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INTRODUCTION

Optimal control system analysis starts with the character-

ization of systems by state variables and the design of systems

by state-space techniques. In general, optimal control problems

are viewed as variational problems. There are many possible var-

iational methods for maximizing or minimizing a functional over a

function space. The range is from classical methods in the cal-

culus of variations to numerical and successive approximation

techniques of experimental or model systems. Among the commonly

used methods in control system design are:

1. The calculus of variations.

2. The maximum principle.

; 3« Dynamic programming.

In all cases the goal is to find the optimum-control law or

sequence such that a given function of performance indices is

maximized or minimized. It will be found that the common prop-

erty of all three methods is the use of variational principles.

Each of these methods is related to well-known formulations in

classical mechanics: the first to the Euler-Lagrange equation;

the- second to the Hamilton principle; and the third to the

Hamilton-Jacobi theory. The maximum principle employs a more or

less direct procedure of the calculus of variations, whereas dy-

namic programming, while still following the variational prin-

ciples, uses the recurrence relationship or the algorithm of

partial differential equations.



THE CALCULUS OF VARIATIONS

1. Outline

The calculus of variations is that branch of the calculus

which is concerned with optimization problems under more general

conditions than those considered in the ordinary theory of max-

ima and minima ( extreme ). There are three fundamental problems

in the calculus of variations, the Lagrange problem, the Mayer

problem, and the Bolza problem.

1) The Lagrange Problem , The Lagrange problem in one inde-

pendent variable is concerned with the determination of a func-

tion m(t) which minimizes the integral of a given function. So

the minimum integral control problem belongs to this type. It

can be expressed In equations. Let the following be given:

a) A set of differential equations

Xj^ = fi(x, m, t), or more generally

fi i 2: > k ' E* *) =0 (1-1)

i = 1, 2, . . . , n

X is n-vector, m is r-vector.

b) A set of initial conditions

x^(tQ) = a^ (1-2)

i = 1, 2, . . ., n.

c) A criterion function

ft,.
I = P(x, m, t)dt (1-3)

where P(x, m, t) is a continuous function of the arguments.



Now the question is to determine the function in(t) which mini-

mizes I over all functions of m(t), subject to the conditions

given in equations (l-l) and (1-3).

2) The Mayer Problem . The Mayer problem is concerned with

determination of a function m(t) which minimizes a given func-

tion evaluated at the end point, containing some variables whose

final values are unspecified in advance. Usually time-optimal

problems are classified as Mayer problems. This problem may be

stated as follows:

a) Given a set of differential equations

^i ~ -^i^Z' S» t)

OP y^ (x, X, m, t) = (1-1^.)

•X. ''~ J- m ^ f m 9 m m Tl •

b) Given a set of initial conditions

Xi(to) = a^ (1-5)

i = 1, 2, . . . n.

c) Given a set of final conditions

x.(t^) = bj

where j belongs to some subset of the integers 1, 2, . . ., n,

and t|» is unspecified.

d) Given a criterion function

I = G(x, m, t)

^f

^0

(1-7)

Determine the function m(t) which minimizes I over all functions

of m(t) subject to the conditions given in equations (1-ij.),

(1-5), and (1-6).



3) The Bolza Problem . The Bolza problem is concerned with

determination of a function m(t) which minimizes the integral of

a function plus a function evaluated at the end point and con-

tains some variables whose final values are unspecified in ad-

vance. An optimal control system subject to certain constraints

can be studied as a problem of Bolza type. This is the most

general case, and the Mayer problem and the Lagrange problem are

the special cases of this type. This problem may be stated as

follows:

a) Given a set of differential equations as described in

equation (1-1), or (l-ij.) .

b) Given a set of initial conditions as described in

equation (1-2), or (1-5).

c) Given a set of finial conditions as described in

equation (1-6)

.

d) Given a criterion function

' ^f /^f

I = G(x, m, t)

/tf X
"

P(x, m, t)dt . (1-8)+

to "to

Determine the function ra(t) which minimizes I over all functions

of m(t) subject to the conditions given in equations (1-1),

(1-4), and (1-6).

It is easy to see that if G(x, m, t) is equal to zero in

equation (1-8), it becomes equation (1-3); if P(x, m, t) is

equal to zero in equation (1-8), it becomes equation (1-7).

However, some auxiliary variables can always be introduced which

transform a Lagrange problem into a Bolza problem or a Mayer

problem, and vice versa. In other words, these problems can be



converted from one to another. Although there are many optimal

control problems which do not seem to belong to any of these

formulations, there is always some mathematical artifice which

will reduce the initial scheme to one of those considered above.

2. Basic Principle of the Calculus of
Variation in Minimization Problems

We consider the fixed-end-point system and the movable-end-

point system.

1) Fixed-end-point System . Consider the problem of mini-

mizing the integral

tf

II = F(x, X, t)dt ;
"-{ (1-9)

Mliere x = x(t) is a twice-differentiable function and satisfies

the conditions x(to) = xq and x{tf) = x^, and P is a scalar con-

tinuous function of scalar arguments x, x, t. Determine the

function x(t) which minimizes the integral of equation (1-9).

If one interprets this geometrically, the problem is to de-

termine the curve x(t) connecting the points (xq, t^) and

(xf, tf) such that the integral along the curve of some given

function F(x, x, t) is a minimum. In control terminology, if

x(t) is the output of a controlled system, then the integral

given in equation (1-9) describes a measure of the overall per-

formance of the system. The criterion of performance is that

this integral is minimal. Let x(t) be the minimizing function

and x(t) be a neighboring function of x(t). The x(t) and x(t)



are related by

x(t) = x(t) +e'r(t) (1-10)

x(t) = i{t) +€7(t) (1-11)

where e is a small parameter, and <f(t) is an arbitrary differ-

entiable function for which

'r(to) =nitf) = .
' (1-12)

^

Since the end points are assumed to be fixed as shown in

Fig. (1-1). The condition given in equation (1-12) insures that

x(to) = x(to) = xq

and x(t^) = x(t^) = x^ .

x(t)

Pig. (1-1). Optimum trajectory with fixed-end points.

The vertical deviation of any curve x{t) from the actual

minimizing curve is given by 6'((t), as illustrated in Pig. (l-l).

No matter which *f (t) is chosen, the minimizing function x(t)

is a member of that family for the choice of parameter value

e = 0.

