
THE ANALYSIS OF THE SOFTWARE PROCESS MODEL.

by

YIN6-CHI CHEN

B.S., Eastern Michigan University, 1982

M.S., Eastern Michigan University, 1983

A MASTER'S THESIS

submitted In partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1968

Approved by

Major Professor

& A11506 233103

Cjn5C ACKNOWLEDGEMENTS

I wish to express my sincere thonks to my committee members. Dr. Hankley

and Dr. Melton. My special thanks go to advisor Dr. Gustafson, for his help,

guidance, encouragement end support. Thanks also go to my friends, Janice

Taylor and Kawing Wong for their assistance.

In addition, I would like to thank my parents. Pong Chen and Wong-Wei Chen

for their spiritual support. I would also like to thank my husband, Tin-Yu

Ting for his encouragment.

CONTENTS

1

.

INTRODUCTION 1

1 .

1

Introduction 1

1.2 The Goals of This Paper 2

1.3 Summary of Contents 3

2. THE SOFTWARE PROCESS MODEL AND OTHER MODELS 4

2.1 Introduction of Software Process Model 4

2.2 Software Document 8

2.2.1 Software Life Cycle 8

2.2.2 Documents in Software Life Cycle 12

2.3 Other Software Models 16

2.3.1 Waterfall Model 16

2.3.2 Rapid Prototyping 16

2.3.3 Software Sculpture 19

2.3.4 Incremental Development 20

2.3.5 RUDE 2

1

2.4 Summary 22

3. MEASURES 26

3.1 Basic Concepts 26

3.2 Measure Development Paradigm 29

3.3 Waste Measure 33

3.4 Effort Measure 41

3.5 Stability Measure 50

3.6 Progress Measure 60

3.7 Conclusion 68

4. DATA ANALYSIS AND INTERPRETATION 71

4.

1

Introduction 7

1

4.2 Data Analysis And Interpretation 71

4.2.1 Apply The Measures to the Project Groups 73

4.2.2 Data Analysts For The Project Groups 79

i

4.2.3 Projection Models For The Project Groups 84

4.2.4 Data Analysis And Projection Models For the Whole Project~87

4.2.5 Evaluations From The Project Groups 90

4.2.6 SPM Diagram And Initial Diagram 98

4.3 Summary 1 00

5. CONCLUSIONS 1 02

5.

1

Introducti on 1 02

5.2 The Evaluation of The Measures and The Models 103

5.3 Summary 1 09

LIST OF TABLES lit

LIST OF FIGURES iv

APPENDIX A: The SPM Diagrams for Each Group 11

1

APPENDIX B: The Scatter Diagrams Between Completion Time and Waste,

Progress, Stability and Effort Measures for Each Group 122

APPENDIX C: The Projection Models for the Waste, Progress, Stability and

Effort Measures for Each Group 137

APPENDIX D: The Values of MRE for Each Group 141

APPENDIX E: Definitions 150

LIST OF TABLES

Table 4.1. The total value for the waste, progress, stability and effort for

a project team 75

Table 4.2. The total value for the waste, progress, stability and effort for

each group 76

Table 4.3. The correlation matrix for the group A 77

Table 4.4. The correlation metric for the group G 77

Table 4.5. The correlation coefficients for the measures in each group—79

Table 4.6. The (IRE for the measures in each group 85

Table 4.7. The residuals for the measures in each group 86

Table 4.8. The correlation matrix for the measures 89

Table 4.9. The values of evaluations from the project teams and total

values from the measures 92

Table 5.1. Mean and standard deviation for the measures 105

Table 5.2. The slopes of the measures for each project team 106

iii

LIST OF FIGURES

Figure 2.1. SPM diagram for idealized development 4

Figure 2.2. The Software Project Model(SPM) 6

Figure 2.3. Software Life Cycle 1

Figure 2.4. Waterfall model 17

Figure 2.5. Incremental program development 20

Figure 2.6. Alternatives life cycle models apply to different type of the

system 23

Figure 2.7. SPM diagram for waterfall model 24

Figure 2.8. SPM diagram for rapid prototyping 24

Figure 2.9. SPM diagram for incremental development or RUDE 24

Figure 2.10. SPM diagram for system sculpture 25

Figure 3.1. A simple example for production 33

Figure 3.2. An example of the process of software development 34

Figure 3.3. The results of the waste, effort, stability and progress

measures 70

Figure 4. 1 . The SPM diagram for a project team 73

Figure 4.2. The SPM diagram for group 6 76

Figure 4.3. The SPM diagram for group A 78

Figure 4.4. The scatter diagram for the value of waste and completion time

with the greatest value of r for group F 80

Figure 4.5. The scatter diagram for the value of waste end completion time

with the least value of r for group J 81

Figure 4.6. The scatter diagram for the value of progress and completion

time with the greatest value of r for group F 81

iv

Figure 4.7. The scatter diagram for the value of progress and completion

time with the least value of r for group D 62

Figure 4.8. The scatter diagram for the value of stability and completion

time with the greatest value of r for group L 82

Figure 4.9. The scatter diagram for the value of stability and completion

time with the least value of r for group C 63

Figure 4.10. The scatter diagram for the value of effort and completion

time with the greatest value of r for group L 63

Figure 4.11. The scatter diagram for the value of effort and completion

time with the least value of r for group C 64

Figure 4.12. The scatter diagram for the waste measure 67

Figure 4.13. The scatter diagram for the progress measure 87

Figure 4.14. The scatter diagram for the stability measure 88

Figure 4.15. The scatter diagram for the effort measure 88

Figure 4.16. The scatter diagram for the value of waste from the project

teems and the measures 92

Figure 4.17. The scatter diagram for the value of progress from the project

teams and the measures 93

Figure 4.16. The scatter diagram for the value of stability from the project

teams and the measures 93

Figure 4.19. The scatter diagram for the value of effort from the project

teams and the measures 94

Figure 4.20. The scatter diagram for the slope of the waste measure and

the evaluation from the project teams 95

Figure 4.21. The scatter diagram for the slope of the progress measure

and the evaluation from the project teams 95

v

Figure 4.22. The scatter diagram for the slope of the stability measure

and the evaluation from the project teams 96

Figure 4.23. The scatter diagram for the slope of the effort measure and

the evaluation from the project teams 96

Figure 4.24. Comparing the SPM diagram and initial diagram for a project

team 1 00

VI

Chapter One

INTRODUCTION

1.1 Introduction

In the late 1960s, the structured programming revolution changed the nature

of programming. The programming community's goals were to produce e

product that was not only more reliable but also to produce the product in a

more engineering-like fashion. Since then, the development of software

engineering is considered as a possible way to achieve these goals. After

more than twenty years, software engineering still requires extensive

human participation.

The nature of software engineering has been that the development of most

methodologies has come from experiences rather than by using

mathematical derivations. It is different from the other engineering

disciplines which emphasize mathmatical formalism. For software

engineering, it is impossible to attain the status of a scientific discipline

unless it is built upon e sound foundation of measurement. Measurements

not only allow us to describe the process of software development by

collecting and saving the information about the various activities which

occur in the software life cycle, but also help us to understand and predict

different situations.

The systematic collection of data from past projects is a good method to

achieve the purposes of better control, management, and prediction.

Documents generated in each software life cycle phase can fully reflect the

process of software system development.

The Software Process Model (SPM), a newly developed model, views

software development as the process of refining a set of documents. For

convenience in the analysis of the model, the SPM is defined as a set of

document histories. Moreover, the SPM provides a valuable framework for

software measures and metrics research and development. These measures

and metrics can be used to compare different development efforts.

Measures that reflect characteristics of software development can provide

valuable feedback to the system analyst to better control the whole

development process. The SPM can be developed as a useful software

management tool by using a mathematical foundation instead of just

experience.

1.2 The Goals of This Paper

As DeMarco [DeM,19B2] pointed out, in software engineering "You can not

control what you can not measure.". In this paper, I will use the SPM to

develop a number of measures and projection models including waste,

effort, stability and progress. The purpose of these measures is to allow

us to compare the SPMs of different project teams in order to compare and

analyze the differences in the waste, effort, stability, and progress of

these teams. The projection models for the waste, stability, progress and

effort measures can help us to foresee problems earlier in the life cycle.

Using information obtained from these measures and projection models,

managers can improve the management of the software development. This

research project will apply the SPM to the software projects produced by

students in a senior computer science course CS540-541 (Spring, 1988) in

order to learn more about the SPM and its application.

1.3 Summary of Content

In this chapter, a brief introduction to the Software Process Model (SPM)

and the purpose of this paper is given. Chapter two will present more detail

about the SPM. The alternative development models will be given. The

documents generated in each software life phase will be introduced. In

chapter three, the measure development paradigm will be presented and

several measures will be developed according to the SPM. In chapter four,

the measures for waste, progress, stability and progress will be applied to

data from the CS540-541 projects. The result of the measures will be

analyzed. A set of projection models will be generated by using statistical

methods. Finally, the measures and models will be evaluated.

Chapter 2

THE SOFTWARE PROCESS MODEL AND OTHER MODELS

2.1 Introduction of Software Process Model

The Software Process Model (SPM) is a formalism for viewing the

development process [BAK, 87). The SPM has several major characteristics

that are listed as follows:

1. The SPM is developed from the perspective of the software product.

The SPM is an abstraction of the activities and products of actual

software development. The model focuses on evolving products of a

software project and relationships between products. Each of the

products can be described as a document. An idealized SPM diagram

is shown in Figure 2.1. This diagram shows two passes through the

development process.

Time

sow SRS DFD ERA

Documents

MS CODE

Figure 2.1: SPM diagram for idealized development

4

The vertical axis is time. The horizontal categories are document

types. Each point (or node) represents a version of the particular

document.

2. It is focused on the process of software development. The software

development is viewed as the process of refining a set of

documents. The process is time dependent and therefore a real time

clock is a critical component of the model.

The following definitions describe the SPM more precisely.

Definition 2.1 The Software Process Model (SPM) is a set of document

histories, SPM «= {H,, H
?

H„) where

1. Hj is a history of the versions of document type i.

Definition 2.2 A document history Hj is a tree whose nodes are version of

documents and Hi (Uj, Ej, rj) where

1. Uj is a set of document versions of type i,

2. Ej is a set of ordered pairs of the form (a,b), a,b € Uj

which represent transitions from one version in Uj to

another,

3. rj is the root of the Hj tree or the initial version.

A tree is used to represent a document history to allow the modeling of

the development of alternative documents in the same document history.

Suppose a system is to run on hardware produced by several different

vendors. This kind of system may need different specifications, designs,

and implementations for each different hardware. This can be modelled

by a tree.

The use of SPM to describe a possible software project is illustrated in

figure 2.2.

TIME

Q
A

C
1

J oV
o

I

o

REQUIREMENTS SPECIFI- DESIGN IMPLEMEN- TEST

CATION TATION DOCUMENT

Figure 2.2 : The Software Project Model (SPM)

Definition 2.3 A document version d
(
(j) ^ u

f
is en ordered pair

dj(j) «l'j(j), tdj(j>>, where

1. d'j(j) consists of the text of the document version,

2. tdj(j) is a realtime stamp which represents the

completion date/time for d'j(j).

The time stamp can be augmented with a wide range of process

measures such as the number of persons/hour used to develop the

document version, the publication date - the time/date that the

document version was released to teams working on other documents,

and/or the "extent" of publication for versions released to a limited

audience.

3. The SPM assumes that development can take place in parallel. This means

that several different phases of documents can be developed concurrently.

Parallel development is useful for a project with a tight schedule. The

SPM does not prescribe an order of activities and the products need not

be named. Thus, the SPM may be applied to a variety of development

approaches.

4. The SPM provides a framework for quantifying the software process and

software products. The model helps clarify the distinction between the

products of software development and the development process. The SPM

is used to formally characterize research in software measures and

metrics. The formal definition for quantitative measures and metrics

to assess the development process will be given in chapter 3.

In summary, SPM is developed to model the evolution of a set of documents

produced in a software project. The SPM provides a framework for

measuring, analyzing, and understanding the software development process.

This model could be applied to any software development approach.

2.2 Documents

Documents generated during the development process serve as milestones

that can help managers to control and assess progress. Documentation

develops as a consequence of each software engineering phase.

Without these documents, the software could not be maintained. Like

hardware, computer software should evolve through a series a carefully

controlled and systematically executed phases. The idea of the software

life cycle is developed.

2.2.1 Software Life Cycle

The Software life cycle is known as a set of activities which has been

defined to describe the software process from system definition through

system maintenance. There are many life cycle models IhlcC, 1961;

8

BLU, 1982],several features are common to all. These features are:

. Each model begins with an activity which identifies the problem to be

solved and describes a solution space for the product. The product

should possess the following properties:

— A product will be produced which will satisfy the requirements.

~ The product will have a post development existence (evolution).

. Each model recognizes that the process of going from requirements to

product can be solved only through decomposition into successively

smaller problems each of which can be solved individually.

Different life cycle models can be decomposed into three phases :

definition, development and maintenance. Figure 2.3 represents the

overall flow of events during the software life cycle [GEN ,1986].

The activities involve in each phase are:

A. Definition Phase:

. The software project is planned;

. Budgets and schedules are estimated;

. Detailed requirements are analyzed and specified;

B. Development Phase:

. Software requirements are transformed into an operational program

using proven methods for designing, coding and testing. The activities in

the development phase consist of five steps:

System

^concept

system

analysis

• •
hardware
-*

software

planning

development

error correctionX
Adaptation)

nhancement /

Figure 2.3: Software Life Cycle

10

1. Preliminary Design : It translates a set of well-defined requirements

into a workable software structure, the preliminary design.

2. Detailed Design : The preliminary design is expanded to include the

internal design of each module. The resulting expansion of the

preliminary design is known as detailed design.

3. Code and Unit Test : Coding is the translation from the design

representation to the appropriate programming language. Unit test

is testing an individual module and its interface in order to verify its

consistency with the design specification.

4 Integration Testing : It combines unit tested modules in a manner

that allows the entire software package to be assembled end tested

in a stepwise fashion. Integration testing may be performed using

"bottom-up" or "top-down" techniques.

5. Formal Validation Testing : It is evaluating the software with

respect to the specified functions defined for the system.

C. Maintenance Phase

. Problems encountered in the field are corrected;

. Adaptations of the software are made for different operational

environments;

. Enhancements to functional requirements ere implemented.

The software life cycle encompasses all activities required to define,

deuelop, test, deliuer, operate, and maintain a software product

II

2.2.2 Documents in Software Life Cycle

Each software life cycle step results in waste of one or more documents.

Each type of document provides a unique view of the system. The complete

and up-to-date document is developed throughout the life cycle. This is

the major reason forSPM viewing software development as the process of

refining a set of documents.

Documents typical of each software life cycle phase are discussed in the

following section.

A. Definition Phase :

. Statement Of Wort (SOW) : This document describes the basic

properties, restrictions on inputs and outputs, contents of reports,

constraints, and any other pertinent details on the intended software.

The SOW is usually divided into paragraphs and sections. Each of

these is numbered. This allows cross-referencing within the document

and indexing of the requirements[GUS. 1967).

The Software Requirement Specification (SRS) : "A requirements

document should specify the functions to be performed by the system,

from the view point of the user or external environment" [DAV, 1979]. "A

requirements document should specify the external behavior of a

system, without implying a particular implementation" [HEN, 1980]. SRS

is the requirements baseline for the software subsystem. This document

is important for management control and technical development.

12

Documents in the definition phase ore typically expressed in English or some

other natural language and may incorporate charts, figures, graphs, tables,

and equations of various kinds. The definition phase begins with an

evaluation of the overall system and ends with a software plan review.

6. Development Phase

—Preliminary Design

. Data Flow Diagrams (DFD) : The first phase of design after

requirements specification is data flow analysis. DFD may be edited

interactively through a graphics editor, with date item names

captured and stored in a data dictionary. The diagrams should be

maintained as a tree of drawings according to the DeMarco conventions

[DEM, 1978] for leveled DFD sets. DFD is used as a mechanism for

creating a top level structure design for software.

. Input/Output Specification : This document specifies the source and

type of input and output information associated with a function. This

includes a description of the information, its source and destination in

quantitative terms , e.g. unit of measure, etc..

The Entity-Relationship-Attribute (ERA) : ERA approach was

developed in parallel by workers in the fields of data bases [CHE, 1976;

CHE, 1980; CHE, 1983; DAV, 1983] and artificial intellignce [BAR,

1982-1963], Entities are items in the world about which the desired

system is intended to process information. An attribute is a value

that is connected to an entity. A relation is any connection between

entities. ERA can be used to specify requirements.

. Hierarchy Diagram (HD) : HO is o hierarchicol structure of dote flow

diagrams that fit onto one sheet of paper. The more detailed processes

are shown on separate data flow diagrams on other pages. It is also

referred to as a calling diagram. The software structure is a

hierarchical representation of a software system.

The preliminary design is the first step in the development of the design

document. Each module in the software structure is described in detail with

interfaces defined, limitations and restrictions identified, and data

structure characteristics determined.

—Detailed Design

. Hierarchy Specification (HS) : It describes the structure of the

software. The hierarchy specification often includes a text description

to describe the relationship between the modules.

. Module Specifications (MS) : MS specify the behavior of each of the

modules. MS includes the specifications of the inputs and outputs.

. Design Walkthrough: The design must be reviewed, inspected and

evaluated to ensure that the dataflow end specification are correct and

consistent.

The goal of detailed design is the development of a software

representation directly translatable into a programming language.

-CODE

. Souce Code : Coding is to translate the design description into a

14

predetermined programming language. Code documentation is part of the

source listing or is implied by the code itself. Comments should be

included in the code documentation. Source code can be clarified by

using enough explanatory information.

Since the early 1970s, structured programming has received much

attention in the software engineering field. Because it is better than

unstructured programming in three areas: increased reliability, easier

verification, and easier modificationlDIJ, 1972], Also, built in and user-

defined data types, secure type checking, flexible scope rules, exception

handling mechanisms, concurrency constructs and separate compilation

are introduced to enhance the quality of the code [FAI, 1985].

—Unit Test. Integration Test, Formal Validation Testing

. TestTesting is a series of stimulus-response activities. Test document

should describe the inputs and the results of these activities

completely, in order to make sure the responses are satisfying its

specification and its expected reponses.

The goal of unit and integration testing is to uncover latent errors

by making the software fail. The goal of validation testing is

demonstrating software traceability to requirements. Eliminating

requirement and design errors from an evolving software product is one

of the primary goals of the development phase.

15

C. Maintenance Phase :

Software organizations usually spend over 50 percent of their budget

to maintain its old software. The documents created in this phase could

include the Software Problem Report (SPR) and Software Change

Report (SCR). There is no document generated in maintenance phase by

the project teams in this paper because the project discussed in this

paper is a two semester project. Time is too limited to produce any

documents in the phase of software maintenance.

A set of formal documents is created to describe the analysis and activities

of each phase of the software life cycle. The major uses of documentation

in software development projects are management reporting and

communication among project personnel.

2.3 Other Software Models

To develop a software system in life cycle, there are several models to

choose from: the waterfall model, rapid prototyping, systems

scultpture, incremental development and RUDE.

2.3.1 Waterfall Model

The Waterfall model is currently the most widely used model in

developing systems. It is a classical life cycle model derived from the

16

hardware model of requirement, design, fabrication, test and

maintenance . Software models only substitute fabrication to code/debug

from the hardware model. It consists of five phases in the life cycle model

:

requirements, design, code/debug, test and maintenance. These five

steps are described as cascading activities, hence it is also called a

waterfall model. The model is illustrated in Figure 2.4

require-

ment h design

code/debug

Oj test

ib mainte-

nance

Figure 2.4 waterfall Model

The waterfall model has been viewed as a succession of independent

phases. Each phase required to complete before next phase can start. For

instance, a complete set of specifications for a software product is

required in the first phase of the life cycle. Sometimes, the users of the

system may not really know what they want, and they may be unable to

communicate their desires to the project team at the beginning. Moreover,

the lack of early end user involvement is another shortage of the waterfall

model. It may lead to a system that does not meet the user's needs. To

overcome these problems, rapid prototyping was developed [LUB, 1986).

17

2.3.2 Rapid Prototyping

A Prototype is a model of a software product. It creates an "imitation

system" of the system to be developed. It can help end user's early

involvement in software development by illustrating input date formats,

messages, reports and interactive dialogues for the customer. Once we have

developed a prototype that illustrates how the system will operate and we

have received feedback from the user, the prototype should be thrown away

and requirement specifications should be written using what was learned

from the prototype. This eliminates the necessity of writing complete

specifications before implementation. Sometimes it is impossible to define

the product without some exploratory development. A Prototype can give a

better understanding of the end user's needs.

For a project that has a high technical risk, rapid prototyping is

recommended to alleviate the risk. High technical risk is that the

technology that may not support the application [BLU, 1964). Prototyping

can be quickly developed and tested certain critical pieces or functions. It

provides considerable analysis before the design is complete. On the other

hand, if the project has a high application risk instead of high technical

risk, software sculpture is recommended [McC, 1962]. Application risk

is the completed product will not meet the end user's needs. This means

that the detailed requirements may not be known until after

implementation.

18

2.3.3 System Sculpture

System sculpture is different from system architecture. System

architecture implies that all requirements for the final product are clear

before implementation. It is similar with constructing a building. The

blueprint should be generated before construction. In system sculpture, the

designer builds the final product through interaction with the user and the

model. It starts with a rough functional model, then modifies it step by

step. The final system is generated at last. System implementation can

improve problem understanding and produce a change in the environment

IBLU, 1962].

System sculpture is a dynamic design model that can produce an effective

solution corresponding to the real needs. It allows the binding of new

requirements into a final product by using application oriented tools during

the implementation stage. In constrast the traditional life cycle model

(Waterfall model), and the life cycle longevity causes the eventual

appearance of a final product that can not reflect new requirements and

specifications in consequence of the changing of the internal and the

external environment.

The final product depends heavily on the skill of the artist. Compared to the

classical software model, the experience of the designer is a more

important element to the quality of the final system.

19

2.3.4 Incremental Development

Incremental development establishes the system as a series of versions,

each version containing more modules completed and having more capability

than the previous version. It is en extension of rapid prototyping. The

prototypes may improve communication between the end user and the

developer and enhance the validation process. If the specification does not

meet the user's need, then new prototypes are produced. As Brooks

mentions, it is impossible to "get it right" the first time, and we should

always plan to "throw one away" [BRO, 1975). This cycle is repeated until a

validated specification is produced. The process of incremental

development is presented in the Figure 2.5 ITER, 1986].

customer

'*"—~^_x--sp"9cif1caTT

^^----^^^ersionn

verification

-qmplementatioi

Figure 2.5 : Incremental Program Development

20

The final components produced by the development satisfies the original

specification because each refinement is verified before another is applied.

2.3.5 RUDE

RUDE stands for Run, Understand, Debug and Edit. RUDE is an

incremental, fundamentally exploratory process. It is different from the

conventional design SPIV [KAT, 1985]

:

Specify -> Prove -> tmplemement -> Verify.

SPIV requires complete specifications and verifications before

implementation. This is an all-at-once technique. Contrary to SPIV, RUDE

is adding structured code incrementally.

RUDE paradigm suggests incremental development of an adequate

specification. RUDE applies incremental development throughout the system

life cycle. It is suitable to the nature of Artificial Intelligence (Al)

problems. "The development of an Al program can be viewed as an

accelerated form of perfective maintenance involving frequent specification

changes." [MOS, 1985]. For example, en expert system always deals with

incomplete knowledge bases. There is no guarantee that you will actually

solve the problem. IHER, 1986]. You must keep searching and learning from a

series of trials and errors. To sum up, RUDE paradigm is a fundamentally

incremental end evolutionary framework for design.

