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Abstract

This dissertation presents the first topological study of the charge current quasi-elastic

(CCQE) neutral hyperon production induced by antineutrinos in the ArgoNeuT detector, a

liquid argon time projection chamber (LArTPC) at Fermilab, using 1.20 × 1020 protons-on-

target (POT), in the NuMI beam operating in the low energy antineutrino mode. The total

cross section for the CCQE neutral hyperon production is reported at the mean production

energy of 3.42 GeV. The event yield in data is consistent with the predicted cross section,

σ = 2.7 × 10−40 cm2:

σ(CCQEΛ0+Σ0 ) =
(
3.7 ± 1.9(stat.) ± 1.5 (sys.)

)
× 10−40 cm2.

The study sets a 90% confidence level (C.L.) upper limit on the total cross section of

CCQE neutral hyperon production:

σ(CCQEΛ0+Σ0 ) < 7.3 ×10−40 cm2 at 90% C.L.



ANTINEUTRINO-INDUCED CHARGE CURRENT QUASI-ELASTIC

NEUTRAL HYPERON PRODUCTION IN ARGONEUT

by

SAIMA FAROOQ

B.S.Ed., Government College of Education for Science, Pakistan, 2003

M.Sc., University of the Punjab, Pakistan, 2006

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Physics
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2016

Approved by:

Major Professor
Tim Bolton



Copyright

SAIMA FAROOQ

2016



Abstract

This dissertation presents the first topological study of the charge current quasi-elastic

(CCQE) neutral hyperon production induced by antineutrinos in the ArgoNeuT detector, a

liquid argon time projection chamber (LArTPC) at Fermilab, using 1.20 × 1020 protons-on-

target (POT), in the NuMI beam operating in the low energy antineutrino mode. The total

cross section for the CCQE neutral hyperon production is reported at the mean production

energy of 3.42 GeV. The event yield in data is consistent with the predicted cross section,

σ = 2.7 × 10−40 cm2:

σ(CCQEΛ0+Σ0 ) =
(
3.7 ± 1.9(stat.) ± 1.5 (sys.)

)
× 10−40 cm2.

The study sets a 90% confidence level (C.L.) upper limit on the total cross section of

CCQE neutral hyperon production:

σ(CCQEΛ0+Σ0 ) < 7.3 ×10−40 cm2 at 90% C.L.



Contents

List of Figures x

Acknowledgements xviii

Dedication xxi

1 Introduction 1

1.1 Prediction of Neutrino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Discovery of Neutrino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Brief Description of Neutrino . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Parity Violation and Helicity . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Charge Current and Neutral Current Interactions . . . . . . . . . . . 5

1.3.3 Neutrino Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Two Neutrino Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.3 Three Neutrino Oscillation . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.4 Acquisition of Mass in Standard Model . . . . . . . . . . . . . . . . . 10

1.4.5 Solar Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.6 Reactor Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . . . 14

1.4.7 Atmospheric Neutrino Oscillations . . . . . . . . . . . . . . . . . . . 16

1.4.8 Accelerator Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . 17

1.4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



1.4.9.1 Mass Heirarchy . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.9.2 CP Violation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.9.3 Sterile Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.9.4 Absolute Neutrino Mass . . . . . . . . . . . . . . . . . . . . 21

1.4.9.5 Is Neutrino Majorana/Dirac . . . . . . . . . . . . . . . . . . 22

1.5 Neutrino Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1 (Quasi-)Elastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.2 Resonant Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.3 Coherent Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.4 Deep Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Charge Current Quasi-Elastic (CCQE) Scattering Theory . . . . . . . . . . . 26

1.6.1 CCQE Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.1.1 Smith-Moniz Formalism – Neutrino-Nuclei CCQE Cross Sec-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6.2 Cabibbo-Suppressed CCQE Scattering . . . . . . . . . . . . . . . . . 30

1.6.2.1 Pais Formalism – Cabibbo-Suppressed CCQE Cross Section 32

1.6.2.2 Experimental Measurements . . . . . . . . . . . . . . . . . . 34

1.7 Nuclear Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 LArTPC Technique and Neutrino Detection 38

2.1 LArTPC Concept and Working . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Calorimetry - Charge to Energy . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Purity of Liquid Argon . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.2 Safety with Liquid Argon . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.3 Light Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vii



3 The ArgoNeut Experiment 48

3.1 The NuMI Neutrino Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Cockcroft-Walton Pre-Accelerator . . . . . . . . . . . . . . . . . . . . 49

3.1.2 Linac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.3 Booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.4 Main Injector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.5 NuMI Beamline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 The Physics Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 The Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Cryostat anad Cryocooler . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Time Projection Chamber . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.3 Purification System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.4 Purity Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.5 Electronics Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.6 MINOS Near Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Generation, Simulation and Reconstruction of Neutrino Events 72

4.1 Neutrino Event Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Quasi-Elastic Cross Section Model in NUANCE . . . . . . . . . . . . 73

4.1.2 Setting up NUANCE for ArgoNeuT . . . . . . . . . . . . . . . . . . . 76

4.1.3 Quasi-Elastic Cross Sections Parameters in NUANCE . . . . . . . . . 76

4.1.4 Event Kinematics from NUANCE . . . . . . . . . . . . . . . . . . . . 77

4.2 Neutrino Event Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Particles Propagation in Detector Medium with Geant4 . . . . . . . . 77

4.2.2 Electron Drift and Signal Simulation at the Wire Planes . . . . . . . 77

4.2.3 Through Going Muon Simulation . . . . . . . . . . . . . . . . . . . . 78

viii



4.3 Neutrino Event Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Raw Data Deconvolution - Data Calibration . . . . . . . . . . . . . . 79

4.3.2 Hit Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.3 Density-Based Cluster Finding . . . . . . . . . . . . . . . . . . . . . . 82

4.3.4 Line-Like Cluster Finding . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.5 Two Dimensional Line Merging . . . . . . . . . . . . . . . . . . . . . 85

4.3.6 3D Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.7 Matching ArgoNeuT Tracks with MINOS Tracks . . . . . . . . . . . 87

4.3.8 Vertex Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.9 Calorimetric Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 91

5 Analysis 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Analysis Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Automatic Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.2 Visual Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.6 The Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 126

ix



List of Figures

1.1 Neutrino mass squared spectra for normal hierarchy (left) and inverted hier-

archy (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Solar neutrino flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 KamLAND result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Solar neutrino experiments, KamLAND (KL) and short-baseline (SBL) reac-

tor experiments separate and combined contours of the allowed regions of the

parameter space resulting from a three-flavor neutrino oscillation analysis for

different confidence levels (C.L.) . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Zenith angle distribution for e-like and µ-like events in Super-Kamiokande . 18

1.6 Allowed regions contours of the (sin 2θ23,∆m
2

31) space according to MINOS,

T2K and global data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Neutrino-electron elastic Interaction . . . . . . . . . . . . . . . . . . . . . . . 23

1.8 Charge current quasi-elastic Interaction . . . . . . . . . . . . . . . . . . . . . 24

1.9 Neutral current elastic Interaction . . . . . . . . . . . . . . . . . . . . . . . . 24

1.10 Charge current and neutral current resonant Interaction . . . . . . . . . . . 25

1.11 Charge current and neutral current coherent Interaction . . . . . . . . . . . 25

1.12 Charge current and neutral current deep inelastic Interaction . . . . . . . . . 26

1.13 Neutrino scattering on a nuclear target . . . . . . . . . . . . . . . . . . . . . 28

1.14 CCQE Neutral Hyperon Production as calculated by Pais and used by NU-

ANCE Event Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.15 σ versus Eν̄ , for the ν̄` + p→ `+ + Λ0 process . . . . . . . . . . . . . . . . . 35

x



1.16 σ versus Eν̄ , for the ν̄` + p→ `+ + Σ0 process . . . . . . . . . . . . . . . . . 35

2.1 The LArTPC concept for neutrino detection. Each wire plane provides a

two-dimensional view of an event . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Properties of the stable noble elements, relevant to particle detection . . . . 41

2.3 A neutrino event in ArgoNeuT as seen in the collection plane (wire, time)

view. The lower panel shows the raw ADC counts as a function of time for

wire #140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 A LArTPC’s wire planes and drift regions . . . . . . . . . . . . . . . . . . . 43

2.5 dE/dx versus kinetic energy and kinetic energy versus range for particles . . 44

3.1 Fermilab’s accelerator chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Longitudinal cross-section of the NuMI graphite target . . . . . . . . . . . . 51

3.3 Possible trajectories of the hadrons passing through the two horns. Particles

underfocused or overfocused by first horn are further focused by the second

horn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 A plain and elevation view of the NuMI beamline. ArgoNeuT was located in

the near detector hall and was accessed via the service shaft . . . . . . . . . 52

3.5 Elevation view of the NuMI beamline. 120 GeV protons from FNAL Main

Injector enter from the left . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Neutrino energy spectra at 1040 m from the NUMI target with 10 m horn

separation. Target inside the horn (LE), or retracted 1 m (ME), or 2.5 m (HE) 54

3.7 The fully instrumented ArgoNeuT detector in the beamline and an aerial

view of Fermilab showing NuMI beam and MINOS hall location . . . . . . . 55

3.8 The position of ArgoNeuT in MINOS near detector hall. ArgoNeuT, inside

the gray box, can be seen just upstream of the MINOS near detector . . . . 56

3.9 ArgoNeuT specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xi



3.10 The ArgoNeuT physics run in terms of delivered/acquired protons on target

(POT) as a function of date, spanning 2009/2010. The ∼2 week downtime

in October was due to a cryocooler failure . . . . . . . . . . . . . . . . . . . 57

3.11 A screenshot of the remotely controllable cryosystem monitoring software . . 59

3.12 The orientation of the ArgoNeuT TPC’s wire planes and the fully assembled

TPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.13 A look inside the TPC. The solid copper sheet is the cathode plane and the

copper strips lining the TPC are the field cage rings. The TPC frame (i.e.

what the copper is attached to) is composed of G10 . . . . . . . . . . . . . . 61

3.14 The fully instrumented TPC ready to be inserted into the ArgoNeuT inner

cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.15 The ArgoNeuT experiment during the physics run. (Inset) A drawing of the

fully contained ArgoNeuT recirculation system featuring a cryocooler and

two liquid argon filters. Argon gas goes up to the cryocooler and liquid argon

comes back down through the filters before returning to the cryostat . . . . . 63

3.16 The purity monitor concept. The cathode and anode signals, separated in

time, are compared in order to determine the electron lifetime, a measure of

purity, of the liquid argon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.17 An ADF2 digitizer card, which samples at 5 MHz (2048 samples/channel).

The FET preamplifier and filters and a set of bias voltage distribution cards. 68

3.18 The ArgoNeuT electronics custom power supply. The RF shielding cage used

to minimize noise on the feedthrough and preamplifiers. Also shown is the

preamplifier cooling mechanism (with remote ducts) . . . . . . . . . . . . . . 69

3.19 The regions of the MINOS ND, as used by the MINOS experiment. The

MINOS plane configurations. The beam and fiducial volume are centered

around the middle of the partially instrumented planes, left of the coil . . . . 70

xii



3.20 MINOS scintillator strip concept . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Channels in NUANCE Event Generator . . . . . . . . . . . . . . . . . . . . 75

4.2 (Left) The ArgoNeuT TPC simulated in Geant4, cathode shown in yellow

color and the wire planes are in purple. The origin of the ArgoNeuT TPC is

also shown. (Right) The ArgoNeuT TPC along with inner and outer cryostat

as simulated in Geant4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 The base signal shapes for Induction and Collection planes of ArgoNeuT

detector as determined by an analysis of a large sample of muons parallel to

the wire planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 (Upper left) Induction plane of ArgoNeuT with two deconvoluted tracks.

(Upper right, lower right, lower left) The raw (black) and deconvoluted (red)

wire signals in time from the three consecutive wires with overlapping hits . 81

4.5 DBSCAN definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 DBSCAN algorithm at work on a neutrino event. Raw data shown in grey,

distinct colors correspond to distinct clusters . . . . . . . . . . . . . . . . . . 84

4.7 Hough line finding: (Left) Two point in (x, y) plane. (Right) The points

parametrized in (r,θ) plane. The intersection point of the curves correspond

to a line that passes through both points in (x, y) . . . . . . . . . . . . . . . 85

4.8 (Left) Three hough line clusters; #1 in blue, #2 in green and #3 in red.

(Right) Two merged-lines after merging hough line clusters . . . . . . . . . . 86

4.9 The ArgoNeuT simulation corresponding to TPC, inner and outer cryostat.

The figure is not to scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.10 The ArgoNeuT reconstruction applied to both simulation and data. The

figure is not to scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xiii



4.11 An example simulated event showing reconstructed vertices in an event. Dis-

tinct colored lines and stars show distinct clusters and vertices, respectively.

Two vertices are reconstructed in each view . . . . . . . . . . . . . . . . . . 90

4.12 Straight line cluster (in blue) in a wire plane. x-axis is wire numbers converted

to ticks and y-axis is time ticks. Point C represents a guessed vertex. µ is the

distance of closest approach from guessed vertex to the straight line cluster. . 90

4.13 (Left) Simulated energy loss per unit track length as a function of residual

range (distance from the stopping point) for different stopping particles. The

plot is overlaid by the point of a track reconstructed by the calorimetry mod-

ule. (Right) Simulated kinetic energy as a function of range (distance traveled

before particle stops) of different particles. . . . . . . . . . . . . . . . . . . . 92

5.1 An MC sample showing energy spectrum of neutrino and antineutrino events

in the antineutrino-mode run of ArgoNeuT. . . . . . . . . . . . . . . . . . . 95

5.2 An MC sample showing energy spectrum of signal events in the antineutrino-

mode run of ArgoNeuT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Difference between the true and reconstructed X (left), Y (center) and Z

(right) vertex of all events that pass automatic cuts. . . . . . . . . . . . . . . 97

5.4 X vs Z vertex distribution of all data events that pass the automatic cuts. . . 97

5.5 X vs Y vertex distribution of all data events that pass the automatic cuts. . 98

5.6 X vertex distribution for reconstructed data and MC that pass automatic

cuts. Data and MC plots are both normalized to one. . . . . . . . . . . . . . 98

5.7 Y vertex distribution for reconstructed data and MC that pass automatic

cuts. Data and MC plots are both normalized to one. . . . . . . . . . . . . . 99

xiv



5.8 Z vertex distribution for reconstructed data and MC that pass automatic

cuts. Data and MC plots are both normalized to one. Through going muons

entering the detector are not simulated and are removed from data while

visual scanning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.9 ArgoNeuT (orange) and MINOS (purple); an image showing their relative

size and position in the MINOS ND Hall at Fermilab . . . . . . . . . . . . . 101

5.10 ArgoNeuT’s event display, showing tracks in ArgoNeuT and MINOS detec-

tors. A negatively charged track is matched between ArgoNeuT and MINOS.

Other tracks in both detectors are also visible for the same spill . . . . . . . 101

5.11 Distribution of muon momentum for all data and MC events that pass the

automatic cuts. Data and MC plots are both normalized to one. . . . . . . . 102

5.12 Energy lost by a muon as a function of distance traveled between ArgoNueT

TPC and MND as predicted by Geant4-based study. The non-linear function-

ality is attributed to the non-homogeneous composition of materials between

the two detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.13 Distribution of muon angle for all data and MC events that pass the automatic

cuts. Data and MC plots are both normalized to one. . . . . . . . . . . . . . 103

5.14 Signal acceptance and background rejection rates along with the number of

data events after each cut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.15 Number of tracks distribution for data and MC after all automatic cuts. Data

and MC plots are both normalized to one. . . . . . . . . . . . . . . . . . . . 104

5.16 Distribution for the number of Linemerger clusters in Induction wire plane

for data and MC after all automatic cuts. Data and MC plots are both

normalized to one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xv



5.17 Distribution for the number of Linemerger clusters in collection wire plane

for data and MC after all automatic cuts. Data and MC plots are both

normalized to one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.18 Distribution for the number of exiting tracks for data and MC after all auto-

matic cuts. Data and MC plots are both normalized to one. . . . . . . . . . 105

5.19 ArgoNeuT MC, CCQE Λ0 production. A detached vertex is visible with two

secondary tracks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.20 Scan window, the fields are filled by the scanner during the visual scanning

of the neutrino events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.21 Number of tracks distribution for data and MC after scanning cuts. Data

and MC plots are both normalized to one. . . . . . . . . . . . . . . . . . . . 108

5.22 Distribution for the number of Linemerger clusters in induction wire plane for

data and MC after scanning cuts. Data and MC plots are both normalized

to one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.23 Distribution for the number of Linemerger clusters in collection wire plane for

data and MC after scanning cuts. Data and MC plots are both normalized

to one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.24 Distribution for the exiting tracks for data and MC after scanning cuts. Data

and MC plots are both normalized to one. . . . . . . . . . . . . . . . . . . . 110

5.25 Data event selected after scanning cuts. . . . . . . . . . . . . . . . . . . . . . 110

5.26 Data event selected after scanning cuts. . . . . . . . . . . . . . . . . . . . . . 111

5.27 Data event selected after scanning cuts. Five consecutive dead channels in

the collection plane of the ArgoNeuT are visible as a ‘gap’ in the tracks. . . 111

5.28 Data event selected after scanning cuts. . . . . . . . . . . . . . . . . . . . . . 112

5.29 Data event selected after scanning cuts. . . . . . . . . . . . . . . . . . . . . . 112

5.30 Data event selected after scanning cuts. . . . . . . . . . . . . . . . . . . . . . 113

xvi



5.31 Data event selected after scanning cuts. . . . . . . . . . . . . . . . . . . . . . 113

5.32 Vertex separation – the distance between primary and the secondary detached

vertex in the data and MC events after scanning cuts. Data and MC plots

are both normalized to one. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.33 3D opening angle of the secondary tracks in the data and MC after scanning

cuts. Data and MC plots are both normalized to one. . . . . . . . . . . . . . 114

5.34 Length of the longer secondary track in the data and MC after scanning cuts.

Data and MC plots are both normalized to one. . . . . . . . . . . . . . . . . 115

5.35 Length of the shorter secondary track in the data and MC after scanning

cuts. Data and MC plots are both normalized to one. . . . . . . . . . . . . . 115

5.36 An example of a background event (after scanning cuts). . . . . . . . . . . . 116

5.37 An example of a background event (after scanning cuts). . . . . . . . . . . . 117

5.38 Antineutrino flux of νµ(red), ν̄µ(blue), νe(green) and ν̄e(cyan) in the low en-

ergy (LE) antineutrino-mode NUMI beam [? ]. . . . . . . . . . . . . . . . . . 118

5.39 Numbers for cross section calculation. Ndata, Nbkg and Ntarg correspond to

fiducial volume (FV) of the TPC. . . . . . . . . . . . . . . . . . . . . . . . . 121

5.40 MC signal model (blue), MC background model (red) and signal + back-

ground model (green) fit to data events (after scanning cuts). Roofit provides

the estimates of signal and background events in the data events that pass

all analysis cuts. MC signal and MC background models are normalized to

the number of MC events in each category (after scanning cuts). . . . . . . . 122

5.41 Energy distribution of CCQE neutral hyperon interactions (MC) in ArgoNeuT.124

xvii



5.42 Total cross section of charge current quasi-elastic Λ0 and Σ0 production from

the NUANCE model (red line) and the measured in this study (blue line).

