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Abstract

A novel approach based on the Karhunen-Loéve Transform (KLT) is presented for

treatment of the energy variable in response matrix methods, which are based on

the partitioning of global domains into independent nodes linked by approximate

boundary conditions. These conditions are defined using truncated expansions of

nodal boundary fluxes in each phase-space variable (i.e., space, angle, and energy).

There are several ways in which to represent the dependence on these variables,

each of which results in a trade-off between accuracy and speed. This work provides

a method to expand in energy that can reduce the number of energy degrees of

freedom needed for sub-0.1% errors in nodal fission densities by up to an order

of magnitude. The Karhunen-Loéve Transform is used to generate basis sets for

expansion in the energy variable that maximize the amount of physics captured by

low-order moments, thus permitting low-order expansions with less error than basis

sets previously studied, e.g., the Discrete Legendre Polynomials (DLP) or modified

DLPs. To test these basis functions, two 1-D test problems were developed: (1) a

10-pin representation of the junction between two heterogeneous fuel assemblies,

and (2) a 70-pin representation of a boiling water reactor. Each of these problems

utilized two cross-section libraries based on a 44-group and 238-group structure.

Furthermore, a 2-D test problem based on the C5G7 benchmark is used to show

applicability to higher dimensions.
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Chapter 1

Introduction and Background

Nuclear reactors are extremely complicated systems, and modeling their dynamic be-

havior requires the solution of the neutron transport equation, a seven-dimensional

(r, v, t) equation that describes the population of neutrons in the system. Unfor-

tunately, to solve the complete neutron transport equation is all but impossible

for realistic problems without first reducing the problem space in some way. For

much of reactor analysis, it is reasonable to assume steady-state conditions, thus

eliminating all time dependence from the problem. In addition, it is very difficult

to account for the energy dependence directly, and a common approach is to use

the multigroup method, in which the energy variable is discretized into G energy

bins or “groups”. After these assumptions and the further assumption of isotropic

scattering, the neutron transport equation reduces to

Ω̂ · ∇ψg(Ω̂, r) + Σt,gψg(Ω̂, r) =

1

4π

[
G∑
g′=1

Σs,g′→gφg′(r) +
χg
k

G∑
g′=1

νΣf,g′φg′(r)

]
,

(1.1)

where ψg represents the group-dependent angular flux and φg is the group-dependent

scalar flux. Furthermore, Σt,g, Σs,g′→g, and Σf,g represent the group dependent

cross sections for total, inscattering, and fission respectively. In addition, χg is the

fission spectrum, ν is the average number of neutrons emitted per fission, and the

k-eigenvalue (or “multiplication factor”) represents the balance of neutron gains
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(by fission) to losses (by absorption and leakage). A reactor is “critical,” i.e., the

neutron population is steady, when k = 1.

Equation (1.1) may be used with any number of groups for which cross-section

data is available. In any group structure, a system of G equations must be solved.

Clearly, a greater number of groups will increase the difficulty of the problem,

but it will also increase the accuracy, provided that the group structure is chosen

wisely.

Equation (1.1) may be cast in operator notation, i.e.,

T φ(ρ) =
1

k
Fφ(ρ) , (1.2)

where T represents the transport processes, φ is the neutron flux, F represents the

neutron generation, ρ represents the relevant phase-space, and k is the eigenvalue.

A variety of approaches have been used to solve Eq. (1.2), which may broadly be

categorized as deterministic (e.g., discrete ordinates) methods and stochastic (e.g.,

Monte Carlo) methods. This work has used a deterministic method exclusively,

although much of the theory presented should also apply to stochastic methods.

1.1 Motivation

To model a full reactor core with high-fidelity resolution in space, angle, and energy

requires an enormous amount of computational power and memory. To illustrate

the challenge, consider a typical pressurized water reactor (PWR) core with 193

assemblies, each with a 17 × 17 array of fuel pins. Some reasonable parameters

for resolving the localized pin powers are approximately 50 spatial cells in the x-y

plane and 300 axial mesh points (i.e., 1 cm axial resolution) per pincell. Localized

pin power resolution in energy requires approximately 100 groups, and similarly,

to resolve the localized pin powers in angle requires approximately 100 angles. For

discretization with just one unknown per cell, group, and angle, the total number
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of unknowns is

N =(193 assemblies)× (172 pins

assembly
)× (300 axial points)

× (50 radial points)× (100 groups)× (100 angles)2

≈ 1× 1014 ,

(1.3)

for a single problem. For realistic analyses, a problem of this size would need to be

solved repeatedly to account for thermal-hydraulic feedback effects or to model

the change of material compositions over time. For such realistic problems, each

spatial cell can be assumed to have a unique material, each of which is defined by

O(1002) floating point values. Hence, as shown, a large problem can quickly amass

too many unknowns to solve in a reasonable amount of time on modern computers

as storage requirements quickly rise above PByte levels. While the problems can

be solved in principle , the solution requires too much time for production-level

analyses, i.e., those for design of actual systems. Thus, the number of degrees of

freedom must be reduced by reducing the spatial, angular, or energy resolution.

There are, of course, repercussions for each type of reduction, but the goal is to

minimize the effect of the reduction on the final solution of the neutron transport

equation. If the problem is reduced spatially, we are no longer solving the same

problem, while if energy or angle is reduced the fidelity of the model is reduced

because some of the underlying physics is muted. In lattice physics, a complete

solution is attained by solving the problem of interest several times to identify the

dependence of each phase-space variable, then combine the separate solutions in

such a way as to predict the global solution with some accuracy.

It is common in lattice physics to first solve the problem with a 0-D representation

in space and angle while continuous in energy to solve for the energy dependence.

Next, a lattice physics solution will reduce the energy dependence to the multigroup

approximation while using a 1-D or 2-D mesh in space along with high angular

resolution to capture the angular dependence of the problem. These solutions are

used to create approximate multigroup cross sections to be used in conjunction
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with models with only a few energy groups, a course angular dependence, and a

course 3-D spatial mesh.

Many traditional methods for solving the neutron transport equation focus on

a quickly computed solution by approximating the energy dependence, which

simplifies the problem and in turn reduces the fidelity of the solution. However,

in lattice physics, upwards of 200 energy groups or more are used to solve for a

high-fidelity energy spectra. As such, a method that can bridge the gap between

the quick, low-fidelity methods and the accurate, high-fidelity methods would be

immensely valuable to the future of large-scale, reactor-physics simulations and

analyses. Not only would the model be appropriately sized for modern computers,

but it could also be more accurate than the current methods of whole core-analysis.

1.2 Eigenvalue Response Matrix Method

1.2.1 Overview

This work applies the eigenvalue response matrix method (ERMM). Response

matrix methods are not new, and have been used in various formulations since the

1960’s, e.g., the work of Shimizu [1] and Shimizu et al. [2]. ERMM solves the reactor

eigenvalue equation by decomposing the domain of a problem into independent

nodes linked through approximate boundary conditions between each node. The

boundary conditions are typically incident angular flux or current conditions. For

ERMM, these conditions are represented by truncated, orthogonal basis expansions

at the nodal boundaries. This approach effectively converts a large problem space

into a large number of small, independent, transport problems, which creates many

opportunities for parallelization of the algorithm.

An example of ERMM is depicted in Fig. 1.1, where a sample problem is broken

into M nodes. The mth node, where 1 ≤ m ≤M , can be solved independently. In

this way, the outgoing information(here denoted by J) from one cell becomes the

incident conditions for the adjacent cell. The problem is then solved by assuming a
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value for each of the initial incident boundary information. The cells are then solved

for the outgoing information, which then becomes the new incident information for

another solution. In this way, the method will continue until convergence criteria

are met.

m-1 m m+1. . . . . .

J+ J+ J+J+

J− J−J−J−

Figure 1.1: Example of 1-D ERMM node connections. The outgoing conditions
J for a given node are the incident conditions on the adjacent node. Each node
is computed individually, and the global solution is found by sweeping across all

nodes.

In this case, the outgoing information is a boundary flux or current. The key

to response matrix methods is that the outgoing conditions of a cell are not

passed completely, but rather are projected onto a finite, orthogonal basis, and

the coefficients of the resulting expansion become unknowns for the problem space.

This projection reduces the number of degrees of freedom and, thus, reduces the

size of the problem. An expansion is completed for each phase-space variable (i.e.,

space, angle, and energy), and the success of these expansions depends primarily

on the selection of appropriate orthogonal bases for each phase-space variable.

Response matrix methods are expensive in general, unless the problem space is

greatly reduced in terms of the degrees of freedom as compared to more direct

solutions. Thus, proper basis selection is paramount if ERMM is to compare in

speed and accuracy to other methods for solving the transport equation.

In short, basis sets that capture the detail of a high-fidelity transport solution with

low-order expansions are ideal for ERMM because fewer degrees of freedom are

needed to achieve the desired accuracy, which reduces the problem space, and leads

to an easier problem to solve computationally. This work builds on the previous

effort presented by Roberts and Forget [3], which explored spatial and angular

expansions in ERMM. This work extends their progress by utilizing a new, highly

successful energy basis for use in ERMM based on the Karhunen-Loève transform,
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which is discussed in detail in Chapter 3. These basis sets are applied to several

illustrative problems, which provide insight to the success of the method.

It is possible (and typical) to use different basis expansions for each variable; thus

the expansion for each variable can be studied mostly independently of the other

variables. However, there exists coupling between each phase-space variable. For

example, the error caused by the expansion in energy is influenced by the expansion

in space. This work used reference cases designed to isolate the effect of only

one variable to the best extent possible. These reference cases are described in

Chapter 4.

1.2.2 Mathematical Formulation of ERMM

The following is a presentation of the time-independent, eigenvalue response matrix

method. Although the following method is most closely linked to the work of

Roberts and Forget [3], a presentation akin to that of Roberts [4] has been adapted

for this work. For time-independent, multigroup problems, Eq. (1.2) may be

rewritten as

T ψglobal(r,Ω, g) =
1

k
Fψglobal(r,Ω, g) , (1.4)

where ρ has been replaced by the spatial coordinate r, the direction of travel Ω,

and the energy group g.

The “global” superscript in Eq. (1.4) indicates that the equation defines balance

for the full problem of interest, and thus is the complete or global solution. ERMM

works by breaking the global problem into small, independent or local nodes. To do

so, let the global volume V be decomposed into I disjoint, convex, nodal sub-volumes

Vi that satisfy V = V1
⋃
V2
⋃ · · ·⋃VI . Furthermore, let the surface ∂Vi of Vi be

composed of S disjoint, planar surfaces ∂Vis that satisfy ∂Vi = ∂Vi1
⋃ · · ·⋃ ∂ViS.

While unnecessary, the condition of planar surfaces permits a compact notation.

Finally, let ri and ris be shorthand for the variable r confined to values r ∈ Vi and

r ∈ ∂Vis, respectively.
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Thus, the equivalent “local” transport equation for the ith node is

T ψlocal(ri,Ω, g) =
1

k
Fψlocal(ri,Ω, g) , (1.5)

subject to S incident-flux boundary conditions

ψlocal(ris,Ω, g) = ψglobal(ris,Ω, g) , Ω •nis < 0 , (1.6)

where the unit vector nis is the outward normal of surface ∂Vis. Equations (1.5) and (1.6)

can be combined by casting incident-flux conditions as external sources such as,

(
T − 1

k
F
)
ψlocal(ri,Ω, g) = jglobal(ri,Ω, g)δ(ri •nis) , (1.7)

where j = Ωψ is the angular current vector, and j is the magnitude of the angular

current. For brevity, j is referred to as the angular current. This formulation allows

the global problem to be formed by sweeping across each local node.

The general solution of Eq. (1.7) for arbitrary incident conditions can be expressed

as the convolution of the external source term with an appropriate kernel, or

ψ(ri,Ω, g) =
G∑

g′=1

S∑
s′=1

∫
nis′ •Ω′<0

Rf (r
′
is′ ,Ω

′, g′ → ri,Ω, g)j(r′is′ ,Ω
′, g′) dΩ , (1.8)

where G is the number of groups, and the “local” and “global” superscripts have

been omitted. Similarly, exiting angular currents can be expressed as

j+(ris,Ω, g) =

G∑
g′=1

S∑
s′=1

∫
nis′ •Ω′<0

Rc(r
′
is′ ,Ω

′, g′ → ris,Ω, g)j(r′is′ ,Ω
′, g′) dΩ ,

(1.9)

where nis •Ω > 0. The integration kernels Rf and Rc are f lux- and current-

response functions, which represent the angular flux and outgoing angular current

at one point in phase-space due to a unit, incident current at another point in

phase-space. However, some effort is required to convert Eqs. (1.8) and (1.9) into
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a practical form. The goal is to reduce the effort needed to compute the global

solution; thus, some approximations should be made for each phase-space variable.

1.2.3 Projection onto a Space and Angle Subspace

The first approximations are the treatment of the angular and spatial dependence.

Projection of local angular currents and fluxes onto a finite subspace represented by

an orthogonal basis allows the use of a truncated basis to represent space and angle.