21

2.4 Summary

The goal of software engineering is to carry out successful software

development. To achieve this goal, we must:

. Categorize the different types of systems which are being developed.

. Consider the alternate life cycle models which are applicable to each

system. IBLU, 1962]

.identify and develop the tools and methods which can be applied to a

variety of development approaches in order to manage and develop the

system successfully.

First at ell, we categorize the systems into two classes : simple system

and complex system. The Simple system is a system which can write a

reasonably complete set of specifications for the software product at the

beginning of the life cycle. On the other hand, the complex system is a

system which can not write an accurate functional specification in the

definition phase. The complex system can be subdivided into : technical

risk system, application risk system, heuristic system and incremental

specification system.

After categorizing the different types of systems. We can match them with

alternative life cycle models in Figure 2.6.

22

system

simple

system

complex

system

technical

risk system

rapid

prototyping

application system

rist system sculpture

heuristic

system
RUDE

incrementalincremental

specificatior) development

system

Figure 2.6 : Rlternatlues life cycle models apply to different type of the

system.

Actually, we can apply one or more life cycle models in a system depending

upon the nature of the system. For example in the development of a

complete new system, several dynamic models (rapid prototyping,

incremental development, RUDE, system sculpture) can be applied

simultaneously. New versions of this existing system can be developed by

using the waterfall model

Finally, the SPM is a tool that can be used to model the different life cycle

models by modeling the products of the development process. The SPM

diagram for alternative life cycle models are presented from Figure 2.7 to

Figure 2.9.

23

SOW SRS DFD ERA MS CODE

Figure 2.7 : SPM diagram for waterfall model

a

6

4

2

SOW SRS DFD ERA MS CODE

Figure 2.8 : SPM diagram for rapid prototyping

b| r— .

[=]

"I rzn

4

2
rzzi

SOW SRS DFD ERA MS CODE

Figure 2.9 : SPM diagram for incremental deuelopment or RUDE

24

8

5

4

2

0-

IZZ1

I 1

CZ2

SOW SRS DFD ERA MS CODE

Figure 2.10 : SPM diagram for system sculpture

The framework provided by the SPM for quantifying the software process

and products is the basis to develop a set of measures that may apply to

various approaches in life cycle. This will be expanded in the chapter 3.

The SPM, the newly developed model, may be developed into a useful

managment tool to analyze, control and manage the process of development.

25

Chapter 3

MEASURES

3.1 Basic Concept

At present, a lot of engineering techniques in software engineering do not

correspond to scientific methods. In order to develop better measures, the

measurements established in this chapter are based on a framework for

quantifying the software process and software products which are provided

by the Software Process Model(SPM). This model provides a formal

definition of measure and metric which corresponds to the definition used

in mathematics. These definitions of metric and pseudo-metric in

mathematics are given as follows:

Definition 3.1: Let N be a set, R. be the set of real numbers, and let f be a

function where f :H k H -> R. The function f is a metric on

K, and H is a metric space if f satisfies the following

properties, where k, y, z £ X:

l)f(K,K) =

2) f(n,y) and if only if H = y

3) f(K,y) - f(y,K)

4) f(K,z) < flK.y) f(y,z)

Definition 3.2: The function f : H k K -> R is a pseudo-metric if f satisfies

properties 1,3, and 4.

26

Hence, a metric f : K k H -> R. may be viewed as a function giving the

difference or distance between two points. For example, if H is a set of

programs, a e K, end b e h, then f(o,b) may represent the difference with

respect to some property of the two programs a and b.

From the definition of a metric, we know a metric is a function of the

difference between two arguments. In software engineering, the

measurements usually do not reveal differences between two variables, for

instance software science and McCabe's cyclomaticltlcC, 19761 . Therefore,

the term "software measure" will be used for quantifiers which take only

one argument.

SPM has defined classes of measures that can be applied to software

document uersion, document histories, and the entire project according

to the above mathematical definitions. These definitions are listed in the

following:

I. Software document uersion

~ Software measure

Definition 3.3: Let U be a set of document versions. A function f where

f : D -> R is a document measure.

—Software metric

Definition 3.4: A software metric is a metric with a metric space

consisting of a set of document histories. A software

27

pseudo-metric is o pseudo-metric over o domain

consisting of a set of document versions.

For example, a software pseudo-metric is the absolute value of the

time interval between first version and last version of a data flow

diagram (DFD).

2. Software document histories

—Document measure

Definition 3.5: Let H be a specified set of document histories. A

document measure is a function f: H -> R.

An example of a document measure is the average value of effort among

the different versions of a document.

—Document metric

Definition 3.6: A document metric is a metric with a metric space

consisting of a set of document histories. A document

pseudo-metric is a pseudo-metric over a domain

consisting of a set of document histories.

For instance, a example of a document pseudo-metric is the absolute

value of the difference between the number of specification versions and

the number of implementation versions.

3. Software project

—Project measure

Definition 3.7: Let P be a set of SPMs for a number of projects. A

project measure is a function f : P -> R.

26

— Project metric

Definition 3.8 : A project metric is a metric with a metric space

consisting of a set of SPMs. A project pseudo-metric

is a pseudo-metric over a domain consisting of a set

of document SPMs.

In general, the term "measure" is used to describe a function with one

argument. And, the term "metric" is used to be a function with two

arguments.

The measures developed in this thesis are software project measures.

3.2 Measure Development Paradigm.

Lord Kelvin, the great physical scientist, said "If a phenomenom cannot be

measured and/or described in a quantitative fashion, the phenomenom is not

well understood.". It is often heard that: "I am taller than you.", "He is

fatter than his brother." or "You look younger than your age", etc.. From

these conversations, it is still difficult to get a clear picture unless we

know exactly how much taller, fatter or younger. This is the same in

software engineering; quantitative measurements of the activities in the

software life cycle can help us to understand, manage and control the

development process.

29

Several software measures have been proposed. These measures mainly

concentrate on the source code in the development phase of life cycle. For

example, Halstead's software measures are a source-code oriented

complexity measure; a set of primitive measures, such as the number of

operators and operands in the program and the total number of operators and

operands occurences are used. These measures are derived after the code is

generated [HEL, 1977].

McCabe's complexity measure can only be applied after detailed design is

completed. The complexity measure is developed using the number of

linearly independent control paths in a program [McC, 1976]. This can not

assist us in comprehensive understanding of the whole development process

in the early life cycle.

In order to quantify the movements of a software project in the life cycle,

a set of measures will be developed in the following sections. The

measurements of waste, progress, stability and effort can reflect

characteristics of the development process, thus enabling us to describe

the development process more precisely.

To verify these software measures, there is a common paradigm in the

software engineering area presented. This common paradigm can be

described as sequence steps. These steps are given in the following:

1. A small subset of the domain of programs is selected. The programs in

30

this subset ore ranked by experienced computer scientists. The rank

can be divided into "equal to", "less than" and "greater than" according

to the characteristics of the measures.

2. The measure can be applied to this small subset of programs, then this

measure will assign a real number to each program in this subset.

3. The software measure will be considered a worthwhile measure if the

values assigned to this subset correspond to the rank given by the

computer scientists. In other words the measure is considered

worthwhile if it preserves the ordering assigned by the computer

scientists.

4. If the measure preserves an ordering on this small subset of programs

then it will preserve the ordering on all programs. This is an

assumption made by this paradigm.

To generate a useful measure, this common paradigm must be changed. A

new paradigm must be developed.

The new paradigm to develop software measures is listed as follows:

1. A domain must be chosen. In our example, the domain is the set of all SPM

diagrams.

2. The assumptions for each measure are made which are based on the

objects in the domain.

31

3. The relations are generated by creating a set of transformation functions

in the domain. The "equal to", "greater than" and "less than" will be

assigned to these transformation functions.

4. The ordering relations for the transformation functions will be

categorized into partial and equivalence ordering.

5. The measures will be applied into the domain D, the real number will

be assigned to each object in D'. Direct proofs will be used to prove that

the ordering relations not only exist in the small subset of the domain but

also exists in the whole software domain.

A software measure can be further defined as the follows:

Definition 3.12: Let m be a software measure which is a function from D to

R, i. e., m: D->H, iff m preserves the ordering which is

implied by the assumptions.

The measurements of waste, effort, stability, and progress developed from

the SPM can be used to express quantitatively these characteristics of the

development process. The relations for the software domain are varying in

terms of waste, effort, progress and stability. These measures, relations

and ordering relations will be introduced and discussed in the following

sections.

32

3.3 waste Measure

The idealized SPM diagram for the development process is similar to the

waterfall model, with respect to the waste. The waterfall model requires

well-defined input information, utilizes well-defined processes, and

results in a well-defined product in each phase. No revision, are shown in

the waterfall model. Hence, there appears to be no extra time end effort

being put in. In other words, no waste will be generated, the waste is

generated only when revised documents are produced.

The assumptions for the waste are as follows :

1

.

The waste is zero for every initial document.

2. The waste is generated as long as a revision is added to documents.

3. The longer the time to revise a document, the more waste is

generated.

4. The waste mainly depends on the time to generate a revision

rather than the number of the revised documents. For instance, the

waste for (1) and (2) in Figure 3.1 are the same disregarding

the fact that the number of revision for (2) is larger than the number of

revisions for (I).

ABC A B
SI S2

Figure 3. 1: A simple example for waste

ZZ

The waste for the software domain D can be denoted by wasteful,

wasteful is a measure expressed as follows:

m n

Waste(n)=7 7<tdf(i)-tdf(i-1))MM
where I. tdf(i) is the completion time for the latest version of document f,

where i is the version number.

2. tdfti-U is the completion time for the document generated

before the latest document with the same document type f. If

(i- O=0 then tdflO) :-tdfU).

A few examples in Figure 3.2 may help to illustrate how to quantify the

waste.

5 g c^io

1 K6 , Ob
3 4E35 3 QtEfc

2 2 C33 2 2 E33 2 2 E33

1 1 , ,
ED,

, E3,

A AB ABC ABCD
SI S2 S3 S4

E3 js first pass I—
' is second pass ™ is third pass

1-10 the number to the right of each node indicates the sequence in which it is

added.

Figure 3.2 An example of the process of software development

For (SI), u>aste(S1) = 1-1=0;

For (S2) maste(S2) =((1
-

1) + (2- 1)) + ((2-2)) = 1 ;

For (S3) iuaste(S3) = ((1 - 1) + (2- 1)) + ((2-2) + (3-2)) + ((3-3)) =2;

For (S4) u>aste(S4) = ((1
-

1) + (2- 1)) + ((2-2) + (3-2W4-3)) ((3-3)

+(4-3) +(5-4))+((4-4W5-4)) =6.

34

To justify that the waste to be a worthwhile measure, the following steps

will be taken:

1. Determine the relations which exist on the documents.

2. Decide the ordering relations.

3. Prove that the measurement waste preserves the ordering.

— Determine the relations:

The relations among documents can be expressed as transformation

functions for the waste. Let SPH(x) be an SPI1 diagram, then the

transformation functions are the following:

To: Add an initial document. To(SPM(x)) will be the SPM(x) diagram with

another initial document added. The first assumption implies that

waste(SPM(x)) - waste(To(SPM(x))). The relation for To is '=i»'.

Ti: Add a revision to a document. Ti(SPM(x)) be the SPM(x) diagram

with another revised document added. The second Assumption implies

that waste(SPrKx)) < waste(Ti(SPr1(x))). The relation for Ti is '<*'.

The equivalence function, To maps domain D to D'. D' is a software domain

which consists of sets of documents. Ti establishes a partial ordering on D'.

—Decide the ordering relation

The ordering relation for To and Ti can be determined by the following proof:

The ordering relations for To:

Let = iv be the relation for To ,k =w y if u>aste(SPM(n)) =m

maste(To(SPM(y)).

35

Proof : Let k, y and z be documents in 0'.

then i) = w is reflexive on D', it means ujestetSPMU:)) =u»

waste(To(SPM(y))=> waste(SPM(n)) - u. u«aste(To(SPM(i:»)!.

ii) -id Is symmetric on D', it means waste(SPM(x)) =m

waste(To(SPM(y))H>waste(To(SPM(y)» - w waste(SPM(n)).

iii) =u) Is transitive on D', it means waste(SPM(x)) = u>

waste (To(SPM(y)H and waste (SPM(yl) *» Waste

(To(SPM(z)l) = ii> waste(SPMbO) - u> waste(Ta(SPM(z))).

The relation - m is an equivalence relation for Tn. Since w meets the

conditions for the equivalence relation : refteHiuity, symmetry and

transitwity. Note, for document x and y both have the same amount of

waste, waste(SPMbf)) - u> waste(To(SPM(y)H, but x and y are not the same

document. Let D' be the set of equivalence sets defined by = m. Thus, the

order pair (D', = m) for To is an equivalence set.

The ordering relation forTi:

Let < u be o relation for the Ti, x < m y if waste(SPM(x)) < w

wastedi (SPM(yW.

Proof : Let x,y and z be documents in D'.

then i) waste(SPM(K)) <iu waste(Ti(SPM(y))) and waste(Ti(SPM(H»

<m waste(Ti(SPM(z))) which implies waste(SPM(iO) <w

uieste(Ti(SPM(z))i. It satisfies the property of transitwity.

36

ii) In port i), if we hod both u>oste(SPM(n)) < ui

ujaste(Ti(SPM(y))) and it>aste(SPM(K))= u,maste(Ti(SPM(K))

then we would have ivaste(SPM(x)) < u> waste(Ti(SPM(K)))

contradicting irrefleKiuitg for partial ordering. And if both

waste(SPM(n)) < w maste(Ti(SPM(y))) and uiaste(SPM(y)) < w

uiaste(Ti(SPM(n)), then by transitively uiaste(SPMfKl) < u>

ujosteCMSPMM)), again contradicting irreflexivity. For

Ti, ma$te(SPM(H)) <w waste(Ti(SPM(y))) is irreflexive,

since it is never the case that waste(SPM (x) < u> waste(Ti

(SPM(k)). Therefore Ti meets the conditions of transitive and

irrefleKive for partial ordering[SAH,1981]. Let D' be a partial

ordering sets defined by < w. Thus, the order pair(D',<ui) for Ti

is a partial ordering set.

From the above proofs, we know the ordering relations for To andTi are the

equivalence and partial ordering. For the software domain D, we should

combine these two transformation functions together, because the software

domain consists of both a set of initial documents and a set of revised

documents.

The mapping function : waste: D ->Rwill be proved by direct proof to find

out whether it preserves the ordering relation on D'. The notation IHS"

and 'RHS' will be used to represent the equation on the left-hand side

equal to the equation on the right-hand side. The notation (RHS)' is used to

define the change after calculation of right-hand side equation.

37

The ordering relation for To

Prove waste(SPM(x))=waste(To (To (To (SPM(x)...)))

1 Basis:

Let be be and SPM diagram with k-1 document types SPM(x), then

waste(SPM(x)) = waste(To(SPM(x)))=>

k-1n k-1 n

I £(tdf(i)-tdf(i-D) =«/ Y I(tdf(i)-tdf(i-1)Wtdk(1)-tdk(0))
f=1i=1 Pli»l

Prove LHS = m RHS = LHS + (tdk(I) - tdk(O))

Since tdf(1)-tdf(0)=wtdk(1)-tdk(1) =

Then LHS = w (RHS)' //

2. Hypothesis:

Assume we have m-1 documents and the number of versions of document

f are nr. Let waste (SPM (x)) = waste(To (To (To ...(SPM(x)....))) is true,

then

m-lnf m-lnf

I I(tdf(i)-tdf(i-l))=iu£ Y.(tdf(i)-tdf(1-1)Wtdm(1)-tdm(0))
f«1 H f-1 i-1

Prove LHS = m RHS (tdm(1) - tdm(O))

Since tdm(1)-tdm(0) = » tdm(1) - tdm(=

Then LHS = •» (RHS)' //

(From basis)

38

3. Induction:

Assume waste(To(SPM(x))=waste(To(To<To..(SPrl(x)...)))), let waste(SPM(x))

= waste (To(SPM(x))), then

I E(tdf(i)-tdf(i-OHtdm(i)-t*n(o))=ui£ j(tdf(i)-wf(i-D)
f=1 Fl fif Pi

(tdm(1)-t4n(0)) +(tdm+1 (I)-tdm+1 (0))

Prove LHS = » RHS + (tdm+i (1) - tdm+i (0))

Since tdm+l(0) = mtdm+l(1)

(From assumption)

Then toWi(l) - toWi(O) = ,« tdm+i(1) - toWi(l) =

LHS =iu (RHS)'

Therefore waste (SPM (D)) = wasteCTo (To (To (SPM(x)....))) //

The relation for To is = m according to above direct proof.

The relation for Ti

Prove waste(SPM(x)) < waste(Ti (Ti (Ti (SPM(x))))

1 . Basis:

Let be a SPrt diagram SPM(x), then waste(SPM<x)) < waste(Ti(SPM(x)))
m n m n

F r(tdf(f)-tdf(1-1))<y»y E (tdf (i)-tdf(i- 1))+(tdf(i)-tdf(i- 1))
<*1 i-l f»1 i«l

Prove LHS < m RHS + (tdf(i) - tdf(l-l))

(tdf(i)-tdf(i-l) in LHS and RHS will be summed until the

first revised document created).

39

Since tdf(i) > m tdf(i-l)

(From assumption 2)

Then tdK2) - tdf(t) >0

LHS<ui (RHSV //

2. Hypothesis:

Assume for some documents f, nr is increased by 1, let waste(SPM(x)) <

waste(Ti (Ti (Ti (SPM(x)))) is true.then

| £(tdf(i)-tdf(i-1))<u»I £(ldf(i)-tdf(i-1))+(tdf(nf)-tdf(nf-l))
f=l i=1 f«l 1=1

Prove LHS < m RHS + (tdrtnf) - tdf(nf- 1))

Since tdf(nf) > » tdKrtf- 1

)

(From basis)

Then tdf(m) - (tdrtrtf- 1) >0

LHS < u> (RHS)' //

3 Induction:

Assume waste(Ti (SPM(x)) = weste(Ti(Ti....(SPI1(x))....))), let waste(SPM(x))

< waste(Ti(Ti(SPM(x)), let nf is increased by 1 for some documents f,then

I I(tdf(i)-tdf(i-1))+(tdf(nf)-tdf(nf-l))<u,y £(tdf(i)-tdf(i-1))
t±i i=i r*i i-f

+ (tdf(nf)-tdf(nf-l)) (tdf(nf)-tdf(nf- 1))

Prove LHS < w RHS + (tdfdif) - tdf(nf- 1))

Since tdf(nf) > m (tdf(nf- 1

)

(From hypothesis)

Then tdrtnf) - (tdf(nf- 1) >0

LHS < iv (RHS)
-

40

Therefore weste(SPM(x)) = westeCTi (Ti (Ti (SPM(x))))) //

From the above direct proof, we can conclude the relation for To is = w and

Ti is < id. The waste measure can be defined as follows:

Definition 3.14: waste is a function from D to R, i.e., waste: D->R and it

preserves the ordering <u» on D. Let x <u> y iff

waste(SPM(x)) - w waste(Tn(SPrKy))) and weste(SPM(x)) < w

waste(Ti(SPI1(y)))

The waste measure is not suitable for the waterfall model. Waterfall model

is composed of a member of initial documents. In the modern computer

society, programs have became more and more complex, the early static

"waterfall" model was no longer satisfactory to represent this complexity.

Making a change during the process of development became very common.

Properly updating the document to reflect modifications is required to

maintain the system in the life cycle.

3.4 Effort Measure

The measure of effort is to reflect the amount an individual job contributes

to the entire job at any particular time point. Total effort is the sum of the

ratio of an individual job(a document) to the entire job.

41

The basis of measurement for effort is the completion and starting time of

the document. A document serves as a milestone in the software

development. A portion of a job is done when a document is produced. The

time to add a new document is related to the effort put into the job. This

can be calculated by :T(d,d') • It(d') - t(d)l where d is a document which is

produced before the lastest one and d' is the latest document. The time for

the entire job can be defined as deuelopment uurotion(T). The defintion

for the development duration is:

Definition 3.15 : Deuelopment Duration is the elapsed time in months

during which development effort proceeds.

For those documents which have the same completion time as previous

document, there is no additional effort to be added. It means that if

several documents are generated at same time, the time for the first

document with the same completion time will be used. For the rest of the

documents with the same completion time, there is no effort to be added.

This assumption is based on a project done by the same team members

throught out the life cycle. If a project is divided into several phases and

each phase is done by different groups, then this measure is not applicable.

The assumptions for the EFFORT are:

1. Adding a document takes effort.

2. Adding a document with the same completion time as the previous

document takes no additional effort.

3. The effort is relative to the entire job. The more time to complete a

42

job, the more effort is token.

The effort for the software domain D can be denoted by Effort (k). Effort

(k) is used to determine the effort used in the software development x.

Effort(n) is a measure expressed as follows:

"'•"'"'ii
"g"

where 1. tdftfl is the completion time for the latest document of type f.

2. tdk(l-l) is the completion time for the document before the latest

document. The document type for these two sequence documents

could be different.i.e., if df.dk e D' then df dk or df * dk and if

(i-t)=Othentdk(0)=0.

The measurement for the effort can be illustrated by the same example used

previously in Figure 3.2.

2

E3,
|

3

2 E33 2

E3|
,

5

t-

l=U EZ35 32 Q3 2

E3|
|

9 O|o
«6 ? E3e

4 CDs2 E33

E3|

A AB ABC ABCD
Si

S3 is first i

S2

>ass CJ
S3

is second pass

S4
"" is third pass

1-10 the number to the right of each node indicates the sequence in which it is

added.

For (SI) Effort (SI) = (1-0)/ 1 = 1;

For (S2) Effort (S2) = ((1 -0)/ 1 +(2- 1)/2)+ (2-2)/2 = 1 .5;

43

For (S3) Effort (S3) = ((1 -0)/ 1 *(2- 1)/2)+ ((2-2)/2*(3-2)/3) ((3-3)/3)

= 1.63;

For (S4) Effort (S4) = ((1 -0)/ 1 + (2- 1)/2) + ((2-2)/2+(3-2)/3 + (4-3)/4)+

((3-3)/3 + (4-4) /4+(5-4)/5)+((4-4) /4 +(5-5)/5)

= 2.28.

To verify that Effort is a worthwhile measure, the same steps will be taken

as previously mentioned.

—Determine the relations:

The relations among documents can be expressed by the following

transformation functions for the effort:

To: Add a document with different completion time to previous documents.

To(SPM(x)) will be the SPM(x) diagram with another document with

different completion time to previous one added. The first assumption

implies that Effort(SPM(x)) < Effort(To(SPM(x))). The relation for To is

Ti:Add a document with same completion time as previous documents.

Ti(SPM(x)) be the SPM(x) diagram with another document with same

completion time as previous documents added. The second assumption

implies that Ef fort(SPM(x)) = EffortCTi (SPM(x))). The relation for T 1 is

The equivalence function, Tt maps domain D to D'. D' is a software domain

which consists of sets of documents. To establishes a partial ordering on D'.

44

—Decide the ordering relation

The ordering relation for To and Ti can be determined by following proof.

The ordering relation for To:

Let <e be a relation for the To, x <t y if Effort(x) < e Effort (To(y II.