Errors are from the MC dependent method of the measurement. Error bars

include statistical and systematic errors. The measurement is consistent with

the expectation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xviii



Acknowledgments
First, I am thankful to God for providing me the opportunity to pursue my career. He

gave me strength and fortitude to travel to the United States to seek my goals.

I would like to express my deepest gratitude and sincere thanks to my Ph.D. advisor,

Tim Bolton. Thank you for your patience with me and for always answering my questions

with a smile, even if I asked them more than once. Regardless of geographical boundaries,

your doors have always been open for me. I enjoy your humor, and it has always given

me energy, especially when the times are stressful. Without your support this dissertation

would not have been possible. Thank you so much for equipping me with the skills that will

surely help me in my future endeavors.

I have been blessed with great teachers throughout my life, and without them, I would

not have been in a physics graduate program. I would like to take this opportunity to thank

all of them, especially my 10th grade teacher; Neelam Khan. Thank you for being such a

great physics teacher, you inspired me to pursue physics, and you are my role model. I

was pleasantly surprised and delighted to see you after many years at KSU. I enjoyed our

friendship and the time we spent together in Manhattan. Thank you for your constant

support and encouragement throughout these years. I also want to say special thanks to

Prof. Mujahid Kamran, who was my masters teacher at the University of Punjab, Pakistan.

Thank you for your confidence in me and for motivating me to apply for a graduate program

in the U.S. I am indebted to you for my academic career.

I want to thank all the members of the ArgoNeuT and MicroBooNE collaborations.

Ornella Palamara thank you for helpful comments and discussions; Sam Zeller for many

helpful comments; Mitch Soderberg for your guidance; Eric Church for helping me debug

my codes when I was a beginner; Tingjun Yang for many enlightening physics conversations;

Brian Page for introducing me to the ArgoNeuT and the software.

xix



I would take this opportunity to thank Dr. Amit Chakrabarti for his support during

my graduate studies. I owe thanks to the members of High Energy Physics/Cosmology at

KSU; Glenn Horton-Smith, Yurii Maravin, Larry Weaver, Bharat Ratra, Andrew Ivanov,

Ketino Kaadze and Lado Samushia for your support during my stay at KSU. I want to

thank other people/colleagues at KSU; Mikhail Makouski, Sadia Khalil, Shruti Shrestha,

Deepak Shrestha, Irakli Chakaberia, Anatoly Pavlov, Sachiko McBride, Sara Crandall, Pi-

Jung Chang, Irakli Svintradze and Nikoloz Sklirladze. Sadia, I would never forget the

evenings we spent together, and the adventures we had, while at Fermilab. Sara, thank you

so much for correcting my thesis, you are so kind to help.

My list is not complete without thanking Mahsana Ahsan and Mansoora Shamim. You

both helped me tremendously when I arrived Manhattan amidst your own move from Man-

hattan. You are the ones who finally made me decide, being a female from Pakistan, to

come to the United States. Mansoora, I always cherish the memory that you eventually

filed a housing application for me at KSU when I didn’t understand the consequences of

delaying it. Thank you so much for all the care.

I would also like to recognize the help I got from the staff in the Physics Department;

Peggy Matthews, Pamela Anderson, Jane Peterson (I miss you), Kim Coy, and Kimberly

Elliott. Thank you for helping with the payroll, travel and housing arrangements for my

travel between KSU & Fermilab and during my studies at KSU.

My journey through graduate school would not be the same if I had not met great friends

at KSU and Fermilab. I want to thank Shuo Zeng, Bachana Lomsadze, Govind Paneru,

Raiya Ebini, Varun Makhija, Chenchen Wang, Joe Grange and Ranjan Dharmapalan for

great company and delightful conversations. Thanks to Fatima Anis and Siddique Khan for

an awesome time.

Ammi and Abbu, I cannot thank you enough for your sacrifices in letting me go too far

from you and encouraging me along the way. I am so grateful for all the values you have

instilled in me, especially the tolerance and kindness. The training that I got at home has

xx



enabled me to reach this stage of my life. I am sorry that I have not been able to maintain

more frequent contact with you. I hope I can be more responsible in the times to come.

A particular thanks goes to my brother, M. Omer Farooq, for his unconditional support

and understanding. Last, but not least, I want to thank my husband, M. Asif Nawaz, for

his sacrifices, patience, and encouragement. Over the years you’ve helped me find my voice.

Thank you for putting up with me.

My list remains incomplete. I want to say thanks to all the people who were supportive

of me throughout my career.

xxi



Dedication

To my parents Farooq Ahmed Uppal and Abida Bano, whose way of life has always been

a source of inspiration for me.

xxii



Chapter 1

Introduction

This thesis describes a measurement of total cross section of charge current quasi-elastic

(CCQE) neutral hyperon production induced by the scattering of antineutrinos by an argon

target, at ArgoNeuT detector in Fermilab.

ν̄` + p→ `+ + Λ0,

ν̄` + p→ `+ + Σ0.

(1.1)

The study also sets a 90% confidence-level (C.L.) upper limit on the CCQE neutral

hyperon production total cross section. The study of this process is important as the

existing measurements are sparse and limited by statistics, and the theoretical models vary.

Making use of the images from a liquid argon time projection chamber (LArTPC) with

unprecedented resolution, this study presents the first topological analysis of CCQE neutral

hyperon production in a LArTPC experiment. The knowledge gained by visual scanning of

beautiful images of neutrino interactions is crucial to develop and improve reconstruction

techniques in the future LArTPC experiments. Occurring only via antineutrinos, these

processes can serve as ‘antineutrino tagger’ in the future bigger detectors with intense beams

and longer runtimes.

There are five chapters in this thesis. Chapter 1 gives an introduction to the neutrino, its
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properties, neutrino oscillations and relevant measurements, followed by detailed theoretical

description of the processes shown in Equation. 1.1. Chapter 2 introduces the general

idea of the LArTPC detector technique and associated challenges in its construction and

operation. Chapter 3 describes the ArgoNeuT experiment in particular. Chapter 4 presents

the neutrino event generation and simulation in the detector. It also describes the LArSoft

sofware used for neutrino events reconstruction in the detector. Chapter 5 gives a step-by-

step explanation of the analysis and the results.

1.1 Prediction of Neutrino

Neutrinos are one of the most abundant particles in the universe, yet among the least

understood. There are trillions of neutrinos passing through the human body every second.

Being electrically neutral and almost massless, these weakly interacting particles simply pass

through the matter. Neutrino research, spread over decades, has brought many discoveries

along with four Nobel prizes to date. In 1920s, many elements were known to have beta

decay, in which a heavy radioactive nucleus transforms to a slightly lighter one, with the

release of an electron.

N0(A,Z)→ N(A,Z + 1) + e−. (1.2)

Here N0 and N are parent and daughter nuclei, respectively and e− is an electron. For a

two-body decay with the parent nucleus at rest, the conservation of energy and momentum

requires electron’s energy to be a fixed value1,

Ee =
mN0

2 −mN
2 +me−

2

2mN

. (1.3)

However, the measurements of electron energy gave a wide continuous spectra instead

of a constant value. It was suggested that the spread in the electron energy spectrum could

1This thesis employs the unit system used in high energy physics in which the fundamental constants
have values ~ = c = 1, and all energies are expressed in GeV or MeV.
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be due to the energy losses before the electron was detected, or due to experimental errors.

It was also thought that the energy and momentum conservation laws are broken. By the

late 1920s, it was more and more evident that this spread is real. In 1930, the idea of the

neutrino was suggested by Pauli, who proposed that a light neutral particle (later to be called

neutrino) may be involved in β-decay [1]. By adding this new particle, the electron can carry

kinetic energy ranging from zero to the maximum allowed, whereas, the other light particle

carries the balance. The idea of the neutrino was not taken well until 1934 when Fermi

formulated his β-decay model and successfully explained the experimental observations [2].

The actual β-decay equation is as follows (note that it is actually an antineutrino in the

final state):

n→ p+ e− + ν̄e. (1.4)

1.2 Discovery of Neutrino

The neutrino was detected in 1956, by Cowan, Reines and colleagues [3]. They used a flux

of antineutrinos from Savannah River reactor in South Carolina. An antineutrino produced

in beta decay reacts with a proton in the tank of water and CdCl2 and produces a neutron

and a positron.

ν̄e + p→ n+ e+. (1.5)

The positron then annihilates with an electron in the medium and produces two photons,

which are detected by the scintillator and photomultiplier tubes in the tank. The neutron

undergoes neutron capture interaction in the tank, n + 108Cd → 109Cd* → 109Cd + γ. The

photon produced by the nuclear de-excitation is detected approximately 5 µsec after the

e+e− pair-annihilation gammas, therefore producing a distinctive signature of a neutrino

interaction. The experiment produced ∼3 events per hour. The data was compared with
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the data when the reactor was off, and experimentally the neutrino was discovered. A Nobel

Prize was awarded in 1995 for this discovery.

Second and third flavors of the neutrino were discovered later: νµ at Brookhaven in

1962 [4] and ντ at Fermilab in 2000 [5].

1.3 Brief Description of Neutrino

After the discovery of the neutrino, it was natural to measure the properties of this newly

discovered particle. Today we know that the neutrino is a spin 1/2 particle that has three

flavors, νe, νµ and ντ , and that each one of them has an anti-particle. It interacts via the

weak interaction mediated by W± and Z0 bosons; hence, it has very small interaction cross

section.

1.3.1 Parity Violation and Helicity

Parity was considered to be a symmetry of all fundamental interactions until 1957 [6] when

parity violation was established experimentally in the weak interactions. In the experi-

ment, unstable 60Co atoms are polarized using a magnetic field so that their nuclear spins

point in one direction and the direction of outgoing electrons from β-decay is observed.

It was discovered that the direction of emitted electrons is almost always opposite to the

direction of the spin of the parent nuclei (or to the direction of magnetic field) [7]. This

anti-correlation between the direction of electrons and the nuclear spin established that par-

ity (mirror symmetry) is violated in the weak interactions. In order to balance the total

spin and momentum in the interaction, the electron kinematics dictate that there must be

an accompanied antineutrino with a specific alignment between its momentum and spin

vectors. It was determined that the momentum and spin vectors for the neutrino are anti-

parallel [8]. The inner product between a particle’s momentum and spin vector at any instant

is known as its helicity. A neutrino, having its momentum and spin vectors anti-parallel is
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called ‘left-handed’, whereas, an antineutrino with its momentum and spin vectors parallel

is called ‘right-handed’. With the recent discovery of non-zero neutrino mass, a neutrino or

antineutrino can be right-handed or left-handed depending on the frame of reference.

1.3.2 Charge Current and Neutral Current Interactions

When a W boson is emitted (W+ for neutrino and W− for antineutrino), the interaction is

called a charge current interaction, and a charged lepton of the same flavor as neutrino is

emitted to conserve the charge and lepton flavor at the vertex:

νµ +N → N ′ + µ. (1.6)

Neutral current interactions of neutrino were first observed at CERN in 1973 [9]. In

these interactions neutrino interacts through an exchange of a Z0 boson instead of charged

W± boson.

ν` +X → ν` + Y. (1.7)

1.3.3 Neutrino Mass

Neutrinos were thought to be massless until recently. The next section describes the theory

and observations of neutrino oscillations, which prove that neutrinos oscillate between flavors

and have non-zero mass.

1.4 Neutrino Oscillations

There is strong evidence that neutrino transform from one flavor to another after traveling

a distance. Neutrino oscillations (flavor-transformation) and the resulting non-zero mass of

neutrino is one of the very few phenomenon not predicted by the standard model. Neutrino
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oscillations are observed for neutrinos created in the sun, the earth’s atmosphere, nuclear

reactors, and accelerators. This section generally follows the description given in Ref. [10]

and briefly presents the theory of neutrino oscillations and the experimental evidence.

1.4.1 Formalism

We start with the leptonic decay: W+ → `α
+ + νi. Here α is lepton flavor, i.e. α = e, µ,

τ , and i is the neutrino mass eigenstate with i = 1, 2, 3. The amplitude of the decay is

U∗αi, and the eigenstates of weak hamiltonian (flavor eigenstates) can be written as a linear

superposition of the eigenstates of total hamiltonian (mass eigenstates) as follows,

|να >=
∑
i

U∗αi|νi >. (1.8)

Here, να is a neutrino with flavor α, U are the elements of the flavor mixing matrix;

the ‘PMNS’ matrix, and νi is a neutrino with mass eigenstate of i. In the three neutrino

mixing, the PMNS matrix can be written as follows,

U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 . (1.9)

A neutrino created as να with flavor α in its rest frame evolves in time as,

|να(τ) >=
∑
i

U∗αie
−imiτi |νi(0) >. (1.10)

Here, τ is the neutrino’s proper time and m is its mass. The above equation can be

written as following for the laboratory frame,

|να(t) >=
∑
i

U∗αie
−i(Eit−piL)|νi(0) >. (1.11)
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The term is e−i(Et−pL) is the characteristic phase of the mass eigenstate, where, E is

energy, t is time and p is momentum and L is the distance traveled. The neutrino mass is

much smaller than its momentum for all practical purposes, so the terms with order higher

than two in mi are ignored, hence, Ei =
√
p2 +m2

i ≈ p+mi
2/2p. This also implies the

neutrino energy Ei ≈ p for each mass state i. Also, again using the assumption of negligible

neutrino mass as compared to its energy, we have t ≈ L, where L is the distance propagated

in time t. Now the Equation 1.11 becomes,

|να(L) >=
∑
i

U∗αie
−i(m2

i /2E)L|νi >. (1.12)

A neutrino with initial flavor α can travel a distance L and detected as a neutrino with

flavor β.

|να(L) >=
∑
β

[
∑
i

U∗αie
−i(m2

i /2E)LUβi]|νβ >. (1.13)

And the probability of transformation from flavor α to flavor β can be written as,

P (να → νβ) = | < νβ|(να(L) > |2 = |
∑
i

U∗αie
−i(m2

i /2E)LUβi|
2
, (1.14)

P (να → νβ) = δαβ − 4
∑
i>j

<(U∗αiUβiUαjU
∗
βj) sin2(∆m2

ij

L

4E
)

+ 2
∑
i>j

=(U∗αiUβiUαjU
∗
βj) sin(∆m2

ij

L

2E
).

(1.15)

Here, ∆m2
ij = m2

i −m2
j . Equation 1.15 is for neutrino oscillations. Transforming it for

antineutrino oscillations requires replacing the mixing matrix U by its complex conjugate,

which changes the sign of the third term in the equation (a negative sign instead of a positive

sign). It is worth noting that the third term in the above equation violates charge-parity

conservation (CP), and if there is CP violation in neutrino sector, then the probability of

neutrino with flavor α to oscillate to a neutrino of flavor β will not be the same as probability
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of antineutrino with flavor α to oscillate to an antineutrino of flavor β. This mechanism

may explain the large scale CP violation in nature – matter-antimatter asymmetry.

Now, inserting the constants ~ and c in ∆mij
2 L

4E
,

∆m2
ijL

4E
= 1.27

∆m2
ij(eV

2)L(Km)

E(GeV )
. (1.16)

and finally the oscillation equation can be written as follows,

P (να → νβ) = δαβ − 4
∑
i>j

<(U∗αiUβiUαjU
∗
βj) sin2(1.27∆m2

ij

L

E
)

+ 2
∑
i>j

=(U∗αiUβiUαjU
∗
βj) sin(2.54∆m2

ij

L

E
).

