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P Matrix of derivatives of predicted values

q" Heat flow per unit area
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R., R_ Input and feedback electric resistance

SS Sum of deviations squared

s Laplace transform variable
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e

T Temperature

T Steady temperature level

t Time

t. Integration time

t Period of oscillations
o

U., U Voltage, input and output

V Temperature

X. Independent variable vector
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element corresponding to x.

y[b] Predicted values vector corresponding to parameter vector b
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Z Matrix of component function values
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Y Heat transfer parameter

6 Phase angle

6—j 6 Reflected and transmitted v/ave phase change at interface

X Reciprocal of attenuation length
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p Density

o Standard deviation

t Delay time

t Maximal delay timem J

,(t) Correlation function
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1. INTRODUCTION

Angstroem (3, 4) reported first measurements of thermal diffusivity

of metals by the temperature wave method .more than 100 years ago. Since

that time numerous investigators have examined the method as the measuring

equipment improved (21,' 30, 29). Generally, the accuracy of the results

obtained was comparable to stationary measurements, yet the method never

achieved widespread use since it is more time consuming, both in acquisi-

tion and interpretation of data. The method has an advantage for the

2
measurement of the thermal diffusivity (dimensions: length /time) since

only distance and time measurements are necessary, compared to the conduc-

tivity measurements where heat flow also has to be determined.

In the temperature wave method the measurements are made when periodic

temperature variations are achieved in the specimen. Related to this

method are the transient methods, where the temperature development is

followed after a pulse or step input is applied to the specimen. A

transient method was developed recently by several investigators (11, 13,

26) for measurements of the thermal diffusivity of small samples. The

temperature history of the back side of a thin sample is followed after

a pulse of intensive radiation is delivered to the front side from a

laser beam. The method is fast and applicable to a wide range of mat-

erials and temperature levels and has been successfully used in practical

measurements (22, 25).

The present investigation was in part stimulated by the intensive

investigation of neutron diffusion waves (31) , which are governed in

the diffusion approximation by the same equations.. Some similarities



exist although the differences are probably greater than the similarities.

One of the interesting similarities is that of the concept of reflection

and transmission of diffusion waves. Since temperature waves (or heat

waves) fall in this category, it is thought that the contact resistance

for the heat flow across an interface might be better understood with

the application of this analytical technique. As no literature has been

uncovered which reports on the use of this technique for this purpose,

it may be of great value. The success of this investigation may have

great practical application for the measurement of the thermal contact

resistance between the cladding and the fuel in a nuclear fuel element.

The idea is to determine the thermal properties of the assembly from the

response of the cladding temperature to variations (oscillations) of the

fuel power level. BURDG et al. (9) performed some experiments, but

concluded that the sensitivity of the method is not satisfactory, in part

due to the unrefined data analysis.

The uncertainty of the contact resistance in nuclear fuel elements

for a while spurred the research in this field. Since nuclear fuel

elements are currently designed by experience, good predictions are still

lacking for the contact thermal resistance. Presently the most interest

for this problem is centered in the area of space technology.

The additional resistance to the heat flow at the interface of two

solids arises primarily from the reduced heat flow cross section area,

as the real surfaces contact only on a fraction of the apparent contact

area. This is due to the waviness and roughness of the surfaces. The

heat flow is split at the interface and constricted to individual points



of real contact. The problem of predicting the contact resistance is

usually subdivided into three steps: determination of the constriction

resistance for an elemental channel (region of the solids associated

with a single contact point), determination of the number of contact

points, their dimensions and distribution, and third, superposition

of the elemental channel solutions. Early investigators, e.g. Holm

(13) , assumed rather idealized conditions of uniformly spaced contact

points. Later much attention was given to the determination of the

number and distribution of the real contacts (10, 32). Here important

influences are pressure, roughness, waviness, indentation hardness and

the elastic properties of the solids in contact. Most investigators

that were attempting to correlate the experiments with the predictions

did so for nominally flat surfaces, the specimens were prepared by

roughening surfaces that were previously polished to optical flatness.

In machined joints the waviness is however often more important than the

roughness. The third task, superposition of the solutions for the

elemental channels of various sizes and nonuniform distribution has also

not yet been solved satisfactorily. Recently some progress has been

made in this area (24, 32).

An interesting anomaly in the contact resistance was noted, to the

elucidation of which the temperature wave method may prove valuable.

It was noticed that in an aluminum-steel pair the resistance is higher

for the heat flow from steel to aluminum than in the reverse direction

(6, 28). The difference amounted to approximately 20% in air and 100%

in vacuum being approximately the same in absolute value, in the measure-



ments reported by Rogers (28). Postulated causes for this effect were

attributed to the influence of local strains (32) and to different

electric potentials of the two metals that impede the movement of

electrons in one direction (28) . None of the predicting theories includes

a satisfactory explanation for this directional effect. With the temper-

ature wave method, a new mode of heat flow is available. Periodic heat

flow is applied and, more important, the temperature differences can be

quite small compared to the steady state measurements.

Very few references exist in the literature concerning the tempera-

ture wave method of measuring the thermal resistance of contacts. Green

(16) investigated the thermal impedance of the surface layers but his

work is only partially relevant to this investigation. Alzofon (2)

theoretically investigated the optical properties of temperature waves,

but with the intention of constructing the steady state solutions.

Heasley (17) and others (12, 18) treated the transient contact resistance

for the evaluation of the heat transfer between bodies at different

temperatures brought into contact. The problem in this later case is

symetric while when a temperature wave approaches a discontinuity the

situation in the two solids is not identical.

Based on the reported work in the areas briefly outlined above the

purpose of this investigation was set at designing and building the

equipment for the temperature wave measurements and establishing the

method of analyzing the data. Both results can be used in the further

investigation of the contact thermal resistance and the application of

the temperature wave method in other research.



2. THEORY

In this investigation the temperature waves were generated in a

metallic rod or in an assembly of two contacting rods by alternating

the heat input at one end and keeping the other end at a constant

temperature. The rods were of substantial diameter and well insulated.

In the case of two contacting specimens the interface was perpendicular

to the axis of the specimens. Thus the heat conduction problems are

of a one dimensional transient nature. The analytical solutions of

these problems are investigated in this section.

For the case of two contacting solids a constant heat transfer

coefficient is considered to be applicable. It may be questionable

whether some variable heat transfer coefficient would be more appro-

priate because the heat transfer is periodic. Also it may be doubtful

that the heat transfer coefficient so measured corresponds to the

stationary measured quantity. In Appendix A the transient response of

an elemental heat channel is investigated and it is shown that, by

considering the dimensions of the real contacting points and their

spacing in the contacts of flat metallic surfaces, the time scale on

which the transient effects are important is of the order of .1 sec.

The periods considered for the experiments are of the order of 100

seconds and thus the transient effects certainly can be neglected.

Whether the heat transfer coefficient measured by the periodic

heat flow method is identical to the one obtained by a stationary

method cannot be resolved at this time. A possible reason for a

systematic difference could be a directional heat flow effect. For



steel-aluminum contacts, differences of up to 100% have been observed

between measurements with different directions of heat flow (16, 17).

As the exact mechanism of this effect is not known, a similar discre-

pancy for the periodic heat flow case cannot be ruled out but should

be investigated experimentally.

2.1 Temperature Waves in a Slab

2.1.1 Stationary Eoundary at Constant Temperature

The one dimensional heat conduction problem is solved for a slab

with periodic temperature on one boundary and constant temperature on

the other boundary. The governing equation is

3
2
T(x,t) = 3T(x,t)

„ 2 at
ax

(i)

where a = —.
PC

P

The initial condition is

T(x,0) = (2)

and the boundary conditions are

T(L,t) '= A sin ut t >

T(0,t) = t > (3)

To obtain the solution of this problem the Laplace transform technique



is used. Transforming the variable t into the Laplace variable s

the governing equation is

2-

a
d T(

^'
S)

= sT(x,s) - T(x,0)

dx

applying the initial conditions this reduces to

(4)

2-
d T(x,s) s -, . ,, .V = - T(x,s) (4a)

dx
2 a

This equation has the general solution

ICx.b) « CjfeK" + C
2
(s)e

,uc
(5)

The transformed boundary conditions are

T(0,s) =

T(L,s) = -j^-j (6)

u + s

From these boundary conditions the constants C. and C„ are evaluated:

C
2 " " C

l

Aw
C
l sinh (/s L)(co

2
+ s

2
)

(7)



, sinh f— x

Kx.s) • -jj 2 77~~ ()
d) + s sinh /L L

! a

The inverse transform is found by the theorem of residues, as the only

singularities are poles. Furthermore all poles are simple. The first

part of the denominator has two zeroes, s = + iw. It can be shown.

that the only zeros of the function sinh |— L are at

— L = m tt

la

and thus

2 2^a n- 1, 2, ... (9)

L

Omitting the algebraic steps in the evaluation of the residues, the

final result is

Residue at (iw) + Residue at (-ito) :—s—r: n^r [sin cot
cosh 2AL - cos 2AL

(sinh A x cos A x sinh A L cosh A L + cosh A x sin A x cosh A L sin A L)

4- cos tot (-sinh A x cos A x cosh A L sin A L + cosh A x sin A x

sinh A L cos A L)

]

where A fe < 10 >



2

The residue at any pole, s = x— a, is

L
2

2

Residue at (- -—«—

)

L

2 2

+1
an tt

2Aiu(-l) '
. mix "

L2 ,,,%

, , —IT" T e (11)

(A2
+ a 2 HJL_

)

IT

These terms decay with time and represent the transient part of the

solution, while the terms corresponding to the poles + iu represent the

asymptotic part of the solution. The transient solution is not partic-

ularly interesting as the measurements are performed after steady state

is achieved. The magnitude of the transient part is briefly evaluated

as follows.

2lT Jlrt
Introducing t = — (period of oscillation) and L, , « 1/A =

I
—

o a 1/e I ui

(attenuation distance) the time necessary for the slowest decaying

term to be reduced by a certain factor can be evaluated. In Table I

the number of periods for a 100 fold reduction of the slowest decaying

term in slabs of different thicknesses are presented.

Table I

Evaluation of the transient solution.

Dimensionless thickness Reduction of the first No. of periods for a
of the slab, I/I-,/ transient term per period 100 fold reduction

4 .135 2.2

6 .422 5.2

8 .618 9.5

10 .734 14.5
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2.1.2 Asymptotic Solution for a Thick Slab.

Two useful approximations can be derived from the asymptotic

solution Eq. (10) for thick slabs (L/L . large). For AL >> 1 the

approximation

coshAL "-' sinhAL -r- e

can be used and cos2AL, which is always less than unity can be neglected

in the denominator of Eq. (10). Substituting the exponential expressions

for the hyperbolic functions and implementing the addition theorems

for the harmonic functions the result

^(X.t) = -rj [e
XX

sin(tot-A(L-x)j - e
Ax

sin(oit - A(xfL))] (12)
e

is obtained.

This expression shall be called the "one reflection approximation".

If furthermore x is large, i.e. only the regions far from the

stationary boundary are observed, the result is

Q
T(x,t) = Ae"

X(L X)
sin(u,t - A(L-x))

. (13)

This expression shall be called the "no reflection approximation".

The one reflection approximation, Eq. (12), can be interpreted as

the sum of two waves, one approaching the boundary with the constant

temperature and the other wave leaving this boundary with reversed sign.



11.

Each wave has the form

Ce
-^ 8tn(ast-X£) (14)'

where £ is the linear dimension measured in the direction of the wave

travel.

The amplitudes and the phase lags were calculated from the three

expressions, the exact asymptotic solution, Eq. (10), the no- and one-

reflection approximations, Eqs. (12) and (13); for slabs of various

thicknesses. The results are presented in Figures 1 to 3. From the

numerical results the following can be concluded: For slabs thicker

than 3 Lj. the no-reflection approximation is adequate, except closer

than 1.5 L-w
e

from the stationary boundary where the one reflection

approximation is to be used. For slabs thinner than 1.5 L, , the exact
1/e

solution is to be used instead of the reflection approximations.

2.1.3. Stationary Boundary Insulated

The governing equation, initial condition and the periodic boundary

condition are same as before, Eqs. (1), (2) and (3), but on the stationary

boundary the following condition is applied:

I ».*) " °
(15)
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Exact solution

One reflection approx.

_ No reflection approx.

Amplitude

-n/2

Oscillatory
boundary

Stationary
boundary

a
.fi

.
Figure 1. Amplitude and phase of the temperature wave,

thickness of the slab » 1 L, , .

1/e
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Exact solution and one
reflection approx.

No reflection approx.

Oscillatory
Boundary Ax

Stationary
Boundary

Figure 2. Amplitude and phase of the temperature wave, thickness
of the slab = 3L_ , .

1/e
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Oscillatory
Boundary Ax

Stationary
Boundary

Figure 3. Amplitude and phase of the temperature wave,
thickness of the slab = 5 L, ,

1/e
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Due to this boundary condition the relation of the constants in the

Laplace transformed solution is

^(s) = C
2
(s) (16)

Further the solution is obtained in a similar way as before, and the

result is

. cosh [— x

*<*"> "-rr-T
—>-

<17 >

10 + s cosh I— L

The inverse transform can again be obtained by evaluation of the resi-

dues. The first part of the transform has two simple poles, s
1
,„=+iu

and it can be shown that the function cosh f— L has zeroes at
la

(2n-l)
2
n
2

2 2
2 L

(18)

i.e. when

/s , . ,2n-l. ,
|- L = i(—2~> * n = 1, 2, ....

These poles are on the negative real axis and thus the contribution

of their residuals is of transient nature. The residues at the two

poles on the imaginary axis form the asymptotic solution;
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Residue at (iw) + Residue at (-iu) =

= 7 , „. —

;

^TTV [cosut(-coshXxcosXXsinhXL sinXL +
(cosh/AL + coszXL)

+ sinhX x sinX x coshXL cosXL) + sinwt (coshX x cosXx coshXL cosXL +

+ sinhX x sinX x sinhXL sinXL)

]

(19)

For thick slabs using the same assumptions as in section 2.1.2, the

result becomes

x
T(x,t) = Ae

XL
[e
XX

sin(iot-Xa-x)) + e
~Xx

sin(iot-X (L+x)) ] (20)

This result can be interpreted as consisting of two parts, a first term

representing a wave approaching the insulated boundary at x = and a

second term representing a wave leaving this boundary. At the boundary

the two waves are in phase and reinforce each other, while in the case

of the constant boundary temperature they were of opposite phase.

2.2 Temperature Wave at a Discontinuity

The behavior of a plane temperature wave at a contact of two solids,

the contacting surface being perpendicular to the direction of the wave

travel, shall be investigated. The heat transfer characteristics of

the discontinuity is assumed to be

q" - hAT •

(21)
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where q" is the heat flow per unit area, h is the heat transfer coef-

ficient and AT is the temperature drop across the discontinuity. The

coordinate x is placed parallel to the direction of the approaching

temperature wave (perpendicular to the discontinuity) and the origin is

placed at the discontinuity. In analogy with the case of the insulated

boundary or the stationary boundary the solution is expected to consist

of a reflected wave with some phase change but with the same period and

a transmitted wave, also with some phase change. The forms assumed are,

the amplitudes being normalized so that the approaching wave has ampli-

tude 1 at discontinuity:

Approaching wave

—A x
e 1 cos(ut - A.x) (22)

Reflected wave

A x
A
r

e 1 cos(ut + 6
r
+ A.x) (23)

Transmitted wave

—A x
A
t

e 2 COB C«t + &
t

- A
2
x) (24)

Taking the amplitude of the approaching wave as unity at x = 0, the time

dependent temperatures in solids 1 and 2 are
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^(x.t) = e
X l

x
cos (ut-A

a
x) + A e

A lX cosfot +& + X.x) x < (25)

-A„x
T
2
(x,t) » A

fc

e 2 cos(ut +5
t
-A

2
x) x > (26)

Substituting these expressions into the equations of heat balance at the

discontinuity

9T

" k
l 23T

(0,t) = 5"(0,t) = h(T
1
(0,t) - T

2
(0,t)) (27)

3T

" k
2 3x~~

(0 '° = q''^ '^ " h(T
1
(0,t) - T

2
(0,t)) (28)

yields

- k^A-^A (cos(iut+(5 ) - sin(uit+S )) - (costot-sinut)] =

h[cosut + A cos(ut+5 ) - A cos(wt+i5 )] (29)

and.

k
2
*
2
A
t
[cos((i)t+6 ) - sln(iat+S )] =

= hlcosut + A cos(ut+S ) - A cos (uit+5 )] (30)

The material constants and the heat transfer coefficient can be grouped

in dimensionless quantities

Y x
- h/k

1
A
1 y 2

* h/k
2
A
2 (31)
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This quantity relates the heat transfer distance k/h, i.e. the thickness

of the solid causing the same temperature drop as the discontinuity,

/2
—

to the 1/e length of the temperature waves, L ,
= 1/A = —

.

1/e to

After using the summation theorems for the trigonometric functions

and observing that the identity has to be conserved at all times, four

equations are obtained from Eq. (29) and (30)

-(1+Y,) A cos<5 + A sinS + Y,A cos<$ » -Q-Y,

)

lrr rr ltt 1

A
r
cos<5

r
+ (l-Y

1
)A

r
sinS

r
- Y^sin^ = 1

-Y^,-003^ + U+Y
2
)A

t
cos6

t
- A sin«

2

Y2
A
r
sin6

r
+ A

t
cos6

t
+(l+Y

2
) A

t
sin6

t
=

(32)

From this system of linear equations for A cosS , A sinS , A cos6 and
r r r r t t

A sinS these quantities can be calculated for any values y and y

and from them the amplitude and phase of the temperature oscillation

at any point in both solids can be obtained.

The asymptotic solution for y and y approaching infinity cannot

be obtained from the system Eq. (32), as the problem formulation Eqs.

(27), (28) is not correct in this case. The following conditions have

to be used at the interface

TjCO.t) - T
2
(0,t) (33)
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3T 3T

k. T~ (0,t) = k, -zf- (0,t)
1 3x 2 3x (34)

Introducing the assumed wave forms, Eqs. (22), (23), (24), performing

the algebraic manipulations and solving the resulting linear system of

equations the following is obtained

A
t

cos6
t

- §L

A cos 5
r-i
r+i

A sinS

A sin5 (35)

where r is defined as

k
2
x
2

/k
i
c
P i

p
i V;

k
2
C
p2

P
2

Y l
(36)

The quantities A , 5 , A , 6 as functions of y are plotted for

various ratios -/

2^l in F18ures 4 t0 ?• The asymptotic values are

also indicated. The value of the ratio y /y , i.e. r, for metallic

pairs ranges between 4 and 1/4. Of all metals the best conductor-

capacitor is copper, with the kp c value of 1,390 J
2
/m*c

2
sec, while

poor conductors and capacitors like stainless steel have values around

80 for this parameter.
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The graphs of the phase angles and the reflected and transmitted

fractions reveal some interesting properties (Figures 5 and 7). The

reflected wave always preceeds the incoming wave (positive angle 6 )

and the angle asymptotically approaches three values, 0,1/4 and H,

depending on the tJy1 ratio. For T less than one, i.e. when the

second material is a better conductor- capacitor, the reflected wave

has opposite phase to that of the incoming wave. The same relation

was obtained in the case of the stationary boundary temperature case,

only now the amplitude is less than that of the incoming wave and

depends on the r value. For r larger than one the phase approaches

zero for large Yj and the situation is similar to the insulated boundary

case. Note also that for r larger than one the transmitted wave ampli-

tude rises above unity, i.e. is larger than that of the approaching

wave. This does not violate the boundary conditions at the interface

as the reflected wave is in phase with the incoming wave and the sum

(vectorial) is always larger than the amplitude of the transmitted

wave.