Proof : Let x,y and z be documents in D'.

then i) Effort(x) < i EffortfToty)) and Effort(y) < e Eft ortdotzl)

which implies Effort (») < e EffortlTo(z)). It satisfies the

property of transitiue.

ii) In part i), if we had both Effort (k) <e Effort ffo(y)) and

Effort (k) <e Effort (To(y)t, then we would have Effort(K) <e

Effort (To(k)) contradicting irreflexiuity. And if both

Effort (k) < e Effort(To(yH and Effort (y) < e Effort (To(k)),

then by transitively Effort (k) < e Effort (To (k)), again

contradicting irreflexivity. Effort (h) < e Effort(To(y)) is

irreflexive, it is never the case that Effort (h) <e Effort

(Td(k)). It meets the conditions of transitiue and irreflexiue

for the partial ordering. Thus, the order pair (D, < e) for To is

a partial ordering set.

The ordering relation forTi:

Let -e be the rel eti on for Ti , h -e y i f Effort (h) - e Effort (Ti (y)).

Proof : Let k, y and z be documents in D'.

then i) -t is reflexive on D', it means Effort(n) -e Effort(Ti(y))->

Effort (k) -e Effort (Ti(k))

ii) -e is symmetric on D', it means Effort(SPM(n)) =e

Effort(To(SPMfy))).=> Effort(To(SPM(y))) =EEffort(SPM(H».

45

iii) -e is transitive on D',it means EffortdO-EEffortfMy)) and

Effort(y) -t Effort (Ti(z)) -> Effort («) - e Effort (Ti(z)).

Because of Ti is adding a document with same completion

time as previous documents. No effort will be added under

this condition.

Thus -e is an equivalence relation for Ti. "-e" satisfies the properties of

equivalence relation: reflexity symmetry and transitivity. Thus, the order

pair (D', =e) for Ti is an equivalent set.

From the above proofs, we know the ordering relations for To and Ti are the

equivalence and partial ordering. For the software domain D, we should

combine these two transformation functions together, because the software

domain consists of both a set of documents with the same completion time

and a set of documents with different completion time.

The mapping function : Effort : D -> H. will be proved by the direct proof to

find out whether it preserves the ordering relation on D'. The notation 1HS'

and 'RHS' will be used to represent the equation on the left-hand side equal

to the equatin on the right-hand side. The notation (RHS)' is used to define

the change after calculation of right-hand side equation.

The procedure for the direct proof is expressed as below:

The ordering relation for To

Prove Ef fort(SPrKx)) < Effort (To (To (To (SPM(x)...)))

46

I. Basis:

Let n=1 be the initial state of the SPM(x), then

Effort (SPM(x)) < Effort(To(SPM(x)))=>

y " tdf(l)-tflk(i-l) - {? £ tdfU)-tdk(i-l) . tdf(i)-tdkQ-l)

ku I
^HD <E

f= £j tdHD mm
Prove LHS <e RHS + ((tdrti) - tfr(i- 1))/tdf(i)

(The equation on the LHS and RHS will be summed until the

first document with different completion time is created.)

Since tdf(i) >t tdf(i-l)

(From assumption 1 and Effort(D))

Then (tdf(i)-tdk(i-1))/tdf(i) >0

LHS <e (RHS)' //

2. Hypothesis:

Assume we have m-1 documents and the number of versions of document f

are rtf. Let Effort (SPM(x)) < Effort (To (To (To ...(SPM(x)....))) is true, then
£•% tdf(i)-tdic(i-i) f

1 n* tdf(i)-tdk(i-o tdf(i)-tdk(i-i)

kti wnn (t

f=1 £ mm *

—

wm
Prove LHS <t RHS + ((tdf(i) - tdk(i-l))/tdf(i)

Since tdf(i) >£ tdk(i-l)

(From basis)

Then ((tdf(i)-tdk(i-l))/tdf(i)>0

LHS <e (RHS)' //

3. Induction:

Assume Effort (To(SPM(x))=Effort (To(To...(SPM(x)..))), let Effort (SPM(x))

< Effort(To(To(SPM(x)), let nf be increased by 1 for some documents f,then

47

Suppose Effort (SPM(x))= Effort (To(SPM(x))), then

y£f
tdf(i)-tdk(i-l)

,
tdf(i)-tdk(i-l) „ ?' °

? tdf(i)-tdk(i-l)

fc£j Will ' SHD =t

£, £, tdHD

+(tdf(i)-tdk(1- 1))/tdf(i)) (tdf(i)-tdk(i-1))Adf(i))

Prove LHS <t RHS + (tdrti) - tdk(i-l))

Since tdrti) <Etdk(i-1)

(From assumption 1)

Then (tdrti) - tdk(i-l))/tdf(1)>

LHS <t (RHS)'

Therefore Effort (SPM (D)) < Effort (To (To (To (SPM(x)....))) //

The relation for To is <e according to above direct proof.

The relation forTi

Prove Effort (SPM(x)) = Effort (Ti (Ti (Ti (SPM(x))))

t. Basis:

Let n=1 be the initial state of the SPM(x), then

Effort (SPM(x)) = Effort (Ti(SPM(x)))

*°
tdf(i)-tdk(i-l) c ^° tdf(i)-tdk(i-l) tdfd)-tdk(i-l)

&£; ma =E

fnfo—tann
— '

—

mn—
Prove LHS =e RHS + (tdf(i) - tdk(i- 1))/tdf(i)

(The equation on the LHS and RHS will be summed until first

document with same completion time created.)

Since tdf(i) =i tdk(i-l)

(from assumption 2, we know both documents have the

same completion time)

Then tdf(i) - tdk(i-l) =0

LHS=e (RHS)' //

48

2. Hypothesis:

Assume for some documents f, nf is increased by 1,

let Effort (SPM(x)) = Effort (Ti (Ti (Ti (SPM(x)))) is true.then

5T^ tdf(i)-tdk(i-l) _ y
1 °

f tdf(i)-bik(i-l) bdf(i)-tdk(i-l)

fo^j tann
fc

£, t & tajTD ' ann

Prove LHS =eRHS (tdf(i) - tdk(i-l))/tdf(i)

Since tdf(i) =e tdk(i-l)

(from basis)

Then (tdfCl) - tdk(i- 1))/tdf (i) rO

LHS =t (RHSV //

3. Induction:

Let nr be increased by I for some documents f,then

Effort (SPrl(x)) < Effort (Ti(Ti(SPr«x)))

°Tf
tdftt)-tdk(i-l)

. tdftt)-tdk(i-l) - p g tdf (i)-tflk(i- 1)

£ I]
HTUJ

*

tafTIJ
E

fc ,
I tdiTD

—

+ (tdf(i)-tdk(i-l))/tdf(i) (tdf(i)-tdk(i-1))/tdf(i)

Prove LHS =e RHS + (tdf(i)-tdk(i-l))/tdf(i)

Since tdKi) =e (tdk(i-l)

(From hypothesis)

Then (tdf(i)-tdk(i-l))/tdf(i) =0

LHS =E (RHS)'

Therefore Effort (SPM(x)) = Effort at (Ti (Ti (SPM(x))))) //

From the above direct proof, we can conclude the relation for To is =e

and Ti is <e. The Effort measure can be defined as follows:

49

Definition 3. 1 6: Effort is o function from D to R, i.e.. Effort: D->fc and it

preserves the ordering <e on D. Letxiey iff Effort(x)<E

Effort(To(y)) and Effort(x) =e Effortai(y))

The measurement for effort can be applied to any development model. It

reflects the contribution of individual jobs to the entire job.

3.5 Stability Measure

The stability for the software development is constant, meaning it has a

value of one for every initial document. The stability decreases

whenever the number of revised documents increases. In other words, the

value of stability heavily depends upon the number of revised documents.

The more revised documents, the less stability it has. Also, the more time

to modify a document, the less stability it has. The time to modify a

document is another important determinator for the stability. The time to

update the document also indicates the requirements for the modification. A

minor change for the system only needs a small amount of time. On the

other hand, a major change for the system requires a large amount of time.

Hence, the stability is declining when the time to revise the document is

increasing.

The assumptions for the STABILITY are:

l.The stability is constant (=1) for the initial document in the software

life cycle.a
50

2. The more revisions to documents, the less stability it hos.

3. The more time needed to revise a document, the less stability it has

The stability function can be denoted by Stability(K) which is used to

determine the stability of the software development x. The stability!**)

measure is expressed as follows:

Stability(K)=(1 ^tSt^ 1 I

where I. tdf(l) is the completion time for the Initial version of document f.

2. tdfti) is the completion time for latest version of document f.

3. j is the number of revised documents (not including initial) added

up to this document, j' is the total number of revisions in the SPrl.

4. i is the version number. Notice the starting value for i is 2 in the

summation. When i=1,the document is an initial document. Stability

for an initial document should be unchanged.

We use the same examples from Figure 3.2 to figure out how to quantity the

stability.

2| Q2 ESI3 2

E3,
|

5

4

2 E33 2

9 Qio6 C37 Efe

A AB ABC ABCD
SI S2 S3 S4

C3 is first pass ^D
\ s second pass Bi is third pass

1-10 the number to the right of each node indicates the sequence in which it is

added.

51

For (S I), StabilitytSI) = (1 +0)/(0+ 1)= 1

;

For (S2), Stability(S2) = (I +0.5)/(I + 1) = 0.75;

For (S3), Stability(S3) = ((1 +0.5)+0.33) / (2+ 1) =0.6
1

;

For (S4), Stability(S4) = ((1 +0.5) (0.33+0. 1 7) + (0. 1 9+0. 1 2) + 0. 1 3) /(6+ 1

)

= 0.35.

To verify that Stability is a worthwhile measure, the same steps will be

taken as previouly mentioned.

—Determine the relations:

The relations among documents can be expressed as the following

transformation functions for the stability:

To: Add an initial document. To(SPM(x)) will be the SPM(x) diagram with

another initial document added. The first assumption implies that

Stability(SPM(x)) = Stability (To(SPM(x))). The relation for To is 'st'.

Ti: Add a revision to a document. Ti(SPM(x)) be the SP(1(x) diagram

with another revised document added. The second assumption implies

that Stability(SPM(x)) < Stability(Ti(SPM(x))). The relation forTi is '>s
-

.

The equivalence function. To maps domain D to D'. D' is a software domain

which consists of set of documents. Ti establishes a partial ordering on D'.

The ordering relation for To:

Let -sbe the relation for To, K =*y if Stobility(x) -t Stability (To(k)).

Proof : Let k, y and z be documents in 0'.

52

then i) -t is reflexive on D', it means Stability(x)-s Stability(To(y)l

«>Stability(x)-s Stability (ToM),

ii) -% is symmetric on D', it means Stability(SPM(xH -s

Stability (Ta (SPM (y))) => Stability (To (SPM (y))) i

Stability(SPM(x)).

iii) =s is transitive on D', it means Stability(x)=s St ability (Tot y))

and Stability(y)-$ Stability(To(z)) ->Stability(x) -» Stability

(To(z».

The relation -sis an equivalence relation for To. Since "»" satisfies the

properties of equivalence relation : reflexivity, semmetry and transitivity.

Thus, the order pair (D\ =s) for To is a equivalence set.

The ordering relation forTi;

Let >t be a ordering relation for the Ti, x >t y if Stability(x) >i

Stability(Ti(y)).

Proof : Let x,y and z be documents in D'.

then i) Stability in) >s Stability (Ti(y)) and Stability (y) >s

Stability(Ti(zU which implies Stability(x)>tStability(Ti(z)).

It satisfy the property of transitive.

ii) In parti), if we had both Stability(n) > $ StabilitytMy))

and Stability (x) -» Stability (Ti(y)), then we would have

Stability (x) H Stability (Ti(x)) contradicting irreflexivity.

And if both Stability(x) >t Stability(Ti(y)) and Stability(y) >s

Stability (Ti(x)), then by transitively Stability (x) >t

Stability (Ti(kI), again contradicting irreflexivity. ForTi,

53

Stability (x) >t Stability (Ti(yl) is irreflexive, it is never the

case that Stability (x) >s S tability(Ti(k)). Therefore Ji meets

the conditions of transitive and irrefleHive for partial

ordering. Thus the order pair (D', >t) for Ti is a partial

ordering set.

From the above proofs, we know the ordering relations for To andTt are the

equivalence and partial ordering. For the software domain D, we should

combine these two transformation functions, because the software domain

consists of both a set of initial documents and a set of revised documents.

The mapping function : Stability: D -> Hwill be prove by the direct proof to

find out whether it preserves the ordering relation on D'. The notation 1HS'

and 'RHS' will be used to represent the equation on the left-hand side equal

to the equatin on the right-hand side. The notation (RHS)' is used to define

the change after calculation of right-hand side equation.

The procedure for the direct proof is expressed as below:

The ordering relation for To

Prove Stability(SPM(x))=Stability(To (To (To (SPM(x)...)))

1 Basis:

Let n=1 be the initial state of the SPM(x), then

Stability(SPM(x» = Stability (To(SPM(x)))=>

54

Prove LHS/(j+1) =s (RHS* tfftl)—) /(j'+i)

tdf(i)*j

(The equation on the LHS and RHS will be summed until the

second Initial document is created.)

Since -IdKli—=

tdf(i)»j

Then LHS =s (RHS)'

(From Stability(D), we know the summation starts from 1=2. For

all Initial documents i=1, summation in the equation for the

stability should be unchanged)

2. Hypothesis:

Assume we have m-1 documents, the number of versions of document f

are wand the number of revised documents are pj. Let Stability (SPM(x))

= Stability (To (To (To ...(SPM(x)....))) is true, then

,.T1? trfm-Kl) p* tdm-KQ

+ _tdm.(D_)/(p j'+))

tdm(1)*pj

Prove LHS/(pj+1) =s (RHS tdm(_LS—) /(pj'f 1)

tdm(1)*pj

Since -JMLi) -

tdm(i)*pj

(From basis)

Then LHS =s (RHS)'

55

3 Induction:

Suppose Stability (SPM(x)= Stability(To(SPM(x)), then

(
.p" tdm-l(l) tdm(l) Mn1

.
>1) .t(uy'r tdm-KD

« tdmq) + _tdm±ia)—j /(p j'+ i)

tdm(i)*pj tdm+1(i)» pj

Prove LHS/(p]-+ 1) *s (RHS —IMLLCi)—j /(p j + |

)

tdm+1(i)* p]

Since Mm*KB =

tdm+l(i)*pj+l

(From hypothesis)

Then LHS =s (RHS)'

Therefore Stability (SPM (D)) = Stability (To (To (To (SPfl(x)....))) //

The relation forTn is =t according to above direct proof.

The relation forTi

Prove Stability (SPM(x)) < Stability (Ti (Ti (Ti (SPM(x))))

1. Basis:

Let n=l be the initial state of the SPM(x), then

Stability (SPM(x)) < Stability (Ti (SPM(x)))

Prove LHS <* (RHS tdf (I)/ tdf(2)« 0*2

(The equation on the LHS and RHS will be summed until the

first revised document is created.)

Since tdf (2) >* tdf (1) then (tdf (1) tdf (2)) < 1

LHS = RHS = 1 , RHS (tdf (1) / tdf(2)) < 2

56

(RHS + (tdf(1)/tdf(2)))/2 < 1

(from assumption 2)

Then LHS <t (RHS)' //

2. Hypothesis:

Assume for some documents f, nf is increased by 1,

let Stability (SPM(x)) < Stability (Ti (Ti (Ti (SPM(x)))) is true.then

m*t
^"' tdfd) Wni

.. ,...,,£ y tdfd)
<1+

£, fe tdf(nf-lWpi-l)
Hp J

4l) >s (,+
£, fe tdf(nf-i)Hpj-l)

+ _tdiCU—)+(P j'+ i)

tdf(nf)*pj

Since LHS = RHS, 'x' is used to substitute LHS and PHS.

Prove J-HS- >s (RHS +—IdLCU—)/(pj +1)

pj tdf(nf)*pj

JL> X t Mill

pj pj'+l tdf(nf)*pj(pj'+1)

X. _X tdf(l)

pj pj'+l tdf(nf) *pj(pj'+1)

Since
x(ajiihx(Bj.)_ tdf_U)_

>0

pj(pj'-l) tdf(nf)«pj(pj'+1)

tdfd) _,._ tdf(i:

pj(pj'+1) tdf(nf)*pj(pj'+1) tdf(nf)

tdf(nf)>tdf(l), -^OJ— < i

tdf(nf)

X % k i tdf(nf-D*(pj-l)
>

'

57

Then

x -_LdlLU_ >0
tdf(nf)

UiS. > RHs + (-MLU

—

)*(pj + i)

pj tdf(nf)*pj

LHS >* (RHS)' //

3 Induction:

Let nf is increased by I for some documents f,then

Stability (SPM(x)) < Stability (Tt (Ti (SPM(x)))

Mil) + tdf(l) + tdf_(l)
j + (pj

.

+2)

tdf(nf-1)*(pj-1) tdf(nf)*pj tdf(nf+1)*(pj+1)

Prove -U1S- >s -SUS. tdfJiL

pj'+l pj'+2 tdf(nf+1)«(pj+l)*(pj'+2)

Since LHS = RHS, LHS and RHS ere substituted by Y.

x
):

x ., tdfJi)

pj'+l pj'+2 tdf(nf+l)*(pj+l)«(pj'+2)

tdf(i)_

pj'+l pj'+2 tdf(nf+1)*(pj+1)*(pj'+2)

>0

Since —il(Cj'+2) - x (ej^j) tflltl)

(Pj'+l) * (pj'+2) tdf(nf+1)*(pj+1)*(pj'+2)

= x - tdfC l)

tdf(nf+1)

tdf(nf+l)>tdf(l), -Mii}— < |

tdf(nf+l)

58

t . f uv ^'r1
tat(i) tdf(i) . .

Then x - x - tpKJJ >0

pj'+l pj'+2 tdf(nf+l)»(pj+1)*(pj>2)

LHS >s (RHS)"

Therefore Stability (SPM(x)) = Stability (Ti(Ti(Ti (SPM(x))))) //

From the above direct proof, we can conclude the relation for To is =s

and Ti is <$. The Stability measure can be defined as follows:

Definition 3.17: Stability is a function from D to R, instability: D->R and it

preserves the ordering it on 0. Let x >t y iff stability(x) =»

stabilityCTo(y)) and stability(x) >» stobi 1 i tyCTi (y)).

The measurement of stability can be used to express the change in the

internal and external environment of the development process. In modern

computer society, properly updating the document to reflect modifications

is required to maintain the system in the life cycle. The early static

"waterfall" model is no longer satisfactory to represent this tendency. The

stability measure is suitable to any development model to analyze the

development situation.

59

3.6 Progress Measure

Progress value is one for all initial documents. Adding a revised document

implies progress. Especially for the system sculpture, incremental

development and RUDE, these development models are developed as a series

of versions, each version contains more modules completed end having more

capability than the previous version. Therefore with each revision ,there is

more progress.

The assumptions for the PROGRESS are:

l.Forall initial document progress value is one.

2. Adding a revised document implies progress.

3. The longer the time of between revision the more progress.

The Progress function can be denoted by Progress(x) which is used to

determine the progress in the software development x. The ProgressM

measure is expressed as follows:

where I. tdf(i) is the completion time for latest version of document f.

2. tdf(i-l) is the completion time before the latest document with

the same document type f

.

3. i is the version number. Notice the starting value for i is 2 in the

summation. When 1=1, the document is an initial document. The

progress for an initial document should be unchanged.

60

We use the same examples as previous one to figure out how to quantity the

stability.

5 9 a 10

A 6O|06
3 4 E35 3 4ESI5

2 2 EJ32 2^3 2 2 1-33

EJ|
i

E3|
1 E3i , ,

A AB ABC ABCD
SI S2 S3 S4

C3 js first pass ^ is second pass ^ is third pass

l
-

1 the number to the right of each node Indicates the sequence in which it is

added.

For (SI), Progress(S1)= 1+0=1;

For (S2), Progress(S2) = (I +0.5)= i .5;

For (S3), Progress(S3) = ((1 +0.5)+0.33)= 1 .63;

For (S4), Progre$$(S4) = ((1 +0.5)+(0.33+0.25)+(0.25+0.2)+0.2) =2.73.

To verify the Progress is a worthwhile measure, the same steps as the

previous one will be taken.

—Determine the relations:

The relations among documents can be expressed as the following

transformation functions for the Progress:

To: Add an initial document. To(SPM(x)) will be the SPM(x) diagram with

another initial document added. The first assumption implies that

Progress(SPM(x)) = Progress (To(SPr1(x))). The relation for To is '=w'.

61

Ti: Add o revision to a document. Ti(SPM(x)) be the SPM(x) diagram

with another revised document added. Assumption 2 implies that

Progress (SPM(x)) < Progress (Ti(SPM(x))). The relation for Ti is '<W.

The equivalence function. To maps domain D to D'. D' is a software domain

which consists of sets of documents. Ti establishes a partial ordering on D\

The ordering relation for To:

Let =w be the relation for To, H =p y if Progress(x) =p ProgressUo(y)).

Proof : Let k, y and z be documents in D'.

then i) »p is reflexive on D', it means Progress(x)-p Progress(To(y)l

=> Progress(x)=p Progress(To(x)l,

ii) -p is symmetric on D'
(

it means Progress(SPMtKl) -p

Progress (To (SPM (y))) => Progress (To (SPM (y))) =p

Progress(SPM(x)).

iii) =p is transitive on D', it means Progress(n) =p Progress

(To(y)) and Progress(y) «p Progress(To(z))=> Progress(x) =p

Progress(To(z)(.

The relation =p is an equiualence relation for To. Since *-p* satisfies the

properties of equivalence relation : reflexiuity, symmetry and transitiuity.

Thus, the order pair (0', -p) for To is a equiualence set.

The ordering relation forTi:

Let <p be a ordering relation for the Ti, x <p y if Progress(x) <p Progress

(Ti(y)).

62

Proof : Let x,y ond z be documents in D'.

then i) Progress (k) <p Progress (Ti(y)) and Progress (g) <p

Progress (Ti(z)) which implies Progress (k) <p Progress

(Ti(z)l. it satisfy the property of transitiue.

ii) In parti), if we had both Progress(n) <p Progress(Tity))

and Progress! k) =p Progress (Ti(yM, then we would have

Progress(x) <p Progress(Ti(n)l contradicting irrefleHiuity.

And if both Progress(n) <p Progress(Ti(y)) and Progress(y)

<p Progress (Ti(k)), then by transitively Progress (k) <p

Progress(Ti(H)), again contradicting irreflexivity. ForTi,

Progress(K)<pProgress(Ti(y)) is irreflexive, it is never

the case that Progress(x) <p ProgresstTibO). Therefore ,Ti

meets the conditions of transitiue and irreflexiue, it is a

partial ordering. Thus, the order pair (D
-

, <p) forTi is a

partial ordering set.

From the above proofs, we know the ordering relations for To and Ti are the

equivalence and partial ordering. For the software domain D, we should

combine these two transformation functions together, because the software

domain consists of both a set of initial documents and a set of revised

documents.

The mapping function : progress : D -> R will be prove by the direct proof to

find out whether it preserves the ordering relation on D'. The notation

IHS' and 'RHS' will be used to represent the equation on the

63

left-hand side equol to the equotin on the right-hond side. The notation

(RHS)' is used to define the change after calculation of right-hand side

equation.

The procedure for the direct proof is expressed as below:

The ordering relation for To

Prove Progress(SPr1(x))= Progress (To (To (To (SPM(x)...)))