(1.17)

1.4.2 Two Neutrino Oscillation

The two neutrino oscillation case is important as it represents the approximate situation

in many experiments. In the case of two neutrino oscillation, the mixing matrix can be

simplified as

U =

 cos θ sin θ

− sin θ cos θ

 . (1.18)

Here, θ is the mixing angle. After substituting the matrix elements in Equation 1.17,

one gets the oscillation probability for two neutrino mixing as follows,

P (να → νβ) = sin2 2θ sin2(1.27∆m2 L

E
). (1.19)

And the appearance probability as follows,

P (να → να) = 1− sin2 2θ sin2(1.27∆m2 L

E
). (1.20)
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1.4.3 Three Neutrino Oscillation

The three neutrino mixing matrix can be written as follows,

U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 (1.21)

=


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
−iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



eiα1/2 0 0

0 eiα2/2 0

0 0 1



=


c12c13 s12c13 s13e

iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12s23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



eiα1/2 0 0

0 eiα2/2 0

0 0 1

 .

Here, cij = cos θij and sij = sin θij, with three mixing angles θij (θ12, θ23, θ13) and δ is

Dirac CP-violating phase. α1 and α2 are the Majorana CP-violating phases which are non-

zero if neutrinos are Majorana particles. There are three mass splittings; ∆m2
12, ∆m2

23,

∆m2
13, however, only two are independent as ∆m2

12 + ∆m2
23 + ∆m2

13 = 0.

Three neutrino oscillation can be described in terms of two neutrino oscillation because

of the two experimental measurements; θ13 is small and two mass splittings are almost

equal as compared to the third one (that is, |∆m2
32| = |∆m2

13|). Hence, for example, νµ

disappearance probability reduces to

P (νµ → νµ) = 1− sin2(2θ23) sin2(1.27∆m2
13

L

4E
) + sub-leading terms. (1.22)

If the mass of ν3 is higher than ν1, the mass hierarchy is called as ‘normal’ and if the

mass of ν3 is lower than ν1, then the mass hierarchy is called as ‘inverted’. This can be seen
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in Figure 1.1. Even though the above equation remains the same for normal and inverted

hierarchy (that is, if ∆m2 is replaced by -∆m2), matter-effects [11, 12] may make the sign

observable, as neutrino oscillations get modified in case of neutrinos propagating in matter.

Matter effects arise because an electron-neutrino traveling in the medium can interact via

W and Z boson, whereas, muon- and tau-neutrinos can only interact via Z at low energy.

This effect changes the oscillation probability in the matter as compared to the vacuum.

Matter effects are sensitive to the neutrino mass ordering and different for neutrinos and

antineutrinos.

Figure 1.1: Neutrino mass squared spectra for normal hierarchy (left) and inverted hierar-
chy (right). Figure from Ref. [13].

1.4.4 Acquisition of Mass in Standard Model

The standard model does not include right-handed neutrinos or left-anded antineutrinos,

thus neutrinos do not have mass. One way of giving mass to the neutrinos is through a

‘Dirac mass term’ [14], which is by adding a right handed neutrino field νR to the model;
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LD = −mDν̄LνR + h.c. (1.23)

Another way of giving mass to the neutrino is via ‘Majorana mass term’, which may be

constructed out of νR alone, in which case, we have the right-handed Majorana mass, or out

of νL alone, in which case we have the left-handed Majorana mass. A Majorana mass term

of νR is

LM = −1

2
ν̄R

CMRνR + h.c. (1.24)

Here mD and MR are mass parameters and νCR is the charge conjugate of νR and h.c.

is the hermitian conjugate of the preceding term. If the neutrino is a Majorana particle,

then νR and νL are related to each other (one is the charge conjugate of the other and vice

versa) [15]. Adding this term with the Dirac mass term, one gets,

− L = mDν̄LνR +
1

2
ν̄R

CMRνR + h.c. (1.25)

After diagonalizing, the neutrino mass matrix is

M =

 0 mD

mD MR

 . (1.26)

and the eigenvalues are

λ± =
MR ±

√
MR

2 + 4mD
2

2
. (1.27)

λ+ gives the higher value (∼ MR), which corresponds to heavy neutrino and the λ−

gives the lower value (∼ −mD
2/MR) and corresponds to a light neutrino. This interesting

“seesaw” mechanism may explain the tiny observed masses of neutrinos; as one mass gets

heavier, the other one gets lighter.
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1.4.5 Solar Neutrino Oscillations

Solar neutrinos arise from nuclear reactions in solar core that produce electron neutrinos.

The biggest contribution of neutrino flux from sun is produced via so-called ‘pp chain’, with

a smaller fraction produced via the CNO cycle. The solar neutrino spectrum is calculated by

the ‘Standard Solar Model’ (SSM), which gives the neutrino flux from different reactions [16]

as shown in Figure 1.2. The highest flux pp chain produces lower energy neutrinos (<0.42

MeV), so detecting them is an experimental challenge. Most of the solar neutrino experi-

ments measure neutrinos from boron-8 reaction; they are rare but are higher energy (<15

MeV).

Figure 1.2: Solar neutrino flux. pp chain in black and CNO cycle in red. The units
for continuous spectra are cm−2s−1MeV −1 and for Line fluxes are cm−2s−1. Figure from
Ref. [17].

Solar neutrinos were first observed in late 1960s in an experiment at Homestake mine in

South Dakota by Davis et al. [18]. The experimental setup included a 100,000 gallon tank of

common dry-cleaning fluid (C2Cl4) placed 4850 feet underground to avoid any interference
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of cosmic rays. When an electron neutrino interacts with a clorine-37 atom, it is transformed

to radioactive isotope of argon-37 with a production of electron.

νe + 37Cl→ 37Ar + e−. (1.28)

The solar neutrino flux at earth was measured by counting the number of argon-37 nuclei

inside the tank. It was found that only 1/3 of the total predicted flux by SSM is detected by

the experiment. This discrepancy between prediction and measurement created the ‘Solar

Neutrino Problem’. It was thought that there were some mistakes in the experiment or

the SSM was wrong. The Homestake experiment was followed by other experiments such

as SAGE (Soviet-American Gallium Experiment) in former Soviet Union, and GALLEX

(GALLium EXperiment) and GNO (Gallium Neutrino Observatory) in Italy [19, 20, 21] for

the same purpose. They used the process

νe + 71Ga→ 71Ge + e− (1.29)

to detect a neutrino and also observed significant deficit in solar neutrino flux.

The Kamiokande experiment in Japan measured a significant solar neutrino flux deficit [22].

Kamiokande is also the first experiment to reconstruct the neutrinos direction and confirm

that they are actually solar neutrinos [23]. It is a Cherenkov detector consisted of 3,000 tons

of water tank with light detecting photomultiplier tubes. Cherenkov light is produced when

a charge particle moves faster than the speed of light in a medium. Kamiokande detected

neutrinos by detecting the electron or muon from the elastic-scattering of solar neutrinos

(νx + e− → νx + e−, where x = e, µ). One can note that the experiment is more sensitive

to the detection of νe as the cross section for neutrino-electron scattering is significantly

higher than the neutrino-muon.

Unambigious evidence of solar neutrino oscillations came from Sudbury Neutrino Obser-

vatory (SNO) experiment in 2001 [24]. Arthur B. McDonald, the director of SNO experiment
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was awarded Nobel Prize for Physics in 2015 for the experiment’s contributions towards the

discovery of neutrino oscillations (and non-zero mass). SNO experiment is also a Cherenkov

experiment with a 1 kton vessel filled with heavy water, D2O, and photomultiplier tubes

viewing the vessel. The experiment can measure the following reactions;

νe + d → p + p + e−(CC),

νx + d → p + n + νx (NC),

νx + e−→ νx + e−(ES).

(1.30)

The CC process is sensitive exclusively to νe as solar neutrino energies are too low (<18

MeV) to produce a muon or tau (with rest masses of 106 MeV and 1780 MeV, respectively).

The NC process, equally sensitive to all neutrino types, allows the measurement of total

neutrino flux. The ES process is also sensitive to all neutrino but has reduced sensitivity

to νµ and ντ . Sensitivity to these three reactions allows SNO to determine the electron and

non-electron neutrino components of the solar flux. The total neutrino flux was measured

to be three times the νe flux, confirming the Standard Solar Model and the previous results;

neutrinos do not disappear, but transform from one flavor to another.

1.4.6 Reactor Neutrino Oscillations

The KamLAND experiment in Japan, using neutrinos from nuclear power reactors, mea-

sured the oscillation parameters and provided the first observation of sinusoidal nature of

neutrino oscillations as a function of L/E [25] Figure 1.3. The KamLAND detector uses the

neutrinos from 55 different reactors in Japan and has a mean baseline distance of about 180

km. The detector is made of a stainless steel containment vessel with 1,879 photomultiplier

tubes lined inside. The inner layer of the detector is a nylon balloon filled with 1 kiloton

of liquid scintillator. Like Cowan and Reines experiment, KamLAND also measures inverse

β-decay process in order to detect a ν̄e. (ν̄e + p→ n+ e+).
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The positron produces a prompt scintillation light signal, whereas, neutron capture pro-

vides a delayed signal. Both signals separated by ∼200 µs distinguish between the back-

ground and the signal.

Figure 1.3: KamLAND result. Figure from Ref. [25].

Since reactors produce only ν̄e, KamLAND precisely measures the disappearance of neu-

trinos, and the neutrino energy spectrum as well. Good energy resolution gives sensitivity

to the oscillation frequency measurement, whereas, the solar experiments measure the am-

plitude of oscillation with higher sensitivity. This can be seen in Figure 1.4, where the

KamLAND and solar neutrino experiment results are combined to get an allowed region

for oscillation parameters. KamLAND has higher energy resolution and smaller statistical

power relative to solar neutrino experiments.

Figure 1.4 shows the contours of allowed regions of parameter space (tan2θ12,∆m
2

21)

considering three-flavor neutrino oscillations. It includes the data of the solar neutrino

experiments SAGE [19], GALLEX [27], GNO [21], Homestake [28], Borexino16 [29, 30],

Super-Kamiokande [31, 32, 33] and SNO [26]. Furthermore, the results of the KamLAND
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Figure 1.4: Solar neutrino experiments, KamLAND (KL) and short-baseline (SBL) re-
actor experiments separate and combined contours of the allowed regions of the parameter
space resulting from a three-flavor neutrino oscillation analysis for different confidence levels
(C.L.). Figure from Ref. [26].

experiment [34] are shown, both separately and combined with the solar data.

1.4.7 Atmospheric Neutrino Oscillations

Interaction of cosmic rays (mostly high energy protons) with earth’s upper atmosphere

produces a shower of hadrons, mostly pions, which produce electron neutrinos and muon

neutrinos after decaying to muon and electron as shown below,

p + X → π± + Y, (where X and Y are atmospheric molecules),

π± → µ+ νµ,

µ→ e+ νµ + νe.

(1.31)

The flux of atmospheric neutrinos is smaller than solar neutrinos, but they are higher in
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energy and therefore have higher interaction cross section.

The Super-Kamiokande experiment, an enlarged version of Kamiokande experiment,

was created to study the solar and atmospheric neutrinos. It consists of a tank containing

50 kiloton of pure water with 11,146 photomultiplier tubes mounted. The detector can

identify electrons and muons based on the Cherenkov ring that they produce; however,

cannot distinguish between their charge. The experiment measured the zenith angle of the

atmospheric neutrinos. The neutrino flux was predicted to be uniform for all zenith angles,

in the absence of oscillations, but the contrary was observed. The experiment observed

more muon neutrinos coming from the top than the bottom of the earth’s atmosphere;

whereas the electron neutrinos detected by the detector did not show the same dependence

on zenith angle. Somehow, the muon neutrinos were disappearing while traveling through

the earth. This result was announced in 1998 and served as the further evidence of neutrino

oscillations [35]. The zenith angle distributions of charge current interactions are shown in

Figure 1.5, showing the ratio of observed νµ events relative to the no oscillations hypothesis

in Super-Kamiokande, clearly shows a deficit compared to the distribution if there were no

oscillations. Data clearly shows deviation from no-oscillation hypothesis.

1.4.8 Accelerator Neutrino Oscillations

Accelerator neutrinos are produced by accelerated proton beams, the idea is very similar to

the production of atmospheric neutrinos. High energy protons hit the beam target and pro-

duce pions, which decay to muons and neutrinos. The long baseline experiments can probe

the L/E region where atmospheric oscillations are observed. Accelerator based long baseline

experiments consists of near and far detectors, with near detector placed near the target of

the beam and far detector placed few hundred kilometers far from it. The near detector

measures the neutrino beam before oscillation, and the far detector measures the beam after

the expected oscillation. Since the measurement depends on comparing two signals, it is

very important to make the two detector similar to each other to reduce systematics. There
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Figure 1.5: Zenith angle distribution for e-like and µ-like events in Super-Kamiokande.
The points show the data, solid lines show the simulation without oscillation and the dashed
line is the best-fit expectation for oscillations. Figure from Ref. [36].

are two types of accelerator based neutrino oscillation experiments, disappearance and ap-

pearance experiments. Disappearance experiments measure the deficit in the neutrino flux

at the far detector, whereas, appearance experiments detect an appearance of a neutrino

flavor in the far detector that was not present at the near detector.

The KEK to Kamioka (K2K) long baseline neutrino oscillation experiment in Japan,

was the first to use the accelerator neutrinos to measure the disappearance in the beam of

muon neutrinos [37]. The experiment was designed to verify the oscillations observed by
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Super-Kamiokande using atmospheric neutrinos. K2K, using a muon neutrino beam of ∼1-2

GeV energy, and a near and far detector separated by 250 km, confirmed muon neutrino

disappearance . The experimental results were in agreement with Super-Kamiokande, and

later, with MINOS.

The Main Injector Neutrino Oscillation Search (MINOS) experiment is also a long base-

line experiment with L = 735 km. MINOS near detector sits at Fermilab, whereas the far

detector is located at Soudan, Minnesota. Both the detectors are iron scintillator track-

ing detectors and are magnetized and can differentiate between neutrino and antineutrino.

MINOS is exposed to νµ beam and measures νµ disappearance and νe appearance. Further-

more, the MINOS neutrino beam can be switched to ν̄µ so that also ν̄µ disappearance and

ν̄e appearance can be studied. MINOS has confirmed K2K and Super-Kamiokande results.

In addition, MINOS was able to demonstrate that νµ and ν̄µ oscillate analogously [38].

The NuMI Off-Axis νe Appearance (NOνA) experiment with its near detector located

at Fermilab and far detector in northern Minnesota, separated by 810 km, started operating

in 2014. Both detectors are made of highly reflective plastic PVC filled with liquid scin-

tillator. NOνA has recently submitted its first measurements of νe appearance [39] and νµ

disappearance [40].

Atmospheric and accelerator oscillation experiments support νµ to ντ oscillation obser-

vation, although rely on νµ disappearance. OPERA is an experiment that has a goal to

detect ντ . The experiment is located in Gran Sasso National Laboratory in Italy, 730 km

from the neutrino source at CERN and detects the oscillation of νµ to ντ by detecting ντ

instead of measuring disappearance in νµ. The experiment has so far detected 4 ντ candidate

events [41].

Currently, MINOS at Fermilab and T2K at J-PARC can be considered giving the most

precise atmospheric oscillation parameters value from the accelerator experiments [13]. Fig-

ure 1.6 depicts the contours of the allowed regions of the (sin 2θ23,∆m
2

31) parameter space

according to MINOS, T2K and a global fit including the Super-Kamiokande data. Since the
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sign of ∆m2
32 is yet to be measured, both possible mass hierarchy are shown.

Figure 1.6: Allowed regions contours of the (sin 2θ23,∆m
2

31) space according to MINOS,
T2K and global data. (Left) Normal (Right) inverted mass hierarchy. Figure from Ref. [42].

1.4.9 Summary

Solar and Reactor based neutrino experiments give the best measured values of tan2θ12

and ∆m2
21, whereas, atmospheric and accelerator based neutrino oscillation experiments

provide the best measured values of parameters sin 2θ23 and ∆m2
31. However, there are still

many un-answered questions that need to be answered by the current and future neutrino

experiments. These questions are briefly discussed in the following.

1.4.9.1 Mass Heirarchy

Currently, the value of mass squared difference; ∆m2
31, is known but the sign of this quantity

is yet unknown. In order to measure this, one can compare the νµ and ν̄µ oscillations. Due

to matter effects, the oscillation probability for neutrinos and antineutrinos are different, so
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the long baseline experiments with their neutrino beams passing through earth can make

this measurement. Although, this effect can be hard to study because of CP violation effects.

1.4.9.2 CP Violation

As discussed in the previous section, if CP symmetry is violated in neutrino sector, then the

oscillation probability of να → νβ will not be equal to ν̄α → ν̄β, however, matter effects can

increase or decrease this difference. The future generation experiments, such as DUNE and

so called neutrino factories, can study this with their high beam intensities and beamlines

of several thousand kilometers.

1.4.9.3 Sterile Neutrinos

The results from LSND experiment in 2001 showed an access of νe in ν̄µ → ν̄e appearance

measurement. The result could not be explained in the three-neutrino oscillation formalism.

As a result, a third mass splitting was considered that followed by a postulate of fourth

neutrino, a sterile neutrino. Sterile neutrino does not interact via the Standard Model weak

interaction but can mix with three active neutrinos. MiniBooNE result in 2013 showed

partial agreement with LSND results based on two-neutrino oscillation model [43]. Several

other experiments made such measurements, but currently, all the combined exclusion limits

do not completely rule out the existence of sterile neutrinos. More data, covering more

parameter space is needed. One of the experiments with the goal to measure νe excess

signal is MicroBooNE at Fermilab [13].