For the ideal contact (y-«, h-«°) only two values of the reflected

wave phase angle are possible, and H. The curve for r =1 approaches

Jl/4, but at infinity the amplitude is zero.

In Fig. 8 the phase difference between the sum of the approaching

and the reflected wave and the transmitted wave at the interface is

plotted.

In Fig. 9 to Fig. 12 the phase lag profiles in the incoming solid

are presented. Note that here the phase lag is plotted, which is

defined with the opposite sign as the phase difference.
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3. EXPERIMENT DESIGN

The purpose of the experimental work was to review the temperature

wave method of thermal diffusivity measurements and to investigate the

feasibility of contact resistance measurements by this method. Thus

there were two groups of preceeding experiments to be considered, the

temperature wave measurements and the contact conductance measurements.

To accomplish the combined task the present experiment differs in some

respects from both groups of prototypes.

Angstroem (3) and most later investigators of the temperature wave

method (21, 29, 30) did not attempt to restrict the surface heat losses

from the specimens, which were in some cases in the form of wires. They

rather accounted for these losses in the analysis. In this case the

temperature oscillations have to be measured at least at three points.

For the contact resistance measurement the specimens have to be of

substantial cross section and the heat losses would make the temperature

field two dimensional due to the radial flow. To avoid any such further

complication, as the contact between the two specimens already introduces

some, it was considered preferable in the present experiment to eliminate

these surface heat losses if possible.

In the contact resistance experiments, two specimens are usually

sandwiched between calibrated heat flow metering sections, possibly

other layers of different materials, with the heater and cooler at

opposite sides. In such arrangements the temperature waves would be

greatly attenuated at each interface. For this reason the specimens
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should be in direct contact with the heater and the cooler.. The surface

heat losses were eliminated in the contact resistance and conductivity

measurements by placing a guard sleeve around the specimen with the same

temperature gradient as in the specimen. Due to the temperature oscilla-

tion, only the mean temperature can be matched in this way. To avoid

the heat losses due to the deviations from this mean, insulation is

required.

The basic differences of the present design from the two groups of

prototype experiments are that the specimens are of substantial diameter

and are insulated and in good contact with the heater and cooler. The

length of the specimens was chosen primarily with regard to the precision

of the thermocouple positioning and the thermocouple dimensions. The

temperatures were measured on the axis of the specimens and the thermo-

couples placed in holes drilled into the specimens. The position of the

thermocouple in the hole is not well determined, so the diameter of the

hole must be considered as the uncertainty interval for the thermocouple

location. With the hole diameters used, .03" or .05", and the thermo-

couple separation distance of 2", the uncertainty is 3% or 5%, respectively,

and it was considered that a shorter distance should not be used. The

length of the contact resistance specimens was 7 1/2" and the length of

the thermal diffusivity measurement specimens was 15". The periods of

oscillation to be used were determined from the distance between the

temperature measuring points, so that the attenuation would not be exces-

sive. If the amplitude of the oscillation at the first thermocouple is

of the order of a few degrees (higher amplitude would be undesirable)

,
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and the estimated limit of detection is of the order of .01 C, it was

determined that the distance between the extreme positions should not

exceed 5 attenuation lengths, i.e. the attenuation length should not

be shorter than 1/5 of the longest distance.

In the first design, the heater, which generates the temperature

oscillations of one end of the specimen, was equipped with a copper

plate at the bottom which was placed in contact with the end of the

specimen rod. Such arrangement produced very small oscillations of

temperature in the specimen due to relatively large thermal capacity

of the heater and poor contact with the specimen. The design was

subsequently changed in favor of a band heater tightened around the

end of the specimen. In this case doubts arise concerning the uniformity

of the temperature across the specimen bar. A numerical analysis of

the temperature profile was performed and in Fig. 13, the lines of

equal temperature are plotted for a rod with constant temperature on

part of its circumference and uniform heat flow at a distance from the

end. It is evident that the heat flow becomes completely one dimensional

less than one diameter from the limits of the uniform temperature of the

perimeter. It is assumed that the same is valid for the periodic heat

flow and a conservative margin of two rod diameters from the heater was

used for the positioning of the first thermocouple. The rod diameter of

one inch was chosen arbitrarily.

This arrangement produced temperature oscillations of sufficient

amplitude, hut a high temperature gradient was needed to deliver the

heat to the cooler at the other end of the specimen. Thus a potentially
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Figure 13. Temperature distribution in a cylindrical rod with constant
circumferential surface temperature at one end.
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important advantage of the temperature wave method, that it does not

intrinsically require large temperature gradients, was lost. Subse-

quently a cooler was installed at this end, and the flow of coolant was

oscillated at the same frequency as the heater. However, the solenoid

valve used caused unacceptable disturbances in the thermocouple voltage

output due to magnetic induction, so the valve was removed and the

coolant flow was maintained constant. Contrary to the expectations,

the temperature oscillation amplitude did not decrease significantly

when the cooler was operated continuously, and the constant temperature

level decreased. This small effect of coolant flow can be attributed

to poor heat transfer from the specimen to the coolant as the coolant

velocity was quite low.

The theory of the temperature waves was developed for sinusoidal

temperature variation on the boundary. To approximate this condition

a mechanism was constructed to vary the voltage on the heater harmoni-

cally. It was soon percieved that this is not necessary, as any higher

harmonic components are very weakly excited in the specimen and die out

rapidly along its length. A cam operated on-off control of the heater

was installed. Kith this arrangement, the first higher harmonic was

detected only in the first thermocouple output and had a barely signi-

ficant amplitude.

The largest body of thermal contact conductance data available is

for contacts in vacuum. The specimen and heater housing in this investi-

gation- was designed for vacuum, but due to undetected faults the required

vacuum was not achieved.



36

Due to the inherent attenuation characteristics of the temperature

waves it was anticipated that the signal to noise ratio from the more

distant thermocouples would require a refined data analysis technique,
,

considering the accuracy required. The correlation technique offers

a possibility of analyzing noisy signals. An outline of the technique

is given in Appendix B.

The date acquisition and analysis equipment is centered around

the correlation computer. The thermocouple outputs were first recorded

on a magnetic tape recorder and analyzed later. A few initial measure-

ments were performed by recording the temperature oscillations on a

strip chart recorder and analyzing the records manually, but this proved

highly unpractical. One problem of the temperature measurements was

associated with the elimination of the electronic noise that was picked

up by the thermocouple leads. The noise was mostly of high frequency

and was eliminated by passing the signal through a low-pass filter before

recording. Later it was found that in the tape recorder itself some high

frequency noise is generated and another low-pass filter was used between

the tape recorder and the correlator. The analysis of these circuits is

given in Appendix D.

The description of the present equipment is given in the following

section and an evaluation in section 8.
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4. EXPERIMENTAL APPARATUS

The experimental equipment consists of the mechanical and thermal

system and of the data acquisition system. The individual parts of

the equipment are described below from the specimens to the correlation

computer.

4. 1 Specimens

For the two types of measurements, the thermal diffusivity measure-

ments and for the contact conductance measurements, two types of specimens

were used. The contact resistance specimens were used in pairs, the

total length of the pair being the same as a single diffusivity specimen.

The choice of the dimensions of the specimens is discussed in section 3.

4.1.1 Thermal Diffusivity Specimens

Solid rods of the material under consideration, 1 inch in diameter

and 15 inches long, were used for the thermal diffusivity measurements.

Five holes were drilled in each specimen, 2 1/2 inches apart, the first

hole being 3 inches from the end that was to be subjected to periodic

temperature conditions. The holes were .05 inch diameter and 1/2 inch

deep, i.e. they reached the center of the rod. Holes were drilled in

both ends of the specimen with a #5 countersink drill to a depth of

1/2 inch, as required for the cooler centering. Thirty gage copper

constantan thermocouple wire was used for the thermocouples. The

junctions were formed by mercury pool immersion welding and cemented

in the holes with Sauereisen cement. Before the installation of the
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thermocouples the distance between the thermocouple holes was measured

precisely.

A. 1.2 Thermal Contact Resistance Specimens

The thermal contact resistance specimens were 1 inch O.D. rods,

7 1/2 inches long (Fig. 14). Three holes were drilled along the rod

2 inches apart, the distance of the closest point from the contacting

surface being 1/2 inch. All holes were .031 inch diameter and 1/2 inch

deep, the bottom, located at the center of the rod. In one end of the

specimen a hole was drilled with a #5 countersink drill, as required

for the cooler positioning. The other end was ground to the best possible

flatness obtainable on a horizontal grinding machine. After machining,

the contacting surface was carefully protected. The roughness was

measured on a Micrometrical Manufacturing Co. Profilometer (Model 741,

IE 838) and the hardness of the material was tested on a side surface

using the Rockwell ball method.

Junctions on a 36 gage copper constantan thermocouple wire were

made by the mercury immersion technique and the thermocouples were

cemented in respective holes with Sauereisen cement. The electric

resistance between the two wires and between the wires and the specimen

was measured in order to check the wire junction and the junction contact

with the specimen. A photograph of the specimen is presented in Fig. 15.

4.2 Mechanical and Thermal Equipment

The experimental vessel and all adjoining mechanical and thermal -

equipaient are mounted for flexibility of arrangement on a Unistrut
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COUNTERSINK DRILL 9 HOLE

Figure 14. Contact conductance specimen; dimensions
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frame with roller casters. The principal parts of the mechanical and

thermal equipment are the experimental vessel with the internals , the

loading mechanism and the heating and cooling control. The arrangement

of the mechanical components is shown in the photograph in Fig. 16.

4.2.1 Experimental Vessel and Internals

The cross section drawing of the experimental vessel is presented

in Fig. 17 and a photograph of internals in Fig. 18.

The specimen or specimen pair is inserted in the lower cooler, which

is supported flexibly on a steel sphere. The steel column supporting

the lower cooler is equipped with an auxiliary heater to prevent conden-

sation on the cold surfaces of the lower section of the experimental

vessel.

The upper part of the specimen (or specimen pair) is equipped with

a band heater, rated at 100 H at 110 V, produced by Ogden Manufacturing

Company. This heater was controlled by a cam operated mlcroswitch and

produced temperature oscillations in the specimen. A force was applied

to the top cooler by the loading ram, which is equipped with strain

gages and is considered a part of the loading mechanism.

Both the top and the bottom cooler tube connections are in the

bottom plate. The tubes coming out of the bottom plate are copper with

Tygon plastic connections for greater flexibility. The coolers are

provided with 0-ring seals to make them water tight.

The heat losses from the specimens are prevented by insulation of

the specimens and by the guard sleeve, which was maintained at the

same temperature as the specimens during the measurements . The temper-
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Figure 17. Experimental vessel cross section
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Figure 18. Experimental vessel internals.
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ature gradient was controlled by a heater at the top end of the guard

sleeve and by a cooling coil at the bottom end. Six thermocouples

were installed in the sleeve and additional insulation was placed on

the outside. The specimen insulation is a glass fiber material and

the guard sleeve insulation a refractory felt.

The cylindrical part of the vessel, made of aluminum, was bolted

to the bottom and top plates. All connecting surfaces are provided

with 0-ring grooves, but 0-rings were not in place during experiments

as no experiment with reduced pressure was performed. The power and

thermocouple wires are conducted from the vessel through a wax filled

pot to provide a gas tight seal. The loading mechanism consists of

the loading lever with the weight basket and the load ram with guides.

The lower part of the loading ram serves as a load cell. At that

position a hole is drilled in the center of the ram to allow larger

strain. Two strain gages were placed on the opposite sides of the load

cell section. The strain gages were connected to an universal amplifier

with a strain gage input box (Brush Electronic, Universal Amplifier,

Model BL-520) . A precision voltmeter provided the output reading

(Keithley Electrometer 600 A, NE 906). The load cell was calibrated

against a load ring certified by the National Bureau of Standards. A

photograph of the load cell portion of the loading ram is presented in

Tig.. 19.

4.2.2 Heating and Cooling Control

The heating and cooling control devices are located on the control
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Figure 19. Load cell.
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panel. Two autotransformers for continuous power setting of the heaters

are provided, one for the specimen heater and the other for the guard

sleeve heater. Both were connected to unregulated 110 V mains. A

microswitch, operated by a cam drive is installed in the top heater

transformer power line. The cam is driven by a 10 rpm synchronous

motor through a reduction gear. The reduction gear consists of a gear

pair and a multiratio gearbox (Precision Instrument Co., Dial-A-Ratio

Gearbox). The gear pair ratios used were 1.3: 1,1: 1 and 1: 1.3 and

the available gearbox reduction ratios were 2.5, 5, 10, 25, 50 and

100. Fifteen different periods could be obtained from .192 to 13 minutes

with a 30% maximum step between two ratios.

Cold tapwater was used as the coolant. The water flow to the three

coolers, the top and bottom specimen coolers and the guard sleeve cooler,

the top and bottom specimen coolers and the guard sleeve cooler, was

monitored on three flow meters and regulated by manual valves. A

solenoid valve was provided for the intermittent operation of the top

specimen cooler but was not used in the experiments.

4.3 Data Acquisition Equipment

The specimen thermocouple voltage outputs were amplified and recorded

on a magnetic tape recorder. Later the records were analyzed with the

aid of a correlation computer. The correlation computer output represents

the raw data that was further analyzed by the digital computer. For

steady temperature measurements a potentiometer was used (Leeds and

Northrup, Portable Potentiometer).
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4.3.1 Recording Equipment

The recording equipment arrangement is shown in Fig. 20.

The thermocouple reference point was provided by a thermos vessel

filled with an ice-water slurry. The thermocouple voltage output was

fed to the amplifying and filtering circuits, composed of the compon-

ents of an analog computer (Electronic Associates Co. PACE TR-10, NE

916) . The schematic diagram and analysis of these circuits are given

in Appendix D.

The number of thermocouple outputs that could be recorded was

limited to four by the available number of tape recorder channels. A

maximum of seven channels can be installed on the recorder used (TMC

Magnetic Tape Recording System, Model 700, NE 1346) but only four plug-in

circuits were available. The tape recorder can be operated at four

different tape speeds, 1 7/8, 3 3/4, 15 and 30 inches per second.

4.3.2 Analyzing Equipment

The tape recorder and the analog computer were used in the record

analysis in conjunction with a hybrid correlation computer (TMC Correlation

Computer, Model 257, NE 1363 with TMC Computer of Average Transients,

CAT 400C, NE 1364). A photograph of the arrangement is presented in Fig.

21.

The thermocouple outputs were analyzed in sets of two on the

correlation computer at a higher tape speed than that used during recording.

Briefly, the functioning of the hybrid, analog-digital, correlation compu-

ter is as follows. One of the inputs, which have to be in the range + 3 V,
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is digitized and the value stored in a 256 location ferritic core memory,

where up to 255 values of the same input at past times spaced by the

delay increment time are kept. During each delay increment time the

whole memory of the past values of the first input is scanned and each

value is multiplied by the instantaneous value of the other input. The

products thus obtained are accumulated in the memory of the Correlator

of Average Transients (CAT) . In the first location of the CAT memory the

products of the simultaneous values of the two inputs are accumulated,

in the second location the products of the values spaced by one delay

increment, and so on. The precision of the digitalization of the inputs

is claimed by the manufacturer to be one part in 512 of the 3 V maximal

input. A discussion of the correlator response is given in Appendix C,

and an outline of the correlation technique in Appendix B.

Three output devices are available for the correlation computer:

punched paper tape, analog output and teletype output. A Tally Co.

paper tape punch was normally used and a plot of the correlation

function was produced on an X-Y plotter, mainly for identification purposes.
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5. EXPERIMENTAL PROCEDURE

The experimental procedure for the two measurements, the thermal

diffusivity measurement and the contact resistance measurement, was

identical except for the specimen manipulations.

A special device was used for the alignment of the thermal

contact resistance specimens. Two polyethylene half rings, 3/4 inch

wide were placed around the contacting sections of the two specimens.

The ring was tightened hy a steel band with a sliding latch. When

the locking piece was in place the two specimens were tightly connected

and could be manipulated as a unit.

To install the specimens the loading lever, the top plate, and the

cylindrical part of the experiment vessel were removed, as well as the

top cooler. The specimen rod was pressed into the bottom cooler and

the top heater and cooler were installed. The specimen thermocouple

wires were soldered to permanent extension leads in the bottom compart-

ment of the vessel. The cylinder and the top plate were assembled with

the loading ram resting on the top cooler. When the loading lever was

replaced and the specimens were secured in position by force, the sliding

latch was released by pulling a wire. The parts of the aligning ring

thereafter were not in contact with the specimens. The desired load was

applied and the heaters, coolers and the microswitch cam drive were set

into operation.

The temperatures of both the guard sleeve and the specimen(s) were

measured with the potentiometer. The guard sleeve heater and cooler
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were adjusted so that the guard sleeve temperature matched the mean

specimen temperature at the same vertical position as closely as

possible. For specimens of different conductivity, the slope could

not be matched completely, but the differences were kept small (Fig. 22).

When there was no more temperature drift, the specimen thermocouples

were connected to the amplifying and filtering circuits. The bias

voltages were adjusted and appropriate amplification chosen. The

3
amplification varied from 10 for the thermocouple closest to the

oscillation source to 10 for the distant thermocouples. When very high

amplifications were used it was difficult to retain the amplified signal

within the 1 volt input range required by the tape recorder, as a devia-

tion of ,1°C would drive the signal beyond that limit. Most of the time

it

amplifications of up to 2x10 were used.

Next the recorder was started, using a recording speed of 1 7/8

inches per second.

Records of 2 to 2 1/2 hours duration were usually taken, which

represents 80 to 100 periods of the 2.5 minute period waves (the longest

period used) . The recording was mostly done at night or on weekends when

the disturbances in the water and power supply were small. During busy

switching hours the amplified thermocouple output would regularly drift

out of range due to the change of line voltage and/or change of water

temperature and pressure. In Fig. 23 typical temperature records

obtained are shown.

The thermocouple number 1 record contains higher harmonic components.
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Figure 23. Temperature records.
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The ratio of the next higher harmonic to the fundamental mode is estimated

at 1/.172 from the autocorrelation function. No significant higher

harmonic was found in the thermocouple number 2 record. There is a

significant noise component in the output of the thermocouple number 4

record. Note the different amplifications.

The magnetic tape was later played back at 16 times the recording

speed (i.e. at 30 inches per second) and the individual records or pairs

of records were analyzed on the correlation computer. The autocorrelations,

which should provide the amplitude information, were later omitted as it

was found that the amplitude response of the correlator is quite unre-

liable. The correlation function was subsequently punched on the paper

tape and an analog output was obtained (an example is presented in

Fig. 34) . The paper tape was converted to magnetic tape and subsequently

to punched cards. These cards in turn served as the input for the

correlation function analysis code described in Appendix F.



57

6. DATA ANALYSIS

6.1 Analysis of Temperature Records

The purpose of the data collecting system in the temperature wave

experiment is to obtain the information on the temperatures at various

positions along the specimen either continuously in time or at certain

time intervals. In this investigation the temperatures, represented by

the thermocouple voltage outputs, were recorded continuously on a magnetic

tape recorder. From such simultaneous records of thermocouple outputs the

information on the phase difference and the amplitude ratio between them

is to be obtained. Various methods can be employed for this purpose. At

present a relatively convenient method of analyzing voltage records con-

taining noise components (and therefore requiring averaging over long

periods of time) is available which utilizes correlation computers with

analog input. Previously, the correlation technique, the theory of which

is briefly outlined in Appendix B, was possible only for digitized data.

The cross correlation function is defined as the average product of

two records with the delay time between them as the argument

- t .

$ (t) - lim ~| fjt f(t)g(t+x)dt (37)
s t,-Ho i i

where f(t) and g(t) are the two records and t the delay time for the

record g(t). A record can also be correlated with itself, in which case

the above function is termed the autocorrelation function.