Replacing x and x in equation (1-9), respectively, by x and

X yields



1(6) =
J

P(x + et , X + 6*f , t)dt (1-13)

By Taylor's series expansion, equation (1-13) becomes

f^t .
. aF . aF 1 n n ^^^

i(€) = F(x,x,t) +67— + 6Y~ + — (e^'r —

^

>'4. '^ ax ax 21 zx.'^
to

2.- -: . ,2:;2 :_)]dt (l-li+)

axax 3x

The necessary condition for I to be a maximuin or a minimuin is

that

., 31(e)

d€
= . (1-15)

€=

This leads to the condition that

r̂0

^f hF . aF
{ fl— + /j

—-)dt = (1-16)
ax bx

Equation (l-l6) is obtained by omitting the terms e , € » • • •>

in equation (1-li^.).

Integrating by parts the second term of this integral

J<"tf
. ap ap |tf /

to ^^ ^^Itn A,^0 ^0

'f d aF
-— (-7)clt
dt ax

7
—
ax

tf

-0

/"^f d aF

1 —^(—)dt

-/t^
• dt »x

(1-17)

= by the condition of equation (1-12),

The equation (l-l6) reduces to
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8

. _ -!-(-,) dt = (1-18)

to ^^ 3t ax -^

Since equation (l-l8) must hold for all f( , the necessary

condition for I to be an extremum is

3P d 3F
, ^— = (1-19)

ax dt 3X

This second-order equation is known as the Euler-Lagrange

differential equation and its solution gives the minimizing

function on the integral of the problem provided the minimum

exists.

In the case of multidimensional functions, the criterion

integral of equation (1-9) becomes

I = F(x, X, t)dt (1-20)

where x - x(t) is an n-vector function of t,each component func-

tion being twice differentiable.

x(t) = (xi(t), X2(t), . . ., Xn(t)) (1-21)

The Euler-Lagrange differential equation for the multi-

dimensional case is

d
V-,P (V;F) =0 (1-22)

dt

BF ap aP t

where V^P = ( , , . • •, ) (-23)

and

a X-1 3Xq 3X

3P ap ap ,

Vi P = {-:-, __,...,__) (1-21+)

ax]^ ax2 3Xj^



2) Movable -end-point syateiti . Now we discuss the minimiza-

tion problem with the end point of the trajectory lying on a

curve X = c(t), as shown in Fig. (1-2).

X(t)

X€St^

tf v**^

Fig. (1-2). Optimal trajectory with
movable- end-point.

Let x(t) be the function which minimizes the criterion in-

tegral given in equation (1-9). The end point of the trajectory

is assumed to lie on the curve x = c(t), as shown in Fig. 1-2).

Asstime that x(t) is a neighboring function of x(t). The rela-

tionship between x(t) and x(t) is the same as equations (1-10)

and (1-11) . The arbitrary function '^(t) satisfies the initial

condition

n (to) = (1-25)

but the final condition is yet undefined.

By replacing x and x in equation (1-9), respectively, by

X and X, and the upper limit of integration by t^ + 6 5t^, one

obtains



10

=11(e) =
J

F(x + €T, X + 67 , t)dt

to

J
P(x+€T, x+€i,t)dt+J F(x+€fr ,x+ ei,t)dt

to to

=r (e^ — +€7 —)dt + €5t^

to ^^ *^

-i.

• P (x(f ) + €7(f ), i(f ) +€(^), f )dt

tf ap ap
(7 — +

'T
— )dt + est^.

ax ay
tr ^^ 2>X

P [x(tf) +€'r(tf), x(tf) + €*?(tf), t^ } dt

tf

'to

/tf ap . ap
= € ( */— + >! —)dt + €5t^P(t^) (1-26)

-/•i-„ ax ax

where t^ ^ f - t^ + €5t|..

As 65t^ is very small, we can replace ^ by t^.. The neces-

sary condition for I to be an extremum is

dl(e)
=

ae

Therefore

J'

f ZT*' iiT?

(*/—+*? —)dt + 6t^P(t^) = (1-27)

to ^^ *^

. ap
Integrating the term fj — as before, and rearranging

ax
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J
^0

'ax dt ax dx
-f(to) -

to

+ P(tf) 5tf = (1-28)

Examination of the end condition shown in Pig. (1-2) leads

to the following relation:

x€5t|. + ef(tf) =c(tf)€6tf

or x5tj. + f (t^) = c(t^) 5t^ (1-29)

Substituting equation (1-29) into equation (1-28) jields

('^^ .ap d ap .
f

.
-I
P

I 1
»ff {_)Jdt +

] P(t|.) + [c(t^) - x(tf)J— [5tf

Ao ^^ dt ax •'
I X It^ J

ap
- f(to)

—
ax

== (1-30)

to

Prom boundary condition f (tQ) =0 and 5t|. is arbitrary,

equation (1-30) leads to

tf , ap d ap
J'^t

, ap d ap .

^ '^ ax dt ax ''

dt = (1-31)

and

jp(tf) 4- [6(tf) - i(t^) -^ jj
=0 (1-32)

Since »! ^ in equation (1-31), it follows that

ap d ap

ax dt ax
(1-33)

This is exactly the same form discussed in case 1, the fixed-end-

point system.

Prom equation (1-32)
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F(t^) = [x(t^) - c(t^)1 —
ax

(1-31^)

For a special case, if the end point curve x = c(t) is a hori-

zontal straight line and

c(tf) =

equation (l-3il-} becomes

P(t^) = x(t|.) —
3X

(1-35)

tf

For movable-end-point system, the conditions of equations (1-33)

and (l-3i4.) must be hold, and equation (1-34) is referred to as

the transversality condition.

