AN ALGORITHM DEVELCPMENT PROGRAM
USING WARNIER-STYLE BRACES

by
JOSEPH KENT CAMPBELL

B.S., Kansas State University, 1971
M.S., Kansas State University, 1976

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE
Department of Computer Secience

EANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Approved by:)
il U iRty
,‘C'J /,/{5,4 Z / 7. ﬁ{_ Lé/)(-

Major Frofessor

Al1L202 18290
LD sl S R
2668 TABLE OF CONTENTS
K

é?f page
LIST OF FIGURES.eeevsseseeeeensnnnesersnnseseeesnnnnerenns 111
ACKNOWLEDGEMENTS:ssesesssassvssssoovsasacsstansscanssasnnnse 1V
CHAPTER ONE = INTRODUCTION..secovvescosncosessssescsssssosns 1
CHAPTER TWO - REQUIREMENTS.ecceccecsscccvsccsaccvossscacsces 11
CHAPTER THREE « DESIGNeesvscescvssosesescossscavcssnssssnes 13
CHAPTER FOUR = IMPLEMENTATIONssscosooscvoscososssssscsseses 19
CHAPTER FIVE = EXTENSIONS AND CONCLUSIONS.eeeceessvecsasese 30
Selected Bibliographyeesscsscssossscessecsccssssscssnsnnsssse 32
APPENDIXES

A User's Guideeseceessescescsssvesasssccscsssscncsse 35

B Programmmer’'s Guidecseccoscececsoscscescsscncassscse Ui

c source code...".........Q......-........'.I...". 58

ii

LIST OF FIGURES AND TABLES

page

Figure

3.0 Hier’al"ctly Diag‘am 08B0 SREONCIRNTROPPPI PRI R GO TR SR 1ll

301 Scl"een Save-File- Befot'e Sorting LI I AL N N I I R RN R A NN 16

4,0 Sorted and Assembled Warnier-Orr Diagram «.e...... 22

n.1 Perusal of Screenﬂ LEL B IR B I BN BB NE I B I BN BN BRI NN NN RN R 2u

iii

ACKNOWLEDGEMENTS

I would 1like to thank my Major Professor and friend, Dr. David
Gustafson for the consistent encouragement and Lelp he has given me
during this long process. Special thanks also to my other committee
menbers, Dr., Virg Wallentine, Dr. Paul Fisher, and Dr. Elizabeth Unger

for their support and confidence.

This report would never have been completed without the backing of my

wife, Shirley. I hope I appreciate her as much as she deserves.

iv

CHAPTER ONE - INTRODUCTION

Background

The concept of top-down design is an abstract idea which is difficult
for some computer science students to grasp. The difficulty of
visualizing top-down development is especially noticeable in students
Just starting in computer science. This is due in part to the method
by which lower level problems are presented. Often in beginning
courses the problem definition phase 1is done independently of the
student, either by an author or the teacher, Students usually co not
have developmental questions as part of the programming assignment.
Rather the first problems require little more than coding a solution.
Thus the student begins work in computer science encouraged to
approach problems in a wholistic manner rather tharn using true

top-down methodology [Schn 82,Hass 82b].

Hassell [Hass 82a] points out that thinking in a top-down manrer may
be foreign to some students. If one has never worked on a prograc that
is too large to comprehend totally (i.e. wholistie) ther it is
difficult to see the real need for breaking the a probler into
modules. Meyers [Meye 78] reminds us that in the past, introductory
instruction had in fact often worked in reverse, starting frem
instruction writing and then working back to earlier stages of design

and requirements.

The advent of interactive programming has also contributed to poor
programming habits. "Interactive programming is particularly prone to
those problems that result from the lack of a systematic disciplined,

thoughtful approach to software development™ [Well 81)]. Visualizing

2
problems as a series of asmall steps to be executed seems to be a
simple, straight-forward idea on the face of it, but to put this inte

practice requires a great deal of patience and thought.

Beginning students are naturally apprehensive about getting the task
done and are anxious to view the end result. The effort required to
break the problem down may seem like a waste of time and effort,
especially if the problem is stated in such a way that the solution is
more or less obvious. If students were better able to visualize the
top=down design then the concept should be easier to understand [Hass
82b]. It is important that students understand the concept since it
is the one of the important principles of programming and sof tware
engineering., It has been difficult, however, to incorporate structured
design principles into initial courses on programming. It is
important that the design methodology does not appear to be more of a
burden than an aid, because at the beginning stages the methodology

may not be essential [Well 81].

Survey of Pertinent Literature

In this literature survey this author will discuss the evolution of
top-down design from established problem solving techniques, examine
the research pertinent f¢ learning programming, and discuss the
implications of this research to program development and software
engineering, Also reviewed will be some of the software tocls which
support top-down design and construction. The study of how humans go
about problem sclving has taken on renewed vigor in the past fifteen

or so years[Scan], primarily due to the rapid development of computer

3
science and the skills necessary to put problems in a form which
computers can use., There is general agreement that the problem to be
solved must be wunderstood as a first step [Scan 77,Hunt 62,Jack

75,Thar 80].

After the problem is understood, the person must make judgements as to
relevant knowledge[Jack 75]. This second step means that the person
must place the npecessary facts of the rproblem into their proper
relationship. The next step is to construct some course of action,
which depends heavily upon the success of the first two steps.
Generally a problem, especially one which can lead to a computer
solution, will have many possible solutions. Thus this =step involves
discriminating between the choices and making the best possible
selection of a solution. It has been shown that this selectien
process correlates gquite well with the experience 1level of the

incividual [McKe 81].

The final step in this problem solving technique is to implement the
decision. Jackson, Scandura, and Brooks point out that although we can
show decision making and problem solving as somewhat discrete steps,
the semanties of these parts may be impossible to determine [Jack
75,Scan 77]. For instance, how does one determine when true
understanding of a problem is reached? The need for understanding the
mental processes involved in problem solving has always been reslized
by researchers, but the need to apply research principles to the art
of programming came into clearer focus in the mid 1670's as a new

discipline called sof tware engineering began to take definite form.

]
As sof tware engineering developed, the techniques of problem solving
were used as the foundation of methodeclogies. Sore of these
techniques were founded on facts but the application to ccmputer
problem solving also included the experiences of software designers
and intuition [Mohe 82], [Tria 79]. Some ideas about problem solving
were extended to become principles of software engineering without the

necessary basic research to prove the connection [Mohe 82,Curt 83].

Scme of the psychological research about problem solving and short
term memory found its way into the computer science literature. In
particular, one theory 1is that humans can conceptualize about seven
items, plus or minus two, at a time [Mill 56]. The magic number seven
should not be used to argue that a program should consist of no more
than seven modules or that a leader’'s span of control is seven people.
Issues such as these are affected by processes unrelated to those
under which the magic number seven was validated [Curt 83]. Other
ideas, such as viewing problem solving as a series of discrete steps
were applied to the new science. While these ideas were wvalid in
their original context, the application to the pew science was not
based on established research [Mohe 82]. Quite rpaturally, as one
might exzpect, personal observations as precepts sparked a great deal
of controversy, witness the debate about GOTO's., Initially, there
were a few attempts to verify the fundamentals of software engineering
and the mental processes involved in programming i1in a laboratory

setting [Mohe 82],

Starting in the late 1970's, a great deal of research has been carried

out to verify the wisdom of programming techniques in general, and

5
sof tware engineering principles in particular [Mohe 82]. Much of
these research efforts have been concerred with exactly how persons
learn programming and the best way to develop curriculum to teach
programming concepts. Brocoks [Broo 80] points out that if computer
science researchers are to maintain creditability with behavioral
researchers in other areas, we must pay clcose attention to
methodclogical issues. Thus we must be careful about such issues as
subject selection, examination enviromment, and performance

requirements to insure the data results are as valid as possible.

Marny factors influence the ways in which programmers approach the task
of thinking about problems and writing programs. This makes tke
selection of subjects an extremely difficult task [Broo 80]. IMoker
[Moh 82] makes the point that in several reports, the variability due
to subject differences often outweighed variability cdue to the
incdependent variables. The problem of paucity of good basic research
is further complicated by the realization that the results may only
apply to a narrow range of application and may or may not be valid as

extensions to programmers in generall[Broo 80].

Despite these limitations, some interesting research has been
reported, especially in the areas of cognitive style and what sorts of
sof tware tools are bepeficial in the development process. Cognitive
style is a measure of how one approaches learning and problem solving
[Hass 82a]., It is a collection of preferred ways of viewing one's
surroundings, thinking about relationships, and solving problems,
Hassell [Hass 82a] reports on findings that show subjects are strongly

influenced by their frame of reference in other situations. Subjects

6
who are strongly influenced by the clues and structures of their
surrounding fields are called "field dependent®™ and at the other
extreme are subjects who seem to funetion by some internal standard
and can largely ignore extraneous clues in their surroundings. For
instance, instructors at Tulane noted that field dependent persous,
who traditionally do poorly in first rrogramming courses, were doing
better than expected in a course using a highly structured design tool
called Structure Charts [Hass 82a]. An ensuing study led to the
conclusion that the use of highly structured techniques provides the
field dependent student with a structure to impose on the problem

[Hass 82a].

There is no correlation between cognitive styles and intelligence, but
differing cognitive styles have implications in the teaching of
programming. Field independent persons can often impose their own
organization to a problem, whereas field dependent persons finc¢ such
things as Warnier=Orr diagrams and structure charts very helpful in
organizing their ideas., However, graphical aids have been shown to
help both groups [Hass 82al. The traditional flowchart is not
generally considered as a good graphical aid because it forces program
design to early and is difficult to comprehend and even more difficult
to modify, especially for extremely large programs [Fass 82b].
However a grapbical design tool utilizing a tree like diagram has been
shown to provide good results when used with beginning computer
science students [Hass 82a]. An enhanced version of z Warnier-Orr
diagram producing program, while not researched fully, has shown great
promise, not only as a design tool but for documentation as well [Conr

84].

7
Steele [Stee 83] experimentally investigated the cognitive processes
used during the design phase of the development cycle. This study
determined that a person having the skills required to specify steps
leading to a solution does not imply the reverse. That is, when
presented with a solution a person may not have the skills to
recognize the problem which led to that solution. At present, much of
the materjal developed to teach programming treat design as a single
cognitive skill.In his review of human factors research, Curtis [Curt
83] highlighted three principles which are supported by various
studies carries out over the past ten years. First, comprehension 1is
aided by a structured control flow, Second, languages should have the
capacity to handle a rich variety of data structures. Third, it has
been shown that task comprehension 1is enhanced when specifications
make clear the information concerning data structures and

organization.

Wexelblat [Wexe 81}, in his informal survey of programmers, found that
programmers are strongly influenced in some cases by their first
programming language and stronger yet by how they were taught, He
makes the point that it is extremely important to learn programming as

a total concept and not just translating problems into code,

For the most part, research has shown the original ideas about
top-down design and structure programming are valid [Curt 83]. It is
important to remember that what we call software engineering is
inextricably intertwined with how we learn to program. One must
remember, however, that education in software engineering is

fundamentally different fror educaticn in computer science [Free T76].

8

The twec do share a large area of concern, but software engineering
curriculum should also include teaching in management science, design
methodology, and interpersonal communications. As Steele [Stee 1983]
stated: "Through the eyclical scrutimy of both learning and teaching,
the greatest inroads are made to the development of an effective

curriculum. ¥

A number of software tools have been developed over the past five to
ten years [Houg 80] which emphasize, among other things, top-down
development and the azutomation of the programming process. These
programs tend to fit into two broad categories. Some of the programs
are intended as documentation aids and the other group is mostly
concerned with code generation. Occasionally there is some crossover
when programs intended for code development lend themselves as
documentation instruments. The reverse is seldom true [Tria 79]. The
objective of the majority of these software aids is to produce good
documentation of the completed design. It must be remembered "they

offer minimal help in the design task itself®[Tria 79].

