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Abstract  

Food derived exosome-like nanoparticles pass through the intestinal tract throughout 

our lives, but little is known about their impact or function. Here, as a proof of concept, 

we show that the cells targeted by grape exosome-like nanoparticles (GELNs) are 

intestinal stem cells whose responses underlie the GELN-mediated intestinal tissue 

remodeling and protection against dextran sulfate sodium (DSS) induced colitis. This 

finding is further supported by the fact that co-culturing of crypt or sorted Lgr5+ stem 

cells with GELNs markedly improved organoid formation. GELN lipids play a role in 

induction of Lgr5+ stem cells, and the liposome-like nanoparticles (LLNs) assembled 

with lipids from GELNs are required for in vivo targeting of intestinal stem cells. Blocking 

β-catenin mediated signaling pathways of GELN recipient cells attenuates the 

production of Lgr5+ stem cells. Thus, GELNs not only modulate intestinal tissue renewal 

processes, but can participate in the remodeling of it in response to pathological 

triggers. 

 

Introduction 

In multicellular organisms communication between cells involves the secretion of 

proteins that bind to receptors on neighboring cells. While this is well documented, 

another mode of intercellular communication — the release of exosomes, for which 

limited information is known — has recently become a subject of increasing interest. 

Exosomes are nano-sized microvesicles released from a variety of cells[1-6] and have 

recently been described to act on the endocrine system to provide autocrine or 

paracrine signals locally or at distant sites in the host. Exosomes can carry a cargo of 

http://www.google.com/url?q=http://www.ncbi.nlm.nih.gov/pubmed/10489934&sa=U&ei=yj-ZT5SJC4yL0QHdw73wCQ&ved=0CC0QFjAC&sig2=GyxhkiQSLyF0Gq234k3HVg&usg=AFQjCNFOpwSRfocJ2hRuVQH8Wm1veroZzg
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proteins, lipids, mRNAs and/or microRNAs, and can transfer their cargo to recipient 

cells, thus serving as extracellular messengers to mediate cell-cell communication.  

Recent studies suggest that nano-sized particles from plant cells may be exosome-

like[7, 8]. Endosomal multivesicular body (MVB)-derived exosome-like nanoparticles in 

plant cells may be involved in plant cell-cell communication as a means to regulate plant 

innate immunity[9]. Plant viruses may hijack the exosomal pathway of a plant as a way 

to release virus[10]. However, whether plant exosome-like nanoparticles can play a role 

in interspecies communication has not been investigated, yet, human exposure to 

digested edible plant derived nano-size materials is inevitable. The average person's 

gut is exposed on a daily basis to many billions of nanoparticles. The gastrointestinal 

tract may communicate directly with the external environment through digested food 

including edible plant derived exosome-like nanoparticles. Whether these edible plant-

derived exosome-like nanoparticles can serve as cross-species messengers and have a 

biological effect on the recipient cells in the intestinal tract has not been addressed. 

More specifically, little is known about the biological effects of exosome-like 

nanoparticles released from edible plants on intestinal tissue remodeling after oral 

ingestion of the nanoparticles.  

In this study, exosome-like nanoparticles were identified from grapes. Using grape 

exosome-like nanoparticles (GELNs) as proof of concept testing, we demonstrate that 

GELNs have unique transport properties and biological functions. GELNs can penetrate 

the intestinal mucus barrier, be taken up by mouse intestinal stem cells and cause 

significant induction of Lgr5hi intestinal stem cells through the Wnt/β-catenin pathway. 

http://dict.cn/property
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Oral administration of GELNs leads to protection of mice from DSS induced colitis via 

induction of intestinal stem cells. This finding could lead to the development of novel, 

safe, and economical strategies for using edible plant derived nanoparticles as nano-

size therapeutic agents or as an alternative drug delivery vehicle, as well as opening up 

a new avenue for food nanotechnology. 

Results 

Intestinal stem cells take up grape exosome-like nanoparticles 

Using standard techniques [11], we isolated edible plant exosome-like nanoparticles 

from the juice of grapes. The particles were identifiable as exosome-like nanoparticles 

based on electron microscopy examination (Figure 1a, right) of a sucrose gradient 

purified band (Figure 1a, left), charge, size distribution (Figure 1b), protein composition 

(Supplementary table S1), lipid profile (Supplementary table S2) and the miRNA profile 

(Supplementary Table S3). The results indicated that the particles are nano-size and 

the average diameter of the particle population was 380.5 ± 37.47 nm (Fig. 1b). Zeta 

potential measurements indicated that GELNs have a negative zeta potential value 

ranging from -69.6 mV to +2.52 mV and the average potential of the particle population 

was -26.3 ± 8.14 mV (Fig. 1b).  

Lipidomic data indicate that GELNs are enriched with PA (53.2%) and PE (26.1%) 

(Figure 1c). Unusually high percentages of PA in GELNs could result from activation of 

GELN phospholipase D, (PLD) during the process of extraction of GELN lipids. 

However, this was not the case as indicated by lipidomic analysis of lipids extracted 

from either whole grape or GELNs in the presence or absence of 75% isopropanol in 
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PBS at 75°C during the extraction of lipids [12, 13]. The percentage of GELN PA 

remains the same in the presence (47.2±5.2%, n=5) versus absence (49.1±3.8%m n=5) 

of 75% isopropanol.  Interestingly, the percentage of PA in whole grape is much lower 

(18.2±1.9%) than its GELN (47.2±5.2%) counterpart extracted from the same lot of 

grapes. This result suggests that higher amounts of PA present in GELNs could be due 

to selectively sorting PA into the GELNs. The presence of nucleic acids was also 

examined in GELNs. Substantial amounts of RNAs were detected by agarose gel 

electrophoresis. RNase treatment lead to the degradation of GELN RNA samples 

(Figure 1d). Mass spectrometry analysis of the GELN miRNA profile further suggested 

that GELNs contain miRNAs (Supplemental table 3). Collectively, these data 

demonstrated that our preparation contained a high proportion of grape-derived 

exosome-like nanoparticles.   

 

Intestinal mucus is a physically cross-linked hydrogel[14-17]. Penetration of this barrier 

is largely dependent on the size of the particles[14-17]. A majority of grape derived 

exosome-like nanoparticles is nanosized  and we used gavage administration of GELNs 

labeled with an infrared fluorescent membrane dye (DiR) to track their migration 

patterns in vivo[18].  Imaging revealed an accumulation of fluorescent signals in the gut 

during the first 6 h (Fig. 2a), then the signals gradually decreased over a 48 h period 

(Fig. 2a).  The presence of GELNs in stem cells of the intestine of Lgr5-EGFP-IRES-

CreERT2 mice was confirmed by localization of PKH26-labeled GELNs to the Lgr5-

EGFP+ marker, a marker of intestinal stem cells (Fig. 2b). Within 6 h of administration of 

the labeled GELNs, the GELNs were taken up by intestinal Lgr5-EGFP+ stem cells. 
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Thus, GELNs can gain access to, and travel within the gut to the intestinal stem cells. 

The uptake of PKH26-labeled GELNs was further examined using the mouse intestinal 

epithelial cell line CT26. Three h after CT26 cells were fed with PKH26-labeled GELNs, 

most of the CT26 cells had PKH26-labeled GELNs located in the cytosol (Figure 2c). 