1.4.9.4 Absolute Neutrino Mass

As discussed before, neutrino mass squared differences are known currently but the absolute

masses are yet to be measured. Absolute mass of neutrino can be measured by studying

the endpoint region of β-decay spectrum. Non-zero mass of neutrino implies kinematic

constraints on emitted electron during the decay. For example, direct measurement of
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neutrino mass can come from analyzing the very high precision electron-spectrum from β-

decay of tritium. Cosmological data also provides the constants on absolute neutrino mass.

1.4.9.5 Is Neutrino Majorana/Dirac

Another question yet to be answered is the nature of neutrino. If the neutrino is a Majorana

particle, then it is its own anti-particle, unlike all other fermions in the Standard Model which

are Dirac particles. Neutrino-less double β-decay can be studied to answer this question,

the decay can only occur if neutrinos have a non-vanishing mass and are Majorana particles.

1.5 Neutrino Scattering

Neutrinos are one of the most abundant particles in the universe but their interactions are

rare; σ(νN) ∼ 10−38 cm2 as compared to σ(pp) ∼ 10−26 cm2. Nevertheless, all properties of

neutrinos discussed in the previous section must be inferred from interactions. Depending on

the neutrino energy, there are different types of neutrino interactions and the cross-section

for each type of interaction is different for free and bound nucleon targets. In case of the

bound nucleon target, the kinematics of the outgoing particles is effected by the properties

such as nucleon Fermi momentum, binding energy, Pauli blocking and others. Furthermore,

the particles produced in the interaction travel through the nuclear medium and re-interact

which also changes kinematic distribution of the outgoing particles.

The simplest neutrino interaction is the elastic scattering of neutrino off of a free electron,

shown in Figure 1.7. The neutrino and the electron both retain their original flavor. There is

no threshold energy for this process as only the momentum and energies of the particles are

redistributed. This process is exactly calculated in the Standard Model. In neutrino-nucleon

scattering, the momentum transfer, Q2, to a nucleon determines the resolving power of the

neutrino. At low Q2, a nucleon is a single entity rather than comprised of quarks, whereas,

at high Q2 the nucleon can be excited or single quarks could be resolved. In other words, the
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complexity of neutrino interactions with a nucleon increases as Q2 increases. This section

gives a brief overview of the neutrino-nucleon scattering.

Figure 1.7: Neutrino-electron elastic Interaction.

1.5.1 (Quasi-)Elastic Scattering

This is the simplest interaction involving strongly interacting particles, hadrons. In elastic

scattering of neutrino with a nucleon, a neutrino elastically scatters off of a nucleon and

ejects it from the nucleus; the incident and the final particles are the same. In quasi-elastic

scattering, the neutrino converts a neutron to a proton or an antineutrino converts a proton

to a neutron (charge current). The nucleon remains intact but is ejected from the nucleus.

The signature of this interaction is a charged lepton in the final state and a proton or neutron

(without final state interactions). In the neutrino case, a d quark is converted to a u quark

(neutron to proton), whereas, in the antineutrino case, a u quark is converted to a d quark

(proton to neutron). These processes are shown in Figure 1.8 and Figure 1.9.
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Figure 1.8: Charge current quasi-elastic Interaction.

Figure 1.9: Neutral current elastic Interaction.

1.5.2 Resonant Scattering

As the squared momentum transfer Q2 increases, the target nucleon can be raised to an

excited state, a resonance, that decays to a nucleon and a pion. The most prominent

resonance is the ∆ particle, that decays quickly via strong force to a nucleon (proton or

neutron) and a pion. In case of the charge current interaction, the signature of this process

is a charge lepton along with a nucleon and a pion, whereas, in case of neutral current

interaction, the charge lepton is replaced by a neutrino of same flavor as incident neutrino.

These processes are also known as resonant single pion production. These interactions can

be seen in Figure 1.10.
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Figure 1.10: (Left)Charge current resonant Interaction, (Right)Neutral current resonant
Interaction.

1.5.3 Coherent Scattering

In this interaction, a neutrino interacts coherently with the whole nucleus, with small Q2.

The nucleus is left in the ground state and a pion is produced in the interaction along with

the charge lepton (charge current) or a neutrino (neutral current). The cross section for this

interaction is very small. Figure 1.11 shows coherent scattering.

Figure 1.11: (Left)Charge current coherent Interaction, (Right)Neutral current coherent
Interaction.
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1.5.4 Deep Inelastic Scattering

In deep inelastic scattering, enough Q2 is transferred to the nucleon that the neutrino

interacts with the quasi-free quarks in the nucleon. The quark produces a shower of hadrons

as it recoils from the neutrino. The final particles produced in deep inelastic interaction

include nucleons, pions, strange particles and others. Figure 1.12 shows the deep inelastic

interaction. A strange particle is a hadron that contains at least one s quark.

Figure 1.12: (Left)Charge current deep inelastic Interaction, (Right)Neutral current deep
inelastic Interaction.

1.6 Charge Current Quasi-Elastic (CCQE) Scattering

Theory

This section describes the mathematical formalism of charge current quasi-elastic (CCQE)

scattering theory followed by the description of Cabibbo-suppressed CCQE scattering ac-

cording to the NUANCE neutrino event generator [44].

1.6.1 CCQE Scattering

Charge current quasi-elastic scattering of neutrino with nucleon can be shown as the follow-

ing two processes:
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ν` + n→ `− + p,

ν̄` + p→ `+ + n.

(1.32)

These processes have been studied since long in the bubble chamber experiments in

1970’s and are calculated by C. H. Llewellyn Smith in early 1970’s [45].

In most of neutrino experiments, such as, LArTPC experiments, the neutrino target is

usually a bound nucleon, so one can write the above processes as follows,

ν` + A→ `− + A′,

ν̄` + A→ `+ + A′.

(1.33)

Where A is the initial state nucleus and A′ is the final state nucleus plus accompanying

hadron. The cross section model used in the analysis presented in this study is given by

Smith and Moniz [46], where the cross section for both, free and bound nucleon is calculated.

The Fermi gas model is used to calculate the effects such as Fermi motion and Pauli blocking

in case of a bound nucleon target [44].

1.6.1.1 Smith-Moniz Formalism – Neutrino-Nuclei CCQE Cross Section

Assume the neutrino-bound nucleon scattering as shown in Equation 1.33 as Figure 1.13.

One can write

q = p− p′ = k2 − k1. (1.34)

Here, p, p′, k1 and k2 are the 4-momenta of initial and final nucleon and initial and final

lepton, respectively. The cross section can be written as

d2σ =
G2

F

2

1

2π2

1

2|k1.p|
dk2

2ε2
τµνWµν . (1.35)
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Figure 1.13: Neutrino scattering on a nuclear target. Figure from Ref. [46].

The leptonic tensor τµν is given by the following,

τµν = 8
[
k1µk2ν + k2µk1ν − (k1.k2)δµν − iεµναβk1αk2β

]
. (1.36)

The most general form of hadronic tensor Wµν that obeys Lorentz invariance is defined

as,

Wµν = W1δµν +
W2

m2
T

pµpν +
Wα

m2
T

qµqν +
Wβ

m2
T

(pµqν + pνqµ) +
W8

m2
T

εµνστpσqτ . (1.37)

Here, the form factor Wj depend only on the scalars q2 and q.p and the last term

corresponds to vector-axial interference. mT is the target mass. If we use k2

ε2
cos θ = cosχ,

where ε2 is the energy of the charged lepton and θ is the angle between the charged lepton

and the incident neutrino (in the process shown in Figure 1.13), then the cross section in

the lab frame can be written as,
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d2σ

dk2dΩ2

=
G2k2

2

2π2mT

{
2W1 sin2(

1

2
χ) +W2 cos2(

1

2
χ) +

m2
l

m2
T

Wα sin2(
1

2
χ) +

m2
l

mT ε2
(Wβ +W8)

−2
W8

mT

sin(
1

2
χ)

√
[q2 cos2(

1

2
χ) + |q2| sin2(

1

2
χ) +m2

l ]

}
.

(1.38)

The sign of the last term (with W8) will be reversed for the antineutrino reactions. The

nuclei hadronic tensor components Wj, are calculated in terms of nucleon hadronic tensor

components Tj as follows,

W1 = a1T1 +
1

2
(a2 − a3)T2,

W2 = a4 +
2w

|q|
a5 +

w2

|q|2
a3 +

1

2

q2

|q|2
(a2 − a3)T2,

Wα =
m2
T

|q|2
(
3

2
a3 −

1

2
a2)T2 +

m2
T

m2
a1Tα +

2m2
T

m|q|
a6Tβ,

Wβ =
mT

m
(a7 +

w

|q|
a6)Tβ,

W8 =
mT

m
(a7 +

w

|q|
a6)T8.

(1.39)

Where aj, nuclear form factors are given as follows,

a1 =

∫
dkf(k,q, w),

a2 =

∫
dkf(k,q, w)

k2

m2
,

a3 =

∫
dkf(k,q, w)

k2 cos2 τ

m2
,

a4 =

∫
dkf(k,q, w)

ε2k
m2

,

a5 =

∫
dkf(k,q, w)

εkk cos τ

m2
,

a6 =

∫
dkf(k,q, w)

k cos τ

m
,

a7 =

∫
dkf(k,q, w)

εk
m
.

(1.40)

and Tj; the nucleon hadronic tensor elements are given as follows,
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T1 =
1

2
q2(F1 + 2mF2)2 + (2m2 +

1

2
q2)F 2

A,

T2 = 2m2(F 2
1 + q2F 2

2 + F 2
A + q2F 2

T ),

Tα = −m
2

q2
T1 +

1

4
T2 +m2FS

[
− 2mF1 + q2F2 + (2m2 +

1

2
q2)FS

]
+m2(2mFA − q2FP )

[
− FT +

1

2q2
(2mFA − q2FP )

]
,

Tβ = −1

2
T2 +m2FS

[
2mF1 − q2F2

]
+m2FT

[
2mFA − q2FP

]
,

T8 = 2m2FA(F1 + 2mF2).

(1.41)

These nucleon form factors will be replaced by Equation 1.43 in the next section while

following the Pais treatment [47] for Cabibbo-suppressed CCQE cross section calculation.

The Wj are calculated for the target state which is superposition of non-interacting Fermi

gases of proton and neutron with individual momentum distributions. The aj are calculated

analytically for Fermi gas model [46] and contain all the nuclear physics in the single particle

momentum distributions and energies.

1.6.2 Cabibbo-Suppressed CCQE Scattering

Cabibbo-suppressed CCQE scattering can be regarded as the simplest process after CCQE

scattering (expressed in Equation 1.32). The processes can occur as follows:

ν̄` + p→ `+ + Λ0,

ν̄` + p→ `+ + Σ0,

ν̄` + n→ `+ + Σ−.

(1.42)

These processes have been calculated historically by [45, 48, 49, 47] and recently by [50,

51, 52, 53]. There are large variations in the cross section models (see, for example, Fig-

ure 1.14 versus Figure 1.15 and Figure 1.16).
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The processes shown in Equation 1.42 occur only for antineutrinos (restricted by ∆S =

∆Q selection rule) and convert a u-quark to s-quark, transforming a proton into a Λ0 or Σ0,

or a neutron to a Σ−. Such processes are relatively rare as they are suppressed by a factor

of sin2 θc ≈ 0.05, where θc is the Cabibbo angle. In other words, the CCQE neutral hyperon

production is ∼ sin2 θc = 0.05 times the CCQE neutron production. Since the processes

involve antineutrinos only, they can be used as ‘antineutrino tagger’ for the bigger neutrino

experiments. The study of such reactions at low energy is interesting as hyperons do not

experience Pauli blocking as compared to neutron production in CCQE (see Equation 1.33).

In CCQE neutron production, when a proton is converted to a neutron, it cannot stay in the

same shell in the nucleus as Pauli-Exclusion principle restricts two identical nuclear particles

in a given energy state, and must have an energy above a threshold for the interaction to

occur, hence the process is Pauli-blocked at low energies. Hyperons do not see this effect in

the nucleus.

This study covers the detection of neutral hyperons produced by the first two reactions

shown in Equation 1.42. The interaction involves u-s quark coupling via W−, which converts

a proton to a neutral hyperon; Λ0 or Σ0. The minimum threshold neutrino energies for Λ0

and Σ0 production are ∼ 325 MeV and 425 MeV, respectively. There is a µ+ and a neutral

hyperon (Λ0 or Σ0) in the final state of this interaction. Neutral particles are invisible in

the detector and can be seen only if they decay to charge particles. The Λ0 and Σ0 baryon

have masses (1115.683 ± 0.006) MeV and (1192.642 ± 0.024) MeV with the decay times of

(2.632 ± 0.020) x10−10 s and (7.4 ± 0.7)10−20 s, respectively. The decay times correspond

to the decay lengths, for v < c, of 7.8 cm and 0.022 nm, respectively. Notice that the mean

decay length of Σ0 is larger than the argon nuclear radius (∼10−15 m), so it exits the nucleus

before decaying to a Λ0. The longer decay time of Λ0 is attributed to its weak decay as

compared to the electromagnetic decay of Σ0. Λ0 decays to pπ− 64% of times and to nπ0

36% of times, whereas, a Σ0 decays to Λ0 100% of the time; which eventually decays to two

charge or two neutral particles as mentioned before. The signature of Λ0 decay is referred
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to ‘vee’ decay as the two charge particles make a shape of letter ‘V’. The first observation

of Λ0 was by V. D. Hopper and S. Biswas in 1950 [54] in photographic emulsions.

1.6.2.1 Pais Formalism – Cabibbo-Suppressed CCQE Cross Section

To accommodate the inelasticity and the |∆I| = 1
2

rule for these reactions, the Smith and

Moniz model has been extended using the calculation by Pais [47] for such processes. The

nucleon hadronic tensor elements calculated by Pais are used instead of those given by

Smith-Moniz in Equation 1.41,

t1 = 2M2w1,

t2 = 2M2w2,

tα =
M2

2
(w2 + w42w5),

tβ = M2(−w2 + w5),

t8 = M2w3.

(1.43)

where, the wi are expressed by Pais as follows,

w1 =
1

4M2

[
(q2 +M2

+)|g2
V |+ (q2 +M2

−)|g2
A|,

w2 = |gA −M−fA|2 + |gV −M+fV |2 + q2(|fV |2 + |fA|2),

w3 = −2Reg∗AgV ,

w4 = −|gV +M−hV |2 − |gA +M+hA|2 + (4Mν − q2 + 4M2)(|hV |2 + |hA|2),

w5 = (M+gV − (g2 +M2
+)fV )h∗V + (M+g

∗
A − (q2 +M2

−)h∗A)fA

+M−(fV g
∗
V + hAg

∗
A),

w6 = 0.

(1.44)
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Here,

M± =
√
M2 + 2Mν − q2 ±M, (1.45)

where q2 = −Q2 and ν = Eν − E`.

For the general CCQE processes shown in Equation 1.32, one can make the following

substitutions,

2Mν → q2;M+ → 2M ;M− → 0. (1.46)

Smith-Moniz’s and Pais’s form factors are related as follows,

Pais

gV

fV

gA

FA

hA

hV

⇐⇒

Smith-Moniz

F1 + 2MF2

F2

−FA

FT

−FP

FS

(1.47)

One can substitute Equation 1.44, Equation 1.46 and Equation 1.47 in Equation 1.43 to

reach the general CCQE result from Smith-Moniz for the processes shown in Equation 1.41.

The cross section for the Cabibbo-suppressed CCQE processes as calculated by Pais as

function of antineutrino energy is shown in Figure 1.14.
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𝑣µ + n → µ+ + S- 

𝑣µ + p → µ+ + L0, µ+ + S0  

Figure 1.14: CCQE Neutral Hyperon Production as calculated by Pais and used by NU-
ANCE Event Generator [46, 44, 47].

1.6.2.2 Experimental Measurements

Cabibbo-suppressed CCQE processes have been studied by bubble chamber experiments

such as Gargamelle at CERN [55, 56, 57], Serpukhov SKAT [58] and BNL 7-ft bubble

chamber with propane with admixture of freon, freon and hydrogen as neutrino targets,

respectively. The results are based on small number of events and hence have large statistical

uncertainties. Recently, more intense neutrino beams and bigger size neutrino detectors have

opened up the possibility to study these reactions.
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Figure 1.15: σ versus Eν̄, for the ν̄` + p→ `+ + Λ0 process. Figure from Ref. [53].

Figure 1.16: σ versus Eν̄, for the ν̄` + p→ `+ + Σ0 process. Figure from Ref. [53].

Figure 1.15 and Figure 1.16 show the theoretical calculation by [53] for the ν̄` + p →

`+ + Λ0/Σ0 processes and the corresponding experimental measurements.
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1.7 Nuclear Effects

In NUANCE neutrino event generator [44], the primary interaction of a neutrino with a

nucleon is given a starting position according to the measured nuclear density distribu-

tion [59]. The nucleus is considered an isoscalar sphere with radially-dependent density and

Fermi momentum. Hadrons are tracked in steps of 0.2 fm in the nucleus and the interaction

probability is calculated at each step using the single-nucleon cross section (pion-nucleon

and nucleon-nucleon) and local density. Single-nucleon cross sections and angular distribu-

tions come from the HERA data [60, 61, 62]. Elastic interactions in the nucleus are modeled

based in the global phase-shift analysis of world data [63]. Any interaction that leaves a

nucleon with momentum below Fermi sea are Pauli blocked. Neutral kaons are 50% Ks and

50% KL, whereas, KL cross sections are calculated assuming an equal mixture of K0 and

K̄0 with 50% chance of generating a Ks in any interaction. Ks decays immediately. The

simulation approximates the hyperons as non-interacting and non-decaying in the nucleus,

whereas in the data, the hyperons produced in the nucleus can undergo elastic, quasi-elastic

and charge-exchange processes with nucleons [50], such as,

Λ0 + p→ Λ0 + p,

Λ0 + n→ Λ0 + n,

Σ0 + p→ Σ0 + p,

Σ0 + p→ Σ0 + p.