In Appendix B the important relationship between the Fourier
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transform of the correlation function and the original record transforms

are derived,

H*
ff

(T)} = ^f^ { f(t»|
?-

(38)
i i

>{«
f8

(T>} -
l

i
^~F{i(t)}-'F{g(t)} (39)

where the symbol F denotes the Fourier transform and the asterisk the

complex conjugate value. Thus from the correlation functions (auto-

and cross-) the amplitude and phase relationship of the frequency

components of the records are available.

The correlation of the records with one prominent frequency, as

are obtained in the temperature wave measurements, is a special case

of the general correlation and the pertaining relations can be derived

directly, as is shown in Appendix B, Eq. (B 13) to Eq. (B 17). The lag

between the harmonic functions is in this case retained as the lag of

the cosine.

For finite and discrete correlation functions certain limitations

have to be considered. The Fourier transform is not applicable but is

reduced to the Fourier series representation. The fact that the fre-

quencies in the Fourier series are spaced by 1/T, where T is the length

of the correlation function, reflects the uncertainty with which the

frequency can be determined. The discrete nature of the correlation

function makes it impossible to distinguish between the basic frequency
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and its aliases, 2kf -f, 2kf +f , where k is any integer and f is the

Nyquist frequency, f
N

= 1/2At . (Ax is the distance between the points).

This effect can be predicted from the development of the Fourier series

on a set of discrete points, but the development is not presented here

since, for the correlations performed, the Nyquist frequency was in the

range where the filtering circuits eliminated any significant component

from the records.

The information that the record and consequently the correlation

function contains a discrete prominent frequency, led to a different

frequency analysis approach than the Fourier series expansion. A linear

combination of a polynomial and one or more harmonic terms were fitted

to the correlation function in the least sum of squares sense. The

polynomial part was introduced to represent the decaying exponential

component in the case of the autocorrelation function of a noisy record.

This model was found to be correct as the residuals were random in the

great majority of cases. The frequency so determined should still be

considered uncertain in the interval Af = 1/T where T is the length of

the correlation function, in the sense that should another harmonic be

present within the interval it would not be possible to determine them

simultaneously. In this case the one harmonic model would prove incorrect

(many harmonics would have to be introduced) , and the coefficients of the

two harmonics would be highly correlated.

An anomaly was discovered in the response of individual channels

of the correlation computer and an additional function was introduced as

a component of the linear combination to be fitted to the correlation
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function. The response of the correlator is discussed in Appendix C

and a plot of the correlator background function is presented in Fig. 24.

The inclusion of this background function reduced the number of cases

in which the residuals were not random and a further refinement might

completely eliminate the occurrence of such cases. In this regard, it

is expected that the individual channel response is also nonlinear as is

the case with the overall amplitude response (cf. Appendix C) . Although

the peaks of the background function were always found at the same location

their relative amplitude may not be the same for different inputs.

The least squares fit of the analytic form to the correlation function

provided the amplitude and phase of the prominent harmonic in the correlation

function. The thermal diffusivity and the thermal contact resistance were

calculated from the phase angle information, as described in the following

section. The amplitude information was not used as it was considered too

unreliable in view of the findings on the correlator response (Appendix C)

.

The theory of the regression analysis (least square fitting) is given

in Appendix E and the computer program that performs the task is described

in Appendix F.

6.2 Thermal Diffusivity Determination

The thermal diffusivity specimens were of sufficient length,

compared with the attenuation distance for the periods used, that the

no-reflection approximation for the behavior of the temperature wave

could be used (Eq. (13)). For the thermal diffusivity calculation

the following expression is used
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(40)

where Al is the distance between the thermocouples and A d> is the phase

lag between the thermocouple outputs.

6.3 Contact Conductance Determination

The results derived in section 2.2 were used for the determination

of the contact conductance parameter from the phase lag information. The

assumption of a discontinuity in an infinite medium is valid as the

distance from the boundaries was several times greater than the attenuation

length.

The contact conductance h cannot be determined solely from the phase

or amplitude ratio and the distances between the measuring points, which

is evident also from its dimensionality. Only the dimensionless parameter

Y = h/kX can be obtained, and the knowledge of the thermal conductivity

and thermal diffusivity (contained in A together with the period of

oscillations) is needed. Furthermore for the determination of y the

knowledge of the material properties ratio r (Eq. (36)) is necessary.

This latter quantity can be obtained from the ratio of the thermal conduct-

ivities and the ratio of thermal diffusivities

.

From the results of the present experiments the value of y was

obtained and the thermal contact conductance was calculated using the

values for conductivity from the literature. The ratio of the conduct-

ivities of the two materials was estimated from the temperature gradient

ratio in the two specimens (since the same amount of heat flows through
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both)

.

The thermal contact conductance parameter was determined from the

phase difference between the two thermocouples closest to the discon-

tinuity, which is most sensitive to this parameter. As no explicit

expression is available the parameter was determined by iteration in

a computer code. The input data were the thermal diffusivities of the

two materials, the ratio of the conductivities, the distances of the

thermocouples from the discontinuity and the phase difference. For

each value of y the reflected and transmitted wave amplitude and phase

at the discontinuity were calculated (system of equations Eqs. (32))

and from these the phase difference at the two thermocouple positions.

The procedure was iterated until a satisfactory convergence was reached

(the difference of the two consecutive estimates less than 1%).
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7. EXPERIMENTAL RESULTS

7.1 Thermal Diffusivity Measurements

The thermal diffusivity of an aluminum alloy, 2024-T4, and Armco

iron was measured using the temperature wave method described herein.

The data on these materials and the experimental results are given

in Table II. Values for the thermal diffusivity computed from data

obtained from the literature are included for comparison. The experi-

mental values agree very well with the literature data.

7.2 Thermal Contact Conductance Measurements

The thermal contact conductance of aluminum-aluminum and aluminum-

iron contacts was measured. The measurements were performed at different

applied pressures. Four specimen pairs were used and 12 complete data

recordings and evaluations were performed.

In the calculations of the contact conductar.ee parameter the values

of the thermal diffusivity measured as a part of this investigation were

2 2used, the values being .485 cm /sec for aluminum and .208 cm /sec for

iron. The ratio of the thermal conductivities of the two materials was

estimated from the temperature gradients in the two specimens (cf. Fig. 22),

but as the experiment was not designed for this purpose the data from the

literature were used. From the literature (1, 5) the ratio is 1.65 while

the mean of the graphical estimates was 1.69.

The information on the specimen pairs used and the results of the

correlation runs are summarized in Tables III to VI. The thermocouple

position 1 is closest to the oscillating heater, the thermocouple 3 last
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Table II

Thermal diffusivity measurement results

Specimen material: Aluminum 2024-14. Oscillation period: 1.92 min.

Thermocouple Thermocouple Phase difference 1 ,

positions distance , .. . , .r
, . (radians; (cm)
(cm)

1-2 6.33 1.5107 4.20
1-3 12.8 3.0095 4.26

1-4 19.0 4.5528 4.17

Average L
1

. = 4.21

2
Thermal diffusivity measured .485 cm /sec .

Thermal diffusivity from literature data* .465 cm /sec

Specimen material: Armco Iron. Oscillation period: 3.25 min.

Thermocouple Thermocouple Phase difference L
1

,

positions distance , ,. . , ,
* , , (radians) (cm)

(cm)

1-2 6.40 1.809 3.55
1-3 12.80 3.454 3.71
1-4 19.2 5.403 3.56

Average** L , =3.55
1/e

Thermal diffusivity measured ,203 cm /sec „

Thermal diffusivity from literature data* .208 cm /sec

3
*Aluminum (1, 5): density = 2.73 g/cm , specific heat = .23 cal/g°C

thermal conductivity = .29 cal/cm sec°C

3
Armco Iron: density = 7.86 g/cm , specific heat at 30°C .108 cal/g

thermal conductivity at 30°C = .176 cal/cm sec °C.

^Thermocouple at position number 3 was found defective so the data
for this point were excluded from evaluation.
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Table III

Thermal contact conductance measurements, pair A11-A12

Specimen 1 Specimen 2

Al 1

2024-T4
77

Al 2

2024-T4
77

Identification code
Material
Hardness, HR^^ mQ fcp)

Test surface roughness, pin rms 15 10
Thermocouple no. 3 (in specimen 1), distance from interface 1.27 cm
Thermocouple no. 4 (in specimen 2), distance from interface 1.27 cm

Load 250 lb (pressure 320 psi), parallel lay
Date of recording 12/7/1968, Period of oscillation 1.92 min.

Correlation, thermocouple no. Phase difference, radians

1-2 1.2057
1-2 1.2018
1-3 2.3294
1-4 3.0780
2-4 1.8510
3-4 .6410

Average phase diffi2rence 1 -- 3 2.3318 1 -

3 - - 4 .6718

4 3.0345

Load 580 lb (pressure 790 psi) , parallel lay
Date of recording 12/8/1968, Period of oscillation 1.92 min.

Correlation, thermocouple no.

1-2
1-3
1-3
1-4
2-4
3-4

Average phase difference

Phase difference, radians

1.1990
2.3326
2.3524
2.9354
1.8503
0.7150

1 -- 3 2.3425 1 -

3 - - 4 0.6531

2.9955
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Table IV

Thermal contact conductance measurements, pair A3 4-A15

Specimen 1 Specimen 2

Al 4 Al 5

2024-T4 2024-T4

78 77

Identification code

Material
Hardness, HR^^ m fcp)

Test surface roughness, Pin rms 30 25

Thermocouple no. 3 (in specimen 1), distance from interface 1.27 cm

Thermocouple no. 4 (in specimen 2), distance from interface 1.32 cm

Load 300 lb (pressure 380 psi) ,
parallel lay

Date of recording 12/9/1968, Period of oscillation 1.92 min.

Correlation, thermocouple no. Phase difference, radians

1-2
1-3
1-3
1-4
1-4
1-4
3-4

Average phase difference 1-3 2.2734 1-4 3.0655

Load 630 lb (pressure 850 psi) , parallel lay

Date of recording 12/8/1968, Period of oscillation 1.92 min.

Correlation, thermocouple no. Phase difference, radians

1-2
1-3
1-3
1-4
1-4
3-4

Average phase difference 1-3 2.2124 1-4 2.9973

1.1743
2.2673
2.2579
3.1099
2.9811
3.0640
0.8344

1 - 3 2.2734 1 -

3 - 4 .7913

1.1796
2.2518
2.1731
2.9892
3.0143
0.7712

1 - • 3 2.2124 1 -

3 • 4 .7849
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Table IV. continued

Load 1750 lb (pressure 2250 psi), parallel lay

Date of recording 12/10/1968, Period of oscillation 1.92 min

Correlation, thermocouple no. Phase difference, radians

1 - 2 1.3596
1-3 2.2045
1 - A 2.8784
1-4 2.9026
3-4 0.6703

Average phase difference 1-3 2,2045 1-4 2.8853

3-4 .6808
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Table V

Thermal contact conductance measurements, pair A13-I4

Specimen 1 Specimen 2

Identification code Al 3 14
Material 2024-T4 Armco-Iron
Hardness, fflj^,

_ 1QQ fcp)
76 76

Test surface roughness , uin rms 50 35

Thermocouple no. 3 (in specimen 1), distance from interface 1.27 cm
Thermocouple no. 4 (in specimen 2), distance from interface 1.29 cm

Load 250 lb (pressure 320 psi) , cross lay

Date of recording 1/2/1969, Period of oscillation 2.5 min.

Correlation, thermocouple no. Phase difference, radians

1-2 1.0685
1-3 2.1000
1-4 2.8505
1-4 2.7847
2-3 1.0664
2-4 1.8270
3-4 0.8180

Average phase difference 1-3 2.1174 1-4 2.8875

3-4 0.7701

Load 550 lb (pressure 750 psi)

,

Date of recording 1/2/1969, Period of oscillation 2.5 min.

Correlation, thermocouple no. Phase difference, radians

1-2 1.0529
1-3 2.0550
1-4 2.7492
2-3 1.0163
2-4 1.7032
3-4 0.6782

Average phase difference 1-3 2.0616 1-4 2.7480

3-4 .6864
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Table V. continued

Load 900 lb (pressure 1170 psi)

,

cross lay
Date of recording 1/2/1969, Period of oscillation 2.5 min

Correlation, thermocouple no. Phase difference, radians

1-2 1.0719
1-3 2.0912
1 - 4 2.7787
2-3 1.0413
2-4 1,7324
3-4 0.6757

Average phase difference 1-3 2.1022 1-4 2.7867

3-4 .6844



71

Table VI

Thermal contact conductance measurements, pair A14-I1

Specimen 1 Specimen 2

Al 4 I 1

2024-T4 Armco Iron
78 72

Identification code
Material
Hardness, H^^,, m ^
Test surface roughness , uin rms 15 10

Thermocouple no. 3 (in specimen 1), distance from interface 1.27 cm
Thermocouple no. 4 (in specimen 2), distance from interface 1.315 cm

Load 250 lb (pressure 320 psi) , cross lay
Date of recording 1/4/1969, Period of oscillation 2.5 min.

Correlation, thermocouple no. Phase difference, radians

1-2 1.0573
1-3 2.0649
1-4 2.7313
2-3 1.0097
2-4 1.6963
3-4 0.6773

Average phase difference 1-3 2.0665 1-4 2.7425

3-4 0.6761

Load 550 lb (pressure 700 psi), cross lay
Date of recording 1/5/1969, Period of oscillation 2.5 min.

Correlation, thermocouple no. Phase difference, radians

1-2 1.0912
1-3 2.0706
1-4 2.7343
2-3 1.0124
2-4 1.6706
3-4 0.6736

Average phase difference 1-3 2.0866 1-4 2.7520

3-4 0.6654
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"Table VI. continued

Load 900 lb (pressure 1140 psi) , cross lay

Date of recording 1/4/1969, Period of oscillation 2.5 min.

Correlation, thermocouple no.

1-2
1-3
1-4
2-3
2-4
3-4

Phase difference, radians

1.0611
2.0599
2.7214
1.0134
1.6594
0.6629

Average phase difference 2.0671

0.659S

2.7270

Load 1200 lb (pressure 1510 psi),
Date of recording 1/4/1969, Period of oscillation 2.5 min.

Correlation, thermocouple no.

1-2
1-3
1-4
2-3
3-4

Average phase difference 1

3

Phase difference, radians

1.0290
2.0132
2.7300
0.9735
0.6974

2.0079

0.7098

2.7176
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in specimen 1 before the interface and thermocouple 4 is in specimen 2.

The resulting thermal contact conductance values are presented in

Table VII and in Fig. 25. In Fig. 25 the experimental values and

theoretical prediction as given in reference (15) are plotted for the

aluminum 2024-T4 - Armco iron contact. The data and the theoretical

curve are for a rms roughness of 150 u in, which is much higher than

that of the specimens used in this work.

The phase difference between the two thermocouples closest to the

interface, used in the calculation of the thermal conductance parameter,

is the average value for this phase difference as indicated by the

difference of phase between correlations 1-3 and 1-4; 2-3 and 2-4 and the

direct correlation 3-4. The correlations with the thermocouples 1 and 2

give a more reliable estimate than the direct correlation of the two

thermocouples close to the interface (3 - 4) alone, as the records 1 and

2 have much smaller relative noise and provide good reference records.
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Table VII

Summary of thermal contact conductance results

Specimen Applied Conductance Thermal contact
pair pressure parameter conductance

(psi) (Btu/hr ft
2

X10
°F) (cal/cm se

Al 1-A1 2 320 6.8 6.4 .47
Tl 1! 740 9.5 8.8 .65

Al 4-A1 5 380 2.3 2.16 .159

810 2.4 2.24 .165

2250 7.6 7.1 .525

Al 4-1 1 320 10.0 8.15 .60

710 12.8 10.5 .77

1150 14.9 12.1 .89

1540 5.9 4.7 .355
Al 3-1 4 320 3.2 2.8 .206

710 10.7 8.7 .64

1150 11.3 9.2 .68

°c)
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8. DISCUSSION OF RESULTS AND EXPERIMENT

The experiments performed demonstrated the feasibility of deter-

mining the thermal contact conductance by the temperature wave method,

the determination of the thermal diffusivity having been accomplished

before. In the following the interpretation of results is given and

some shortcomings of the present work are discussed.

The thermal diffusivity measurement results agree very well with

the published data for the materials examined. The choice of the

aluminum alloy in the tempered condition was not the most appropriate

for this purpose as Its properties are given only as approximate while

for the alloy in the annealed condition more exact data are available.

The difference in results is within 5% and the agreement can be considered

as very good. The measured value of the thermal diffusivity was used in

the further analysis as it is considered more applicable for the particular

material than the general value from the literature.

A minor deficiency of the experimental procedure may be illustrated

with the data obtained in the thermal diffusivity measurement of aluminum.

Due to the necessary connection of one wire of each thermocouple to the

analog computer ground, additional loops were created between the thermo-

couples as they were mostly in good electrical contact with the specimen

(loop ABC in Fig. 26c). In these loops current flowed due to the tempera-

ture difference between the two thermocouple positions, where the thermo-

couple copper-specimen material was created. The minute current caused

a voltage drop in each leg CAB and AC), which was added or subtracted
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from the voltage generated by the respective thermocouples. This was

true as well for the steady part as for the oscillatory part of the

temperature. Among the oscillatory voltages the dominant was the-

output of the thermocouple with the highest temperature amplitude and

it influenced the others, though this effect was small. The phase

relation of the thermocouples in the aluminum thermal diffusivity

specimen as well as the effect on the phase deviation from the mean

phase slope can be seen from Fig. 26 a and b. The effect is in this

case hardly significant, but was noticed in other results also. The

uncertainty intervals are the confidence limits for the phase determin-

ation from the correlation function (cf. Appendix E) . Though small

this effect should be avoided by securing insulation of the thermocouples

from the specimen. The magnitude of the deviations was still smaller

for the thermal contact conductance measurements as the ratios of

amplitude were more modest.

The thermal contact conductance parameter measurements rely on the

ability to determine the deviations from linearity of the phase relations

and are thus less accurate than the diffusivity measurements. In Fig.

25 the measured contact conductances are plotted together with the

measurements reported in reference (15), which were the only measurements

found in the literature for the material pair used and with air as the

interstitial medium. It should be noted that the contacting surfaces

for which the contact conductances are reported in reference (15) were

much rougher than the ones used here, the rms deviation being 150 pin.

compared to 10 to 50 pin. used in this investigation. For surfaces of
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different roughness the difference of the contact conductance may amount

to up to one order of magnitude, as reported in reference (24).

A deficiency of the thermal contact conductance measurement program

was that no detailed information on the contacting surface waviness

was available. The surfaces were machined very carefully and no waviness

could be detected by measurements with a dial indicator at several points

on the surface. No satisfactory assurance is though given that the

surfaces were indeed flat. This fact does not imply that the results

for the thermal contact conductance are inaccurate but only that the

comparison with other experimental results is hindered.

A few experimental points evidently fall beyond the random error

of the measurements. These are the points for Al 3 - I 4, 320 psi

and Al 4 - I 1, 1540 psi. The documents of the experiments were reviewed

and it was found that the erroneous points were obtained from records

with considerable drift while in the other records the drift was negli-

gible. It should be noted that the expressions of the correlation

theory (Appendix E) are derived for stationary records and any drift of

important slope will cause disturbance in the phase relationships obtained.

Care should be therefore taken that the steady condition is indeed

obtained and maintained. The records should be inspected for drift and

the experiment repeated to avoid the rather uncomfortable posterior

rejection of erroneous points on the basis that they do not agree with

other results. One of the erroneous points (Al 3-14, 320 psi) was

obtained in an experiment where the matching of the specimen and guard



sleeve temperatures was poor (difference of 2 to 3°C) and the record

also contained some unstationarity , the latter probably being the main

source of error.