Using a truncated basis reduces the problem space, and, hence, the computation

cost of ERMM at the expense of reduced accuracy. Let a finite basis be constructed

with a set of functions Pm(r,Ω), m = 0, 1, . . . M , that are orthonormal over some

domain of interest (i.e., a volume or a surface). Then the angular flux can be

approximated as

ψ(ri,Ω, g) ≈
M∑
m=0

ψmi (g)Pm
f (ri,Ω) , (1.10)

where

ψmi (g) =

∫
Vi

∫
4π

ψ(ri,Ω, g)Pm
f (ri,Ω) dΩd3ri , (1.11)

and the f subscript denotes a basis suitable for the angular flux. Angular currents

can similarly be approximated as

j±(ris,Ω, g) ≈
L∑
l=0

j±lis (g)P l
c(ris,Ω) , nis •Ω ≷ 0 , (1.12)

where

j±lis (g) =

∫
∂Vis

∫
nis •Ω≷0

j(ris,Ω, g)P l
c(ris,Ω) dΩd2ris , (1.13)

and the c subscript denotes a basis suitable for the angular current defined on a

boundary surface. Then, substitution of Eqs. (1.10) and (1.12) into Eq. (1.8) yields

M∑
m=0

ψmi (g)Pm
f (ri,Ω) ≈

G∑
g′=1

S∑
s′=1

L∑
l′=0

j−l
′

is′ (g′) 〈Rf , P
l′

c 〉 , (1.14)

8



where variables have been suppressed and 〈 · 〉 indicates the appropriate space and

angle integration. Multiplication of Eq. (1.14) by Pm
f (ri,Ω) and integration of the

result over space and angle leads to a set of flux moments defined by

ψmi (g) ≈
G∑

g′=1

S∑
s′=1

L∑
l′=0

j−l
′

is′ (g′)Rs′l′→m
fi (g′ → g) , (1.15)

where

Rs′l′→m
fi (g′ → g) ≡ 〈〈Rf , P

l′

f 〉 , Pm
f 〉 . (1.16)

Similarly, the outgoing angular currents can also be projected to yield the moments

j+lis (g) ≈
G∑

g′=1

S∑
s′=1

L∑
l′=0

j−l
′

is′ (g′)Rs′l′→sl
ci (g′ → g) . (1.17)

By choosing appropriate basis sets for expanding the spatial and angular variables,

few terms are required for sufficient accuracy. For this work, Jacobi polynomials

were used for the angular expansion, and Discrete Legendre Polynomials were used

for the spatial expansion. The work did not focus on optimization of the spatial

and angular basis functions, but rather the best cases from the work of Roberts

and Forget [3] were used.

1.2.4 Projection onto an Energy Group Subspace

This work focused on the basis sets for energy expansion, and the projection for

energy is formulated similarly to the space-angle projection. This treatment will

eliminate an explicit dependence on g. Because g is a discrete variable, bases used

to represent dependence on g consist of discrete functions P h(g), h = 0, 1, . . . , H

that satisfy
G∑
g

P h(g)P h′(g) = δhh′ , (1.18)
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where δhh′ is the Kronecker-δ. By using such a discrete basis, group-dependent flux

moments defined by Eq. (1.15) can be approximated as

ψmi (g) ≈
H∑
h=0

ψmhi P h(g) , (1.19)

where

ψmhi =
G∑
g=1

ψmi (g)P h(g) . (1.20)

Likewise, current moments defined by Eq. (1.17) can be approximated as

jlis(g) ≈
H∑
h=0

jlhisP
h(g) , (1.21)

where

jlhis =
G∑
g=1

jli(g)P h(g) . (1.22)

Substitution of Eqs. (1.19) and (1.21) into Eq. (1.15) yields

H∑
h=0

ψmhi P h(g) ≈
G∑

g′=1

S∑
s′=1

L∑
l′=0

H∑
h′=0

j−l
′h′

is′ (g′) 〈〈Rf , P
l′

f 〉 , Pm
f 〉 . (1.23)

Next, multiplication of the result by P h(g), and summation over energy leads to

ψmhi ≈
S∑

s′=1

L∑
l′=0

H∑
h′=0

j−l
′h′

is′ Rs′l′h′→mh
fi , (1.24)

where

Rs′l′h′→mh
fi ≡ 〈〈〈Rf , P

l′

f 〉 , Pm
f 〉 , P h〉 , (1.25)

and the outer brackets represent summation, not integration over g. Similarly,

current moments are defined as

j+lhis ≈
S∑

s′=1

L∑
l′=0

H∑
h′=0

j−l
′h′

is′ Rs′l′h′→slh
ci , (1.26)

where

Rs′l′h′→slh
ci ≡ 〈〈〈Rc, P

l′

c 〉 , P l
c〉 , P h〉 . (1.27)
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Computation of response function moments Rs′l′h′→mh
fi and Rs′l′h′→slh

ci requires

evaluation of Eqs. (1.8) and (1.9) in which the incident current is equal to

P l′
c (ris′ ,Ω)P h′(g) for each allowed combination of i, s, l, and h.

1.2.5 Response Matrix Formalism

Equations (1.24) and (1.26) can be represented as nodal response matrix equations,

i.e.,

ψi = Rfij
−
i

j+i = Rcij
−
i ,

(1.28)

where ψi and j±i are vectors of nodal moments and Ri’s are matrices of nodal

response function moments. Response matrix equations for the entire spatial

domain can then be written as

ψ = Rfj
−

j+ = Rcj
− .

(1.29)

By redirecting outgoing currents from one node as incident currents to another via

j− = Mj+, where the matrix M represents geometry and boundary conditions,

the global equations become

ψ = Rfj
−

j− = MRcj
− .

(1.30)

In this formulation, the flux is dependent only on incident currents, and the

response matrices Rf and Rc are functions of the k-eigenvalue. When k is not

converged, the balance defined by Eq. (1.30) generally does not have a solution. As

an alternative, the current equation can be rewritten as the nonlinear eigenvalue

equation

MRc(k)j− = λj− . (1.31)
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After determining j− by solving Eq. (1.31) for an assumed value of k, the flux

and other volume moments can be determined. Subsequently, a new value for

k is generated similarly to the traditional power method by using the standard

balance relation of gains-to-losses. The new k is then used to find j−, etc., until

the solution has converged. A more detailed presentation of algorithms for solving

the response matrix equations is given by Roberts and Forget [3].

1.3 Objectives

The primary focus of this work is to reduce by an order of magnitude the number

of energy degrees of freedom needed to achieve sub-0.1% error or better in the

relative fission density error or pin powers. The fission density is directly related

to the power levels throughout the problem. To evaluate the method, several test

problems were devised to test the energy expansion including two 1-D problems

and one 2-D problem. The project tested several facets of the orthogonal basis sets

produced by the Karhunen-Loève Transform (KLT), which was used for expansion

in energy.

The KLT uses snapshots (discussed in detail in Chapter 4) to generate the basis

sets. Thus, the work has considered several different models from which to generate

snapshots. Each unique set of basis functions is used to expand the energy

dependence for the test problem, and results are generated as the relative error in

the fission density for the expansion as a function of order. The results of the 1-D

test problems are presented in Chapter 5, while the results of the 2-D test problem

are presented in Chapter 6. During the course of the project, several parametric

studies were developed to test the impact of different aspects of the models. These

parametric studies are presented in Appendix A.

12



Chapter 2

Summary of Previous Work

Response matrix methods have traditionally used a full multigroup representation

of the energy variable, which is to say that there is no basis truncation for the

energy basis. Response matrix methods have been used successfully with a variety

of energy group structures, ranging from three to 190 groups [5–7].

One of the first studies of a truncated energy expansion for response matrix methods

was the work of Roberts [8], who used Discrete Legendre Polynomials (DLP) and

a modified version of DLP (mDLP) to expand in energy. His approach compared

the basis expansions to a full multigroup approximation of the energy variable.

This chapter aims to explore the previous work in expanding the energy variable,

beginning with a brief overview of how the full multigroup approach can be

represented in the formalism of Chapter 1, followed by a discussion of DLPs and

problem-specific, modified DLPs.

2.1 Expanding in Energy

In order to represent the multigroup method exactly in ERMM, the energy variable

is represented by a set of Kronecker-δ functions defined by

P h
δ (g) = δh,g−1, g = 1, 2, . . . , G , (2.1)
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where

δh,g−1 =

1, if h = g − 1 ,

0, if h 6= g − 1 .

(2.2)

When a complete set of these vectors (i.e., H = G− 1) is used, a generic response

function moment Rs′l′h′→slh can be rewritten as Rs′l′g′→slg. Thus, the group-to-group

transfer process is represented in the traditional form. However, this approach

requires that all energy groups be included, thus the number of energy degrees

of freedom is equal to the number of groups. This method works well when the

number of groups is low, but large models become prohibitively expensive when a

detailed energy treatment (i.e., more than approximately 10 groups) is used.

If a Kronecker set is truncated, a significant amount of the physics is lost, and the

expansion has significantly reduced accuracy. Hence, the Kronecker set should not

be used with energy order reduction. In order to improve ERMM performance, a

basis set for energy is sought that will capture many-group fidelity while requiring

many fewer degrees of freedom (H in Eqs. (1.24) and (1.26)) than a full multigroup

analysis (a solution utilizing the complete set of Kronecker vectors).

A way to reduce the energy degrees of freedom is to use an orthogonal basis to

approximate the functionality of every group, thus converting the energy degrees of

freedom for the problem into the coefficients of expansion. In this case, the energy

degrees of freedom are equal in number to G, because H + 1 basis functions are

required to expand exactly a vector of length G. The problem is then simplified by

using a lower expansion order than G. If the low-order vectors in a basis set can

better approximate the energy dependence, then the truncation should minimize

effect of the error introduced such an expansion. The previous work by Roberts

[8] suggested that incorporating physics directly into the basis functions may be

more efficient than standard basis sets, and can lead to accuracy close to that of a

full multigroup treatment using G groups without needing H + 1 energy degrees of

freedom.
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Each of the basis sets presented here are computed in orthonormal form. This

formulation leads to quick determination of the expansion coefficients similarly to

Eqs. (1.20) and (1.22), rewritten as

ai =
G∑
g=0

w(g)P i(g)f(g) , (2.3)

where ai is the ith coefficient of expansion, w(g) is the weight associated with the

basis function, P i(g) is the ith basis function, and f(g) is the function to expand.

The reconstructed function is given by

f̃(g) ≈
I∑
i=0

aiP
i(g) (2.4)

where I is the expansion order.

Equation (2.4) is defined akin to Eqs. (1.19) and (1.21). Because a reduced number

of energy degrees of freedom is desired, a basis that incorporates some physics

of the problem is likely to provide the best expansion. The basis that includes

physics should then be compared to more standard basis sets, such as the Discrete

Legendre Polynomials (DLPs).

2.2 Discrete Legendre Polynomials

The Legendre polynomials form a standard and proven basis that is used throughout

computational physics. The discrete versions of the Legendre polynomials are

shown in Fig. 2.1. When using the DLPs, the functions are represented by vectors of

length equal to the number of discretized points. The vectors shown in Fig. 2.1 have

been orthonormalized over the range of the vectors. Recent work investigated the

use of discrete Legendre polynomials (DLPs) for expansion in energy [8–10]. The

set of polynomials is generated using the Gram-Schmidt process to orthogonalize

the discrete monomials Mh(g) = gh, g = 0, 1, . . . , G− 1. To illustrate, let G = 5,
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Figure 2.1: Discrete Legendre Polynomials shown through 3rd order using 40
points

for which the zeroth-order DLP vector is defined as

P 0
DLP(:) =

M0(:)√∑G
g=1M

0(g)

=

√
5

5
[1, 1, 1, 1, 1]ᵀ .

(2.5)

To define the first-order DLP vector, let

P̃ 1
DLP(:) = M1(:)−

(
G∑
g=1

P 0
DLP(g)M1(g)

)
P 0
DLP(:) , (2.6)

leading to

P 1
DLP(:) =

P̃ 1
DLP(:)√∑G

g=1 P̃
1
DLP(g)P̃ 1

DLP(g)

=

√
10

5
[−2, −1, 0, 1, 2]ᵀ .

(2.7)

This procedure can be repeated for DLP vectors of arbitrary order, up through one

less than number of energy groups used. For the provided example, the second-,
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third-, and fourth-order DLP vectors are defined as

P 2
DLP(:) =

√
146

146
[8, −1, −4, −1, 8]ᵀ

P 3
DLP(:) =

√
610

610
[−16, 7, 0, −7, 16]ᵀ

P 4
DLP(:) =

√
1090

5450
[80, −85, 0, −85, 80]ᵀ .

(2.8)

The DLPs can be use to truncate an expansion at any desired order with varying

levels of accuracy, e.g., use Eq. (2.4) except let I take a value less than the number

of values in the expanded function, f̃i.

To illustrate, let f(x) be defined as

f(x) = cos(x) 0 ≤ x ≤ 2π . (2.9)

To expand f(x) with the set of DLPs, F is first discretized by evaluating it at a

number of points, e.g., 40 points. The expansion coefficients are then calculated by

Eq. (2.3), and are then used to approximate f to various orders using Eq. (2.4).