(1.48)

Equation 1.48 shows the elastic scattering of a hyperon with a nucleon. The first two

processes (quasi-elastic) in the Equation 1.49 tend to increase the Λ0 cross section and

lower the Σ0 and Σ− cross section. This effect increases with the increase in the charge

and mass number of the nucleus. The Λ0 depletion is also allowed through the quasi-

elastic processes, however, it is limited due to the difference in the masses. The third and

fourth processes (charge-exchange) in the Equation 1.49 show the appearance of Σ+ which

36



cannot be produced in CCQE processes which are studied in this thesis (see Figure 4.1,

channel#95).

Σ− + p→ Λ0 + n,

Σ0 + n→ Λ0 + n,

Λ0 + p→ Σ+ + n,

Σ0 + p→ Σ+ + n.

(1.49)

Also, Λ0 production can also be higher in the data by the decay of Σ0 in nucleus;

Σ0 → Λ0 + γ, (1.50)

but the longer mean life guarantees the decay to be outside nucleus and is ignored in the

simulation. The result presented in this thesis is a production cross section of the CCQE

neutral hyperons on argon target and is consistent with the NUANCE model.
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Chapter 2

LArTPC Technique and Neutrino

Detection

This chapter presents the working of liquid argon time projection chamber (LArTPC) and

the detection of neutrino using this technique following Ref. [10], where a more detailed

description can be found. The LArTPC concept was proposed in the late seventies [64, 65]

and has undergone several technical developments in Europe. ICARUS T600 is the first

large mass (760 tons) new generation of detector able to combine the imaging capabilities

of the old famous bubble chamber with the excellent energy measurement of huge electronic

detectors. ICARUS T600 at the Gran Sasso underground laboratory is used to study cosmic

rays, neutrino oscillations, and the proton decay [66]. In the USA, the ArgoNeuT detector

is the first LArTPC to be exposed to the neutrino beam and serves as a first step for the

phased program towards the construction of a massive LArTPC detectors. The planned

Short Baseline Neutrino (SBN) Program at Fermilab includes 3 LArTPC detectors; SBND,

MicroBooNE, and ICARUS. MicroBooNE already started taking data in late 2015, and the

other two will start in 2018 [67].
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2.1 LArTPC Concept and Working

The goal of any neutrino detector is to measure the properties of a neutrino, such as its flavor

and energy. This can be done by reconstructing the particles that are produced in a neutrino

interaction in the detector. LArTPC offers bubble chamber quality images with fine-grained

tracking, along with precise calorimetry and excellent background rejection. LArTPCs,

because of these qualities, can precisely reconstruct neutrino flavor and energy and enables

us to study rare phenomena. Even though a LArTPC provides precise measurements, the

underlined idea and working is simple as shown in Figure 2.1.

Figure 2.1: (Left) The LArTPC concept for neutrino detection. (Right) Each wire plane
provides a two-dimensional view of an event. Figure from Ref. [68].

The time projection chamber is filled with liquid argon. When a neutrino passing through

the detector medium interacts with an argon atom, it produces other particles as a result

of the interaction. These particles quickly travel through the liquid argon and, if charged,

produce ion-electron pairs along their way. As argon is a noble gas, this ionization is free
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to drift across the chamber. The chamber sits in a constant electric field, so the ionization

electron trails separate from the positive ions and drift towards the wire planes, which sense

the charge induction or deposition. The wire planes are oriented at an angle to one another.

The resulting signals at the wire planes are read out and analyzed. The ionization induces

electric current in the ‘induction’ planes, and finally gets collected by the ‘collection’ plane.

The induction plane’s signal is bipolar naturally because the ionization induces current in

wires in one direction when it is approaching the plane, and in the opposite direction when

it is receding. The signal on the collection plane is by contrast unipolar, as the ionization

approaches the plane and is collected there.

Each wire plane provides a two-dimensional view of an event. When the information

from both planes is combined along with the time information, one can reconstruct the

three-dimensional image of an interaction. In other words, a single plane provides the wire

and time coordinates, and matching this information in time among planes gives a three-

dimensional view of the neutrino event.

Knowledge of the amount of charge deposition on the wire planes allows for the calori-

metric reconstruction, as the amount of the charge deposition is proportional to the amount

of the energy a particle deposited in the detector. Scintillation light (with wavelength =

128 nm) is also produced during an interaction, but ArgoNeuT does not use photomultiplier

tubes and hence does not detect this light. MicroBooNE makes use of the scintillation light

in a neutrino event and can measure more precisely the start time of the interaction. Ar-

goNeuT obtains the start time of an interaction from the beam timing information. Other

than this, scintillation light detection can lower the threshold of minimum reconstructable

energy by a detector, and also can provide information for phenomena such as supernova

burst neutrino and proton decay.

Properties of argon such as its high density, short radiation length, and high scintilla-

tion yield as compared to other noble elements makes it ideal for detecting neutrinos, (see

Figure 2.2). High density gives a higher interaction rate, short radiation length helps in
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Figure 2.2: Properties of the stable noble elements, relevant to particle detection. Figure
credit: Mitchell Paul Soderberg.

event containment, and lower electron diffusion helps better track resolution. Argon also

withstands high voltages which also makes it a good candidate for TPC. One can see that

krypton and xenon are stronger candidates for neutrino detector for the similar reasons;

however, argon is relatively cheap and is easier to obtain as it is ∼ 1% of the atmosphere.

A collection plane signal of a neutrino event in ArgoNeuT can be seen in Figure 2.3.

The signal is a wire-time view (or in other words a two-dimensional view) with the colors

representing the amount of charge deposited on a certain wire at a certain time. Also, the

bottom panel in the figure shows the collection plane’s signals for a certain wire as a function

of time.

For minimum signal attenuation, a careful selection of electric fields in the space be-

tween the drift region and the induction plane, and also in space between induction plane

and collection plane, is required. For maximum grid electron transparency for an electron

traveling from space 1 with electric field E1 to space 2 with electric field E2, the ratio of

electric field E1 and E2 must fulfill the transparency condition [70].

41



Figure 2.3: A neutrino event in ArgoNeuT as seen in the collection plane (wire, time)
view. The lower panel shows the raw ADC counts as a function of time for wire #140.
Figure from Ref. [69].

E1

E2

>
1 + ρ

1− ρ
. (2.1)

Here ρ = 2πr/a; r is the wire radius, and a is the distance between the wires. This

equation can be used for more than two wire planes. Often a ‘shield’ plane is also employed

in addition to the induction and collection planes, separating both of them from the larger

drift region. Shield plane serves as a shield for the induction and collection planes, so that

they do not have induced charge before the ionization electrons enter the wire plane region.

The shield plane, to serve this purpose, must satisfy the following condition:
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a

2πs
ln(

a

2πr
) ∼ 1. (2.2)

Figure 2.4: A LArTPC’s wire planes and drift regions. Figure from Ref. [10].

Here, s is the distance between the shield plane and the next plane (induction plane).

The shield plane can also help shape the field near the wire planes, and it can also serve as

an additional ‘wire plane’ giving an additional view of an event, thus helping in the three-

dimensional reconstruction of an event. ArgoNeuT uses only two planes; the induction and

collection. In Figure 2.4, one can see three planes; shield, induction and collection, which

make three drift regions with electric field E1, E2 and E3. Here, E1, E2, and E3 are selected

to satisfy Equation 2.1, for a certain wire thickness and spacing. The plane spacing is

chosen to satisfy Equation 2.2. Note that the collection plane carries a positive voltage, and

the cathode carries a negative voltage for the ionization electrons to drift towards the wire

planes.
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2.2 Calorimetry - Charge to Energy

The amount of charge detected by the wires is directly proportional to the amount of the

energy deposited by the corresponding particle in the detector. The stopping particles

can be identified by measuring their kinetic energy (energy deposited in the detector) and

the distance they traveled in the detector before stopping. Also, the energy deposited per

unit length along the track (dE/dx) can be used to differentiate between particles. (see

Figure 2.5).

Figure 2.5: (Left) dE/dx versus kinetic energy and (right) kinetic energy versus range for
particles [71].

The excellent differentiation power of a LArTPC for photons and electrons makes it

a vital technique as compared to other traditional types of neutrino experiments. Recon-

structing a photon as an electron is a dominant background for signal electron-neutrino

events in oscillation experiments. In LArTPCs, energy deposited per unit length by a track

produced by a photon (which converts to an electron-positron pair) is approximately double

the energy deposited per unit length by a track produced by an electron. This is a very

strong discrimination factor that separates photons from electrons. For this purpose, one
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uses the first few centimeters of the track, that is, before the electromagnetic shower has

started when a track becomes hard to characterize.

To get the energy deposition per unit track length from the charge deposition, after

measuring the track orientation, one needs to know the electronic calibration factor (unit

ADC/fC) to convert measured ADC counts to charge, and then normalize for the track

length to get the charge per unit track length. One also needs the knowledge of charge loss

along the drift due to electro-negative impurities. One also needs to take into account the

recombination effect, which is the ionization electrons’ recombination with ions before they

were drifted by the applied electric field. This effect is called as ‘charge quenching’ which is

the function of energy density of the charge and the applied electric field. A semi-empirical

formula, Birk’s Law [72], takes this effect into account and relates the charge deposited per

unit length and the corresponding energy per unit length.

dQcor

dx
= A

(dE/dx)

1 +KB(dE
dx

)
. (2.3)

Here, Qcor is the corrected charge, and A and KB are measured constants in a given

electric field. The constants are measured at a number of different voltages in LArTPCs [73].

2.3 Challenges

ArgoNeuT is a research and development (R&D) project at Fermilab and serves as a first

step for the US program for future kilo-ton scale LArTPCs. There are a number of associated

challenges in construction and operation of LArTPCs specially when it comes to bigger sized

LArTPCs. Experience gained with ArgoNeuT proved useful for MicroBooNE and will be

used for the future experiments.

It should be mentioned that signal processing, devising automatic reconstruction, and

analysis tasks for physics with LArTPCs also offer challenges. This is discussed in detail in

Chapter 4.
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2.3.1 Purity of Liquid Argon

The liquid argon used in LArTPCs needs to be thousands of times more pure than what

is available commercially in order to have the minimum charge attenuation and to get the

ionization electrons to drift all the way to the anode. The method of achieving pure liquid

argon is discussed in Chapter 3 in detail. Argon purity is more challenging for bigger

LArTPCs. For example, for a 20 Kilo-ton LArTPC, the drift distance can be estimated to

be about 10m. However, the idea of segmented TPC, that is, having multiple drift regions,

can make this problem manageable with 2-3 m of drift distances. However, the design of

multiple drift region comes at the cost of more readout channels in a TPC.

2.3.2 Safety with Liquid Argon

Working with liquid argon in a confined space offers a safety hazard. The argon gas is a noble

gas and not a direct obvious danger to human beings. However, if a few tons of liquid argon

is spilled in an enclosed building in an unfortunate event, it can quickly expand to gas form

and replace oxygen in the space, and would be threatening for the human beings. Devising

measures to avoid such a spill underground is challenging. Filling the liquid argon in the

underground detector in a safe way is also a challenge for the bigger detectors. ArgoNeuT

uses measures such as gas relief lines that direct the spilled argon from underground to the

ground level, oxygen deficiency alarms, slow control monitor (with pressure and temperature

sensors), spill containment vessel, etc.

2.3.3 Light Collection

Liquid argon produces scintillation light which can be readily detected. This light can

be used as a trigger for the start time of a neutrino interaction, which is very helpful for

the non-beam-related phenomenon such as super-nova burst and proton decay. Although

the start time of an event can be determined by the time of charge induced on the first
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wire plane by the track, this method does not work well in the presence of, for example,

cosmic rays within the drift time window. Scintillation light can also help by lowering the

minimum reconstructable energy threshold of a detector. Light detection with the resolution

of nanoseconds seems necessary for future LArTPC experiments.

There are two main processes of scintillation light production:

Ar∗ + Ar → Ar∗2 → 2Ar + γ,

Ar∗ + Ar → Ar+
2 + e− → Ar∗2 → 2Ar + γ.

(2.4)

The first process is called self trapped exciton luminescence, in which, an excited atom of

argon, generated as a result of charged particle produced in the neutrino interaction, creates

a molecular pair with a neighboring argon atom. Then this molecular pair de-excites and

produces a photon. The second process is called recombination luminescence, in which, an

argon ion, generated as a result of charged particle produced in the neutrino interaction,

recombines with a neighboring argon atom to produce a molecular ion. This molecular ion

then breaks apart and de-excites producing a photon. Both processes generate a photon with

a wavelength of 128 nm, which is very difficult to detect using conventional photomultiplier

tubes (PMTs). These tubes have low transmittance at the given wavelengths. However, a

high transmittance glass can be employed, or a wavelength shifter to shift the light into the

visible spectrum. MicroBooNE uses 32 8-inch PMTs for the detection of scintillation light.

Each PMT is positioned behind a wavelength shifting plate.
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Chapter 3

The ArgoNeut Experiment

ArgoNeuT is a research and development project at Fermilab funded by NSF and DOE. It is

the first ever LArTPC exposed to a ‘low energy’ neutrino beam, and just the second to go in

the neutrino beam ever [74], providing the neutrino interaction measurements in the 0.5 to 10

GeV range. These energies are the most relevant for the long baseline neutrino oscillation

searches. ArgoNeuT serves as a first step for the construction of larger detectors, such

as MicroBooNE by providing hands-on experience in operating underground liquid argon

recirculation and electronics readout systems. This chapter describes the specifications of

the ArgoNeuT experiment following Ref. [10, 75].

3.1 The NuMI Neutrino Beam

The neutrino beam is one of the important parts in accelerator-based neutrino experiments.

ArgoNeuT is exposed to the NuMI neutrino beam which is generated from 120 GeV protons

from the Main Injector at Fermilab. The production of the neutrino beam requires a series

of steps (see Figure 3.1), which are described briefly in the following.
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3.1.1 Cockcroft-Walton Pre-Accelerator

In the first step, H− ions are produced by ionizing compressed hydrogen gas H2 in the

Cockcroft-Walton pre-accelertor. These ions have one proton and two electrons and are

accelerated by a positive voltage to reach the energy of 750 KeV.

3.1.2 Linac

Hydrogen ions then enter the linear accelerator (Linac) which is about 160 m long, where

an alternately polarized electric field accelerates the ions to the kinetic energy of 400 MeV.

Before going to the next step, the negative ions H− are stripped off of both of their electrons

by passing through a carbon foil, so they become single protons.

Figure 3.1: Fermilab’s accelerator chain [76]

3.1.3 Booster

Single protons with a kinetic energy of 400 MeV then enter the Booster, which is a syn-

chrotron accelerator operating at 15 Hz. It is 6 m underground and is 150 m in diameter.
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Protons revolve about 20,000 times around the Booster, each time picking up more energy,

and finally reaching 8 GeV before leaving the Booster. The booster injects a maximum of

11 batches of protons, each having about 5 × 1012 protons to the Main Injector in about

0.7 seconds.

3.1.4 Main Injector

Protons with 8 GeV of kinetic energy now enter the Main Injector, which is a larger syn-

crotron operating at 52.81 MHz. It accelerates them to either 120 GeV or (before the

Tevatron shutdown) to 150 GeV. Protons with 120 GeV kinetic energy are either sent to

the anti-proton source for the Tevatron or to the NuMI beamline. Protons with 150 GeV

were sent to the Tevatron. Protons are extracted in a series of pulses, also called spills. Each

spill contains 11 batches. Before the Tevatron shutdown, out of 11 batches, NuMI utilized 9

batches, with 2 going to an antiproton source for the Tevatron. After the decommissioning

of the Tevatron in 2012, all 11 batches are now delivered to NuMI. Filling the Main Injector

with 11 batches takes 0.73 s (1/15s/batch × 11 batches). They are then accelerated to 120

GeV (from 8 GeV), which takes about 1.5 s. Thus, the Main Injector’s cycle time is 2.2 s.

Typical extracted intensity of the NuMI beam is about 4.2 × 1013 protons/spill [77].

3.1.5 NuMI Beamline

The NuMI beam is bent downwards at 3.30 to point at the MINOS far detector in Soudan,

Minnesota. The proton beam from Main Injector hits the graphite target which is placed at

350 m from it [78, 79, 80]. The target is composed of 47 rectangular segments, each 20 mm

in length, 6.4 mm in width, and 15 mm in height. The spacing between two neighboring

segments is 0.3 mm making the total length of the target equal to 95.4 cm, which corresponds

to 1.9 proton-carbon hadronic interaction lengths. Two water-cooled stainless steel tubes

run at the top and bottom of each segment. The size and design of the target are selected to

maximize the pion production and minimize their re-interaction in the target at manageable
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thermal conditions. Figure 3.2 shows a longitudinal cross-section of the NuMI beam target

and Figure 3.3 shows the relative positioning of the target and the horn system including

the possible trajectories of the particles.

Figure 3.2: Longitudinal cross-section of the NuMI graphite target. Figure from Ref. [80].

Figure 3.3: Possible trajectories of the hadrons passing through the two horns. Particles
underfocused or overfocused by first horn are further focused by the second horn. Figure
from Ref. [80].