The experimental points show the expected trend of higher conduct-

ance for smoother surfaces and higher pressure. Also lower slope in

the conductance - pressure diagram can be expected for smoother surfaces,

as the measurements indicate.

The thermal contact conductance of all-aluminum pairs also falls

in the range of aluminum-iron results, as the hardness, roughness and

the method of machining the surfaces was close. The choice of the

parallel lay position is somewhat inappropriate as in this case the

contacting points are distributed in a quite different pattern than in

the cross-lay position.

Evaluating the results of the thermal contact conductance measure-

ments it can be stated that satisfactory accuracy can be achieved with

this method if sufficient care is taken to maintain stationary conditions.

The ultimate and not very remote limitation to accuracy may be in the

present experimental equipment, particularly in the method of analyzing

the records with the correlation computer. The adequacy of the method

for the thermal contact conductance measurements is further supported

by the fact that the reproducibility of the phenomenon itself is on the

order of 20 to 30% error, as estimated from various compilations of data

(10, 15.).
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9. SCOPE FOR FURTHER WORK

The method of thermal contact conductance measurement can be con-

sidered established and the investigation of the phenomenon itself

should be pursued. The method of temperature waves may be particularly

valuable in providing new insight in the directional effect in contact

conductance. In this respect a modification of the experimental apparatus

should be considered, which would allow steady state and temperature wave

measurements, with heat flow in either direction, obtainable without

displacing the specimens.

The present temperature record analysis system was found inadequate

for determining the amplitude relations of the records. A different

kind of data acquisition system might be considered, or the present one

improved. The sampling interval of the temperatures is several seconds

(in the present equipment 2.5 seconds) and the records are not excessive

in length, so that the digitizing of the thermocouple voltage output may

be appropriate and all further analysis performed in the digital form.

A precision analog-digital converter would be needed (digital voltmeter)

and a digital, computer readable, storage (magnetic tape).

Such arrangement could provide for more measuring points in the

specimens and monitoring of the temperatures outside the specimen. An

additional advantage of such system would be that the sampling could be

synchronized with the oscillation generating devices (heater and cooler)

and so an ideal reference record for correlation would be provided. Such

equipment could also be used for other experiments with temperature waves.
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APPENDIX A: Transient Response of Elemental Heat Channel

In the investigation of the phase change and the amplitude of the

reflected and transmitted waves at the interface of two solids a constant

heat transfer coefficient is assumed and no heat capacity is assigned to

the resistance. The resistance is due to the constriction of the heat

flow area and the flow lines are displaced to a certain distance from

the actual contact, so some thermal capacity may be associated with it.

In order to obtain the step input response of an elemental channel

with constriction resistance the shape of the heat flow channel is

approximated by the shape shown in Fig. 27, as suggested by Heasley (17).

In this approximation the area of the conical part increases with the

square of the distance from the apex of the cone. It is not implied

that the geometrical shape of the actual elemental channel is similar

to the one presented but only that the heat is assumed to flow

through a path that can be represented in this way. The transient

response of this elemental channel shall be compared to that of a

uniform channel (rod) with the step rise of temperature applied to one

end through a constant heat transfer coefficient (Fig. 27).

For the constant cross section channel the problem is formulated

as follows.

The governing equation is

a2l <*,t)
1 w(,.t)

3x
2 "a at CA-1)
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Figure 27. a. Constricted heat channel model

Figure 27. b. Constant cross section heat channel model with
input resistance.

Figure 27. Two models of elemental heat channel.
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where a = —— is the thermal diffusivity.
C
P
P

The boundary condition applied at x = is

-k
3T

f
X ' t) = h(T - T(x,t)) x = 0, t > (A-2)
3x o

where T is. the temperature level applied at t = 0, and h is the

heat transfer coefficient at the surface.

The initial condition is

T(x,0) =

and the other boundary condition

lim T(x,t) =

Applying the Laplace transform to the governing equation we have

^%^i = ^T(x,s)
dx

2
(A-3)

which has the general solution

T(x,s) = C e' a + C
2

/s /s
1= X

+ Ce""'^ (A-A)
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Since the temperature should be bounded for large x, C. = 0, and

application of the boundary condition at x - yields

kf£ c e~'
aX

= h(T /s - C,e"'
a

X

) (A-5)
I a 2 o 2

The transformed solution is thus found to be

T(x s)

hT
o

.*£ +

la
e

h)

(A-6)

The inverse transform of this expression can be readily obtained,

however this is not true for the next case and thus only a comparison

of the transformed solutions shall be made.

For the approximate constricted elemental channel (Fig. 27) it

shall be assumed that the heat flow lines in the conical part are

straight and diverge from the common origin on the axis of the heat

channel at x = 0. With this assumption we have a one dimensional

transient problem in the conical region also. The two governing

equations are

3
2
V(*,Q

+
2 3V(x,t) = 1 3V(x,t)

d < x < b (A_ 7)
. . 2 x 3x a 3t
3x

i>

2
T(*.t) . I Wfct) x „ b (A_ 8)

3x
2

°
3t
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where V is the temperature in the conical region.

The boundary and the initial conditions are

T(x,0) » V(x,0) =0 x > d

V(d,t) - T t >
o

V(b,t) = T(b,t) t >

|I(b>t)-f(b,t) t>0

lim T(x,t) =0 t > (A-9)

x-*»

The Laplace transformed equations are

1 d
2
(xV(x,s)) _ s

y (x m d<x<b (A. 10)
x ,2 a

dx

2-
d I(*' s) - - T(x,s) =0 b < x (A-ll)

dx
a

The solution of Eq. (A-7) satisfying the conditions (A-9) is

T d r c
i r

V(x,s) = -5- cosh([- (x-d)) + — sinh([- (x-d)) (A-12)
sx la x |a

and the solution of Eq. (A-8) satisfying the conditions Eq. (A-9) is

T(x,s) = C
2
e

,a
(A-13)
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Using the boundary conditions at x b to evaluate the constants C.

and C„ we obtain for the temperature in the uniform part of the rod

(temperature in the conical part being of lesser interest)

-f- (x-b)

l_de
T(x,s) =

sb[sinh(P (b-d)) + cosh(]^ (b-d)) - -±= sinh(fi (b-d))
I cc ia |s^ i

a

(A-14)

To compare this result with the one obtained previously we should

calculate the resistance of the constriction to a steady heat flow.

Under the same assumptions as stated before for the heat flow lines

the resistance due to constriction is

R . b£p» . 1/h (a_ i5)

If we expand the hyperbolic functions in Eq. (A-14) into series and

retain only the linear terms we obtain

T (x,s) =
<*><*-»

. (A-16)

s(
I?

+
blb^dT)

This expression is identical to Eq. (A-6) if the stationary constriction

resistance is substituted for the heat transfer resistance 1/h.

In order that the truncation of the series be acceptable the ratio

of the lowest order term neglected to the terms retained should be
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much less than one. We have the condition

£< d) « 2

s < ~ (A-17)

(b-d)
Z

Thus the time constant of the transient effect is of the order

t
t

.^ (A- 18)
trans. 2

A rough estimate of typical values for metallic contacts follows.

2 2
Using the ratio of apparent to real area of contact b /d = 100,

2
k = .2 cal/cm sec °C and h = .2 cal/cm sec °C, the expression for

the steady state resistance of the channel model with contraction

Eq. (A- 15) yields

b - d = 5—r = .1 cm
h b

2
Assuming for a a typical value for metals, .5 cm /sec, we have

t^ = Order (.1 sec)
trans

.

Since in the present investigations periods of oscillation have been

employed that are 3 orders of magnitude longer than this time it is

concluded that the measured contact conductance is identical to the

stationary conductance as far as the transient effects are concerned.
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APPENDIX B: Correlation Technique.

In the analysis of records containing random noise components, the

cross- and autocorrelation techniques have proven useful. Kith the

development of convenient hybrid correlation computers, the correlation

analysis of a much wider class of records has become possible, including

high frequencies of the communication technology, whereas before only

digitized records could be analyzed.

B.l Correlation Function Definition and Properties

Although actually discrete analysis is performed on records of

finite length, it is convenient to derive the theorems of the correlation

technique for continuous records and infinite length.

The auto- and crosscorrelation functions are defined as

t (x) - lim ~~ J f(t)f(t+t)dt (B-l)

t.-w i i

and

t.

1 *

. (t) = lim — / f(t)g(t+i)dt (B-2)
fe

t -h.
2t

i
_t

i

The functions f(t) and g(t) are the records under consideration and

t, the argument of the correlation functions, is the delay time. The

autocorrelation function is a measure of the similarity of a record

and its time delayed version, while the crosscorrelation function
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relates a given record to a time delayed version of another record.

The advantage of this procedure is to average the relationship between

the records over the length of the records and thus eliminate any

random fluctuations in either of them.

The relationship of the Fourier transform of the correlation

functions to the Fourier transform of the functions is of considerable

interest. The Fourier transform of the record is

F{f(t)} - f(M) -— /" f (t)e
lut

dt (B-3)

/2ir
-°°

The Fourier transform is a complex function of the frequency and

let it be noted here that

f (-11) - fCu)* (B-4)

where the asterisk denotes the complex conjugate.

Let the Fourier transform representation in Eq. (B-l) be substi-

tuted for the function f(t+x). Reversing the order of integration

and noting that

lira
2F"

;
_ t

f(t)e"
iUt

dt = lim 5— I(-6>) (B-5)
t.-w i i t.-"° i
1 x

the following result is obtained
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4»

ff
(T) = lira -^- f2jMl(-bi)e

lt0T
du (B-6)

t.-**3 i

and taking the Fourier transform on both sides

J{»
ff

(T)} = lim^|f(u)] 2
(B-7)

t .'-*» i

A similar result is obtained for the cross correlation function,

following the same steps

lim~ f (-u)g(a,) -— /*«- (x)e
luT

dT (B-8)

From these expressions the possibility of evaluating the frequency

response of a system is obvious. The frequency response function is

defined as

«W-*^ (B-9)

where g(tii) and f(a) are the Fourier transforms of the output and input,

respectively. Substituting into Eq. (B-9) according to Eqs. (B-7) and

(B-8) the following important result is obtained

, .-, v»2 F{i (t)}

iw F{
*ff

iT)}
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From the autocorrelation functions, only information on the amplitude

of the frequency response function is available, but from the cross-

and autocorrelation functions the complete (complex) frequency response

function can be obtained,

A case of particular interest to this investigation is the cross-

correlation of a harmonic function and a delayed function with the same

period.

Let f(t) = A sinwt

g(t) = B sin(wt-S) (B-12)

then

** to " ^T1 I I sinwt sln(ui(t+T)-6)dt (B-13)
fg 2t

f
-t,

Here the crosscorrelation of a limited record is considered, of the

length 2t .+t . Use of addition theorems for the harmonic function
l max

leads to

f
f to " irr~ f ..[sin cutCcosut costS + sinux sin5) +
8

i 1

+ sinwt coswt(sinojT cos6 - cosut sinS)]dt (B-14)

Note that

i 2 1
/ ,. sin lot dt = t. - -r~ sin2ut.
-t. i 2u i

l
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t.

/ sinut cosw.t dt = (B-15)
"

i

and the result is

. sin2(ut.

*fg
(T) =

(I "
tot

X)
AB cos(a)t-'s) <B_16 )

Thus the delaying angle 6 is preserved in the crosscorrelation function

as the lag of the cosine.

For the autocorrelation function it can be similarly shown that

. sin2ut. „

f
ff

(t) =
(i

—

^r^Acosat <B-17 >

for f (t) = A sin((ut+<5)

From the crosscorrelation and the autocorrelation functions both the

phase lag and the amplitude ratio can be determined, as shown before

for a more general case.

It should be noted that the square of the original amplitude

appears in the autocorrelation function. If the original record con-

tains several harmonic functions the ratios of their amplitudes in the

autocorrelation function is the square of the amplitude ratio in the

record. Thus a square wave with the period — , in Fourier series

representation

f (t) = A(coswt - -j cos2iot + t cos3ut - . . .) (B-18)
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has a sawtooth autocorrelation function, the Fourier representation

of which is

A
2

1 1
4 (t) —z (coswt + —s cos2ujt + —j cos3un + . . .) (B-19)

Thus the harmonic with the highest amplitude is emphasized in the

autocorrelation function.

The advantage of the use of the correlation function instead of

the direct investigation of the records (by frequency analysis) is

that the noise components are greatly reduced by the averaging process

of the correlation function computation, which requires much simpler

operation than the frequency analysis. This is illustrated in the

following analysis.

Assume a record containing a signal and a noise component

f(t) - s(t) + n(t)

the noise component being characterized by zero expectation of the mean

and certain total power (variance) . The autocorrelation function in

this case is

1 'i
i>

ff
(t) = lim j~ / * (s(t) + n(t))(s(t+t) + n(t+x))dt (B-20)

t.-*» i i

which reduces to the four terms
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i> (t) - * (t) + $ (t) + 4 (t) + * (t)
f f ss sn ns nn

(B-21)

If the noise is not correlated with the signal, the middle two terms

approach zero and only the signal and the noise autocorrelation

functions remain. For white noise and infinite integration time the

noise autocorrelation function is a {-function in i . For limited

lengths of the record and for limited bandwidth the autocorrelation

function of the noise is a decaying exponential. In the case of

crosscorrelation of a noisy record with a reference record that does

not contain noise there are only two terms

*„ (t) = * (t) + * Ct)
fg sg ng

(B-22)

and the noise component is eliminated more efficiently.

B.2 Discrete and Finite Correlation Function.

In practical applications only correlation functions of finite

length are obtained and most often in a discrete (tabulated) form.

From the detailed analysis of the limitations imposed by the finite

length of the correlation function (7, 8) two important conclusions

shall be cited.

The finite length of the correlation function reduces the Fourier

transform to the Fourier series analysis, with only discrete frequencies

present. These frequencies are at a distance Af = — if the total

length of the function is 2T. Two frequencies closer than Af cannot
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be distinguished.

The discrete nature of a correlation function renders it impossible

to distinguish between a frequency component and another component of

the related frequency from the series

f, 2kf
N
-f, 2kf

N
+ f, ... , k = 1, 2,

where f = 1/2At is the Nyquist frequency. To avoid the ambiguity

introduced by this folding process it is preferable that the amplitudes

of all components outside the principal frequency band, to f , be

negligible compared to those within.
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APPENDIX C: Analysis of Correlator Response

C.l Correlator Amplitude Response

For the analysis of the magnetic tape recordings of the thermo-

couple voltages a TMC Correlation Computer (Model 257, NE 1363) in

conjunction with the TMC Computer of Average Transients (CAT 400 C,

NE 1364) was used. In the preliminary investigations it was found

that the amplitude ratios obtained for the thermocouple voltage records

did not match the phase angle differences as expected from the theoret-

ical model. Since the phase differences agreed with the expected values,

the amplitude responses of the correlator, the tape recorder, the

recording and the playback circuits were investigated. The correlator

response was tested by three methods: autocorrelation of unbiased

square wave input, autocorrelation of unbiased sinusoidal input and

correlation of sinusoidal inputs with various bias voltages, periods

and correlator settings.

With the square wave input 17 runs were performed with flat-to-

flat amplitude ranging from .162 V to 5.57 V, the maximal permissible

input voltage of the correlator being + 3 V. The square wave was

generated by an oscillator (Krohn-Hite Oscillator, Model 400 C, NE 1343)

and the flat-to-flat voltage was determined by a precision voltmeter

(Keithley Electrometer 600 A, NE 906) . The frequency of the oscillator

was .148 Hz and the correlator settings were: A*A (autocorrelation),

128 points, multiplier 16. Timing was manual and an integration time

of 2 minutes was used.
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The autocorrelation function obtained was fitted by the analytic

form

y = a
o
+ a

1
(-l)

lnt(2x/a
2)(l-(2x)moda2 ) (C-l)

where a is the constant component, a., the amplitude and a
?

the period

of the sawtooth function. The sum of error squares was minimized by a

general multivariable function minimization code. Subsequently this

code was found to be too slow to be used for the least squares analysis

with several parameters and the code described in Appendix F was developed

for the analysis of the experimental data.

The results of the square wave tests are plotted in Fig. 28. On a

linear plot some nonlinearity was visible and indeed on the log-log plot

the experimental points seem to define a line with exponent (slope) 1.085.

The slope was determined graphically and no further analysis was performed.

as the square wave input is not representative of the records analyzed

on the correlator.

A second set of correlator amplitude response tests was performed

using a sine wave input generated by the oscillator (same as above). The

input amplitude was again measured by the voltmeter. 15 tests were

performed with identical inputs and 8 tests with different amplitudes

to the two correlator inputs. The correlator settings were: A*B

(cross-correlation), 128 points, multiplier 16. The period of the

input oscillations was 10 seconds. The correlator output was analyzed

by the program described in Appendix F and the results are plotted in

Fig. 29.
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Figure 28. Correlator amplitude response. Square wave input
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Figure 29. Correlator amplitude response test. Sine »«ave input.
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Note that the product of the two input amplitudes is used as the

abscissa and the correlator output amplitude as the ordinate, in Fig. 29.

The square roots of these quantities are related for the first correlator

test.

The nonlinearity is again evident. To determine whether it is

significant a regression analysis for 13 runs with equal input (auto-

correlation runs) was performed. Two models were fitted to the data points,

Model A

y = a x
2

(C-2)
J o

Model B

y = a x
al (C-3)

* o

where y is the correlator output amplitude and x is the input voltage.

A simple computer program Was devised for the sum of squares minimization

for the nonlinear model B. For model A the least sum of error squares

was found to be 2.34 x 10 (arbitrary units) and for the model B with

exponent 2.172 the sum of squares was 3.34 x 10 . The 99% confidence

margin around the smaller sum of squares is 3.88 x 10 and thus the

difference in exponent can be considered highly significant. At the

same time the spread of the points around this curve is small enough

that the amplitude information could be used for the measurements. Yet

the eight test runs with different inputs were considerably off the

line fitted to the autocorrelation points. Invariably the points for

runs where correlator input B had higher amplitude than A are above the
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line and vice versa. Note the very good agreement between the exponent

obtained in this test and the one obtained graphically for the square

wave input tests (2.172 versus 2 x 1.085).

To establish a relationship which would take into account the

effects of inputs A and B separately, a third series of tests was per-

formed. To each input various bias voltages were applied and two

periods of oscillations, two correlator settings and two integration

times were used. The input amplitudes as the main variables of investi-

gation and the background variables xrere randomized for the 30 test runs

performed. The oscillator was used to generate the sinusoidal input

voltage and the exact ratios were obtained on the analog computer, the

components of which are within .1% tolerance. The results of the tests

are plotted in Fig. 30. The abscissa is the product of the two input

voltage amplitudes and the ordinate is the correlator output amplitude.

The correlator output was analyzed with the computer program described

in Appendix F.

A very wide spread of the test results is evident. Although some

spread was expected from the results of the previous test for different

amplitudes of the two correlator inputs, a detailed inspection reveals

that it is due here not only to the different response of the two inputs

but also to a considerable extent to the other variable conditions in

the tests. In Fig. 31 the 10 test results are plotted for which the

product of the two input voltage amplitudes was 1. The spread within

the group of four tests where B input was 2 volts is more than 10%,

which is much in excess of the tolerable error. The bias voltage seems
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Figure 30. Correlator amplitude response. Randomized sine inputs.
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Figure 31. Correlator amplitude response. Sinusoidal inputs, product
of voltage amplitudes =1.
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to be quite important though not the only influence involved. No simple

correlation between the parameters is evident and even if a satisfactory

model would be developed it would be very difficult to apply it as in

the experimental temperature records the bias is variable for both inputs.

At this point it was concluded that the amplitude information

obtained from the correlations of the experimental records cannot be

relied upon and only the phase information was used in the experimental

data analysis.

C.2 Response of Individual Correlator Channels.