1. Basis:

Let n=l be the initial state of the SPM(x), then

Progress(SPM(x)) = Progress(To(SPM(x)))=>

. i " tdKi)-tdl(i-l) . IS. tdKi)-tdl(i-l) td2(i)-td2(i-l)

k k—™

—

=p

l&—^

—

+—ra

—

Prove LHS =p RHS * JMihmitl).
td2(i)

(The equation on the LHS and RHS will be summed until the

second initial document is created.)

Since mhm-1) A o

td2(i)

(From Progress(D), we know the summation starts from i=2.

For all initial documents i=l, summation in the equation for

the progress should be unchanged)

Then LHS =p (RHS)' //

2. Hypothesis:

Assume we have m-1 documents and the number of versions of document f

64

ere nr. Let Progress (SPM(x)) = Progress (To (To (To ...(SPM(x)....))) is true,

then

. r^ tdm-Hl)-tdm- 1(1-1) „ . JT'^ tdm-l(l)-tdm-Ki-l)

'ft fo turn- KO =p
'ft fe tdm-Ki)

+ tdm(i)-tdm(i-1)

tdm(i)

Prove LHS =p RHS * tdm(i)-tdm(i-1)

tdm(i)

Since tdm(i)-tdm(i-l) =

tdm(i)

(From basis)

Then LHS = p (RHS)' //

3. induction: Progress (To(SPM(x)) = Progress (To(To (SPM(x)))

Suppose Progress (SPM(x))= Progress (To(SPrKx))), then

w v'v tdm-l(i)-tdm-Ki-l) , tdm(i)-tdm(i-1) „ . T'v
1

^,f=2 raFFTTrs mm =p ,+

ft fe

tdm-l(i)-tdm-Ki-l) + tdm(i)-tdm(i-1) * tdm+1(i)-tdm+1(i-1)

tdm-l(i) tdm(i) tdm+1(i)

Prove LHS =p RHS tdm+1(i)-tdm+1(i-1)

tdm+1(i)

Since tdm+U i)-tdm»1(i-l) =

tdm+Ki)

(From Hypothesis)

Then LHS =p (RHS)
1

//

65

Therefore Progress (SPM (D)) = Progress (To (To (To (SPM(x)....))). The

relation for To is =p according to above direct proof.

The relation for Ti

Prove Progress (SPM(x)) < Progress (Ti (Ti (Tt (SPM(x))))

1. Basis:

Let n=1 be the initial state of the SPrt(x), then

Progress (SPM(x)) < ProgressCTi (SPM(x)))

, + £ I tdf(l)-tdfQ-l)
"

n
,.S " ldf(i)-tdf(i-1) , tdf(2)-tdf(1)

1

fc, l z
tdTTD <P ' *£, l2 tdfTTJ

'

HSR®

Prove LHS <p RH5 tdf(2)-tdf(l)

tdf(2)

(The equation on the LHS and RHS will be summed until the

first revised document is created.)

Since tdf(2) > tdf(l), tdf(2)-tdf(1) >

(From assumption 2)

ML(2htdiai >0

tdf(2)

Then LHS > (RHS)
1

//

2. Hypothesis:

Assume for some documents f, rtf is increased by 1,

let Progress (SPM(x)) < Progress (Ti (Ti (Ti .(SPM(x)))) is true,then

uv r"' tdf(nf-1)-tdf(nf-2) ,. .
™ g' 1

tdf(nf-1)-tdf(nf-2)
1

k,ki Hflnf-1) <p l

%t £2 WU^Ti

66

+ tdf(nf)-tdffnf-l)

tdf(nf)

Prove LHS <p RHS HHMBdl(nf- 1

)

.

tdf(nf)

Since tdf(nf) > tdf(nf-l)

tdf(nf) - tdf(nf-l) >

(From basis)

Then LHS <p RHS+mftfl-WW-H
tdf(nf)

LHS <p (RHS)' //

3. Induction:

Assume Progress (Ti (SPM(x)) = Progress (Ti(Ti(Ti (SPM(x))))), let

Progress (SPM(x)) < Progress (Ti(Ti(SPM(x)), let nf is increased by 1 for

some documents f ,then

, + v
"f"

' tdf(nf-l)-tdf(nf-2)
,

tdf(nf)-tdf(nf-l) „ ..£ "T"
1

1

g, £2 tdf(nf-i) tdTffifJ
<p

'

+

£, £2

tdf(nf-1)-tdf(nf-2) + tdftnf)-tdf(nf-l) tdf(nf+1)-tdf(nf)

tdf(nf-l) tdf(nf) tdf(nf+l)

Prove LHS <p RHS + tdf(nf+1)-tdf(nf)

tdf(nf+1)

Since tdf(nf + 1) > tdf(nf)

67

tdf(nf+1)-tdf(nf)>0

(From hypothesis)

Then LHS <p RHS MflnM)-tdf(ntt

tdf(nf+l)

LHS <p (RHS)
1

//

Therefore Progress (SPM(x)) = Progress (Ti (Ti (Ti (SPM(x))))) //

From the above direct proof, we can conclude the relation for To is =p

and Ti is <p. The Progress measure can be defined as follows:

Definition 3.19: Progress is a function from D to R, i.e.,progress:D->R and it

preserves the ordering <p on D. Let x <p y iff progress(x) =p

progress((To(y)) and progress((x) <p progress((Ti(y)).

Progress measurement reflects influence of adding a revision to a document

during the progress of the development. It can assist the analyst in

assessing the progress of the project in order to better control the

schedule.

3.7 Conclusion

Quantitative methods and tools for software engineering management

enhance planning, controling and evaluation of tasks conducted during each

66

phase of the software life cycle. Over the past decade, work conducted in

this area focused primarily on the end product of development—the code

representation of software, for example McCabe's cyclomotic number and

Halstead's a source code oriented complexity measure. The

measurements developed in this chapter, attempted to quantify the

activities during the development phase of the software life cycle to help

the analyst understand, control and maintenance of the development process.

The measures for waste, effort stability and progress were developed

from the SPM. The SPM is an abstraction of the activities and products of

actual software development and is the foundation on which to build the

measures of waste, effort, stability and progress

One of the major purpose of this research is to establish meaningful

measures by using methods in mathematics according to the measure

development paradigm in the software engineering. In order to achieve this

purpose, several steps are taken to develop these measures as follows:

—Make assumptions for each measure based on the evolution of the

documents in the software life cycle.

—Determine relation or ordering relations existing on software domains

by using a set of transformation functions.

—Classify these relations as equiualence or partial orderings .

—Prove that measurements preserve the ordering.

69

The results of these calculation for waste, progress, stability and effort in

Figure 3.2 can be illustrated in the Figure 3.3

tatted

No Time Document Waste Effort Stability Progress

J
1 HI 1.00 1.00 1.00
2 R2 1 t.50 0.75 1.50

3 2 Bl 1 1.50 0.75
1.50

4 3 B2 2 1.83 0.61 1.83

5 3 CI 2 1.83 0.61 1.83

1

4 B3 3 2.08 0.50 2.08
4 C2 4 2.08 0.44

£98 4 Dl 4 2.08 0.44

9 5 C3 5 2.28 0.39 2.57

10 5 D2 6 2.28 0.35 2.73

Figure 3.3 The results of the waste, effort, stability and progress

measures for the example SPM diagram.

70

Chapter Four

DRTR RNflLVSIS AND INTERPRETATION

4.1 Introduction

In the area of software development, data processing management often

focuses more on coding techniques and system architecture than on how to

manage the development. To understand more about the process of software

development is one of the important aims of reeseerchs in software

engineering. Therefore, the progress, effort stability and waste and the

projection of these values about the development process is greatly need for

better management and control of the development.

The usefulness of software measures in management of software

development should be supported by empirical results. The measurement of

waste, progress, stability and effort which are developed in chapter three

will be applied to the project groups for the CS540-CS541. The results of

the measurements will be analyzed by finding the relationship between the

completion time and each measure. Statistical methods will be applied to

generate projection models as well as to analyze these measures.

4.2 Data Analysis and Interpretation

The usefulness of software measures in management of software

development should be supported by empirical results.

71

In order to perform analysis and interpretation on the date so as to further

understand these measures, the following steps were taken:

1. The measurement of waste, progress, stability and effort which are

developed in chapter three were applied to the project groups for the

CS540-CS541.

2. The relationship between completion time of each measure were

evaluated by the correlation coefficient and the scatter diagrams for

each project group.

3. Projection models were generated for each measure by using

regression equations. These are aimed at calculating the final values of

each measure from the values calculated during the initial stages of the

project.

4. The residuals and Mean Magnitude of Relative Error(MRE) for the each

measure were used to express the differences between the actual

and projected values in order to indicate how stable the measurements

are.

5. An evaluation for the waste, progress, stability and effort was made by

each project team to check the precision of these measures.

6. The results of these four measures for the thirteen project groups were

combined in the analysis of measures overall.

72

4.2.1 Rpply The Measures To The Project Groups

The data used to calculate the measure of waste, progress, stability and

effort is based on the information of the thirteen project teams in the

computer science course number 540 and 541 (Spring 1988).

To apply the measures into project groups, these project groups are

modelled in the SPM by tracking the evolution of the set of documents in the

software life cycle. The SPM diagram for one of the project teams can be

illustrated in figure 4.1. The diagram for the rest of the project teams are

given in the appendix.

Time .

(months)

fTVi V////X VMM r.-»-]

uses

ESS

WSM\

fJ-'J

gtz essd

SOU) DFD I/O ERR Hierarchy HS MS Source Code

SPM diagram for typical deuelopment

Figure 4.1 The SPM diagram for a project team.

73

In figure 4.1, the horizontal axis represents the documents generated in

each phase of software life cycle. The vertical axis is the delivery date for

documents. This delivery date is the date on which the documents were

turned in for evaluation. The completion time C(t) for the document is

calculated by the following equation:

C(t)- (c(t) - sM +1) / 30 where

c(t) is the date to turn in the documents.

s(t) is the date to start the project. The project is starting on

September I, 1987.

The units of the completion time for each document are months. Because

there is a one month break between two semesters and the project is

interrupted at that period, one month is subtracted from the completion

dates in the Spring semester.

The equations for the waste, progress, stability and effort that are

developed in the previous chapter are listed in the following.

t. The waste measure waste(x):

UJaste(iO=X EltdfUMdflMM

2. The progress measure Progress(x):

Progress^-) + l| tMX^U
f=1i=2

74

3. The stobility measure Stability(x):

Stabi.it«(«)=(1 +|l
2

-

1
^i

r)
/(j +U

4. The effort measure Effort(x):

MM
The calculations for the waste, progress, stability and progress are based

on the information from the SPM diagram in figure 4.1. The results of each

measure are presented in the table 4.1. The results for the other groups are

provided in the appendix.

C(t> Wasted) Progress(i Stability(i) Effort(l)

1.27 0.00 1.60 1.00 1.00

1.63 0.00 1.00 1.00 1.22

1.7C 0.00 1.00 1.00 1.26

1.9C 0.00 1.00 1.00 1.37

1.93 0.26 1.13 0.94 1.38

2.0C 0.45 1.32 0.72 1.42

2.57 1.96 1.91 0.49 1.64

2.5C 2.19 1.99 0.40 1.72

3.27 2.66 2.28 0.37 1.87

3.50 4.23 2.28 0.34 1.93

4.10 4.63 2.42 0.31 2.08

4.20 4.83 2.42 0.31 2.10

4.23 6.75 2.88 0.27 2.11

5.00 7.55 3.04 0.26 2.26

5.0! 9.15 3.36 0.23 2.27

5.23 9.36 3.40 0.22 2.31

6.03 10.16 3.53 0.21 2.44
6.33 13.94 4.13 0.20 2.99

7.3C 26.98 6.19 0.16 2.62

Table 4.1 The total value for the waste, progress, stability and effort for

a project team in figure 4. 1

.

75

In the toble 4.1 indicates the value of the waste, progress and effort

increases during the software life cycle. On the other hand, the value of

stability decreases over time.

The total values for the waste, progress, stability and effort for all project

groups are listed in table 4.2.

Groups Waste(i) Progress(i) Stability(i) Effort(i)

A 31.54* 7.54* 0.13 2.93

? 26.98 6.19 0.16 2.62

C 24.93 5.44 0.19 2.62

D 30.27 6.00 0.11** 3.57*

E 15.36 5.72 0.15 3.09

F 13.03 4.03 0.24* 2.56

G 7.00** 2.84** 0.21 2.54**

H 17.14 5.61 0.16 2.96

1 20.36 6.46 0.14 2.64

J 25.86 5.77 0.11** 3.08

K 22.99 7.04 0.14 3.00

L 7.66 3.10 0.24* 2.69

M 21.73 6.12 0.19 2.90

* indicates the greatest value for each measure.

** indicates the least value for each measure.

Table 4.2. The total value for the waste
,
progress, stability and effort

for each group

The table 4.2 shows Group A has both the greatest value of the waste and

progress. Group G has the least value for waste and progress, but it has the

greatest value of the stability. These results indicate that these measures

76

maybe highly related to each other. The relationships among the waste,

progress and effort for group A and G are provided by the following

correlation matrixes in table 4.3 and 4.4.

W

W I 1.00 .96 -.66 .86

P I .96 1.00 -.62 .95

S I
-.66 -.82 1.00 -.93

E I .86 .95 -.93 1.00

Table 4.3 The correlation matrix for the group A.

W P S E

W I 1.00 .99 -.86 .90

P I .99 1.00 -.91 .94

S I -.66 -.91 1.00 -.97

E I .90 .94 -.97 1.00

Table 4.4 The correlation matrix for the group G.

From the above two tables, we can see the strongest relationship existing

between the measurement of waste end progress end the weakest

relationship existing between the measurement of waste and stability for

both groups.

From the total value for each measure in table 4.2, we can compare group

A and group G to see their differences. This can be illustrated from SPM

diagram for group A and group G in figure 4.2 end figure 4.3 which ere given

below.

77

Time
(months) I : : I

LUJ

ESS3 r"-^

SOW DFD Input ERR Hierarchy HS Code MS Te«t

Figure 4.2. The SPM diagram for group G.

Time
I month* I 5

E~D

IVWVJ

BSSB BBS— HS
eza

ess

IB

SOU! DFD 111 ERR Difficulty HD HS Code Ten

Figure 4.3. The SPM diagrom for group R.

78

From the above two figures, we con see the number of revisions for group G

is 22 and the number of revision for group A is 34. Therefore, we can

conclude the number of revisions to the document and the time to generate

each revision; these are the major elements that influence the value of

these measures.

4.2.2. Data Rnalysis For The Project Group*

To further analyze the empirical results from thirteen project teams, the

statistical technique of regression analysis is used. The assumption we

have made for regression analysis is that the relationship between

completion time and each measure is linear correlated. A relationship

between two sets of variables can be evaluated by the correlation

coefficient. The correlation coefficient r values for the measures (n the

thirteen project teams are presented in Table 4.5.

Group Waste Progress Stability Effort

A 0.9553 0.9762 0.7899 0.9519

B 08995 09624 08724 9771
C 0.8907 0.9746 0.5978 0.9376

D 0.8857 0.928 0.8799 0.9495
E 0.9675 0.9591 0.7789 0.9555
F 0.9925 0.9894 0.8893 0.9739
G 0.9679 0.9756 0.9106 0.9686
H 0.9817 0.9667 0.7233 0.9509
1 0.6930 0.9806 0.9060 0.9764
J 0.8130 0.9789 0.8551 0.9599
K 0.9795 0.9642 0.7911 0.9712

L 0.9361 0.9452 0.9358 0.9787
M 0.9241 0.9743 0.8211 0.9676

Table 4.5 The correlation coefficients for the measures in each group.

79

The greatest and least values of r are (0.9925, 0.8130), (0.9894, 0.9280),

(0.9358, 0.5978) and (0.9787, 0.9376) for waste, progress, stability and

effort respectively. The mean correlation coefficient r between the

completion time and waste, progress, stability and effort measures are

0.93, 0.97, 0.86 and 0.97 respectively. The correlation between the

completion time and progress is stronger than the other three measures.

To visualize the relationship between two sets of variables, the scatter

diagram is used. The scatter diagrams for the measures of the waste

progress, stability and effort with the greatest and the least values of

correlation coefficients are shown from figure 4.4 to figure 4.11. Other

scatter diagrams will be given in the appendix. These values of r for each

measure are also suggested by these scatter diagrams.

u 13.031
R 12.221
Ft 11.401
1 10.591
Fl 9.771
B 8.951
L 8.141
E 7.331

6.511
V 5.701
a 4.891
s 4.071
t 3.261
e 2.441

1.631

.811

.001* *

1.27 2.38 3.49 4.60 5.71 6.82 7.93

UfVtlflBLE tiM

Figure 4.4 The scatter diagram for the value of waste and completion time

with the greatest value of r for group F.

80

U 25. SSI

fl 24.261
R 22.641
I 21.031
Fl 19.411

B 17.791
L 16.171

E 14.561

12.941

11.321

a 9.701
s 6.091
t 6.471
c 4.851

3.241
1.621
.001*

.30 1.46 2.62 3.78 4.95 6.11 7.27

URRIHBLE time

Figure 4.5 The scatter diagram for the value of waste and completion time

with the least value of r for group J.

U 4.03I
R 3.84I
R 3.65I
I 3.46I
fi 3.27I
B 3.08I
L 2.89I
E 2.70I

2. Ill

p 2.33I
r 2.141
o 1.951

g 1761
r 1.571

e 1.301

s 1.191

s 1.001*

1.27 2.38 3.49 4.60 5.71 6.82 7.93

IMRIRBLE Mm

Figure 4.6 The scatter diagram for the value of progress and completion

time with the greatest value of r for group F.

61

V 6.001
ft 5 Ml
R 5.381
1 £.06!
A 4.751
B 4.441
L 4.131
E 3.611

3.501

P 3. 191

r 2.881
2.561

9 2.251
r 1 941
€ 1.631
S 1.311
s 1.001

* *

.23 1.41 2.59 3.77
variable ti»

Figure 4.7 The scatter diagram for the value of effort end completion time

with the least value of r for group D.

V 1.001*

fl .951

R .901

I .851

fl .801

B .751

L .701

E .651

.601

s .541

t .491

a .441

b .391

i .341

I .291

i .241

t 19|

9
1.17 2.19 3.21 4.24 5.26 6.28 7.30

UffllftBLE tine

Figure 4.8 The scatter diagram for the value of stability and completion

time with the greatest value of r for group L

82

V 1.001*
fi 051

R .891

1 .841

R .791

B ?4|

L .691

E .631

58!

s .531

t 471

a 421

b .371

i .321

1 .261

i .211

t 161

.80 1.89 2.99 4.09 5.18 6.2? 7.37

WRIRBLE liae

Figure 4.9 The scatter diagram for the value of stability and completion

time with the least value of r for group C.

U 2.691 **

R 2.581 *
R 2.481
I 2.371 » »

B 2.271

L 2.161 *

E 2.061

1.951 *

e 1.851 •

f 1.741 *

f 1.631

o 1.531 *

r 1.421 *

t 1.321

1.211

1.111

1.001*
I !-< 1 I 1 1 1 1) I I I

1 07 1.90 2.72 3.55 4.38 5.20 6.03

URRIflBLE time

Figure 4.10 The scatter diagram for the value of effort and the completion

time with the greatest value of r for group L.

63

u 2.621
fl 2 52|
R 2 421
1 2.321
fi 2 211
B 2.111
L 2.011
E 1.911

1.611
e 1.711
f 1.611
f 1.511
o 1.401
r 1.301

t 1.201
1. I0|

1.001

1.17 2.19 3.21 4.24 3.26 6.28 7.30
UftRIHBLE tlM

Figure 4.1 1 The scatter diagram for the value of effort and completion time

with the least value of r for group C.

From the above figures, we know that the completion time has a positive

relation to the waste, progress and effort and a negative relation to the

stability. Generally speaking, the correlation between the completion time

and each measure are high. Strong linear relationships implies there exist

simple transformation functions among these measures. The

transformations can be used to project values for these measures. This

will be discussed in section 4.2.3.

4.2.3. Projection Models For The Project Groups

A transformation function exists between two highly related variable. The

completion time and each measure are strongly related each other; thus, we

can employ the regression to get the coefficient, then use these

64

coefficients to form o linear equotion to project the value of woste,

progress, stability and effort. The linear equations for these four measures

in each group are listed in the appendix.

To evaluate these functions, we can use the Mean Magnitude Relative

Error(MRE). MRE is the absolute value of the difference between the actual

values and projected (or predicted) values relative to the actual values. The

smaller the value of MRE, the better the projection.

The values of MRE for these measures in thirteen project groups are given in

the table 4.6.

Groups Waste Progress Stability Effort

A 0.481 0.092 0.367 0.081

B 0.562 0.095 0.387 0.050

C 1.751 0.161 0.170 0.080

D 0.634 0.071 0.280 0.078

E 0.170 0.149 0.420 0.093

F 0.226 0.052 0.213 0.052

G 0.220 0.058 0.205 0.050

H 0.255 0.140 0.479 0.095

1 1.590 0.104 0.353 0.065

J 0.690 0.081 0.340 0.068

K 0.482 0.090 0.469 0.060

L 0.352 0.067 0.698 0.049

M 0.610 0.086 0.256 0.075

Table 4.6. The MRE for the measures in each group.

In table 4.6 indicates that the best projection model is effort , the mean

MRE for effort is 0.069. On the other hand, the worst project model is

85

waste , the mean MRE for waste is 0.534.

The performance of the projection models can also be checked by residuals.

The residuals are the differences between the actual values and projected

values. The value of residuals for measures in each group are shown in the

table 4.7.

Group Waste Progress Stability Effort

A 107.414 2.966 0.320 0492
B 169.152 2.377 0.461 0.193

C 156.944 1.671 0.891 0.960

D 320.716 2.268 0.208 0.908

E 36.276 4.912 0659 0864
F 3.384 0.265 0.170 0.143

G 5.037 0.229 0.130 0.173

H 20.493 2.588 0.677 0.710

1 169.649 2.459 0.316 0.269

J 213.952 1.313 0.261 0.637

K 21.433 1.353 0.402 0.234

L 7.668 0.254 0.078 0.138

M 81.968 1.883 0.260 0.405

Table 4.7. The residuals for the measures in each group.

The table shows that the residuals for the waste are much higher than the

other measures. The mean residuals ere 101.084, 1.889, 0.372 and 0.471 for

waste, progress, stability end effort respectively. In the other words, the

projection models for the progress, stability and effort perform better then

the waste measure

.

86

4.2.4 Data Rnalysis Rnd Projection Models For Whole Project

To understand these measures overall, the results of these four measures

for the thirteen project groups are combined. Totally, one hundred and

thirty data points were obtained. The relationship between the completion

time and each measure are analyzed by the scatter diagram. The scatter

diagrams for the waste, progress, stability and effort ere shown from

figure 4.12 to figure 4.15. The horizontal axis shows the development over

time. The vertical axis represents the value of each measure.

-t 1 1 *- t y I +—— t t 1 1 *-

31.541 *
20 57| *
2? S0|
25.631 »
23.001 * » •
21.0SI *»
19.711 •*
17.74

1
»•

15 771 •"«* *»
13.801 • —•— » •
11.831 "* • *
g.BOl * *» » » *» »»
7.8*1 » ** * *** **
5 . v !