The proton-carbon interaction produces a variety of particles, shown below

p+ C → π±, K± +X. (3.1)
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These particles are focused or defocused by two magnetic horns with a 30 kG toroidal

field. For the low energy configuration of NUMI beam, the graphite target is partially

enclosed in the first horn, 50.4 cm covered by the 3.3 m long horn [80, 81]. A second horn,

3.58 m long, is placed about 10 m downstream of the first horn. In forward horn current

mode (FHC), the horns focus π+, which produce primarily a muon neutrino beam (π+ →

µ+ + νµ). If the current is reversed in the horns, π− will be focused instead and the beam

produced will have enhanced antineutrinos.

π+(−) → µ+(−) + νµ(ν̄µ). (3.2)

Note that the intensity of antineutrinos in a beam will always be smaller than neutrinos

because the π− production rate is smaller than that of π+ due to charge conservation.

Figure 3.4: A plain and elevation view of the NuMI beamline. ArgoNeuT was located in
the near detector hall and was accessed via the service shaft. Figure from Ref. [80].

All the particles produced in the proton-carbon interaction at the target, including pions

and kaons, travel through a helium filled steel decay pipe, which is 675 m long and 2 m in

diameter. This length is equivalent to the decay length of a 10 GeV pion. Here, almost all the

hadrons decay into neutrinos. The hadron monitor downstream of the decay pipe detects
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any undecayed hardons. The hadron monitor is composed of a set of helium ionization

chambers, which detect charged particles via ionization and the information collected is

used for beam monitoring [82]. The beam now travels through the hadron absorber (made

of steel/aluminum/concrete) which is thick enough to stop all hadrons that have not yet

decayed. At this point, the beam is composed of muons and neutrinos, which now enters 240

m of rock, where all muons are stopped, and only neutrinos are left. The beam now enters

the MINOS ND hall where ArgoNeuT is situated, a total of 1 km from the NuMI target.

There are three ionization chamber muon monitors which monitor the flux and orientation

of the muons. The first is placed just after the absorber, whereas, the second and third

are placed 12 m and 30 m downstream of the first, respectively. The information from the

muon monitors is used to predict the pion and kaon spectrum and also to estimate neutrino

and antineutrino spectrum in the beam. A schematic diagram of the NuMI beamline along

with plain and elevation view can be seen in Figure 3.4, 3.5.

Figure 3.5: Elevation view of the NuMI beamline. 120 GeV protons from FNAL Main
Injector enter from the left. Figure from Ref. [80].

The relative placement of the target and horns, and the magnitude of horns current

(and the consequent magnetic field) alters the beam energy spectrum. The NuMI target

is placed on rails and can be moved with respect to the horn system. Higher energy pions
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have a shallower angle due to the lorentz boost, and they are slightly focused by the horn

system. Inserting the target slightly inside the horn will focus higher angle, lower energy

pions towards the decay pipe. This creates a lower average neutrino energy beam. The

NuMI beam has three energy configurations, low, medium and high (see Figure 3.6). All of

the ArgoNeuT physics run was in the low-energy configuration.

In neutrino mode, the NuMI beam is composed of 91.7% νµ, 7% ν̄µ and 1.3 % νe + ν̄e.

In antineutrino mode, the beam is composed of 39.9% ν̄µ, 58.1% νµ and 2% νe + ν̄e [83].

Figure 3.6: Neutrino energy spectra at 1040 m from the NUMI target with 10 m horn
separation. Target inside the horn (LE), or retracted 1 m (ME), or 2.5 m (HE). Figure
from Ref. [84].

3.2 The Physics Run

ArgoNeuT started with the cosmic ray commissioning run on the surface in summer 2008

in the Proton Assembly Building (PAB) at Fermilab, and later started its operation un-

derground with the cosmic ray and beam neutrino commissioning run in Spring 2009 in

MINOS near detector (ND) hall. The commissioning runs helped with various aspects of

the experiment such as dead or noisy wires, low purity, poor recirculation rate, etc.
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Figure 3.7: (Left) The fully instrumented ArgoNeuT detector in the beamline. (Right) An
aerial view of Fermilab showing NuMI beam and MINOS hall location. Figure from Ref. [75].

ArgoNeuT’s physics run began in September 2009 after the Fermilab accelerator complex

summer shutdown was over. ArgoNeuT was situated at about 1.5 m upstream of MINOS

ND [85]. Figure 3.7 and Figure 3.8 show the ariel view of the Fermilab and MINOS ND

Hall and the position of ArgoNeuT in the MINOS ND hall. The general specifications of

the ArgoNeuT can be seen in the table in Figure 3.9. During the operation of ArgoNeuT,

The Minerva experiment [86] was installed just upsteam of ArgoNeuT.
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Figure 3.8: The position of ArgoNeuT in MINOS near detector hall. ArgoNeuT, inside
the gray box, can be seen just upstream of the MINOS near detector. Figure from Ref. [75].

Figure 3.9: ArgoNeuT specifications

ArgoNueT’s physics run concluded in late February 2010. In its more than five month

run, it took neutrino-mode beam data for about two weeks, and antineutrino beam for about
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four and a half months. The entire run was in the ‘low-energy’ NuMI beam configuration,

and the detector collected a total of about 1.335 × 1020 protons-on-target (POT). Out

of this total, about 0.1 × 1020 were in the neutrino mode and about 1.25 × 1020 in the

antineutrino mode. The uptime for the experiment in terms of POT delivered was about

86%, which included the two-week downtime in October 2009 because of a commercial

cryocooler failure. Figure 3.10 shows the POT received as a function of time for ArgoNeuT.

Excluding the cryocooler failure time, the uptime for the experiment was about 95% for

the whole physics run. The MINOS near detector was operational for about 90% of the

ArgoNeuT’s physics run.

Figure 3.10: The ArgoNeuT physics run in terms of delivered/acquired protons on target
(POT) as a function of date, spanning 2009/2010. The ∼2 week downtime in October was
due to a cryocooler failure. Figure from Ref. [75].
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3.3 The Detector

3.3.1 Cryostat anad Cryocooler

ArgoNeuT consists of an inner and outer cryostat, which are cylindrical in shape and have

convex end-caps. The liquid argon is contained in the inner cryostat, which is made of

stainless steel with a volume of 550 litres. The length and diameter of the inner cryostat

are 130 cm and 72.6 cm, respectively. It is surrounded by a thick layer of vacuum insulation

that is created between the inner and the outer cryostat. It was kept at a pressure of 10−3

- 10−4 torr for the full physics run. The outer cryostat has a length of 163 cm and diameter

of 106.7 cm. The geometric axis of the cryostat is horizontal and is aligned with the NuMI

beam axis.

The cryostat has a chimney located on top of it which is partially vacuum jacketed. It

has multiple functions, including providing access to the signal wires of the TPC, internal

instrumentation and holding the pipes for the re-circulation and high voltage feedthrough.

A single stage commercial cryocooler, a copper heat exchanger, and helium-based com-

pressor keep the argon in the liquid state at a constant temperature of 88 K inside the

cryostat. The liquid argon that boils off goes vertically up about 3 m above the cryostat to

the cryocooler, is re-condensed, and sent back to the liquid argon volume at the bottom of

the cryostat passing through one of the three pipes and a vacuum insulated pump. Out of

three pipes, two have argon filters installed, whereas, one is a bypass pipe, (see Figure 3.15).

On rare occasions, the re-condensed argon is forced through the by-pass pipe. Usually dur-

ing the re-condensation, the bypass is closed, and the liquid argon uses one of the pipes with

a filter. The whole system of filters and pipes is vacuum insulated.

A number of temperature and pressure sensors installed on the inner and outer cryostat,

cryocooler, and filters along with the heaters throughout the volume make a feedback loop.

This loop is controlled by the slow control software to maintain a constant temperature

and pressure along with a constant re-circulation rate. If the pressure decreases below 2.0
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PSIG, heaters attached to the cryocooler starts and its cooling power would be reduced.

On the other hand, if the pressure increases this value, the heaters will automatically be

dialed down, and the cooling increases. A screenshot of remotely controllable slow-control

software for ArgoNeuT experiment is shown in Figure 3.11.

Figure 3.11: A screenshot of the remotely controllable cryosystem monitoring software.
Figure from Ref. [75].

There are relief lines for the argon to expand and escape safely in case of boiling. All

of the relief lines go to the common vent pipe, which runs up to the ground surface from

the MINOS ND hall. In the case of any major accident, the outer cryostat and surround-

ing containment vessel, see the orange box in Figure 3.7, (which is equipped with oxygen

deficiency sensor and fans) serve as containers for the spilled liquid argon.

3.3.2 Time Projection Chamber

The ArgoNeuT time projection chamber (TPC) is rectangular in shape with dimensions

47.5 × 40 × 90 cm3 (∼ 175 liters). It sits inside the inner cryostat. The box of TPC is
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made of G10, and all the inner conductors are made of copper. The longest side of the

TPC is horizontal to the ground and is approximately parallel to the beam axis, whereas,

the ionization electron’s drift direction is perpendicular to the beam. The maximum drift

distance is 47.5 cm, which is the distance between the negative cathode and the first wire

plane which is grounded. ArgoNeuT has three wire planes, the first one, called the ‘shield

plane’, is closest to the cathode, and has 226 wires that are at 900 to the beam axis. This

plane serves to shape the electric field near the anode and also prevents the induction of

current on the two outer planes due to drifting ionization electrons through the TPC. In

principle, this plane can also serve as an additional readout plane, but in ArgoNeuT it is

not instrumented. The second plane, with 240 wires oriented at +600 with respect to the

beam axis, is called the ‘induction plane’. The third plane, with 240 wires oriented at -600

with respect to the beam axis, is called the ‘collection plane’.

Figure 3.12: (Left) The orientation of the ArgoNeuT TPC’s wire planes. (Right) The fully
assembled TPC. Figure from Ref. [10].

The signal is produced once the ionization electrons traveling from the drift region cross

the shield plane. At this time, a current is induced in the induction plane in one direction,

and, as the ionization electrons pass the induction plane and move away from it (towards

the collection plane), a current in the opposite direction is induced in the induction plane.
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Hence, the induction plane’s signal is a bipolar pulse. The ionization electrons finally get

collected at the collection plane producing a unipolar signal there. The spacing between the

wires in each plane in 4 mm and the spacing between the planes is also 4 mm. The wire

planes and fully assembled TPC can be seen in Figure 3.12.

Figure 3.13: A look inside the TPC. The solid copper sheet is the cathode plane and the
copper strips lining the TPC are the field cage rings. The TPC frame (i.e. what the copper
is attached to) is composed of G10. Figure from Ref. [75].

There is a constant electric field of 500 V/cm throughout the drift region of the TPC.

There are 23 copper field rings placed 1 cm apart, each 1 cm wide, along the edge of the

TPC, from the cathode to the first wire plane. A resistor chain through each field ring from

the -25 kV cathode ensures a uniform electric field throughout the TPC. The interior of the

TPC can be seen in Figure 3.13. The fully instrumented TPC ready to be inserted into the

inner cryostat can be seen in Figure 3.14.
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Figure 3.14: The fully instrumented TPC ready to be inserted into the ArgoNeuT inner
cryostat. Figure from Ref. [75].

3.3.3 Purification System

It is crucial in a LArTPC experiment that the liquid argon is kept pure so that the ionization

electrons can reach the wire planes with minimum loss. Electronegative impurities in the

liquid argon cause the charge attenuation during the drift. The increase in concentration of

impurities decreases the electron lifetime τe, for example, for the oxygen, e− + O2 → O2
−,

1

τe
= ke[O2]. (3.3)

Here, [O2] is the oxygen-equivalent concentration representing the total concentration

of electro-negative impurities. It is expressed in the unit of parts-per-billion (ppb). ke is

the rate constant of the electron attachment process to electro-negative impurities, which

depends on the applied electric field in the TPC. For example, for an electric field of 0.5
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kV/cm, ke ' 3.1 ppb−1ms−1 [87], the drift velocity of electrons corresponding to this electric

field is about 1.6 mm/µs. Now, for the drift distance of 47.5 cm in ArgoNeuT, the drift

time is 294 µs and the electron lifetime needs to be 425 µs for about 50% of charge atten-

uation, which corresponds to the impurity concentration of about 0.8 ppb. Commercially

available liquid argon has few-parts-per-million oxygen-equivalent concentration. However,

ICARUS [88] and FNAL [89], using filtration methods, have shown the electron lifetime in

excess of 10 ms.

Figure 3.15: The ArgoNeuT experiment during the physics run. (Inset) A drawing of the
fully contained ArgoNeuT recirculation system featuring a cryocooler and two liquid argon
filters. Argon gas goes up to the cryocooler and liquid argon comes back down through the
filters before returning to the cryostat. Figure from Ref. [10].

The filtration technique used by the ArgoNeuT experiment is based on the work pio-

neered by the ICARUS collaboration [90]. The ArgoNueT filters are made of activated-

copper-coated alumina granules [91] inside of a flange cylindrical nipple with steel caps on
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each side. The steel caps allow the liquid argon to flow through while keeping the granules

inside of the filter. Each filter, having a 2.5 inch diameter and 24 inches in length, corre-

sponding to about 2 L of volume, was wrapped in about 8 inches of fiberglass for insulation.

The filters are re-insulated by a weak vacuum of 100-200 torr in the recirculation system

and are installed just downstream of the cryocooler in the ArgoNeuT’s closed loop recir-

culation system. Because of their porous structure, O2 absorption is very large, as well as

H2O absorption via molecular trapping. The filter’s efficiency reduces with time, as it gets

saturated with electronegative impurities and the electron lifetime decreases (as measured

by the purity monitor). A dew point monitor senses the concentration of water vapor in the

argon exiting the filter, which serves as an effective status indicator for off-line regeneration

of the filter. When a filter gets saturated, the circulation is switched to the other filter, and

the saturated filtered is regenerated, see Figure 3.15.

The argon that boils off of the liquid argon surface, goes up to the cryocooler and gets

condensed there. In the liquid form, it is pushed by gravity and pressure to pass through

the filter, finally entering the cryostat at the bottom. The recirculation flow rate of the

system is about 1.6 L/hr/L (LAr volume per unit time per unit volume of the filter), which

corresponds to the full volume (about 550 L) recirculation every 7-8 days. Further detail

about ArgoNeuT filtration method can be found in [89].

3.3.4 Purity Monitor

The purity monitor in ArgoNeuT is installed just on top of the TPC inside the cryostat. It

monitors the recirculation system and allows the instantaneous determination of the liquid

argon purity, although with high systematics. A number of measurements over the course of

days can determine the general trend and the rate of the purity (increasing or decreasing).

These measurements also help with filter issues and also determine if the initial argon fill

was successful.

A schematic diagram of purity monitor is shown in the Figure 3.16. It is designed based
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on the Ref. [92]. The purity measurement process starts with shining light from a Xenon

flash lamp that is outside the cryostat to the inside via optical fibers which are pointed

towards the gold photocathode of the purity monitor. The photoelectrons from the photon-

gold interaction drift through the field cage of the purity monitor (about 100 V/m) and

are detected at anode about 10 cm away. Comparing the signals from cathode and anode

using an oscilloscope allows to determine the level of ionization attenuation across the drift

distance. If the purity is infinite (infinite electron lifetime), the signals from the cathode

and anode would appear to be equal and opposite after accounting for a slightly different

electronic readout response of the cathode and anode.

Figure 3.16: The purity monitor concept. The cathode and anode signals, separated in
time, are compared in order to determine the electron lifetime, a measure of purity, of the
liquid argon. Figure from Ref. [10].

The electron lifetime τ and electron drift time are related by the following:

Qanode

Qcathode

= e−t/τ . (3.4)

Where Qanode and Qcathode are proportional to the anode and cathode pulse heights

respectively. A purity monitor oscilloscope automatically determines the electron lifetime

given the electron drift time using a program that employs peak-finding techniques for the
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signal of the anode and cathode. The program fits the exponential decay to the signal in

order to account for the electronics signal response.

The electronegative impurity concentration in the liquid argon can be written as [87]

d[e]

dt
= −ks[S][e]. (3.5)

Here, [S] is the electronegative impurity concentration, [e] is the electron concentration,

t is time, and ks is the attachment rate constant for electrons.

The solution to the above equation can be written as

[e(t)] = [e0]e−ks[S]t, (3.6)

or

Qanode

Qcathode

= e−ks[S]t. (3.7)

Here, after accounting for a few conversion factors, Qanode and Qcathode correspond to

[e0] and [et]. Now, one can solve the two equations and get a relation between the electron

lifetime and electronegative impurities as follows

[S] =
1

35ksτ
. (3.8)

The unit of [S] is usually a molar fraction. For liquid argon, it is 35 mol/L (or e.g. ppt),

and the unit of τ is seconds. An electron lifetime of 750 µs (typical for ArgoNeuT in neutrino-

mode run) corresponds to an oxygen-equivalent electronegative impurity concentration of

400 ppt.
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3.3.5 Electronics Readout

There are three planes in ArgoNeuT, out of which two are instrumented to read the electronic

signals of the charge deposition by the drifting ionization electrons. These planes are called

the ‘induction’ plane and ‘collection’ plane. The un-instrumented plane is called the ‘shield

plane’. The induction and collection planes each have 240 wires which are made of Beryllium-

Copper Alloy #125 and have a diameter of 0.006 inches. The shield plane has 226 wires.

The bias voltage distribution cards (BVDCs) provide the filtered voltage to the wire planes

with a 100 MΩ resistor by a Lecroy DC power supply. A capacitor is connected in series

with the signal to decouple the DC bias voltage from the AC signal output. Each BVDC

is connected to 24 TPC wires and connects to the wire frame with two 12 pin connectors.