The results of such expansions are given in Fig. 2.2, where the approximate function

is plotted alongside the discretized f(x). Only the even orders are shown in the

figure because cos(x) is an even function, and hence all expansion coefficients for

the odd functions of the DLPs are equal to zero. It is evident from Fig. 2.2 that

increasing the expansion order reduces the error of the approximation because more

terms have been retained. However, adding odd functions to the expansion does

not reduce the error of the approximation. In general, an expansion will converge

as the basis set becomes more complete (where completeness is determined by

the range of the basis set in the vector space of the function to expand), but it

is not guaranteed that the expansion will converge to f(x). In the case of the

neutron transport equation, the dependence of the solution on the expansions

is non-linear in general; thus, the error cannot be guaranteed to decrease with

increasing expansion order, but the error is expected to decrease on the average as

the order is increased.
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Figure 2.2: Using 40 discrete points, cos(x)x ∈ [0, 2π] expanded by Discrete
Legendre Polynomials to 4th order

2.3 Modified Discrete Legendre Polynomials

To improve the DLPs as a basis for energy expansion, the polynomials are first

modified by superimposing a “shape” vector s on each basis vector, leading to the

intermediate vectors

P̃ h
mDLP(g) = P h

DLP(g)s(g) , g = 1, 2, . . . , G . (2.10)

The modified Discrete Legendre Polynomial (mDLP) vectors P h
mDLP are subse-

quently found by orthonormalizing the vectors P̃ h
mDLP. This formulation is referred

to as Type 1 mDLP (mDLP-1) [8]. It is obvious that to expand a known function

using the mDLP-1 basis, the best shape vector would be the function itself. The

power of modifying the DLP vectors is observed when using the same basis set to

expand several different but related functions, e.g., the scalar flux as a function of

energy for different spatial cells in a test problem.

As an example of mDLPs, consider a 10-pin test problem consisting of 5 pins of UO2

next to 5 pins of mixed oxide (MOX), i.e., plutonium-bearing, fuel with reflective

boundary conditions (this example problem is the first 1-D test problem discussed
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Figure 2.3: Example shape vector for creating mDLP basis functions

in Chapter 4 and is shown in Fig. 4.1). This problem can be discretized spatially

into several regions, i.e., N spatial cells. Then the scalar flux φ can be calculated

for each spatial cell, which leads to G group-dependent vectors that represent

the scalar flux in each spatial cell. In this case, a shape vector representing the

spatially-averaged scalar flux as a function of energy is used to modify the DLP

vectors and form the mDLP basis. This example shape vector is shown in Fig. 2.3.

This shape vector will create the basis functions shown in Fig. 2.4 when using

mDLP-1. A second type of mDLP (mDLP-2) is formed by multiplying only the first

DLP vector (i.e., the flat vector) with the shape function, then orthonormalizing

the set of vectors [8]. A sample of mDLP-2 basis vectors is shown in Fig. 2.5.

The efficiency of the mDLP vectors are shown by computing the error due to

expansion as a function of order. The error is computed as

ε =

√∑H
h=1(f(h)− f̃(h))2∑H

h=1 f(h)2
, (2.11)

where f̃(h) is the hth element of the approximate function f̃ as defined in Eq. (2.4).

Equation (2.11) is the discrete definition of the L2 norm, which measures the

deviation between two vectors in a least squares sense. Figure 2.6 shows the

19



0 5 10 15 20 25 30 35 40 45
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 B
as

is
 F

un
ct

io
n

P0

P1

P2

P3

Figure 2.4: Example basis functions for mDLP-1 shown through 3rd order

0 5 10 15 20 25 30 35 40 45
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 B
as

is
 F

un
ct

io
n

P0

P1

P2

P3

Figure 2.5: Example basis functions for mDLP-2 shown through 3rd order

performance of both types of mDLP compared to DLP when used to expand the

set of scalar flux vectors described for the example 10-pin case. Note that at the

full order (order = 43 for this example), all of the basis sets converge to within

machine precision. It is clear that mDLP-1 outperforms mDLP-2, which suggests

that more of the physics of the problem is captured by the lower-order functions of

mDLP-1. Thus, for this problem, the functions of mDLP-1 can better approximate
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Figure 2.6: Relative error in the L2 norm as a function of expansion order for
various basis sets

the solution to the problem than mDLP-2.

It must be reiterated that the solution for this problem was already known, and

the shape vector was taken to be the average of the group-dependent vectors from

each spatial cell. In practice, the scalar flux will not be known a priori, thus a

representative shape vector must be chosen. For the 10-pin example in this chapter,

a suitable shape vector may be constructed by taking the average of the spectrum

produced by solving each type of fuel pin individually. Although this approach is

expected to produce a viable shape vector, the constructed basis set will not lead

to the same accuracy as achieved when using the average of the actual spectra as

the shape vector.

2.4 Summary

Later in Chapters 5 and 6, DLP and mDLP are compared to the KLT (Karhunen-

Loéve Transform) approach (which is discussed in Chapter 3). The best case

of mDLP (i.e., mDLP-1) is compared to each of the various formulations of the

KLT. However, the best-case mDLP requires the correct solution a priori. A more
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practical use of mDLP is not expected to perform as well. The best case mDLP

was chosen as the comparison to provide a view into the performance of the KLT

as used for basis generation.
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Chapter 3

Karhunen-Loève Transform

Although use of mDLPs is one way to build physics into an energy basis, a more

powerful approach is to use the Karhunen-Loève transform (KLT) [11]. This

method goes by many names such as Proper Orthogonal Decomposition (POD)

[12] and Principal Components Analysis (PCA) [11]. KLT has also been used

for a variety of purposes, including model reduction in both fluid dynamics [13]

and reactor eigenvalue problems [12]. Additionally, KLT has been used in image

compression [11].

The central goal of KLT is to approximate a discrete or continuous function f(x)

as a truncated expansion in an orthogonal basis whose functions yield the best

possible nth-order approximation in terms of least-squares error for all values of n.

In some applications, such as image compression, the function f is predetermined,

e.g., a set of pixel values. For other applications, such as reduced-order modeling,

the function f is not known. While details of its use in these applications may

differ, KLT is fundamentally related to the singular value decomposition (SVD).

Suppose the global response matrix equations defined by Eq. (1.30) were solved

using a full multigroup treatment and group-dependent boundary currents were

reconstructed for each node from the resulting solution. Let N denote the number

of these currents, each of length G, the number of energy groups. Furthermore, let

the nth current vector be denoted by dn. These vectors, referred to as snapshots
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later in this work, are combined to form the matrix D ∈ RG×N , which is defined

as D = [d1, d2, . . . , dN ].

The present goal to to find a set of vectors that is the best representation of the

columns of D, i.e., the set of snapshots. The full SVD of D is defined as

D = UΣVᵀ , (3.1)

where U ∈ RG×G is an orthogonal matrix of the right-singular vectors, V ∈ RN×N

is an orthogonal matrix of left-singular vectors, and Σ ∈ RG×N is a matrix with

diagonal elements σkk ≥ 0, k = 1, 2, . . . , K = min(G,N) arranged in decreasing

order and zeros everywhere else. The σkk’s are referred to as singular values of the

matrix D. The first R = rank(D) ≤ K singular values are positive (and the rank

of a matrix is equal to the number of linearly independent columns).

If instead of allowing all of the nonzero singular values into the construction of Σ,

only the largest L values are used to define Σ, the problem space will be reduced.

Eckart and Young [14] proved that the rank-L matrix D̃ ∈ RG×N that satisfies

min
D̃∈RG×N

rank(D̃)=L

||D− D̃||F (3.2)

is defined as

D̃ = ŨΣ̃Ṽᵀ , (3.3)

where Ũ ∈ RG×L and Ṽ ∈ RN×L contain the first L ≤ K columns of U and V,

the diagonal matrix Σ̃ ∈ RL×L has nonzero elements equal to the first L singular

values of D, and the Frobenius norm of a matrix A with elements agn and columns

an is defined as

||A||F =

√√√√ G∑
g=1

N∑
n=1

a2gn =

√√√√ N∑
n=1

||an||22 . (3.4)

Therefore, the matrix D̃ that satisfies Eq. (3.2) provides a least-squares representa-

tion of the entire set of data contained in D. Equivalently, the columns of D̃ are
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approximations of the columns of D with the minimum root mean square (RMS)

error.

The KLT is designed to generate a set of orthogonal basis vectors that capture the

most important information of the defining matrix. In this case, that matrix is

D, so the singular vectors of a matrix capture the most important information

about the snapshots. Thus, part of the KLT is to identify the singular values of

the matrix D. By extension of Eq. (3.1)

DᵀD = VΣUᵀUΣVᵀ = VΣ2Vᵀ . (3.5)

Thus the SVD of the quantity DᵀD yields V, which are the right-singular vectors

of D. When using the SVD of the matrix DᵀD, the result is equivalent to the

eigenvalue decomposition of DᵀD. The eigenvalue decomposition is of a similar

form to Eq. (3.5) and is given by

DᵀD = B = QΛQ−1 , (3.6)

where the columns of Q ∈ RN×N are the eigenvectors of B ∈ RN×N , and Λ ∈ RN×N

contains the eigenvalues of B in decreasing order.

From Eq. (3.6), the eigenvectors contained in Q of the eigenvalue decomposition

of DᵀD are equivalent to the right singular vectors of D with corresponding

singular values contained in Σ. Also important to note is that DᵀD is a symmetric,

square, real-valued matrix, which simplifies many linear algebraic computations

and guarantees that the eigenvalue decomposition exists. Furthermore, many

algorithms exist to find eigenvalues and corresponding eigenvectors of symmetric

matrices, which are quicker than computing the SVD of B.

In short, we desire the information contained in the singular vectors of D. The

singular vectors of D are equivalent to the eigenvectors of B. By taking only the N

largest eigenvalues and corresponding eigenvectors of B, the eigenvectors provide

the best Nth order least squares representation of B, and correspondingly the least
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squares representation of D. By working with B instead of D, many computations

are quicker.

This approach leads to the simple implementation algorithm to find the basis

functions, P i
KLT(:), first described by Meyer and Matthies [15], as follows. Form

the data matrix, D as above. Then the matrix B ∈ RN×N is defined as

B = DᵀD . (3.7)

Now find the eigenvectors corresponding to the largest eigenvalues of the matrix B,

B = QΛQ−1 , (3.8)

where Q from Eq. (3.8) is equal to V from the SVD of D in Eq. (3.1), and is thus

the set of eigenvectors of D. The eigenvectors qj (columns of Q from Eq. (3.8)),

are then multiplied by the data matrix to form the basis vectors P j
KLT (:), i.e.,

P j
KLT (:) = Dqj , (3.9)

which are subsequently orthonormalized. Then an approximate representation of

an arbitrary N -vector f in the basis is

f ≈
∑
j

ajP
j
KLT (:) where aj = fTP j

KLT (:) . (3.10)

The form of Eq. (3.10) is comparable to that of Eqs. (1.19)–(1.22). The KLT is

used to create a set of N basis vectors that are best Nth order approximation

of the data to which the KLT applied. In other words, the kth basis function is

stretched such that the basis vector can best approximate a snapshot d when used

in conjunction with all i < k vectors of the basis set. Thus, the KLT maximizes

the projection of a basis vector onto the data to which the KLT was applied. This

means that the KLT basis is constructed to obtain the most efficient basis functions

for order reduction. For example, the most efficient storage for a zeroth expansion

of a function is the function itself, which is an uninteresting use of KLT. However,
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when instead applied to a set functions, KLT efficiently detects the prominent

modes in the set. In this case, the zeroth-order basis function typically resembles

the average of the functions to which KLT is applied.

Defining the KLT basis vectors requires that values of the function to be expanded

be known a priori. For an application such as image compression, those values are

completely known. However, for applications in reduced order modeling, knowledge

of the true function to be expanded, e.g., the group-dependent angular current,

would require the full system to be solved, which may be impossible for sufficiently

large models. Additionally, if the complete solution is already known, there remains

little need to approximate the solution. Therefore, an approximation must be made

in order to sample values of the function to be expanded.

For time-dependent fluid dynamics, Sirovich proposed a method [13] that is now

known as the method of snapshots [12]. The method was used originally to

produce reduced-order models for spatially-discretized, continuous-in-time models

by computing the space-dependent solution only at discrete times. The resulting

data, or matrix D, is reduced significantly from the continuous case.

Again, the solution of the global response matrix equations should be avoided

because it could be prohibitively large and would preclude the need for a basis

expansion. Thus, an effective basis set that can reconstruct the global solution

without solving the global solution directly is sought. The true set of vectors dn is

assumed to be unavailable, so an alternative method to generate snapshot data

is required. The implemented approach is similar to traditional lattice physics

methods in which a small, representative portion of the global domain (e.g., a

many-group, two-dimensional assembly model) is used to generate an approximate

global model (e.g., few-group, three-dimensional reactor model). For KLT, small,

“snapshot model” problems are solved from which group-dependent fluxes at various

space and angle points are extracted as snapshot vectors. These vectors become

columns of an approximate D, and KLT is constructed and applied as described.

Since snapshot vectors do not represent the true solution space, optimality of KLT

is not guaranteed. However, if the set of snapshots is sufficiently similar to the
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Figure 3.1: Basis functions for the KLT applied to an example problem

solution, then KLT can provide excellent results when applied to ERMM as an

energy basis.

To illustrate application of KLT, reconsider the 10-pin example from Chapter 2.