3. Application of the Calculus of Variation

Minimum- integral control problems are to be studied as an

application of the variational calculus to the optimum design

of control processes. Consider a control characterized by

x(t) = g(x, m) (1-36)

where x and m are analytic scalar functions of t, and at t = tQ

x(to) = Xq (1-37)

Determine the optimum control signal m(t) which minimizes the

integral-criterion function

I
tf

P(x, m)dt (1-38)

to

Let x and m be a pair of functions which yield the minimum of

equation (1-38). Then the neighboring functions x and m may be
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expressed as

x = X + ef (1-39)

m = m + ef (l-U-O)

where f and f are arbitrary differentiable functions of t,

defined for tQ ^ t ^ t^, and e is a small parameter. Replacing

X and m in equation (1-38), respectively, by x and m, yields

the neighboring function

I (€) =
J

F(x + €»f , m + €f )dt (1-1|1)

By Taylor's series expansion, one obtains

tf f'^t ap ap
(7— + f —)dt

'0

/tf /i

I(€) = P(x, m)dt + 6]

'to -^+-- ^^ ^^"

2 3
+ terras € , € , . . . (l-ij-2)

2 3
We omit the high-order infinitesimal terms € ,t >

since the minimum of the integral occurs vjhen

31

a€
= (1-43)

€=0

I

The necessaxT" condition for I to be an extremvim is

ap 2>P

(r|_ + ^ —)dt = (l-iOi-)

tQ ^x 3»J

Replacing x and m in equation (1-3^), respectively, by x and m

yields

X + €^ = g(x + €7 , m + 6f ) (l-ij.5)

By Taylor's series expansion
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3g dg
X + € 7 = g(x,m) +€(f — + f — ) + terms 6 , €^, . . . (l-i|6)

ax dm

Proin equation (1-1^.6), we know

X = g(x, m) U-kl)

ag dg

9X dm

Solving for from equation (I-I4.8), we obtain

•t
- 7 (ag/ax)

f=- . (1-49)
dg/am

Substituting equation (l-/^.9) into equation (1-14]-) yields

r^t 2>F . dg aF/am
7 — + ( *? - n —) dt = (1-50)

Integrating by parts yields

I
*f aF/dm . 2>F/dm Tf

•r dt = »7

to ^g/^*^

/*f d

A„ dl

aF/anj
(

) dt

g/3mlto Aq ^* ag/dm

f^f d ap/am

^0 *^* agAiTi

Since x(to) = Xq, ^(tQ) = and

aF/am

) dt

>g/am
=

Equation (1-50) becomes

*f aF /*f d »PAm
^ — dt

to »xI
r^i d

>g/»i»i -i
*f 9g aF/ara

( )dt -
I m—
to ^^ ag/»nj

(1-51)

(1-52)

dt =

and can be rewritten as
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ap ag

f^^( ax am ag aP/am >| /^*f d aP/am
h dt -

»| — ( )dt =

-^t ^gA^^ ^^ ^g/atn J -/^ dt ag/am

and furthermore, as

ap ag ap ag

^r' ax am am ax d aP/am '

( )£(tQ I ^g/am dt ag/am
,

I dt = (1-53)

Since equation (1-53) must hold for all *[ , the Euler-Lagrange

differential equation for this optimum control problem evolves

as

ap ag 3P ag

ax am am ax d ap/am
- — (

) = (1-5I4.)

ag/am dt ag/axa

The solution of this differential equation subject to the

boundary conditions specified in equations (1-37) and (1-52)

gives the optimum control m(t) for the process.

Por a special case

X = g(x, ra) = m

the integral criterion function becomes

tf

i P(x, x)dt

to

ag ag
and — =1, — = 0.

am ax

The Euler-Lagrange equation for this special case reduces to

ap d ap
(—) =

ax dt ax
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dF d ap
or (— ) =

ax dt ax

with the boundary conditions

=
aP

x(tQ) = Xq and —7
2>^ tf

This is the same result as equation (1-33).

The same process extends to a multidimensional control pro-

cess by replacement of the scalar function by a multidimensional

vector.

Previous discussions assume that both control signals and

state variables are subject to no constraints. But in realis-

tic optim\im controls for physical processes, constraints on

control signals or state variables must be taken into considera-

tion. For solving those optimum control problems with con-

straints, we usually use the method of Lagrange multipliers

which will be discussed in the section on dynamic programming.

The optimum design of control systems by the calculus of

variations leads to a two-point boundary value problem. Analyt-

ical solutions for such problems are possible only in special

cases. So trial-and-error techniques must be resorted to. These

techniques first guess a value for the missing initial condition,

and integrate numerically the Euler-Lagrange and constraining

equations. There must be a difference between the resulting

final condition and the specified condition. So the trial-and-

error process must be repeated several times until the value of

the final condition obtained in this way agrees sufficiently
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close with the specified value of the final condition. Because

of this shortcoming, the classical calculus of variations is

less attractive in the design of optimal control systems.

THE MAXIMUM PRINCIPLE

1. Outline

The maxim-urn principle of Pontryagin is generally regarded

as most promising for the solution of complex problems. The

Russian mathematician Pontryagin discovered that the control

problem can precede the calculus of variations by relating the

Pontryagin function and the Hamiltonian function. In fact,

Pontryagin' 3 maximum principle bears a close relation to the

classical problem of Mayer. It differs, however, from the Mayer

problem in one respect. In the Mayer problem, every control

signal is unbounded. In Pontryagin 's work, on the other hand,

the values of the control signal are bounded. A control vector

which satisfies the constraint conditions is referred to as an

admissible control vector.

As in the calculus of variations, Pontryagin 's maximum

principle can be used on three basic problems.

1) The Minimum- time Control Problem . The minimum-time con-

trol problem may be stated as the determination of an admissible

control vector m so that the process is taken from s specified

initial state vector Xq ^o a desired final state vector x^ in

the shortest possible time.
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2) The Terminal- control Problem , The terminal-control

problem is the determination of an admissible control vector m

such that, in a given time interval T, the system is taken from

an initial state _Xq into a state in which one or a combination

of the state variables becomes as large as possible or as small

as possible, and the remaining state variables have fixed values

within physical limits.

3) The Minimum- integral Control Problem . The minimum-

integral control problem may be stated as the determination of

an admissible control vector m in such a manner that the integral

/tf
I = P(x, m, t)dt

reduces to a minimum during the time of movement t^ - tg.

These three modes of optimtun control can be transformed to

an optimization with respect to co-ordinates or state variables,

which is referred to as "generalized mode of optimum control".

The transformation is carried out by "invariant embedding", a

procedure of increasing the dimensionality of the state vector

by adding a new co-ordinate. The reduction of the three modes

of optimum control to the generalized mode is presented as follows.

4) Reducing a Minimum- time Control Problem to the Gener-

alized Mode of Optimal Control . Consider the n'^'^-order control

process characterized by

^i = ^i(iS» B' t) (2-1)

i = 1, 2, . . . , n

This problem implies the minimization of the time required

to move the process from an initial state to a desired final
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state, i.e.