Tools help provide an interactive programming envircmment which allows
the uzer to not be concerned with details of syntax and concentrate on
the creative aspects of programming,. Many of the programs generate
code, such as the Cornell Program Synthesizer[Teit 81]. Some of the
programming aids generate graphics which illustrate the program
structure. Triance discusses a system which draws structures much
like the Jackson Design Method depending on how the programmer
describes the control flow, Scme of the generators help

nonsophisticated users by supplying screens which quiz the individual

9

for informaticn.[Radi 82] As the fields on the screen are filled, the
program interacts with a data base to produce a program. These types
of geperators are best suited to produce standard reports. Many of the
programs are language syntax directed and feature extensive error
checking combined with diagnostic statements [Akin 821, [Teit B81].
Several of the development tools look at data flow and data
modification as the basis for the tool [Akin 82], [Roma 79]. This
would seem to agree with research carried out by Chand [Chan 80] and
Balzer [Balz 81] which examined program development from the

standpoint of how data is modified.

Program generators can increase code production and prograrmer
efficiency, but true automatic programming has not yet been realized.
In a review of three program generators Moskowitz [Mosk 83],
erphasized that while there are some automatic code generators, no
tool has been developed which does creative thinking. One still has to

know how to program before the code generator is of much value!

Objective of the System

The process of software development should be enhanced by the
development of a system which would provide help menus for program
development, make provisions for top=-down refinement, and be screen
oriented for statement input. A possible way to accomplish these goals
is to have a system capable of providing for expansion of any program
statement using a methodology similar to Warnier [Warn T4]. This
methodology would provide the templates needed for screen input and at

the same time allow for decomposition of a problem.

10
The goal of the test was to have a problem solving tocl which would be
useful in a variety of ways. That is, we wish to develop a tool that
will be useful for all phases of program development, including the
initial understanding of the problem, will provide for top-down
development , and will also be wuseful as a documentation instrument.
We are interested in providing a development tool which reguires
little experience, provides internal development instructions, allows

for updates, and provides an easy-to-follow display of an algorithm.

1

CHAPTER TWO - REQUIREMENTS

The operation of the program should be as self-explanatory as possible
such that a minimum of preliminary study about the ¢rprograc is
necessary. The program should contain the necessary prarpts and
internal instructions so that the program will be just as useful to a

novice as to an experienced programmer.

The system should provide the user with some tutoring in prograc
development and have the capability of providing a menu driven help
facility for more specific instructions., The tutoring should come
early in the program execution and experienced users should be able to
bypass the tutering. The help facility should be available from
anywhere in the program and the return should put the user back to-the

place from which the help was called.

The program should have the capability of ‘'expanding' a prograc
statement. That is, the system should be able to produce a new screen
on command with which to amplify the meaning of any statement. This
expansion should be clearly related to the statement that was expanded
and should have some c¢lear numbering system showing the order of

expansion.

The user should be able to peruse the screens comprising the algorithm
at will and make any changes utilizing a full screen editor. The
perusal should be easy for the user to do and perusal should be
possible in any direction. Changes made to any screen during the

perusal process should be saved automatically.

12
The program should have the capability of assembling statements into a
facsimile of a Warnier=Orr diagram and be able to recover and modify
any previous diagram, The assembled diagram should show clear
relationships between screens so that the order of expansion is not in
doubt. The program should be able to search the current directory for
a previous diagram and recover it into the main data structure for

examination or modification.

The program should inform the user that very limited modification to
an algorithm is allowed between sessions, The user must realize early
in the program's executicn that to recover previous algorithms, rigid

conditions must be met.

The documents produced by the system should have a hierarchical
numbering system which will make them useful as a documentation
instrument for many phases in program development. The numbering
system should clearly show which line was expanded and its

relationship to any previously expanded lines in a hierarchy.

13

CHAPTER THREE - THE DESIGH

To utilize the file acecessing capabilities of the UNIX Operating
system and provide the desired screen oriented feature, the design
decisicn called for the use of preconstructed screens which would
display programming instructions on Warnier-Orr style input templates.
These screens are simply files containing the desired instructions or
template which could be copied to the screen as needed. UNIX allows
one to open a number of files with relatively simple commands during

program executicn.

A stored algorithm in the file system program can be recovered for the
sessicon, but this requires that the file remain substantially -
unchanged by some system editor in the interim., By substantially
" unchanged the design dictates that no lines shall be added or deleted
since this will change the fixed screen size. The finished diagrar
also has two header lines which the program bypasses in the recovery

process, so those must remain undisturbed.

The user help requirement was met by adopting a system of information
screens which would be available at the start of the program
supplemented by a menu-driven help command that would be available
from anywhere in the program (see Figure 3.0). The information
screens can either be perused opne at a time or bypassed for the most
part if the user doesn't need them. Once in the help area the user may
select frar a menu of specific screens and examine cne or all the
screens inp any order and when finished the return is to the screen

from which the help call was made,

! Main |
| Program |
s
i
4
]
| !
i
| Initialization | |
| Section] H
!
I
| |
]
]
! ! '
| New File | | 01d File ! | Command |
| Functions | | Recovery | ! Interpreter !
. PR -_-_--? ______
|
! ! ! | H
i Screen | | (H)elp | | Editer | | Perusal | | Diagram
| Display | | Facility | | Functions | | Functions ! | Assembly
——————ee- ——ececccses sescccccces sescsosceo—- i Functions
i ! ! L e

o H | i !

i i | | i !
e I P i i ! '
iInstruction|{ | Input | | |] |
| Screens |)} Screems ! | H i i

P | !
i ' ' i ! |
!
| Error Interrupt |
| Functions !

Figure 3.0 Hierarchy Diagram

14

i5

The fact that the program was to be screen oriented, coupled with the
excellent file accessing features of 'C' indicated that the screen
display system be table-driven. This quite naturally led to the use
of a structure in 'C' called a2 structure. The information that seemed
eritical was to store the screen rnumber and the starting location of
the sereen in the screen storage file (see Figure 3.1). This
information would allow for most any operations on the screens such as
tracing the hierarchy, sorting the screens, and overlaying a screen in

the file if changes were made.

CONFIGURATION OF THE PILE WHICH STORES THE SCREENS
BY: Joseph L. Campbell

101
|*PROBLEM DEFINITION SECTION
|

| This i 3 sample input lins, It is logical lips one,

Logical lips 4 expanded = will ba title of expanded soreen.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[———
I

|01.08

|* Logioal line % expanded - will be title of expanded scraen.

| Hew input lipms,

B Byp, <<
Iast,
Logical line 17 expanded - title of expanded screen

|
|
|
|
|
{
|
|
|
|
i
|
!
|
|
I
|
|
|
1
|

104
|*PROQRAM STATEMENT SECTION
| —

| Semple of prograa statement section.

|
1
| Nots on the pext lins the syntax for a 'while',
I
|
|

|

|

|

|

|

| while() do

| begin

|

|#<

1 1 Mote on the next line the myntax for a '‘for’.

I 1 for(RN Jeal]
11 begin)
[)
[)
[

[

11

11

T —

|

101.08.11

|® Logical 1ins 11 expanded = title of expanded screen

| End of expandsd screens,

1 Bxp, <<
Iaat.

Figure 3.1 Screen Save-File Configuration - Eefore

Sorting

16

17
After the problem is defined, a program has three basic parts, input,
program statements, and ocutput statements. Therefore the design
decision was made to have the input screen hierarchy start in each of
those four areas, but provide a common 'hcme' screen fram which the

user could develop the program in any of the four parts.

Encouraging the decomposition of a program is partially accomplished
by having the input screen hierarchy begin in one of four areas. Once
the user has started the program and is at least as far a screen 2, It
was determined that a logical way to provide for top-down development
was to provide a new input template on command whenever a statement
was determined to need refinement. This template would be similar to
the old but have some numbering system which would tie all the
templates together., The new template could in turn be expanded and
this process continue to some finite peint where the statement is

decomposed to the desired level of detail.

To provide the 'expansion' feature, the judgement was that the best
way was to again wutilize the advantages of UNIX and provide a new
screen which would have a label linkipng it to the expanded statement.
This label would actually be the statement which was expanded. This
label, combined with the hierarchical screen nurbering system would
show the relationship between two consecutive screens and alsec allow
the expansion sequence to be traced to the original or amy subsequent

expansion.

To simplify the ordering of the input templates, no deletion of lines

or screens would be allowed. This requirement was a result of using a

18
file to store the screens, When an existing screen is corrected, then
the corrected version must replace the old version in the file, thus
having the screens of a fixed size made the overlay process quite
simple. Sereens stored in the file the first time are appended to the

end of file.

To speed the operation of the program and to arrange the program
functions in a hierarchy, 1t was decided to have the ccmmands be
interpreted in one function with program control always ultimately
returning to that command interpreter. This mode of operationm is
similar to the way UNIX handles editor commands. The only time
program control does not reside in the command function is when the
user i= in the help mode, Having the command control in one function

should make it easier to enhance or modify the program,

Originally it was planned to use some form of the UNIX 'vi' editor for
input to the templates, but the development of a limited editor was
more time-effective. The 'vi' editor is really a large collection of
extremely complex programs which are not well documented and are
written in very sophisticated 'C' code. By using a package of screen
commands called 'curses' it was relatively simple to construct a
small, full screen editor and designate protected areas on a screen
such that input is only allowed in certain places. In many respects
the developed editor behaves like a subset of 'vi', therefore a user

familiar with that editor need not learn new commands.

19
CHAPTER FOUR - IMPLEMENTATION

Because the UNIX operating system is written in 'C', and marny routines
which the program could utilize without modification were written in
1Ct, that programming language seemed to be a very natural choice for
this system development. By using 'C' the system calls could easily be
made and the opening and cl_osing of supporting files was compatible
with the operating system. The screen handling package called 'curses'
is also written in 'C' s0 that was a major factor in the decision to
use the language. 'C' not onmly bhas a structure similar to reccrds in
Pascal, but it allows one to use peointers much as one would use an
array, except the pointer can actually be incremented, thus in effect
one has a dynamic array. 'C' allows one to access files much like an
array, but at a =slight sacrifice in execution speed. This feature
provided an easy way to store and access the template screerms,
Finally, selection of 'C' provided the =zuthor with a good excuse to
learn the language, which i= really a necessity if one is to do wmuch

work with UNIX,

The program has four parts, initialization and recovery, general and
specific instruction screens, input to template screens, and
Warnier-Orr diagram assembly. Initialization and recovery are
accompl ished by prompting the user for specific information which the
program needs to begin operations. The instruction screens are of two
types: general and specific help screens, ary of which may be 1located
and perused as the user desires. The template screens actually display
a stylized Warnier-=Orr brace and input is allowed only within the

confines or the brace., Assembly of the final Warnier-Orr diagram is

20

autaratic as part of the finishing function,

The initialization and recovery sections start the user in the correct
mode or recover a previous algorithm for modificaticn. First, the
program determines if the current sessicon is to be used to develop a
new algorithm or if it will be necessary tec recover an existing
algorithm. This is accomplished by asking the user to respond to
numbered questions by pressing the corresponding number. After the
program determines the purpose of the session, the appropriate section

is executed.

The initialization section reguests information from the user to be
used as headings for the completed diagram. The cursor moves
automatically to the first of two input areas where the user types in
his/her name and the second input area records a diagram title, These
two headings are stcred in a character pointer by increxenting tke
pointer and then written to the file which will tecome the final

Warnier-Orr diagram.