A number of correlator outputs from the experimental records were

analyzed and it was observed that the randomness criterion for the

residues (cf. App. F 2.7) was rarely met. The residues were plotted

and a recurring pattern was observed, similar to the correlator bias

response, Fig. 24, obtained later. Since the prominent features of

the residuals pattern are easily identified with certain correlator

channel numbers the effect was attributed to the correlator. Several

tests were performed with a constant voltage as the input of the

correlator. The correlation function had the shape as presented in

Fig. 24, and not only was the general trend repeated in different runs

but also the fine detail of the function, i.e. the fluctuations of the

output for individual channels is not random but due to some character-

istics of the equipment. Further it was found that the amplitude and

the sign is correlated with the input A. It is guessed that the cause

of this unevenness is in the temporary storage for the input A, as this
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is the input that is delayed by the correlator. The amplitude of

the largest deviation from the mean horizontal line is approximately

-3
.7 x 10 of the norm count for a 1 V bias voltage input.

For further analyses of the correlator outputs this correlator

background function was incorporated as one of the component functions

in the least square fit in the code described in Appendix F. The

correlator background function is found to be a statistically signifi-

cant component of the correlator output in a great majority of cases.

A correlation also exists, as expected, between the mean deviation

from the norm count and the correlator background function coefficient.

In approximately 25% of the cases the randomness criterion for

the residues after the least squares analysis (cf. App. F 2.7) is still

not satisfied. A possible reason for this may be that the background

function is also nonlinear ly dependent on the bias of the input.

C.3 Accuracy of Phase and Period Determination,

The accuracy of the phase angle determination from the correlator

output can be estimated from the phase angle found in the correlator

tests, where the inputs were of the same or opposite phase with no

lag. Of the 30 tests in the last group of correlator tests (see

preceding section) 18 were with opposite phase and 12 with phase 0.

The mean deviation from the expected value was .00291 and .00107,

respectively for the two subgroups, and the standard deviation estimates

were .00410 and .00506. It can thus be concluded that the phase angle

error shall exceed .01 radians or approximately .5° in less than 90%

of the cases

.
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The least squares analysis of the correlator output sometimes

gives narrower confidence limits, down to .001 rad, but this only

indicates that the data define the angle with that precision and not

that these are the limits within which the real angle is located with

the specified probability.

To determine the accuracy of the delay increment timing of the

correlator a test was made with square wave input. The period of

oscillation of the square wave was measured with an electronic timer

(Eckman Time Interval Meter, Model 7250R, NE 763). The measured

period of the input was compared to the period of the autocorrelation

function. It was found that the correlator delay timing is 1.5 to 2%

slow, i.e. the delay increments are that much longer than specified.

In present measurements the period of the temperature oscillations

was determined by the synchronous motor speed and the gear ratio and

not from the correlator output.



112

APPENDIX D: Analysis of the Recording Circuit, Playback Circuit and

Tape Recorder Response.

D.l Recording and Playback Circuits.

To eliminate high frequency electronic noise, filtering circuits

were used during recording of the thermocouple voltages and during

the record analysis. The signals were also amplified both during

recording and during analysis. For the filtering and amplifying

circuits the components of an analog computer were used (Electronics

Associates Co. PACE TR-10 , HE 816). The resistors and the capacitors,

which determine the amplification and the time constants are guaranteed

to be within .1% of the nominal value. Measurements of the resistance

of the resistors showed even less deviation between individual parts.

The schematics of the circuits are shown in Fig. 32.

The filtering function is performed by an integrator with resistance

in the feedback loop. The transfer function of such a circuit is

U R,/R.
-^ = f 1

(D-l)

U.
E
f
c
f
s+1

where index f denotes feedback and i input components. The direct

current gain of such filter is R
f
/R. and the break frequency (angular)

is u
b

= R
f
C
f

.

In the recording circuit two filtering units were used, with the

following eler.ents:
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Figure 32. a. Recording filtering and amplifying circuit.

RECORDER

[\l^I 20

TO CORRELATOR

Figure 32. b. Playback filtering and amplifying circuit.

Figure 32. Filtering and amplifying circuits.
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C - 10~5 f

R
f

= io
5

a

r. - 10 a

Thus the filter had a 10 fold amplification and the time constant

was 1 sec, the corresponding break frequency is id, = 1 sec , f = .159 Hz.

The record was played back at 16 times the recording speed and the tape

output was passed through another filter with time constant .05 sec

1 in - 1 f
1

B. « 20 sec , f„
b £

(break frequency ay » 20 sec" , f. = 3.18Hz). At the recording speed

this would correspond to a break frequency a, - 1.25 sec , f, = .198 Hz.

The shortest period of the temperature oscillations used was 1.92 minutes,

which corresponds to a frequency of .0087 Hz and is more than a decade

below the break frequencies, in the region where the response can be

considered the same for all practical reasons as for direct current.

More important than the absolute lag caused by the filtering circuits

is the difference between the circuits. A test was performed to determine

this. A sinusoidal voltage was passed through the four parallel recording

circuits, recorded and the record analyzed on the correlator. To simulate

the actual conditions, different amplifications were used in the four

3 5
circuits, ranging from 10 to 10 , the input signal being previously

appropriately reduced for each circuit. The correlator outputs were

analyzed by the computer program described in Appendix F. The phase angle

determined was in all cases within .008 radians (approx. .45°) from

or i, depending on the sign of the record. This is within the limits of

the accuracy of the phase angle determination from the correlator output

(cf. section C 3.). The recording and playback circuits, and the tape recorder
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thus do not seem to add any error to the phase between the Inputs.

The limits of accuracy for the electronic equipment presently used

can be considered .01 rad or .5°.

D.2 Tape Recorder Amplitude Response.

In the examination of the results of the circuitry and the tape

recorder phase angle accuracy it was noticed that the amplitudes of

the correlation functions were not identical as they should have been.

As a possible source of the incongruence the tape recorder amplitude

response was investigated. A sinusoidal voltage was introduced to the

inputs of the four recording channels. The autocorrelation function

of each record was obtained and subsequently analyzed with the computer

program. The results are presented below.

Tape recorder Normalized autocorrelation Square root of

channel function amplitude normalized amplitude

1 .03550 .188

2 .04600 .214

3 .04640 .215

4 .0496 .222

The differences are due to the imperfect condition of the recorder

data converter circuits. The weaker gain of channel 1 was observed

early in the course of investigations, but the repair was not possible as

the malfunctioning component substitute was not available. The imperfec-

tion of the tape recorder further justifies the decision not to attempt

to use the amplitude information of the temperature oscillations.
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APPENDIX E: Regression Analysis

E.l Least Squares Principle

Of several possible criteria for obtaining a "best" fit of an

analytic curve to a set of data points the least squares principle is

most often applied. In the case of normally distributed errors the

curve fitted in this sense is the curve of maximal likehood, as can

be seen from the following (14)

.

Assume that the errors of a sample y , y_, . . . ,y , corresponding

to the independent variable vectors X , X_, ... X from the time

values are random with expectation zero, with no correlation (covariance

2 2
matrix is diagonal V(e = la ) and normally distributed, e-N(0,Ia ).

The likehood function for the sample is in that case

P(yr y 2 , .... y ) - H \/2 ^^V 2^ =

i=l 0"(2n)

1

exp(-e
T
e/2o

2
) (E-l)

o (2?r)

The maximum likehood estimate of an analytical model is thus the

one that minimizes the sum of squares of the differences between the

observed values and the predicted values. If there is reason to believe

that the errors have a different distribution than normal other criteria

for the maximal likehood estimate can be obtained.
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E.2 Least Square Determination of Linear Parameters

A set of observations is given, y. , y„, . . . , y

and the assumed analytical model is a linear combination of k functions

of the independent variables

y(x) = b
x
Z(x) + b

2
Z(X) + . . . + b

k
Z(X) (E-3)

The problem of finding the values of the linear constants b is one of

solving the system of equations, in matrix notation

w w W"W Z
2
(X

2
) W

W W z, (x ) b, yk n k '" (E-4)

Zb = y (E-4a)

In the practical cases when the observations y. are subject to

errors the number of the observations should largely exceed the number

of the parameters to be determined and we have an overdetermined incon-

sistent system. A consistent system is obtained by adding an error

vector,

Zb = y + e (E-5)



and the solution of this overdetermined system shall be sought in the

least sum of square errors sense.

The sum of squares of the errors is

e
T
e = (Zb-y)

T
(zb-y) = b

T
z
T
Zb - y

T
zb - b

T
z
T
y + y

T
y

The necessary condition for a minimum is that all the derivatives

according to individual parameters are equal to zero

T
3(

^b

e)
-

t
0, 0, ...,0, 1, 0, ...,0jZ

T
Zb + b

T
Z
T
Z,0, ...,0, 1, 0,
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the

(E-6)

,.,0j
T

- 2^0, ..., 0, 1, 0, .... 0jZ
T
y = (E-7)

The k such equations for the parameter vector b at the point of minimal

sum of squares can be assembled into a new matrix equation

Z
T
Zb = Z

T
y (E-8)

T
If the square matrix Z Z is not singular we have the solution

b
Q

- (Z
T
Z)

1
Z
T
y (E-9)

which satisfies the system Eq. (E-4) in the sense of minimizing the

sum of squares of the errors. At this point the standard deviation

of the errors can be estimated, the unbiased estimate being
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s
2

= e
T
e/(n-k) (E-10)

To check the validity of the assumed analytical model the errors

(residues) should be tested. If the errors are not random the analy-

tical model Eq. (E-3) is not appropriate.

E.3 Confidence Limits of the Parameters

If the errors are distributed normally the F-test is applicable

to the sum of squares of the errors. The minimal sum of squares of

the differences between the observations and the analytical model points

is compared to the sum of squares of the differences between the least

square analytical model (parameter vector b ) and the analytical model

with a different parameter vector, b.

Here the error sum of squares of the observations around the least

square solution has n-k degrees of freedom and the additional sum of

squares of a compared fit has k degrees of freedom (n being the number

of data points and k the number of parameters in the model equation)

.

The two sums of squares are defined as

ss(b|b
o
) = (y[b] - y[b

Q
])

T
(y[b] - y[b

Q
]) = (b-b

o
)^

T
Z(b-b

Q
)

(E-ll)

SS(b ) = (y-y[b n ])
T
(y-y[b

n ])
- (y-Zb )

T
(y-Zb) (E-12)

where y are the observed values and y (b ) and y.(b) are the values

predicted by the model with different parameter vectors. The criterion
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for the nonsignificance of the additional error sum of squares at the

(l-o) confidence level is

SS(b]b )/SS(b ) < k F,
n

,(k,n-k)/(n-k) (E-13)
1 o o - {!-&)

This relation can be expressed as

(b-b )

T
Z
T
Z(b-b ) < (Zb - y)

T
(Zb -y) k Fn . (k,n-k)/n-k) = ASS

o o - o o {±-aj

(E-14)

In the k- dimensional space of the parameters b . the relation defines

a region inside which the actual parameter vector is situated with the

specified probability, on the basis of the information contained in the

data. The equality sign defines the confidence region limit. As we

have a quadratic form on the left side the form of the confidence

region is a hyperelipsoid. For visual presentation the case of two

linear parameters shall be used (Fig. 33).

The confidence region is fully determined by the vector b, the

T
matrix Z Z and the confidence margin of the sum of squares, ASS. For

each individual parameter a confidence interval can be obtained. The

confidence interval for each parameter can be defined either as the

width of the elipsoid on the line parallel to the axis of the parameter

(points C and D in Fig. 33), or by the "support plane" distance, i.e.

by tangential planes on the elipsoid (points A and B) . The later defin-

ition is more suitable as such interval contains the whole range that

the parameter can assume within the confidence region. The two intervals
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coincide when the principal axes of the elipsoid are parallel to the

T
axes of the parameters, i.e. when the matrix Z Z is diagonal (the functions

Z.(X) are orthogonal). Note that the support plane confidence limits

should not be applied simultaneously to several parameters, e.g. point

E in Fig. 33 lies outside the confidence region though both parameters

are within the confidence intervals.

The extreme value of a parameter on the confidence region boundary

is reached in the point that satisfies Eqs. (E-15) and (E-16) . The

equation of the confidence region boundary is

(b-b )

T
Z
T
Z(b-b ) - ass (E-15)

o o

and the partials according to other parameters are

a/3b.[(b-b )

T
Z
T
Z(b-b )] = i = 1, 2, ..., k lft

1 o o

(E-16)

After differentiation k-1 equations are obtained

t
0, 0, .... 0, 1, Oj Z

T
Z(b

mj
-b

Q
) - CB-17)

where the only element different from zero in the first vector is at

position j

.

Substituting these equations into Eq. (E-15) we have

,0, ..., 0, b. ., - b., 0, ..., 0, Z
T
Z (b ,-b ) = ASS (E-18)

1
j ,mj j

i mj o
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We can treat the equations for the support plane points of all parameters

together by forming a matrix equation

bl,mr
b
l,0

b
2,m2-

b
2,0 •

. . Z
T
Z b -b

ml o
b . -b
mk o

b
k,mk"

b
k,0

ASS ' I (E-19)

where b indicates the parameter vector at the support plane point for

parameter i and b. . indicates the value of parameter i at such point.r 1,511

Multiplying by corresponding inverses and noting that the multipli-

cation with diagonal matrices is commutative we obtain

b .-b
ml o

b ,-b
mz o

b ,-b
mk o

b
-i i~b i n °l,ml 1,0

2,m2 2,0

b
k,mk"

b
k,0

(Z^)
1

ASS CE-20)

We are at this point interested only in the confidence limits of the -

individual parameters and not in the parameter vectors in the support

plane contact points. For the confidence limits of the individual
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parameters we have

(b. ,-b. „) » c. .ASS
1,1111 1,0 1,1

(E-21)

t-,.1
where c is the diagonal element of the matrix (Z Z) . The half

width of the support plane confidence interval is

b
4

.-b. . - [c. .e
T
e k F n ,(k,n-k)/(n-k)]

1/2
(E-22)

i,mi 1,0 1,1 (1-a)

E.A Linearized Confidence Limits for Nonlinear Parameters

The model which is fitted to the observed data may contain nonlinear

parameters. The matrix method described above is not applicable for

finding the least squares solution nor is the method for obtaining the

confidence limits. However the model function can be expanded in a

Taylor series and only the linear term retained if the confidence region

is small enough that this approximation is sufficiently accurate. The

additional error due to the deviation in the parameters is then given by

3b
x

tX
l

J
3b

2
"V

db
x
°V 3b

2

lV

fh <XJ9b- n 3b n

k

^- (x )
3b,

lV
k

&- (x )
3 b.

Un
J

k

(b-b ) = P(b-b )

(E-23)
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T T
and the additional sum of squares is (b-b ) P P(b-b ). The approximate

confidence region is limited by the surface

(b-b )

T
P
T
P(b-b ) = ass (E-24)

A similar procedure can be followed in determining the support plane

confidence interval as in the linear case and the result

(b. .-b, J = Y. .ASS
J.mj j,0 'j,j

(E-25)

T I
is obtained, where y . . is the diagonal element of the matrix (P P) .

J.J

2,m2+

2,m2

Figure 33 . Parameter confidence region for two linear parameters

.
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APPENDIX F. Correlator Output Analysis Computer Program

F.l General

From the correlator output the prominent harmonic component is

to be obtained, as well as its amplitude, phase, period and possibly

higher harmonic components with periods that are multiples of the

fundamental harmonic period. Because the records also contain some

drift, usually nonlinear, and furthermore since the response of

individual channels of the correlator is not uniform (cf. Appendix C)

,

the appropriate analytic form which has to be fitted to the correlator

output is

npoly-1

y, - K + > b.PVx.) + b , F , (x.) +7 i -1 1=1 3 J i npoly cb l

nharm . . .

V r. 2TT-1X1
, , - 27TJX-: , /^ i \

> [b , ,
.cos —-J-*-

+ b sin —J-3-
] (F-l)

' npoly+j t
Q

npoly+j+1 t
Q

where P'. (x.) is a polynomial of order j and F , (x.) is the correlator

bias response function. The Legendre polynomials, approximately

orthogonal on the sample points, are used, though this does not simplify

the computation as the least squares fit is obtained by the matrix

method.

One parameter in the expansion appears nonlinear ly, the period of

the fundamental harmonic, t . If several nonlinear parameters were
o *

involved a general sum of squares minimization algorithm would have to
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be used (14, 23), but with only one nonlinear parameter, a simpler

and faster method can be applied.

The input data is considered to be an equidistant table of

functional values, and only the ordinate at each point is supplied.

The abscissae are generated and associated internally with each data

point. This is necessary because erroneous points are rejected by

the code and the data set is no longer equidistant.

The code features the ability to determine the initial guess for

the prominent frequency period. The initial guess has to be close

enough to the true value as otherwise a local minimum of sum of squares

may be obtained instead of the desired solution. The recognition of

the prominent harmonic is possible even if several erratic points are

present or if due to general slope the local extremes of the harmonic

component are inconspicuous.

Erratic points in the correlator output are often observed, due

to malfunction of the electronic components of the correlator or in

the transfer of data. The residuals of the least squares fit are

checked and each of them compared to the standard deviation estimate.

If the sum of squares of the residuals above a present value (3.291a

for 99.9% confidence level) exceeds half of the confidence limit

margin such points are rejected and the fitting of the analytical

model repeated.

The residuals are subsequently checked for randomness and the

result of the check is displayed.

Ultimately the confidence limits for the parameters are calculated.
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For the nonlinear parameter only the linearized confidence limit

estimate is obtained. For the harmonics the amplitude and the phase

angle is calculated as well as the confidence limits for the phase

angle. The parameters correlation matrix is also displayed.

Several additional output options are available, various matrices

can be displayed during the least squares analysis and the residuals

can be punched on cards for further analysis.

Details of the algorithms employed are given below. The program

is written in FORTRAN IV and double precision has been used throughout.

F.2 Code Description

The program provides for the maximum of 15 parameters. If the

number of linear parameters alone is 15 the confidence limits estimate

for the nonlinear parameter is not available. The present coding

provides for a maximum of 256 input data points

.

The code is composed of the following programs

Name No. of FORTRAN statements

MAIN 232

LINLSQ 46

ZXIIN (ZXI) 35

ANGLE 8

XIMIN 90

PFRE 77

RCKECK 32

REJECT 36
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Name No. of FORTRAN statements

WMAT 55

MATINV 76

Total 687

FORTRAN library subroutine TIME is called for timing of the execution

of each case. The program was tested and operated on the KSU IBM 360/50

system.

F.2.1 Main Program

The arrays used in the program are dimensioned to allow up to 256

points and up to 15 parameters.

The batch and case data are read as specified in the section F.3.

According to the specified value of the variable NPREL the REJECT and

PFRE subroutines are executed or skipped. If NPREL is larger than one

all portions of the main program are executed, as described in the

following.

Segments of the input data table of length KPTRE are submitted

to the subroutine REJECT for inspection for erratic points. For the

first quarter of the first segment the rejection normal deviate is

set at 1.96 (95% confidence). In subsequent steps only the rejection

of the middle two quarters of the segment is effective, at the 99%

confidence level, and the segments overlap to cover the whole length

of the data series. In the last quarter of the last segment the

rejection is again effective at 95% confidence level.

Subsequently, if NPREL is specified greater than 1 a least square
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polynomial of the order NPKEL-1 is subtracted from the data series.

Matrix method for the calculation of the least squares polynomial is

used. This option is provided to enable the recognition of the

prominent harmonic even if it is superimposed on a steep slope. In

such case there may be no local maxima, on the basis of which the

subroutine PFRE calculates the initial guess. After the subroutine

PFRE is invoked the original data series is restored for further

processing.

If NDUMP is specified larger than one only points with index

divisible by NDUMP are retained. This truncation of data enables

faster calculation and often the precision lost is not crucial.