The uptake mechanism of PKH26-labeled GELNs was further examined in the CT26 

cell line. Uptake of GELNs (Figure 2d) was markedly inhibited by the cytochalasin D, 

known as a macropinocytosis inhibitor. Uptake of GELNs through macropinocytosis was 

also demonstrated by cytochalasin D mediated inhibition of uptake of both GELNs as 

well as dextran (Supplemental figure 1) which is one of fluid phase markers for studying 

macropinocytosis.   In addition, uptake of PKH26-GELNs was greatly diminished by 

treatment of CT26 cells with the macrolide antibiotics bafilomycin A1 and concanamycin 

A, which are highly specific V-ATPase inhibitors [19] that prevent proton translocation 

by binding to the c-subunit of the V-ATPase V0 subunit[20]. Caveolae-mediated 

endocytosis inhibitor indomethacin and the clathrin-mediated endocytosis inhibitor 

chlorpromazine did not affect uptake of PKH26-GELNs. To further confirm whether the 

same pathway of CT26 cells uptake of GELNs was also used in vivo, the colon tissues 

of Lgr5-EGFP-IRES-CreERT2 mice were ex vivo co-cultured with PKH26 dye labeled 

GELNs in the presence/absence of the cytochalasin D. The results suggest that the 

cytochalasin D treatment indeed inhibited GELNs up take by colon intestinal stem cells 

(Fig. 2e).   

 

GELNs promote intestinal stem cell proliferation 
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Self-renewal of the intestinal epithelium is essential for protection of the host against 

numerous insults. Self-renewal is driven by the proliferation of stem cells and their 

progenitors located in the intestinal crypts. To explore the biological effects of oral 

administration of GELNs on intestinal stem cells, we tested the effects of purified GELN 

treatment of mice on the proliferation of intestinal epithelium. The number of 

proliferating cells (Ki67+) in intestinal epithelium of mice treated with GELNs was 

increased when compared to vehicle (PBS) only treated mice. Among the Ki67+ cell 

population, the Lgr5-EGFP+Ki67+ cells that are intestinal stem cells were markedly 

increased (Fig. 3a, 3b). The induction of Lgr5-EGFP+Ki67+ cells was not restricted to the 

small intestine but was observed throughout the entire intestine including the colon of 

mice gavaged with GELNs. The administration of GELNs increased production of 

intestinal stem cells, as assessed by FACS staining of Lgr5-EGFP cells (Fig. 3b) and 

quantitative analysis of gene expression of Lgr5 of C57BL/6j mice orally administered 

with GELNs by real-time PCR (Fig 3c). It has been reported that only the Lgr5-GFPhi 

cells yield long-lived intestinal organoid structures[21]. Using FACS analysis we 

identified the presence of two different Lgr5-expressing populations based on GFP 

levels (Fig. 3b): Lgr5-EGFPhi and Lgr5-EGFPlo.  GELN treatment induced both subset 

populations of EGFP+ cells, and especially, the Lgr5-EGFPhi subset was induced more 

than the Lgr5EGFPlo subset (Fig. 3b). Our in vivo data were further verified using 3D 

matrigel cultures of intestinal crypts from Lgr5-EGFP-IRES-CreERT2 mice. Addition of 

GELNs to crypt cultures yielded much faster expanding cystic structures within 6 d (Fig. 

3d) based on gross inspection. Faster expanding cystic structures was supported by the 

results generated from a 3H-thymidine incorporation assay (Supplemental Fig. 2).  
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FACS analysis of cells dissociated from day-6 cultured crypts further indicated that the 

intestinal crypts treated with GELNs had a higher percentage of Lgr5-EGFPhi stem cells 

induced at extended time points during culture (Fig. 3e) in a GELN dose dependent 

manner.   

 

To further test whether GELNs can directly induce intestinal stem cells, we isolated 

Lgr5-EGFPhi stem cells from crypts of Lgr5-EGFP-IRES-CreERT2 mice and 

subsequently cultured them in vitro in the presence of GELNs (40 µg/ml).  The results 

confirmed that the GELNs directly promote the proliferation of Lgr5-EGFPhi intestinal 

stem cells, and accelerate organoid structure formation (Fig. 3f). Consistent with this, 

higher efficiency of colony formation as a result of GELNs treatment (Supplemental fig. 

3) also support that GELNs stimulate organoid formation. 

 

To further determine whether the liposome-like nanoparticles (LLNs) assembled with 

lipids from GELNs are required for GELN up take by intestinal Lgr5+ stem cells, Lgr5-

EGFP-IRES-CreERT2 mice were orally administered PKH26-labeled LLNs (Figure 4a) 

assembled from GELN derived lipids. Mice were killed 6 h after oral administration and 

frozen sections of their intestine tissue were examined using confocal microscopy for 

the presence of the PKH26-labeled LLNs assembled with lipids from GELNs. 

Fluorescent labeled PKH26-labeled LLNs were observed in Lgr5-EGFP+ cells (Figure 

4b). In contrast, very little or no fluorescence was detected in the intestine of mice orally 

administered mixed lipids extracted from GELNs without the assembling process 
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(Figure 4b). These results suggest that LLNs assembled with GELN lipids are required 

for targeting intestinal stem cells as well as the cells around Lgr5-EGFP+ cells. 

 

We next tested in a defined three-dimensional intestinal culture system whether LLNs 

assembled with GELN lipids induce Lgr5+ stem cells. Flow cytometry analysis of cells 

dissociated from 6-day cultured crypts demonstrated that Lgr5-EGFPhi+ cell numbers 

increased as the concentration of LLNs assembled with lipids from GELNs was 

increased (Fig. 4c). Real-time PCR analysis of the expression of the known genes that 

promote intestinal stem cell growth indicated selective upregulation of Sox2, Nanog, 

OCT4, KLF4, c-Myc and EGFR in the 6-day cultured crypts (Figure 4d). Similar results 

were also obtained with the CT26 intestinal epithelial cell line (Supplemental fig.4).  

 

PA is enriched in GELNs, and propranolol has been reported to inhibit the activity of PA-

phosphatase[22, 23]. Therefore, we tested whether propranolol treatment of GELNs can 

effect GELNs induction of Ki67+ cells in colon tissue. The results from ex vivo colon 

tissue culture treated with GELNs which were pre-treated with propranolol suggest that 

propranolol treatment did lead to decreasing the percentage of Ki67+ cells in colon 

tissue in a propranolol concentration dependent manner (Figure 4e).  

 

A number of genes that regulate intestinal stem cell growth are induced through 

the Wnt/β-catenin signaling pathway in the intestine of mice treated with GELNs  

Throughout life, the Wnt signal is required for intestinal stem cell self-renewal [24-29]. 

Analysis of the intestines from canonical Wnt reporter mice, i.e., B6.Cg-Tg(BAT-
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lacZ)3Picc/J mice, revealed that the number of expressed β-galactosidase+ (β-Gal) 

intestinal crypts is increased (Figure 5a), suggesting that GELN treatment of mice leads 

to Wnt mediated activation of the Tcf4 transcription machinery in the crypts. We did 

real-time PCR assays to analyze gene expression in FACS sorted EGFPhi cells from 

crypts of Lgr5-EGFP-IRES-CreERT2 mice that had been treated with GELNs or vehicle 

(PBS). Results showed that the Wnt pathway regulated genes, including, AXIN-2, Cyclin 

D1, c-Myc, and EGFR, were significantly up regulated in Lgr5-EGFP+ stem cells (Figure 

5b); whereas, expression of Pten[30] and VEGF[31], which have been reported to 

regulate the proliferation of stem cells, were not affected as a result of GLEN treatment.   