,

min
I

dT (2-2)

By introducing a new state variable Xj^+i(t) such that

^+l(t) = 1 (2-3)

Xn+i(t) =
j

dx (2-4)

The optimal control prohleiti reduces to determination of an ad-

missible control vector m so that the new state variable Xj^+i

is minimized.

5) Reducing a Terminal-control Problem to the Generalized

Mode of Optimal Control . Consider the n^^^-order control pro-

cess characterized by equation (2-1). Now introduce a new state

variable

^n+1^*^ ~ ^ (xi(t), X2(t), . . .

with the initial value given by

Xn+i(0) = P [xi(0), X2(0), . . .

In vector notation

Xn+i(t) = P (x(t))

Xn+i(0) = P (x(0))
7^^ n'- ap(z)

k=l axjj

Derivatives of the other state variables are given by

equation (2-1). The terminal control problem is now reduced to

the problem of optimization with respect to the new co-ordinate

Xjj+2» ^^ ^^^ final moment of time.

6) Reducing a^ Minimum- integral Control Problem to the Gen-

eralized Mode of Optimal Control . Consider the n^'^-order control

> ^(t)] (2-5)

' ^(0)) (2-6)

(2-7)

(2-8)

(2-9)
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process characterized by equation (2-1). By introducing a new

state variable Xjj+3^(t) defined by

Xn+i(t) =
I

P(x, in, t)dt (2-10)

->'to

Xn+i(to) = (2-11)

i^^l(t) = F(x, m, t) (2-12)

Now the problem becomes the problem of minimizing the

(n+1)*^ co-ordinate, x^+i(t)» a* *iie terminal of the trajectory

t — Xi-p

,

The optimal control problem discussed above may be con-

sidered as a special case of the more general problem of maxi-

mizing or minimizing the Pontryagin function

(P = E b.x. (t^) (2-13)
i=l

This can be written in a vector form

<P = (b, x(tf ) )
= b'x(tf.) (2-11^.)

where x is a state vector of n -order control process under

consideration, and b is a column vector which depends upon the

co-ordinates to be minimized or maximized. A simple geometrical

interpretation of the maximum principle is that the control

vector m is chosen in such a way that the state vector x^^f)

moves "farthest" in the direction of "-b", and thus the Pon-

tryagin function (P takes on a minimum value. In optimal con-

trol problems the final state of optimal trajectory may be

either free or constrained. Equation (2-li|.) is unconstrained.

If the final state of process is constrained by
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Rk U(tf)] = (2-15)

the Pontryagln function takes the form

(P = b'x(tf) + u'R x(t|.) (2-l6)

where u is a vector Lagrange multiplier.

Frequently, the extremization of the Pontryagin function

is not easy to accomplish. Pontryagin first discovered the sim-

plicity of the Hamiltonian function and its very nature makes

it tempting to think that maximization of the Pontryagin func-

tion, and the use of the Hamiltonian, may lead simply to elegant

methods for solving optimization problems.

Now, the maximxim (or minimum) principle states that, if the

control vector m is optimum, i.e., if it minimizes (or maximizes)

the Pontryagin function a> , then the Hamiltonian H(x, £, m, t)

is maximized (or minimized) with respect to m over the control

interval. The Hamiltonian is defined as

n
H(x, £, m, t) = H P. f. (2-17)

j=l -^
^

where x is the state vector, P is the momentum vector defined

as the solution to the differential equation

p. = - E p. -^ (2-18)
j=l ^ axi

where Pj^(t^) = -b^, i = 1, 2, . . ., n (2-19)

h^ being some known constant specified in the Pontryagin func-

tion in equation (2-13).

If we differentiate equation (2-1?) with respect to p.
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an
(2-20)

»Pi

Differentiate equation (2-17) with respect to x^^

^H n afi ,r. ^.^
= 5: P^ _JL (2-21)

©X^ j=l 3X^

i = 1, 2, . . . , n

Comparing equations (2-1), (2-l8) with equations (2-20), (2-21)

we obtain the Hamiltonian canonical form

i = (2-22)

aPi

P^ = (2-23)

These canonical equations are subject to the boundary condition

on Xj^(tQ) and Pj^(tjp); that is,

x.(to) = x.O (2-21+)

and

Pi(tf) = -b^ (2-25)

i = 1, 2, . . . , n

The physical interpretation of the maximum principle may be

stated that the Hamiltonian H is the inner product of P and f

,

or that of P and x» which represents the power when P is identi-

fied as the momentum. Thus to minimize 6> , the power is maxi-

mized, and when (P is minimum., H is a maximum.
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2. Proof of the Maximum Principle

Proof la initiated with determination of a variation of

the Pontryagin function, 6 , due to a variation of state var-

iation, oxi, and a change in control signal, 6m. Assume that

the n^-'^-order control process is characterized by

X = fU, m, t) (2-26)

where x is n-state vector, and m is r-control vector. The var-

iation 5(P as a function of 6m and 6Xj^ is first derived. To

begin with the following summation is formed:

t- ^i °^i
^^'^^^

i=l

Taking the derivative of this sumniation with respect to t

d n n n .— E PiSx. = H Pi6x.. + 51 P^SXi (2-28)

dt i=l i=l ^ i=l

Integrating both sides of equation (2-28) from t^ to t^, and

simplification leads to

tf ^tf

_^ . ^ ^ *)
n
n Pi5x.
i=l

/^f

xtf

- fi(x,m,t) 1 dt + 51 Pi5x^ (2-29)
^

^to i

Since Pj^(t^) = -b^ and Xj|^(tQ) = 0. The left side of equation

(2-29)

tf
= - ^bi5xi(tf) = -5(P (2-30)Z ^i^H

to

Thus the variation of the Pontryagin function <P due to

change in x^ and m is
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Jto i

E PiSx^dt
^h^ i

(2-31)

A Taylor series expansion of the Integrand with respect to

X is executed. Omitting the higher order terms and using the

relationship of equations (2-18) and (2-23), and equation

(2-31), one obtains

f^t afi(x,m,t)
6tf> = 2_ L Pi ^H^^

^to i '^ ^H

T. Pi j i"i(^»I!l+5m, t) - fj^(x,m,t)

to ^

df^ (x, m+5in, t)

J »x
J

1 ^2f .(x+eSx, m+6m, t)

+ _ E H =^ 3x- axjj-j- dt

2 j k ax- ax;^ 1
(2-32)

Rearrangement yields

tf

b(?