The KLT approximation is applied to expand the known solution for the scalar

flux, and its performance is compared to that of DLP and mDLP. The data is

arranged as the matrix D ∈ RG×N , where G = 44 and N = 280. Following the

algorithm described starting with Eq. (3.7), the basis function are constructed.

These basis functions can be observed in Fig. 3.1. Note that the zeroth-order

function is approximately identical to the zeroth order from either type of mDLP.

It is in the remaining basis functions that KLT differs from mDLP.

The performance of the KLT basis set is shown in Fig. 3.2. Clearly, KLT outperforms

DLP and mDLP for this example problem as KLT retains considerably more physics

in the basis functions than mDLP can achieve. Also note that it takes considerably

longer to compute the KLT basis function as compared to DLP or mDLP; however,

the computation time for the basis generation of KLT is still orders of magnitude

shorter than the time required to solve for the snapshot models or the test-problem

itself.
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Chapter 4

Test Problems and Models

For the purpose of testing the KLT as a basis generator for the ERMM, a number

of test problems and corresponding snapshot models were developed. A total of

three test problems were constructed, two that are 1-D and one that is 2-D. These

test problems serve as the way to benchmark the implementation of KLT into the

ERMM as a way to approximate the energy variable.

4.1 Test Problems

The test problems considered are (1) a 1-D, 10-pin, UO2-MOX assembly model, (2) a

1-D, 70-pin BWR core model, and (3) the 2-D C5G7 benchmark [16]. The transport

code DETRAN was used with a 16-angle, double Gauss-Legendre quadrature and a

step-characteristic spatial discretization for problems (1) and (2). Problem (3) was

solved with a Gauss-Chebyshev quadrature for the polar variable and Abu-Shumays’

Quadruple Range quadrature for the azimuthal variable [8]. Cross-section libraries

for the test problems were generated with SCALE 6.1 in the SCALE 44-group and

238-group formats [17].

For the 1-D problems, a current-conserving, first-order, angular expansion based

on Jacobi polynomials [8] was used. For the 2-D problem, a set of Chebyshev

polynomials was used for the angular expansion. For the 1-D problems, nodal

30



boundary currents have no spatial dependence thereby rendering spatial expansions

unnecessary, but for the 2-D problem, a spacial expansion based on DLP was used.

For energy, DLP, mDLP, and KLT bases were explored as a function of the energy

expansion order.

All calculations were performed with the SERMENT parallel response matrix code

[3], which links to the DETRAN deterministic transport code [18]. To implement

each of the test problems, each was first solved in DETRAN to provide the snapshots

(which are discussed later in this chapter). Next, each model was solved again using

SERMENT for the full multi-group reference case. The same spatial and angular

expansion order was used throughout the calculations for each test problem and

corresponding snapshot models. Finally, SERMENT was used to calculate the test

problem for several expansion orders with the chosen basis set. These calculations

were compared to the reference case, and the results are presented in Chapter 5 for

the 1-D problems and Chapter 6 for the 2-D problem.

4.1.1 1-D Test Problems

Two 1-D test problems were developed. The first, the 10-pin problem, serves as the

proof of concept. It was a relatively simple problem to show how KLT can be used

to approximate the junction between two fuel types with very different spectral

properties. The second problem is designed to be more complex and, thus, more

difficult to model. It is a 1-D, full-core model with several fuel assembly types,

and, due to its complexity, it should provide a better test of KLT.

10-Pin Problem

The first test problem was a 1-D approximation to the junction between a UO2

and MOX assembly. In the 10-pin test problem, fuel for the left five pins was 4%

enriched UO2, while the right five pins were composed of 4.3% enriched MOX (The

fuel contained 4.3% plutonium with the remainder natural uranium), as shown in

Fig. 4.1. Boundary conditions on either side of the model were reflective.
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Figure 4.1: Configuration for 10-pin Test Problem

Fuel pins were 1.08 cm thick with 0.09 cm of moderator on each side. The baseline

pincell discretization consisted of 22 mesh cells of fuel enclosed by three mesh cells

of moderator on either side; therefore, each pincell provided 28 energy-dependent

snapshots.

Because the test problem reference solution is a full transport approximation,

boundary currents generally exhibit coupled angle-energy dependence. By including

snapshots that incorporate angular information, the resulting KLT basis set may

outperform snapshots based only on the energy-dependent scalar flux φ. To include

angular information, snapshots were taken of the energy-dependent partial current

Jleft. Snapshots of the net current were previously considered, but those snapshots

performed as well as or worse than the partial current in all cases. Further, because

the snapshot models were symmetric, the direction of the partial current is selected

arbitrarily. Finally, because the spatial discretization produces only one spatial

unknown per cell, the snapshot generation approach used provided one (φ or Jleft)

or two (φ and Jleft) snapshots per spatial cell.

In addition to inclusion of snapshots of the partial current for each test problem, the

addition of snapshots of higher-order angular moments was studied. These moments

were generated by expanding the angular flux ψ through a Jacobi expansion in angle.

In this basis, the zeroth moment is equivalent to the partial current, while higher

moments have less well-defined physical corollaries. Inclusion of these moments

(up through second order) was studied for both test problems and are presented at

the end of the results section.

Several combinations for the snapshot types were considered and presented in the

following chapters. First, snapshots of just φ were used. Second, snapshots of just

Jleft were used. Third, KLT was used with snapshots of both φ and Jleft together.

32



Fourth, snapshots of each of the higher order moments (up through order two) were

used individually for the test problems (e.g., snapshots from just angular moment

two). Finally, The snapshots for φ, Jleft, and the higher moments (incrementing

upward in order) were used for basis generation (e.g., φ, Jleft, order 1 or φ, Jleft,

order 1, order 2 etc.).

BWR Test Problem

The second test case, representative of a boiling water reactor (BWR), was com-

prised of seven assemblies, each with 10 pins. Three core configurations were used,

and each core configuration had two unique assemblies. Three fuel types were used,

including 4.5% enriched UO2, 2.5% enriched UO2, and 4.5% enriched UO2 with 5

wt% Gd2O3. Core and assembly configurations are shown in Fig. 4.2. Boundary

conditions for this case were vacuum. This test problem was adapted from the

work of Nichita and Rahnema [19] and Ilas and Rahnema [20].

Assembly 0 Assembly 1 Assembly 2 Assembly 3

Water 4.5% UO2 2.5% UO2 4.5% UO2 with 5wt% Gd2O3

Core 0Core 0

Core 1Core 1

Core 2Core 2

Figure 4.2: Configuration for BWR Test Problem

Fuel pins for the second problem were 0.72 cm thick with 0.27 cm of moderator

on each side. The baseline pincell discretization consisted of 16 mesh cells of

fuel enclosed by six mesh cells of moderator; therefore, each pincell provided 28

energy-dependent snapshots. With 70 pincells, the total number of snapshots was

1960, but the right set of snapshots was identical to the left with respect to scalar
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flux due to symmetry. For these simple 1-D problems, finer spatial and angular

refinement was unnecessary.

For the BWR test problem, the combinations of potential snapshots were the same

as used for the 10-pin test problem; however the snapshot models used to generate

snapshots were different, as will be discussed later in this chapter.

4.1.2 2-D Test Problems

The C5G7 benchmark is a well-studied problem for assessing numerical methods

in neutron transport and reactor physics. This benchmark consists of modeling a

quarter core that has four, 17×17-pin assemblies [16]. The configuration is detailed

in Fig. 4.3. Each of the blocks in Fig. 4.3 represent either a fuel assembly or an

equivalent area of moderator. The configuration of the UO2 assembly is shown

in Fig. 4.4 and the configuration of the MOX bundle is shown in Fig. 4.5. Each

individual pincell is modeled as shown in Fig. 4.6. Each pincell is broken up into a

7× 7 Cartesian mesh. Thus each pincell contained 49 spatial cells and provided

49 energy dependent snapshots of each type. The cladding for the pincells was

homogenized into the fuel part of the pincell.

Mod

Mod

ModModMod

UO2

UO2

MOX

MOX

V
acu

u
m

R
efl

ec
t

Vacuum

Reflect

Figure 4.3: Configuration for Full-Core. Each square represents the area of a
17× 17 pin assembly

Although the original C5G7 benchmark was defined with 7-group data, energy order

reduction is unnecessary with so few groups. Consequently, cross-section libraries
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Figure 4.4: Configuration for UO2 fuel bundle. The green represents a UO2

pincell, while the blue represents a guide tube modeled as a pincell filled with
moderator

Figure 4.5: Configuration for MOX bundle. The light red represents 4.3% MOX
fuel, the medium red represents 7.0 % MOX fuel, and the dark red represents

8.7% MOX fuel. The blue represents moderator (i.e., light water)

were computed using Scale 6.1 for the C5G7 problem to adapt the benchmark for

use with 44 energy groups like the other test problems, but, all other aspects of

the problem remained unchanged.

For this test problem, the spatial and angular orders for the SERMENT solution

were set to second order. This was in the interest of time, as utilizing higher orders

will take much longer to solve (but be more accurate). Previous work by Roberts

[8] suggested that using spatial and angular orders of at least fourth order are

required to achieve sub-0.1% errors in pin powers. This error will be present when
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1.26 cm

0.54 cm

Figure 4.6: Configuration for pincell. The circular fuel element had a radius
of 0.54 cm and was homogenized with cladding for this model.

comparing the multigroup SERMENT solution to the benchmark C5G7 results.

However, it is assumed that since the same spatial and angular orders were used

for computing the reference case and the snapshot cases, the relative error of the

snapshot cases is a function of the energy expansion alone. It is impossible to be

sure if this assumption is valid without computing the problem at better resolution.

4.2 Snapshot Generating Models

Ideally, with any form of model reduction, the computational effort required to solve

a given problem is reduced, so a quickly-computed basis set is sought. Therefore,

the generation of snapshots for KLT was a primary focus for this work. For each test

problem, a number of small “snapshot models” were developed. These models are

quick to solve and provide group-dependent snapshots that represent the spectrum

of the test problem of interest. In this section, the models chosen for each test

problem are discussed.

4.2.1 Snapshots for 10-Pin Test Problem

Since the first test problem was a 1-D approximation of the junction between a

UO2 and MOX assembly, a number of small, representative subproblems are clear

choices for snapshot generation. Models studied for this problem are summarized
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in Table 4.1. The simplest approach by which to generate snapshots is to model

each pincell individually subject to reflecting boundary conditions on all surfaces

and to extract snapshots (i.e., energy-dependent vectors in distinct spatial cells)

from an individual pincell. Additionally, snapshots from several pincell models

may be combined together in hopes of improving the range accessible by the KLT

basis functions.

Table 4.1: Summary snapshot models for 10-pin Test Problem

Abbreviation Model to generate snapshots

Full-Assembly Repeating array of 10 UO2 and 10 MOX pins
N-pin Repeating array of N UO2 and N MOX pins

Combined-Pins Combined snapshots from UO2 and MOX models, and
two-pin, UO2-MOX model

UO2-Pin UO2 pin only
MOX-Pin MOX pin only

A larger problem space is obtained if a single model includes more than one pin (fuel

or moderator) in various arrangements. For this work, an effectively 10× 10 model

(infinite lattice of ten UO2 and ten MOX pins; denoted as the full-assembly) was

studied. The full-assembly model was equivalent to the test problem of interest and

should be expected to yield snapshots that capture the true multi-group solution

with the lowest-order energy expansion. The remaining models were effectively

N ×N , where N was taken to be 1, 2, or 3.

4.2.2 Snapshots for BWR Test Problem

The second test problem was a 1-D approximation of a BWR core. Models for

this case are summarized in Table 4.2. Three cases naturally arise from core

construction. The first was to take snapshots from the entire core. This model was

expected to perform the best, as the model was equivalent to the test problem.

The second was to model assemblies with reflective boundary conditions for the

given configuration and combine snapshots from the two unique assemblies used

for each core configuration. The final approach was to model each pincell in the
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test problem with reflective boundary conditions and then combine the snapshots

from each unique fuel pin used in the core configuration.

Table 4.2: Summary of snapshot models for BWR Test Problem

Abbreviation Model to generate snapshots

Full-Core Snapshots from whole core model (i.e., the test
problem)

Combined-Assemblies Snapshots from unique assemblies used in core
configuration

Combined-Pins Snapshots from unique pins used in core configuration

4.2.3 Snapshots for C5G7 Test Problem

There are several models that are readily apparent choices to simplify the C5G7

benchmark for use in generating snapshots. All of the snapshots models for this

test problem are summarized in Table 4.3. The first model was to use snapshots

from the test problem itself to gain an understanding of the best possible snapshots.

However, the number of snapshots obtained for this model is prohibitively large,

even after removing all duplicate snapshots from model symmetry, and thus is

unusable in the raw state. However, by spatially averaging all the snapshots of a

given type from a pincell, the number of snapshots is reduced by a factor of 49,

and thus becomes a manageable set with which to create basis functions. The

Combined-Assemblies model was formed by taking snapshots from each assembly

and combining the snapshots together. For this snapshot model, each assembly was

modeled with reflective conditions on all sides. The UO2 assembly used the same

configuration as in Fig. 4.4, and the MOX assembly used the same configuration

as in Fig. 4.5.