 

Nuclear accumulation of β-catenin is considered a hallmark of activated Tcf4 mediated 

canonical Wnt signaling. To further confirm that the Tcf4 activity changes were due to 

activation of β-catenin mediated Wnt activation as a result of GELN treatment, we 

performed immunofluorescent staining of β-catenin in the CT26 intestinal epithelial cell 

line treated with GELNs or PBS as a control. The immunofluorescent images clearly 

showed dramatic nuclear migration of β-catenin in cells 6 h after stimulation with GELNs 

(Figure 5c, left panel). Activation of the β-catenin mediated pathway was further 

confirmed by treatment of CT26 with carnosic acid, a β-catenin inhibitor[32] (Figure 5c, 

right panel), or inactivation of GSK-3β as indicated by an enhancement of 

phosphorylation of GSK-3β over 180 min as assayed by western blotting (Figure 5d). 
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Next, to further prove that β-catenin is involved in induction of Lgr5-EGFP+ cells, we 

added carnosic acid to 3D matrigel cultures of intestinal crypts from Lgr5-EGFP-IRES-

CreERT2 mice using an identical protocol as described in figure 3f. Flow cytometry 

analysis of cells dissociated from 6-day cultured crypts demonstrated that GELNs plus 

carnosic acid treatment leads to a partial reversing of GELN mediated induction of Lgr5-

EGFPhi cells (5.1±1.1% carnosic acid plus GELN treated culture versus 8.7±2.3% GELN 

treated only) (Figure 5e). The results suggest that the addition of β-catenin inhibitor 

reversed GELN dependent induction of Lgr5-EGFPhi stem cells. Collectively, these data 

indicate that oral administration of GELNs leads to an induction of genes that encode 

intestinal stem cell growth factors partially through the Wnt/β-catenin signaling pathway 

that result in the induction of Lgr5-EGFPhi intestinal stem cells.  We also did real-time 

PCR assays to analyze gene expression in matrigel cultured intestinal crypts of 

C57BL/6 mice that had been treated with GELNs or vehicle (PBS). Besides the Wnt 

pathway regulated genes, BMI1 another intestinal stem cell marker, and a number of 

pluripotent stem cell markers, including SOX2, Nanog, OCT4, and KLF4, were also 

significantly up regulated (Figure 5f)[21, 25, 29, 33-37] .   

 

We then determined whether the LLNs assembled with GELN lipids have a similar 

activating effect on the Wnt/Tcf4 signaling pathway as GELNs.  Using the same protocol 

as was used for analysis of the effect of GELNs, B6.Cg-Tg(BAT-lacZ)3Picc/J mice were 

gavage administered daily for 2 days the LLNs assembled with lipids from GELNs (2 

mg/mouse). Mice were killed 6 h after the last treatment and β-galactosidase activity 

was determined by staining fresh intestine with X-gal substrate. Characterization of X-

http://www.protocol-online.org/biology-forums/posts/28108.html
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gal stained whole intestine (Figure 5g) and intestinal tissue sections (Figure 5h) 

demonstrated that expression of the β-galactosidase is higher in mice treated with the 

LLNs assembled with lipids from GELNs when compared to mice treated with GELN 

lipids or vehicle (acetone). 

 

Oral administration of GELNs protects mice against DSS induced colitis  

Intestinal stem cells have a crucial role in regulating intestinal epithelial cell 

differentiation and are required for intestinal tissue homeostasis and repair. Since 

GELNs can induce Lgr5+ intestine stem cells, we questioned whether oral 

administration of GELNs could be used as a therapeutic agent to reduce colitis injury.  

Lgr5–EGFP–ires–CreERT2 mice given 3% DSS were randomized and received vehicle 

(PBS) or GELNs (2 mg/mouse) daily. When mice were treated with GELNs, a striking 

improvement of the wasting disease became apparent (Figure 6a). When 3% DSS was 

continuously given to control mice and GELN fed mice, within 13 days there was 100% 

mortality of the control group (Figure 6b), whereas it took 25 days for 100% mortality of 

the GELN fed mice. During the same time period mice given GELNs once daily had a 

mortality that was significantly lower within each given date in comparison with that of 

mice treated with PBS (Figure 6b).  Withdrawing administration of the 3% DSS at day 9 

led to a rapid decrease and halting of mortality in mice treated with GELNs. GELN 

treatment prevented DSS induced progression of disease as evidenced by the fact that 

there was little reduction in intestine length at day 7 post administration of 3% DSS 

(Figure 6c). Histologic examination showed a comparable villus height of mice treated 
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with GELNs when compared to naïve mice (Figure 6d); there was a significant decrease 

in villus height in mice treated with GELN vehicle (PBS).  

 

Given that intestinal stem cell and epithelial cell proliferation activity in re-epithelization 

is essential for protecting mice against colitis, we then analyzed intestinal epithelial cell 

proliferation by immunohistological staining of a cell proliferation marker, Ki67, in 

intestinal tissue of Lgr5-EGFP-IRES-CreERT2 mice. Treatment with GELNs remarkably 

increased the number of Lgr5+Ki67+ double positive stem cells (GELNs/naïve=3.3-fold 

or GELNs/PBS=4.3-fold) across all segments of the intestine tested as compared with 

naïve or vehicle treated (PBS) mice(Figure 6e).  

 

We further sought to determine whether oral administration of GELN causes activation 

of β-catenin and up-regulation of genes that promote intestinal stem cell proliferation 

under DSS induced pathological conditions.  The results of real-time PCR demonstrated 

that treatment with GELNs enhances the expression of genes that serve as markers of 

intestinal stem cells (Lgr5, BMI1) and genes that regulate stem cell growth and 

proliferation as listed in the figure 6f.  Immunohistological staining of β-catenin further 

indicated that treatment with GELNs promotes β-catenin nucleus translocation (Figure 

6g) of intestinal epithelia and this result is consistent with the increased phosphorylation 

of GSK-3β that is a consequence of β-catenin activation. This result was further 

confirmed with western blot analysis of phosphorylated GSK-3β (supplementary Figure 

5).   
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Discussion 

In this study, exosome-like nanoparticles were identified for the first time from an edible 

plant, i.e., grapes. Although these nanoparticles may be not identical to mammalian cell 

derived exosomes, the nano-sized vesicle structure and composition of grape 

nanoparticles is similar to mammalian derived exosomes based on our characterization. 

Both grape derived exosome-like nanoparticles and mammalian derived exosomes 

share certain proteins including HSP70 and aquaporin proteins, lipids enriched for PA 

and PE. Further study showed that GELNs have unique transport properties and 

biological functions. We found that grape exosome-like nanoparticles (GELNs) can 

travel within the gut, migrate through the intestinal mucus, be taken up by mouse 

intestinal stem cells and subsequently promote the proliferation of intestinal stem cells.  

Using grape derived exosome-like nanoparticles as an example, we demonstrated that 

GELNs remarkably increase the proliferation of Lgr5hi intestinal stem cells under 

physiological conditions. It has been reported that only the Lgr5hi intestinal stem cells 

yield long-lived intestinal organoid structures in vitro. Genetic lineage tracing has 

demonstrated that intestinal stem cells highly expressing Lgr5 contribute to all intestinal 

lineages throughout life[21, 35]. Under pathological conditions, GELNs also effectively 

induced proliferation of intestinal stem cells as we demonstrated in this study.  In the 

DSS induced mouse colitis model, GELNs promoted dramatic proliferation of intestinal 

stem cells and led to an intense acceleration of mucosal epithelium regeneration and a 

rapid restoring of the intestinal architecture throughout the entire length of the intestine. 

Furthermore, the current study implies that in vitro expansion of gastrointestinal stem 

http://dict.cn/property
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cells may be a promising option for patients with severe gastrointestinal epithelial 

injuries although further research and optimization is clearly needed. In addition, Lgr5 is 

not restricted to expression on intestinal stem cells but is also present on other tissue 

derived stem cells. Our data showed that grape nanoparticles are taken up by Lgr5+ 

intestinal stem cells, leading to their proliferation. Therefore, in principal, grape 

exosome-like nanoparticle mediated expansion of Lgr5+ stem cells could potentially be 

applied to other diseases in which Lgr5+ stem cells play a role in the disease process.  