Each BVDC sends the output signal to the feedthrough circuit board, about 9 feet away,

via ribbon cables. The signal from the feedthrough is sent to a dual FET charge integrating

amplifier and then through a series of high and low pass filters. The final amplified and

filtered signal is now sent to a set of 32 channel ADF-2 modules for digitization, which

samples the waveform at 198ns/sample. Once the DAQ system is triggered by the NuMI

beam spill clock, each channel records 2048 ADC samples with a 10-bit resolution. The total

readout time for a single trigger or a single beam spill is about 400 µs which is higher than

the total drift time in TPC (333 µs). This allows pre/post sampling and helps in removing

spurious tracks (background) that originate outside the beam spill window. Figure 3.17

shows the ADF2 module, FET charge integrating amplifier with filters and BVDC, and

Figure 3.18 shows ArgoNeuT’s power supply and the shield cage for the feedthrough and

preamplifiers.

3.3.6 MINOS Near Detector

MINOS is a long-baseline neutrino experiment with near and far detectors exposed to the

NuMI neutrino beam. The MINOS ND sits at Fermilab 100 m underground, just upstream

of ArgoNeuT, whereas, the far detector is 735 km downstream in the Soudan Mine in
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Figure 3.17: (Left) An ADF2 digitizer card, which samples at 5 MHz (2048 sam-
ples/channel). (Middle) The FET preamplifier and filters. (Right) A set of bias voltage
distribution cards. Figure from Ref. [75].

northern Minnesota. ArgoNeuT uses the MINOS ND measured values of momentum and

charge of muons exiting its TPC and entering the MINOS ND; therefore, MINOS ND is

briefly discussed here.

The MINOS near detector is a 980 ton magnetized steel and scintillator tracking calorime-

ter. The detector with a sandwich design of alternating layers of steel and scintillator is a

3.8 m high and 4.8 m wide squashed octagon with a length of 16.6 m. There are 282 steel

planes in the detector, each 2.54 cm thick and attached with 1 cm thick plastic scintillator.

Each pair of steel and plastic scintillator is separated from the adjacent pair by 2.54 cm.

Each layer of scintillator is rotated by 900 with respect to the previous one to help with a

three-dimensional event reconstruction. The NuMI beam is horizontally off center from the

detector as shown in Figure 3.19. In the first 120 planes, every fifth plane is fully covered

with the scintillator whereas the intermediate four are partially covered, that is, only on

the beam centered side of the detector. For the rest of the planes in the detector, again,

every fifth plane is fully covered with scintillator, but the intermediate four have no scintil-

lator coverage at all. The upstream part of the detector is used to measure the energy of
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Figure 3.18: (Left) The ArgoNeuT electronics custom power supply. (Right) The RF
shielding cage used to minimize noise on the feedthrough and preamplifiers. Also shown is
the preamplifier cooling mechanism (with remote ducts). Figure from Ref. [10].

hadronic showers; hence, it is more finely instrumented and is called the ‘calorimeter’. The

downstream part of the detector serves as a muon tracker and is called the ‘spectrometer’.

The idea behind it is that a neutrino interaction in the calorimeter region produces a muon

(in case of charged current muon neutrino interaction) that travels to the downstream end

to the spectrometer and is fully reconstructed.

The detector sits in an average toroidal magnetic field of 1.3 T produced by a coil of

current-carrying cables that pass through a hole along the length of the detector . The hole

is 55.8 cm offset from the center of the planes and the detector is positioned in such a way

that the beam is centered halfway between the left vertical edge of the detector and the hole,

(see Figure 3.19). The magnetized detector allows to determine the charge and momentum

of a particle by using the direction and amount of curvature of the particle traveling in the

magnetic field.

MINOS ND employs scintillator strips that are made of polystyrene covered with re-

flective coating of polystyrene 85% and TiO2 15% by weight. Wavelength shifting (WLS)

fibers are grooved 2 mm deep in the middle of each scintillator strip. When a charged par-
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Figure 3.19: (Left) The regions of the MINOS ND, as used by the MINOS experiment.
(Right) The MINOS plane configurations. The beam and fiducial volume are centered around
the middle of the partially instrumented planes, left of the coil [93].

ticle travels through the scintillator strip, UV light peaked at 420 nm is produced which is

absorbed by the WLS fibers. The WLS fibers re-emit the light at a wavelength of 470 nm

and carry it to the end of the strip where it is carried to the photomultiplier tubes via clear

fibers, (see Figure 3.20).

The MINOS detector plays a significant role in the full reconstruction of muons that

exit the ArgoNeuT TPC and enter MINOS ND. The muon energy resolution ∆Eµ/Eµ varies

smoothly from 6% to about 13% for the muons with energy higher than 1 GeV [94]. Most of

the muons that are produced by the NuMI beam neutrino interactions range out in MINOS

ND, so they are precisely reconstructed using the range in the detector. If a muon exits

MINOS ND, it can be fully reconstructed measuring the amount of its curvature in the

magnetic field.
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Figure 3.20: MINOS scintillator strip concept [85].

71



Chapter 4

Generation, Simulation and

Reconstruction of Neutrino Events

The software used in ArgoNeuT for the neutrino event generation, simulation and recon-

struction is called liquid argon software (LArSoft). It includes a neutrino event generator

that provides simulated final state particles outside the nucleus that are then fed into the de-

tector simulation, where they propagate through the detector medium producing simulated

ionization electrons. The simulation also includes the drifting of the ionization electrons

to the detector’s wire planes along with the diffusion and the electronic response model of

the planes. The particles that exit the ArgoNeuT TPC are simulated to propagate outside

the TPC until they reach the front face of the MINOS near detector (if forward going).

The trajectories of particles in ArgoNeuT and MINOS near detector are simulated and re-

constructed like data. The simulation plays a vital role in improving the reconstruction

algorithms, determining the reconstruction efficiency, the proper selection cuts for physics

analyses. LArSoft also gives a number of modules to the user for reconstruction of neutrino

events. In the following, the neutrino event generation, simulation and reconstruction as

handled by LArSoft is described in detail. The neutrino event simulation and reconstruction

sections generally follow the description given in Ref. [10].
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4.1 Neutrino Event Generation

ArgoNeuT uses the NUANCE [44], GENIE [95] and NuWro [96] neutrino event generators

in order to generate neutrino interactions with argon target. The work presented in this

study corresponds to the neutrino interactions from the NUANCE neutrino event generator

software which includes the charge current quasi-elastic neutral hyperon production as one of

the interaction channel. NUANCE has been customized for ArgoNeuT detector and it gives

the neutrino event rates, final state particles exiting the nucleus and their kinematics. The

generator produces 99 neutrino/antineutrino interactions channels corresponding to different

interaction types, ranging from 100 MeV to 103 GeV. All the 99 neutrino/antineutrino

interaction channels are given in a table in Figure 4.1.

4.1.1 Quasi-Elastic Cross Section Model in NUANCE

NUANCE uses cross section models that are specific to the interaction types. Since the

nucleons are in the bound state in a neutrino experiment, the Fermi gas model has been

used (Fermi motion and Pauli blocking), where a uniform initial momentum density (up to

a user-specified maximum value) and a negative binding energy is assigned to the bound

nucleon. There is a threshold momentum for bound nucleon above which it can exit the

nucleus and the reaction can occur. Therefore, in the absence of any final state interactions

(in the nucleus), the minimum momentum carried by the nucleon exiting the nucleus must

be equal to the threshold value. NUANCE accounts for the lepton masses for all interaction

types [44].

NUANCE uses the relativistic Fermi gas model of Smith and Moniz [46] for the quasi-

elastic interactions (charge and neutral current two-body interactions with nucleons). The

model gives cross section for both free and bound state nucleons, using identical form factors

for both cases. For free nucleon target the binding energy is set to zero along with its initial

momentum distribution as a delta function at zero [44].
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Figure 4.1: Channels in NUANCE Event Generator.
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In order to calculate the cross section for the charge current quasi-elastic hyperon pro-

duction, the Smith and Moniz model has been extended by Pais [47] to account for the

inelasticity of the interaction and the |∆I| = 1/2 rule. Relevant mathematical description

about the cross section can be found in Sec. 1.5.

4.1.2 Setting up NUANCE for ArgoNeuT

NUANCE neutrino event generator software, which has been previously used for carbon

and oxygen targets, is modified to be used for an argon target, and specifically for the

ArgoNeuT detector. The changes made in the original source are setting a target with A

= 40 for argon, with 18 protons and 22 neutrons, a nucleon binding energy = 29.5 MeV,

Fermi momentum of proton = 242 MeV, and Fermi momentum of neutron = 250 MeV.

The density of argon is set to 1.396 g/cm3. The detector shape is also set to a cube of size

47.5 cm × 40 cm × 90 cm, which are the x, y and z dimensions of the ArgoNeuT detector,

respectively. It is also important to mention that based on very high resolution of LArTPC

detectors, automatic decay of particles inside the nucleus is stopped. A LArTPC can resolve

a secondary detached (decay) vertex, whereas other experiments using NUANCE, such as

MiniBooNE, do not have this sensitivity.

4.1.3 Quasi-Elastic Cross Sections Parameters in NUANCE

NUANCE uses the Smith and Moniz model for the generation of quasi-elastic interactions.

The axial and the vector form factors are set to MA = 0.990 GeV and MV = 0.840 GeV in

the software, which match with those in the widely used GENIE neutrino event generator.

A description of cross section parameters for all the interactions in NUANCE can be found

in [10].
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4.1.4 Event Kinematics from NUANCE

The output from NUANCE includes a list of particles along with their particle codes (ac-

cording to Particle Data Group convention), tagged as either -1 (initial state particle), -2

(final state particle before interactions) or 0 (the final state particle after interactions). De-

tector simulation uses only the particles with the status code of 0. Event kinematics such as

the position of the neutrino interaction (primary vertex), total energy and direction cosines

of the particles are also given. The output also includes a NUANCE channel number for

each event.

4.2 Neutrino Event Simulation

4.2.1 Particles Propagation in Detector Medium with Geant4

Using the Geant4 software package, the ‘final state particles after interaction’ from NUANCE

are simulated in the detector and are propagated through the detector medium, including

the TPC, inner and outer cryostat, chimney, containment vessel and the first plane of the

MINOS near detector. Figure 4.2 shows the geometry of ArgoNeuT simulated in Geant4.

Particles undergo the relevant physical processes as they travel through the detector until

they reach the kinetic energy of 100 keV. Three dimensional voxels (pixels in 3D of volume

0.03×0.03×0.03 cm3 each) record the ionization electron cloud.

4.2.2 Electron Drift and Signal Simulation at the Wire Planes

After the voxels record the ionization, the next step is to drift the ionization to the wire

planes and the simulation of the signals. Longitudinal and transverse diffusion constants

are used to account for the diffusion while the ionization is drifted towards the wire planes.

The amount of diffusion depends on the time it takes the ionization to reach the wire planes

(which depends on the drift distance and the electric field). Effects of recombination are also
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Figure 4.2: (Left) The ArgoNeuT TPC simulated in Geant4, cathode shown in yellow color
and the wire planes are in purple. The origin of the ArgoNeuT TPC is also shown. (Right)
The ArgoNeuT TPC along with inner and outer cryostat as simulated in Geant4. Neutrino
beam enters from the left side. MINOS first plane (not shown) is also simulated in Geant4.
Figure from Ref. [10].

simulated (See Equation 2.3) [72, 73]. Finally the total number of electrons (after diffusion

and recombination) reaching a wire is calculated at the position of the wire plane(s) and

then registered to the respective wire. The electron cloud now has a wire number and the

range of the time ticks associated to it along with the number of electrons (charge). The

response shapes of induction and collection planes are then convolved with the charge in

order to obtain raw digit ADC counts. Simulated electronic noise is added to the wires as

a final step of simulating electron drift and signal response of wire planes. Noisy or dead

wires in the actual detector are given zero ADC counts for all the time samples in both data

and simulation.

4.2.3 Through Going Muon Simulation

Muons that enter the ArgoNeuT detector from upstream can contaminate a signal sample

if the vertex is reconstructed inside the ArgoNeuT TPC. The MINOS near detector keeps

track of muons entering the detector with each NUMI trigger. A properly normalized set
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of these data muons is taken and, using the reconstructed kinematics of these muons from

MINOS near detector, through going muons are simulated in the ArgoNeuT detector. For

the simulation, these muons are placed just upstream of the front face of ArgoNeuT detector,

with their kinematics from MINOS near detector and are propagated through the medium

using the Geant4 software package.

4.3 Neutrino Event Reconstruction

The amount of data available for each event in a LArTPC detector is enormous. The

detector offers excellent spatial resolution along with precise calorimetric information. As

mentioned before, LArSoft is used to simulate and reconstruct events in LArTPC detectors.

The software, developed from scratch, is kept detector ‘agnostic’ and is being constantly

developed. In the software, the reconstructed quantities are referred to as objects, and

generally a user has more than one algorithm to choose from in order to reconstruct an

object. In the following, only the objects reconstructed (and the algorithms used to do

that) in this analysis are discussed.

4.3.1 Raw Data Deconvolution - Data Calibration

Digitally recorded data from DAQ electronics has the information of charge deposition on

wires as a function of time. These raw waveforms are subjected to deconvolution and noise

filtering.

Induction plane signals are bipolar in a LArTPC, and two separate charge depositions on

a wire close in time can appear as a single charge deposition. In collection plane, the signal

is unipolar, but it is followed by a negative overshoot and exponential return to the baseline,

which can effect the height of a nearby signal on the same wire. A fast Fourier transform

(FFT) [97] is used for the raw data deconvolution, which outputs unipolar induction plane

signals, corrected baseline in collection plane, and the identification of overlapping (in time)
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charge depositions in both planes.

An empirically produced basic signal shape is employed for each wire in ArgoNeuT. For

this purpose, thousands of long muon tracks that are almost parallel to the wire planes are

used. In the process, the delta rays were neglected so as not to shift the basic pulse to a

wider shape. This method accounts for effects of electron drift as well as electronic noise.

A FFT with the narrowest signal considered as a delta function input to it, gives a good

first order approximation for both planes. Base signal shapes can be better determined in

future using the information about track angle with respect to the wire planes. Figure 4.3

shows the base signal shapes for induction and collection planes.

Figure 4.3: The base signal shapes for Induction and Collection planes of ArgoNeuT de-
tector as determined by an analysis of a large sample of muons parallel to the wire planes.
Figure from Ref. [10].

The results of raw data calibration can be seen in Figure 4.4, where three consecutive

wire’s signals are shown before and after calibration. One can see that after calibration,

the induction signal has a unipolar shape, separate charge depositions close in time (on a

wire) are identified, and baseline shift due to the negative portion of induction signal for

the adjacent charge deposition is corrected.

The deconvolution process also includes a frequency filter. High frequency noise com-
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Figure 4.4: (Upper left) Induction plane of ArgoNeuT with two deconvoluted tracks. (Upper
right, lower right, lower left) The raw (black) and deconvoluted (red) wire signals in time
from the three consecutive wires with overlapping hits. Figure from Ref. [75].

ponent that has been amplified by the FFT is filtered using a high frequency filter. The

induction plane filter uses an analytic function that keeps the low frequencies (signal) and

removes the high frequency (noise), whereas, for the collection plane, a Weiner filter [98] is

used, which assumes known signal and noise spectra and thus deals with the low frequency

baseline shift. The resulting waveforms are smooth and unipolar.

4.3.2 Hit Finding

The deconvoluted waveform is the input to the hit finding. One needs to know the interesting

regions in the waveform that can be characterized as hits (ADC, time) on a wire. Using

a Gaussian-shape approximation, the hit finding algorithm finds hits on individual wires.

The process begins with finding a local minimum in the (time, ADC) space of the wire.

Once the local minimum is found, the algorithm looks for local maximum in the increasing

time. If the local maximum is above a certain threshold, the area is identified as a hit. The

algorithm then scans the space towards the higher time to find the local minimum. The

time distance between the two local minima is considered as the time width of the hit. The
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algorithm repeats this whole process until the full time window for an event is scanned.

After the time widths of the hit are known, the algorithm uses Gaussian fits to determine

the characteristics of a hit. The fit needs seed parameters that need to be carefully selected

for the fit to converge. The seed value of time width of the hit or hit width parameter comes

from the typical hit widths in the data, which is different for induction and collection plane.

The seed for the time position of the hit is the time of local maximum. For single hits, the

hit amplitude is set to the local maximum. In case of n multiple hits (overlapping hits), n

Gaussians are fit to the n consecutive hits in the waveform, and the amplitude is set to the

signal height plus any contribution from the neighboring hits via linear approximation. The

measured height of a hit can written be as

Oi = Ajf(tj − ti;w). (4.1)

Here, Oi is the observed height of the hit in consideration and Aj is the actual or true

height of the adjacent hits. The function f(tj-ti;w) is the normalized model signal with

width w. The function f evaluates the model pulse at the peak time of adjacent hits and

determines the effect of nearby hits on the amplitude of the hit under consideration. The

above equation can be considered as ~O = M ~A, where M is a matrix that carries values of

f evaluated at each point. Each hit has a unique value of its central time, start time, end

time, width, signal amplitude among other measurements.

4.3.3 Density-Based Cluster Finding

Next step after reconstruction of hits is to group them together based on their position

and density to make a new object, a cluster. The clustering of hits is done following the

procedure of ‘density-based spatial clustering of applications with noise’ (DBSCAN) [99].