afi(x, in+5in, t) afi(x,x)i,t)
'

to

tf

m?!
ax axj ^^

5x^dt

1 /^*f

-J E n z: Pi
2 A. i J k

3^fjl^(x+e6x, m+5m, t)

^x « 2>Xj^

QxjSxjj-dt

(2-33)

In viexv of equation (2-1?) and defining R as



R= L L Pi-

25

>Xj
ox^dt

1 /*f >2f (x+e5x, m+6xn, t)

+ > r r r Pi — Qx^^x^dt

6(P may be expressed as

6(P = _ (H(x,P,in+5m,t) - H(x,P,in, t)
J
dt - R (2-35)

First, we want to show the necessary condition which states

that if the Hamiltonian H is not a maximuin, the minimum condi-

tion for tf> is violated. The condition for the Pontryagin func-

tion IP to be the minimum for any small change 5m of control

vector ra is

oJ> ^ (2-36)

Sov assume that the maximum condition for H is not satis-

fied during a small interval (t^, t^) which lies within the

interval (tg, t^.) . Then for any small variation 6ra of control

vector m

H(x, P, m+6m, t) - H(x,P,m,t) > € (2-37)

where t lies within the interval (tg, t^) , and € is a positive

constant. A control vector m having the following properties

is chosen. During the interval (t^, t^^) , m may be varied by a

very small amount 5m, and outside this interval, m remains un-

changed. Thus equation (2-35) becomes

5^ = - ( H(x,P, m+5m, t) - H(x,P,m,t)) dt - R
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J<*b
an

^ 5mgdt - R (2-38)

Since both 5m and 6x are very small, the second term at the

right-hand aide of equation (2-3I4.) is an infinitesimal of

higher order, which may be neglected, and then

('^t faff. (x,m+5m,t) - fi(x,m,t)] ^

r1 ^5: pJlii-: :
^- :L[5x,dt (2-39)

Jto i J I ^^j )

A Taylor series expansion of fjL(x> 21+5m, t) with respect

to m results in

3f^(x,m,t)
2

f^(x,ra+5m,t) = f^(x,m,t) + YL ^^'^g + ^ + • • •

s dmq
(2-40)

Since 6m is very small, we can omit the higher order terms

and then

/"^f ^2f (x,in,t)

R = E r Pi SXj. 5mg dt (2-1^.1)

-^to i J »xj»mg

In view of equation (2-17), one obtains

R = YLH ^^i ^°^3 '^^ (2-i|.2)

-^ta
»Xj»mg

Combining equation (2-38) and equation (2-i|.2) yields

= -I
*b an a2 H

6(p = -
I J3 ( 6ms + ^ ^^j 6mg)dt (2-I|.3)

ta s 3mg J ^Xj*»^3

which is less than zero, since the first term of integrand is

positive and the value of the second terra is smaller than the

first term. This implies that for this particular control vector,

the Pontryagin function <J> is not minimum for any variation 6ra
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of the control vector ra.

In short, the above result points out that if the maximum

condition for H is not satisfied, the minimum condition for

may be violated. This proves the necessary condition.

For the proof of sufficient condition, let the process

dynamics be characterized by

Xi(t) = H aj,j^(t)xj^(t) + u^Cm) (2-1+4)

k=l

Then the Hamiltonian of the system may be expressed in the form

H = E: 5Z aii,(t)x^(t)Pi(t) + H u.(in)Pi(t) (2-45)
i k i

Since the first term of equation (2-45) is linear in x^

and is independent of m and the second term is independent of x«

^2h

3Xj a ffig

(2-46)

So R = and equation (2-35) becomes

5(J> = - (h(x,P, m+5m, t) - H(x,P,m,t)] dt (2-4?)

Hence if the maximum condition holds for the Hamiltonian

H, the integrand of equation (2-47) is nonpositive and 6 <P is

nonnegative; that is, the minimum condition for the Pontryagin

function <P is fulfilled. This proves the sufficiency con-

dition.
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3. Application of the Maximum Principle

Example . Consider the equation X2 = m, where m is a real

control parameter constrained by the condition that m = 1.

In the phase co-ordinates

kj_ = xg {2-kQ)

X2 = m (2-1^.9)

The problem is, "Plow can we get to the origin (0, 0) from

an initial state Xq in the shortest time?"

First we write the Hamiltonian function

H = f:^ Pifi = Pifi + P2f2 = Pi^i + P2^2 (2-50)

Pi
= = (2-51)

Pi = ^1 (2-52)

C]^ is a constant

p^ = = - __ = -p^ (2>53)
ax2 ^Xj

P2 = C2 - c-Lt i2-^li)

C2 is a constant

Taking the condition -1 ^ m - 1 into account,

m(t) = sign P2(t) = sign(c2 - Cn^t) . Since C2 - C;]^* ^^ a linear

function which changes sign at most once on the interval

*C ~ ^ - *1» therefore for every interval tQ ^ t ^ t-|_, the

optimal control m(t) is a piecewise constant function which takes

on the values ±1, and has at most t two intervals on which it

is constant.
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For the case m = 1. From equation (2-^9) we know

X2=mt+k=t+k (2-55)

k is a constant

Prom equation (2-i|.8)

^1 "^
J ^2^* ^ — + kt + 1

1 p 2^0=-(t+k)+ (1-k) =-Xp^+R (2-56)
2 2 -

k, 1, R are constants.

Thus the portion of the phase trajectory for which m = ±1

ia an arc of a family of parabolas shown in Fig. 2-2a.

Fig. (2-2a). Fig. (2-2b).

For the case m = -1

^2 = -t + k (2-57)

X] = + kt + 1 =

2

= X2 + R'
2

(-t + k') + R'
2

(2-58)
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The family of parabolas of equation (2-^8) is shown in

Pig. (2-2b). The phase points move upwards along the parabolas

of equation {2-^6) since = m = +1; and downwards along the
dt

dX'
parabolas of equation (2-58) since = m = -1.

dt

For the case that m is initially equal to "+1", and then

to "-1", the phase trajectory consists of two adjoining para-

bolic segments (Pig. 2-3a) if m = -1 first and m = +1 afterwards,

the phase curve is shown in Pig. (2-3b).

Pig. 2-3a. Fl«. 2-3b.

Pig. 2-i^.
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If we combine Pigs. (2-3a) and (2-3b), we obtain Pig. (2-ij.).