In addition, upon in vitro or in vivo GELNs treatment, expression of genes encoding 

intestinal stem cell marker BMI1 and pluripotent stem cells markers, including SOX2, 

Nanog, OCT4, and KLF4 were also significantly upregulated. Lgr5+ stem cells are 

sensitive to canonical Wnt modulation, and contribute robustly to homeostatic 

regeneration, whereas Bmi1+ stem cells contribute weakly to homeostatic regeneration. 

A large body of data provides evidence that the control of intestinal stem cell fate, stem 

cell maintenance, and maturation and proliferation of crypt epithelial cells depends on 

Wnt signals[38-42]. Results of the present study demonstrate that GELNs taken up by 

intestinal stem cells triggers the activation of downstream canonical Wnt signals. 

Therefore, under physiological conditions, the GELNs more likely regulate intestinal 

homeostatic regeneration via induction of Lgr5+ stem cells.  Under pathophysiological 

conditions like DSS mediated intestinal epithelial damage, GELNs not only induce Lgr5+ 

stem cells but also might activate BMI1+ stem cells to accelerate regeneration of 

mucosal epithelium. SOX2+ stem cells are also critical for normal tissue 

regeneration[43].. Ablation of SOX2+ cells in mice results in a disruption of epithelial 

http://ukpmc.ac.uk/abstract/MED/22190486/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=Bmi1&sort=score
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tissue homeostasis and lethality (29,30). We observed that expression of pluripotent 

stem cell markers SOX2, Oct4, Klf4, and Nanog was induced by GELNs. Thus, Sox2+ 

stem cells induced by GELNs may be involved in epithelial tissue homeostasis of the 

intestine.  

Therefore, our findings reveal that under both homeostatic and injury-induced 

conditions, GELN treatment is beneficial for regenerating intestinal epithelium, thus 

protecting mice against DSS induced colitis. 

The findings as reported in this study also have a number of applications for future 

study, including potential use of GELN as a delivery vehicle.  Unlike nanoparticles 

synthesized in vitro, GELNs and liposome-like nanoparticles assembled with lipids from 

GELNs exhibit no cytotoxicity. Therefore, drug delivery by GELNs or liposome-like 

nanoparticles could be a novel means to transport small molecule drugs to specifically 

target tissues or cells in a non–cytotoxic manner. Obviously, producing large quantities 

of nanoparticles from edible grapes is advantageous for accelerating this technology 

into clinical settings for treatment of intestinal inflammatory related diseases and maybe 

others. Also, edible plant derived nanoparticles not only exist in grapes but are present 

in the many different types of food we eat daily. The nanoparticles we eat daily may 

have synergistic/additive effects on gut biology, such as regulation of intestinal stem cell 

proliferation as we have demonstrated in this study.   Therefore, our findings may open 

up a new avenue for studying novel mechanisms underlying edible exosome-like 

particle mediated gut homeostasis maintained by intestinal stem cells or other intestinal 

cells through exosome-like nanoparticles in food. Although in this study our data show 
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that intestinal stem cells take up GELNs, we cannot exclude the possibility that other 

types of intestinal cells may also take up GELNs. These questions related to this initial 

finding need to be further addressed in the future study.  

We realized that PA is much higher in the GELNs we characterized than what has been 

reported in other nano particles, and this finding was in the face of  including 75% 

isopropanol in our preparations to inactivate possible enzymatic reactions present 

during the lipid extraction from grapes or GELNs. Based on the literature, we noticed 

that most investigators used fresh plants as starting material for extraction of lipids and 

subsequently used for lipid analysis.  In contrast, we used grapes which were 

purchased from grocery stores, and we do not know whether storage conditions 

including the period of storage, temperature and others have effects on PA production 

in grapes and GELNs in the grape. However, the material used in this study represents 

what people would eat. Whether the storage conditions have an effect on the levels of 

PA in GELNs needs to be investigated further.  

 

In summary, we have identified nanoparticles from grapes. We show that GELNs are 

taken up by mouse intestinal stem cells and subsequently strongly promote the 

proliferation of Lgr5hi intestinal stem cells. Our finding opens a new avenue for further 

studying the mechanism underlying interspecies communication through edible 

exosome-like nanoparticles. 

 

http://dict.cn/communication
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Experimental Procedures 

Isolation and purification of grape exosome-like nanoparticles. Grapes were 

washed 3x with water in a plastic bucket. After the final washing, grapes with the skin 

removed manually were pressed in a cold room, the juice collected and diluted with cold 

PBS. The collected juice was differentially centrifuged and then centrifuged on a 

sucrose gradient to isolate and purify the exosome-like nanoparticles[18]. The purified 

specimens were prepared for cryo-electron microscopy using a conventional 

procedure[44] and observed using an FEI Tecnai F20 electron microscope operated at 

200kV at a magnification of 38,000× and defocus of 2.5 µm. Photomicrographs were 

taken using a Gatan Ultrascan 4000 CCD camera.  

For proteomic analysis, protein concentration of GELNs was determined using the Bio-

Rad Protein Quantitation Assay kit with bovine serum albumin as a standard. For all 

other experiments carried out in this study, immediately after being washed, sucrose 

purified pellets of GELNs were weighed and then suspended in PBS and expressed as 

mg of GELNs/ml of PBS. 

 

Lipidomic analysis: To extract total lipids from grape or GELNs, both samples were 

immersed in 1 ml of 75°C isopropanol with 0.01% butylated hydroxytoluene (BHT) for 

15 min. Addition of isopropanol and BHT have been known to inhibit PLD activity and 

minimum oxidation[12, 13], respectively. Then, the immersed samples were mixed with 

3.75 ml of chloroform/methanol at a 1:2 ratio (v/v) in borosilicate glass test tubes, before 

adding 1.25 ml chloroform to the mixed sample and vortexing the mixture. 

Subsequently, 1.25 ml deinonized water was added and the mixture vortexed again. 
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The sample was centrifuged at 1000 RPM in a table-top microcentrifuge for 5 min at 

22°C. The bottom phased liquid that contained lipids was collected using a Pasteur 

pipette.  Solvent in the collected sample was completely removed via a constant flow of 

nitrogen gas at 60°C.  The lipid composition of GELNs or grape was determined using a 

triple quadrupole mass spectrometer (an Applied Biosystems Q-TRAP, Applied 

Biosystems, Foster City, CA).  The protocol has been previously described[45].  The 

data are reported as % of total signal for the molecular species determined after 

normalization of the signals to internal standards of the same lipid class. 

 

Crypt isolation and treatment 

Intestines were opened longitudinally and washed with cold PBS. The tissue was 

chopped into pieces approximately 5 mm in size and further washed with cold PBS. The 

tissue fragments were then incubated in 2 mM EDTA with PBS for 30 min on ice. After 

removal of the EDTA solution, the tissue fragments were vigorously suspended using a 

10-ml pipette with cold PBS, and the suspension allowed to settle for 5 min. The 

sediment was resuspended in PBS. The suspended sediment was vigorously 

resuspended one additional time and centrifuged: the supernatant was enriched for 

crypts. The crypt fraction was passed through a 70-µm cell strainer (BD Bioscience) to 

remove residual villous material. Isolated crypts were centrifuged at 300g for 3 min to 

separate crypts from single cells. The final fraction consisted of essentially pure crypts 

and was used for culture or single cell dissociation. 
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Culture crypts: Isolated crypts were counted and pelleted. A total of 500 crypts were 

mixed with 50 µl of Matrigel (BD Bioscience) and plated in 24-well plates. After 

polymerization of Matrigel containing GELNs (40 µg ml-1), 500 µl of crypt culture 

medium (Advanced DMEM/F12, Invitrogen) containing growth factors (10–50 ng ml-1 

EGF, 500 ng ml-1 R-spondin and 100 ng ml-1 Noggin (Peprotech) was added.  On day 6 

of culture, half of the crypts were used for RNA isolation and the rest were dissociated 

with TrypLE express (Invitrogen) plus 2,000U/ml DNase (Sigma) for 30 min at 37°C. 