The initialization secticn also takes care of the details of
recovering a previous diagram and storing the reguired information in
the program's data structure. First the program uses a Stream Editor
(SED) command to remove the last line of the Warnier-Orr diagram and
to strip the "Warnier' file of all but the first two lines and rove
the lines to the internal diagram storage file. The program then uses
a 'C' function called 1fseek' which ©positions the read pointer at a
specific byte location in the file, then the screens are examined one

at a time till the end is reached. As the screens are displayed, the

21
screen identification number is copied and stored in the table of
screen data. The starting position of that screen in the diagram
storage file is also noted. Since each screen has a fixed length, the
positicn to be stored is simply the previous position plus a fixed
byte count. This is another reason why the fixed screen size proved to
be a good design decision. That is, one can overlay an old screen
with a corrected version, or in the case of a new screen simply open
the file for appending and write the screen to the file. Each time a
new screen is added, the position count is incremented by the screen

byte size to mark its beginning location in the save file.

One important function of the program is to provide a method of
building the Warnier-Orr diagram, which is accomplished by providing
template screens upon which the user can develop program statements.
The templates are a stylized versicn of the original Warnier brace and
occupy a different portion of the screen, according to whether the
template is first in a hierarchy or an expanded screen. The templates
provide visual reinforcement to the concept of top-down design (see

Figure 4,0).

CONFIGURATION OF THE PILE WHICH STORES THE SCREENS
BY: Joseph K. Campbell

101
|*PROBLEM DEFINITION SECTION

| This is a sample input line. It is logical line one,

Logical 1ime 3 expanded = will be title of expandad screen,

—

® Logioal line 4 expanded - will be title of expanded screen.

| Hew input lins.

® Exp. <<«
Inst,

Logical line 11 expanded - title of expanded screen

I — o —

|
|
|
|
1
|
I
1
i
|
|
|
|
|
|
|
|
|
!
|
|a1.0%
|
|
|
|
|
[
|
l
|
{
|
|
|
|
|
|
|
|
!
|
|
|

101.04.11
|* Loglcal line 11 expanded = title of expanded acreen

| End of expanded screens.

Bxp. <<
Inat,

o
{9PROGRAM STATEMENT SECTIOR

| Sample of program statement secticn.

Hota on the pext lime the syntax for a 'while'.

while{) do
bagin
i d
Note on the pext lina the ayntax for & 'for'.
for PEE NS yeol
begin

b

1
|
|
|
!
|
}
l
i
|
|
|
|
|
|
1
|
|
I

Figure 4.0 Sorted and Assembled Warnier-Orr

Diagram

22

23
A major goal of the program is to encourage the user to deccmpose the
problem, This is partially accomplished by having the input templates
begin in four areas: problem definition, input definitions and
statements, program statements, and output definitions and statements.
After the user has performed the initializatiomn routines and has
reached ‘'screen 2', he/she may request a template for probler
definitions by pressing 'D', The other arezs may bLe reacked by
pressing 'I' for input, 'P' for program statements, and 'GC' for output
statements. If the user iz working somewhere in the expanded screen
hierarchy these screen may also be requested, eliminating the need to
peruse one screen at a time till they are reached., Thus the user has
the flexibility to move around to different parts of the the progran

development at will.,

Perusal Forward
Commands

No action required

Press '2' - 16! or
Press 'N!

Press "D ,'I',"P!',or
100

Press 'E' while on
line to be expanded

Figure 4.1

Displayed
Screens

Initialization
Screens

Sereen 1

]
{

Sereen 2
to
Screen 6

Starting Point
of
Input Screens

!

Expansicns
to
+ Seven Levels

i
i

24

Perusal Backward
Commands

No reverse access

No reverse access

Press 'B' or

Press '2' = 16"

Press 'B',
IDl’lII'IP!" or IO!

Perusal of Screens

25
When a user wishes to expand a statement to greater detail, a request
is made for a new screen, which has the expanded statement as its
title. The reguest command is quite simple. The user simply positions
the cursor anywhere on the line to be expanded and presses '"E', The
program then copies the entire line whick is to be expanded and the
screen identification into two character pointers. The program then
checks the screen identificaticon number against the screen table, IF
the screen has never been expanded then the identification data is
stored in the table, The program then checks to see if the expansion
of that particular line bhas been done before. If the expansion is
‘new', then the program copies the file containing the expansion
template to the screen and the expanded sentence is copied on the
expanded screen to serve as a title and provide an additional logical
link between screens. If the expansion has been done before, the
program uses the data in the screen table to find its location in the
screen_file and copies that version to the =screen. The expanded
sentence is written over the previous title because changes might have

been made to the sentence at some point.

The user may input statements within the limits of the Warnier-Orr
brace using a 1limited full-screen editor. Just as one would write
statements to the right of a given Warnier-Orr brace when using pencil
and paper, the editor behaves in much the same way. When a template
appears on the 3screen, the program moves the cursor to the logical
first line of the brace, The editor allows the cursor to be moved
anywhere within the confines of the brace to input commands, make

corrections, and expand lines.

26
To make the system as simple o use as possible, commands and other
input have single stroke execution. There is one exception to this
feature, and that occurs when the user is typing his/her name and the
program title, which requires a <CR>. The single stroke limits the
mnemonic value of the command to a degree, but single stroke execution
is also used in the UONIX ‘'vi' editor so the intent was to limit the
amount of new editing techniques that the user would need to learn.
There is no 'look-ahead' buffer for input ccmmands however. By not
having that feature, it helps to force the user to carefully consider

the next input command.

The program identifies each input template with a2 unique
identification number which allows the sc¢reens to be perused and
finally assembled into a Warnier-Orr diagram. The numbers begin with
either 01, 02, 03, or 04 depending on whether the user is in the
problem definition section, the input statement section, the program
statement section or the ocutput statement section. As the screens are
expanded the identification number indicates the hierachy allowing for
the screens to be examined in order. Perusal backwards is
accomplished by truncating the last pumber and then searching the
screen table for the identification number and the associated save
file location of the screen in question. Because the screens have an
ordered identification numbering system, the screens may be put in

order to form the final Warnier-Orr.

The template identification is a composite numeral based om the order
in which 1lines of templates are expanded, When a user elects to

expand a line, the program determines the logical line on which the

27
cursor is positioned and appends a dot and the line number to the
existing identification number. Thus the user can tell hcw wany
expansions a screen has undergene by noting how many times numbers
have been appended to any base number. Additionally this provides the
mechanism for giving the screen identifications tkeir hierarchy of
development. Since the base number will be 01, 02, 03, or 04
depending on the area being developed, it is a simple matter of
sorting to put the program parts into their proper relationship in the

final diagram.

The numbering system allows the main data structure which holds the
screen ldentifications and locations to be sorted and the screens tken
assembled to form a Warnier-Orr-like diagram. The program performs a
bubble sort on the structure records using the screen identifications
as the key. Then with the screens in their proper order, the prograc
copies each sereen in order and appends it to a new file called
'Warnier', When the last screen has been copied, the program calls the
Stream Editor and appends the closing line for the last Warnier-Orr
brace, finishing the diagram. Of course, the first two lines were
written to the file earlier, those being the program title and the

author's name,

Screen display, cursor movements, and many of the editor features
utilize a collection of programs, collectively called 'curses'. This
screen handling package 1is used to position and move the cursor,
define windows for the screen, write information to the screen, write
froz the screen to a file, and other functions useful in developing

programs to manipulate the screen. Curses provides several useful

2t
standard variables, ore of which is the standarc screen, which was
utilized exclusively in this program since use of this variable makes
the screen functions behave in a very predictable manrer. l!Many of the
curses routines have been taken from various parts of the 'vi' editor,

thus 1t is very compatible with the UNIX operating system.

Because this program is writtem in 'C', it is composed of a mumber of
short functicns totaling about 1300 lines of code. The functions can
be classified according to the system requirements they suppert. The
general modules are error interrupt handling funections, initialization
funections, editor functions, tutorial functions, and formating
functions. Many of the functions perform in several mocdules, thus the

code is not arranged in clear boundary areas.

Summary

Using top-down development as a methodology for teaching programming
and as a principle of software engineering has been shown to be valid
by research carried out over the past ten years, These findings have
important implications to the two areas since they are so closely tied
in terms of the best way to approach programming. Software tools have
been developed which emphasize top-down design and even generate code,
No tool has yet bDeen developed, however that can do the supporting
creative thought processes necessary to develop programs. It is elear
that the areas of software engineering and how persons acquire

programming knowledge are fertile spheres for further research. This

29
topl fulfills the reguirement for creative thought in program
development and hopefully it will add to the knowledge of the better

ways to approach the teaching of programming.

30

CHAPTER FIVE - CONCLUSIONS AND EXTENSIONS

This system should be wuseful as a general tocl feor initial program

development system.

The expansion feature of this system and the ease of use should
encourage students to develop programs in a top-down manner. The
capability of expanding an instruction provides the user with a
two-dimensional editor that allows for easy tracing of the program
development. By using the expansion, the user Las a simple way of
producing a modularized algorithm which quite logically develops into

functions and subroutines.

Warnier=-Orr=style diagrams, such as this system produces, should have
additional value as documentation for several phases of prograr
development. The system encourages the user to rephrase the problex,
which is included as part of the final diagram., Thus the diagram is a
record of the problem from the definition phase to the algorithm
development phase. This sort of development record should be an

important component of the overall documentation of any project,

The system could be a valuable research tocl if used in a classroam
enviroment to help determine if graphic aids do aid certain types of
learners and in what ways. Some studies have suggested that one
category of students has difficulty in programming because they have
difficulty imposing an ordering schere on unorganized data. A system
such as this should provide the sort of visual organizatiom which

those students need to solve a problem logically.

31

Currently the input screens and associated Warnier-Orr braces are of a
common length, The program cutput would be improved if the braces were

of proporticnal size according to the nurber of lines they cecntain.

Because of the storing scheme for screens, they are of recessity fixed
length. The ability to insert and delete lines as an editor function

would increase the flexibility of the system.

The program could be enhanced in future work by the addition of a ccde
generator based on the developed algorithm. There are several types of
code geperator programs arcund but most of them produce code from some
type of specialized command which requires some programuing knowledge.
A code generator developed in connection with this program would have
the advantage of producing modularized cocde as well as well defined

mocdule interfaces,

Akdin

Balz

Benb

Broo

Chan

Conr

Curt

Free

Hass

Hass

Houg

Hunt

Jack

81

81

79

80

80

84

83

76

82a

82b

80

82

15

32

Selected Bibl iography

Akin, T.; and LeBlane, Richard J. "The design and
Implementation of a2 Code Generation Tool," Software-Practice
and Experience, XI (July 1981), 1027-1041.

Balzer, Robert. "Transformational Implementation: An
Example, " IEEE Transactions on Software Engineering, SE-VII
(January 1981), 3-11.

Benbasat, I; and Dexter, A.S. "The Human/Machine Interface
for Problem Solving," 12th Hawaii Internatiomal Conference cn
Systems Science, XIIT (1975), 60-70.

Brooks, Ruven E. "Studying Brogrammer Behavior
Experimentally: The Problems of Proper Methodology,™
Communications of the ACM, XXIII (April 1960), 207-213.

Chand, Donald R.; and Yadav, JSurya B. "Logical Constructior

of Software," Communications of the ACl, XXIII (October
1980), 546-555,

Conrow, Kenneth; and Graham, Tom W. "A Language-Independent
Program Design Utility", Kansas State Universitv Computing
Lepter Technical Paper, 1984,

Curtis, Bill. "A Review of FEuman Factors Research on
Programming Languages and Specifications,” AEDS loriter, IXI
(March/April 1983), 24-30.