The next model was the Combined-Pins model, which derives snapshots from

individual pincells for each fuel type. These pincells have the same configuration

as shown in Fig. 4.6. The pincell snapshots are combined with snapshots from

junctions of pincells. These junctions are modeled as 2-pin by 2-pin assemblies

with reflective conditions as shown in Fig. 4.7. There were a total of 4 different

fuel types, thus six unique junctions to model.
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Table 4.3: Summary of snapshot models for C5G7 test Problem

Abbreviation Model to generate snapshots

Reduced Full-Core Spatially-averaged snapshots from whole core model
(i.e., the test problem)

Combined-Assemblies Snapshots from assemblies used in core configuration
Combined-Pins Snapshots from pins used in core configuration

combined with the pin junctions
Small-Core Snapshots from the small core model

Small-Assemblies Snapshots from the small assemblies used in the small
core configuration

Reduced Small-Core Spatially-averaged snapshots from the small core model
1-D Approximation Snapshots from the 1-D approximation to the C5G7

benchmark

Figure 4.7: Configuration for pincell junction; all Reflect BC; Every combina-
tion is used

The next model was to create a small version of the C5G7 core, which has the

same assembly configuration shown in Fig. 4.3, but instead uses 8-pin by 8-pin

assemblies. The small UO2 assembly is shown in Fig. 4.8, and the small MOX

assembly is shown in Fig. 4.9.

Figure 4.8: Configuration for small UO2 fuel bundle. The green represents a
UO2 pincell, while the blue represents a guide tube modeled as a pincell filled

with moderator

An additional model arises from the small core model, which is to combine snapshots

from each of the small assemblies. This is not expected to perform as well as the
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Figure 4.9: Configuration for small MOX bundle. The light red represents
4.3% MOX fuel, the medium red represents 7.0 % MOX fuel, and the dark red

represents 8.7% MOX fuel. The blue represents moderator, light water

full-sized, combined-assembly model, but it will be quicker to create the snapshots,

and thus the basis functions. A third model from the small core was to spatially

average the snapshots for each pincell similarly to the spatially-reduced, full-core

solution. The reduced, small-core model was used to approximate the non-spatially

averaged, full-core model by comparing the reduced and non-reduced small-core

models.

The final snapshot model for the C5G7 test problem is to create a similar 1-D

model. This is shown in Fig. 4.10. The model is comprised of 51 pins that are

each of width 1.26 cm. The fuel section for each pin was modeled at 1.08 cm,

leaving 0.09 cm of moderator on either side. This problem was created with a

reflective boundary condition on the UO2 side of the model and a vacuum boundary

condition on the moderator side of the model.

VacuumReflect

Figure 4.10: Configuration for 1D approximation to the C5G7 benchmark.
The green represents UO2, the light red represents 4.3% MOX fuel, the medium
red represents 7.0 % MOX fuel, and the dark red represents 8.7% MOX fuel,

and the blue represents moderator

40



4.3 SERMENT and DETRAN

All of the solvers and methods, save for new basis generation, were developed

previously and implemented in two transport codes, DETRAN and SERMENT. The

SERMENT parallel response matrix code [3] links to the DETRAN deterministic

transport code [18] to implement ERMM and allows the choice of several orthogonal

basis sets. DETRAN implements discrete ordinates, method of characteristics, and

diffusion approximations, along with several advanced solvers developed specifically

for use in response function generation. For this work, only its discrete ordinates

capabilities were used.

DETRAN was used to generate the data to be used for each of the snapshot models.

It requires no basis expansions, and is taken as the true solution for each of the

test problems. SERMENT was used to generate the reference case for each test

problem against which all of of the KLT solutions for the given test problem were

compared. The reference case was taken as a full order multi-group approximation

with the same spatial and angular expansions as the KLT cases. This was done to

isolate the error caused by the expansion in energy to the greatest extent possible.

The new functionality for SERMENT that was developed in this work is the ability

to incorporate user-defined basis sets. This allows an arbitrary order and size of

basis functions to be passed to SERMENT enabling expansion via that basis.
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Chapter 5

Results for 1-D Studies

The goal of this work was to reduce the number of energy degrees of freedom in

a given problem to a manageable size without compromising the accuracy of the

model. However, the best expansions of a function can only be performed when

the function is completely known, which, in this case, means the full solution is

required before the expansion, which precludes the need for an expansion. As

such, this work focused on two classes of basis expansions. The first class is the

expansions based on the test problem of interest, which provide insight to the best

that a basis set can do. This class is compared to the sets of basis functions that

are based on small, yet similar models to the test problem. These small models are

quick to solve, and hopefully similar enough to the test problem that an expansion

based on the model would be accurate enough for the larger test problem. Thus,

another focus of this work was to identify how similar a model had to be to a given

test problem to provide effective basis functions for expansion.

Typically, reactor analysis attempts to compute pin fission densities (or powers)

with sub-1% errors. This work added an additional buffer, and focused on the

minimization of the energy expansion order required to achieve sub-0.1% maximum

relative errors in the fission density. The reference solution in all cases was a full

multi-group response matrix solution for the given test problem with consistent

angular expansion used throughout. This consistency ensured the observed changes

in the solution were functions of only the energy basis used. In practice, it is

42



not possible to truly separate the effects of space, angle, and energy because

the responses in each phase-space variable are coupled, but it is assumed that

this treatment will provide adequate insight into the effect of the chosen energy

expansion.

With the exception of ‘DLP’ and ‘mDLP’, each curve was generated using a KLT

basis with distinct snapshot data, as described previously in Chapter 4. The mDLP

results represent the best case previously observed by Roberts [8], which was to use

mDLP-1 with the average flux profile from the complete test problem of interest

as the shape function. Therefore, the mDLP results are not practical because the

solution for the test problem must be known a priori.

5.1 mDLP Comparison

Figure 5.1 shows a comparison between practical applications of both versions of

mDLP when applied to the 10-pin problem using the 44-group cross-section library.

Figure 5.2 shows the same comparison, but instead for the 238-group cross-section

library. In Fig. 5.2, both plots show the same data, but the left plot is truncated to

order 43 to ease comparison to the 44-group data. For these figures, the denotation

“full” means the shape vector was the flux spectrum averaged over space across all

10 pins. The denotation “UO2” used the flux spectrum from a UO2 pin as the

shape vector. Likewise, the denotation “MOX” used the shape vector as the flux

spectrum from a MOX pin.

All cases of mDLP-2 performed worse than to mDLP-1. The “full” denotation

represents the impractical expansion in that the complete problem is required prior

to the expansion. The “UO2” and “MOX” denotations represent more practical

expansions as they each require only solving a pincell problem to generate the

expansion; however, these two models do not have the physics for one of the fuel

types, and thus do not perform as well. As expected, the “full” expansions of

mDLP-1 perform the best in general and were chosen as the comparison point for

the rest of this work. Lastly, the increased error at high-order of Fig. 5.2 is due to
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Figure 5.1: Comparison of mDLP applied to the 10-pin problem using 44-group
cross-section library.
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Figure 5.2: Comparison of mDLP applied to the 10-pin problem using the
238-group cross-section library.

non-orthogonality of the high-order basis functions due to accumulating roundoff

error during orthogonalization.

5.2 Energy Spectra for the Test Problems

The 10-pin test problem was first solved to generate flux profiles to be used for

mDLP and KLT expansions. In Fig. 5.3, the spatially averaged flux spectra are

presented for the 10-pin problem with the 44-group cross-section library. These

averaged spectra were used as the shape vectors for mDLP, while the non spatially-

averaged data were used for KLT expansion. These spectra can be compared to
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Figure 5.3: Flux spectrum for the 10-pin problem using 44-group cross-section
library
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Figure 5.4: Flux spectrum for the 10-pin problem using 238-group cross-section
library

those in Fig. 5.4, which shows the resulting spectra for the 10-pin problem using

the 238-group cross-section library. As can be observed in each of these figures, the

basic shape of the spectrum are nearly the same, with the 10-pin solution lying as

average between the two individual pin spectra, UO2 and MOX.

Figure 5.5 shows the spatially averaged spectrum for Core 0 of the BWR test

problem, where the spectra denoted “assay1” or “assay2” are the spatially averaged

energy spectra for each assembly in Core-0 of the BWR test problem. It is apparent

that these spectra do not differ as much as the spectra associated with the 10-pin
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Figure 5.5: Flux spectrum for the BWR-Core 0 problem using 238-group
cross-section library

10-610-510-410-310-210-1 100 101 102 103 104 105 106 107 108

energy in eV

10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

φ
(E

)

Full Core

Assembly 1

Assembly 3

Figure 5.6: Flux spectrum for the BWR-Core 1 problem using 238-group
cross-section library

problem. As will be shown later, this leads to improved performance of mDLP

because there is not as much variation between the various parts in the model.

The spectra for Core-1, shown in Fig. 5.6, is similar to that of Core-0. However,

the spectra difference becomes more pronounced when observing the spectra for

Core-2, shown in Fig. 5.7.
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Figure 5.7: Flux spectrum for the BWR-Core 2 problem using 238-group
cross-section library

5.3 10-Pin Test Problem

As previously discussed, the KLT was applied to the 10-pin test problem using

several snapshot models. Additionally, there were several kinds of snapshots taken

from each snapshot model i.e., scalar flux (φ), leftward partial current (Jleft), and

higher-order angular moments. These snapshots were combined in various ways

for the 10-pin problem and are presented in this section. Each of the plots in this

section are shown up to order G − 1, where G is the number of groups in the

cross-section library. The last order is omitted because orthogonal basis functions

are exact to machine precision when using a complete expansion. Some of the DLP

and mDLP results will not appear to converge nearing the final order, which is due

to non-orthogonality of the high orders from accumulating roundoff error in the

orthogonalization. Furthermore, since the problem is non-linear, the error is not

guaranteed to decrease with increasing expansion order, however, the error should

decrease on the average with increasing expansion order.

5.3.1 44-Group Results

Figure 5.8 shows the performance of various formulations of the KLT as applied

to the 10-pin problem. The snapshots used for the figure came from only the
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Figure 5.8: Performance of the KLT when applied to the 10-pin test problem
with snapshots of only φ.

44-group scalar flux. When using snapshots from the full assembly model (10-pin),

the relative error fell below the 0.1% threshold at an energy order of approximately

12, while more practical models, e.g., Combined-Pin, require approximately order

20 to reach the goal. The results of the Combined-Pins model are far from the

goal of using approximately five energy degrees of freedom to reach the error goal.

Essentially all of the KLT formulations outperformed mDLP-1 with the exception

of the individual pins (UO2 and MOX), which is expected as those models lack

physics for half the problem space.

Figure 5.9 shows the performance of the KLT using snapshots of only Jleft from

the 44-group snapshot models. As shown, the best case KLT can reach the goal by

approximately order 6, while more practical models, e.g., Combined-Pin, require

approximately order 20 to reach the error goal.

Figure 5.10 shows the results of using the combined snapshots of φ and Jleft each

from the 44-group models. With this approach, the best case still reaches the goal at

about order 6, but the practical case of Combined-Pins was improved to achieving

the goal by order 15. In general, including both sets of snapshots improves the

performance because KLT can extract the most important information from both

sets and create highly effective basis functions.

48



0 5 10 15 20 25 30 35 40
order

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

fi
ss

io
n

 d
e
n

si
ty

 m
a
x 

re
la

ti
ve

 e
rr

o
r 

(%
)

Goal

DLP

mDLP

Full-Assembly

UO2 -Pin

MOX-Pin

Combined-Pins

1-pin

2-pin

3-pin

Figure 5.9: Performance of the KLT when applied to the 10-pin test problem
with snapshots of only Jleft.
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Figure 5.10: Performance of the KLT when applied to the 10-pin test problem
with snapshots of both φ and leftward partial current.

5.3.2 238-Group Results

Similar to the 44-group section, the figures in this section will be presented to

showcase how the choice of snapshots impacts the performance of the KLT applied

to the 10-pin problem using the 238-group cross-section library. All of the figures

in this section include side-by-side comparisons of the same data, one shown to

43th order, while the other presents the full spectrum up to 237th order.

Figure 5.11 presents the results from using snapshots of only φ in the basis genera-

tion. The best expansion requires approximately order 14, while the Combined-Pins
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Figure 5.11: Relative error for 238-group, 10-pin test problem using snapshots
of only φ
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Figure 5.12: Relative error for 238-group, 10-pin test problem using snapshots
of only Jleft

case requires approximately order 24 to remain under the error goal. The individual

pin models do not perform well, as is expected, as each lacks the information from

an entire type of fuel pin.

Presented in Fig. 5.12 are the results from using snapshots of only Jleft for basis

generation. The impractical case of the 10-pin model requires approximately

order 6 to reach the error goal, while the practical Combined-Pins model requires

approximately order 22 to reach the error goal. These results are an improvement

for the 10-pin model over using φ snapshots. However, the Combined-Pins model

results are relatively unchanged as compared to using φ snapshots.

Figure 5.13 shows the results from combining together the snapshots of both φ

and Jleft. In this case, the 10-pin model requires approximately order 10 to reach
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Figure 5.13: Relative error for 238-group, 10-pin test problem using snapshots
of both φ and Jleft

the goal, while the Combined-Pins model requires approximately order 14 to reach

the goal. As compared to the 44-group data, these data from 238-group do not

improve to the same degree when φ and Jleft snapshots are combined.