Dissociated cells were passed through a 40-µm cell strainer (Celltrix) and washed with 

PBS. Cells were analyzed by flow cytometry (BD).  

 

Single stem cell culture and GELN treatment 

For single stem cell cultures, dissociated crypt cells collected using the method as 

described above were passed through a 40-µm cell strainer (Celltrix) and washed with 

PBS. EGFPhi cells were sorted using a FACSAria III cell sorter (BD).  Sorted cells were 

collected, pelleted and embedded in Matrigel containing Jagged-1 peptide (1 mM; 

AnaSpec) and GELNs (40µg ml-1) and then seeded into a 96-well plate (30–50 singlets;  

10 µl Matrigel per well). Culture medium (Advanced DMEM/F12 supplemented with 

penicillin/streptomycin, 10mM HEPES, Glutamax, 1×N2, 1×B27 (all from Invitrogen) and 

1 µM N-acetylcysteine (Sigma)) containing growth factors (50 ng ml-1 EGF, 100 ng ml-1 

noggin, 1 µg ml-1 R-spondin) was overlaid on the Matrigel. Y-27632 (10 mM) was 

included for the first 2 days to avoid anoikis. Growth factors were added every other day 

and all the medium was changed every 4 days. Cultured cells were manually inspected 
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using an inverted microscopy and the number of viable organoids in triplicate wells was 

calculated.  

 

To determine the efficiency of colony formation, Lgr5EGFP+ cells from different 

treatment groups were cultured in 96-well plates.  Eleven days after plating, spheres 

with a diameter over 40 μm were counted, and colony forming efficiency was calculated 

(Percentage of colonies = Number of colonies formed / Number of cells inoculated × 

100%). All experiments were repeated at least three times. 

 

In vivo up taking GELNs  

To determine whether Lgr5+ intestinal stem cells take up GELNs, Lgr5-EGFP-IRES-

CreERT2 mice starved overnight were given 1 mg PKH26 (Sigma) fluorescent dye 

labeled GELNs/mouse by gavage in 100 µl of PBS. 6 h after gavaging, mice were 

sacrificed and intestinal tissues were embedded in OCT compound (Miles Laboratories; 

Elkhart, IN) and frozen. Tissues were sectioned 5 μm thick with a cryostat and mounted 

on commercially provided charged slides (Fisher Scientific; Pittsburgh, PA) for 

immunohistological and DAPI (Molecular Probe) staining. Images were acquired with a 

Zeiss LSM 510 confocal microscope equipped with a digital image analysis system 

(Pixera) and quantified by counting the number of stained nuclei in five individual fields 

for each slide.  

 

Liposome-like nanoparticles assembling 
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Liposome-like nanoparticles were assembled according to the method described [46, 47] 

with a minor modification. 1 ml of GELNs in PBS were mixed together with 3.75 ml of 

chloroform/methanol  at a 1:2 ratio (v/v) in borosilicate glass test tubes, before adding 

1.25 ml chloroform to the mixed sample and vortexing the mixture. Subsequently, 1.25 

ml deinonized water was added and the mixture vortexed again. The sample was 

centrifuged at 1000 RPM in a table-top microcentrifuge for 5 min at 22°C. The bottom 

phased liquid that contained lipids was collected using a pasteur pipette.  Solvent in the 

collected sample was completely removed via a constant flow of nitrogen gas at 60°C. 

Extracted GELN lipids were hydrated with 800μl of Milli-Q water prior to bath sonication 

for 3 min, and then sonicated for an additional 2 min after addition of HEPES buffered 

saline (final contration,10 mM Hepes, 50 mM NaCl). This resulted in a clear dispersion 

being produced that was stored at 4°C for 48 h prior to further experimentation or 

examination for liposome-like nanoparticle formation using a conventional procedure[48]. 

 

Liposome-like nanoparticles (LLNs) treatment  

All LLN related experiments were performed using identical protocols as described for 

GELN related experiments.  Identical amounts of GELNs used for GELN related 

experiments were also used for LLN experiments including an in vivo PKH26 labeled 

LLN confocal microscopy of Lgr5EGP+ stem cells in Lgr5-EGFP-IRES-CreERT2 mice, 

activation of β-catenin in B6.Cg-Tg(BAT-lacZ)3Picc/J mice, in vitro effects of LLNs on 

the induction of LGR5EGFP+ cells in cultured intestinal crypts of Lgr5-EGFP-IRES-

CreERT2 mice, and treatment of the CT26 cell line.  
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DSS induced colitis. 

Colitis was induced using dextran sulfate sodium (DSS) with a molecular weight of 

36,000-50,000 (MP Biomedicals) to prepare a 3% solution that was provided to male 

mice (18–25 g, 6 weeks old) in drinking water. Other protocols including SDS PAGE 

analysis of GELN proteins have been described previously[18, 49]. Details of other 

methods used in this study are described in the supplemental experimental procedures. 

 

 

Statistical analysis. Survival data were analyzed using the log rank test. The Student's 

t-test was used for comparison of two samples with unequal variances. One-way 

ANOVA with Holm's post hoc test was used for comparing means of three or more 

variables. 
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Figure Legends 

 

Figure 1: Identification and characterization of grape exosome-like nanoparticles 

(GELNs). Grape exosome-like nanoparticles (GELNs) were isolated using differential 

centrifugation and sucrose gradient ultracentrifugation. (a) Electron photomicrographs of 

GELNs. The sucrose-gradient band indicated by the arrow (left) was collected for EM 

examination and the image (right) shows small vesicles of 50-300 nm in diameter. The 

scale bar indicates 200 nm. (b) Size distribution of the GELNs was further analyzed 

using the Zeta potential Analyzer. (c) The lipids extracted from intestinal-derived 
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exosomes and GELNs were separated on a thin-layer chromatography plate and 

developed by spraying the plate with a 10% copper sulfate and 8% phosphoric acid 

solution. A representative image was scanned using an Odyssey Scanner. (d) Pie chart 

with a summary of the putative lipid species in GELNs, reported as percent of total 

GELN lipids. Major details are reported in Supplemental Table S2 in the Supporting 

Information. PA: Phosphatidic acids; PS: Phosphatidylserine; PI: Phosphatidylinositol; 

PE: Phosphatidylethanolamines; PC: Phosphatidylcholines; PG:Phosphatidylglycerol; 

LPE: Lyso-Phosphatidylethanolamines; LPC: Lyso-Phosphatidylcholines; LPG: Lyso-

Phosphatidylglycerol; MG/DG: Mono/Di/ glycerols. (e) GELN RNA treated with/without 

RNAase  was run on a 2% agarose gel stained with ethidium bromide. Results (a-c, e) 

represent one of four independent experiments.    

 

 

Figure 2: Grape exosome-like nanoparticles are taken up by intestinal stem cells.  

(a) In vivo imaging of trafficking of GELNs. Female C57BL/6 mice were gavage 

administered DiR dye labeled GELNs (1mg per mouse in 200 µl PBS) and imaged over 

48 h (left), and followed by graphical figure (right) presented as mean of net intensity 

(Sum Intensity/Area, n=5).  (b) Intestinal stem cells taking up PKH26 labeled GELNs. 