Freeman, Peter; Wasserman, Anthony I.; and Fairly, Richard
E. MEssential Elements of Software Engineering Education,"

Second JInternatiopal Conference on Software Engipeering,
1976, 116-122.

Hassell, Johnette. MCognitive Style and a First Course in
Computer Science: A Success Story," AEDS Mopitor, X1
(July/August 1982), 33-35,

Hassell, Johnette; and Law, Victor J. "Tutorial on Structure
Charts as Algorithm Design Tool,"™ AEDS lMonitor, XXI
{September/COctober 1982), 17-32.

Houghton, Raymond C.; and Oakley, Karen A.(CDS). lLational

Bureau of Standards Software Iools Database, Washington,
D.C., 1980.

Funt, Earl B. Conpcept Learning, Ulew York: John Wiley and
Suns: 1982,

Jackson,, K.F. The Art of Solvings Problems, New York: St.
Martin's Press, 1975.

Jens T9

McKe &1

Mill 56

Mohe 82

Mosk 83

Myer T9

Nati 81

Radi 82

Scan 77

Schn 82

Simo 83

Stee 83

Teit 81

Thar 80

Tria 79

Warn T4

33

Jensen, Randall W.; and Tonies, Charles C. sSof tware
Epgineering., Englewood Cliffs, N.J.: Prentice-Lall, 1979.

McKeithen, K.B.; Reitman,J.S.; Rueter, H.H.; and Hirtle,
S.C. ™Knowledge of Organizational and Skill Differences in
Computer Programmers," Cognitive Psychology (1981), 13.

Miller, G.A. "The Magic Number Seven, PFlus or Minus Two,"
Psychological Review LXIII (1956), 81-97.

Moher, Thomas; and Schneider, Michael G. "Methodology and
Experimental Research in Software Engineering," Infterrational
Jdourral of Map-Machipe Studies, XVI (January 1982), 65-87.

Moskowitz, Robert. "Three Program Gererators," Popular
Computing, II (March 1983), 146-150.

Myers, Ware (Editor). The Need for Software Engineering,"
Computer, II (February 1978), 12-25.

National Bureau of Standards. Proceedings of Lthe
NBS/IEEE/ACM Software Tool Fair, October 1981.

Rading, Howard; and Rautenberg, Lee. "Interactive Software
Automatically Translates Tasks into Frogracs,"™ Electropics,
LV (August 25, 1982), 101-104,

Scandura, Joseph M. Problem Solving, New York: Acaderic
Press, 1977.

Schneider, Michael G.; Weingart, Steven W.; and Perlran,

David M. An Introduction to Erograrming and Eroblen Solying
Mith Pascal, (2nd Edition), New York: John Wiley & Sorns,
1982,

Simons, G.L. "Fifth-Generation Computers: Features and

Research", Software World, XIV (1983), 5-9.

Steele, Anne C.; and White, Kathy B. "Systems Development:

The Processing Stages," AEDS Jourpal, XVI (Spring 1983),
188-195.

Teitelbaum, Tim; and Reps, Thamas. "The Cornell Progranm
Synthesizer: a Syntax- Directed Programming Enviroment,"

Corpunications of the ACM, XXTV (September 1981), 563-573.

Tharrington, J. "New Users Must Tackle Problem Analysis
First," Computerworld, XIV (August 19¢80), 11.

Triance, J.M,; Edwards, B.J. "A Computer Aided Program
Design Project,™ EUROPEAN IFIP, 1979, 621-625.

Warnier, Jean D. Logical Copstructiopn of Progrars, New York:
Yan Nostrand Reinhold: 1974.

Wass 73

Well 81

Wexe 81

34

Wasserman, Anthony I. "The Design of 'Idiot=Proof!

Interactive Programs"™, DProceedipngs, 1973 MNatiopal Computer
Lopference, XLII, M34-M38.

Wells, M.J.; and Rzevski, G. ™Computer Aided Learning of

Sof tware Design," Computer Education, XXXIX (November 1981),
20-23 «

Wexelblat, Richard L. "The Consequences of Ore's First

Programming Language, ™ Software-Practice and [Experience, XI
(July 1981), 733-739.

Appendix A

User's Guide for Algorithm Development Program
Joseph K. Campbell

Abstract

This guide describes a system which allows a user to:

=-peruse screens which provide tutcring problex definition and
program development

-write program statements and refine them to desired cdetail ty
means of an 'expansion' feature which provides a new input area
on command

-develop a stylized Warnier-Orr diagram which provides for easy
tracing of program logic

~print the finished Warnier-Orr diagram if desired

-recover an existing Warnier=Orr diagram for modification.

This system was developed to provide the programmer with visual
reinforcement while providing a methodology for encouraging top-down
development. The visual reinforcement is accomplished by providing tke
user with input to a screen on which a facsimile of a Warnier-Orr
brace is shown., The top-down development is encouraged by providing
screens of instructions on the techniques and a facility for expanding
a program statement till the desired detail is reached. Because the
program provides so many internal instructions and help commands, very

little advance study is necessary to be successful with the syster.

ACCESS TO THE SYSTEM

The location of the commands and permissions necessary to run the
program may be obtained from the Computer Science Department System

Supervisor.,

35

36

Starting Up

When the program starts the user is shown 'screen 0', displaying
preliminary information about the use of the system. The screen
contains a prowpt asking if the user wishes to continue or not. It is
important to mention here that input commands are single stroke
execution. If the user attempts to input more than one command at a
time the results are unpredictable, the worst case being an

undignified exit from the program.

The next screen, ‘'screen 00', is the start of the initialization
process. This screen procpts the user to categorize the session as a
first time use, an experienced wuser constructing a new algorithm, or
modificaticn of an algorithm at some earlier session. The sentences

are numbered and the user responds with the appropriate nucber.

Depending upon the choice made, the next screen will be 'screen 04!,
'screen 0B', or 'sereen O0C', all of which prompt the user for more
specific information needed to start the program. Also included in
these screens is information about recovering existing algorithm files

developed at at earlier date.

If the user indicates this is the first =session, 'form CA' is
displayed and the program asks the user to supply his/her name and a
title for the algorithm. When the name and title are entered a
carriage control is needed to finalize the input. This is the only
time in the program that a carriage return is needed toc input a

command.

37

If the user indicates that he/she is experienced in the use of the
program and will be starting a pew algorithm, 'form OB' is displayed.
This form has a warning message that any existing file named '"Warnier'
will need to be renamed because the npew algorithm being developed will
destroy any existing file in the current directory with that name. If
the user has already accomplished the renaming task, the prograc
passes control for ‘'screen OA' and the user proceeds with the new

algorithm,

When the user indicates that the session will be used to modify some
existing algorithm, 'screen O0C!' will be displayed. This screen
notifies the user that the existing 'Warnier' file must be essentially
unchanged and tells the things that must be the same if the file is to
be recovered correctly. The program then gives the user an opportunity
to exit the program and put the file in the correct crder. If the
file is unchanged since the 1last =session, the prograr recovers tke

file for access by the program.

GENERAL INSTRUCTION SCREENS

After these "housekeeping' chores are finished, the prograc displays
'screen 1', which is the start of the general instruction screens. At
this point the user has a choice of perusing the instruction screens
one at a time using the 'N' command, or regquesting a specific screen
by pressing '2' - '6' for some specific screen. The screens provide
information on how to approach the problem definition phase, a quick
review of top-down design, and how to reach and use the input screens.

When the user is viewing a particular screen and wishes to view some

38
previously displayed screen, then perusal may be done in reverse by
use of the 'B' command. Note that the system distinguishes between

upper and lower case commands.

Screens 2 through 6 provide the following information:

'screen 2' - Gives some geperal information about the program and how
to use the (H)elp, (N)ext, (S)ave, and program exit
commands.

"screen 3' - Provides the user with a diagram showing how the parts of
the Warnier-Orr are labeled and their relaticnship to
each other,

'screen 4' - Dispays a 1list of the input screen editor commands and
the other display commands.

tscreen 5' - This sereen is a quick review of techniques for problex
definitions.

'screen 6' - This is the 'home screen' from which the user brarches
into one of the four input screens. This is also the
screen to which the user will eventually return if

perusal is done in reverse order in the input expansion
screens.

SPECIFIC HELP SCREENS

The specific help screens are intended to supplerent the general
direction screens by providing more detailed help in a variety of
areas. Once the user has reached 'screen 1', then the help menu may be
requested at any time by pressing 'H', This moves program control to
a 'help area' which means that the user may continue to request help
screens as long as desired, including the main menu screen. Return to
the screen from which the (H)elp request was made is accomplished by

pressing 'r' or any key other than "K' or '0'-'9',

The specific help screens are viewed by requesting a menu nucber

39
listed in the main help screen. If the user is viewing some numbered
help screen and wishes to see the renu again, all that needs to be
done is press 'hL'.

The specific help screens provide informaticn as follows: '0' - Lists
a summary of the editoer commands and their functions.

'"{" = Discusses some techniques for defining problems in
understandable terms.

12' = Introduces the part of the algeorithm development which
defines irput statements and data definition.

3" -« Shows how the algorithm development prograr can be used to
define cutput formats and values.

T4t - VUriting program statements and using the expansion feature
to refine them is introduced con this screen.

15" = Detailed instructions on the use of the expansion feature
are given on this screen alcong with a diagram showing how the
screen numbering system indicates the development hierarchy. The
scereen alse discusses perusing forward through finished expansion
screens.

'6' = This screen shows a small hierarchical path of expanded
screens and how to peruse screens in reverse order,

'7* = The progrem will write the syntax of 'wkile' and 'for!
loops on input screens on command.,. This screen shows how they
appear on the screen and the commands necessary to display ther.
'8' = This screen has a diagram illustrating how the Warnier-Orr
diagram arranges the expanded screens for printing and the
command recessary to start the ending seguence.

197 = Gives directions on how to reack the various starting
screens for problem definition, input statements, prograc
statements, and output statements.

USING THE PROGRAM DEVELOPMENT SCREENS

Choosing the Appropriate Input Area

The program provides input screens for algorithm development in four

different sections. These screens may be reached by pressing 'D' for

the problem definition section; 'I' for the input section; 'P' for the

40
program statement section; and 'G' for the output section. Once the
user has progressed at least to 'screen 2', any of the input screens

may be requested by pressing the appropriate key.
Input and Editer Commands for the Input Screens

Once the user has an input screen displayed, the appropriate program
statements may be entered to the right of the Warnier-Orr brace shown
on the screen. The cursor will be positioned on the first logical line
of the brace, The program will not allow the cursor to move anywhere
but within the confines of the brace., To actually write characters to

the screen press 'i' for input mode, '"ese' key will return froam input.

Movement around the input area is accomplished by using the 'h' fer
left , 'j' for down, 'k' for up, and '1' for right movements, The

backspace key and space bar also provide horizontal movement.

Corrections may be made to existing text in by several simple
commands. Insertion in a line is accomplished by pressing 'a', which
inserts text in a line and moves the ending text to the right at the
same time. To escape fram 'a' or append, press the 'ese! key. To
delete text one character at a time, press 'x', To delete a line from
the cursor position, press 'z', Note that these commands are quite

similar to the UNIX 'vi' commands.

The program will display the format of a 'while! or 'for' loop on
command if there are sufficient lines remaining on the Warnier-Orr

brace to do so. To display the ‘'while' format, press 'w' and 'f' to

b1
display the for lcocop. These loops are displyed on the cursor position
line starting at the first position of the line. Any existing text on

the line is destroyed.