Its physical meaning is that if the phase point moves along an

arc of the parabola (equation 2-58) which passes through the

initial point Xq, if Xq is above the curve AOB; and along an arc

of a parabola (equation 2-56) if Xq is below this curve. In

other words, if the initial position Xq is above the curve AOB,

the phase point must move under the influence of the control

m = -1 until it reaches the arc AO. At the instant it arrives,

the value of m switches to +1 and remains at this value until the

phase point reaches the origin. Ho^i?ever, if the initial position

Xq is below AOB, m must equal +1 until the time it reaches the

arc BO, and at that time the value of m changes to -1.

DYNAMIC PROGRAMMING

1. Outline

Dynamic programming, developed by the American mathematician

Richard Bellman, is a simple but very powerful concept ivhich

finds applications in the solution of multistage decision prob-

lems. The basic idea is the principle of invariant embedding,

according to which a very difficult or unsolvable problem is

embedded into a class of simpler solvable problems, so that a

solution can be obtained. Numerous applications of dynamic pro-

gramming techniques are possible, but here we are interested in

its application to optimal control problems.

In general, multistage decision problems are best solved by
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means of the functional equation approach, and the functional

equation describing a multistage decision process can readily

be derived by invoking "the principle of optirnality", which

states: "An optimal policy has the property that whatever the

initial state and initial decision arc, the remaining decisions

must constitute an optimal policy with regard to the state re-

sulting from the first decision.''

The principle of optirnality, which motivates the basic

properties of optimal control strategies. Is based upon the fund-

amental concept of invariant embedding. This concept implies

that to solve a specific optimum decision problem, the original

problem is embedded within a family of similar problems which

are easier to solve. For multistage decision processes, this

will allow the replacement of the original multistage optimiza-

tion problem by the problem of solving a sequence of single-

stage decision processes, which are simpler to handle.

Let X be k^ state vector characterizing a physical system

at any time. If the state of the physical system is transferred

from X2 into ^2 by the transformation

Z2 = g(2^1> "^l) (3-1)

For a single-stage decision process, an output or return yields,

Rl = r(x-L, m-^) (3-2)

The problem is to choose a decision m-, so as to maximize the

return. The maximum return is given by

•^1^-1^ = max r(x-j^, m-j^) (3-3)
m

In a two-stage decision process, if the state of the

physical system is first transformed from x-]_ into X2 by
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equation (3-1) and is then transformed froin X2 into Xo by the

transformation.

Xo = E,^^2' ""2^ (3-4)

This sequence of operations results in a total return.

Rp = r(x-,, Di-j^) + r(x2, i^g) (3-5)

Then the optiravun design problem is to choose a sequence of al-

lowable decisions m-, and mp so as to maximize the total return.

The maximum return is given by

^2^—2^ ~ raax|r(x-j_» ^1) + ^^2^2* ^2M (3-6)
hit ,m2

In general, for an N-stage decision process, the problem

is to choose an N-stage policy

jm^, m2, m^, . . ., m^'^

so as to maximize the total return

N

j=l '' •'

The maximum return of the N-stage process is given by

f
N

'J

fl.(x-.) = max ] H r(x-., m.)f (3-8)
m .

I j=l •' -^ '

It is not expected to obtain the solution of N simultaneous

equation by zeroing the partial derivatives of the quantity in

the braces with respect to m^, j = 1, 2, . . ., n, but the prob-

lem can be solved by using the principle of optimality. If

then the maximum return is given by

^N^-1^ = max|r(x3^, ^1^ "^ %-l {^^^1* "'l^])'
(3-10)

Clearly, by applying the principle of optimality, the N-stage
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decision process is reduced to a sequence of N single-stage de-

cision processes, thus enabling this optimization problem to be

solved in a systematic, iterative manner.

We should pay attention to the fact that any multistage

decision process in realistic situations is usually time de-

pendent and stochastic. In other words, it is unreasonable to

assume a multistage decision process to be independent of time

or to assume that the process is deterministic in nature. Wa

shall consider these realistic conditions in the following

problems.

2. Basic Principle and Application

We will now discuss the application of dynamic programming

technique to the three basic types of problems—minimum- integral

control processes, terminal-control processes, and miniimam-time

processes.

1) . Minimum- integral Control Processes . Consider an n* -

order control process characterized by the vector differential

equation:

x(t) = £(x, m, t) (3-11)

where x = an n-vector representing state of process

m = an r-vector denoting control signals

£ = a differentiable vector function of the arguments

X, m, t.

The initial conditions are given by

x(to) = Xq (3-12)
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Determine the optimal control vector m which minimizes the in-

tegral criterion function

Km)
J to

P(x, m, t)dt (3-13)

The integrand P(x, m, t) is a differentiable scalar function of

the state vector control vector and time.

X

^^t.tt)

(K.^to) y^'^^

' \

'
1

1 1

1 1

1 1

1 1

•to t t-t-il ^>

Pig. 3-1. Optimuiri trajectory.

In order to apply the functional equation technique of

dynamic programming, this optimization problem is embedded ivithin

the wider problem of minimising

tf

I P(x, m, t)dt

We write

I
tf

f(x, t) = min I F(x, m, t)dt
m Jx

(3-li;)

where t ranges over the interval (tQ, t^) , the minimum is taken

over all m, and f(x, tQ) = f(xo^ ^^ ^ ~
'^'O*

Application of the

principle of optimality reduces equation (3-lij.) to the functional

equation.
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't+A

f(x, t) = min
I I

P(x,ra,'r)d'i: + f(x + xA , t + A )| (3-1$)

By integration and Taylor series expansion one obtains

f f
f (x,t) = min P(x,m,t)^ + f (x,t) +x — A + — A +6(A)

"" a X t
(3-16)

If A approaches zero, equation (3-l6) becomes

af ht
= min P(x, m, t) + — £(x, in, t) (3-17)

at m ax

Prom equation (3-17) the following two equations result:

3P 3f as— + = (3-18)
arc 9x am

af af
P + — g(x, m, t) + — = (3-19)

ax at

af af
Solving for — and — from equation (3-l8) and equation (3-19),

ax at
respectively, yields

af ap/ain— = — = p(x, m, t) (3-20)
9x ag/aifl

^f af— = -P(x, m, t) g(x, m, t)
at ax

ap/am
= -P(x, m, t) + —- six, m, t) =- Q(x, m, t) (3-21)

a_g/am

By partial differentiation of equation (3-20) with respect to t

and partial differentiation of equation (3-21) with respect to

X, we obtain
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a^f 3P 3P 3m ap ax
= _+__= + _ _Z (3-22)

axat at am at ax at

a^f aQ aQ am
= — + — — (3-23)

dxat ax am ax

Combining equation (3-22) and equation (3-23),

ap ap am ap 3x aQ aQ jm_ + _ _ + _ _ = _ + _>. _ (3-2i|.)

at ^m at ax at ax am ax

Prom equation (3-2ij.) , the optimum control m can be determined.