Note that when comparing the cases between the 44-group and 238-group results,

basis functions from a given type of model (e.g., Combined Pin) perform similarly

despite the number of groups. It appears that for simple problems, KLT basis sets

may contain a relatively constant amount of information despite increasing group

size, but more effort is required to confirm this trend.

5.4 BWR Test Problem

The BWR test problem refers to the grouping of three different core configurations

as discussed in Chapter 4. Each of the configurations was used with both 44-

group and 238-group cross-section libraries. The configurations were designed with

increasing inhomogeneity leading to more difficult models. The difficulty results in

a larger error for the same energy order while progressing through configurations.

Thus, the performance of each expansion is expected to worsen with increasing

configuration number.
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Figure 5.14: Relative error for the 44-group, BWR-Core 0 test problem using
snapshots of only φ

For each configuration, the Full-Core model is expected to perform the best, as

it uses all available unique snapshots for basis generation, while the Combined-

Assemblies and the Combined-Pins models represent practical cases for basis

generation. Note that for this test problem, mDLP and DLP perform quite well,

which is due to the relatively small difference between the spatially averaged flux

profile as discussed previously. Again, the mDLP results presented here used the

spatially averaged flux profile from the Full-Core model as the shape vector, and,

thus, do not represent a practical performance of mDLP, but rather should be

compared to the Full-Core KLT results.

5.4.1 Configuration 0

5.4.1.1 44-Group Results

As Fig. 5.14 shows, it takes approximately order 6 for the Full-Core model to reach

the goal of sub-0.1% relative error in the fission density. Whereas the practical

Combined models require approximately order 15 to reach the goal. These results

are when using snapshots of only φ.

Many of the results are improved if snapshots of Jleft are used for basis generation

with the KLT, as shown in Fig. 5.15. The Full-Core model requires approximately
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Figure 5.15: Relative error for the 44-group, BWR-Core 0 test problem using
snapshots of only Jleft
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Figure 5.16: Relative error for the 44-group, BWR-Core 0 test problem using
snapshots of both φ and Jleft

order 4, while the Combined-Assemblies model requires approximately order 10 to

reach the goal.

The best results are obtained when snapshots of both φ and Jleft are combined

together to generate the KLT basis. These results are presented in Fig. 5.16. The

Full-Core model requires order 4 to reach the error goal. The Combined-Assemblies

reached the goal at approximately order 10. Finally, the Combined-Pins results

are greatly improved, and require approximately order 13 to reach the goal when

using both types of snapshots.
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Figure 5.17: Relative error for 238-group, BWR-Core 0 test problem using
snapshots of only φ

5.4.1.2 238-Group Results

As before, the results in this section are presented as side-by-side comparisons of

the 238-group data. The left side is shown to only order 43 to ease comparison to

the 44-group data, while the right side shows up to 237th order for the 238-group

data.

Figure 5.17 shows the results from using snapshots of only the φ for the 238-group

cross-section library. The impractical model of Full-Core requires approximately

order 12 to reach the goal, while the Combined-Assemblies case requires approxi-

mately order 21. Each of these models also reach the second goal of an order of

magnitude reduction in the required energy degrees of freedom. The Combined-Pins

model does not reach the error goal within the order goal.

The required orders for most cases is reduced when using snapshots of only Jleft

to generate the basis as shown in Fig. 5.18. The Full-Core model requires

approximately order 3 to reach the goal, while the Combined-Assemblies model

requires approximately order 12. However, the performance of the Combined-Pins

model is actually worse as compared to using φ snapshots.

Once again, the best results are obtained by combining the snapshots of the φ and

Jleft together as shown in Fig. 5.19. The required order for the Full-Core model

remains at about 3, and the Combined-Assemblies model requires approximately
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Figure 5.18: Relative error for 238-group, BWR-Core 0 test problem using
snapshots of only Jleft
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Figure 5.19: Relative error for 238-group, BWR-Core 0 test problem using
snapshots of both φ and Jleft

order 14 to reach the error goal. The Combined-Pins model is greatly improved

and reaches the error goal at about order 20. When using both types of snapshots,

the Combined-Pins model reached the required order goal of an order of magnitude

reduction.

5.4.2 Configuration 1

5.4.2.1 44-Group Results

Figure 5.20 shows that approximately order 7 is required for the Full-Core model

to reach the error threshold. However, the practical, Combined-Assemblies and

Combined-Pins models require approximately order 17 and order 26 to reach the
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Figure 5.20: Relative error for the 44-group, BWR-Core 1 test problem using
snapshots of only φ
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Figure 5.21: Relative error for the 44-group, BWR-Core 1 test problem using
snapshots of only Jleft

error threshold. These results are when using snapshots of only φ. Both of the

Combined models are far from the order goal of approximately 5 order required to

meet the error threshold.

Many of the results are improved when snapshots of Jleft are used for basis generation

with the KLT instead of φ. These results are shown in Fig. 5.21. The Full-Core

model requires approximately order 7, while the Combined-Assemblies model

requires approximately order 21 to reach the error goal. The Combined-Pins model

require approximately order 27.
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Figure 5.22: Relative error for the 44-group, BWR-Core 1 test problem using
snapshots of both φ and Jleft

The best results are obtained when snapshots of both φ and Jleft are combined

together to generate the KLT basis. These results are presented in Fig. 5.22. The

Full-Core model requires order 7 to reach the error goal. Both the Combined-

Assemblies and Combined-Pins models reached the goal at approximately order 19,

when using both types of snapshots.

5.4.2.2 238-Group Results

Figure 5.23 shows the results from using snapshots of only φ for the 238-group cross-

section library. The impractical model of Full-Core requires approximately order

13 to reach the goal, while the Combined-Assemblies case requires approximately

order 26. Each of these models also reach the second goal of an order of magnitude

reduction in the required energy degrees of freedom. The Combined-Pins model

does not reach the error goal within the order goal.

Again, the required orders for most cases is reduced when using snapshots of only

Jleft as shown in Fig. 5.24. The Full-Core model requires approximately order 8 to

reach the goal, while the Combined-Assemblies model requires approximately order

9. The Combined-Pins model reaches the error goal by approximately order 26.
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Figure 5.23: Relative error for 238-group, BWR-Core 1 test problem using
snapshots of only φ
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Figure 5.24: Relative error for 238-group, BWR-Core 1 test problem using
snapshots of only Jleft

Combining the two types of snapshots together has little effect at low orders for

this configuration as shown in Fig. 5.25. The required order for the full core model

remains at about 8, and the Combined-Assemblies model requires approximately

order 15 to reach the error goal. The Combined-Pins model is greatly improved

and reaches the error goal at about order 26. It appears that for this configuration

φ actually worsens the expansion.
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Figure 5.25: Relative error for 238-group, BWR-Core 1 test problem using
snapshots of both φ and Jleft

5.4.3 Configuration 2

5.4.3.1 44-Group Results

The final configuration of the BWR test problem leads to results very similar to

the previous two configurations, but requires slightly higher-order expansion to

achieve the error goal, as expected. As Fig. 5.26 shows, it takes approximately

order 12 for the Full-Core model to reach the goal of sub-0.1% relative error in

the fission density. Whereas the practical Combined models take approximately

order 18 to reach the goal. These results are when using snapshots of only φ. The

Combined-Pins model reaches the goal at approximately order 30. None of these

models can achieve the order goal of approximately 5 orders for the 44-group test

problems.

Some of the results are slightly improved if instead snapshots of Jleft are used

for basis generation with the KLT, as Fig. 5.27 shows. The Full-Core model

requires approximately order 10, while the Combined-Assemblies model requires

approximately order 24 to reach the goal, which is worse than the expansion using

snapshots of φ.

The best expansions for the practical cases are obtained when snapshots of both

φ and Jleft are combined together to generate the KLT basis. These results are

presented in Fig. 5.28. The Full-Core model requires order 12 to reach the error
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Figure 5.26: Relative error for the 44-group, BWR-Core 2 test problem using
snapshots of only φ
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Figure 5.27: Relative error for the 44-group, BWR-Core 2 test problem using
snapshots of only Jleft

goal. The Combined-Assemblies and the Combined-Pins models reached the goal

at approximately order 19.

5.4.3.2 238-Group Results

Figure 5.29 shows the results from using snapshots of only the φ for the 238-group

cross-section library. The impractical model of Full-Core requires approximately

order 22 to reach the goal, while the Combined-Assemblies case requires approxi-

mately order 31. Each of these models also reach the second goal of an order of
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Figure 5.28: Relative error for the 44-group, BWR-Core 2 test problem using
snapshots of both φ and Jleft
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Figure 5.29: Relative error for 238-group, BWR-Core 2 test problem using
snapshots of only φ

magnitude reduction in the required energy degrees of freedom. The Combined-Pins

model does not reach the error threshold within the order goal.

The results for using snapshots of Jleft for basis generation are shown in Fig. 5.30.

The Full-Core model requires approximately order 10 to reach the goal, while the

Combined-Assemblies model requires approximately order 36. The performance of

both of the Combined models are worse than for the case of φ snapshots.

Again, the best results are obtained by combining the snapshots of the φ and Jleft

together as Fig. 5.31 shows. The required order for the full core model is about

9, and the Combined-Assemblies model requires approximately order 27 to reach
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Figure 5.30: Relative error for 238-group, BWR-Core 2 test problem using
snapshots of only Jleft
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Figure 5.31: Relative error for 238-group, BWR-Core 2 test problem using
snapshots of both φ and Jleft

the error goal. The Combined-Pins model is greatly improved and reaches the

error goal at about order 27. Clearly from this section, it is difficult to achieve an

order of magnitude reduction in the required energy degrees of freedom and still

reach the error goal for configuration 2. The inhomogeneity simply requires more

information to model accurately.

5.5 Higher-Order Angular Moments

After considering the effect of φ and Jleft snapshots, the next step is to compare

snapshots of higher-order angular moments. These snapshots are generated by an

angular expansion by Jacobi basis functions of the angular flux. In this case, the
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Figure 5.32: Relative error for 44-group, 10-pin test problem using snapshots
from the 10-pin model. Sets of snapshots are used separately for basis generation

zeroth order is exactly Jleft, while the higher moments do not have direct physical

corollaries. These snapshots were used for each test problem for basis generation.

5.5.1 10-pin Problem

In this section, The performance of using additional moments is compared for only

the Full 10-pin model, as the resulting conclusions are the same for the excluded

figures. Each of the figures in this section are presented with only a single snapshot

model that uses various schemes to combine the snapshots as described for each

figure.

5.5.1.1 44-Group Results

The individual performance of each set of snapshots for the 44-group 10-pin test

problem are presented in Fig. 5.32. The performance of φ and Jleft (0th moment)

snapshots are identical to the results presented previously. As shown, the higher-

order moment snapshots do not perform well, and require at least 30th order to

reach the error threshold.
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Figure 5.33: Relative error for 44-group, 10-pin test problem using snapshots
from the 10-pin model. Sets of snapshots are combined together for basis

generation

When used together with the snapshots of φ and Jleft, the results are presented in

Fig. 5.33. The performance of the higher-order moments are nearly identical to

that of combining only φ and Jleft, which is labeled as 0th moment in the figure.

5.5.1.2 238-Group Results

This section presents the results of using the higher-order moment snapshots for

the 238-group 10-pin test problem. All of the figures in this section are shown with

side-by-side comparisons of the same data, one shown to 43th order, while the other

presents the full spectrum up to 237th order. Figure 5.34 presents the results from

using the various sets of snapshots separately. Similarly to the 44-group results,

the higher-order moment snapshots do not perform as well as the results of φ and

Jleft snapshots.

Figure 5.35 presents the results of combining the various sets of snapshots. The

success of the snapshots of higher-order moments do not significantly change the

results from combining only the snapshots of φ and Jleft.
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Figure 5.34: Relative error for 238-group, 10-pin test problem using snapshots
from the 10-pin model. Sets of snapshots are used separately for basis generation
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Figure 5.35: Relative error for 238-group, 10-pin test problem using snapshots
from the 10-pin model. Sets of snapshots are combined together for basis

generation

5.6 BWR Test Problem

In this section, The performance of using additional moments is compared for only

the Full-Core model. Each of the figures in this section are presented with only

a single snapshot model that uses various schemes to combine the snapshots as

described for each figure. The performance of the higher-order moment snapshots

are compared between each of the three core configurations as discussed previously.
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Figure 5.36: Relative error for 44-group, BWR-Core 0 test problem using
snapshots from the Full-Core model. Sets of snapshots are used separately for

basis generation

5.6.1 Configuration 0

5.6.1.1 44-Group Results

The individual performance of each set of snapshots for the 44-group BWR-Core

0 test problem are presented in Fig. 5.36. The performance of φ and Jleft (0th

moment) snapshots are identical to the results presented previously. As shown, the

higher-order moment snapshots perform similarly to snapshots of φ.

When used together with the snapshots of φ and Jleft, the results are presented in

Fig. 5.37. The performance of the higher-order moments are nearly identical to

that of combining only φ and Jleft, which is labeled as 0th moment in the figure.