Using the Statement Expansion Feature

The expansion feature allows & user to refine any statement to some
desired level of detail. This is accomplished by providing a new input
screen on command which has a clear link to the 'expanded' statement.
A new input screen for a logical 1line is provided when tke user
presses 'E' and the cursor is on the line to be expanded. The link
between the expanded sentence and the new input screen is established
in two ways. The expanded sentence appears as the title of the new

input =screen rear the top of the screen.

The other 1link is established by the identification muxber of the
screen which is in the upper 1left hand corner of the screen. This
number is directly related to the number of the expanded line. The
identification number is constructed by appending the number of the
expanded line to the existing identification number. Thus a number
such a 01.03.04 shows that the base screen '01', which is the problem
definition section, has been expanded two times. The first time line
03 was expanded and then line 04 of that expansion screen was itself
expanded. Expansion of any particular line may be done to seven
levels. Any 1line of a Warnier-Orr brace may be expanded in any
particular order. The system will assemble them in the correct

sequence at the end of the session,

b2

Perusal of the Screens

Perusal may be done in any order, That is, 'forward' or in reverse
order. To peruse forward requires the use of three commands,
depending on the part of the program in execution. The 'i' command may
be used to peruse the instruction screens up to 'sereen 6'. At this
point the system must be told which input section to display, by
pressing 'D*, 'I', 'P'y, or 'O, Lf ter pressing one of these, the
forward perusal command is exactly 1like the (E)xpansion command. To
view the desired expansion screen, position the curser on the
appropriate sentence and press 'E'., If that line was previously
expanded, the screen will display the old expansion, otherwise a new
screen comes on as before. Any changes the user happens to make while

perusing will automatically be saved.

Perusal backward is accomplished by using the (B)ack command. Fressing
'B* will display screens in reverse order. If the user is in any of
the input screen sections the system will peruse the screens in
reverse order, following the crder indicated by the screen
identification number. When reverse perusal causes 'screen 6' to be
displayed, further reverse perusal will display the instruction
screens in reverse order. Again, any changes which the user happens to

make while perusing will automatically be saved.

Perusing the screens is exactly like perusing a 'tree structure', thus
to reach certain 'branches', the user must peruse to the 'base' ¢f the
'tree' and then back out to the desired 'branch'. In this analogy,

the 'base' would be 'screen 6', and the 'branches' are the expansion

43

screens, Perusal and expansion may be made in any order at any time.

FINISHING UP

The Stop Command

After the user is finished with the algorithm or simply wishes to
terminate the session, then the (S)top command is used. When the user
presses 'S' the system will procpt the user for necessary further
ccmmands. It is extremely important not to issue any commands till the

the system reguests them.

Storing and Printing the Warnier-Orr Diagram

The system assembles the input screens in the correct order to form a
Warnier-Orr diagram with a vertical alignment (see figure 3). The user
may elect to have a hard copy of simply exit the program. The finished
diagram is stored in the user's current directory under the name
'"Warnier'. That file may be examined Jjust a one would look at any
other file and may even be modified, however the user must be careful

not to add or delete any lines or change any identification numbers.

EARLY EXIT FROM THE PROGRAM

The program may be exited at any point in the program by pressing 'Q'
or the '"DEL' key. Use of these two exit methods should only be used
when the user desires not te¢ save amy file. These exit methods
destroy any work accomplished during the current work session, thus

they should be used with extreme care,

Appendix B
Programmer's Guide for Algorithm Development Progran

Joseph K., Campbell

Abstract

This guide describes a system a user to:

=-peruse screens which provide tutoring problem definiticon and
program development

=-Write program statements and refine them to desired detail by
means of an 'expansion' feature which provides a2 new input ares
on command

-develop a stylized Warnier-Orr diagram which provides for easy
tracing of program logic

-print the finished Warnier-Orr diagram if desired
=recover an existing Warnier-Orr diagram for modification.
OV ERV IEW

This system is a form display program which accepts input to specific
areas on the screen., The main data structures are the external
supporting files, a table which keeps track of how screens are stored
ina file, and a group of global variables that coordinate the
activities performed cn the data structures, A key feature of the
program is its capacity to 'expand' a given input line such that a new
input screen appears that 1s conceptually linked to the input line.
The system also supports a small editor with full screen capability,
When the user indicates he/she is ready to stop, the program sorts the
screen table and constructs a Warnier-Orr diagram, stores it in a file

named 'Warnier', and prints a copy if the user so desires.

by

45
FILE SUPPORT SYSTEM

The files which support the program are those which permanently reside

in the directory and those created by the program.

Permanent Files

The permanent files are those which display information to the user
and files that will be used for input. Al of the support files are
of a fixed length, exactly twenty-three lines. The files are of fixed
length to simplify the storage of completed input files which will
later form the Harnier-Or;r diagram. The program uses the same
function, called 'filecopy' to copy files from the file system tc the
screen. This function is called from some function which opens a
specific named file, then passes a file pointer to 'filecopy'. lote
that when characters are written to the screen, a function called
'addch' must be used. If some other function is used, when the screen
is subsequently copied to a file and later recopied to the screen, an

error 1s generated by the system.

Created Files

The program creates three files while in execution. The first is the
file, called 'scrnfile', in which the input screens are stored. The
second is a file in which the current screen is stored if the user
requests to view help screens. The 1last is really a permanent file,
named 'Warnier', in which the completed algorithm is stored and placed

in the current directory.

4e

SCREEN TABLE

The screen table is a global array of 'structures' which is much 1like
an array of records in Pascal. An individual structure contains two
elements, a character pointer, 'expid', and an integer, 'expos', which

in this case is a special 'C' language integer of type 'long'.

In 'C' pointers have some very special capabilities and some
unexpected restrictions. A pointer may be incremented in 'C' whieh in
effect gives the user a dynamic array. However, one rust be careful to
allocate new memory for each pointer used, especially in a structure,
or 'C' will write all information to a common address. What this mears
to the user is that if the pointers in a structure must have rew
memory allocated for each one. If this is not done, every time new
data i=s put in a pointer, all the pointers will be changed to the same

thing.

The long integer is used to keep track of where a screen is stored in
the file. The number indicates the beginning position of the first
byte of the stored screen. 'C' has a function called 'fseek' by which
the user may position the file pointer anywhere in a file, then read
from and write to the file, Thus a file may be treated much like ar

array but with slightly slower access.

GLCBAL VARIABLES

The global variables are used to control the irnteraction of various

functions and to control limits on certain data structures. The global

47

variables and their properties are:

1. Screen Control Variables (integer)

2,

lines

cols

the permanent record of vertical cursor position

the permanent record of horizontal cursor position

xp1 - the left limit of Lorizontal cursor movexent

xp2 = the right limit of korizontal cursor moverent

ypl & the upper limit of vertical cursor movexent

yp2 - the bottom limit of vertical cursor movement

Table Fointers (integer)

delta

newexpos

curpos

lastpos

the amount of bytes added to 'expos' of the screen
table each time a screen is added to the screen file

the starting position for saving screens in the
screen file

the starting position of a screen to be copied from
the screen file or an updated screen overwriting a
previously stored screen

the starting position of the 1last screen in the
screen file

Miscellaneous Global Variables (integer)

true
false

nestlvl

btriger

form

explvl

goingback

canmvcur

used to simulate a bocolean true condition
used to simulate a boolean fzlse condition

the memory block size to be allocated for each new
character pointer

tells the system if a screen file has been created
during this session so it may be erased at the
conclusion of the program

tells the program which screen is being displayed
and when the user has reached the input screens

informs the system of how many expansions an
instruction has undergone

informs the system that perusal to the home screen
is coming fraw the input screens or the information
screens

cursor can only be moved around the screen and

48

editor commands used when displaying the input

screens

done - a simulated boolean which is set as a condition for
the program to exit the command interpreter function
and exit

the program.

SYSTEM OPERATION

Initialization Operations

The initialization routines require some user input so that the
program can determine if a previous file needs to be opened or a new

ope created.

The scenario when a new file is to be created is as follows:

The user responds to a question which indicates that this session
is to be used for a new algorithm, After opening a file named
Tsernfile', the system displays a screen with two input zones,
accepts the inputs and stores the information in character
pointers. The information is displayed for the user toc check and
if correct the program uses a special function which appends the

pointers to 'sernfile’,

If the session is to be used to update and existing file the actions

are:

The system opens the files 'Warnier' and 'scrnfile', calls tke

Stream Editor (SED) to erase the last line of 'Warnier', which is

ko
the cleosure of the last brace, transfers the remaining file to
'sernfile', and removes 'Warnier'. The program then uses !fseek’
and 'ftell' to determine the length of the file. The file
pointer is then positioned at the start cf the first stored

screen, which can only be after the two header limes.

The program then displays each stcocred screen so that the
necessary information may be extracted from each one and the data
stored in the table structure. The data to be extracted are the
screen identification and the beginning position of the screen in
the storage file. The screen identification is read inte a
character pointer by a funetion called 'mkstr', which copies the
screen id, allocates new memory, and calls a function to stcre
the pointer in the table structure, As each screen is copied the
structure integer 'expos' is incremented by ‘'delta' thus tke
program knows the starting position of each screen in the file as

well as its identification number.

Displaying the Information Screens

After the initialization process the program displays 'screen cne' and
transfers control to the c¢ommand interpreter function, 'homecopy'.
This function interprets all subsequent commands frem the keyboard
unless the user has asked for help by pressing 'H', From 'screen 1°
the user can give the command 'N'. This command increments the global

'‘form', and displays the file corresponding to the value of 'form'.

Displaying the Input Screens The 'N' command may be used to reach

50
tsereen 6'. This is a special screen because it serves as the home
screen for the input screens which are identified by the function they
perform in building a program, There are four ways in which to
progress once 'screen 6' is reached. The user may press 'D' for the
problexr definition sequence, 'I' to develop input statements, 'F' to
write and expand program instrue¢tions, or 'C' to structure output. In
any case, the behavior of the program is exactly the same for all

areas, thus we will examine the 'D' sequence.

When the user presses 'D', the system opens the appropriate file and
copies it to the screen. The expansion level global 'explvl' is
incremented so that the cursor may now be moved and editor commznds
used, The cursor screen limits are defined and the cursor positioned
on the screen. The display template on the screen is a likeness of a
Warnier=0Orr brace, and input is allowed to the right of the symbol,
(see the section of this guide titled 'Editor Commznds') The user

writes statements to develop the algorithm on the screen,

If any statement needs to be amplified, the user presses '"E' while the
cursor is on the line and the program displays a new input screen. The

steps leading to a new screen display are as follows:

1. The screen identification is copied into a character pointer
and this is compared to the screen identifications in the
table structure to see if the current screen has ever been
saved, If it has never bDeen saved, the screen identification
is put in the table and the screen appended to the end of

tscernfile', If it was previously saved, the position of the

51

starting location is noted during the comparison and the old

saved version is overwritten.

2. The number of the line being expanded is then appended to the
current screen identification to form the expanded sereen
identification. This number is then checked to see if it is
tnew! or 'old' just as was done in the first step. The
sentence which is to be expanded is also c¢ecpied into a
character pointer. If the 1line has never been expanded, the
system opens one of the external {iles 'forme' which is a
Warnier=Qrr template with the brace offset to the right to
indicate a subordinate brace to the one displayed when 'D' was
pressed. This file is copied to the screen and the new
identification number and expanded sentence are also copied to

the screen,

If the l1ine bhas been expanded before, the prograz searches
'scrofile' and copies it to the screen. To finish the display,
the expanded sentence is copied to the sc¢reen, overwriting any

previous sentence that was displayed.

