#8 {A-H,0-%)

0003 . CCMMCON X(1500),Y{(100) ,DELTAU15),55,NOBS s NVARyNPARM, N, NCONST
0004 DIMENSION B(15])

0o0o0s RETURN

0006 END



FORTRAN IV G LEVEL 21 LGRANG DATE = 76005 2L/713/08
0001 SUBROUTINE LGRANG(B,G)
0002 IMPLICIT REAL*8{A-H,0-%)
0003 COMMON X(L1S00),Y(100)DELTALLS5),SS.NOBS NVARNPARM,N,NCONST
0004 DIMENSICN B{15),G(15)
C
C CCNSTRAINTS Ch PARAMETERS ARE PLACED HERE
c HRITE CONSTRAINTS AS O=CCNSTRAINTS. G(l} [5 FIRST CCNSTRAINT, ETC...
C

occs RETURN
0cos END
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FORTRAN 1V G LEVEL 21 FUNC DATE = 76005 21/13/08
0001 SUBRCUTINE FUNC(B,F}
0002 IMPLICIT REAL*B(A-H,0-$%)
0003 COMMON X{1500),Y¥(100),DELTA{15),5S5+NOBS,NVAR,NPARMyN
0004 DIMENSICN B{15),F(100)
C
c FUNCTION TO BE MODELED IS SUPPLIED HERE
c
0005 DO 1 I=1,NOBS
0006 IN1=1+N0OBS
0007 FOLY=0EXPI{-BI1})}*XCL)*BEXP((-B{2])}/X(INL]})
ooo08 1 CONT INUE
0CCs RETURA

o010 END



EXAMPLE PROBLEM FRCM BARD, P.124
NONL INEAR ESTIMATION USTING MARQUARDT PROCEDURE.

NO. OF 08S.= 15 NO. OF PARAMETERS= 2 NC. OF INDEP. VAR.= 2
MAXIMUM NO., OF BITERATIONS= 30 NO. OF USER-SUPPLIED CCNSTRAINTS= 0

ORIGINAL PARAMETER ESTIMATES.

1 2
750,00000 1200.C0000

DATA AS INPUT TO PROGRAM NCALIN :
0.98000 0.10000 10000000
0.98300 0.20000 100.00J00
0.95500 0.30000 100.00000
0.97900 0.4C000 100. CCACO
€.99300 0.50000 100.€0000
0.62600 0.05000 - 200.00000
0.54400 0.10000 200. CCJO00
0.45500 0.15000 200.00000
0.22500 0.20000 200. 00000
0.16700 ' 0.25000 200.€0000
G.31700 0,04000 ° 300.00000
0.56600 0.C£2000 30C. cQ000
0.,03400 0.06000 300.€0000
0,01€00 0.08000 300.00000
0.06600 0.10000 30C.C00CQ

INITIAL SUM OF SQUARES= 1.090440905418176

ITERATION NO., 1}
PARAMETER VALUES

1 2
152.766%6 103.14640
SUM OF SQUARES= 0.44832127C868956

ITERATICN NO. 2
PARAMETER VALUES

1 2
386,29234 . 528.50826
SUM OF SQUARFS= 0.4090389738230186

ITERATICN NGO, 3
PARAMETER VALUES '

1 : 2
624.68082 928.70228
SUM OF SQUARES= | 0.055969223483254

[TERATION NO., &
PARAMETER VALUES

1 . 2
B04.18994% G65.48472
SUM OF SQUARES= 0.040732717907191

ITERATION NO, &5
PARAVMETER VALUES

1 2
818,35389 CE€2.09427
SUM CF SQUARES= 0.0398074756229395%

ITERATICN NO. &
PARAMETER VALUES
1 2
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812.06041 960.51863
SUM OF SQUARES= 0.C3980623617C666

ITERATICN NO, 7
PARAMETER VALUES

1 2
812.66423 960.65815
SUM OF SQUARES= 0.0398061355856079

ITERATION NO, 8
PARAMETER VALUES
1 2
812.66032 960.65862
SUM OF SQUARES= 0.039806135503003

[TERATICON NO. 9
PARAVYETER VALUES

1 2
. 812.65999 - ' G60. 65865
SUM OF SQUARES= 0.0398061255Q029917

ESTIMATION PROCEDURE TERMINATED DUE TD APPARENT CCNVERGEMCE TO THE LISTED PARAMETER VALUES.
INVERSE OF §§ & CROSS PRODUCTS MATRIX DOF PARTIALZ EVALUATED AT FINAL B:

0,16850D 08 0.%542510 (7 . : : .
0.54251D 07 0,153%970 07
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Two analytic approaches toward minimizing the residual sum of
squares function of the nonlinear model are presented. The first uses
a first order Taylor series approximation of the nonlinear function;
the second uses a gradient search. Both general techniques entail an
iterative scheme for finding the least squares parameter estimate.
From these two general approaches three currently used algorithms are
developed. Examples are presented which show that no one algorithm is
best for all problems. Thé topic of parameter estimation under parameter
constraints is then discussed. An appendix documenting a computer pro-
gram written by the author incorporating the algorithms and constrained

estimation is provided.