The polynomial columns of the matrix Z, their number specified

by NPOLY + 1, are initialized for the points that were not rejected.

The independent variable (lag time) is transformed so that the data

points are on the interval -1 to 1. Column 2 of the matrix Z contains

the value (i-n/2)/(n/2) where i is the index of the data point and n

is the number of the data points. This column provides the argument

for the calculation of the harmonic function in the subroutine ZXIIN

(ZXI) . The other polynomial columns of the matrix Z are initialized

with Legendre polynomials, which are approximately orthogonal on the

discrete set of points in the interval -1 to 1. If IDEBUG is divisible

by 29 (cf. F-3.1) the column NPOLY+1 is initialized with a special

function which has to be provided as input data for the batch of cases.

This provision enables inclusion of the correlator bias response

function as one of the components of the correlation function expansion.
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The harmonic functions columns are initialized by the subroutine

ZXIIN (entry 2X1).

The minimization of the sum of squares by adjusting the period

of the fundamental harmonic is performed by the subroutine XIMIN and

the parameter vector and the vector of the residuals is returned.

The check for randomness of the residuals is performed by the subroutine

RCHECK.

For the determination of the confidence limits of the parameters

the matrix of the partial derivatives of the fitted function according

to the parameters is formed (cf. section E.4). The partials according

to the linear parameters are the values of the component functions and

only the derivative according to the nonlinear parameter, the period

of the fundamental harmonic, is to be calculated. If the number of

linear parameters is equal to the maximal dimension of the array Z

(presently 15) the confidence limits for the nonlinear parameter are

not available. The confidence limits are determined according to

Eq. (E-22) . The Fp
t
.„(k, 120) values are supplied as the code data,

where k is the number of parameters, 1 to 15.

The residuals are checked for erroneous points. The rejection

level is set at 99.8% confidence (normal deviate 3.09) and the criterion

for repeating the least square analysis is the sum of squares of the

residuals above normal deviate 3.291. If this sum exceeds half of

the sum of squares confidence margin at 95% confidence level (Eq. (E-14))

the calculations are repeated.

The amplitude of each harmonic is calculated from the cosine and
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sine expansion parameters, as well as the phase lag in radians and

independent variable increments (lag units), so that the harmonic can

2tt
be represented as A cos (— x~<j>), A being the amplitude and <f the

o

phase lag. If the confidence interval of both components of the

harmonic (cosine and sine) includes the origin the amplitude is

considered insignificant and is not calculated. A pessimistic estimate

of the phase angle confidence limits is obtained by taking the larger

of the confidence intervals of the two parameters at the distance of

the amplitude of the harmonic as the angular confidence interval.

T IThe parameters correlation matrix is the matrix (P P) , where P

is the matrix of the partial derivatives, Eq. (E-2 3), normalized so

that each row and column is divided by the square root of the diagonal

element. If the component functions are mutually orthogonal on the

given set of points the parameter correlation matrix is a unit matrix.

Subroutines needed by this program are listed above and their

description is given in the following sections.

The output format is illustrated by two sample outputs presented

in sections F.6 and F.7. The effect of the IDEBUG options on the

output is described in section F.3.1.

F.2.2 Subroutine REJECT

Given a vector of equidistant functional values of the length

M (maximum 50) the subroutine REJECT constructs by the matrix method

an approximation polynomial of the specified order N-l (N maximum is

10) . The deviations of the input data points are compared to the
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standard deviation estimate for the deviations around the approximation

polynomial. If the ratio exceeds the specified value (FSS) the data

point is set equal to zero, otherwise it is set equal to one.

If in the subsequent references of the subroutine the length of

the functional value vector and the order of the polynomial are the

same the matrix operations of the least squares fitting are not repeated.

Subroutine MATINV and subroutine package WMAT are referred by

this subroutine.

F.2.3 Subroutine PFRE

Given a vector of equidistant fur.ctional values the amplitude,

phase and period of the prominent frequency is estimated. Local

maxima and minima of the function are determined, the criterion being

that a given point is higher (lower) than any of the four neighbouring

points on either side. The most frequent distance between adjacent

maxima and minima is taken as the estimate of the period. Phase is

determined from the location of the extremal points and the amplitude

estimated as one-half of the difference between the average of the

maxima and minima. In order that the subroutine be effective the

maxima must be recognizable and any erroneous points, which may be

mistaken for extremes must be identified. The functional value vector

must be previously scanned by the REJECT subroutine and if overall

slope is excessive a polynomial has to be subtracted.

F.2.4 Subroutine XLMIN

In this subroutine the minimization of the sum of squares for the
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nonlinear parameter, the period, is performed. A good approximation

for the period has to be given, sufficiently close to the- minimizing

value. Two points are chosen, one on each side of the guess at the

distance 6 , the convergence criterion for the period. Sums of squares

are calculated for all three points by the subroutine LINLSQ, as well

as the least squares parameters vector and the residuals. The dependence

of the sum of squares on the period is approximated by a parabola through

the three points. The point at the bottom of the parabola is taken as

a new guess and the point with the maximal sum of squares is rejected.

The first two criteria for convergence are:

!• (x.~X-) < 1j X being the deviation of the period estimate from the

initial guess in the units of 5 , the convergence criterion

specified on the case input or assigned by default (.05 delay

increments) in the calling program.

2. (SS(Xi ) - ss (X.)) max
< <5

f
ASS kF

(1_a)
(k,n-k)/(n-k) i.e., the maximal

difference of the sums of squares must be a fraction of the confi-

dence limit margin. 6__ is specified in the case input or assigned

by default (6 = .05) by the calling program.

When these convergence criteria have been reached it is further

required that the middle point in x be the one with the lowest sum of

squares. The three point set is moved till this is achieved. Thus

satisfactory assurance is given that the minimum point has been enclosed.

By specifying 19 as a factor in IDEBUG this last convergence criterion

is omitted.

The optional printouts from this subroutine are listed in F.3.1.
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Following subroutines are called by this subroutine: ZXIIH (entry ZXI)

,

L1NLSQ, MATINV and the subroutine package HMAT.

F.2.5 Subroutine ZXIIN, ZXI

The columns of the matrix Z containing the trigonometric functions

are adjusted to the current period of the fundamental harmonic. To

save computing time, sine and cosine values are computed directly for

each 10 point on the equidistant scale and for the intermediate

points the values are calculated by the addition theorem formulas. As

the matrix Z does not contain all the equidistant points the value in

the column 2 of Z is used as the argument of the harmonic function

(see section F.2.1 on the values in polynomial columns of matrix Z).

The subroutine is dimensioned for the maximal size of the matrix,

Z is 256*15.

F.2.6 Subroutine LINLSQ

Given a matrix of the values of the component functions and the

observed values to be fitted by a linear combination of the component

functions, the vector of linear parameters (coefficients of the component

functions), the error vector (residuals) and the sum of squared errors

are calculated. The matrix method is used, as described in Appendix E.

The subroutine arrays are presently dimensioned for up to 15

parameters and up to 256 observation points, i.e. the maximal dimensions

of the Z matrix are 256*15. According to specified IDEBUG values at

each execution of the subroutine the arrays 2,1 1,(1 I) and the error

vector can be displayed.
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1.2.7 Subroutine RCHECK

The randomness of the residuals is tested by a "run" test; the

number of uninterrupted sequences of residuals of equal sign is compared

to the expected number of such sequences if either sign would be equally

probable for each residual.

If r is the number of runs and n is the number of residuals we

have (20)

:

Expected value

E(r) = (2n-l)/3 (F-2)

Variance

V(r) = (16ii-29) /30 (F-3)

The distribution approaches the normal distribution for large n. Normal

distribution is assumed and if the normal deviate is less than 1.645 the

randomness is not rejected at the 95% confidence level.

F.2.8 Subroutine package KMT

Matrix operations are performed at various entry points of the

subroutine. Variable dimensions of the arrays can be used and the

dimensioning is compatible with the WATFOR compiler.

F.2.9 Subroutine MATINV

Matrix inversion, solution of a system of linear equations and

the calculation of the determinant value are performed by the subroutine.

The variable dimension feature is incorporated. The subroutine was
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written at Argorme National Laboratory.

F.2.10 Function ANGLE

The angle in radians in the range -.436 to 2ti-.A36 is returned,

given the non-normalized cosine and sine components as the arguments.

F.3. Input Preparation

The data deck consists of the initialization data, case data sets

and end-of-batch data.

F.3.1 Initialization Data

Item 1.1 Format 2013; FORTRAN label IDBG(I), I 1,20

Product of IDBG(I) is formed (default for each IDBG(I) 1)

and tested in the code for the content of a particular

prime factor. The prime factors have the following effect:

2 The polynomial part of matrix Z is printed in the main

program (once)

.

3 Matrix of derivatives, P, is printed by the main program

(once)

.

5 Matrix Z is printed at each entry in subroutine LINLSQ.

T
7 Matrix Z Zis printed at each entry in subroutine LINLSQ.

T I T-7
11 Product (1 Z) (Z Z) is printed at each entry in subroutine

LINLSQ (check for inversion accuracy).

13 Error (residuals) vector is printed at each entry in

subroutine LINLSQ.

17 Values of XINEW and FINEW in subroutine XIMIN are printed
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at each computation,

19 Third convergence criterion is omitted for exit from

XIMIN subroutine (cf. section F.2.4).

29 A special function is introduced to the matrix Z in the

column NPOLY + 1, the function thus becomes one of the

component functions for expansion of the data set. If

this option is specified the data cards containing the

functional values of the special function must follow.

Items 1.2 to 1.30 Format 6X.9I8; FORTRAN label CORBG(I), 1=1, 256

These data cards are to be supplied only if IDEBUG , ,. = 0.

The values of the special function are to be supplied,

preferably the range of the values should be -100,000 to

100,000, which is internally transformed to the range -1 to

1, to make the function comparable in norm to the Legendre

polynomials and the circular functions.

F.3.2 Case Data

Item 2.1 Format 20A4; FORTRAN label A(I) , 1=1, 20

Title of the case. Columns 77-80 should be left blank as

the text 'BIS' is introduced when a portion of the calcu-

lation is repeated after deviate points are removed.

Item 2.2 Format 7I3.2D10.0; FORTRAN label N.NPOLY, NHARJ1, NPTRE,

NORRE, NPREL, NDUMP, NDPER, DFI
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N Number of data points. If equal to zero computation

is stopped.

NPOLY Order of polynomial to be fitted. If IDEBUG ,„„=r ' mod29

the highest order of the polynomial is reduced by one

and a special function is introduced instead. See

above for necessary change in input data. Default

NPOLY = 3.

NHAP1! Number of harmonics. Number of associated linear

parameters is 2*NHAKM. Default NHARM = 3.

NPTRE Number of points in a section on which rejection of

erroneous points is enacted. Default NPTRE = 16.

NORRE NORRE-1 is the order of the approximation polynomial

used in rejection of the erroneous points by sections.

Default NORRE = 4.

NPREL NPREL-1 is the order of the polynomial to be subtracted

from the input data prior to the estimate of the prominent

harmonic. If NPREL is less than 1 no action is undertaken.

If NPREL is less than zero the period of the previous

case is used as the initial guess. Subroutines REJECT

and PFRE are not called in this case.

NDUMP If NDUMP is greater than 1 only points with index

divisible by NDUMP are retained. Number of points is

thus reduced to N/NDUMP.

DPER Convergence criterion for the period, used in subroutine

XIMIN (cf. section F 2.4). Default DPER = .05.
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DFI Convergence criterion for the sum of squares, used

in subroutine XIMIN (cf. section F 2.4). Default DFI = .05.

Items 2.3 and subsequent. Format 6X, 918; FORTRAN label (IY(I), I = 1,8),

NC.

N points of the functional values at equidistant points

and the norm count. Norm count (of the correlator) is

subtracted from functional values. It should not be

equal to zero as the amplitude of each harmonic is divided

by the norm count for normalized amplitude output

.

F.3.3 Subsequent Cases

Items 2.1 through 2.3 are repeated for each case.

F.3.4 End of Batch

Items 4.1 and 4.2.

Two cards behind the last case data cause a normal stop

if the second card has a blank in the columns 1 to 3.

First card may contain a text to be printed before exit.

F.4. FORTRAN labels used in the program

F.4.1 Main Program

FORTRAN Mathematic
label symbol Meaning

A(20) case title (literal)
AA local variable
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FORTRAN
label

Mathematic
symbol

AMP

B(15)

BB(15)
BIS

DET
DFI
DPER
F(15)
FIC
FIMIN
FKN
I

IC

IC0RBG(256) 7

IDBG(20)

IDEBUG
IHARM
IRESP

IS

ITIME1
ITIME2
IY(256)

J

K
KC
KK k
KS

N
NC
NDUMP
NGOOD n
NHARM
NORRE

NPOLY
NP0LY1

NPREL

NPTRE

NR
NREJ2
NREJ4
PER t

PERI °

cb<V

Meaning

amplitude of prominent harmonic, guess of

PFRE subroutine
parameters vector
work vector (parameters)
literal constant 'BIS'

dummy for MATINV argument
convergence criterion for sum of squares
convergence criterion for period
F-test values, Fg 5x (i,120)
confidence margin for sum of squares
minimal sum of squares
confidence margin for sum of squares factor
index
index
special function values
IDEBUG options input
execution and output options specifier
index
dummy, response of RCHECK subroutine
index
case execution start time
case execution stop time
input data vector
index
number of linear parameters
index
number of parameters (including period)
index
number of data points
norm count of input data
data point dumping specification
number of data points not rejected
number of harmonics
order 1 of approximation polynomial for
rejection
order of polynomial to be fitted
number of polynomial columns in Z matrix,
NPOLY+1
order-1 of the polynomial to be subtracted
before calling PFRE
number of points per segment to be examined
by REJECT subroutine
local variable
NPTRE/2
NPTRE/4
period, independent variable increment units
local variable
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FORTRAN Mathematic
label symbol

PH
PHA

PHI
PHIMAX
PHIMIN
PHXMA
PHM1
RE
sc

sec

SE
SSR
TYME
Y(256)
YY(3,256)

YW(256)
W(50)

2(256,15)

ZT
ZTZ

ZTZI

Z,P

Z
T

Z
?
Z

I
(z'z)

1

Meaning

lag, indep. var. Increment units
phase lag, independent variable increment
units, guess by PFRE subroutine
phase lag, radians
phase lag, radians, upper limit
phase lag, radians, lower limit
lag, increment units, upper limit
lag, increment units, lower limit
approximate confidence region radius
deviation level for sum of squares repeat
criterion at residual examination
deviation level for point rejection at
residual examination
standard deviation estimate
sum of squares for repeat criterion
time of case execution
data vector, good points only
row 1: data points; row 2: 1 for good
points, for rejected points; row 3 used
by subroutine PFRE
work vector, residuals
work vector
values of component functions, matrix of
partials

F.4.2 Subroutine PFRE

FORTRAN
label

Meaning

AL average minimum
AH average maximum
AMP amplitude estimate
H(20) indices of maximal points
HIST (100) histogram of distances of the extremes
HMX local variable
I index
ID row dimension of Y
IH number of maxima near peak in histogram
II index
IL number of minima near peak in histogram
IM index of peak in histogram
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FORTRAN
label Meaning

IMH local variable

IML local variable

L(20) indices of minimal points

M3 index of row in Y to be used in subroutine

N column dimension of Y

NH number of maxima detected

NL number of minima detected

NM N-l
NMA local variable
NP number of distances of extremes

PER period, independent variable increments

PH local variable

PHA lag, independent variable increments

Y(ID,N) row 1: functional values; row 2: for rejected points,

1 for retained points; row M3: used by subroutine for

calculations

.

F.4.3 Subroutine ZXIIN (ZXI)

Local variables and indices not listed.

FORTRAN
label Meaning

C(256) cosine values vector

CC cosine of unit independent variable increment

ISTEP spacing of harmonic function evaluations by FORTLIB

function reference
N number of original data points

NC index of cosine column

NS index of sine column

NGOOD number of good data points

NHARM number of harmonics
NPOLY number of polynomial columns -1

S(256) sine values vector
SS sine of unit independent variable increment

XI period, independent variable increment units
XIP period at previous subroutine execution

Z (256,15) component function values matrix



143

F.4.4 Subroutine XIMIN

FORTRAN Mathernatic

label symbol

5(153 b

BXC3.15)
DET
DFI
DPER
ER(N) e

FKH
FIMAX
FIMIN
FINEW
FIX(I)
I

EDEBUG
II

IM
IX

IW
J

K (k)

N n
PER t

R

X

XIM
XINEW
XINV(3,3)
W(15)
WI(15)

MW(3)
Y(256) y
Z(256,15) z

Meaning

parameter vector
parameter vector storage

dummy for MATINV argument

sum of squares convergence criterion

period convergence criterion

errors (residuals) vector
sum of squares confidence margin factor

maximal sum of squares
minimal sum of squares
new sum of squares
sum of squares storage
index
IDEBUG options variable
index
maximal sum of squares point index
substituted point index
counter of repetitions
index
number of parameters, excluding period

number of rows in matrix Z

period

local variable
matrix of periods, column 1: unity elements;

column 2: period deviations from PER in $

P
units; column 3: column 2 squared.

maximal period deviation
new value of period deviation (new estimate)

X 1

work vector, parameters
work vector
work vector
data points, good points only
matrix of component functions values

F.4.5 Subroutine LINLSQ

FORTRAN
label

Mathematic
symbol Meaning

B(K)

DET
ERGS)

parameter vector
dummy for MATINV argument
error (residuals) vector
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FORTRAN Mathematic
label symbol

FI

FII
I

IDEBUG
II

J

K k
N n

TOO
Z (256, 15)
ZPR(15,15)
ZT(15,256)
ZTI(15,15)
ZTZ(15,15)

y

z
? i

(Z^Z)
1

z z

F.5. Output

Meaning

sum of square errors

dummy
index
IDEBUG options variable
index
index
number of parameters (columns of matrix Z)

number of rows of matrix Z

data points vector
component functions values matrix

Output format is illustrated by two sample problem outputs. The

output can be augmented by the IDEBUG options described in section

F.3.1. These options should be used with discretion as a large amount of

output can be generated.

F.6. Sample Problems

The facsimile of two sample problem outputs are presented on pages

163 to 170.

F.6.1 Sample Problem 1.

The input data is a table of 256 computer generated values of the

function y = 100,000 cos (2tt (i-D/51.3) + 100,000. The values were

truncated to integers and this truncation produces a certain noise.

The first parameter, the constant a in Eq. (F-l) , is -.53, due to the
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truncation, the expected value being -.5. This value is in the confi-

dence interval of the parameter. The true amplitude, 100,000 is also

within the confidence interval of the calculated parameter. The slope

(parameter 2) and the sine component are statistically insignificant.

F.6.2 Sample Problem 2.

The analysis of the correlator output of the test A15 II, 550 lb,

correlator run 7 is presented. The graph of the correlator output

(Fig. 34) displays two irregularities which can be obviously attributed

to the malfunction of the correlator, as the correlation function is

very smooth elsewhere.

Points 1, 2 and 182 were rejected by the subroutine REJECT prior

to the least squares analysis. Further points are rejected after

the first least squares search, the normal deviate being above 5.

Finally the standard deviation estimate is at 24.12 and the residuals

are found to be random.