Each time a line is expanded, the operations involved in the original
expansion sequence are repeated. Thus a given lipe may be expanded to
any level of detail =allcwed by the program. The global varizable
"nestlvl' controls how many expansions may be done om a given line.
This global integer is the size of memory reguested from the 'C!
function 'malloc'., Each expansion increases the character length of

the identification number by three {a '.' and the number of the line

52
being expanded), so to determine the number of expansions allowed, the
nestlvl is divided by three. Currently the program allows seven

expansions of amy one line.

Perusal of the Screens

Perusal of the screens may be done in any direction. The perusal
functions are different depending on what sections are in execution.
Perusal of the information screens is done by the program examining
the current status of the global variable 'form', then opening and

displaying the external file corresponding to the value,

Perusal of the input screens in a 'forward' manner is accomplished by
using the same funections as the 'E' command explained earlier. This
has the added advantage of autaratically saving any changes that may

have been done.

Perusal in reverse involves several steps and always uses the command
'B', First the current screen identification number is ccompared to
those in the screen table, Iff it has never been saved, it appended to
the end of ‘'sernfile'. If it was saved previously, the starting
position is noted, the file pointer is positioned by 'fseek', and the
old screen is overwritten. Again, by using this procedure any chanrges

made will automatically be saved.

To located the next screen backwards in the hierarchy, the current
screen identification is truncated by the three end characters and ttLe

result from compared to the identification numbers in the screen

53
table. When the identification number is matched, the position of the
screen in 'sernfile' is noted, and 'fseek' positions the read pointer
in the file. The twenty-three lines comprising the screen are

displayed and the process is repeated for each 'B' command.

When the backward perusal reaches the screen with the identificaticn
number *01* (or '02%, '03', or '04) the global variable 'explvl' will
have reached zero., This is a signal to the program that further
backward perusal will be based on the value of 'form'. The program
uses the global variable 'goingback' to determine from which direction

the home screen is being approached,

The user may also peruse directly back to the '01', '02', '03', or
‘04 starting screens by pressing 'D', 'I', 'P', or 'C'. The command
interpreter functicn calls the functions necessary to save the currert
input screen, then locates the appropriate screen in 'sernfile! if it
has been used. If the particular starting screen has not yet been
used, the program opens the external file and copies it to the

screen,

Storing the input screens

Several 'C' functions make it possible to store the screens guite
easily. The function '"fseek' will move the file pointer to anywhere
one desires in a file, and reading or writing may begin at that peint.
The pointer may be positioned at the beginning, end, or at byte
location in the file. The 'C' function 'rewind' should be used before

each seek to insure proper positioning in the file. Ancther handy

54

function is 'ftell' which returns the byte position of the pointer.

Actuval storage of the files is done in two ways. By comparing the
screen identificaticn to the sereen table, one can determine if the
screen was ever saved, If it is a 'new' file, 'fseek' positicns the

pointer at the end of the file, and the screen is appended.

If the screen is 'old', the location of the screen is noted during tke
comparison to the screen table identifications, and 'fseek' positions
the file pointer at the starting point of the screen. Then a fixed

number of lines are either read to, or from the file.

Construction of the Warnier-Orr Diagram

The input screens display a template which is a stylized Warrier=Orr
brace. When the user has corxpleted a session, the 'I' command causes
a series of functions to be activated which produces a Warnier-Orr

diagram,

First the program checks to see if the current screen has been saved
and opens the permanent file 'Warnier'. Next the screen table
structures are sorted in ascending order keying on the screen
identifications. Then the program copies the first part of f'sernfile’
to the screen and the first two lines, containing the title and
programmer's name, are read and appended to *Warnier'. The screens are
transferred to 'Warnier' in hierarchical order by exawmining each
structure in the screen table in order, locating the screen, and

appending it to 'Warnier', After the transfer is complete the user is

55

asked is a hard copy is desired. If sc the program uses a 'C' systerx

call to print the file.

FUNCTIONING OF THE HELP COMMAND

The help command is part of the operation of the program, but the
commands involved are interpreted by another function, thus tre
discussicon is separate, When the user reguests help by pressing 'E',
the system opens a temperary file and stores the current screen in the
file. Then control is transferred to a function called 'helpareza' and
an external file containing the menu of help commands is displayed.
There are ten external files of specific help hints and instructions
which the user can display by pressing '0' - '9', These may be viewed
over and over because the program remains in 'hkelparea' till the user

presses 'r',

When the user is through and has pressed 'r', the temporary file is

opened and the current screen 1s again displayed. The temporary file

is then closed and removed froc the system.

ERROR INTERRUPTS

The program 'catches' the error interrupts as they oceur and allow a
graceful exit from the program. These error routines are located in

the source code near the start of the program.

MCDIFICATION OF TEE PROGHAM

56
Several properties of the program would probably require modification
to fit local needs. If more expansion levels are required, the global
variable 'nestlvl' would need to be changed. Its current value is 21,
which means that the most expansions of any one line is limited to

seven.

The total number of expansions of all screens is determined by the
length of the structure array. This is determined by 'maxlen', which

is currently defined as 250.

The basis for most modification would include changing the function
'hamecopy'! in some way. This i1s the command interpreter which is a
loop that may be exited by going through the finish sequence or by
pressing 'Q' or 'del', These last two commands cause the prograc to

exit without any file being saved in ary form.

SPECIAL PRECAUTIONS TO BE NOTED WHEN USING 'C' AND 'CURSES!'

When using character peinters to store a character string, be sure to
malloc new memory for the anticipated size of the character string.
As mentioned, 'C' will write information to a common address if
character pointers are used for the same task, such as storing

character strings io a structure,

'C' also supports a file access function called !'seek', but 'fseek'

should always be used when the file access pointer is a character.

Files should always be closed after an operations such as 'read' and

57

then recpened for a 'write', This is common sense but easily forgotten

when coastructing programs.

The function 'rewind' should be used prior to any 'fseek' to insure

one is starting from the beginning of the file.

The position used by ‘'fseek' is in bytes. Note that & terminal line
contains 81 bytes, so to position at a desired line multiply the

desired line by 81.

Appendix C
Source Code

/% TEE INCLUDES FOR I/0, INTERRUPTS
AND SCREEN HAKDLING %/

#include <stdio.h>

#include <signal.h>

#include <curses.h>

/% THE GLCBAL VARIABLES #/

/% number of screens possible #/

#define maxlen 250

/®* Fake booleans %/

fdefine true 1

#define false O

/% screen size in bytes ¥/

#define delta 1863

/% determines how mamy times a screen can be directly #/
/% expanded. number = nestlvl div 3 &/
#define nestlvl 21

/% Tells program an expansion has occured #/

int btriger = false;

/% Global cursor position #/

int lines,cols;

/® The protected areas of the screen %/

int xp1 = 0;

int ypl = 0j

int xp2 = T79;

int yp2 = 23;

/® The current info screen %/
int form;

/% the current number of expansions of the display screen #/
int explvl;
/% The screen table #/
{
struect explocs
/® The identification of the screen #*/
char Pexpid;
/% Sets terminal characteristics for curses #/
initser();

58

/% Error interrupt signals #/

5ignal (SIGINT,die);

signal (SIGSEGV,die2);

signal (SIGBUS,die3);

signal(SIGILL,died);

/% Single stoke #/

ermode();

/% Don't echo input ¥/

noecho();

findstart();

homecopy();

if (btriger == true)
system("rm scrnfile?);

weclear(stdser);

mveur(0,LINES,0,COLS);

wrefresh(stdser);

endwin();

?nt(o);

/% THE ERROR INTERRUPT ROUTINES &/

die()

{

signal (SIGINT, SIG_IGN);

if (btriger == true)
system("rm scrnfile®);

welear(stdser);

wrefresh(stdser);

printf("Died due to signal interrupt.\n"):

mveur{0,LINES,0,C0LS);

endwin();

exit(0);

}

die2()

{

signal (SIGSEGV, SIG_IGN);

system("rm scrnfilem);
mveur(0,COLS-1,LINES-1,0);
printf(®Died due to segmentation violation.\n");
endwin();

exit(0);

}

die3()

{

signal(SIGBUS, SIG_IGH);

system("rm sernfile");
mveur(0,COLS-1,LINES-1,0);
printf("Died due to bus error.\n");
endwin();

exit(0);

}

dief ()}

{

signal (SIGILL, SIG_IGN);

system("rr scrnfile");
mveur(0,COLS-1,LINES=1,0);

printf("Died due to illegal instruction.\n");
endwin();

exit(0);

}

/% THE INITIALIZATION ROUTINES #/

findstart()

{

formO();

next();

form00();

/% up to now the preliminary inst. screens are displayed %/
form1();

findfirst();

}

formO()

{

FILE *p, ®*fopen();

fp = fopen(®"/usr/ joseph/project/formC®, "r");
filecopy(fp);

felose(fp);

}

next ()
{
char ¢;
o = gete(stdin);
switch(e){
case 'y' : return;
break;
case 'n' : die();
break;
}
}

form00()
{
char c¢;
FILE #ff, %fopen();
ff = fopen(®/usr/joseph/project/form00", ®r®);
filecopy(ff);
fclose(ff);
¢ = gete(stdin);
switch(e){
case '1%: formOA();
break;
case '2': formOB();
break;

case '3': form0C();
break;
default : form00();
break;
}
}

/% RECOVERY ROUTINES #/

formOA()
{
char c;
char ®title;
char *name;
char *response;
FILE #fa, ®fopen();
fa = fopen(™"/usr/joseph/project/form0A","r");
response = ®Is that correct? (y/mn)";
title = malloc(70);
name = malloc(70);
filecopy(fa);
fclose(fa);
cols = 5;
lines = 12;
nonl(); ~
wnove(stdser, lines, cols);
wrefresh(stdser);
title = heading(title);
cols = 5;
lines = 17;
name = heading(name);
mvwaddstr(stdser,19,0,title);
mvwaddstr(stdscr,20,0,name);
mvwaddstr(stdscr,22,0,response);
wrefresh(stdser);
¢ = getc(stdin);
switch(e){
case 'y': puttitles();
break;
case 'n': formOA();
break;
default : formOA();
break;}
}

char *heading(ff)
char *ff;
{
char 1 = 0;
iat c;
wmove(stdser,lines,cols);
wrefresh(stdser);
while (({c = gete(stdin)) != '\015') && (cols <= 67)){
switch(e){
case '\010' : wmove(stdscr,lines,cols-1);

wrefresh(stdscr);

COl S==}
ie=;
break;
default: mvwaddch(stdscr,lines,cols,c);
wrefresh(stdser);
£fr{i] = e;
144;
col s++;
break;}
}
(il = TNOY%
return(ff);
}
puttitles()
{

FILE #fg, %fopen();

fg = fopen("scrnfile","a®);
lipes = 19;
writeoneline(fg);

lines = 20;
writeoneline(fg);
?close(tg);

writeoneline(fg)

FILE #fg;

{

int ¢;

int i;

for (1= 0; 1 <= 79; i++){
wrove(stdser,lines,i);
¢ = winch(stdser);
putc(c,fg);
if (1 == 79)

pute('\n',fg);}

form0B()
{
char ¢;
FILE ®ff, %fopen();
ff = fopen("/usr/ joseph/project/formOB", "r");
filecopy(£ff); -
felose(ff);
¢ = gete(stdin);
switeh(e){
default: formQA();
break;
}
}

form0C()

62

{

FILE #ff, %fopen();

FILE #fg, ®fopen();

char ®fi;

char ¢;

long end;

long i = 162;

ff = fopen(®/usr/ joseph/project/form0C?, " r7);

filecopy(ff);

felose(ff);