In the foregoing study, we assume that no constraint is

imposed upon control signals and state variables. In practice,

because of the physical limitations of controlling devices,

physical constraints on control signal or state variables must

be taken into account in the problems of optimum controls. If

the constraints are not considered, the design may lead to a

system demanding excessively large control signals, which is un-

realistic and impracticable. Commonly encountered constraints

on control signals may be described as

a) integral constraint

H(m)dt ^ c (3-25)
->'to

b) amplitude saturation

a^i
^ mi(t) ^ bi (3-26)

tQ — t — t-P

where a^^, \>^ = constants

c^ = a constant vector

H(m) = a vector function of the control signals,

a) The first kind of constraints can be handled by the
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Lagrange multiplier method. (This was mentioned in part 2, cal-

culus of variations.) The optimization problem is transformed

into the problem of minimizing the synthetic function.

Il(in) = Km) + A' HU)dt (3-2?)

where l(m) is the specified performance index to be minimized.

X« is the transpose vector Lagrange multiplier. After the mini-

mization of the synthetic function is achieved, the desired con-

trol vector results as a function of the vector Lagrange mul-

tiplier \. Substitution of the vector m(X) into equation (3-25)

leads to r equations which can be solved for the elements X^ of

the vector Lagrnnge multiplier.

b) When constraints of the second type are considered, the

analytical solutions of partial differential equations and the

Euler-Lagrange equation which will appear in the optimum problems

are extremely difficult to obtain. To circumvent these diffi-

culties, the following functional equations will be used:

f(x, t) = min[ P(x, H» t)dt + f(x, + xa , t + A
)]

m Ut ^

= min [ F(x, m, t) + f (x + gA , t + A )) (3-28)
m

where the control signal satisfies the constraint |m| - M, and

A is a predetermined small interval of time. An N-stage com-

putational process yields

fjj..(x,t) = min P(x,m,t)A + fjj_(
j^.-^^

(x + g^ , t + A )

(3-29)

with t = to + j , j = 0, 1, 2, . . ., N

tf = to + NA
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For j=0 %(x,tQ) = itiin [P(x,m,to) + fK_i(Z+gA , tQ+A)]
m

(3-30)

j=M fQ{x, t^) = (3-31)

j=n-l r-i(x» tf-^) = min F(x,m, t^-A) + fQ(x,t^)
in

= min F(x, m, t^ -A) A (3-32)
ra

and

f2(x, tf - 2 A) = min F(x,m, t-2A)A+ f-j^(x, t^ - A ) (3-33)
in

Prom equation (3-32) and equation (3-33), the values of

f-j^(x, t^ -A) and the corresponding m^, f2^2E» *f ~ ^^^ ^"^ ^^®

corresponding m2 are determined for successive values of x»

The values of fi(x» t^ -A) may be obtained from the foregoing

either directly or by interpolation or extrapolation. By this

thod, the optimum, control signal m which minimizes the speci-

fied integral criterion function can be ascertained.

2) Terminal-control Processes . Consider the n* -order con-

trol process characterized by the differential equation

x(t) = Ax(t) + Dm(t) (3-34)

with the initial conditions given by x(0) = Zq* ^^ equation

(3-3ij-) X is an n-vector representing the state of the control

process, m is an r-vector representing the control signals sub-

jected to the following constraints during the interval

^ t ^ T:

hid ^Mj, {3-3S)

/T

J
H(m)dt ^ c (3-36)
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A and D are the coefficient and the driving matrices, respec-

tively. The optimum control vector m(t) is to be determined so

as to minimize the criterion function.

Km) = G [x-j_(T), X2(T), . . ., x-^(T)) (3-37)

It has been found that the solution to equation (3-314-) is

x(t) = z(t) +1 w(t - t) m{%) dx (3-38)

where ^(t) = 0[t) X(0) = complementary solution and

w(t - 'T)m('c)dx = particular solution

w(t - x) = 9i{t - x)D = e^*"'^^D

In terms of vector components, the state variables of the

control process are given by

f^. r
(t) = Zi(t) + II ^ik^t - 'c)mk('c)] d-u (3-39)

Jo if=l

i = 1, 2, . . ., n

The terminal control probleBi m.ay now be restated as deter-

mination of the optimum control vector m(t) that minimizes the

function

Km) = G z-l(T) +
J

Z! «;

Z;i^(T) +
J

YL wj^k^* ' '^)"ik^'^^^'^j (3-1^0)

subject to constraints given in equation (3-35) and equation

(3-36).

Application of the Lagrange multiplier converts this

Xil

'ik
(t - t)m, (T)dT . . . .
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optimization problem into the minimization of the synthetic

function

l-,{m) = G + ?. H(mjdT (3-41)

with respect to m, which is now constrained only by equation

(3-35). Let the minimum value of I-j^ be denoted by

f(z^, z^, . . ., z^, T) . Then

f(zT, Z2, . . ., 2]^, T) = mini G rz-j^(T)

/T

+ E w-,^j^(T-T)mjj.('c)d'c] + X H(m^, mg, ...,mj,)d'€l

(3-42)

L w^^(T-T)m^(T)d'U

'0 k

which may be rewritten as

f(z2^,Z2, ...,z-L,T) = min
I
G

I
z-j^(T) +

+ ZI w^^(T-T:)nii^,(T:)di: + ... z-j_(T)

Ja k

+
J
^ w;Lk(^-'^)^k^'^^'^'^ "*"

I
^ W3^j^(T-'Tr)mj^(T)dT:

Jq k -/a K J

+ X H(m-, jmp, . . . ,m^)dT + I H(m-,, mg, . . . ,m ) dT • (3-43)
Jo J^

where ^ is a very small time interval. By changes of limits,

f(z-j^,Z2,...,z^,T) = min J G rz-j^(T) +
j JI w^^(T-T)m (T)dT

mj. I
k J^ k
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JrT-6.

k

A /T-A
+

f f >i

I E W3j^(T-T)mj^(T)dT +
J

W^^(T-T-A )m^(T+A)dTj

.A /T-A .