Lgr5–EGFP–ires–CreERT2 mice were starved overnight and then gavage administered 

PKH26-GELNs (1mg per mouse in 200 µl PBS). At 6h after the administration, 

PKH26+/Lgr5-EGFP+ cells in frozen sections of intestine were examined by confocal 

microscopy (left) and were quantified (right). Original magnification was ×40 (left panels) 

with enlargement of the indicated area shown in the right panels. (c) The intestinal 
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epithelial CT26 cell line taking up PKH26 labeled GELNs. The CT26 cell line was 

serum-starved for 6h and then cultured in the presence of PKH26 dye labeled GELNs 

(20 µg/ml) for 3h. The treated CT26 cells were washed, fixed, and stained with anti-

EPCAM antibody, followed by Alexa Fluor® 488 conjugated goat anti-rat IgG secondary 

antibody. Original magnification was ×40 (left panel) with enlargement of the indicated 

area shown in the right panel. (d) Blocking of CT26 uptake of PKH26 labeled GELNs. 

CT26 cells were incubated with the indicated chemical reagents or PBS as a control in 

the presence of PKH26 labeled GELNs (20 µg/ml) for 3 h. The treated cells were then 

washed, fixed, and PKH26+ cells were analyzed by FACS.  Results (a-d) represent one 

of five independent experiments (n=3).  (e) A fragment of colon tissue of Lgr5–EGFP–

ires–CreERT2 mice were treated with PKH26 dyed labeled GELNs (20 µg/ml) in the 

presence of cytochalasin D (1 µM) for 12 h at 37°C. Treated tissue was frozen 

sectioned, stained with DAPI, and PKH26+EGFP+ cells, and PKH26-EGFP+ cells were 

examined by confocal microscopy (left) and were quantified (right), and the data were 

expressed as % = numbers of PKH26+EGFP+/EGFP+ x100. 

 

Figure 3: GELNs induce the proliferation of intestinal stem cells. Lgr5–EGFP–ires–

CreERT2 mice or C57BL/6j mice were gavage administered GELNs (2mg per mouse in 

200 µl PBS) or a vehicle (PBS) every day for 7 days, and were sacrificed at day 7. (a) 

Lgr5-EGFP and Ki67 expression in intestinal crypts of Lgr5–EGFP–ires–CreERT2 mice 

PKH26-EGFP+ cells were examined by confocal microscopy (left) and were quantified 

(right). Magnification 60×. The arrow head indicates Lgr5-EGFP+Ki67+ cells. (b) 

Intestinal crypts were isolated and cells dissociated as described in the materials and 
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methods. FACS analysis of the percentage of Lgr5-EGFP+ cells in intestinal crypts. One 

representative example of six independent experiments is shown (Left), and statistical 

analysis shows that the Lgr5-EGFPhi subset percentage was significantly higher in the 

GELN treated mice (n=6) (right). (c) Real-time PCR analysis mRNA expression of Lgr5 

in the tissue of the small intestine from C57BL/6j. The results represent the mean ± 

SEM of three independent experiments. (d) GELNs (40µg/ml) induce growth of crypts 

ex vivo in an intestinal crypt culture system. Magnification 20×. One representative 

example of five independent experiments is shown. (e) GELNs enhance the proliferation 

of Lgr5-EGFP+ intestinal stem cells in the ex vivo cultured crypts. Cultured crypts were 

collected at day 6 and dissociated with TrypLE express as described in the materials 

and methods. FACS analysis of the percentage of Lgr5-EGFP+ cells in the cultured 

intestinal crypts. One representative of four independent experiments is shown (left), 

and the percentage of Lgr5-EGFP+ cells was FACS analyzed (right).  (f) GELNs 

enhance the formation of crypt organoids in the ex vivo culture system from a single 

isolated Lgr5-EGFP+ stem cell. Magnification 40×. One representative example of four 

independent experiments is shown.  

 

 

Figure 4: Liposome-like nanoparticles (LLNs) induce the production of intestinal 

stem cells. (a) Electron microscopy analysis of LLNs assembled with lipids from 

GELNs. LLNs were purified from the GELN-lipids assembled using a sucrose gradient 

and examined using electron microscopy. The photomicrograph is representative of two 

independent experiments with similar results. (b) Confocal analysis of trace LLNs 



30 

 

assembled with GELN-lipids in the mouse intestine. LLNs assembled with GELN-lipids 

were labeled with PKH26 dye (red). Lgr5–EGFP–ires–CreERT2 mice were starved 

overnight and then gavage-administered PKH26 labeled LLNs assembled with GELN-

lipids (1mg per mouse in 200 µl PBS). Mice were sacrificed 6h after the treatment. 

Samples taken from the middle of the small intestine were embedded in OCT 

compound and sliced at 5 µm thickness using a cryostat. Tissues were counter stained 

with DAPI (blue). Magnification 60×. The arrowhead indicates LLNs assembled with 

GELN-lipid taken up by Lgr5-EGFP+ cells. PKH26+EGFP+ cells were examined by 

confocal microscopy (left) and were quantified (right), and the data were expressed as 

% = numbers of PKH26+EGFP+/EGFP+ x100.  (c) LLNs assembled with GELN-lipids 

enhance the proliferation of Lgr5-EGFP+ intestinal stem cells in ex vivo cultured crypts. 

Cultured crypts in the present of LLNs assembled with GELN-lipids were collected at 

day 6 and dissociated with TrypLE express as described in the materials and methods. 

FACS analysis of the percentage of Lgr5-EGFP+ cells (n=5) in the cultured intestinal 

crypts. One representative of four independent experiments is shown (left), and the 

percentage of Lgr5-EGFP+ cells was FACS analyzed (right).  (d) Real-time analysis of 

the expression of different genes induced by LLNs assembled with GELN-lipids (40 

µg/ml) in ex vivo cultured crypts at day 6. Error bars (b-d) represent the mean ± SEM of 

duplicate experiments (n=5). (e) GELNs were pretreated with or without the propranolol 

(0, 5µM, 20 µM) for 30 min, and sucrose purified GELNs (1.0 µM) were then added to 

C57BL/6 intestinal tissues in a 6-well cell culture plate, and cultured for 6, 12 and 18 h. 

Ki67 Immunofluorescence staining of C57BL/6 intestinal tissues was carried out. A 

representative example of 12 h cultured C57BL/6 intestinal tissue sections stained with 
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anti-Ki67 (red) and nuclei (blue, DAPI) are shown (left). The results represent the mean 

± SEM of three independent experiments (right). 

 

 

 

Figure 5: GELN treatment stimulates activation of the Wnt/β-catenin pathway and 

enhances expression of stem cell growth related genes. 

(a) Tcf/LEF activation was detected by X-gal staining (blue) of sectioned intestine of 

B6.Cg-Tg(BAT-lacZ)3Picc/J mice daily administered 2 mg/mouse GELNs for 7 days by 

oral gavage. Sections were counter stained with nuclear fast red (red). Original 

magnification was ×40 (left panels) with enlargement of the indicated area shown in the 

right panels. (b) Real-time analysis of expression of different genes in single Lgr5-

EGFP
hi
 stem cells isolated from Lgr5–EGFP–ires–CreERT2 mice daily administered 2 

mg/mouse GELNs for 7 days by oral gavage. (c) CT26 cells serum-starved for 6h and 

then stimulated with GELNs (40 µg/ml), Carnosic acid (20 µg/ml), or GELNs plus 

Carnosic acid for 3h. Cells were washed, fixed, permeated and stained with the Alexa 

Fluor® 488 conjugated-anti-β-catenin, counter stained with DAPI (blue) and analyzed by 

confocal microscopy for the nuclear translocation of β-catenin (green). Original 

magnification 40×.  (d) Western blot analysis of phosphorylation of GSK-3β (Ser 9) in 

CT26 cells over time stimulated by GELNs at a dose of 40µg/ml. (e) Canosic acid, a β-

catenin inhibitor, partially reverses GELNs mediated-enhancement of the proliferation of 

Lgr5-EGFP+ intestinal stem cells in ex vivo cultured crypts. Cultured crypts in the 
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present of canosic acid (20 µg/ml) were collected at day 6 and dissociated with TrypLE 

express as described in the materials and methods. One representative of four 

independent experiments is shown (left), and the percentage of Lgr5-EGFP+ cells was 

FACS analyzed (right).  One representative result of at least four independent 

experiments (a-d) is shown. (f) Real-time analysis of genes expressed in the crypts 

isolated from C57BL/6 mice; ex vivo cultured with GELNs at a dose of 40 µg/ml. 