¢ = gete(stdin);

switch(e){

. default: break;}

system("sed -f /usr/joseph/project/cmdfile Warnier > scrnfile");

system("rm Warnier®);

fg = fopen("scrnfile”, "r");

fseek(rg,0,2);

end = ftell(fg):

rewind(fg);

while(i < end){
fseek(fg,1,0);
filecopy(fg);
ri = malloc(nestlvl);
fi = mkstr(fi);
scrndata[lstpos].expid
serndata{lstpos].expos
rewind(fg);
lstpos++;
1 += delta;
newexpos = 1ij;

}

rewind(fg);

fclose(fg);

}

fn u
’g
. -

formi()

{

FILE #fp, #fopen();

fp = fopen(®/usr/ joseph/project/form1®,®r?);
filecopy(fp);

fclose(fp);

return;

}

findfirst() /® locate the desired instruction form 2-6 possible #/
{
char d;
d = gete(stdin);
switch(d){
case '2' : form = 2;
route();
break;
case '3' : form = 3;

63

case '6' : form = 6;
explvl = 1;
route();

default

}

route();
break;

case '4' ;: form = 4;
route();
break;

case 'S' : form =5;
route();
break;

1

break;

o
.

form =2;

route();
break;

}

/® THE COMMAND INTERPRETER #/

hemecopy()
{

char c¢;
int i;

crmode();
noecho();
while ((ec =
switen(e) {
case 'B' : goback();
break;

case

case

case

case

case

case

case

case

case

case

'EY

getce(stdin)) 1= 'Q' && done == false){

if (explvl > 1)

expand();

lHl
TNy
lil
LE-

lh!
Ijl'
Tt

t]e

break;
helparea();

break;

goahead();

break;

.
L

if (ecamvcur = true)
inchar();

break;
/% backspace key symbol <control> <H> but nonprintable ¥/

L 1]

if (cammveur = true)
optmove(e);

break;
'C' : formD();

break;

case 'P' : formP();
break;

case

Tty

formI();

64

break;
case 10' ;: formO();
break;
case 'S' : finishup();
break;
case 'x' : if (explvl >= 2)
delchar();
break;
case Ta!' : if (explvl »>= 2)
apendch();
break;
case '2' : if (explvl >=2){
welrtoeol (stdser);
wmove(stdser,lines,cols);
wrefresh(stdscr);}
break;
case 'w' : putwhile();
break;
case 'f' : putfor();
break;
default : break;
}
}
}

/% THE EDITOR FUNCTIONS #/

inchar()

{

char d;

nonl();

while ((d = wgetch(stdser)) = '\033")
{

switeh(d){

case '\010' : if (cols == xp1) {
system("beep”);
break;}
else {
wmove(stdscr,lines, cols-1};
wrefresh(stdser);
€0l 3==}
break; }
case '\015' : if (lines < yp2) {
womove(stdsor,lines+1,xp1);
wrefresh(stdser);
cols=xp1i;
lines++;
break; }
else system("beep");
default:
if (eols < xp2) {
mvwaddeh(stdser,lines, cols,d);
wrefresh(stdser);

col s++;
break; }
else system("beep®);

}

char ¥delchar()
{
char #ff;
int 1i;
int delcol;
delcol = cols + 1;
wmove(stdser, lines,delcol);
for (i=0; i<=(xp2-cols); i++}{
ff[i] = winch(stdscr);
del col++;
wmove(stdser,lines,delcol);
}
£elil="\0";
wmove(stdscr,lines,cols);
welrtoeol (stdser);
mvwaddstr(stdser,lines,cols, ff);
wmove(stdser,lines, cols);
wrefresh(stdser);

}

apendeh()
{
char fp;
char ¢;
int i;
int inscols;
int startcol=cols;
int countch = 0;
int addit = false;
while((e = wgetch(stdser)) != "\033'){
inscols = cols;
if (((xp2 - inscols) > 0) || (e == ') || (e == *\015)){
for(i = 0; i <= (xp2 = cols); i++){
fpli] = winch(stdscr);
inscol s++;
wmove(stdser, lines, inscols);}
£pli] = "\0';
if {countch > 0){
woove(stdser,lines,cols);
welrtoeaol (stdser);}
if ((e == ") || (e == "\015")){
if (countech > 0){
mvwaddstr(stdscr,lines,cols=-1,fp);
col ==}
countch==; }
el se
system("beep®);}
else{

mvwaddeh(stdser,lines,cols, c);
mvwaddstr(stdscr,lines,cols+1,fp);
count ch++;
if (eols < xp2)

col s++;

else

system("beep");}
womove(stdsecr,lines, xp2);
welrtoeol(stdser);
wmove(stdscr,lines,cols);
wrefresh(stdser);

}
else
system("beep?);
}
}

optmove(e)
char c;
{
switch(e){
case 'k' : up();
break;
case 'j' : down();
break;
case ': /% a control H is here but non-printable #/

case 'h' : left();
break;
case '1' : right();
break;
default : break;
}
}

up()

{

if (lines > yp1) {
wnove(stdser,lines - 1,cols);
wrefresh(stdser);
-=lines;
}

else
{
system("beep");
mvcur(lines,cols,lines, cols);

}
}

down()

{

if (lines < yp2){
womove(stdser,lines+1,cols);
wrefresh(stdser);
++lines;

67

}
else

{
system("beep");
mveur(lines, cols,lines,cols);

}
}

right()

{

if (cols < xp2){
wmove(stdser,lines,cols + 1);
wrefresh(stdser);
++00l 3}
}

else
{
system("beep");
mvecur(lines,cols,lines,cols);

}
}

left()

{

if (cols > xp1){
wmove(stdscr,lines,cols = 1);
wrefresh(stdser);
-=C0l S}
}

el se
{
system{ "beep");
mvecur(lines,cols,lines,cols);

}
}

putwhile()

{

char #fw;

char #fb;

fw = "while(

fb = "begin®;
mvwaddstr(stdser,lines,xp1+1,fw);
mvwaddstr(stdser,lines+1,xp1+3,fb);
wmove(stdser,lines, cols);
wrefresh(stdser);

}

putfor()

{

char #ff;

char #fb;

ff = *for (Y= (Jtol
fb = "begin®;
mvwaddstr(stdscr,lines,xpi+1,£f);

) do";

)

e

68

mvwaddstr(stdser,lines+1,xp1+3,fb);
wmove(stdser,lines, cols);
wrefresh(stdscr);

}

/% HELP FACILITY #/

hel parea()

{

FILE *ff, %fopen();

FILE #fg, #fopen();

char c¢;

int end = false;

fg = fopen(™saveit", ™");
writefile(fg);
fclose(fg);

ff = fopen("/usr/ joseph/project/help®,®r");

filecopy(ff);
felose(fr);

while (({c = gete(stdin}) I= 'r') && (end != true)){

suitch(e){

case '0': ff = fopen("/usr/ joseph/project/help0","r");

filecopy(ff);
felose(ff);
break;

case '"1': ff = fopen("/usr/ joseph/project/helpi1®, "p");

filecopy(ff);
fclose(fr);
break;

case '2': ff = fopen("/usr/joseph/project/help2®™,"rn);

filecopy(ff);
felose(ff);
break;

case '3': ff = fopen("/usr/joseph/project/help3”, "rn);

filecopy(ff);
felose(ff);
break;

case '4'; ff = fopen("/usr/ josepk/project/helpi®,rv);

filecopy(ff);
felose(fr);
break;

case '5': ff = fopen("/usr/Joseph/project/help5®,"r");

filecopy(ff);
fclose(fr);
break;

case '6': ff = fopen("/usr/joseph/project/helpb™, 'r“)

filecopy(ff);
felose(ff);
break;

case 'T': ff = fopen(®/usr/ joseph/project/help7", "r");

filecopy(£ff);
felose(ff);
break;

case '8': ff = fopen("/usr/ joseph/project/help8","rn);

filecopy(ff);

69

felose(ff);
break;
case '9': ff = fopen("™/usr/joseph/project/help9®, "rn):
filecopy(ff);
fclose(ff);
break;
case "H': ff = fopen("/usr/ joseph/project/help®, "r");
filecopy(ff);
fclose(ff);
break;
default : end = true;
break;}
break;
}
fg = fopen("saveit®,"r");
filecopy(fg);
felose(fg);
wmove(stdser,lines,cols);
wrefresh(stdser);
system("rm saveit®);

}
/® SCREEN DISPLAY FUNCTIONS #/

route()

{
switch(form) {
case 1 : form1();

break;
case 2 : form2();
break;
case 3 : form3();
break;
case 4 ¢ formd();
break;
case 5 : formS5();
break;
case 6 s formb();
break;
default : break;
}
}
?ormZ()

FILE #%fq, %fopen();

cammvcur = false;

fq = fopen("/usr/ joseph/project/form2®, "r7);
filecopy(fq);

fclose(fqg);

}

form3()
{

FILE *fr, #fopen();

fr = fopen("/usr/joseph/project/form3®, "r");
camvcur = false;

filecopy(fr);

felose(fr);

}

formi()

{

FILE #fs, ®fopen();

fs = fopen("/usr/joseph/project/formi®, "r");
camvecur = false;

filecopy(fs);

fclose(fs);

}

form5()

{

FILE #ft, #fopen();

ft = fopen("/usr/ joseph/project/form5", "r");
camvcur = false;

filecopy(ft);

fclose(ft);

}

formb()

{

char %fg;

FILE *ft, ®*fopen();

if (goingback == true){
ft = malloc(nestlvl);
ft = mkstr({ft);
doisave(ft);}

goingback = false;

explvl = 1;

ft = fopen("/usr/joseph/project/formb6","r?);

camveur = false;

filecopy(ft);

fclose(ft);

}

/® THE INPUT SCREEN DISPLAYS &/

formD()

{

FILE #fp, ®fopen();

char #fq;

char #fc;

int i

btriger = true;

cammvcur = true;

if (explvl > 2) {
fec = malloc(nestlvl);
fe = mkstr(fe);
doisave(fe);}

T

T2

£q = "01\0";
explvl = 2;
i = chkstr(fq);
if (i == 0){
fp = fopen("scrnfile®,"r");
fseek(fp,scrndatalcurpos].expos,0);}
else
fp = fopen("/usr/ joseph/project/formD%, "r"):
filecopy(fp);
rewind(fp);
fclose(fp);
startcur();

}

J;'omI()
FILE #fp, #fopen();
char ®*fq;
char #fc;
int i;
btriger = true;
camveur = true;
if (explvl > 2) {
fe = malloc(nestlvl);
fe = mkstr(fe);
doisave(fc);}
£q = "02\0";
explvl = 2;
i = chkstr(fg);
if (1 == 0){
fp = fopen(®scrnfile®, "r");
fseek(fp,scerndatalcurpos].expos,0);}
else
fp = fopen("/usr/ joseph/project/formI®, "r");
filecopy(fp);
rewind(fp);
felose(fp);
starteur();

}

formP()

{

FILE ®fp, ®fopen();

char #fq;

char #fc;

int 1;

btriger = true;

camvecur = true;

if (explvl > 2) {
fe = malloc(nestlvl);
fe = mkstr(fe);
doisave(fe);}

fq = "0B\O";

explvl = 2;

i = chkstr(fg);

73

if (i == 0){
fp = fopen("scrnfile®, "r®);
fseek(fp, serndatalcurpos].expos,0);}
else
fp = fopen("/usr/ joseph/project/formP","r");
filecopy(fp);
rewind(fp);
felose(fp);
startcur();

}

formO()