5.6.1.2 238-Group Results

This section presents the results of using the higher-order moment snapshots for

the 238-group BWR-Core 0 test problem. All of the figures in this section are

shown with side-by-side comparisons of the same data, one shown to 43th order,

while the other presents the full spectrum up to 237th order. Figure 5.38 presents

the results from using the various sets of snapshots separately.
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Figure 5.37: Relative error for 44-group, BWR-Core 0 test problem using
snapshots from the Full-Core model. Sets of snapshots are combined together

for basis generation
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Figure 5.38: Relative error for 238-group, BWR-Core 0 test problem using
snapshots from the Full-Core model. Sets of snapshots are used separately for

basis generation

Figure 5.39 presents the results of combining the various sets of snapshots. The

success of the snapshots of higher-order moments do not significantly change the

results from combining only the snapshots of φ and Jleft.
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Figure 5.39: Relative error for 238-group, BWR-Core 0 test problem using
snapshots from the Full-Core model. Sets of snapshots are combined together

for basis generation
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Figure 5.40: Relative error for 44-group, BWR-Core 1 test problem using
snapshots from the Full-Core model. Sets of snapshots are used separately for

basis generation

5.6.2 Configuration 1

5.6.2.1 44-Group Results

The individual performance of each set of snapshots for the 44-group BWR-Core 0

test problem are presented in Fig. 5.40. The performance of φ and Jleft snapshots

are identical to the results presented previously. As shown, the higher-order moment

snapshots perform similarly to snapshots of φ.
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Figure 5.41: Relative error for 44-group, BWR-Core 1 test problem using
snapshots from the Full-Core model. Sets of snapshots are combined together

for basis generation

When used together with the snapshots of φ and Jleft, the results are presented in

Fig. 5.41. The performance of the higher-order moments are nearly identical to

that of combining only φ and Jleft, which is labeled as 0th moment in the figure.

5.6.2.2 238-Group Results

This section presents the results of using the higher-order moment snapshots for

the 238-group BWR-Core 0 test problem. All of the figures in this section are

shown with side-by-side comparisons of the same data, one shown to 43th order,

while the other presents the full spectrum up to 237th order. Figure 5.42 presents

the results from using the various sets of snapshots separately.

Figure 5.43 presents the results of combining the various sets of snapshots. The

success of the snapshots of higher-order moments do not significantly change the

results from combining only the snapshots of φ and Jleft.
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Figure 5.42: Relative error for 238-group, BWR-Core 1 test problem using
snapshots from the Full-Core model. Sets of snapshots are used separately for

basis generation
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Figure 5.43: Relative error for 238-group, BWR-Core 1 test problem using
snapshots from the Full-Core model. Sets of snapshots are combined together

for basis generation

5.6.3 Configuration 2

5.6.3.1 44-Group Results

The individual performance of each set of snapshots for the 44-group BWR-Core 0

test problem are presented in Fig. 5.44. The performance of φ and Jleft snapshots

are identical to the results presented previously. As shown, the higher-order moment

snapshots perform similarly to snapshots of φ.

When used together with the snapshots of φ and Jleft, the results are presented in

Fig. 5.45. The performance of the higher-order moments are nearly identical to
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Figure 5.44: Relative error for 44-group, BWR-Core 2 test problem using
snapshots from the Full-Core model. Sets of snapshots are used separately for

basis generation
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Figure 5.45: Relative error for 44-group, BWR-Core 2 test problem using
snapshots from the Full-Core model. Sets of snapshots are combined together

for basis generation

that of combining only φ and Jleft, which is labeled as 0th moment in the figure.

5.6.3.2 238-Group Results

This section presents the results of using the higher-order moment snapshots for

the 238-group BWR-Core 0 test problem. All of the figures in this section are

shown with side-by-side comparisons of the same data, one shown to 43th order,
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Figure 5.46: Relative error for 238-group, BWR-Core 2 test problem using
snapshots from the Full-Core model. Sets of snapshots are used separately for

basis generation
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Figure 5.47: Relative error for 238-group, BWR-Core 2 test problem using
snapshots from the Full-Core model. Sets of snapshots are combined together

for basis generation

while the other presents the full spectrum up to 237th order. Figure 5.46 presents

the results from using the various sets of snapshots separately.

Figure 5.47 presents the results of combining the various sets of snapshots. The

success of the snapshots of higher-order moments do not significantly change the

results from combining only the snapshots of φ and Jleft.
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5.7 Conclusion

As the 1-D test problems show, KLT basis sets are highly effective. Nearly all the

of the KLT basis sets outperform the mDLP and DLP basis sets, which is expected

due to the amount of information captured by the KLT. In nearly all cases, the

best performing KLT basis functions are those based on snapshots of φ combined

with snapshots of Jleft.

It is apparent that including additional information in the snapshots will improve

the results only if the new information is distinct from the current set of snapshots.

The higher-order moments did not improve the overall performance of the basis

set because the information contained in the higher-order moments was already

captured in the 0th moments (Jleft).

Furthermore, successful KLT basis functions contain all available material types.

As the results from the 10-pin test problem show, disregarding snapshots from a

fuel type leads to poor expansions of the actual solution.

Finally, as expected, more difficult problems require a larger number of basis

functions for an expansion of the same relative error. As the difficulty of the BWR

models increases, the number of required degrees of freedom to meet the goal were

also increased. Thus, the success of the KLT is problem dependent.
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Chapter 6

Results for 2-D Studies

The goal for this section was to see how applicable the method of snapshots and the

KLT was to 2-D problems. The C5G7 benchmark was adapted to use a 44-group

cross-section library, which greatly increased the size of the problem, and thus the

computation time. Only the 44-group library was used to generate results due to

the long computation times necessary to solve for each case.

Further, in the interest of time, the results for this section have been truncated to

10th order. The overarching goal of the work was to achieve sub-0.1% relative pin

power errors while reducing the necessary energy degrees of freedom by an order

of magnitude. As such, 10th order is sufficient to determine if KLT can reach the

goal in a 2-D problem-space.

As mentioned previously, the response matrix solution in all 2-D calculations was

only taken to second order in each angle as well as space, which means that the

pin powers and fission densities solved by SERMENT will differ greatly from the

original C5G7 results. However, the reference case and the snapshot models utilized

the same spatial and angular order, thus the error observed (with respect to the

SERMENT reference) is assumed only to be a function of the energy expansion

order.

74



10-610-510-410-310-210-1 100 101 102 103 104 105 106 107 108

energy in eV

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

φ
(E

)

Full-Core

Assembly - UO2

Assembly - MOX

Small-Core

Small Assembly - UO2

Small Assembly - MOX

Figure 6.1: Flux spectrum for the C5G7 problem using 44-group cross-section
library

6.1 Energy Spectra for the Test Problem

Each of the snapshot models and the full 44-group benchmark problem were solved

first to provide the spatially averaged flux profiles, which were used for the mDLP

results. This spatially averaged spectrum is presented in Fig. 6.1. As compared to

the 1-D test problems, the spatially averaged spectra are quite distinct between

the various models for the 2-D problem. As such, it is expected that mDLP will

not perform as well, and additionally that effective basis functions will be difficult

to attain.

6.2 Nodal Fission Density Results

In order to determine the effective constituents for basis function construction,

several versions of basis functions are derived and compared as was done for the

1-D cases. In this section, each of the results will compare the maximum relative

error of the nodal fission density for a snapshot model. The nodal fission density

is almost equivalent to the assembly power, and the reference is taken to the be

nodal fission density from a full multigroup solution of the C5G7 problem using

the 44-group cross-section library. First, the results of utilizing snapshots of only
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Figure 6.2: Relative error in fission density for 44-group, C5G7 test problem
using snapshot of only φ.

the scalar flux φ to generate the KLT basis functions are presented in Fig. 6.2. In

this figure, the maximum relative error of the nodal fission density is shown as a

function of energy degree of freedom.

By nine degrees of freedom, none of the models have consistently reached the

goal of sub-0.1% errors; however, several models perform well comparatively. The

Small-Core model performs well despite spatially reducing the problem by a factor

of four. Surprisingly, one of the best performing models is the Combined-Pins model

despite the simplicity of the model. Both of these snapshot models outperform

mDLP and can reach nodal fission errors of sub-1% by at least 7th order. It

would be interesting to view the relative performance of the snapshot models are

higher-order, but cannot be provided here due to time constraints.

As Fig. 6.2 shows, the results of the Small-Core and Reduced Small-Core are

quite similar, with the Small-Core results being slightly better in terms of the

maximum relative error. Due to this comparison, it may be assumed that the

Reduced Full-Core results are approximately equal to the Full-Core results, and

thus may be used as a comparison point to the best that a basis set can expand

the C5G7 solution.

When the snapshots of only the upward and downward partial current are used

for basis generation, the results are shown in Fig. 6.3. Many of the cases have
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Figure 6.3: Relative error in fission density for 44-group, C5G7 test problem
using snapshot of Jup and Jdown.

improved as compared to using snapshots of only φ including Combined-Pins and

Reduced Small-Core. However, some models have reduced effectiveness including

Combined-Assemblies and Reduced Full-Core. Unlike the 1-D case, the partial

current cannot be assumed symmetric in all directions, thus the partial current in

the up and down directions were chosen. The combination of up and down was

equivalent due to symmetry to the combination of left and right, thus the choice

was made arbitrarily.

Figure 6.4 presents the results from using snapshots from φ, Jup, and Jdown. The

inclusion of the partial current had varying effects of the success of each snapshot

model, e.g., the reduced small-core model was improved in general, while the small-

assemblies was worsened. The Combined-Pins results were relatively unchanged,

and performed surprisingly well despite the model simplicity. The best performing

basis sets in general are those that include the information of the partial current

combined together with the scalar flux.

6.3 Pin Power Results

For an additional comparison for the C5G7 problem, the maximum relative error

in the pin powers is compared for each of the snapshot models. The reference case
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Figure 6.4: Relative error in fission density for 44-group, C5G7 test problem
using snapshot of φ, Jup, and Jdown.

for this section is taken as the pin powers from a full multigroup solution of the

C5G7 problem using the 44-group cross-section library. It is expected that the

results in this section to be inferior to those in the previous section. Resolving

the pin powers is more difficult than resolving the nodal fission density, thus more

energy degrees of freedom should be required to achieve the same level of accuracy.

Figure 6.5 shows the results utilizing snapshots of only the scalar flux φ. As

expected, the results are approximately an order of magnitude worse than the

equivalent results solving for the fission density. However, the same snapshot models

all appear to perform the same relative to each other. The best performing case is

the Reduced Small-Core, while the 1-D Approximation also performs well. Also

note that the Reduced Small-Core results are nearly identical to the Small-Core

results, which suggests that the Reduced Full-Core results may be nearly equivalent

to the Full-Core results. However, more energy degrees of freedom are needed to

resolve the pin powers to the desired accuracy.

The performance is somewhat improved when considering only snapshots of the

partial current in basis generation as shown in Fig. 6.6. For this figure, the Small-

Core results cannot be shown because too many snapshots are available and cannot

all be used without running into memory issues. The Reduced Small-Core results

must be used as a supplement for the Small-Core results. The Combined-Pins and
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Figure 6.5: Relative error in pin power for 44-group, C5G7 test problem using
snapshot of only φ.
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Figure 6.6: Relative error in pin power for 44-group, C5G7 test problem using
snapshot of both Jup and Jdown.

Reduced Small-Core models perform quite well compared to the other snapshot

models.

When combining snapshots of φ, Jup, and Jdown, the relative error in pin power

resolution is slightly improved as Fig. 6.7 shows. The Small-Core model reaches

sub-1% relative error by approximately 7th order, provided that the error does not

increase past the orders shown in the figure. When using all available snapshots,

most cases perform better than using only one type of snapshot alone.

In order to provide some context for the C5G7 pin power results, a pin power heat

79



0 2 4 6 8 10
order

10-3

10-2

10-1

100

101

102

p
in

 p
o
w

e
r 

m
a
x 

re
la

ti
ve

 e
rr

o
r 

(%
)

GoalDLP

mDLP

Combined-Assemblies

Combined-Pins

Small-Assemblies

1-D Approximation

Reduced Full-Core

Reduced Small-Core

Figure 6.7: Relative error in pin power for 44-group, C5G7 test problem using
snapshot of both φ, Jup, and Jdown.
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Figure 6.8: Pin power heat map for the DETRAN reference solution. The
upper left corner is the center of the core

map for the test problem was created for each of the reference cases. The heat

map was designed to view the location of the maximum errors in the test problem

and related cases. The first heat map is presented in Fig. 6.8. As expected the

greatest pin powers are present in the UO2 assembly at the center of the model.

The error of the SERMENT reference solution to the DETRAN solution is shown
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Figure 6.9: Error of pin powers in the SERMENT reference solution relative
to the DETRAN reference solution. The upper left corner is the center of the

core

in Fig. 6.9. In this figure, the center of the model is the upper left corner, and

the moderator sections of the model have been omitted. The greatest error for

the SERMENT reference solution occurs at the bottom right corner of the figure,

which represents a UO2 pin adjacent to the moderator section.

The error in the pin powers of the best performing KLT case (9th order Reduced

Small-Core) using only φ snapshots relative to the SERMENT reference solution is

presented as a heat map in Fig. 6.10. In this figure, the maximum error is shown

at the center of the figure, which corresponds to the center of the reactor quadrant.