Tcf/LEF-reporter mice starved overnight were gavage-administered twice a day for 6 

days 2 mg of LLNs assembled with GELN-lipids per mouse in 200 µl PBS or an equal 

amount of lipid dissolved in acetone. (g) Photographs of X-gal–stained B6.Cg-Tg(BAT-

lacZ)3Picc/J mouse intestine after a 3-day treatment. (h) X-gal staining (blue) of 

sectioned intestine of B6.Cg-Tg(BAT-lacZ)3Picc/J mice. Tissues were counter stained 

with nuclear fast red (red). Original magnification 40×. One representative example of at 

least three independent experiments (g, h) is shown. 

 

 

Figure 6: Oral administration of GELNs attenuates the severity of colitis induced 

by DSS. Lgr5–EGFP–ires–CreERT2 mice were treated for 7 days with 2 mg/mouse of 

GELNs in 200 µl PBS: (a) GELN treated mice presented with a better body condition. 

One representative photograph of 5 mice/group of five independent experiments (n= 5) 

was taken at day 7 after the treatment. (b) Survival analysis. **p<0.01 GELNs vs. PBS.  

Intestinal morphometry of intestinal length (c), and villus height (d). Five mice in each 

group were sacrificed for the morphometry analysis. One representative analysis of the 

intestine length (c, left panel) and HE stained section of small intestine (d, left panel) of 
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three independent experiments (n = 5) is shown. Intestine length was measured by a 

ruler (c) or villous height was measured by a calibrated eye objective micrometer. 

Values are mean ± standard error; *p<0.05, compared with PBS treated mice (n= 5). (e) 

EGFP+ and Ki67+cells in frozen sections of intestine were examined by confocal 

microscopy and quantified (right, n=5). Original magnification was 40× with enlargement 

of the indicated area (insets). The arrowhead indicates EGFP+Ki67+ cells. One 

representative example of at least three independent experiments is shown. (f) Real-

time analysis of mRNA expression of different genes in the intestinal crypts from 

C57BL/6j mice. Values are mean ± standard error. *p<0.05, **p<0.01 compared with 

PBS treated mice (N = 5). (g) Confocal analysis of nuclear translocation of β-catenin 

(top panels) and phosphorylation of GSK-3β (Ser 9) (bottom panels) in the crypt 

sections from DSS treated C57BL/6j mice. The sections were counterstained with DAPI 

(blue). 
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Supplemental Material and Methods 

Mice 

C57BL/6j mice, Lgr5-EGFP-ires-creERT2 mice, and TCF/LEF-reporter mice (B6.Cg-Tg 

(BAT-lacZ)3Picc/J) 6-12 weeks of age were obtained from Jackson Laboratories. All 

animal procedures were approved by the University of Louisville Institutional Animal 

Care and Use Committee. Mice were administered by gavage grape exosome-like 

nanoparticles resuspended in PBS as described previously[1]. 

 

In vivo image of gavaged GELNs  

Mice were first anesthetized with ketamine (100 mg/kg body weight) and xylazine (10 

mg/kg body weight) via intraperitoneal injection: inhaled isoflurane was used as 

necessary. To monitor the trafficking of GELNs administered via oral gavage, GELNs 

(1mg/mouse) were first labeled with a near-infrared lipophilic carbocyanine dye-

dioctadecyl-tetramethylindotricarbocyanine iodide (DIR, Invitrogen, Carlsbad, CA) using 

a previously described method[2].  The mice were imaged over a 48-hour period using a 

Carestream Molecular Imaging system (Carestream Health, Woodbridge, CT). For 

controls, mice (five per group) received free DIR dye in PBS at the same concentration 

for DIR dye-labeled GELNs. Images were collected using a high-sensitivity CCD 

camera with an exposure time of 2 minutes for imaging.  

 

To determine whether Lgr5+ intestinal stem cells take up GELNs, Lgr5-EGFP-IRES-

CreERT2 mice starved overnight were given 1 mg PKH26 (Sigma) fluorescent dye 

labeled GELNs/mouse by gavage in 100 µl of PBS. 6 h after gavaging, mice were 
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sacrificed and intestinal tissues were embedded in OCT compound (Miles Laboratories; 

Elkhart, IN) and frozen. Tissues were sectioned 5 μm thick with a cryostat and mounted 

on commercially provided charged slides (Fisher Scientific; Pittsburgh, PA) for 

immunohistological and DAPI (Molecular Probe) staining. Images were acquired with a 

Zeiss LSM 510 confocal microscope equipped with a digital image analysis system 

(Pixera). 

 

Immunohistochemical staining  

For histopathology, H&E staining was performed on paraffin-embedded intestinal 

sections. For immunofluorescence analysis, OCT (Sakura Finetek)-embedded tissue 

cryosections (9µm-thick) were fixed at -20°C in methanol/acetone (3:1). Slides were 

hydrated in PBS and blocked for 30 min at 25°C with Fc Block (10 μg/ml) and 5% 

(vol/vol) normal horse serum in PBS. After blocking, slides were incubated for 30 min at 

25°C with the following primary antibodies in PBS: anti-β-catenin, anti-pGSK-3β (Cell 

signaling), anti-EPCAM (BD Biosciences), anti-ki67 (Thermo Scientific), and anti-

lysosome (R&D Systems). Primary antibodies were detected with a secondary antibody 

to fluorescein isothiocyanate–Alexa Fluor 488 (Invitrogen). Slides were mounted with 

Slow Fade Gold Antifade plus DAPI (4,6-diamidino-2-phenylindole; S36938; Molecular 

Probes). Stained slides were assessed using a Zeiss LSM 510 confocal microscope 

equipped with a digital image analysis system (Pixera). 

 

LacZ staining  
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To assess the treatment effects on expression of lacZ gene regulation by Tcf4 

promoter, B6.Cg-Tg ((BAT-lacZ)3Picc/J) mice were gavage administered carnosic acid 

(Sigma-Aldrich) (7.5mg/kg/day), GELNs, or carnosic acid encapsulated GELNs at an 

equal amount to carnosic acid alone (7.5mg/kg/day) or PBS as a control vehicle for 5 

days. Mice were sacrificed and small intestinal tissue segments were fixed in 0.2% 

glutaraldehyde, 50 mM EGTA, pH 7.3, 100 mM MgCl2 in PBS. Staining was performed 

overnight in staining buffer (0.5 mg/ml X-gal, 5 mM potassium ferrocyanide, 5 mM 

potassium ferricyanide in 2 mM MgCl2, 0.01% sodium deoxycholate, 0.02% Nonidet 

P40 in PBS; pH 7.3). The next day, intestinal segments were washed in PBS, 

counterstained with nuclear fast red, and covered in Kaiser’s glycerogelatin. All pictures 

were taken with an IX71 inverted microscope (Olympus). Swiss-rolled small intestines of 

((BAT-lacZ)3Picc/J) mice were also fixed and stained with X-gal and examined in a 

blinded manner by a gastrointestinal pathologist.  