{

FILE *fp, fopen();

char #fg;

char #fc;

int i;

btriger = true;

camveur = true;

if (explvl > 2) {
fo = malloc(nestlvl);
fe = mkstr(fe);
doisave(fe);}

fq = =03\0";

explvl = 2;
i = chkstr(fq);
if (1 == 0){

fp = fopen("scrnfile®, "r");
fseek(fp,scrndatalcurpos].expos,0);}
else
fp = fopen(™/usr/ joseph/project/formQ", "r");
filecopy(fp);
rewind(fp);
fclose(fp);
starteur();

}

filecopy(ff)
FILE ®ff;
{
int dwn,across;
int ¢
welear(stdser);
wrefresh(stdser);
for (dwn = 0; dwn < 23; dwn++){
c='|;
for (across = 0; across <= 81 && ¢ != '\n'; across++){
e = gete(ff);
mvwaddch(stdscr, dwn, across, c);
}
}
wrefresh(stdser);
}

writefile(ff)

FILE *ff;
{
int e;
int dwn,across;
for (dwn = 0; dwn < 23; dwne+)
for (across = 0; across <=z T79; across++) {
woove(stdser,dwn, across);
¢ = winch(stdser);
putc(e, £f);
if (across == T79)
pute('\n',ff);
}
}

/% PERUSAL FUNCTIONS ®/

goback()
{
explvl-=;
goingback = true;
if (explvl <= 0)
explvl = 0;
switch(explvl){
case 0: form==;
if (form <= 2)
form = 2;
route();
break;
case 1: form = 6;
route();
break;
default: searchback();
break;
}

}

searchback()

{

FILE #ff, #fopen();

static char #ft;

int i;

int d;

btriger = 1;

ft = malloc(nestlvl);

ft = mkstr(ft);

doisave(ft);

ff = fopen("scrnfile®, "r®);

for(curpos = 0; curpos <z lstpos; curpos++){

if((i = strnemp(ft,scrndatalcurpos].expid,strlen(ft)=3)) == 0}{

d = fseek(ff,scrndatalcurpos].expos,0);
break;}}

filecopy(ff);

rewind(ff);

fclose(ff);

if (explvl >= 3)

steur2();
else
if (explvl == 2)
startecur();

}

goahead()
{

char ¥ft;

15

ft = "N cannot be used to progress into expanded forms - use D,0,I,0r

P.%;
if (explvl >= 1){
mvwaddstr(stdser,23,0,ft);
wrefresh(stdser);
return;}
else {
form++;
if (form >= 6){
form = 6;}
route();}

}

char #cpyln(fln)
char #fln;

{

int tempx;

char c;

int 1i;

fin[0] = '#r;

if (explvl < 3)

tenpx = 6;
else
tempx = 14;

for (i=1; 1 < T6; i++){
womove(stdser, lines, tempx);
¢ = winch(stdser);
fln[i] = c;
tempx++; }

return(fln);

doisave(ff)
char #ff;

{

int i;

i = chkstr(ff);
savescer(1i, £f);

}
startecur()
{

ypl = &;
yp2 = 21;
xpl = T;
xp2 = T5;

76

lines = ypi;

cols = xpl;
wmove(stcser, lines, cols);
wrefresh(stcser);

}
/® EXPANSION FUNCTIONS #/

expand()
{
char #fid, ®fln, #fid2;
int c;
/® copies the line being expanded for title of new screen #/
fln = cpyln{(fln);
/% copies the present screen id #/
fid = mkstr(fid);
f£id2 = malloc(nestlvl);
strepy(fide,fid);
explvle+;
/% see if present screen has ever been saved ¥/
¢ = chkstr(fid);
/%save the current screen at its old place,
if found, or at the end of the file otherwise ¥/
saveser(e, £id2) ;
/% add the no. of the expand line to the screen id #/
fid = addln(fid);
/% see if lire has prior expansion ¥/
¢ = chkstr(fid);
switch(e){
/% match so screen exists in serndata #/
case 0 : oldexp(fln);
break;
/% no match - must be a new screen #/
case 1 : newexp(fln, fid);
break;
}
}

char ®mkstr(fz)
char #fz;

{

int getln, getcol;
char c;

int 1 = 0;

getcol = 3;

getln = 1;
wmove(stdser, getln, getcol);
¢ = winch(stdser);
while(e I= ' "){

fz{i] = ¢;
getcol++;
14+

womove(stdser,getln, geteol)
¢ = winch(stdser);}
fz[1i] = *\O';

return(fz);
}

chkstr(fid)

char #fid;

{

int 1

if (curpos == lstpos)
return(1);

for (curpes = 0; curpos <= lstpos; curpos++){
if ({1 = stremp(fid,scrndatalcurpes].expid)) == 0)

return(0);
}
return(1);

}

char ®addln(fid)

char #fid;

{

switch(lines){

case 4: streat(fid,".01");
break;

case 5: strcat(fid,".02");
break;

case 6: strecat(fid,".03");
break;

case T: strcat(fid,™.04");
break;

case 8: streat(fid,".05");
break;

case 9: streat(fid,®.06");
break;

case 10: streat(fid,".07");
break;

case 11: strcat(fid, ",08");
break;

case 12: streat(fid,®.09%);
break;

case 13:strcat(fid,".10%);
break;

case 14: streat(fid,®.11");
break;

case 15: strecat(fid,".12");
break;

case 16: strecat(fid,".13");
break;

case 17: streat(fid,".14");
break;

case 18: streat(fid,®.157);
break;

case 19: strcat(fid,".16");
break;

case 20: streat(fid, ", 177);
break;

case 21: strcat(fid,".18");

break;
default: break;
}
return(fid);
}

newexp(fln, fid)
char #fln,#fid;

{

FILE #fp, ®open();
int e;

fp = fopen("/usr/ joseph/project/forme", "r");

filecopy(fp);
felose(fp);
wrefresh(stdser);
putid(fid);
wrefresh(stdser);
putln(fln);
wrefresh(stdser);
stcur2();

}

steur2()
{

xp1
xpl
yp1

n N e~ -
O N

?

lines = ypi;

cols = xp1;
wmove(stdser,lines, cols);
wrefresh(stdscr);

}

putid(fid)

char ®fid;

{
mvwaddstr(stdser,1,3,fid);
wrefresh(stdser);

}

putln(fln)

char #fln;

{
mvwaddstr(stdser,2,3,fln);
wrefresh(stdser);

}

oldexp(ft)

char #ft;

{

FILE ®fp, ®open();

78

79

int ¢;
fp = fopen("scrnfile®,"r");
fseek(fp, scrndatalcurpos].expos,0);
filecopy(fp);
rewind(fp);
felose(fp);
wrefresh(stdser);
putln(ft);
wrefresh(stdser);
xpl = 14;
xp2 = T6;
ypl = &
= 20;
lines = ypl1 +1;
cols = xpl + 1;
wnove(stdser,lines, cols);
wrefresh(stdser);

}

saveser(i, fid)
/"we are saving the current screen before we bring up an expansion #/
/%or go back to a previcus screen ¥/

char #fid;
int i;
{

FILE #fp, ®fopen();
fp = fopen("scrnfile®, "am);
if (1 == 0)
fseek(fp, serndatalcurpos].expos,0);
elsef
fseek(fp,0,2);/® never been saved - append it to the end of the
savefile #/
scrndatallatpos].expid
scrndatal[lstpos].expos
lstpos++;
newexpos += delta;}
writefile(fp);
rewind(fp);
gclose(fp);

/% FINISHING ROUTINES %/

fid;
new expos;

finishup()

{

int i;

char c¢;

char *ff;
char *fmsgi;
char #fmsg2;
char *fmsg3;
char ®fmsgh;
char fquery;
char #fsend;
char #fprnt;

ff = malloc(nestlvl);
e mkstr(ff);
doisave(rr);
fprot = fopen(™arnier®, "a®);
fsend = fopen("scrnfile®,"r");
fmsgh = "Sorting and formatting - wait for further instructioms.®;
welear(stdser);
mvwaddstr(stdser,0,0,fnsgh);
wrefresh(stdser);
system("sleep 8");
fseek(fsend,0,0);
fileccpy(fsend);
lines = 0;
woeve(stdser,0,0);
writeoneline(fprnt);
lines = 1;
wmove(stdser,1,0);
writeoneline(fprnt);
query = "Do you want a hard copy of your algorithm?(y/n)";
fmsgl = "Your Warnier algorithm is being printed on the line
printer.¥;
fmsg2 = "Your algorithm is saved inp file 'Warnier'.";
fmsg3 = "Dope with the finishing tasks = hit any key to exit
program, ¥;
sort_structure();
rewind(fsend);
for (1=0; i<= 1stpos-1; i++){
fseek(fsend, serndatalil.expos,0);
filecopy(fsend);
writefile(fprnt);
rewind(fsend); }
fclose(fsend);
fclose(fprnt);
system("sed -n -f /usr/joseph/project/endemd Warnier >> Warnier");
weclear(stdser);
mvwaddstr(stdser,0,0,query);
wrefresh(stdser);
¢ = gete(stdin);
switch(e){
case 'y': welear(stdser);
wrefresh(stdscr);
mvwaddstr(stdser,0,0,fnsgl);
mvwaddstr(stdser,1,0,fmsg2);
mvwaddstr(stdscr,2,0,fmsg3);
wrefresh(stdscr);
system("lpr Warnier");
break;
case 'n': wclear(stdser);
wrefresh(stdscr);
mvwaddstr(stdser,0,0,fmsg2);
mvwaddstr(stdser,1,0,fmsg3);
wrefresh(stdscr);
break;}
done = true;

}

sort_structure()
{
char ¥temp;
int ij
int sorted = false;
int no left = lstpos =1;
temp = malloc(nestlvl);
while((sorted==false) && (no_left != 1)) {
sorted = true;
for (i = 1;i <= no_left;i++){
if ((stremp(scerndata[i-1].expid,serndatali].expid)) > 0){
temp = scrndatali-1].expid;
scrndatali-1].expid = scrndatalil.expid;
serndata(i].expid = temp;
sorted = false; }
}
no_lefte=;
}
}

transferfile(fsend, fprnt)
FILE #*fsend;
FILE #fprnt;
{
int down, across;
int e¢;
for (down=0;down<23;down++); {
c:' I’;
for (across=0;across<z81 && c != '\n';across++){
¢ = gete(fsend);
putc{e, fprot);
if(across==79)
pute('\n',fprnt);}
}

81

AN ALGORITHM DEVELOPMENT PROGRAM
USING WARNIER=-STYLE BRACES

by

JOSEPH KENT CAMFEELL

B.S., EKansas State University, 1971
M.S., Kansas State University, 1976

AN ABSTRACT OF A& MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

EANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

This system provides programmers with an easy-tc-use software
development tool. The system provides tutorial screens of
information concerning use of the program and problex solving
in general. Help screens containing specifiec infcrmaticn may
be perused during program execution to aid the prograpmer in

development.

This system provides the programmer with methodology for
encouraging top-down development. This 1is accomplished by
providing the user with input to screens on which a facsimile
of a Warnier brace is shown. Top-down development is encouraged
by inclusion of an "expamsion' feature, which permits the user
to develop any statement. The ‘'expansicn' command provides a
new input screen for statement refinement to some desired level
of detail, Input and corrections tc the Warnier screens are
made with editing commands requiring single stroke execution.
The commands are quite easy to master and behave much like the
UNIX 'vi' commands. The program will also supply 'while' and

*for' loop syntax constructs on command.

When the user is finished with the session, the completed or
partially completed algorithm is sorted to the correct
hierarchical order by the system. The sorted screens form a
Warpnier diagram with a vertical alignment as opposed to the
traditional horizontal configuration of a Warnier diagram. The
diagram is stored a file in the user's current directory under
the file name 'Warnier', The system will guery the user to
determine if a printed copy is wanted before the progranm

exits.