I

"»=** " i " * » I * **
3.941 ** * ** ***** *
1.871
00|*<

Figure 4. 1 2. The scatter diagram for the waste measure.
-

1 4 » »-,.-.+---- + * + 4 |i 4

7.541 «

7.131 *

G.72I *

6.31| *

5.WI * * *

5.501 * * *

5-001 w* * * **»
A 6ft |

4 . 27

1

* ***** * **
3,$fit ***** ***
3.4^1 * * *** * * *** * *

3.041 * * * ** * * ***
2.64| ** **** ** ** ** *
2.23| ***mm <i ***** ** ** * *
1.821 ********* **
1 4 1

j

***** ***** *

1.00 I** *********** *
+ + + -i

+ + + + 4 + + —l
.23 1.31 280 4 08 5.3ft 6 65

Figure 4 13 The scatter diagram for the progress measure.

67

1.001*-
94| •» **
.Ml *

.831 *** *

TBI ...
.721 •» » *

.671 • * *

61| * ** • * *

,5G| ***.* ** *+

.501 *** *

.441 ***« *» *

.3gj * ** *** * **
,33 ** **** *** ** ** *
.28 ** * *** •*• * * ****

, |7 * ********** ***** ***
11

.23 LSI 2.80 4 OS 5.36 6.65 7.03

Figure 4. 1 4 The scatter diagram for the stability measure.

3.5?|
3.41|
3.251 **

3.091 * **

2.93[* *

2.771 * * * *
2. fill * * * * * *
2.451 ** * ***** * *
2.281 m * *** ** ** *
2. 121 *** * * ** ** **

1.95! *+ * ***** **

1.601
1.641 **** *** *

1.48| mmm m m

1.321 *.* ****

1.161 **.**+

1.001** *****

Figure 4.15 The scatter diagram for the effort meeesure.

The relationships between the completion time and the waste, progress,

stability ,effort are provided by the following correlation matrix in table

4.6.

88

T W P S E

T I 1.00 .66 .85 -78 .85

W I .86 1.00 .90 -.66 .74

P I .85 .90 1.00 -.82 .83

S I -.78 -.66 -.82 1.00-88

E I .85 .74 .83 -.88 1.00

Table 4.8 The correlation matrix for the measures

The correlation between the completion time and each measure are 0.86,

0.85, -0.78 and 0.85 for waste, progress, stability and effort respectively.

These results show the completion time and measures are highly related.

The projection models for each measure are formed by the regression

equations. These equations are listed as follows:

Waste(x) = -4.3651636 + 2.7828031 * C(t).

Progress(x) = 0.6034715 + 0.6492754 * C(t).

Stability(x) = 0.7694828 -0.1036421 * C(t).

Effort(x) = 1.1440269 + 0.2721306 « C(t).

MRE is used to evaluate these functions. The values of MRE for all cases are

given in the appendix. The average values of MRE for the waste, progress,

stability and effort are 2.546, 0.244, -0.4 end -0.14 respectivity.

This indicates that the projection models for the waste performs worse

than the other three measures. These results correspond to the result from

each group. We can use these projection functions (or regression equations)

to calculate the final measurements for the waste, progress, stability and

effort from values early in the project.

89

4.2.5. Eualuations From the Project Groups

For checking the precision, en evaluation of the waste , progress,

stability and effort was made by each project team . Eleven project

groups turned in their evaluation sheets. Besides the values for each

measure, some of these groups also gave comments about how they viewed

these measures. According to the comments from the team members, we can

compare the different assumptions for the measurement of waste,

progress, stability and effort between project groups and these measures.

A. For the waste(x):

Groups—The waste is how much wasted effort occured.

—The waste occurs because of difficulty in motivating the

team members.

—The waste is produced when the program trips down the

wrong path.

Measure—The waste is generated whenever the revision is created.

B. For the Progress(x):

Groups—The progress depends on how quickly they learned the

C language.

—The progress is made when the modules are coded.

—The progress is how much progress was made by the team.

90

Measure—The progress is made whenever the document is produced.

C. For the Ef f ort(x):

Groups—The effort is how much effort is put into the project.

—More effort was put forth to learn the C language.

Measure—Adding a document takes effort.

D. For the Stability(x):

Groups—The stability is how stable are the requirement, design,

development, and maintainence phases in the development

process.

—The stability is decreasing when the change is increasing.

—The range for stability from the project groups is from 1 to

7.

Measures—The stability is decreasing whenever a revised document

is added.

—The range for stability from the measure is from 0.24 to

0.11.

Although the project groups did not consider the waste, progress, stability

and effort for the project in terms of the evolution of documents in each

phase of software life cycle, there was a correlation between the

evalutions from the project teams and these measures. The value of the

evaluations from the project teams and these measures are showed in the

tables 4.9.

91

Groups W(M) W(G) P(M) P(G) S(M) S(G) E(M) E(G)

A 31.54 5.50 7.54 7.00 0.13 4.0 2.93 6.0

B 28.98 6.19 7.00 0.16 6.0 2.62 40
C 24.93 7.00 5.44 5.00 0.19 5.0 2.62 5.0

D 30.27 1.50 6.00 8.00 0.11 6.0 3.57 7.5

E 15.36 9.00 5.72 5.00 0.15 1.0 3.09 3.0

F 13.03 6.50 4.03 2.50 0.24 3.5 2.56 4.5

H 17.14 5.00 5.61 6.00 0.16 6.0 2.96 6.0

1 20.36 4.50 6.46 5.50 0.14 6.5 2.64 6.0

J 25.88 5.00 5.77 4.00 0.11 6.0 3.48 6.0

K 2299 4.47 704 820 0.14 74 3.00 7.1

L 7.66 3.67 3.10 5.67 0.24 7.0 2.69 5.0

Toble 4.9 The values of evaluations from the project teams and total values

from the measures.

**The value of the waste from the evaluations for group B is not

available.

M (Measure), G (Group), W(waste), P(Progress), S(Stebility), E(Effort).

The following scatter diagram can be used to examine these correlation.
i i i 1 i » 1 t 1 i 1 i

9.001 *
8 53|
8.061
7.591
7.131 *
6 66| *
6.191
5 72| *
3.231
4 781 » »
4.311 * *
3.B4I*
3.381
2.911
2.441
1.97|
1 .SOI *

+ + + + 1 + + + -I 4 + + +
7.66 11.64 15.62 19.60 23.58 27.56 31.54

Figure 4.16 The scatter diagram for the value of waste from the project

teams and the measures.

92

8.201

7.841
7.491
7.131
6 771

5.411
6.061
5.71 t*

5.35I
4.99I
4.64I
4 28l

3.93I
3.57I
3.21

1

2.861
2.501

6 80

Figure 4.17 The scatter diagram for the value of progress from the project

teams and the measures.

7401
7JXI
6 601

6.201

5.801*

5.401

5.004

4.601

•4 .201

3.801

3.401

3.001

2.601

2.2CK

1801
1.401

1.001

.IS .15 .17

Figure 4.18 The scatter diagram for the value of stability from the project

teams and the measures.

93

7.501 *

7221 *

6.941

6.661

6.381

6.091 * * * *

5.811

3.331

5251

4.971 * *

4.691

4.411*

4.131 *

3.841

3.561

3281

3.001 *

I I t *» * t I »—

H

2.56 2.73 2.90 3.07 3.23 3.40 357

Figure 4.19 The scatter diagram for the value of effort from the project

teams and the measures.

With this figures, we can see a correlation existing in Figure 4.16 4.17

and 4.19, even through it is not a perfect one. The diagram for the

stability appears to be completely random. This means the correlation

between the value from the project teams and stability measure is

insignificant. The coefficient correlations are -0.26, 0.57, -0.08 and 0.49

for the waste, progress, stability and effort respectively.

The values from the measures in table 4.9 are total values for these

measures. The total value can not reflect the variation that exists among

the values for these measure. To justify the problem from the deviation for

94

each measure, the correlation between the slopes for the measures and the

evaluations from the project teams were examined by the scatter diagrams

from figure 20 to figure 23.

U 4 191

fi 4.011
R 3 84|
I 3.661
H 3 48l«
B 3.301
L 3.131
E 2 951

2.7?|
s 2.601
I 2.421
o 2.241

p 2.071
f 1 89|

1.711
1.541

1.361
•t

1.50 2.75 4 00 5.25 6.50 7.75 9 00

UHRIRBLE arete

Figure 4.20 The scatter diagram for the slope of the waste measure and the

evaluations from the project teams
1.101 .

fi 1.141
n 1.091
I 1 04|
fi wi •
B .941
! B9|
E .841 *

.791
s .741 * *
1 .691
o .641 • *
P 891
e .541 .

491*
.441

.391 •

5.35 6.30 7.25

VARIABLE progress

Figure 4.21 The scatter diagram for the slope of the progress measure and

the evaluations from the project teams

95

V - 061

fl
- 091

R - 091

1
- 101

R - 101*

B - 111

L - 111

E - 121
- 121

£ - 131

1 - 131

o - Ml
p

-
141

« - 151
- 151
- 151
- 161

1.00 2.07 3.13 4.20 5.27 6.33 7.40

URRIRBLE stability

Figure 4.22 The scatter diagram for the slope of the stability measure and

the evaluations from the project teams

U .36|

R .35|

I .351

fl .341

B .331

L .321 * *

E .311*

.301 *

s .291

I .281

o .281 •

p .271 * *

e 26|

.251

.241

.231

.221

3.00 3.75 4.30 3.25 6.00 6.73 7.50

UflRIABLE effort

Figure 4.23 The scatter diagram for the slope of the effort measure end the

evaluations from the project teams

96

The correlation coefficients ore -0.1 B8, 0.509. -0.376 ond 0.237 for waste,

progress, stability and effort measures respectivity. The value of

correlation is increasing from -0.065 to -0.376 for the stability measure.

Both correlation from the above two tests shown are relatively low. The

reasons for low correlation between the value from the measures and

project groups might be caused by the following reasons:

I.The assumptions for these measures from the project teams and

measures are quite different. From the comments provided by the project

teams, we can see the assumptions made by the team members for the

measure are more concentrated on the development phase. On the other

hand, the assumptions for the measures in this paper are equal weight

throughout the life cycle.

2. The data points used to examine the correlation are few, this might cause

the low correlation between two variables. Of course, this will not be the

case if the other date are collected with equal or larger variation between

the values from the project teams and from the measures.

3. The measurements for the waste, progress, stability and effort are

not good enough to completely reflect the activities in the development

phases. This might be improved by changing the assumptions for the

measures.

97

4.2.6 SPM Diagram find Intial Diagram

The SPM diagram used in this thesis orders the document in the development

process from the analysis phase to maintainence phase. For some project

teams, the documents are not produced according to the sequence of the

software life cycle. This may increase the difficulty in calculation the

measures. For instance, the measurement of effort is partly dependent upon

the previous document with different document type; if the document in

the previous phase is absent, then there is a question of which document

should be used. This problem can be eliminated by replacing the SPM

diagram with the initial diagram. The initial diagram orders the documents

in the development process, based on the time to produce the initial

documents instead of the phase in the software life cycle. This can be

illustrated by comparing the SPM and initial diagram for a project team in

figure 4.24.

In the actual software development process, the documents might not be

generated according to the sequence of the software life cycle especially

for the development models other than the waterfall model. The initial

diagram can solve this problem. For example, the change rates of the

documents which are the ratio of changes for the current document to the

previous document with same document type and to the previous document

with different document type. The change rate is difficult to calculated if

the document in the previous phase has not be produced. The problem can be

overcome by substition of the initial diagram for the SPM diagram.

98

l.
: ' "H

7

6
isss

EHSD

5 EH

4 wm HI

m S
Ea EE '1

3

(months)
r^i

2 tm -

1

E3 irm
E23

r~~

n

I*:.!*!!

EUSil

EaSirni EH

SOW DFD I/O ERR DR Hierarchy HS MS Ul CODE TEST

Specification

SPM diagram for typical deuelopment

To visualize the software development process, the SPfl diagram is

recommended . For the purpose of the measurement, the initial diagram

might be more appropriate.

99

7

CD.

6 E3 E2 - i
5

C3

4 e
[53_F EH

(months)
5

tefeET

?

Revb

1 y
12 3 4 5 6 7

Time for initial document (months)

Initial Time Diagram

Figure 4.24 Comparing the SPM diagram and initial diagram for a project

team.

4.4. Summary

We can not control what we can not measure. A measure is an indication of

the phenomenon in the development process. If there is no measurable

100

indication of the phenomenon in the life cycle, then there is no woy to aid in

controlling that phenomenon. To successfully control the project,

estimation plays an important role.

In this chapter, the projects developed in the computer science course 540

and 541 were used to examine the waste, progress, stability and effort

measures. Also, the information from the calculations is helpful to explain

the state of the project activities in the development process.

Moreover, the result of the measurement for the project teams is a basis to

develop four different models in order to project the waste, progress,

stability and effort for the project.

The SPM is useful to help us analyze and compare the differences between

projects. Statistical tools were used to analyze data and generate

equations for projection. "Statistics can not predict but they can imply."

The statistics can help us to explain phenomenons in the software life

cycle.[DeM, 1982]

The requirements for a good measure should satisfy several conditions:

objectivity, precision, stability, applicability, sensitivity and ease of use.

These criteria will be examined and the limitations of the measures will be

discussed in the next chapter.

101

Chapter Five

CONCLUSIONS

5.1 Introduction

Quantitative measures and models are important to understand each phase

of the software life cycle. Several metrics have been proposed. They are

categorized as the design metrics, the code metrics and the quality metrics.

McCabe's complexity metric [McC, 1976], Halstead's software metrics [HAL,

19771 and McCall software quality metric [McC, 19781 are examples of the

above three metrics respectively. All of these metrics are focusing on the

source code in the development phase of a software life cycle.

Besides measure, quantitative models for software engineering management

enhance control and evalution of tasks conducted in the software life cycle.

Quantitative models in software engineering consist of historical

experiential models, statistically based models and theoretically based

model.

Historical experiential models are the models which rely on experts'

experience from pest projects, such as, the TRW Wolverton model [WOL,

1974). Statistically based models use regression as a tool to form a linear

or nonlinear equation to produce estimated values for a specific variable;

for example, SDC model [NEL, 1966). Theoretically based models are based

on theories about the functions of the human mind during the software

102

development process, such as, Putnam's Resource Allocation Model [PUT,

1976]. A Composite model is combining the characteristics of the above

three models together; for instance, COCOMO model [BOE, 1981].

Measures of waste, progress, stability and effort are developed for

quantifying the tasks throughout a life cycle instead of concentrating on one

phase in the life cycle. Each task is represented by a set of documents

generated in each phase in the development process. The SPM is the model

used to record the documents in the software life cycle. The formal

framework in software measures and metrics provided by SPM is a

foundation to develop the measures in this paper. These measures can help

us to understand, analyze and control the development process in terms of

waste, progress, stability and effort. Also, the visible characteristic of

SPM can assist us to assess the different projects.

The models developed for the progress, stability, effort and schedule should

be classified as a theoretically based model. The criteria to evaluate

measures and models are common in some aspects, so we can combine these

criteria together. These requirements will be judged in the following

section.

5.2 The Euatuation of the Measures And Models.

Requirements for the evaluation of measures and models are listed as

follows:

103

1. Consistency: A useful measure should preserve the ordering in software

domain which is determined by the experts. This is the common paradigm

to verify that measure is a worthwhile measure. In order words, if a

measure provide uniform standard to quantify the characteristics of the

development process then the measure is a useful measure. The measures

developed in this paper preserve the ordering which is defined by the

assumptions. The transformation functions are created to express the

relation on software domain. Partial and equivalence ordering is the

relation existing in these transformation functions. The ordering relation

for the measurement of waste, progress, stability and effort prove these

measure can consistent quantity the activities in the software life cycle.

2. Stability: Since the measures are preserving an ordering in software

domain, therefore, the values of the waste, progress and effort

increase over time, and the value of stability decreases throughout life

cycle. The linear correlation exists between completion time and these

measures. Projections for these measure can be obtained from

transformation functions which are generated by regression. The R

values and the MRE measure the goodness of these projections

3. Objectivity The measurements generated in chapter three are based on

the SPIi. The SPM models the development process by tracking the

evolution of the full set of documents. The set of document deliverables

is an indicator of the project state. It s also an abstraction of the

development process.

104

The time to generate each document is an objective factor to reflect the

movements in each software phase. The problem is how to precisely

record the time to produce a document. Especially for the semester

project, it becomes extremely difficult to track correctly because the

students are taking several courses at the same time. The effort put into

the project varies for each student. To reduce the influences of project

personnel and the differences among the projects, we apply the seme

standard to all thirteen project teems. The standard is to calculate the

time to generate each document that is based on the time to turn in the

document for evaluation. The method for calculating the completion time

C(t) was given in the previous chapter. However, to develop a useful

model, the completion time should be tracked more carefully.

4. Sensitivity: If a small change in one peremeter will lead to a relatively

greater change in the measure then the measure might not reasonably

explain the phenomenons in the development process. The variation for

these measures can be checked from the values of meen end stendard

deviation for the project teams in table 5.1.

VARIABLE MEAN STD. DEV.

Waste 5.677 6.353

Progress 2.947 1.498

Stability 0.415 0.263

Effort ' 2 123 631

Table 5.1 Mean end standard deviation for the measures

105

Table 5.1 shows the variance for the waste measure is much larger

than the other measures. It aiso indicates a small changing in completion

time might cause considerably larger changing in the value of the

waste.

The variance between the variables can be used to further check the slope

of these measures. The slopes for the measures are given in table 5.2.

Group Waste Progress Stability Effort

A 4.1889 0.9710 -0.0911 0.2727

B 3.5296 0.7202 -0.1597 0.2657

c 2.7929 0.6394 -0.0840 0.3006

D 3.4294 0.5451 -0.0848 0.2895

E 2.4019 0.7541 -0.1051 0.3137

F 2.0575 0.4842 -0.1107 0.2244

6 1.5147 0.3727 -0.1394 0.2840

H 2.4455 0.6363 -0.0903 0.2713

1 2.6308 0.8581 -0.1318 0.2566

J 2.4047 0.6464 -0.0993 0.3218

K 4.1498 1.1920 -0.1510 0.3629

L 1.3594 0.3863 -0.1372 0.3201

M 2.5 1 75 0.6829 -0.0843 0.2802

T8ble 5.2 The slopes of the measures for each project team

The mean slopes for the stability and effort measures are 2.7402, 0.6837,

-0.1 13 and 0.2895. The slopes for the the stability and effort are more

stable than the waste and progress measures. This indicates that the

average change in completion time caused by the change in stability and

effort are almost the same for the thirteen project groups. The range for

the value of these two measures ere small. Again, it proves the variance

for the values obtain from the stability and effort measures is small.

106

5. Precision: Precision for the meosurements con use on objective way to

find out whether they really reflect the state of the project. To check

the precision, an evaluation of the waste, progress, stability and

effort was made by each project groups. The relation between these two

values can be checked by coefficient correlations r, r for the values from

the project teams and these measures are -0.26, 0.57, -0.08 and 0.49 for

the waste, progress, stability and effort measures respectively. And,

the coefficient correlations are -0.19, 0.51, -0.38 and 0.24 between the

evaluation from the project teams and slope. This shows that the highest

correlation existing between the values from the progress measure and

the values from the project groups.

For the projection models for whole project groups , the mean MRE

for the waste, progress, stability and effort are -2.324, -0.08, -0.15

and 0.28 respectivity. These values indicate that the projection values

for progress are better than the other models. Whether or not the

projection models are acceptable depends on the requirement for the

mean MRE. For example, most researchers consider a mean MRE i 0.20 as

acceptable for effort prediction models [BAK, 1987]. If we apply the

same standard as the effort prediction, then the projection models for

the progress and stability in this paper are acceptable . However, there

is no well-known standard to evaluate projection models. Standards

might vary among different organizations and projects.

107

The term "waste" has many connotations and the teams' interpretation

did not match the assumptions used in developing the measure. A better

term that reflects the assumptions might be "revisions" or "revision

effort". In general, it is probably better to avoid terms that have strong

connotations.

6. Applicability: The domain for these measures in this paper is a set of

documents in each software life cycle phase. A document is an

independent object which is seldom influenced by the project personnel.

The projection models developed from these measures can be used in a

different project environment as long as an agreement in assumptions

for each measure is reached. Moreover, these measures can be applied to

different development models, such as, RUDE, rapid prototype, system

sculpture, etc..

7. Ease of use: The major factor to determine the value of waste,

progress, stability and effort is a set of documents produced in the

development process. We can obtain this information very easily.

Therefore, these measures are easy to apply. The projection models are

also easy to apply because they are composed of one dependent variable

and one independent variable. Thus it requires little effort to gather data

for the models. The drawback for limited data is simplifying assumptions

for the measures and models,which cannot always reflect the real project

environment. This is also the limitation of the SPM. However, for the

purpose of abstraction in the development process, the SPM has already

provided a good framework to model the activities in the project

environment by tracking the evolution of the documents.

10B

5.3 Conclusions

Since the late sixties and early seventies, the cost to develop software has

exceeded the cost to develop hardware. This trend appears more and more

obvious. To successfully carry out a software development project,

controlling cost has become extremely important. Software engineering

was born to achieve this goal.

Over the past decade, software engineering has still depended more on the

experience of the software engineer than scientific quantity techniques.

This is different from the other areas in engineering. To develop a

measurement to quantify the activities and states in the development

process is necessary to put software engineering in the same position as

the scientifically based areas.

In this paper, several measures and projecton models have been generated

according to the mathematics methods end the statistics techniques. The

framework is based on the SPM. The SPM diagram is useful for evaluating

and comparing the different projects by making the evolution of the

documents in the software life cycle visible.

To develope a worthwhile measure, a new paradigm is following in this

paper. The ordering relations should be preserved in the software domain

according to the decision by experts, this is required by measure

development paradigm. The measurements for the waste, progress, stability

109

end effort to preserve a relation by generating a number of transformation

functions. The partial end equivalence ordering are existing in these

relations. The mapping function from each measure to real number R will be

prove the ordering relation not only existing in the small subset of the

domain but also existing in the whole software domain by direct proof.

The measurements cannot only explain the phenomena but can also foretell

the events in the process of the development. The measurements of waste,

progress, stability, effort and schedule are an indication of the movements

in the whole software life cycle. We can use both the measures and

projection models to manage the software development process more

effectively and more efficiently.

These measures and models satisfy some criteria for a useful

measurement, such as consistency, stability, sensitivity, precision,

objectivity, applicatility and ease of use. The shortcoming of these

measurements is a limited number of arguments which can not completely

reflect the software development process. This shortage may be overcome

by adding more useful arguments in the SPM.

Quantitative measures and models are in an infant stage. In this paper, I

present a way to develop measures end projection models by using

scientific methods. There still needs to be more effort put forth into this

area.

110

8PPENDIH R: The SPM diagrams for each group.