 

Western Blot Analysis. Western blots were carried out as described previously [1]. In 

brief, cells or homogenized intestinal tissues were lysed in radioimmunoprecipitation 

assay lysis buffer (1% Triton X-100, 0.1% SDS, 150 mM NaCl, 50 mM Tris-HCl, 1 mM 

EDTA, 1 mM EGTA, 5 mM sodium molybdate, and 20 mM phenylphosphate) with 

protease and phosphatase inhibitors (1 mM PMSF, 10 µg/ml aprotinin, 20 µg/ml 

leupeptin, 20 µg/ml pepstatin A, 50 mM NaF, and 1 mM sodium or thovanadate). 

Proteins of lysed cells were separated by SDS-PAGE on 10% polyacrylamide gels. The 

membranes were stained with Ponceau Red to validate that all samples contained 

similar amounts of protein. Separated proteins were transferred to nitrocellulose 
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membranes for western blotting using a standard protocol as described previously[3]. 

The following antibodies were purchased from Cell Signaling Technology Inc. and used 

for western blot analysis: Rabbit polyclonal anti–β-catenin, anti–phospho β-catenin 

(S675), anti-phosphor GSK3 (Ser9), anti-GSK3, and anti-Wnt5a. Polyclonal anti-A33 

antibody was purchased from Santa Cruz Biotechnology. 

 

RNA extraction and real-time PCR. Total RNA was isolated from intestinal crypts or 

the CT26 cell line with TRIzol according to the manufacturer's specifications (Invitrogen) 

and was repurified with an RNeasy mini kit (Qiagen). RNA (1μg) was reverse-

transcribed with Superscript III and random primers (Invitrogen). For quantitation of 

genes of interested, cDNA samples were amplified in a CFX96 Realtime System (Bio-

Rad Laboratories, Hercules, CA, USA) and Sso Fasteva green supermixture (Bio-Rad 

Laboratories) according to the manufacturer's instructions. Fold changes in mRNA 

expression between treatments and controls were determined by the δCT method as 

described[4]. Differences between groups were determined using a two-sided Student's 

t-test and one-way ANOVA. Error bars on plots represent ± SE, unless otherwise noted. 

The data were normalized to a GAPDH reference. All primers were purchased from 

Eurofins MWG Operon. The primer pairs for analysis are provided in Supplementary 

Table 4. All assays were performed in triplicate at least three times.  

 

Proteomic Analysis. GELNs were lysed in protein lysis buffer and 100 μg of proteins 

were electrophoresed on 10% SDS-polyacrylamide gels. Coomassie-stained SDS-

polyacrylamide gels were cut into 10 strips to correlate with the gel lanes and 
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trypsinized. The digested peptides were loaded on a 100 nm × 10 cm capillary column 

packed in-house with C18 Monitor 100 A-spherical silica beads and eluted by a 1 h 

gradient of 10–100% acetonitrile, 0.1% TFA. Mass spectrometry analysis was 

performed and analyzed using an LTQ XL spectrometer (Thermo Finnigan) at the UAB 

Proteomic Core Facility. Protein hits were validated using a method as described[5]. 

 

 

GELN miRNA microarray analysis  

Total RNA containing miRNA was extracted from GELNs using the SNC50-kit (Sigma). 

One hundred nanograms of small RNA enriched samples were submitted to Phalanx 

Biotech Group, Inc. (Belmont, CA 94002  USA) for miRNA microarray analysis.   

 

Internalisation assay 

CT26 cells were cultured for 12 hours in the growth medium. Uptake  of GELNs was 

performed by incubating 12 h cultured CT26 cells with various dilutions of PKH26 

fluorescent dye labeled GELNs (PKH26-GELNs) in a humid chamber for 2 hours (37°C, 

5% CO2). For inhibition experiments, cell cultures were pre-incubated with the inhibitors 

for 30 minutes before PKH26-GELNs were added to the culture. The percentage of up 

taking of PKH26-GELNs was FACS analyzed using a method as described [6]. 

The following inhibitors were used: bafilomycin A1, concanamycin A, chlorpromazine, 

indomethacin, and cytochalasin D from Zygosporium manonsii.  The inhibitors were 

purchased from Sigma and FITC-dextran 40 kDa (Molecular Probes).  
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Additionally, for the macropinocytosis assay, CT26 cells were given FITC-dextran (100 

µg/ml) or FITC-dextran plus PKH26-GELNs  in PBS, 2% FCS for 30 min at 4°C to block 

endocytosis, and then the temperature was shifted to 37°C for 3 h in the presence of  

cytochalasin D (1 µM). CT26 cells were then washed and analyzed using a flow 

cytometer. 

 

Intestinal organ culture.  The clean mucosal layer of Lgr5-EGFP-ires-creERT2 mice 

was washed in Hank's Balanced Salt Solution buffer and cut with a sterile scalpel into 2 

cm2 pieces. The pieces were placed on sterile metal grids and cultured in Dulbecco's 

Modified Eagle Medium supplemented with 10% exosome-depleted fetal bovine serum, 

epidermal growth factor (200 ng/ml, Peprotech) and Insulin-Transferrin-Selenium-X (10 

μl/ml, Invitrogen). For the internalization assay, PKH26-GELNs were added to the 

culture at the beginning of culture in the present or absent of cytochalasin D for 6 h. 

Then, the treated tissue was fixed for quantification of PKH26-GELNs+Lgr5+ cells. 

Propranolol is known to induce rapid activation of PLD activity.  For determination of the 

possible effect of propranolol mediated PA activity on LLN induced intestinal epithelium 

proliferation, colon tissue was cultured with propranolol (5µM) for 1 h prior to addition of 

LLNs (20 µg/ml). 12 h cultured colon tissue was then frozen sectioned and stained with 

anti-Ki67 antibody and examined in a blinded manner. 10 viewing field images of each 

sample were randomly captured.  
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Supplemental Figure legends: 

 

Supplemetnal Figure 1 GELNs  taken up by intestinal epithelial cells. Mouse CT26 

intestinal epithelial cells were incubated with 100 µg/ml high molecular weight dextran 

for 30 min “on ice”, followed by a 37°C incubation for 30 min. Cells were then treated 

with PKH26-GELNs at variable doses and incubated at 37°C for 3h. The percentage of 

FITC-dextran PKH26-GELN+ CT26 cells was FACS determined. Unstained CT26 cells 

were used as a control (inset, top left corner).  One representative result of three 

independent experiments is shown. 

 

 

 Supplemetnal Figure 2. Proliferation of cultured crypt cells stimulated by GELNs 

(40µg/ml) were measured by a 3H-thymidine incorporation assay. The results represent 

the mean ± SEM of five independent experiments (n=5). 
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Supplemetnal Figure 3. Colony-forming efficiency was calculated from 100 single 

sorted Lgr5-EGFP
hi

cells. The results represent the mean ± SEM of four independent 

experiments (n=4). 

 

Supplemetnal Figure 4. Real-time analysis of the expression of different genes 

induced by nanoparticles assembled with GELN-lipids (40 µg/ml) in the CT26 colon 

cancer cell line at 12h after the treatments. Error bars represent the mean ± SEM of 

duplicate experiments (n=5).  

 

 

Supplemetnal Figure 5. Western blotting analysis of phosphorylation of GSK-3β (Ser 

9) and total GSK-3β 9) and β−actin from DSS treated C57BL/6 mice. One representative 

of three independent experiments  is shown. 

 

. 
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