+ X I H(ra-,m2,...,m )dT + ^
I H(m, ,m2, . . . ,m^)dTj

By the principle of optimallty, the functional equation

for terminal control problem is found to be

(z^jZg, ..., z^,T) =min|f [z^+
J

£; w^^{T-'c)m^(T)dT, . . . z^

+
I
E Wii5.(T-T)rcj^(T)dT; T-a)+A

J
H(m, ,m2, . . . ,m^) dTV

(3-45)

where the minimum is taken over all m^^ defined over the interval

(0,A) and satisfying constraints given in equation (3-35). An

analytical solution of the terminal control problem is not easy

to derive, but by approximating the following recurrence rela-

tionship we may obtain the solution.

f (z^,Z2,...,z-,^,T) = min
I
f ( z-j^ + aEI w^^(T)m^, . . . ,z^

-^Z! W3_j^(T)mjj.; T-A)+ \ H(m-,^,ra2, . . . ,mp)l (3-46)
k J

with

f(z^,Z2,...,z-j^; 0) =g[z-j^(0), Z2(0), ..., 2^(0)) (3-ii.7)

3) Minimum- time Control Process . Consider the nonlinear

control process characterized by the vector differential

equation
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X = g(x, m, t) O-i+S)

where x is n-state vector and m Is r-vector. Determine the

optirnum-contrcl strategy which will transform the process from

a given initial state

x(to) = xq (3-1^9)

to the desired final state.

x(tf) = x^f (3-50)

in minimum time, and the final time t^ is unspecified.

Let the function of the minimum time to transform the pro-

cess from the state x(t) to the desired final state x(t^) with

the control vector optimally chosen be

f(x, t) = mln {tf - to} (3-51)
m

On the basis of the definition of f(x, t), it follows that at

the end of the optimal trajectory

9t

7>t

and

af

= (3-52)

t=tf

ax^
= (3-53)

t=tf

By the principle of optima lity, the minimum time is given

by the functional equation.

f(x, t) min
I
A + f(x + x a , t + A )} {3-Sk)

m

Expanding f(x + xA, t +A) into Taylor series and simplifying

as before, we obtain

. af af .

min \^ + — g(x, S* t)^ + — ^ + € ( Z!i)l = O iZSS)
m ^ »x ~

<^t '
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If A approaches zero as a limit, equation (3-55) becomes

. 3f af V

min
I

— g(x, m, t) + _ = -1 (3-56)
m "^ ax ?t >*

Prom equation (3-5^) and from arguments similar to those for

deriving equations (3-l8) and (3-19), obtain the following two

equations:

Bf ^g(x, m, t)
= (3-57)

ax am

af «f— g(x, m, t) + _ + 1 = i3-^Q)
JX 3t

Furthermore, if the function g is time-independent, equation

(3-58) can be reduced as

^f— g(x, m) + 1 = (3-59)
zx

~

3f
when the partial derivative is known at a point, equation

ax

(3-57) and equation (3-59) can be solved for the optimal con-

trol vector ra.
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SUMMARY

Among the many optimum-control problems, three basic types

are of fundamental importance. They are the minimum-time con-

trol problem, the terminal-control problem, and the minimum-

integral control problem. Based on the three kinds of problems,

we have discussed the optimal-control system by the calculus of

variations, the maximaxn principle, and dynamic programming.

In discussing the calculus of variations, the minimum- integral

control problem is classified as the Lagrange type, the minimum-

time control and the terminal-control problems are classified

as Mayer problem.

The optimum design of control systems by the calculus of

variations generally leads to a two-point boundary value prob-

lem. Analytical solutions for such problems are possible only

in special cases. In view of the fact that the resulting Euler-

Lagrange differential equations are usually nonlinear, numerical

trial-and-error techniques must be resorted to. These techniques

employ an initial value for the missing initial condition and

integrating numerically the Euler-Lagrange equations and con-

straining equations. This work belongs to applied mathematics

and numerical analysis, and was not discussed here. The diffi-

culty in solving a two-point boundary value problem m.akes the

classical calculus of variations less attractive in the design

of an optimal-control system. Further, the variational calculus

approach is generally limited to systems subject to control

signals with unrestricted bounds.
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The maximum principle of Pontryagin provides an elegant

method of obtaining an optimal solution for very general dynam-

ical processes. It treats the optimization problem of maximiz-

ing or minimizing a function subject to certain constraints.

In general, a new state variable x ^.-. is introduced to convert

the optimum control problem to the optimization of this new co-

ordinate, and the Pontryagin function (? - b'x(t-) subject to

certain constraints is used for this new co-ordinate.

In general, the maximum principle provides a necessary con-

dition for system optimization. However, if the control process

is linear and subject to an additive control function, it pro-

vides the necessary and sufficient condition for optimum con-

trol. Although the application of the maximum principle is not

restricted to systems with unbounded control signals, it is sub-

ject to the same difficult two-point boundary value problem in

the variational calculus.

The basic theory of dynamic programming is the principle

of optiraality and the functional equation approach. Following

the formal analysis, the optimal control problem can be reduced

to the determination of the solution of the Hamilton-Jacobi

equation. The functional equation approach of dynamic program-

ming provides a way of obtaining the computational solution of

optimization problem which does not depend upon the solution of

the partial differential equation, thus circumventing difficul-

ties with the two-point boundary value problem. The principle

of optimality is applied to the derivation of the partial dif-

ferential equations describing the optimal control signals.
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Constraints on control signals are considered In the optimuin

design. For control processes of moderate complexity, a solu-

tion to the partial differential equation is generally difficult

to derive, and resort is often made to numerical analysis

through the functional equation approach. The constraint on

the control signal defines a finite range of possible values,

and this makes the computation easier.
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Optimal control problems are viewed as variational problems.

Three basic variational methods are discussed for maximizing or

minimizing a functional over a function space. They are:

1. The calculus of variations

2. The maximum principle

3. Dynamic programming.

Three basic problems in optimal control systems are stated

as typical problems. They are:

1. The minimum-time control problem

2. The terminal-control problem

3. The minimum-integral control problem.

In all cases the goal is to find the optimum control law

or sequence such that the given function of the perfoirmance

indices is maximized or minimized. In realistic and practical

situations, physical constraint on control signals or state

variables must be taken into account and these make optimum

control problems more cornplicated.