IDEBUG was specified 29 and the correlator response function was

supplied. It is found to be a significant component of the correlator

output (parameter 5, value 63.06, confidence interval + 22.56).
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F 7. Program Listing and Sample Outputs

MAIN

MAIN PROGRAM FOR ONE NONLINEAR PARAMETER LEAST SQUARES ESTIMATE
IMPLICIT RE AL*8(A-H,0-Z)
CI WENS I ON YY(3,256) , IYI256) , YI25 6) , YW<256) ,W(50) ,Z( 2 56, 15) ,

1 ZT!15,256),ZTZ(15,15),BB(15),ZTZI(15,15)
REAL*4 A(20)
REAL*8 B( 151/15*1.00/
F VALUE F( I, 120,95 %) USED, I CAN BE 1 TO 15
REAL F( 151/3.92,3.07,2.68,2.45,2.29,2.17, 2.09,2.02,1.96,

1 1.91,1.87,1.83,1.30,1.77,1.75/
COMMON ZT.ZTZ , ZTZI
C0MM0N/INT71Y
CIMENSION 1UBG120)
COMMON/DBG/ IDEBUG
READ 9C1, ( IOBGI I )

,

1=1 ,20)
901 FORMAT (201 3)

IDEBUG=1
CO 5 1=1,20
IF( IOBGI I ) .ECO) IDEC!I)=1

5 IDEBUG=IDEBUG*ID8G( I

)

PRINT 902, I DEBUG, ( IDBGt I ) , 1 = 1,20)
902 FORMAT!' I DEBUG' , 110,2014

i

NOTE NECESSARY CHANGE IN INPUT IF MOO ( IDEBUG, 29 ) =0
DIMENSION IC0RBG(256)
IFIMODf IDEBUG, 29). ECO) READ 910, ( 1CCRBG ( I ) , 1 = 1 , 256 )

1 CONTINUE
CALL TIME! I TIMED
READ 905, I U I ) , 1=1,20)

905 FORMAT! 20A41
PRINT 906, (At I ), 1 = 1,20)

906 FORMAT! ' 1' ,20AA,T100, 'PAGE 1')
READ 9C0,N,NP0LY,NHARM,NPTKE,NCRRr-,NPREL,NDUMP,DPER,DFI
IF NPREL IS NEGATIVE THE PERIOD OF THE PREVIOUS CASE IS USED
IFtN.EQ.O) CALL EXIT
IF (NPGLY.CCO) NP0LY=3
IF1NHARM.E0.0) MHARM=3
IF(NPTRE.ECO) NPTRE=16
IF(NORRE.ECO) NCRRE=4
IF1DPER.EQ.0.O0) CPER=.05O0
IFIDFI.EQ.O. ) DFI=.O5D0
PRINT 903,N,.NP0LY,NHARM,NPTRC,NCRRE,MPREL,NDUMP,DPER,DFI

903 FORMAT!' OPTIONS SPECIFIED OR ASSIGNED E.Y DEFAULT, N=',I4,' NPO
1 L Y = , I ', , • NHARM=' , !'>,' NPTRE= ' , 14 , • N0RRE=',I4,' NPREL=",
2 14,' NDUMP=',I4/' DPER=" ,F7.3, • DFI=',F7.3/' )

900 FORMAT! 713, 2010.0)
READ 910, ( !Y( I ), 1 = 1, N 1 , NC

910 F0RNAT(6X,9I8)
PRINT 911, ( IY( I ),I=1,N)
PRINT 912, NC

911 FORMAT!' INPUT'/' '/(' ',10110))
912 FORMAT!' NORM COUNT', 110)

CO 10 1=1,

N

YY!2, I ) = 1.
10 >Y(1 ,

I

)=DFLOAT! IY( I )-NC)
IFINPREL.LT. 0) GOTO 99
REJECTION FOR FIRST 1/4 SEGMENT AT 95% CONFIDENCE LEVEL

CO 15 I=l,NPTRE
15 W(I)=YY(1,I)

CALL REJECT! W , NPTRE ,NORRE , 1 .96D0

)
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MAIN

AT 99% CONFIDENCE LEVEL
.57600)

CO 16 1=1, NPTRE
16 YY(2, I )=W( I

)

NREJ4=NPTREM
NREJ2=NPTRE/2
CO 31 I=1,N,NREJ2
H (I+NPTRE-l.GT.N) GOTO 31
CO 25 J=l .NPTRE

25 HI J)=YY( l.J+I-1)
REJECTION FDR INTERIOR POINTS
CALL REJECT! U

,

NPTRE , NORRE t 2

.

CO 30 J=NREJ4, NPTRE
30 YY(2, I+J-l )= W(J)
31 CONTINUE

CO 32 1=1, NPTRE
32 V! I )=YYI l.N-NPTRE+I )

CALL REJECT (W, NPTRE, NORRE, 2. 576U0)
CO 33 I=NREJ4, NPTRE

33 YY12.N-NPTRE+I ) =M I >

CO 35 1=1, NPTRE
35 HI I )=YY( l.N-NPTRE+I )

RFJFCTICN FOR LAST 1/4 SEGMENT AT 95^ CONFIDENCE LEVEL
CALL REJECT! W , NPTRE, NORRE, I . 96DC

)

NR=NPTRE-NREJ4
CO 40 I=NR, NPTRE

40 YYI2.N-NPTRE+1 )= Will
PRINT 920

920 FORMATl'Q REJECT SUBROUTINF CALLEO'/'O')
K =
DO 50 I = l,.N
IF(YY(2, I I.EQ.O.DO) K = K + 1

50 IFIYYI2, I I.EQ.O.OO) PRINT 930,1
930 FORMAT!' POINT', 14,' REJECTED')

IF(K.EC.O) PRINT 940
940 FORMAT!' NIC POINTS REJECTED' )

PFRE CALLED MOW WITH OPTION OF FIRST SUBTRACTING A POLYNOMIAL
IFIMPREL.LT. 0) GOTO 99
IFINPREL.LT.2) GCIO 90
CO 60 1=1,

N

60 Y( I )=YY( 1,1)
STORE FUNCTIONAL VALUES

DO 70 1=1,

N

Z(1i 1> = 1.D0
CO 70 J=2,NPREL

70 7! I, J)=Z! I , J-1)*I
CO 75 1=1,15

75 81! 1=1.00
CALL WMTRA!Z,ZT,N,NPREL,256,15)
CALL V.;mPRD(ZI,7, 7TZ.NPREL.N, 15,256)
CALL MATIMV(ZTZ,MPREL,B,1,DET,15)
CALL WWPRDV(ZT,Y,W, NPREL.M, 15 1

CALL V.'MPROV! ZTZ,'.'. , B, NPREL , NPREL , 15 )

CALL WMPROVIZ ,e,YV.,N,NPREL,256)
CO 80 1= 1,

N

80 YY( 1,1 )=Y! D-YWI I )

90 CALL PFRE(YY,3,N,3,AMP,PER,PHA)
PRINT 950, AMP, PER, PHA

950 FORMAT! 'OINI HAL GUESS ' /

•

OAMPL 1 1 UCE • , T 1 8 , FB . 2/ ' PER 100' , T 1 8 , Fl 0. 4/
1 ' LAG' ,

• (PHASE) ' ,T18,F10.4)
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RETAINED'

)

THE NORMAL

MAIN

IFINPREL.LT. 2) GOTO 100
CO 95 1=1,

N

95 YYU, I ) = Y( I )

GOTO 100
99 PRINT 955, PER

950 FORMAT I 'OPERIOO OF PREVIOUS CASE USED FOR INITIAL GUESS, PERIOD"
1,1 1 0. 4 )

100 K=l
C DUMP POINTS ACCORDING TO SPECIFIED NDUMP

IF (NDUMP.LE.O) GOTO 106
CO 105 1=1 ,N

105 IF1M0DI I,NDUHP).NE.O) YY(2,I)=0.D0
PRINT 956,N0UMP

956 FORMATt'OONLY POINTS WITH INDEX DIVISIBLE BY 1 ,13,"
106 CONTINUE

C INITIALIZE VECTOR Y AND ARRAY Z WITH GOOD POINTS ONLY
CO 110 1=1,

N

Y(K)=YY(1, I

)

Z(K,2)=DFL0AT( I -N/2) /IN/2)
C FOLLOWING STATEMENT INITIALIZES COLUMN NP0LY1 OF Z TO
C VALUES OF THE CORRELATCR BACKGROUND, IF MOD ( I DEBUG , 29

)

C NOTE NECESSARY CHANGE IN INPUT

110 lFi?Y
i

?I:??^:g?^
C
K2K + l

Z,K, ' P0LY+11= IC0RBG""^
NG00D=K-1
IFINGOOD.EQ.O) GOTO 172
NP0LY1=NP0LY+1
IF ( MODU DEBUG, 29). EQ. 01 NP0LY1=NP0LY
CO 120 I=1,NG00D
Z( I, 11 = 1. DO
ifinpolyi.lt. 3) core 119
DO 110 J=3,NPCLY1

lie ni,j)=( i2*j-i)*z(i,j-i)*z(i,2)-(j-i)*zii,j-2))/j

120 CONTINUE
IF(«00( ICEBUG.2 l.NE.O) GOTO 124
DO 123 I=1,NGCCD

123 PRINT 958, I, (Z( I , J ) , J= I , NP0LY1

)

124 CONTINUE
95B FORMAT!' • , I 3, ( T5, 10F10.5)

)

C INITIALIZE SUBROUTINES ZXI
CALL ZXI IN(Z,NPOLY,NHARM,N)
K*NP0LY+2*NHARM+1

FKN=K*F(KK)/(NGCOD-KK)
CALL XIMIN(Z,a,Y,YW,NGCOD,K f PER,DPER,FIMIN,DFI,FKN)

PRINT 960!NPOLYlNHARM,(I,B(l) , I = 1 , K ) ,KK, PER
FORMAT (

• 1' ,20 A'., T 100, 'PAGE 2'
I

959
960 FOU'ATI '(MINIMUM FOUND •/• OORDER CF

1ARH0NICS', I 3 /^PARAMETERS'/' '/I'
CO 121 1 = 1, N

121 Y(I)=O.DO
CO 122 I=1,NGC0D

122 YlIDINTIZ(I,2)*N/2+.l +N/2)) =YK(I)
PRINT 961, (Y( I),I=1,N)

961 FORMATCORESICUALS (EXACT ZERO CFNCFES
1C '.1CF10.2))

POLYNOMIAL' ,13,
' ,I3,G15.6)

)

NUMBER OF H

REJECTED POINTS) 1 /' •/
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IF(MOD(IDERUG,23).NE.O) GOTO 117
PUNCH 975, (Y( I) , 1=1, N)

975 FCRMAT(6X,9F8.2)
117 CONTINUE

SE = DSQU(FIMIN/(NCCOD-K-l) )

FIf>FKN*FIMIN
PRINT 966,SE,F!MIN,FIC „„ .

966 FORMAT! 'OSTANDARO DEVIATION ESTIMATE' ,F8.2»« SUM OF SQUARES
1=',F16.0,' 95"; CONFIDENCE MARG I N= , F 16 . )

CALL RCHECK(YW,NGOOD,IRESPl
1?6 CONTINUE

C DETERMINING THE LINEARIZED CONFIDENCE LIMITS
C IF NUMBER OF PARAMETERS IS GREAIER THAN FIFTEEN ONLY ESTIMATE OF
C LINFAR PARAMETERS IS AVAILABLE

PRINT 964, (At I ) ,1 = 1,20) . , .

,

964 FORMAT! '1' ,20A4,T100, 'PAGE 3 •
/

• OL I NEAR I ZED CONFIDENCE LIMITS'/' ')

IFINP0LY*2*NHARM+2 .GT. 15) PRINT 965
IF(NPCLY+2*NHARM+2 .GT. 15) KK = K
IF(NP0LY+2*NHARM+2 .GT. 15) GOTO 135

965 FORMAT!' TCO MANY PARAMETERS-PERIOD CAN NOT BE INCLUDED IN THE CON
1FIDENCE LIMITS CALCULATION')
B(KK)=PER
PER 1 =-2. 00*3.141 5926/ PER**2
DO 130 I=1,N3C00
71 I,KK)=O.UO
CO 130 J=1,NHARM
KC=NP0LY+2*J
KS=NP0LY+2*J+1

130 /( [,KK)=Z( I
,KK)+PER1*(-B(KC)*Z(I,KS)+B(KS)*Z(I,KC) )*(Z< I,2)*N/2+

1 N/2-1)
IFIMODt IDEBUG.31.NE.0) GOTO 134
CO 133 I=1,NGC0D

133 PRINT 958, I, (Z( I,J),J=1,KK)
134 CONTINUE

CALL WMTRAU. ZT , NGOOD , KK , 256 , 15 )

CALL WMPR01ZI , Z,7TZ,KX,N GOOD, KK, 15,256)
CALL MATINVIZrZ.KK.W, 1.DET.15)

135 CONTINUE
CO 138 1=1, KK

133 'MI ) = DSCRT (DABS(FKN*FIMIN*ZTZ( 1,1)))
PRINT 9 7C, ( I,E! I ) . Wl I )

,

I=1,KK)
970 FORMAT!" ',I3,F15.2,' +/-',G15.5)

P,CAL*4 BIS/' BIS •/
SSR=0.D0
SC=3.291*SE
SCC=3.09*SE
CO 125 1=1,

N

IFIOAPSI Y( I ) ) .GT. SO SSR = SSi! + Y ( I ) **2
IFIOABSIY! I ) ) .GT. SCO YY(2,I)=C.D0

125 IFIOABSIY! I ) ) . GT . SCO PRINT 962,1
962 FORMAT! ' POINT', 14,* SHOULC BE REJECTED')

IF1SSR. LT. FIC/2) GOTO 139
PRINT 963

961 FORMAT!' CALCULATIONS SHALL BE REPEATED WITH MORE POINTS REJECTED'
1 )

A(19)=BIS
K = l

ccro IC6
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MAIN

139 CONTINUE
DO 149 IHARM=1,NHARM
IC=NP0LY+2*IHARM
tS=NP0LY+2*IHARM+l
AMPL = DSQRr(B( IC )**2+8 1 I 5 )**2)
RE=DMAXl(DABSJWIIC) ),DABS(W( IS)))^'Rf

;
GT.AKPL) PRINT 805, HARK

IFIRF.GT.AMPL) CfirO 148
8 °'J

pTK^BIIcI^fl?,.™* H«"«W*C.I3.. NOT S.GNIF.CANT.,
OPHI WANGLE (AMPL,RE)
PHIMAX=PHl+DPHI
PHIMIN*PHI-DPHI
ANPN=AKPL/NC
»A=3.1415926*2/PER
PH=PHI/AA
PHMA=PHIMAX/AA
PHMI*PHIMIN/AA

149 CONTINUE
DO 150 1=1, KK

150
iU I

!j8 s
?
R

r
( P AtS(i

' TZ "' I >>>
CO 160 1=1, KK
CO 160 J=1,KK

PRl f'T
,

320
^rZ1I * J,/IW,I, * H(J,,

820
D0

R
170

,

I°1
A
KK

METERS CnRRELATIOrJ f'ATRIX'/'O')

83
7 2
CF

C^ L
AT

{; NEi!?!^!°
G1? - 5/ ' '."0.5GX2.5I

TYME=( ITIME1-ITIME2)*I-.1D-1)
PRINT 840.TYME

840 FORHATCOCASE COMPUTATION TIKE i.F10.2,« SECONDS')
END
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IMPL
DIME
COMM
CALL
COHM
I F (

M

CO 1

1 PRIM
11 CONT

120 FORM
CO 4
DO 4
ZTZ (

CO 4
A ZTZI

DC 6
CO 6

6 Z T Z (

DIME
CALL
I F (

M

DO 3
3 PR IN

12 CONT
CALL
CALL
I F ( M
CALL
DO 5

5 PRIN
13 CONT

100 FORM
CALL
CO 1

10 FR(I
I F ( M
PRIN

19 CONT
FI =
CO 2

20 FI = F
F I I =

21 CONT
RETU
FND

OUT
IC1
NSI
ON
V.f

ON/
0D(

1 =
T 1
INU
ATI

1 =

J =
I.J
1 I

I.J
1 =

J =

I.J
NSI
WM
om

1 =
T I

INU
KM
MA

0D(
WM
1 =

T 1
INU
ATI
WM

T

) = Y
out
T 1

INU
.DO

I

i+rj
FI
INU
RN

INE LI
T REAL
ON
ZT.ZTZ
TRAIZ,
DBG/ I

IDEBUG
l.N
20,1,1
E

.13
l.K
I.K
1=0. DC
= 1,N
)=ZTZ(
l.K
1,1
)=ZTZ(
ON ZTI
ASGNIZ
IDEBUG
l.K
20,1,

(

PRDVIZ
T I NV I Z
IDEBUG
PRUIZT
l.K
00, (ZP
E
• ',10
PR0VIZ
= 1,N
I I l-ER
IDEBUG
00, IER
E

= l,N
ad )**;

LINLSQ

NLSQ(Z,B,Y,ER,N',K,FI)
*8(A-H,0-Z)

B(K), YIN), ER(N),ZT<15, 256), ZTZU5, 15), 7(256,

ZT,N,K,256, 15)
DEBUG
,5). NE.O) GGTC 11

Z( 1,J),J=1,K)

, (10G12.3I

)

I,J)+ZT( 1,1 l)*Z(II,J)

152

56,15)

J. I)
115,
TI ,Z
,7).

15) ,ZPRI15,15)
TZtK.Kt 15)
NE.O) GOTO 12

ZTI ( I , J) , J = 1,K)

T,Y,B,K,N,15)
TZ,K,B,1,DET,15)
,11) .NE.O) GOTO 13
I,ZTZ,ZPR,K,K,K, 15, 15)

K( I, J) ,J=1,K)

G12.
,B,E

( I )

,13)
(I),

A)
,N,K,256)

.NE.O) GOTO 19
I=1,N)
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100

10
15

ZXIIN

SUgRClUTI*JK ZXIINU.NPOLY.NHAUf'.N)
IMPLICIT REAL*8(A-H,0-Z)

XIpIo^O0
N Z(" 6 ' l

'J, ' S(2 56),C(256)

If^?C) Vy + 2 * r
'JHARr-,+ 1 -GT. 15) PRINT 100

i?MMi;*3SRBISHSfJf?}grN5§ T0D LARGE
*
QUIT CASE,)

PI = 3. 141592653
RETURN
ENTRY ZXKZ.XI.NGOQD)
IF(XI.EQ.XIP) GOTO 15
XIP=X1
ISTEP=10
DO 10 I=1,NHARH
ARG=2*PI*l/XI
CC-DCOS(ARG)
SS=DSINIARG1
ISYEP=10
CO 5 n*l,Ni ISTEP
IE=I I+ISTEP-1
IFUE.GT.N) IE=N
CIII l«DCOS(ARG*l II-l)

)

S(II)=OSIN{ARG*(n-l))
112=11+1
DO 5 J=fl2.IE
SU) = S(J-1)*CC +CU-1)*SS
C<J)=C(J-1)*CC-S(J-1)*SS
NS=NP0LY+l+2*J
NC=NPCLY+I*2
CO 10 J=1,NG00D
INDX=IDINT(Z(J.2)i
ZU t NC)=C< INOX)
Z(J,NS)=S( INDX)
RETURN
END

N/2+N/2+.1D0)
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XIMIN

I

D
i5Hw{l5)fwi?ll)

5
^!i?

,,Y(N) ' ER{N,,XINV
.