Time ,

imonths]

rm esss e^ ess

^M

eza

r^vi

eh

r~~i

EH HSO WS

Egg |H§ Em
" '

SOU) DFD I/O ERR Hierarchy HS MS Source Code

SPM diagram for group B

DFD : Data Flow Diagrams

ERR : The Entity-Relationship-flttribute Model

HS : Hierarchy Specification

E*-3
pi rsj pB$ j

^™ fourth pass

l=i
: Second pass

1222
:Third pass

111

C2j EZ2J

333
r~Hi

Time 3

•months)

cm

553 nr?i
ESS

EHUD

cms

SOU! DFD I/O [hfl Hierarchy Hi

Phase One

SPM diagram for group C

OFLi

ERH

Hi

MS

ESS

MS Code Test

: Data Flow Diagrams

:The Enlity-Relstionship-Bttribute Model

: Hierarchy Specification

: Module Specification

: First pass ^^ :Four1h pass

: Second pass SSBB :Fifth pass

:Ttiird pass EZ3
:Sitrtri pe$$

112

^S FT?]
ra |

BBH
Fv^T] T ; .-, I

ESS

Time 5

(months)

IB:Sa
isjgga ESH3

ES3

E55S1 t^^il

;

SOW DFD Efifl Difficult I/O Hierarchy US Code Test MS

Analysis

SPM diagram for group D

DFD : Data Flow Diagn mi

ERR : The Entity-RelatiDnship- Attribute Model

MS : Module Specifics tion

Hi : Hierarchy Specification

FWI
: First pass

g^9l :Smth pass

EH
:Sec ani past EZ3 :Seuenth pass

:Third pais fWM
:eigtith pass

:Fourth past E5ES3 rnintli pass
s^a

:f ifth pass ES3 :tenth pass

113

Time

(months

£SS EH
HTiggl

urns

2 -
ES EH

era
155553

E5?55a

^^ r~r?,

PHI F^
' nwna EUg

SOU) DFO I/O ERA DR Hierarchy HS MS ID CODE TEST

Specification

SPM diagram for group E
DFD : Data Flow Diagrams

ERA
: The Entity-Relationship-flttribute Model

HS : Hierarchy Specification

rrrm

EC

: First pass

: Second pass

:Third pass

ESSS

:Fourth pass

:Fifth pass

1)4

sssa aa

7

6

™ ™ \-':':'r'-'i

5

EBB
era

A

[-;>:;>.;]

Time 3

months)

ess

-
nwsi

s
2

1

P5HHI

i*;*hi

rrsgi

DFO ERR Hierarchy KS MS CDdeIfD Dfi

Specification

SPM diagram for group F

: Date Flow Diagrams

: The Entity-Relationship-Rttribute Model

: Hierarchy Specification

: First pass
' " :Fourth pass

: Second pass ^^
: Fifth pass

:Third pass
(Note: I/O Specification include* Phase One Input Data, Input

and Output Variable Trace. I

DFD

EHR

HI

1222

115

r~^i BEE!

Time

(months)

S5S

ES23 EH3 E^3

rr~:

SOW DFD 1/0 ERR Difficulty Hierarchy IIS MS Code Test

Specification Analysis

SPM diagram for group H
DFD : Data Flow Diagrams

: The Entity-Relationship-fittribute Model

: Hierarchy Specification

ERR

KS

ESS
fifth passFirst pass

: Second pass

Third pass

™"
: Fourth pass

I Note: I/O Description includes Input description and Input/

ran

0X3 :Sinth pass

t——
' :Seuenth pass

Output)

116

F?^! FM3M
Blijl

HH

dj

Time

(months!

DQQ ^^H DOOM

™ E3^ HI

EH ^i iH

EH

ED EH ED

SOU) DFD Ir'O ERA DR Hierarchy

Specification

SPM diagram for group I

HS MS CODE Tes

DFD

ERR

HS

: Data Flow Diagram*

: The Entity-Relationship-Httribute Model

: Hierarchy Specifice lion

: First pass

: Second pass

:Thirdpass

:fuurth pass

:Fifthpass

:SiHth pass

17

7

™ E^! ES3 —

6

ra i : :] Es3

5

^ ESS

Eg?Pl

4

EH eh

S3

3
Time

(months)

Ev2 B r?^i

liaaai

2

1

PaS-l

I Fnnr^i ga

',OUJ Hierarchy Hi,or I) I/O ERR

Specification

SPM diagram for group J
: Data I lorn Diagrams

: The Entity-neletionship-flttribute Model

: Hierarchy Specification

: First past
m

m

:Fourth pass

: Second pass ESSSi .pjfth pass

:Tr.ird pats B33
:Sjlltn pas$

BfD

ERR

Hi

118

E3 E^

Time

Imonthsl

era

[33
da

BVPI

EZ3

S53 Hi EUl

ma

on

en

SQID DFD PO 111 /I ERR HD HS

SPM diagram for group K

TEST CODE

SOW : Statement Df Ulork

DFD/ERf : Data FIdiu Diagrams, The Entity-Relationship-Attribute Model

PQ : Phase One (Specification Trace Tool)

Hi/! : Walkthrough/ Input

HD : Hierarchy Diagram

HS : Hierarchy Specification

HH : First pass ^— : Second pass

EH :Third pass ^* :Fourtti pass

^
:Fiftri pass ™ :Si»1h pass

119

nn

Time

Imonths)

!

E3 B3 m

^H nn mo

Hi

DFD Input ERR PR Hierarchy KS MS Source Test

SPM diagram for group L

DFD : Data Flom Diagrams

ERR : The Entity-flelationship-Rttribute Model

HS : Hierarchy Specification

MS : Module specification

EH
: First pass BZ fourth pass

Hi : Second pass ^^ :Fif1h pass

Ks3 :Third pass

120

7
E3S3

K ^

6

ess ^3 talasi

5
ns»ii

4 BEI
ESS

5

Time HjSI

(months) BD

2

1

StS

zzz

ES1D Eaill E55SI

EH

(GUI CFD input ERR State Difficult Hierarchy HS MS Cade lest

Fra nsiti on sRna lysis

5PM diagram for group M
DFD : Data Row Diagrams

: (tie [ntitrj-Relationship-flttribute Model

: Hierarchy Specification

: First past
ma Fourth pass

: Second pass ^^
: Fifth pass

:Third pass

[Rfl

HS

12!

APPENDIX B: The scatter diagrams between completion time and waste,

progress, stability and effort measures for each group.

1 . The scatter diagrams for group fl:

31.541
U 29.571
fl 27.001
R 25.631
I 23 . 66

1

fi 21.681
B 19.711
L 17.741

E 15.771
13.80) *

• 11.831 **

a 9. 501 *

s 7.891 *

i. 5 . 9 1

1

*

e 3.94I
1 . Q7 j

**** **+

00 1
* *

URRIRBLE time

7.541
u 7.131
fi 6.72!
H 6.31!
1 5. 00

1

li 5. 50

1

B 5.09I
L 4. 6a

I

E 4. 27

1

3. 80
|

P 3 45

1

r 2. 04
|

V 2. 64 I

q 2.231
r 1 221
^ 1.411
=

1 .001

Uariabte time

122

LOOM
y 951
n 691
p. .84

I

B .761
a ?3|
L 671
E 62 1

56
1

511
i .461

. 40
1

D 331
1 HI
1 .741
1 1SI
1

u
. 131

f

MFlRIRBLE time

Z.O-I
w 2. SI |

Ft 2. Gal
Pi 2.571
1 2.451
H 2.331
y 2.211
! 2.O0I
E 1

=-
1 .S4|

a 1.721
f 1.601
t 1.461
o 1.361
r- 1 .24!
t. 1. 121

1 . OG|

UflR I fiBLE «. I im

2. The scatter diagrams for group B:

V 2E.9SI
A 27.171
R 25.2£|
1 25.221
A 21 .1-41

E 19.921
L 1S.1 1|

E 16.ILJ|

14.491
V 12.6*1
j 1D.STI
T 9.061
4. 7 241
* 5»I|

S£2|
1 .61 1 * *
.001* * *»

1 .27 2.26 3.28 -t.26 5.29
VARIABLE time

123

£.1-31

5.67|
5.54|

4.991
4.571
4-.2CJ!

s.921

3.60!
5.271
2.B3I
£.621
2.SOI
l .971

I .£=1

1.321
1 .001*

157 2.26 3:26 -4.26 5 29
VARIABLE time

V 1 .001*
.» .951

F .851
1 .841

A .7*
9 .741

L .69
E .&a

381
S .53!

t «7l

a .421

t. JTJI

i 3 21

l 2BJ
i .211

t IBl

2.2S S.23 i.rs 3.29
VARIABLE Vim*

2.£21
2.521
Z.4ZI
Z.3ZI
£.21

1

£.1 1|

2.Q1I
1 .51

I

1.81

1

1 .711
1 .G1|
1.51

1

1 .^o[
1 .ZQl
1 -2QI
1 .101
1 -DOI •

3 -2« <4 .2w 3 .2-3

VARIABLE 4im>

124

3. The scatter diagrams for group C:

24 . 03

1

y 23 . 37

1

H 21.811
R 20 . 20

i

1 IS. 701
f>. 17. 14|
P 15.561
L 14.021
F 12.471

10.01 I

lu S.33I
a 7.79I

6.23I
t 4.B7I
a 3. 12|

1.30!
.001

4 . 24 3 . 2C
URRIRBLE tlmo

4.611
4.33!
4 . or-

1

3. 7Bl
3.5G!
3. £11
2.9*1
2.661
2.3QI
2. Ill
1.831
1 SB!
1.26

1

1 . 00 1
•

VRRIHBLE tin

4.The scatter diagrams for group D:

30 . Z7

|

y 26.361
M 2a . *o

I

F. 24 . 30

|

1 22

.

70
1

H 20 . 6 1 1

E 18.Q2I
1. 17. OS!
E 15. 14|

13.241
UJ 1 1 . 33

1

a . «0

1

s 7.571
I s.eei
a 3.7£|

1 .eo|
.DO|

2 . 3Q 3 . T7 4 . «4
UflRlftBLE time

125

U 1 . DD I *
ft .041
R .69

I

I .631
ft ,?6|
B .721
L .B7|
E .611

.561
s .501
t .441
a .391

.331
i .28!
1 .221
i .17|
t .111

V 3.571
R 3.«l|
R i.23i
1 3 . 09

1

ft 2.931
b: 2.771
L 2.611
E 2.451

2.2SI
o 2. Ill
f 1.961
f 1 ©0|
D 1 .0-4

!

r 1.461
t 1.321

1. 181
1 . DO 1 *

2 . 3H 3 . 77
UftRIRBLE iima

3.77 4.94
WW I ABLE » I mi

5. The scatter diagrams for group E:

15.361
U14.40I
FH 3 . 44

1

ft 1 2 . 46

1

I 1 1.521
ft 1 . 56

1

B 9.601
L 6.64!
E 7.661

0.721
».' 3.701
a 4.601
s 3.841
'. 2.851
e 1.921

.901

.001-

3 . 03 4.11 3.16
UfifilflBLE time

126

If 5.721
fl 3.421
R 5. 131

I i SJ|
ft 4.5*1
B 4.24|
L 3. 931
E 3.B3I

3.361
p 3.071
,- £.771
c 2.-47I
g 2. 181
r- 1 . EE

|

a 1.501
s 1.301
s 1.O0I-*

•03 lOB 3. 03 4.11 3.
UflRlftBLE li.o

" .00
1

n .95 1

Fi .S9|
1 .84 1

R .?S|
e -73 1

L .631
E .63

1

.57
1

r .52
1

t -171
a .42 1

.30 1

i .31
|

1 -261
.201

t. -15
1

—

4. 11

WRRIflSLE

3.0QI
u 2.961
R 2.S3I
R 2.701

1 2.57|
ft 2.441
B 2.311
L 2. 181

E 2.031
1.911

& 1.7SI
r 1.031
f 1.52| *
o 1.301
p 1.261 *
t 1.131 *

t.oDi*

4.11 3.
Lifif: i fit-LET tins

127

6. The scatter diagrams for group F:

V i.ooi*-
H .551
R OOI
1 aai
H .811
R .76
1 .721
E 67

i

BZ|
c .S7|
t .=2!
G 4£|
b 431

i .361
1 34

i

4. CO
'JRR I FlBLE time

L. 1 . 07 I

E 1 . 55

1

.OS I

. 10
- 10 1

.DO |*

3.-10
UHRI

7. The scatter diagrams for group G:

7.001
u D.5C[
H 6. 131
R 3.691
1 5.251
H 4.61

|

P 4.3SI
L 3. 04-

1

E 3. S0|
3.0&I

w 2. 63

1

G 2. 191
£ 1.7=1
t 1.31

I

C eel

.00 1*

1 3.53
I'HRIfieLE tin

128

-1 f +-

L 2. 13|
E 2.0S

1.03
p 1 .50
r 1.00
o 1 .39
Q 1 .43
r 1 .33
e 1.23
s 1.121
s 1.001*

1- .». f + + «, + + ^. ^ ^._

- 03 1 . 67 2.71 3 . 55 4 .
3"3 5 23

URFllflBLE time

-i- + 1—
U 1 .DC
n 95
R .BO
1 AF
H .80
6 7S
L ?n
E 55

I .31|
i .261
t 21|

2.541
1.1 2.44|
R 2.331
R 2.251
I 2. 151

R 2. 0C|
e i.asi
L 1.671
E 1.771

1.671
= 1.561
f 1.481
f 1.38|
o 1.291
r 1.191
t 1. 10|

1 . 00 |

*

—+ * f +
r- f +

1 . S7 2.71 3.33 4.30
UFIFllfiBLE -time

M 3.55 4.39
UhRIRBLE time

129

8. The scatter diagrams for group H:

U17. 141
A16.07I
R1S.OOI

i 12 .as
|

H12.e5l
e i i . 79

i

LtQ.?1
I

E 9.54I
9. 57

1

u 7. so I

a 6.43|
» 5.36I
t 4.£E|
e 3.211

2. 14I
1.071
.001*

.99 4 . 09
URRIflBLE lime

U 5.611
fl 5 . 32 i

R 5 . OS
|

I 4 . 75

|

R 4 .415
I

e 4. i?|
L 3 .as j

E 3 . 59

1

3. SOI
p 3.021
r 2.731
o 1 . 44

1

a 2. isl
r i . an

|

• 1 . 59

!

S 1 .291
c I.001*

4.DQ
VRR I RBLE

V 1.001*
H .951
R sol

1 .641
H ?9|
ti .74]

L .691
E .031

.581
£ .S3|
t .471
a 421
b .271
1 .321
1 .201
1 .211
I .161

.80 1.89 2.99 4.09 5.18 6.27 7 37
UHRIMELE tins

130

-+ 4- 4- k 4- 1- 1- 4- 4- 4V 4-

u T 901
R Z .84

1

R 2 72 i

1 z .301
ft 2 .47!

B
L 2 22 1

E 2
1

. 101

.asl
e 1 .861
f 1 741
< 1 .611

1 491
r- 1 37|
t 1

1

1

.251
121

00

1

2. V3 4.D3 3. IE
UAH I ABLE tine

9. The scatter diagrams for group I:

V 20.361
Pi 19.091
R 17.821
1 10. 34

I

H 18.27
B 14. GDI
L 12.731
E 11.451

10. 161
u> B.91I
a 7 . 04

1

s C.Sflj
t 3 . DO t

e 3 62 i

2.551
1.271
.001*

l.lflFl I ABLE tiliw

Fl 5 76|
i

- .44!
ft 5 101

F, 4 73

1

L 4 411
E 4 07!

3 .77
1

p 3 .391
r 2 .031

2 71|

a 2 .301
p 2 02|
e 1 .661
B 1 .341
9 1 . 00 |

*

.25 4.27
UfijRIflBLE tinre

131

U 1 . 00 1 *
fi . OS ! *
Fl .691
1 E4|
fi .761 *

B .73!
L . 6SI
E .621

.371
s S2|
t .-161

a .41 1

b .361
i .30!
1 .2=1
i .191
t .141

y * —

i

3.25 4.27
UfiRlfiSLE time

V 2 .641
fi 2 !*4l
[-; 2 .431
1 2 m;
ft z 23 1

£ 2 131
L 2 02
t 1

1

021
921

r 1 72 1

r 1 oai
f 1 st|

1 411
*1|

I 1 201
1 inl
1 00 1*

i'HR I ABLE » iM

10. The scatter diagrams for group J:

0.10

5.77|
S.4T|
3. 1T|
4. 8S|
4.3S|
4.25| *
3.0SI
3.GSI
3.35=1
S . OO |

2.7Q|
2 . 4w 1 f>

2. iwl ^ +
i.aai * f
1 .col
i.aoj
1 . GO |

*

30 1 .46 2 . 62 3 . 76 4 . 95
UflRIRBLE time

6. 11

—f.

132

u 1 . DO |

»

R .S0|
B SGI
1 831
H .781
e • 72i
L .67|
L 61|

56
I

s 50!
t *H:
a .39

. 33

1

1 . 28 1

1 .221

-+ 1—

UftRlfiBLE^tiL
4 °S 6 " 7 "

s 4£|
u 3 331
H 3 t?l
R ^' .Oil
1 2 sal
M 2 701
B 2 55

|

L z 301
E ». 2d|

2 091
i 1. «3|
f l 7^
r

r
t

1.

t.

1.

1.

l.

B2|
471
311
IS|
QQ|*

2-62 3.7e
WRIRBLE time

II. The scatter diagrams for group K:

u S3 .991
H 31 S5I
R 2Q Hi
1 12. 0£|
n 17 .211
3 IS en
L 14 371
n YA 931

1 1 49|
w to. 06

|

2.871
1.441
.001 +

'• 7 ' 2.62 3 i3
~ *

WW I ABLE tin,,!

133

u ? .041
H 6 . 66 1

F; B .22 1

1 S Oil
R 6 =3|
B

"
151

L 4 79
1

E 4 40{
4 .021

P 3 .641
r '

"!
o 4 99]

q 2 311
r 2 13
a 1 wl
s 1 391
s 1 00 1

*

2.62 3.53
URR I RBLE t I ma

"1 .001*
H .951
B .991
1 .941
* ?9!
t- 721
L .691
k .621

s zz
]

t .461
T -ill

t. .3»i
1 .701
1 .29

1

1 1w|
t 14|

2.33
L«RRIR£l_E time

3.001
u 2. eel
R 2.751
R 2.621
1 2 . 50

1

H 2.381
e 2.2SI
L 2. 13|

F 2.001
1 86!

e 1.731
f 1.631
f 1.50|

o 1.381
r 1.251

I 1. 131

1.001*

2 . 02 3 . 33
UflRlHBLE time

134

12. The scatter diagrams for group L:

u 7 .661
H 1 iei
H 6 .701
1 f> .22!
R 5 .74 1

B 5 27 1

4 .79 1

E 4 .311
'i 03

1

w 3 :5S 1

CI 2 .671
s 2 391
t 1 .611
e 1 .-41

961
461
.001*

3.55 4.36
VARIABLE tim=

y 3 10
[

n 2 «7
i

n 2 .841
i 2 .711
R 2 E7|
B 2 .44|

L 2 .311
E 2 . 181

n .091

p 1 02:
r 1 .791

1 .001
6 l ."1
r 1 .301 i

s 1 .261
T 1 131

s 1 .001*

1.07 2 . 72 2 . 55
UHfilHPLE time

1 3. The scatter diagrams for group M:

u 21 73:
f-. 2D ST I

R 1'j Oil
1 1? .661
H If. :„ ||

P 14 Q4I
L 13 SSI
t 12 ,SS|

10 sol
w 13 ^1

1

B s ISI
ft 70

1

I s 43|
a d tn>|

2
1

72|
36 1

uG

S . 03 4.11
VRH I RBLE 1 1 me

135

u G 12!

H 5 80 |

a 5 40

1

i

-
161

R a sal
B 4 .521
L •1 201

E 3 se i

3 00 1

P 3 .24,

r 2 B2I
a 7 .0D|

a 2 .281
r 1 .661
~ 1 Ml
^ 1 .321
s 1 . 00

|

3.03 4.11
UhF: I HBLE t i ma

U1 .001*
R .aal
H . yO 1

i 65!
p .EDI
B 75|
L .?0| '

t .031
.601

s S4I
t 491
a 44

|

b Qui

1 34 1

l .2B|
i 241
t .191

2 . 05 4.11
WAR I ABLE tin

U 2.901
fl 2.721
B 2.661
1 2.341
Fl 2.431
9 2.31]
L 2. 191

E 2.071
1 .051

• 1 . 83

1

r 1.711

f 1.59] *

o 1.461 *
r 1.361 *
t 1.241

1. 121 *
1.001*

.93 1.99 3.05 4.11 5.18 6.24 7.30
UftRIPlBLE tiros

136

APPEND IK C: The projection models for the waste, progress, stability

and effort measures for each group.

1. The projection models for group R:

Ulaste(K) = -6.581 + 4.189 * C(t).

Progress(H) = 0.328 + 0.971 * C(t).

Stability(n) = 0.665 -0.091 * C(t).

Effort(n) = 1.150 + 0.2727 * C(t).

2. The projection models for group B:

U)aste(K) - -7.358 + 0.899 * C(t).

Progress(n) = -0.218 + 0.720 * C(t).

Stability^) - 1.083 (-0.160) * C(t).

Effort(n) = 0.889 + 0.266 * C(t).

3. The projection models for group C:

Ulaste(n) = -5.326 + 0.891 * C(t).

Progress(«) = -0.190 0.639 * C(t).

Stability(n) = 0.826 + (-0.084) * C(t).

Effort(n) = 0.730 + 0.301 * C(t).

4. The projection models for group 0:

UJaste(K) = -5.476 3.429 * C(t).

Progress(K) = 0.928 0.545 * C(t).

137

Stability(n) = 0.658 + (-0.848) * C(t).

Effortful = 1.649 + 0.290 * C(t).

5. The projection models for group E:

UJaste(n) = -2.359 2.402 * C(t).

Progress(H) = 0.816 + 0.754 * C(t).

StabilitylK) = 0.738 + (-0.105) * Clt).

Effort(H)= 1.110 + 0.314 * C(t).

6. The projection models for group F:

UMaste(n) = -3.163 2.057 * C(t).

Progress(n) = 0.485 + 0.484 * c(t).

Stability(K) = 0.938 + (-0.1 1 1) * C(t).

Effort(K) = 0.952 + 0.224 * C(t).

7. The projection models for group G:

lilaste(K) = -2.226 + 1.515 * C(t).

Progress(H) = 0.658 + 0.373 * C(t).

Stability(K) = 0.935 (-0.139) * C(t).

Effort(n) = 0.974 + 0.284 * C(t).

8. The projection models for group H:

Waste(K) - -2.672 2.446 * C(t).

Progress(K) = 1.086 + 0.636 * C(t).

Stabiiity(H) = 0.685 + (-0.090) * C(t).

Effort(n) = 1.161 +0.271 * C(t).

136

9. The projection models for group I:

UJaste(n) = -5.698 + 2.831 * C(t).

ProgressfKl = -0.186 + 0.858 * C(t).

Stabilitg(n) = 0.986 + 1-0.132) * C(t).

Effort(n) = 0.896 + 0.257 * C(t).

1 0. The projection models for group J:

Ulaste(H) - -3.504 2.405 * C(t).

Progress(K) - 0.91 7 + 0.646 * C(t),

Stability(K) = 0.670 + (-0.093) * C(t).

Effort(n) = 1.469 + 0.322 * C(t).

1 1. The projection models for group K:

UJaste(K) = -5.547 + 4.150 * C(t).

Progress(x) = 0.531 + 1.191 * C(t).

Stabilitg(n) = 0.81 1 + (-0.151) * C(t).

EffortlH) • 0.993 + 0.363 * C(t).

12. The projection models for group L:

IDaste(n) = -2.263 1.539 * C(t).

Progress(K) - 0.600 + 0.386 * C(t).

Stabilitg(K) = 0.990 + (-0.137) * C(t).

Effort(K) = 0.859 + 0.320 * C(t).

1 0. The projection models for group J:

Wasteful - -3.504 + 2.405 * C(t).