The KLT solution also has a relatively large error at the assembly boundaries.

The error heat map for using snapshots of only the partial currents Jup and Jdown is

presented in Fig. 6.11. As shown, on average, the pin powers are predicted well for

the majority of the pins with the exception of the center of the core. The partial

current appears to lead to better predictions of the pin powers in the 2-D model.

Finally, the error of the best performing KLT case from using Jup and Jdown
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Figure 6.10: Error in the pin powers of the best performing KLT case (9th
order, Reduced Small-Core, snapshots of φ) relative to the SERMENT reference

solution. The upper left corner is the center of the core

snapshots and φ snapshots (9th order, Reduced Small-Core) is presented in Fig. 6.12.

The maximum error for the case of including the partial current is reduced from

the case of only using snapshots of φ, and the location of the maximum error has

moved to the center of the core model.

6.4 Conclusion

The KLT can be effective as compared to the results of mDLP for 2-D models. In

general it seems that more degrees of freedom are required in general for the C5G7

test problem as compared to the 1-D test problems, but that is expected due to

the increased difficulty of modeling 2-D problems.

In general, it seems that the size of the snapshot model is not a strong predictor of

the success of a basis set. The Combined-Pins model performs surprisingly well
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Figure 6.11: Error in the pin powers of the best performing KLT case (9th order,
Reduced Small-Core, snapshots of Jup and Jdown) relative to the SERMENT

reference solution. The upper left corner is the center of the core

despite the model simplicity, and in some cases is the best performing in terms of

the smallest maximum error at order 9.

The largest errors typically occur at material and assembly junctions, which is

expected. The C5G7 benchmark was designed with difficult to capture junctions,

to increase the difficulty of the benchmark. It is interesting that the including the

partial current snapshots moves the largest relative error to the center of the core

instead of the material junctions.

Similar the the 1-D results, the best performing basis functions are attained on

average by including all available snapshots into basis generation. However spatially

averaging the snapshots does not appear to have a strong effect on the success of

the basis set. This is also expected because the snapshots provided by neighboring

spatial cells are expected to be exceedingly similar.
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Figure 6.12: Error in the pin powers of the best performing KLT case (9th
order, Reduced Small-Core, snapshots of φ, Jup, and Jdown) relative to the
SERMENT reference solution. The upper left corner is the center of the core
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Chapter 7

Conclusions and Future Work

7.1 Summary

The overarching goal of this work was to find an effective basis with which to

expand the energy variable for the eigenvalue response matrix method such that

the required energy degrees of freedom are reduced by an order of magnitude

while achieving sub-0.1% relative error in the pin powers or fission densities, To

this end, the Karhunen Loéve Transform was explored to create the set of vectors

for the energy variable. The KLT basis was compared to the discrete Legendre

polynomials and the modified DLPs.

To base the comparison, three test problems were constructed including a (1) 1-D

10-pin model representative of a UO2-MOX junction, (2) a 1-D, 70-pin model

representative of a BWR core, and (3) a 2-D model based on the C5G7 benchmark

expanded to 44 energy groups. The difficulty of the models increased in the order

of presentation, thus the 10-pin test problem was the simplest and the C5G7

benchmark was the most difficult. This difficulty manifested in an increase in

the number of required energy degrees of freedom necessary to achieve sub-0.1%

maximum errors relative to a full multigroup solution of the particular test problem.

In nearly all cases, the KLT basis outperformed the mDLP and DLP bases for

ERMM energy expansions. This result is not surprising due to the method of
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constructing the KLT basis. The KLT identifies the most common characteristics

of a set of functions (or snapshots in the case of this work) and creates the basis

functions from those characteristics. KLT is ordered such that the most important

information of a problem-space is contained in the low-order basis vectors, thus

in general the KLT can achieve high-fidelity expansions with few orders. The

downside to KLT is the requirement of initial data with which to create the basis

vectors. Since the actual solution is deemed unavailable (because requiring the

solution to approximate the solution is a waste of effort for this application), a

number of representative snapshot models were constructed for each of the test

problems.

The choice of snapshot model greatly impacts the effectiveness of a KLT basis, and

thus the results of an expansion in that basis. In general, snapshot models should

be computationally quick to solve, yet similar to the test problem. The results

presented in the body of this work indicate that to be effective, a snapshot model

does not need to be a reduced version of the test problem, but the snapshot model

should contain features consistent with the test problem.

For example, consider the results of the 10-pin snapshot models. The results of the

UO2 and MOX models were not desirable as each of the models was lacking the

information of one of the fuel types of the 10-pin problem; however, the results were

greatly improved when the snapshots of those two models were included together

with the snapshots representing the UO2-MOX pin junction. This trend remains

consistent throughout the remainder of the test problems. The small snapshot

models can be as effective as the larger models provided that the unique features

of a test problem are captured by the snapshot model.

In regards to the overarching goal, the KLT can be used to construct an effective

basis set for expansion in ERMM, and the goal of an order of magnitude reduction in

the required energy degrees of freedom can be achieved in some cases. Unfortunately,

those cases typically utilized the solution of the test-problem as snapshots for basis

generation, which is not a realistic use of the KLT basis for this application.

However, the KLT basis functions utilizing the test problem represent the best
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approximation of a truncated basis expansion for a given order. In other words,

there is not another basis set that can outperform a basis set created by KLT using

snapshots of the test problem.

Many of the smaller snapshot models presented throughout this work provided

encouraging results due to the simplicity of the snapshot model, particularly the

1-D approximation to the 2-D test problem. Such a method could be used to

greatly improve the computation time of response matrix methods. As mentioned

previously, response matrix solutions are very slow compared to other solution

methods e.g., discrete ordinance unless the phase space is significantly reduced.

Using KLT for energy can provide a greater reduction in the the required energy

degrees of freedom as compared to the modified DLPs provided that the snapshot

model(s) are chosen well.

The results also indicated that including additional information in the form of

snapshots will typically improve the results as long as the extra information is

relevant to the expansion. For example, the scalar flux expansion was improved

by including the leftward partial current; however, the results remained relatively

unchanged if additional higher order angular moments were also included in the

basis generation. This suggests that adding more snapshots improves the data only

if the new snapshots are unique and relevant. Therefore, the inclusion of partial

current snapshots improved results because the snapshots differed meaningfully

from scalar flux snapshots. Contrarily, the use of a greater number of snapshots from

a finer spatial mesh yielded diminishing improvement because the new snapshots

became increasingly similar.

The final conclusion to make is when considering test problems using different

energy groupings (i.e., 44-group and 238-group), the resulting relative fission density

errors were approximately the same between the two libraries, suggesting that KLT

efficiency is almost independent of the number of groups in the library. KLT can

capture a large amount of physics information in low-order vectors, and, thus, KLT

can perform as well or better with the inclusion of additional information from a

higher group library compared to a lower group library.
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7.2 Future Work

The effort in expanding the energy variable has provided some insight, but ultimately

more work is required to finish the exploration of the KLT as a basis for expanding

the energy variable. There are a few direct extensions of work presented here that

would be of substantial value to this area of research.

The first such project is to further explore the KLT as applied to 2-D problems.

Much of the 2-D work presented here was truncated due to a time requirement. The

C5G7 results would benefit from computations at higher spatial and angular order

to allow for better congruence between the ERMM solution and other accepted

solutions for the C5G7 benchmark.

In addition, it would be of substantial value to explore other energy grouping to

determine a dependence of KLT on the number of energy groups in an expansion.

Although the results here suggested a weak dependence, further research is needed

to confirm these findings.

Any ongoing work with KLT will additionally focus on snapshot generation and

effectiveness. Most problems of interest contain a sufficiently large number of

unique spatial regions for use in snapshot generation; therefore, a key goal of

ongoing work is to determine other variables (e.g, increased angle dependence) that

can provide greater snapshot variety.

Another interesting test of KLT performance would be to use the each of the KLT

basis sets to expand the SERMENT solution vectors directly, instead of solving

for the pin powers or fission densities. This would be interesting to ensure that

the behavior is similar to the previously presented results. It is assumed that the

general trend will be similar, but the nonlinear behavior would likely differ as a

function of expansion order as compared to the results presented here.

Finally, this work has focused solely on the expansion of the energy variable.

However, ERMM requires expansion in all phase-space variables, and it would be

interesting to compare the effectiveness of a KLT expansion for either the spatial or
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angular variable. Provided that snapshots can be obtained, the KLT is not specific

to any particular variable, thus is expected to provide an effective expansion in

any phase-space variable to which it is applied.
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Appendix A

Parametric Studies

Over the course of the project, several parametric studies were devised and imple-

mented to ensure reasonable choices for each of the parameters discussed in this

Appendix. The parametric studies may be grouped into two sections: snapshot

parameters, and database parameters.

A.1 Snapshot Parameters

A.1.1 Sensitivity to Snapshot Selection

The first snapshot study was designed to determined which snapshots created the

most effective basis sets. For this study, a variable number of snapshots from

the baseline BWR test problem were chosen. These snapshots were then used to

generate KLT basis sets, which were used to reconstruct the pin powers for the

BWR test-problem. The available snapshots totaled 1960 (28 snapshots from each

of the 70 pins), however only half of the snapshots were unique due to the problem

symmetry.

The study used several snapshot selection schemes to select from the total snapshots.

The first scheme was to use evenly spaced snapshots (i.e., only every xth snapshot

was used to generate the basis). The second used a random selection of a given
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(a) Using evenly spaced snapshots
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(b) Using randomly selected snapshots
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(c) Using beginning snapshots
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(d) Using middle snapshots

Figure A.1: Relative error for 238-group, BWR test problem when using
various snapshot selection schemes. The schemes converge as the number of
snapshots increases. The legend numbers correspond to the number of snapshots

selected for KLT basis generation.

number. The third used the first x snapshots, and the last scheme used x snapshots

from the center (because the problem was spatially symmetric).

As shown in Figs. A.1a and A.1b, the resulting impact to fission density errors

was negligible for the first two schemes; however, the last two schemes produced

a greater variation until snapshots from all types of cells were included as shown

in Figs. A.1c and A.1d. In other words, inclusion of additional snapshots did

not improve the results unless new snapshots were meaningfully distinct from the

current set of snapshots. This study suggests that including all the the available

snapshots for a given model will provide the best basis sets, at a slight cost of

computation time generating a basis using additional data.
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Figure A.2: Relative error for 44-group, 10-pin test problem using snapshots
from a spatially reduced model. The legend numbers correspond to the to-
tal number of available snapshots. The problem was reduced from 280 total

snapshots.

A.1.2 Sensitivity to Fineness of Spatial Mesh

To determine the effect of adjusting the spatial mesh to produce various numbers

of snapshots per pincell, a second parametric study was created. This study used

the 44-group, 10-pin test problem. The spatial discretization was varied to produce

various numbers of spatial cells and potential snapshots. As described in Chapter

4, the 10-pin test problem originally had 280 spatial cells (28 per pincell). By

proportionally enlarging the mesh regions in the problem, the total number of

snapshots may be reduced.

For this study, all available snapshots were used from the spatially reduced results.

Results are shown in Fig. A.2, and they indicated that mesh size had a relatively

small effect on the efficacy of the generated basis set. Additional snapshots from

the same model were exceedingly similar to the other snapshots, which did not add

additional information to the expansion.
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A.2 Database Parameters

To improve computation time, databases that included responses for every order

were created for each problem and model, allowing the relevant information to be

read quickly without using on-the-fly computations. Responses are a function of

the k eigenvalue; thus, two studies were designed that explored both the number

of k values selected as well as the range of the k values. Both of these studies were

based on the BWR test problem, configuration 0.

A.2.1 Sensitivity to Number of k Values in Databases

The first study for the databases explored how many values of k were needed for

database success. A cubic interpolation was used in conjunction with the database.

Thus, a minimum of three values of k on either side (total of 6 k values) of the

true value of k for the BWR test problem were used in the database.

As shown in Fig. A.3, adding more values of k to the database as no effect on

the relative fission density error. However, adding additional values of k to the

database significantly increased the computation time of the databases. However,

for more difficult problems, the converged value of k for a given model may be

different from the true value, thus a small buffer in the number of k value was

chosen by selecting eight values of k in each database, centered about the reference

k value.

A.2.2 Sensitivity to Range of k Values in Databases

The second parametric study for the databases was to determine the necessary

range for the k values to span. The range was centered on the reference value

for k and used a total of eight values of k within the database. The results are

shown in Fig. A.4. There was no difference in the fission density as a function of

the spanned range. Thus a range of ± 0.15 from the reference k value was chosen
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Figure A.3: Relative error for 238-group, BWR test problem a database of
responses filled with a number of k values as indicated by the legend. The values
spanned the range of ±0.15 of the the true value of k. The number of k values

had no effect of the results.

0 5 10 15 20

order

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

fis
si

on
de

ns
it

y
m

ax
im

um
re

la
ti

ve
er

ro
r

(%
) 0.05

0.1
0.15
0.2
0.25

Figure A.4: Relative error for 238-group, BWR test problem a database of
responses filled with eight k values. The values spanned the range of ± the value
in the legend of the the true value of k. The size of the range no effect of the

results.

for all test problems and models. The databases were found to not influence the

results with the chosen parameters.
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