(3 » 3, ' X(3 ' 3J 'F I x «3>tBXt3,

SRJIK8IMI13J? ?INV,X,FIX,8X,H,WI ,HH
COMMOM/DBG/ IOEBUG
CO 10 1=1,3
X! I,1)=1.D0
XI I, 2)=- 2. 00 + 1*1. DO
X( 1,3)=X( 1,2)**2
CALL ZX1 (Z.PER + X! I,2)*CPER,\|)
CALL LINLSCIZ.W, Y.ER.N.K, FIX! [))
LU 1 U J-lfK

10 BX(I,J)=U(J)
FlMIN = Di,INl(FIX!l),FIX(2),FIX(3)

I

12 R= FIXI3)-FIX(2))/(FIX(2)-F1X(1
' F 'R;LT..95D0 .OR. R.ST. 1.0500) GOTO 50
UU Yj \ — I ( K

14 W( [)=BX(2, 1

)

rx=i
IF(FIX(3).LT.FIX(1) ) IX=3
FIX(2)=FIX( IX)
X(2,2)=X( IX, 2)
X(2,3)=X( IX, 3)
CO 17 1=1,15
BX(2, I ) = 3X( IX, I )

IF1IX.F0.3) X(3,2)= 2*X(2,?)-X( 1,2)

CALL ZXI (Z,PEK + X( IX,2)*DPES,N)

CO 18 j=l
L

K
C ^' rt ' Y * ER ' N ' K * FIX(rXn

EX( IX, J)=w( J)
GOTO 12
CALL WMASGN(XINV,X,3,3,3)

V. W ( I ) = F I X ( I )

CALL MATINV{XINV,3,WH,1,DET.3]
XINEW=-.5*WH(2)/WW(3)
IW =
CALL ZXI (Z,PER+XINEW*DPER,N)
CALL LINLSQ(Z,V;,Y,ER,\,K,FINEW)
ln^"r Pv^ ,'

1
?

1

?! - 01 Pimr 101.XINFW.FINEWFORMAT!' XINbW=«,F8.4, ' F INEW= • , G 1 5 . 6

)

FIKIN=0MIH1 FIMlft.FINEW)
FIMAX=FIMIN
IH*0
CO 60 1=1,3
FIMAX=0MAX1(FIMAX,FIX(I)J
FfFIXm.EQ.FIHAX) [l'=I
IFUM.EQ.O) PRINT 100

XIMIN, AT 60')

17

18

50

51

101

60

100 FORMAT (• ERRCR
IFUM.EQ.O) IN
CO 65 1=1,

K

65 hi! I )=8X(IM,I I

FIX! IM)=FINEw
X! IM,2)=XINEK
XUM,3)*XINEW**2

IN
1
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66

70

135

74

76

110

72

73

71

80

X I M
CO 6
[F(F
CD 7
P.X( I

I F ( M
IF(D

1 1.0
IF(F
1 1=1
[F( [

IF( I

FORM
IHICH
IF(X
IF(X
co' il-

ea 7
X( [ ,

PRIM
FORM
1C P
goto
XINE
GOTO
XI fJE
GOTO
CGNT
IL=l
DO 8
i r ( f

PER =

00
B(l)
RETU
ENO

XIMIN

= XU,2) '

6 1=1,3
tX(I).EQ.FlMIN) X1M = XU,2)

1 = 1,

K

y, n=wi i

)

00 { 10EBUG.19) .ECO) GCFC T> ,, „.AX1<X<1,2),X(2,2),X<3,2)>-DVIN1<X(1,2),X(2,2),X(3,2)).GT.
0) GOTO 50
IMAX/FIMIN .GT.DFI*FK'i + l.C0) GCTC 50

W.GT.3) PRINT 135

AT('""xiMIN FORCED EXIT, XH'IN IS NOT BETWEEN TWO POINTS U
ER SUM OF SQUARES'

)

IK.EQ. 0FIN1(X(1,2),X(2,2),X(3,2) ) 1G0T0 72
IM.EQ. 0rAXl(X(l,2),X(2,2),X(3,2)))GOTO 73
DUE
6 1=1,3
2)=PER+X( I ,2)*DPER
T 110, (X(I,2) ,FIX( I ) , 1 = 1,3)
ATI'O SUBROUTINE XIMIN EXIT LAST THREE POINTS ..'/
ERIOD=' ,F8.4,' SUM OF SCUARES= • , G 1 5. 5 )

)

71
W = Xr<-1.2-0t-'AXl(X(l,2),X(2,2),X(3,2) ) *.2
55

W=XIM*1.2-DHIN1 (X(1,2),X(2,2),X(3,2)) *.2
55

INUE

1=1,3
IXdl.EQ.FIHIN) IL=I
X ( I L , 2 )

£5 1=1,

K

=BX(IL,I)
RN

TH
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10

11

13

15

18

20

25

30

SUB
INI

IMP
DIM
CON
PC
PHA
AMP
M',=
CO
L(l
HI I

SHI
FRR
CO
YIM
IF(
NMA
NL =
M! =

FIN
CO
IF!

IYIM
IF(

1Y|M
GOT
NH=
HI
GOI
M_ =

LIN
CO 'J

CON
DO
HIS
CO
II
HIS
CO
II
HIS
FMX
If =

CO
IFI
HMX
per
np
[ML
fMH
CO
PER
NP =

IFI
IFI

PFRE

ROUTINE PFRE(Y,ID,N , M3 , AMP , PER , PHA

)

TIAL ESTIMATE OF THE PROMINENT FREQUENCY

LICIT
ENSIO
MON/I
= 0.
= 0.
= 0.
N-l
1 1 = 1

|=0
) =
FT FU
ATIC
10 1 =

3.1) =
YI2, I

NM-4

D THE
15 1 =

Y ( M 3

,

3, 1+1
Y I M 3 ,

3, 1 + 1

15
NH+1
H)=I

15
NL + 1

L) = !

TINUE
STRUC
18 1 =

T( I )
=

20 1 =

H 1 1 )
-

Till)
2 5 1 =
LI I )-
Till)
= HIST
1

REAL*8IA-G,C-Z)

,

INTEGER (H)
1 YUD, N) ,L(?0) ,H(20) .HISTUOO) ,ICUMY(116)
MT/ HIST.L.H, IDUMY

,20

MOTION FROM ROW 1 TO ROW M*3 AND CONSTRUCT SUBSTITUTION FOR
POINTS
2, MM
Yd, I )

). EC 0.)Y(M3,I)=(Y(l f I- i) + YU, 1 + 1)1/2

LOCAL MAXIMAL AND MINIMAL POINTS
6, NMA
I) .GT.0MAX1 (YIM3, 1-4 ) , Y I M3 , 1-3 ) ,Y(M3,I-2) ,Y(M3, 1-1)

,

) ,Y(M3, 1+2) ,Y(M3, I+3I.YIM3, 1+4) I ) GOTO 11
I I.LT.DMIN1 !YIM3,l-4),Y(M3, 1-3) ,Y(M3, I-21.YIM3, 1-1

)

,

),Y(M3,I+2)fY(M3,l+3)tY(M3 f I+4) >) GOTO 13

T HISTOGRAM OF THE DISTANCES BETWEEN ADJACENT MAXIMA
I, 100
0.
2,'JH
11(1-1)
=HISII ID + 1

2,NL
LI 1-1)
= HIS) I II1+1
I 1)

1=1, 100
X.LE.HIST1 I ) ) IM:
AXO(HMX,HISTl I )

)

2
M + 2

1 = 1 ML, IMH
ER+I*HIST( I

)

+ HIST I I

)

.LT.l ) GOTO 60

.LT.l) PER=0.
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PFRE

40

50

55

60

PER
CO
IF(
DO
IF(
in
IF(
IH=
IL =

PH =

A 11=

AL =
Co
IF(
PH=
IH=
AH =

CON
CO
IF(
PH =

IL =
AL =

cc;»j

PHA
FOL
PHA
AMP
RET
END

PER
'.0 I

DABS
45 I

DABS
DABS
DABS

0.
0.
0.
50 I

HI I)
PH + D
IH + 1

All + Y
TINU
5 5 I

LI I)
PH+D
IL+1
AL + Y
TINU
= PH

LOW!
= 6.2

I AH
URN

/NP
= 2,MH
(HI I )-H(I-ll-PER).CT.2.D0) H(I-1) =
= 2,NL
(L( I )-L( I-1)-PER).GT.2.D0) LI 1-11=0
(H(NH)-H(NH-l 1-PER) .GT.2.C0) H(NH) =

(LI NL)-L(NL-1)-PER).GT.2.D0) L(NL)=0

= 1,NH
.EO.O) GOTO 50
(lODIDFLOATIHI I ) l.PER)

1
1-' 3 , H I I ) )

E
l.NL
EQ.O) GOTO 55

HODIDFLCATILI I ) ) +PER/2

,

PER )

(M3,L(U)
E
/( IH+IL) -I.
NG STATEMENT EXPRESSES PHASE LAG IN RADIANS WHEN C IS REMOV
83185*PHA /PER
/IH-AL/ID/2.

ED
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RCHECK

SUBROUTINE RCHECK ( Y,M, IRE SP )

CHECK PERFORMED ON THE NUMBER OF RUNS OF THE SAME SIGN
IMPLICIT REAL *8(A-H,0-ZJ
DIMENSION YIN)iK(256I
COMMON /INT/ K
NRUN=1
NMM=N-T
CO 10 1=2,

N

10 IF(Y( I )*Y( 1-1 I.LT.O.) NRUN=NRUN+1
NP =

NM=0
CO 20 1=1,

N

IF(Y( I I.LE.O. ) NM=NM+1
20 IF(Y( Il.GT.O.) NP=NP+l

MI=2*NP*NM/ INP+NM )+l
SIG=DSQRT(2.C0*

1 NP*NM*t2.*NP*NW-NP-NM)/t ( NP + NM 1**2* (NP + NM- 1. ))

)

Z=!NRUN-MI+.5DC)/S!G
IF(DABS!Z!.LT.1.645DC) IRESP=0
IF(DARSIZ) .LT.1.64 r>D0) GOTO 30
IFIZ.GT.O.) IRESP=1
iriZ.LT.O.I IRCSP=-1
PRINT 100,MI,NRUN,Z
CO 2 5 1=1 ,N
K( I 1=0

?5 IF(Y( I I.GT.O. )K( I )=1
PRINT 110, (K( I ) , 1=1 ,NI

100 FORMAT! 'OSEQUENCF OF SIGNS IS NOT RANDOM AT THE 90^ SIGNIFICANCE L
1FVEL, EXPECTED NO. OF RUNS IS', 14/' ACTUAL NO. I S ' , 1 4 , ' NORMAL
2 DEVIATE IS',F8.3 /'OSEOUENCE OF SIGNS'/'O 1

)

110 FORMAT! • ',12811)
GOTO AC

30 PRINT 120,MI,NRUN,Z
120 FORMAT! 'GRANDCMNESS NOT REJECTEO AT ^0": CONFIDENCE LEVEL, EXPECTED

1 NO. OF RUNS IS", 14,' ACTUAL NO. OF RUNS IS', 14,' NORMAL DEVIAT
2E IS' ,F8.3)

40 RETURN
END
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REJECT

SUBROUTINE REJECT! Y, H,N, ESS

)

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION Y<M),YY(5G),X(50,1C),XT(10,50),XTX(10,10),XTXI<10,1

l

REAL*0 B(10,/10,I
J!^ J01 • WWl50 * 5C, ^"UHYC36I

COMMON YY,X,XTX,WW
COMMON/INT/XTXI, IOUf-'Y
COMMON /A/ W.XT
CATA HP/O/tNP/O/
IF(M.EC.MP.AND.N.EQ.NP) GOTO 40
CO 10 1=1,

M

XII, 1)=1.D0
CO 10 J=2,N

10 X( I, J)=X< I , J-l)*[
CALL WMTRA(X,XT,M,

0),

20

40

44
45

50

.NtSO.10)
WMPP,U(Xr,X,XTX,N,M,N, 10,50)
WMASGN(Xrxl,XTX,N,N.lO)
MATINV(XTXI,N,B,l,0ET,10)
WMPRD(XTXI,XT,W,N,N,M, 10, 10)
WMPRD I X t h «UV< , K, N, M f 50, 10

)

I - 1 , M

CALL
CALL
CALL
CALL
CALL
CO 20
KW ( I, I ) = WW( I, I 1-1.
CALL WMPRD (XT XI ,XTX,W,N,N,N, 10,10)
fvP = N
MP = M
SS = 0.
CO 45 1=1,

M

YY( I ) = C.
CO 44 K=1,M
YY( I )=YY! I )+,-:w( I,K)*Y(K)
SS=SS+YY( [ )**2
S=DSQRT(SS/(M-N)

)

CO 50 1 = 1,

M

YII 1=1. DO
IHDABS(YY(I)).GT.FSS *S) Y(I)=O.DO

END



160

WHAT

SUBROUTINE InMAT ( A , B , C , AA ,AT , N,N, I , NFUL , MFUL , V , VI )

REAL* 8 A (NFUL, « ),BIHFUL,L ) , C ( NFUL , L ) , A A I NFUL ,.M > , AT < KFUL , N ) , V ( H )

.

1 Vi(N)
ENTRY KMPRDIAf B,CtN,M,L,NFUL,MFUL)
CFJ 10 1= 1 , N
CO 10 J=1,L
C( I, J)=0.
CO 10 KK=l,M

10 CI I, J)=CU, J )+A( I,KK)*B(KK, J)
RETURN
ENTRY Wiv,TRA(A,AT,N,M,NFUL,N'FUL)
CO 20 1 = 1, N
CO 20 J=1,M

20 ATI J, [ ) = A( I , J)
RETURN
ENTRY WMASGNIA,AA,N,K,NFUL)
CO 30 1=1, N
DO 30 J=1,N

30 H I, J)=AA< I , J)
RETURN
ENTRY KM ADD ( A , AA, N, M, NFUL

)

CO 40 1=1, K
DO 4 J=1,M

40 A( 1, J) = A( I, JI+AAI I, J )

RETURN
ENTRY HMSUB(A,AA,N,M,NFUL)
CO 50 1=1,

N

CO 50 J = l,f"
5U A( I, J)=AA< I, J)-A( I, J)

RETURN
ENTRY WMNUl ( A ,N , f' ,NFUL )

CO 60 1 = 1,-1
CO 60 J=1,M

60 All, J)=0.
RETURN
ENTRY WMUN I T I A , M , M ,NFUL

)

K=HINO(NFUL,M)
CO 69 1=1,

N

CO 69 J=1,M
69 A(I,J)=0.

CO 70 1=1,

K

70 All, I 1 = 1. DO
RETURN
ENTRY WMPR0V(A,V,K,N,M,NFUL1
CO 80 1=1,

N

1 mu«o,
CO RO K=1,M

80 MI )=H(I ) + A( I ,K)*V[K)
RETURN
ENTRY WVPRCM(W,A,V,N»M,NFUL)
DO 90 1 = 1, C.

V( I )=0.
CO 90 K=1,N

90 VI I )=V( I l+W (K)*A(K, I

)

RFTURN
END
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HAT INV

SUBROUTINE MATINV I A,N,B,M,DETERf> ,NMAX.)

C KATRIX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR EQUATIONS
C**** REMOVE NEXT STATEMENT IN SINGLE PRECISION VERSICN

IMPLICIT REAL*8 (A-H.O-Z)
REAL*'. PIVOT
DIMENSION A(NMAXtN). BINMAX.N)
COMMON /F402/ PIVOT (100), INOEX(IOO)

C INITIALIZE DETERMINANT AND PIVOT ELEMENT ARRAY
C

DETERM=1.0
CO 20 1=1,

N

PIVOT! I 1 = 0.0
20 CONTINUE

C
PERFORM SUCCESSIVE PIVOT OPERATIONS (GRAND LOOP)

CO 550 1=1,

N

C
SEARCH FOR PIVOT ELEMENT AND EXTEND DETERMINANT PARTIAL PRODUCT
AMAX=0.0
CO 105 J=1,N
IF (PIVOT! J). ME. 0.0) GO TO 1C5
CO 100 K=1,N
IF (PIVOT(K).ME.O.O) GO TO 100
TENP=DABSI A( J,K)

)

IF (TEMP.LT.AMAX) GO TO 100
IROW-J
ICOLUM=K
AMAX=TFMP

100 CONTINUE
105 CONTINUE

INDEX( I l=4096*IRCW+ICCLUH
J=IROW
*MAX=A( J, ICOLUM)
CETERM=AMAX*DETERM

RETURN IF MATKIX IS SINGULAR (ZERO PIVOT) AFTER COLUMN INTERCHANGE
IF (DETERM.EC.O.O) GO TO 600

C

c
PIVOT! ICOLUM)=AMAX

C INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
IF ( IRCU.EQ. ICOLUM) GO TC 260
CETERM=-DETERM
DO 2 00 K=l,N
SKAP=At J,K)
A(J,K)=A1 ICOLUM, K)
A( ICOLUM, K)=SWAP

200 CONTINUE
IF (M.LE.O) GO TC 260
CO 2 50 K=1,M
SWAP=BIJ,K)
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MATINV

B(,),K) = B( ICCLUM.K)
B( ICOLUM,K)=$WAP

250 CONTINUE
C
C DIVIDE PIVOT ROW BY PIVOT ELEMENT
C

260 K=ICOLUM
A( TCPLUM,K) = l.O'
DO 350 K=1,N
A(ICPLUM,K)=A(ICOLUM,K)/AMAX

350 CONTINUE
IF (M.LE.O) GO TO 380
00 370 K=1,M
B( ICOLUM,K)=B( IC0LUM.K1/AMAX

370 CONT IMUE
C
C REDUCE NCN-PIVCT ROUS
C

380 CO 550 J=l,N
IF (J.EQ.ICOLUK) GO TO 550
T = Al J.ICOLUM)
A( J, I COLO.") =0.0
00 450 K=1,N
A( J,K)=A( J,K)-A(ICOLUM,K)*T

450 CONTINUE
IF (M.LE.O) GO TO 550
BC 500 K=1,M
P( J,K)=B( J.KJ-BI ICOLUM,K)*T

500 CONT I'lUE
550 CONTINUE

C
C INTERCHANGE COLUMNS AFTER ALL PIVOT OPERATIONS HAVE BEEN PERFORMED
C

600 CO 710 1 = 1,

N

ll=M+l-I
K=INDEX( II 1/4096
ICOLUM=INDEX< U )-4096*K
IF (K.EQ. ICCLUM) GO TO 710
CO 705 J=1,N
SWAP=A( J,K)
A( J,K)=A( J, ICOLUM)
A( J, 1C0LUM)=SWAP

705 CONTINUE
710 CONTINUE

C
711 CONTINUE

RETURN
END

ANGLE

FUNCTION ANGLE1RC.RS)
IMPLICIT REAL*8(A-U,C-Z)
K=DSCRT(RC**2+RS**2)
ANGLE=DARCOS(RC/R)
IFIRC/R.GT. .900) ANGLE= DS IGM ( ANGLE ,RS)
IFIRC/R.LT. .900 .AND. RS.LT. O.DO) ANGLE=6.283 1 853-ANGLE
RETURN
END
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ABSTRACT

The temperature wave method of determining the thermal diffusivity

and the thermal contact conductance was investigated. The theoretical

development of the plane temperature wave behavior at the contact of

two solids is given for an interface perpendicular to the direction of

wave travel. The relative amplitude and the phase angle of the reflected

and the transmitted wave in relation to the approaching wave were

calculated in relation to the dependence of the thermal properties of

the two contacting solids and the thermal conductance of the contact.

The experimental apparatus is described. The temperature waves

were generated by alternately heating and cooling one end of the specimen

(specimen pair) while the other end was kept at a constant temperature.

The temperatures, represented by the thermocouple voltages, were recorded

on a magnetic tape recorder. The records were analyzed using a hybrid

analog-digital correlation computer. The theory of the correlation

function is outlined and a computer program is described which performs a

least squares fitting of a set of data with an analytical model containing

one nonlinear parameter. The program is particularly adapted for the

analysis of the correlation function containing a prominent harmonic and

compensation for some imperfections of the electronic equipment used are

included.

Results are given of the measurements of the thermal diffusivity of

the aluminum alloy 2024-T4 and Armco iron and of the thermal contact

conductance of the aluminum-aluminum and aluminum-iron contact in air



at different applied pressures. The agreement with the results from

literature is very good for the thermal diffusivity measurements and

good for -the thermal contact conductance measurements.

The temperature wave method was found adequate for measuring the

thermal contact conductance and suggestions are made for some further

interesting investigations using this technique.