139

Progress(n) = 0.917 + 0.646 * C(t).

Stability(n) = 0.670 + (-0.093) * C(t).

EffortlK) = 1.469 + 0.322 * C(t).

13. The projection models for group M:

UJaste(K) = -3.660 + 2.517 * C(t).

Progress(n) - 0.613 + 0.683 * CM.

Stability(H) = 0.702 + (-0.084) * C(t).

Effort(K) = 1.057 + 0.280 *C(t).

140

APPEND IK D: The uolues of MRE for each group.

NOTE: I
.
Waste, progress, stability and effort Indicate the total values of

each measure.

2. W, P, S and E represent the projection values of each measure.

3. MRE for the waste measure can not be calculated whenever the

total waste is zero since the denominator can not be zero.

I. The MRE for group A:

AiB!CjD|EjFlG|H|l|j|K|L|n
1
1

l

tTO
.
waste v MRE proa p j MRE stab s ' MRE effort: e MRE

2 0.93 00 -2.69.
. 1.00 1 23] 6.23 - 1.00 ! 0.58 0.42 '. i.6o*i 40' 6.40

3 i 23 6.60 - i 45 3 38. 1 49 ; 1 .52 i 6.02 0.71 ; 0.55 0.22 -- 1.24
'

i 49
t
0.20

4 i.67 1.48 6.41 6.72 2 01 1.95 : 6.03 0.49'' 6.51 0.05 - 1 .5 1 • 1
61

' - 0.06

5 1 .80 ! 1 .48 . 0.96 . 0.35 . 2.01 : 2.08 03 6.49 6.50 6.02 1 .58 1
64" 0.04

6 1.90 ! 1.71 M.38 i 0.19! 2.14 12.17 10.02! 0.43 ! 6.49 ! 0.14! 1 .70 i i .67 ! 6.02
7 2.66 1 ^1 1.80

,
0.05 ; 2.1 4 2.27 : 06 6.43 - 6.48 : 0.12 1

''5 '

1 70 . 0.03
8 2.b0_ 2.64 : 4.31 . 0.63 : 2.49 : 2.85 6.15 . 0.38 0.43 : 0.13 ! 1.98! 1 86 0.06
9 2 70 ! 274 4.73

;
6.73 2.53 2 ?i ' 6.17 6.34: 6.42 0.23 i 2.02 1.89 0.07

10 2 80 2.94 : 5.15 . 6 75 . 2 73" ' 3.05 ' 0.12 ; 0.32 :

0.41 : 6.28 2.05*1.91
! 0.07

11 "3-. 5.00 "37.0.47: 3.35 : 3.56 6.06 - 6.27 ; 0.36". 0.34': 2.21" '2.06 0.07

12 3.47 7.14 7.95 6.1 1 3 97 3.70 . 0.07 6.24 ' 6.35 6.45 2 25 -'
1 6.07

13 3.50 ' 9.54 : 8.08
:
6.15 : 4.65 3.73 ' 6.20 ; 0.22 • 6.35 6.57 2.26 '. 2.1 0*0.07

14 4.23 :

1 1.03 1 1 14. 0.01 ! 5.00 ' 4.44 6.1 1
: 6.20 0.28 , 6.40 . 2 43*2 30! 0"05

15 4 37 : if. 17 .11 72. 0.05 : 564 4 57 009 0.19. 0.27 . 6.41 2.47! 2.34 0.05
16 4.80 13.47 1353. 6.00 5.52 4.99 0.10 6.16 : 6.23 : 0.42 :

2.56*2 46! 6.04
17 b :.:

.
16.47 19.94 0.21 . 5 99 : 6 47 ' 0.08 0.16 0.09 45 2.80 2.88 03

18 7.20 , 21.27 23 58 6.1 1 : 6 6~6
:
7.32 6.10 6.15 ! 0.01 '. 6.94": 2.92 3.1 i 007

19 7.30 31.54 24.00' 0.24 \ 7.54
;

1 42 6.02 6.13 6.00 i .00 :
2~93

-. 3.1 A 6.07
20 ^MRE"-: MRE- MRE=: I IMRE-
21 0.48 ! 6.69 ; 6.37 ' : 6 08

141

2. The MRE for group B:

A|B|c|D!tlr|GIHIIIJIK|t|n
1 ome vast*; w MRE prog p MRE stat s MREJtffert; e ,MRE

2 1
27 '6 66"*- 2 88 : i.00 0.70 30 1.00 58 0.12 1 00 1.23.0.23

3 1
63 ' 00 i

tri i 1 .00 U 9c 0.04 i 00 0.82 . 18 1 22 : 1 32 : 5 00

4 1 7b : o bo '
1 36 i .66 i .di - b.b'i . 1.06. o.si o "9

i .26 1
34' o&

5 1 .90"; 06b -0.6*5: f.bo:i.i5: b.is i.bb b?8 .022M.37; i 39,002

6 1 93 26 i-d.55 3 10 1 13 : 1.17 0.040 94: 78 i 0.18 1.38. 1.40 02

7 2 00. 45 : 0.3*0 1.66 I.32 1.22- 6.07 0.72 0.76 0.06 ! 42 1.42 J) 00

it 2 57
:

T 96 171 6.13 1.91 1.63: 0.15 0.49 0.67 37 1 .64 1 .57 04

9 2 80 2 19 : 2.52 O.i's: 1.99-1.80 0.10 0.40 0.64 0.59 1.72 163^0 05

in 3 27 7.66 4 i8 : 0.57 2.28:2. i"4 0.06 0.37. 0.56 . 0.52 1.87_J76 : 06

11 3 50-4.23 ; 5.00 0.18 : 2 28 2 30 0.01 ; 0.31 . 0.52 ; 0.69 1 93 . 1 82 .0.06

12 410 4 83 "7.1 1 0.47 2.42 2 73 0.13 0.31 0.43 0.38 2.08 J.98 05

13 4 20*4 83 '

7 47*0 55; 2 42 -2.8*1 6.16 0.31 : 0.41 : 33^2 10 200 ;
005

14 423 6.75*' 7.57 0.12 2.80 2 03 02 27 0.41 0.51 2 1 1 2.01 005

15 5 00 7 55 1 29 C 'in
: 3.04 ' 3 38 . O.i \ : 0.26 2f

: 1 . 2 2b 2.22 HD 02

' 16 503 915 1040 014 3 36 ;3*.40* 0.01 .0 23: 0.2*8 0.22 . 2.27 : 2.2a 0.02

17 5 23 9 38 11 1

0*
18 ; 3.40

'

3 55 0.04 0.22 0.25 0.13 2 31 2.28 :
001

18 603 i O.i 8M 3.93 0.37 3 53 4.12- 0.17 0.21 . 012 . C 43 : 2.44 ^ 2 49 .0,02

19 63S'l3 Q4 1498 007 413 4.34 05 0.20": 0.07 64 2 4*9 25-003
20 730 2898 1841' 0.36 6.19 5.04 19 16 -0.08 1 52 2.62 2 83 0.06

?1 *MRE=; i*MRE=; !MRE=! __;MRE=

22 56 ! 10 0.39 (O.OSI

3. The MRE for group C:

A|6jC|D|E|F|G|HlllJ|K|L|M
1 time vast* w MRE prog p 1 MRE stab' s MRE effort e MRE
2 1 17 0.00 .-2.06. 1 .00 0.56

'

0.44 1.00 0.73 0.27. 100. 1 08 08
3 1 50. 00 -1.14: :

i 000 77 0.23:1.00 70,0 30' 1.22
! 118* 003

4 1 73: 0.23 -0.49 3.15 1 . i 3 6 92 0.19 0.93 0.68 0.2*7 .1.35' 125 007
5 197.0.23 0.18:0.24 1. 13' 1.07 0.050 77 0.66 .0 14 1.47. 132 10
6 2.43 0.23 . 1.46 : 5.35: 1.i 3, i 36 0.21 C.77I062 0.19=1.66 '. 1.46 : 6.12
7 2.80 0.60 2.49* 3.16 1.27 1.60 26:065 0.59*1 009 1.80 1.57 - 6.13

8 3.37 ; 0.60 i 4.09 i 5.81 M 27 it .96 1 0.55 ! 0.65 1 0.54! O.i 6 M .97 ! 1 .74 i 0.1

2

9 3.50 i 6.60 .

4*45". 6.42 1 .77 2.05 0.1 6 6.54: 6 53 0.01 ' 2.66 1.79 'o.i 1

10 4.23; 3.46 649 . 0.88 : 2.45 2.5 i 0.03 42 4?' 0.1 2 2 18 200 08
11 4934.86

: 8.44 : 0.74 2.73 2*96 0.08 0.34:0.4i:0.21 2.32 2.21
!

0.05
12 r..2~ 4~.86 9 28 .0 91 . 2. 7 3, 3.15.6.16 34 ; 0.39 0.1*4 2 3"' 2 30 6.03

13 5 27 8.1 6 9.39 i 5 . 3 36 3. 1 8 0.05 51 = 38: 0.24 2.38 2 31 6 0*3

14 6 03 . 1 1.46 1 1 52 0.00 3 49 ' 3.67 0.05 .0.29" 0.32 O.io 2.44 : 2.54 04
15 607 14.16- 11.63 16.393 3 69 0.06 027; 0.32: 0.1 7 2.45 : 2.55 004
16 iH3oi5.53 12 27.0.2"*: 4. 15 3".84 0.08" 02*50.36 0.1*9:2.48: 2 62 ' 0.6*6

17 63. '556. i
2.35* - 0.21 4.i 6 : 3.86.0.07 ' 6 24 : 6.29 6.23*2.49 2.63 06

18 7 .20 i 9.26: 1 4.78 6 23 :
4.6*7

: 4.41 : 0.05 : 22 0.22 0.01 : 2.61 '. 2 89 : 0.1 i

19

20
7. 30; 24.93 : 15.06:6*40 5 44 4.48 i 8 : b i 9 6.21 6.T2. 2 62 2.92

:

12

MRE=: ^MR*E= MRE- MRE*
21

: 1
7 5 16

:

O.i 7- OOf

142

4. The MRE for group D:

A |B|C|D|Elr|G|H|l|j|K|L!n
1 JM.: «as*«

^ v ^ MRE proa p ' MRE :

stab s MRE effort e MPE
2 0.23 -.0.00. -4.69. 1.00 1.17 0.17 1.00 0.64'* 0.36 *

i 00 M ^2" 0^2'
6 1,0?... 80 : i 94^ 3.43. i .78 1 .61 0.10 : 0.61 0.57 '

0.06 1 78 1 95*0 09
4 •S3;] 30 :

-0 23 1 .18 2.1 ' 1.88: O.iO 0.52 0.53- 0.02* 2.10 1*2 09 ; 00
b IIP.;. 1 4? , 35 ! 0.76 ^ 2.20: 1.97. 0.10 6.440.51 . 0.17

:

2 20 12 l4"°0 03
6 I 83 1 47 0.80

.
0.46 2.20 2.05 . 0.07

:

0.44 • 6.50 6. i 4 2 2? *2
i 8 04

/
..
2

.
00

.,
1 -47^ 1

'
8 ,6.06. 2.20 2.14 6.03 6.44 6 49 6.11 - 2 36 223~606

a 2 47M 94. 299 054.2.39.239; 6.66 0.39 0.45 6.15 :

2 55~*2 3& 07"
>..8Pi.t 2 '

i
4-f3

.,
6.82: 2.51 . 2.57 6.03 0.36 42 017 2.67 2 46 "6 OS

iU 323; 270. 5 60 ; 1.07 2.64.2.81 . 6.06
!

6.34, 038. 0.13' 2.80 ?
2 58 :

Off
n .'^A-l; 3 53 ,0.22^292 2.96:0.01

. 0.22:0 36 0.C4 2 £8 2fb°~bOS
12 A?-\jV™ u 03 33 3 27 3 35 0.03 .6.21; 6 30

' 0.43 '

3.05 *2 87 6 06
15 4 63, 7&0JU.4U U.37 J. 44 J.S7 0.04 0.19 : 27 40 3 14 2 99*0 05
14 5 J7 ; 8 68 .12.25- 0.41 3 65 ; 3.87 6.06 ' 6.P 622' 6.29

'
3.24 : 3 1

5" 0"03
lb 6.00; 8.68 1 15.10] 0.74! 3.65 ! 4.32! 6.18 ! 6.17!6.i5] 6.12 ! 3 38 ! 3 39* 6""6"6"

lb .?.0?:J2'.=.'5 20: 6 75; 3 65. 4 33; 0.19 0.17 15 0.13 3.38 3 39 666
'' 6.27_

t
13 95M6.63.0 15.4.49':4.47-6 6l 0.16 0.'3 0.21 3 42 "3 46' OOI

18 6 33 15 85. 1 6.23": 6.02 ; 4.86
: 4.50 0.07 0.14 0.12 13 3 43 ?

3 48 02
19 .7 07.23 73 18 7-i 6.21 . 4.96 4.90 6.01 0.13 0.06 6.55 • 3 54 3 70*6 04
20

.

7 ?.?.-23 93. 19.46; 19 499 501:0.00 6.12 ! 6.04 6.65"* 3.56
*
3 75 . 005

21 JSOJO 27j 9 56
:
6.35 6.66 . 5 03: 0.16 Oil! 6.04 ' 6.64 3 57 : 3 76* 05

Z2 :Hr'E= !MRE= MRE= MRE=
25 10.63: ! 6.07 : 6.28 .0 08

145

5. The MRE for group E:

ftlBICIDItlrlGlHllljlKlLln
1 time waste^ v ; MRE prog j jo MRE stab s MREieffort e MRF
2 p :

93£0.00 |-0.13i ! 1.00 !1.52!0.52!1.06i0.64!0.36! LOOM 46*0 40
3 1.00 00 ; 04 M .00. i 57;0.'57 i.00 0.6S 3V:i 0? 1 42 033
4 1.20

;
0.27 0.52 0.94: 1.23 1 72 0.40 6.89 0.61 i 0.31 1.24'i 48* CM 9

5 1,23] 0.50 = 6.60
;
6.191 1.41 j1.74!0.24!b.73!0.61 10.17! 1.2611 49'i 18

b 1.33, 090 . 6.84
[0.07; 1.71 =1 82. 6".Ob; 0.60 0.60 OOP 1.51 1 52001

/ 1.40= 0.90
;

' 00 =0.12! 1.71 11.87 = 0.09 = 0.601 0.59! 6.02! 1.56= 1 54= 01
tt 1 63. 1 20 -156= 0.30: i 98 2 05' 0.03. 0.45 6.5? 26 1.70 i 62. 05
9 _)>7 1 64 .

i b': 0.U1 :2i4 2 08;00?;b.40 0.56 41 i

->2'
\ 63 05

IU JL93.. 2.24
. 2 28

:

6.02 2.55 2 27.6".1 i' 0.36^6.53! 6 49* i.86*i.7 TO 08
11 2 00: .2 57 . 2.44

;

6~05 2 ?2 2.32 0.15 6 32 ; 6.53!0 65= 1.69 i.73 06
12 2 5/. 2.57 3.81 48 '2.62 2 75 0.05. 6 32' "6".47; 6 46 2.12=1 91*6 10
13 2.77= 2.77

;
4.29 ! 0.55= 2.79 12.91 =0.04! 0.30=0.45 = 0.4912. 19U 97=0 10

14 3.2 1 ! 4.64 = 5.50 ! 0.1 8 ! 3.36 =3.28! 02! 0.28 i 0.39! 0.41 ! 2.34! 2.1 3! 09
lb 3.40= 6.67

j
5.81 = 0.13 = 3.96 !3.38= 0.15= 0.2410.38! 0.5812.38! 2 17!o6'<?

16 3 43.6~6~7 5.88 .6.12. 3% -T> 40 014 6.22 6.38 712 39!2 18= 09
1 / 3 47 = 8 54 5.98 6.30 4.50]Z 43 ; 0.24 6.21 =

0.3"'' 0.78
r

2 40 2 19 09
18 4 1 7^ i 6 05 7.66 6 24 . 4.86 3 96 :

. i 9 6 2 i 6.30 6.43 2 58 : 2 41 "6 06
19 500 10.05. 96 T

0.04 486 459 06= 6.19 0.21' 0.1 2' 2 '4-2 67 02
21) 5 83.16.65.11.64=6.16 4.86.5.21 07 6. i9 6. 12 = 6.34 .2.89: 2 93"* 01
21 5.90= 10.1211 1 .81 = 0.17! 4.87 !5.27! 6 .0810.1 9!0.12!0.38!2.90J2 96! o 02
22 593 ro.i 5 11.88 0.17 4.87 5.29 6 090 18 0.11 6.36 2.90*2 96*6 02
23 5 97 1 1 1 2 1 1 .98X0.08 5.04 5.321 06 0.17 6. 1 1 6.35 ' 2.91' 2.98 : 6 02
24 6.17! 1 5.36| 1 2.46= 0.1 9 ! 5.72 !5.47! 0.04! 0.1 5! 0.09! 41 ! 2 95! 3 04= 03
2b 7.30=1 5.36= j 5.1 8! 0.01 ! 5.72 !6.32!0.1 1 ;0.15=-0 03 1 20! 3 10! 3 39! 09
26

.. .__ !mre== Rre=! =MRE=! Tm"re=
2/ 10.17! ! =0.15= ! !0.42! ! 6 09

144

6. The MRE for group F:

A
I B C 1 D |E|F|G|Hll|JlKlLlH

1 time vat it w mi prog p MRE stab s i MRE leff'ort e MRE
2 1.271 0.66 -0.55' i.ooVi.io. o.id i.oo 6.86: 0.20 T.66 : i 24 0.24
3 i

5" 0.26 -0.01 1.06 1.17.1.23: 0.05 6.92 0.770 16! 1.17 j 29 0.11

4 2.66: 6.73 0.95 0.30 1.40' i.45 6.04 6.74
, 6.72: 6.03 ! 40 i.4O~°6.60

5 2.231 6.73 1.43 ! 0.95 1 .40 :
i 56 6. i 2 ; 6 74 . 6.69 .

6.07
'

' 115 1 i .45 ' 6.04
6 2 47 :

1 67 1.92 0.15 i 79; i 68 006 0.60 0.66 0.1 1 1 61 1 51 0.06
7 2 SO. 2.80 2.60 0.07 •).96

; 1 84- 6.03 . 0.54 0.63 '6. 16 T.61 1 .58 0.02

8 3 27^ 3 60 3.57 0.01 .2.15:207 6.04 '6.42 6.58; 3^.1 75.1.69 6.04
9 3 50 3 60 4.04 ! 0.12 .2.1512.18; 0.01 1 0.42 10.55! 0.31 h.81 i 1.7410.04
10 4.23 5 60 5.54 ! 0.01 2.621 2.53! 6.03 1 0.38 1 6.471 6.24; 1 .99 ! i.90; 6.04
11 4.90 6.27 6.92 ! 0.10 2 76. 2 86: 0".04

; 0.34 0.46' 0.1 6 ' 2.1 2

:

: 2 05 6.03
12 5.03: 8.50 7.19 1 0.15 3.20=2.92! 6.09:0 3i '6.380 23 2.15 2.08*6.03

13 6.23; 9.70 9.66 0.00 3.61 350 :

0.03 0.27,0.25-0.08 2.34° 2.35 0.00
14 6 30' 9^0 9.80

i
0.01 3.6i:l54' 0.02 6.27 6.24- P 11 : 2.35 2 37 "6.6l

15 7.93' 13 03 13.15 0.01 4.031 4.33! 0.07 ! 0.24 ! 0.06; 0.75 ! 2.56 1 2.73 1 6.07
16 !MRE= MRE"= MRE= !I1RE=

17 ! 0.23 0.05 ' 6.21i 05

7. The MRE for group G:

AlBlClDlElFlGlH|l|j| K |l|M
2 i .63" 1 6.66 ;

- 6.67 ; 1 1 66 1 1 64
rirt : oiod : s !nKL;ctiorti e : MRE
6.04 1 .66 0.79 .0.21 1 66 1.27: 6 27

5 1.67 10.64; 6.30 1 6.53 1 1 .38! 1.28 07:081 O'o 0.13 1.38 1.45 6 05
4 2.66 ! 1.30 ! 6.80 1 6.38 1 f.55! 1.40 6.09 L6.54: 6 66 0.21 1 1 .55 1 1.54! 6.01
5 2.23! 1.30! 1.15! 0.11 11.55! 1.49 04.6 54. 62 0.16 1 65 1.6i 5 03
6

.2.7P... !.M 1 86 6 43 i 1 55. 1 .66
: 0.07 . 0.54: 6.56 0.03 1 83 1 74

:

6 05
/ IIP. J '"L.2 7?^ 6.46 J.73 1 89 6.09 0.47 0.47 . Ci1 2 01 1 =il"0 05
8 JJJJ SO..', 2 88

.
6.51 i 73' i .91 0.1 1 47 6.46 0.01 2 03 1 93 6 05

9 -? 4
.7 2.Q7 .1.3 03 . 6.46 j 78 i.95 6.10 ' 6 33 0.45" 37 2.06*1 96*0 05

IU
.i. 2.*...iQ./.: 4.18 6.03 2.25 , 2.23 0.01 ;0.30j 6.35 0.15 2 24 2 18 03'

11 4 ^ 7 ,10.; 4 24 . 0.03 2.26": 2/25 ; 0.00 6.28 ; 0.34 10.21 *2 25*2 1
9~ 6 03

12 l33...
4 ?7. 4 33 013; 2.46 2.27

, 008 0.26 6.33 6.2?: 2.26 2.20 02
IS .MP... 5,44: 5.04 . 6.07 2.5b 2.45 0.04 :

0.24 6.27 .0 11*2 36 '2 34* 6 01
14 JLPJLlP tPJ..> & 1 0.13 12.71 12.53! 0.07! 0.22! 6.23 10.06! 2.40!2 4fl!n 00
lb §.r°I ..? 00 .

691 ^ 0.01 1284291. 6.62 6.21 0.09 ' 6 55* 2 54 269 606
lb .P.9JJ00 6 97 . 6.00 2.84 2.92: 6.03 21 ! 0.09 58 2 54 1 70 6 06
1 /

,_._ J-1R>,
;

MRE=: !MRE= *" "MRE=
IB 0.22 ;

: 06 "0 20: 005

145

8. The MRE for group H:

A|B|CIDIEIF|GIHI||j|k|lIm
_t)me.vi«te v.' MRE ! prog p MRE : atob s MRE w^forti t MRE

2 80
;
0.00 r 0.72

t
1.00: 1 .b6 0.60 = 1

00~ 0.61 ' 6.39 ' 1
66"

1
3==*6 38

6 S3; U UU , -U.64= .

1.6~0~ 1.61 0.61;) 66 0.6 J 0.39 1 04 1 39 33
4 !_17 ; 037 ;

0.1Q/0. 49 1 .32 ! 83 6.39 = 084: 6.58 : 6.3T 1 33; 1 48*6
i i

b 1.2,0 U 74. 6.26 6 64: 162 185 14 = 068 0.58 0.15 1.35* i 490 10
b 1", i 21 . 58 054:2.02: i 93 6.04 6 56- 0.56 ! .61

;

1 45 1 52-0 05
/ J .43 1 63 0.83 ! 6.49 2.27 : 2.66 6.1

2

: 6 41 = 6.56 . 0.35 1 .52 i .55 6 02
U j_o3, 1.B3 /l 31 .Oiej 2.40! 2.12.6.12:6 37 6.54: 0.45: 1.6"4M 60*6 02
y 237 2.77 : 3 12:6.13 2.79 2.59 6.07 ; 33 = 0.4? • 0.43 i.95 1.80 08
10 2 43^ i 77 ^3.27 6 i8'2 79!2.63.: 0.6b*U33:0.47:6.4i;i.95"i 87*6 67
ii 2.t0j.2 94 : 369 ; 6.25: 2 86 2.74

,
0.04 0.31 . 6.45 0.45 2.02=1-87 = 6 68

12 2 77; 311
. 4.16^632:2.92 2 85 ;

; 0.29: 6.43 6.50 ! 208! 1 9i
r

08
13 5 11 :-? 6 1 . 5.32 : 0.48 ; 3 07 . 3 i 7

j
6.03 ;

0.2"> 6 39 0.44 2.23*2 05 08
14 .i.30. 4.54

: 5.40 6.19 = 3 36: 3 19 6.05 6.25- 0.39 6.55 224 : 206*006
lb 3.37; 4.64 ; 5.57 j 0.20

j
3.391 3.23

i 6.05 10.23= 0.38= 0.65 = 2.26 1 2.07 = 08
lb 40^ 6.41

: 5.64.0.12 3 91 ; 3.25 6.17 6.22, 638 6.72-2 27 2 08' 6 08
17 4.10 7 14

. 7 35 03 4.08 3 69 6.09 6.21 6 3f" 6.50 2 45' 2 27: 07
18 4 17. f94_. 7.53 .0.05:4.28:3^4 13 6.21 0.31 '. 6.47 2 47": 7 29*0 07
19 b.23

;
1 6 87 i 2.56; 0. 16:475. 5.05 i 06 ! 0.20 ; 6. 1 2 i 0.39 ; 2 80: 2 85 = 6 02

20 7 1?J3.94J4.b6 0.07:5 .17 5.65 .09 018 0.04 0.79 2 93 3 11*0 06
21 127, 17 04 15 i 1:0.1 i ,5.60: 5.71 :6.02 6.17 6.03 6.83 2.94*3 1 3 6 07
22 7 37

=
1 7 1 4 i j E 35 6 1

6 5 61
'

. 5
i 78 0.03 0.1 6 6.02 6.88 2.96' 3 1

6*0 07
23

:_.
mr'e^ '. :Hre=; mr!= (mre=

24 '025: 6.14. =0.48 i

10

146

9. The MRE for group

A | B | C D|E|F|G]H|I|J|K|L|11
1 tme waste v MRE prog

! p MRE stab 9 ' MRE sffortl e MRE
2 1 23 0.00 -2 20 1.00' 0.87 :

6.13' 1.00 '0.82; 6 18:1.00; 1.21 fo 21

3 1.2?' 0.00 -2.08 '1.00: 0.90; 0.10- 1.00 0.82 20 i 1 0? :

1 22 0.19

4 1.40 0.13 >1 72 14.20 1.09! 1 02 ;
0" 0.95 £0

:
20 '1.12*

1.26 ;0. 12

5 1.70! 0.41 i-0.87 3.1 1 i 37; 1 .27 ' 0.07 6.76
' 6 lb 6 11 '

1 30 1
.33

' 03
6 2 3? 0.41 1.03 1.51 -1 37; 1.85- 0.35 0^6 0.67 -0 181 58: 1.51 0.05

7 2.77! 0.94 ! 2.16] 30 1.90 2 19! 0.15 6.53 0.62 05 1 73' 1 61 0.07

8 3.27! 2.81 ! 3.58 0.27 =2.4"' 262: 0.06 0.45 0.55 22 1 88 1.74= 0.08

9 3.33! 3.31 ! 3.75 013:2.98:267 0.ib'b36"6'.55 48M.90' 1 ?5
:

0.08

10 3 43! 3.31 ! 4 03 0.22 ' 2 98"! 2.7"6 = 0.07 .
0.2*8 0.53 : 58.1 .93; 1 .78

: 008
11 4.13! 3.51 ! 6.01 071:38-' 336 0.1 3 021 0.44 41 2.12= 1.96 = 0.08

12 5.23! 3.51 ! 9.13 1.60 3.87; 4.30 6.11 =6.21 ; 0.30.0 072.33= 2.24; 0.04

13 6.00! 4.28 11 1.31 1.64 4.00 496
,

0.24' 0.19
r 0.200 01 *2.46 2.44: 0.01

14 6.03! 9.74! 11.39 6 1 7 ' 491
:

4.99 0.02 0.18 019:0 06:2.47: 2 44; 6 01

15 6.23! 11.84! if.96 0! :5 24! 5.16 ; 002: 0.18: 0.16.011 :2.50
:

2 50! 6.66"

16 6.27! 13.98! 12.07 6.14 5.58' 5~19 0.07 6.17 6.16 81 2.50 2.51 [6.66

17 7.23! 14.98! 14.79 6.0 i 5^2 6.02
r
0.05 6.1 6*0.03 83 2.64 275:0.04

18 7 27 ?0.36:14 90 0.27 ;6.46 : 605 ' 6.06 ! 6.14 6.03:0 83'2 64:276=005
19 7.30! 20.36! 14.99* 6.26 '6.46' 6.08 0.06 = 14*0.02 'i 66 '2.64' 2.77 6.05

20 !MRE=! !MRE=! !MRE=! !MRE=

21 ! 1.60 ! ! 0.10: .35* '0 07

147

10. The MRE for group J:

»|B|C|D|E|F|G|H| I J] K | L] M
1 time waste- v MRE prog p MRE stab S MRE effort e MRE

2 0.30 O.btr-2 781 '1.bO:l".11 : 0.1 1- 1.00 0.64 0.36. 1.00; 1.51 Q.57

3 1.20 90 -0.62. 1 69 1 ?S 1 69 0.03 : O.fco : 0.55 0.13 1.75 1.86:0.06

4 1.23 C'
Q -0 55 * 51 1

">5
1 71 02 c3 0.55 0.13 ' 1.77' 1.86 0.05

5 1.43: 1 1 3 -0.06! 1 .06 1 9 i : 1 .84 0.04
:

0.56 '. 0.53 0.06: 1.94^ 1.93:0.01

6 1.50 i 43 6.10 1 93:2.11 1.89. 6"
i 1 : 0.48

:

0.52 6".09 1 .98 i .95 6.61"1

7 1.67: i .67 6.51 ! 6.69 2.25 2 00 ' Oil 6.42 0.50 0.20 2.0812.01 .0.04

8 I
^3 !

1 73 0b6:0.62 2.29 2.04 0.11 ;0 38- 0.50 0.31 2.12 2.03 0.04

9 2.57 : 1 73 : 2 68 0.55 : 2.29 ; 2.58 : 0.1 3 33 0.42 .0 26 12.45; 2 30 0.06

10 2.70: 1.86 ; 2.99 6.61 -2.34 2.66 0.14" 0.31 .
0.40 0.30 - 2.49 2 34 6.06

11 2. SO 1 St 3.23 -0.74- 2.34: 2 73
:

0.1 7 0.31
:

0.39 •0.27 2.53: 2 37 0.06

12 3.30 2.46 4.43 6.80 2 52 3 05 21 6.26 0.34 32 '2 68 '2.53
; 0.06

13 3 43- 3 09 4 74 ' 5~4 3.35:3 13 0.06 0.21 ! 0.33 57 2.72 : 2.5? . 6.05

14 4.20* 3.99 6.60 6".65"
:

3 75' 3 63 . 0.03 .6.19 0.25 33 2.90
' 2.82 03

15 4 50- 5 19 7 32 6.41 4.02- 3 83- 6 05 6.18 0.22 24 2.97 2.92 0.02

16 4 63
- 5.62 ? b3 : 0.36 4.1 1" 3 91

; 6.05 ; 6.1 7

.

0.21 , 24 3 06: 2.96 0.03

17 4.6"»
;

6.09
:

7 73
:

0.27 . 4.21 : 3.94 ' 6
0">

" U 1 6 0.21 - 6.29 3 07 2 9"-
; 03

18 5.23 6.09 : 9 07
; 6.49 4.2* : 4 30 : 02 O.i 6 0.15 ; 0.06:3 18 3.15 0.01

19 6.03 • 6.89 li.00 0.66-434-4.82 Oil 6.16 0.07 ; 0.55 3 31 3.41 : 0.03

20 o 2~ li.62Mi.48iO.br 5. 10' 4.94: 003 6.14 0.05 63:334- 3.47 0.04

21 7.27 '25.88- 1 3 98
!

0.46 5.77' 5.62 ' 0.03 0.1

1

-0.05 : 1.47 3.48 : 3.81 0.09

22 !MRE=] ! iMRE'=! MRE= MRE=

23 69 .

! 008 : 34 . 0.07

11. The MRE for group K:

-M i
B it t d i e

|
r I g I h I i ijirii rsr-i

1 !I™..y?sie....-V. ...ORL.P'-oti p MRE 'stab' s MRE -effort! e MRE
2

...P
8(J

.-. P_.Q.P.'_-.?J^__ 1 00J.01 : 6.61 1.66 : 0.69 '6"
31 ;

1 bo'T28"
r

o"'8'
3

.-! ?.?...,. Q 43 ,.-0,44;. 2 03J 35: 1 .52 . 1 2 0.83 i 0.63
r

6.25 -735*1 44*0 CP
'

J 1^.9 43 .-0,03,1 061 35 1 64 021 6.83 ?
6 61 *6 26

:

T42-T48 04
5L.40....,P..oq,, 0,26^.0 56.1 59: 1

?~2
. 08 : 0.56 , 6.60 1 0-07* llfi 50 *0 02

6 _l-6.

? .:.j '4 1,38
;

21 -1 92. 2.04^6.06"; 6.42 0.56*0.33
I 64T6TT6?""

7 .1 9?U ..! - 1.4 ...2,7.5... 141 ! 1 92
:
2.44

:

6.27 - 6.421 : 5 i 2V i"80*'T 72 *"n 04

'

8 _<^?.. P.??s 71 ,007:3 19,2.71 0.15 0.28 47 0.69 1
90 "1 80

:"6"05
9 .i^l....42? ,:.4/U,0 1l 3-6 -00 09-626' 0.44 6.69 ! 2"6b*"T'89

*
6 06

'0
4,3.P. ,.

4.806 07 02? 3 49=_3 39: 6.03 6.251 6.39*0 5
5

': 2~1 2 "2" 6f 05'
11 .lii-i. 6,_'l.i..6.02 i OJ8^4.10: 3.95. 0.04: 0.21 0.32

:

6 51*2 26*118* o"0412
..
3J.L.. ?.,?..! :..S,i3..Lp,04 482 4.22-012 0.18' 6.28

'

"G 57 2
'"" '

-; o tr n riT
I-1ILI...iJJU 9.91= 1 1 .47 i 0,1 6 14.97! 4.9. j 0.1 9 i 0. 1 3TiFsoF"? 48 ! fl m
14

-

4
.:.?^ _!. -M. 1.2,42, 005.526,5.21 .?!01 016 !>,-, 002 269

:

"56"!"6C5
15 -§.lL..?2?..

Q
.i20 47^0 1 1 .7 04: 7.52: 6.6? 6.14 -0.1Vl 97*3 oT'3 27

*
h 09

16
Mr'-?= _i i'MRE^ MRE= '" I-IReT

17 48- 09: f6.47* * '0
0?.

148

1 2. The MRE for group L:

A|BjCID|E|F|6|HM|j|KlL|M
1 time waste, v . MRE

.
proa. p MRE steb s MRE effort e MRE

2 1 .0? . 00 :
0.81 :

1 1 00 ; 1 .01 '0.01 1 .00 0.84 0.16 : 1
.00"*

1 2f 21

3 1 ^6 - 0.63 6.05 ! 92 '

1 37 i .26 0.08- i .3? 1 0.76 : 0.45 '

1 .37 i 41
r

03
4 2.00 6 93 0.46 i 0.51 i .52 J .37 : 6. 1 6 1 .52 0.72 6.53 i .52

:

1 .5 1 0.01

5 2 6> 6.93 = 1 3i i 041 : 1.52 1.620.06 1.76 063 6.64 1.76 T.72" 0.02
6 =-. -. n 1.10' i .54 : 6.40 i 58 1.68 "6.06-

1 .82 bl . 0.67 1 .82 1 .77 0.03
7 333 : 1.10 2.26 : i.Ob : 1.58 1.89 6.19: 1.98. 0.53 : 0.73 1.98 1.94. 0.02

8 3.50 : 1.97; 2 49 : 27 . 2 03 1.95 6.04: 2.1 8 !
5lT6.7">I 2J8

T
2.00 6.08

9 4.23 13.431 3.49 ! 6.02 : 2.38 i 2.2310.06: 2.35:0.41 i 0.83: 2.35:2.24:0.05
10 4.47 3 67 3 S1 : 6.04 2 43 ' 2.33*0.04 2.41 : 0.38 6.84; 2.41 : 2 32 ' 6 04
11 5.23

_
3.67. 4.85 : 6.32 2.43 : 2.62 O.Of 2.55 6.27 6.89' 2.55 ' 2.56* 6.01

12 5.93.6.10 5.80 6.05 2.84:2.89 02 2(: 7 0.18 0.93 2 b~> 2.79 6.05

13 6.03.7 66 5.93 . 6.23 : 3 10 2.93 -6.06
:

2.69:6.16: 0.94 2.69:2.82 0.0S
14 :MR£«I ;MRE= :MRE=: ;MRE=
15 35. 6.07' 6.70 .0 05

13. The MRE for group rt

AiBiCIDIFIFlG|H!ll.l|KlllM
i time

t
voste • v MRE

.
proq p MRE stab s MRE effort' e MRE

2 93. 6.66 r l 32: : 1.00 . 1
.25

" 0.25 : 1.00 0.62 0.38 1 .66 1.3? 6.32
3 1 07^ 0.27 --6 97:4.58: 1.26 1.34 6.07 0.72 0.61 0.15 1.13' 1.36 '6.20

4 1.30.0 50 -0 39-1.77 144 1 .SO :

6.04 ! 6.64 6.59.6.0? 1.3 Ti.42 09
5 i 47: 67 6.04 94 : 1 55 1 .62 0.04 0.55 r

0.58 0.05 1 .42! 1 .47 0.03
6 1 P 1 i4 0.80 6.30 1 82 . 1 82 6.66 53 "6.55 0.04 i ^ ' 35 0.01

7 --UU 1 37 1.37 0.66: 1 93. 1.98 ; 0.03 : 43 0.53
:

6.24 1 69-1.62; 6.04
8 2 23: 2 13; 1 95 : 6.08. 2.28 :2.T'4 6.06 0.39 .6.5"? 6 32.1.79 i .68*To6
9 2.80 2. i Z 3 39-0 59 2 28 2.53

r

'6.1 1 0.39 - 6.47 6.20 2.66' 1.84 6.08
10 3 30. 3.20 4.65 6 45. 2.60 2 87 0.1 6 ; 6.35 0^42 6.21 2.15' t 98 6 08
11 350; 5.17

, 5 IE 6.00 : 3.59 3.00 6.1 6 ' 0.29 .0.41 "6.46'2.2ti 2.04 0.07
12 3 5?: 5.17 = 5.33 .6.03: 3.59 \ 3 05 :

0.15 0.29 0.40 0.38 =2.21 '2.06: 6.07
13 4.23. 5 90 ; 6 99 ! 0.1 8J 3.76 3 56: 0.07 0.27 : 6.35 0.28 = 2.39: 2.24: 06
14 4.57: 7.31 i 7.84 =0.07 ', 4.07 3 7" 0.08 6.24"

:
0.32

' 6.32 ; 2.46 2.34° 6 05
15 5.23 7 31 i

9.51 ,0.30: 4.07 4. 1

8

: 6.03 0.24 , 0.2S 0.09 2.59': 2.52: 03
16 6.03.8.11 ii 1.52.0 42 4.21 4.73; 6.12 6.23 0.190.16:2i 72:2.75 0.6i

17 6.33 9.87 ; 1 2.28= 24 4.48 4.94 0.16' 0.22 0.170.232.77:2.83! 002
18 7.(7: 15.27:14.39:0.66. 5 24 ' 5.51 ; 6.05 6.21 • 6. fo 6.53"; 2.89* 3.07' 6.06
19 7 30,21 73.; 14.72. 0.32 6.12 5.60 0.09 0.19 , 0.09:0.54 2.90'3.10: 007
20 !MRE=: iMRE=! jMRN :MRE=
21 6.61 : i 6.09 - 2b j 6.08

149

RPPENOIH E: Definitions

Definition 1: R is an equiualence relation on A iff R is a binary relation

on A that is relfemue on A, symmetric, and transitiue

1. R is reflexiue on A, by which we mean that kRk for all k

efl.

2. R is symmetric by which we mean that whenever «Ry,

then also yRu.

3. R is transitiue by which we mean that whenever «Ry

and yRz, then also hRz.

Definition 2: A partial ordering is a relation R meeting the following

two conditions:

I R is a transitiue relation: KRy & yRz ->hRz.

2. R is irrefleHiue: It is never the case that hRk.

Definition 3: A preordering is a relation R meeting the following two

conditions:

1. R is refleKiue on A, by which we mean that kRk for all »

2. R is transitiue by which we mean that whenever «Ry

and yRz, then also kRz.

150

Definition 4: Let A be any set. A linear ordering on A (also called a total

ordering on A) is binary relation R on A meeting the

following two conditions:

l.Risa transitiue relation ; i.e., whenever «Ry and yRz.
then kRz.

2. R satisfies trichotomy on A, by which we mean that for

any x and y in A exactly one of the three alternatives

»Ry> k y, yR»

holds.

Definition 5: A partition tt of a set A is a set of nonempty subsets of A

that is disjoint and eHhaustiue, i.e
.,

1. no two different sets in fl have any common elements, and

2. each element of A is in some set in n.

151

REFERENCES

[BAK,1987]Baker, A., Bieman, J., Gustafson, D. and Melton, A. "Modeling and
Measuring The Software Development Process", Proc. HICCS, 1987.

[BAR,1962]6arr, A. Cohen, P. and Feigenbaum, E. A., The Handbook of

Artificial Intelligence, William Kaufman, Los Altos, California

1982-1963.

[BLU,1962)Blum, B. I., 'The Life Cycle-A Debate Over Alternate Models", ACM
SIGSOFT, Software Engineering Notes, Vol. 7, No. 4, 18-20
October 1982.

!BLU,!984]Blum, B. I., Three Paradigm for Developing Information Systems"
IEEE, 534-543, 1964.

[BOE, !961]Boehm, Barry w„ Software Engineering Economics, Englewood
Cliffs, N.J.

: Prentice-Hall, 1 98 1

.

lBR0,1975)Brooks, F., The Mythical Man-Month, Addison-Wesley, Reading,

Mass., 1975.

[CHE,1976)Chen, P., "The Entity-Relationship Model: Towards a Unified View
of Data", Transactions on Data Base System, 1(1):9-36, 1976.

iCHE,1960]Chen, P., Entity-Relationship Approach to System Analysis and
Design, Elsevier/North-Holland, New York, 1980.

lCHE,1983]Chen, P., Entity-Relationship Approach to Informatin Modeling and
Analysis, Elsevier/North-Holland, New York, 1983.

[DAV,1979]Davis, A. M. and Rauscher, T. 6., "Formal Techniques and
Automatic Processing to Ensure Correctness in Requirements
Specification, In Specification of Reliable Software 15-35 IEEE
1979.

iDAV,1963lDavis, C. Jajodie, S. Ng, P. Yeh, R., Entity-Relationship Approach
to Software Engineering North-Holland, 1983.

152

[DeM,1978]DeMarco, T. Structure Analysis and System Specification. New
York: Yourdon Press, 1 978.

[DeM,1982)DeMarco, T., "Controlling Software Projects Management,
Measurement and Estimation, Yourdon Press, New York, 1982.

[DIJ,1968]Dijkstra, E. W. "GOTO Statement Considered Harmful.",

Communications of the ACM 1 1, No. 3, 147-148, 1968.

lEND,1977]Enderton, H. 6., Elements of Set Theory, Academic Press, 1977.

[FAl,1985)Fairley, R. E., "Software Engineering Concepts, McGraw-Hill Book

Company, 1985.

[GEN, 1986]General Electric Company Corporate Information System,

Software Engineering Handbook, McGRAW-Hill Book Company, New
York, 1986.

[G0L,1986]Goldberg, R., "Software Engineering: An Emerging Discipline," IBM

System Journal, Vol. 25, Nos. 3,4, 334-353, 1986.

[HAL,1977]Halstead, M. H. Elements of Software Science, New York: Elsevier

North Holland, 1977.

|HEN,1980]Heninger, K. L, Kallander, J. W. and Parnas D. L, Software

Requirements for the A-7E Aircraft, Technical Report, Naval

Research Laboratories.

[HER,1986]Herbert, A. S., "Whether Software Engineering Needs to Be
Artificially Intelligent ", IEEE Transactions on Software
Engineering, Vol. Se-12, No. 7, 726-732, July 1986.

[KAT,19S5)Ketke, W., "On "Learning Language"", The Al Magazine, 24-51, Fall

1985.

[LLiB,1986lLubars, M. D. and Harandi, M. T., "Intelligent Support for Software
Specification and Design", IEEE Expert, 33-41, Winter 1986.

153

[McC,1976]McCobe, T. J. "A Complexity Measure." IEEE Transaction on

Software Engineering, Vol. Se-2, No. 12,308-320, December 1976.

lMcC,1982)McCracken, D. D. and Jackson M. A., "Life Cycle Concept Considered

Harmful". SEM(7,2), 35-39, April 1982.

[MOS,19S5lMostow, J., "What is Al? And What Does It Have to Do with

Software Engineering", IEEE Transactions on Software Engineering,

Vol. SE-1 1, No. 1 1, 1253-1256, November 1985.

[NEL,19661Nelsen, E. A., "Management Handbook for the Estimation of

Computer Programming Costs", System Development Corporation,

NT IS, No. AD-A648750, 1966.

[PUT,1978]Putnam, L. H., "A General Empirical Solution to the Macro

Software Sizing and Estimating Problem.", IEEE Transactions on

Software Engineering SE-4,4, 345-361, July 1978.

[PUT,1960]Putnam, L. H.,et. Software Cost Estimating and Life Cycle Control.

New York: IEEE Computer Society Press, 1980.

[SAH,1982lSahni, S, Concepts in Discrete Mathematics, The Camelot

Publishing Company, Fridley, Minnesota.

[TER,1986]Terwilliger, R. B. and Campbell, R. H., "PLEASE: Predicate Logic

based Executable SpEcifications", ACM, 349-356, 1986.

[VOV,1985]Yovits, Marshall C, Advances in Computers. Academic Press, INC,

1985.

154

THE ANALYSIS OF THE SOFTWARE PROCESS MODEL

by

VING-CHI CHEN

B.S., Eastern Michigan University, 1982

M.S., Eastern Michigan University, 1983

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1988

The nature of software engineering has been that the development of most

methodologies has come from experiences rather than by using

mathematical derivations. It is impossible to attain the status of

scientific discipline unless software engineering is built upon a sound

foundation of measurement like other engineering areas. This paper

attempts to find a way to develop measures by using scientific methods.

These measures are developed using the Software Process tiodel(SPM).

In this paper, the SPM is described. The measure development paradigm is

presented. Measures of waste, effort, progress end stability are developed

using the paradigm. The measures are applied to data from CS540-CS541

projects (Spring 1988). The measures for waste, progress, stability and

progress are evaluated.