The hits are clustered in each wire plane separately. A hit q is ‘directly density-reachable’

from another hit p if it is with in a given neighborhood ε and if p has a sufficiently higher
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density of hits around it. ε is modified to incorporate slight difference in the resolution in

wire and time directions. Another case is, a hit q is ‘density-reachable’ from hit p if there

is a series of consecutive hits pi (p1,....pn), such that p1 = p and pn = q, and each pi + 1

is directly density-reachable from pi. It can be noted that one hit can be directly density-

reachable from the other hit but not vice versa. This can happen if one hit is surrounded

by sufficient number of hits but the other is not. Based on this possible asymmetry, a new

definition is required; two hits p and q are density-connected if there is another hit k such

that both hits p and q are density-reachable from k. The algorithm takes an arbitrary hit p

and finds all the hits that are density-reachable from hit p. The hit inside a cluster are called

core hits, whereas, the ones at the border of the cluster are called border hits. Once the

algorithms finds a complete cluster, it moves on to the hits that are yet not associated with

any cluster, until all the hits are considered. Figure 4.5 gives examples for the definitions

of direct density-reachable, density-reachable and density-connected. Figure 4.6 gives an

example of the cluster reconstruction via DBSCAN in ArgoNeuT’s collection plane.

Figure 4.5: DBSCAN definitions. Figure adapted from Ref. [99].
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Figure 4.6: DBSCAN algorithm at work on a neutrino event. Raw data shown in grey,
distinct colors correspond to distinct clusters. Figure from Ref. [75].

4.3.4 Line-Like Cluster Finding

Since ArgoNeuT is not a magnetized detector, particle trajectories are expected to be line-

like. A simple linear regression to find the line-like clusters from density-based clusters

would be too simplistic for the events with more than one track and or noisy clusters. The

density-based clusters of even a straight track can be tricky because of multiple factors, such

as, multiple Coulomb scattering, delta ray production, dead or noisy wires, non-uniformities

in the electric field in the TPC, and others. The Hough transform [100] is used to find the

line-like clusters in the ArgoNeuT.

A Hough transform creates a parameter space that is filled based on the locations and

weights of points in an image. This parameter space is called a ‘Hough accumulator’,

composed of cells of finite dimension. The algorithm defines a line r = x cos θ + y sin θ for

each (x, y) in an image. The line defines a unique sinusoidal wave for each (x, y) in the (r, θ)

plane. If the curves for two (x, y) points are overlaid together, the intersection point in the

(r, θ) plane defines a line that passes through both the points in (x, y) (See Figure 4.7). Each

(x, y) point is added to the accumulator (r, θ) space and the cells with weight above certain

threshold serve as the line candidates. A cell with the highest weight (highest number of
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curve crossings) is found and a candidate line is formed by using the center-of-mass of the

3×3 cell window with the cell having highest weight at the center. This process is repeated,

each time considering hits that are not associated to a line yet, until a threshold is reached

or the maximum number of lines to be reconstructed is reached. It is important to note that

a Hough transform can break a single line-like cluster to more than one. This is because

the segments have slightly different slopes and intercepts, or in other words, there are more

cells to choose from the Hough accumulator.

Figure 4.7: (Left) Two point in (x, y) plane. (Right) The points parametrized in (r,θ)
plane. The intersection point of the curves correspond to a line that passes through both
points in (x, y). Figure from Ref. [10].

4.3.5 Two Dimensional Line Merging

As mentioned in the previous section, the Hough transform, with its high resolution in r and

θ can split a single line-like track to more than one cluster. Since, these two dimensional

line-like clusters are used to reconstruct three dimensional tracks, it is vital to merge the

clusters together based on their similar slopes and proximal endpoints. A simple algorithm

is employed in LArSoft to merge the broken clusters together and make ‘merged-lines’ if

they have similar slopes and their end points are in proximity. Figure 4.8 shows an example
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of line merging in LArSoft.

Figure 4.8: (Left) Three hough line clusters; #1 in blue, #2 in green and #3 in red.
(Right) Two merged-lines after merging hough line clusters. Figure from Ref. [10].

4.3.6 3D Tracking

The (two dimensional) clusters can be matched between two wire planes in order to recon-

struct 3D tracks. At the end of this step of reconstruction, one has a three dimensional

image of an event. After accounting for the pre-samplings and the drift distance between

two planes, the clusters are matched based on their start and end point time coordinates

in each plane. After the two clusters are matched between the planes, a 3D track with

its direction cosines is reconstructed. After reconstruction of a 3D track direction, hit-by-

hit matching (similar to clusters end point matching) is done to produce 3D space points

(x, y, z) which give a high resolution 3D image of an event. The coordinates of a space point

are calculated as follows;

x = tvd,

y =
v − u
2 cosα

,

z =
v + u

2 sinα
− Y

2 tan(α).

(4.2)
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Here, u and v are the wire coordinates (in cm) for induction and collection planes,

respectively. vd is the drift velocity of the ionization charge in the TPC, Y is the height of

the TPC and α is the absolute value of the angle of the wires with respect to the vertical.

4.3.7 Matching ArgoNeuT Tracks with MINOS Tracks

Due to the small size of the ArgoNeuT detector, most of the muons produced in the TPC exit

the detector and enter the MINOS near detector. In order to get the information about the

muons produced in the TPC, the tracks reconstructed by MINOS offline analysis code [101]

have been used. For a stopping track, the momentum is reconstructed by measuring its

total deposited energy in the detector; whereas, for a non-stopping track, the momentum is

determined by its curvature in the magnetized MINOS near detector. MINOS’s magnetic

detector also allows to determine the charge of the track. A track is matchable if the

Z vertex of a track is within 20 cm of the center of first MINOS plane. ArgoNeuT and

MINOS tracks are selected on a spill-by-spill basis using the common time stamp from the

accelerator division. After this broad selection of matchable tracks from ArgoNeuT and

MINOS near detector, a set of criteria based on the tracks’ direction and their relative

position is applied. According to ArgoNeuT’s definition, a track stops in MINOS if it stops

in the instrumented region of MINOS. ArgoNeuT’s interpretation of reconstructed variables

from MINOS differs slightly from the interpretation used by MINOS experiment. Figure 4.9

and Figure 4.10 show the schematic diagrams of ArgoNeuT simulation and reconstruction,

in addition to MINOS reconstruction.

4.3.8 Vertex Finding

Merged-lines (called ‘line merger clusters’ or ‘clusters’ from now on) are used to reconstruct

two-dimensional vertices in each wire plane. The vertex finding algorithm finds multiple

vertices per wire plane and then matches them in two wire planes to find three-dimensional

vertices.
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Figure 4.9: The ArgoNeuT simulation corresponding to TPC, inner and outer cryostat.
The figure is not to scale. Figure from Ref. [10].

The algorithm, as a first step, sorts the clusters in each view in descending length. Then

it starts with picking the MINOS matched track (and the two-dimensional clusters it is

associated with), or otherwise the longest cluster in a wire plane with its start point as a

candidate for vertex. Vertex fitting is done in each plane separately. A straight line fit is

performed on the beginning part of all the clusters since most of the tracks in ArgoNeuT are

straight (at least in the beginning); however, line fitting is iterated three times, each time

throwing away the hits that have high incremental χ2 values with respect to the straight

line fit. This is to reject the delta ray hits and other noise hits. Wire number coordinate

of a hit is converted to time ticks. Errors in hit times are incorporated for each plane;

whereas, error in wire number is considered to be zero. After filtering the hits in a cluster,

it is ‘accepted’ for vertexing if it has more hits than a minimum threshold number.

The two-dimensional start point of the first accepted cluster in a plane is interpreted as

a ‘guessed vertex’ and distance of closest approach between a cluster and guessed vertex

is calculated for each cluster. Clusters with distance of closest approach greater than a
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Figure 4.10: The ArgoNeuT reconstruction applied to both simulation and data. The figure
is not to scale. Figure from Ref. [10].

threshold are not considered for the vertex finding. A vertex χ2 is defined as a squared sum

of distance of closest approach of clusters weighted by their error. Minimizing the χ2 gives

the best fit coordinates of a vertex in two dimensions. The vertex is re-fitted two more times,

each time using the best fit coordinates of a vertex from previous fit as a guessed vertex.

Figure 4.11 shows vertex finding algorithm at work for an ArgoNeuT simulated event.

For technical description of vertex finding, let us assume a straight line cluster (blue line

in Figure 4.12) in one of the wire plane whose x-axis is the wire numbers in ticks and y-axis

is the time tick. The cluster makes an angle θ with the horizontal and has an intercept ‘c’.

Say we have a guessed vertex at point ‘C’ with coordinates (vx, vy). The distance of closest

approach; µ from the guessed vertex to the straight line cluster is given by,

µ = c cos θ − vy cos θ − vx sin θ. (4.3)

One can write θ = tan−1m, where m is the slope of the straight line cluster. Therefore,

Equation 4.3 can be written as
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Figure 4.11: An example simulated event showing reconstructed vertices in an event. Dis-
tinct colored lines and stars show distinct clusters and vertices, respectively. Two vertices
are reconstructed in each view.

Figure 4.12: Straight line cluster (in blue) in a wire plane. x-axis is wire numbers converted
to ticks and y-axis is time ticks. Point C represents a guessed vertex. µ is the distance of
closest approach from guessed vertex to the straight line cluster.

µ = c cos(tan−1m)− vy cos(tan−1m)− vx sin(tan−1m). (4.4)

And the uncertainty in the distance of closest approach σµ can be written as
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σµ =

√
(cos θ)2σ2

c + (
1

1 +m2
[−c sin θ + vy sin θ + vx cos θ])2σ2

m, (4.5)

where σc and σm are the errors on the intercept c and slope m respectively of the straight

line fit of a cluster and are calculated while line fitting.

Using the above expressions, one can write the vertex χ2 of a cluster i as follows

χ2
i =

µ2
i

σ2
µi

=
(ci cos θi − vy cos θi − vx sin θi)

2

(cos θi)2σ2
ci

+ ( 1
1+m2

i
[−c sin θi + vy sin θi + vx cos θi])2σ2

mi

. (4.6)

Total vertex χ2 if n clusters are added to the vertex is

χ2 =
n∑
i=1

(
(ci cos θi − vy cos θi − vx sin θi)

2

(cos θi)2σ2
ci

+ ( 1
1+m2

i
[−c sin θi + vy sin θi + vx cos θi])2σ2

mi

). (4.7)

Minimizing the above equation gives best fit values (vx, vy) for the vertex. The algorithm

iterates the whole process for the clusters that are not yet associated with a vertex, until a

maximum number of clusters in a wire plane is reached. Vertices are then matched between

two planes to reconstruct three-dimensional vertices.

4.3.9 Calorimetric Reconstruction

Once a three-dimensional track is reconstructed, calorimetric reconstruction can be done

in order to identify the corresponding particle. This has been discussed in Section. 2.2.

Calorimetry uses electronic readout from the collection plane for the measurements as it

gives the higher gain.

The calorimetry algorithm uses three-dimensional tracks to determine the track pitch,

which is the effective length of the track as seen by a single wire. The corresponding hits

of a track are used to determine the amount of charge deposited per unit track pitch. The

amount of charge received by the wires is reduced due to the two effects: absorption, which

is charge loss due to electronegative impurities in the detector, and recombination, which
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is the recombination of ionization electrons with argon ions before they are separated by

the applied electric field. The recombination effect is often called charge quenching. The

correction for both of these effects is applied to calculate the actual total charge deposited

by a track per unit track pitch. Birk’s Law [72, 73] is used to calculate the amount of energy

deposited by a track per unit length (dE/dx), which is summed over a track to get the total

amount of energy deposited by a track. Once charge deposition/loss per unit track length

and total energy deposited by a track is known, one can do the particle identification. If

a track stops in the detector, looking at the total energy deposited by the track versus its

range can give a significant information about the particle that corresponds to the track.

Also, the energy loss profile, dE/dx, as a function of residual range of a track also gives

valuable information about the particle identification. The Figure 4.13 shows the curves for

different particles using Geant4 simulation, overlaid by points for a track reconstructed by

calorimetry module.

Figure 4.13: (Left) Simulated energy loss per unit track length as a function of residual
range (distance from the stopping point) for different stopping particles. The plot is overlaid
by the point of a track reconstructed by the calorimetry module. (Right) Simulated kinetic
energy as a function of range (distance traveled before particle stops) of different particles.
Figure from Ref. [75].
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Chapter 5

Analysis

5.1 Introduction

This study is the first measurement of charge current quasi-elastic (CCQE) neutral hyperon

production cross section in a LArTPC detector. In this interaction, a proton is converted

to a hyperon. The interaction can be expressed as follows;

ν̄µ + p→ µ+ + Λ0,

ν̄µ + p→ µ+ + Σ0.

(5.1)

This process is a Cabibbo-supressed process and has been studied sparsely. The interac-

tion has been studied in past in 1970s with bubble chamber experiments. The Λ0, being a

weakly decaying strange particle with a relatively long decay time, decays to two charge par-

ticles pπ−, or two neutral particles nπ0. The Σ0 electromagnetically decays to a photon and

Λ0 which eventually decays as mentioned above. This analysis is based on the topological

properties of the Λ0 decay – a detached secondary vertex with two tracks originating from

it, in addition to a primary vertex with one or two tracks – and makes full use of the high

quality images of neutrino interactions in a LArTPC. The events in which a CCQE neutral

hyperon finally decays to the charge particles is the ‘signal’ for this analysis. Other neutrino
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experiments, such as MiniBooNE, which is a Cherenkov light detector is not sensitive to the

event topology of this type of interaction.

The NUANCE neutrino event generator has been modified for the argon target and

ArgoNeuT detector and is interfaced with the LArTPCs’ software; LArSoft. This allows

for full detector simulation and the matching of ArgoNeuT’s exiting muons to MINOS ND.

This chapter describes the procedure followed in the analysis and the results. The cross

section measurement for the processes shown in Equation 5.1 can be written as;

σ(CCQEΛ0+Σ0 ) =
f × (Ndata −Nbkg)

φ×Ntarg × ε
. (5.2)

Here, Ndata is the number of data events that pass all analysis cuts, Nbkg is the predicted

number of background events, φ is the total antineutrino flux. Ntarg is the number of targets

in fiducial volume of the detector, ε is the efficiency of all analysis cuts. f is the correction

for the branching fraction of hyperon decay to the neutral particles.

5.2 Analysis Steps

The analysis is conducted in two steps. The first step is automatic neutrino events re-

construction by the LArSoft modules, whereas the second step involves visual scanning.

The analysis uses about five months of data from ArgoNeuT when the NUMI beam was

in antineutrino-mode. Figure 5.1 shows the energy spectrum of the MC neutrino and an-

tineutrino events in the antineutrino-mode run. One can see that the antineutrinos in the

antineutrino beam are lower in energy as compared to the neutrinos. Figure 5.2 shows the

energy spectrum of a sample of MC ‘signal’ events.
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Figure 5.1: An MC sample showing energy spectrum of neutrino and antineutrino events
in the antineutrino-mode run of ArgoNeuT.

Figure 5.2: An MC sample showing energy spectrum of signal events in the antineutrino-
mode run of ArgoNeuT.

5.2.1 Automatic Reconstruction

The first part of the analysis is based on automatic reconstruction and filtering of events

based on automatic reconstruction cuts. The events generated by the NUANCE event

generator are simulated in the detector and are passed through the full reconstruction chain
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of ArgoNeuT. The muon track is matched with the MINOS near detector (MND) which

gives its momentum and charge sign. The automatic cuts are aimed to keep as much of the

signal events as possible and reject most of the background events. This is a difficult task

for a weak signal like that expected for Λ0. The reconstruction cuts require that the

1. The primary vertex is reconstructed inside the fiducial volume of TPC, defined as [3

< x < 44, -16 < y < 16, 6 < z < 86], with all dimensions in cm.

2. More than 1 Linemerger clusters are reconstructed in each wire view.

3. Track matching with MND (with +ve charge and non-zero momentum reconstructed

by MND) (ν̄µ events).

4. The MND matched track starts inside the fiducial volume of TPC.

Requiring more than one Linemerger cluster in each view rejects ν̄µ CCQE events (which

often have a single µ+ and no other charged tracks). Requiring MND matching with positive

charge rejects neutral current (NC) and νµ interactions. Fiducial volume cuts are selected

in order to reject events that are near the edges of the TPC, where the electric field is

non-uniform or those which have a through-going muon(s) that are not created by a neu-

trino interaction inside the TPC. Figure 5.3 shows the difference between the true and the

reconstructed X, Y and Z vertex for all the MC events that pass automatic cuts. Gaussian

fits are applied to the plots in order to understand the vertex resolution. The tails in Y and

Z correspond to mis-reconstructed space points generated while matching hits between two

planes. The shift in the X is due to the start time of an event in the MC, which is anywhere

between 10 µs of NUMI beam window. Z coordinate of the reconstructed vertex is shifted

towards the higher value, which is a result of vertexing that prefers MINOS matched track

start point as its guessed vertex. Note that the vertex resolution for all three coordinates is

at the sub-cm level.
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Figure 5.3: Difference between the true and reconstructed X (left), Y (center) and Z (right)
vertex of all events that pass automatic cuts.

The X vs Z vertex distribution (top view of the detector) and X vs Y vertex distribution

(downstream face view of the detector) of all the data passing automatic cuts are shown in

Figure 5.4 and Figure 5.5, respectively. The X, Y and Z vertex distributions of the data

and MC passing all automatic cuts are shown in Figure 5.6, Figure 5.7 and Figure 5.8. The

fiducial volume cut of 6 cm (upstream) in the Z direction helps reject the through-going

muons; however, one can see that they are not fully removed from data (see Figure 5.8).

Through-going muons are not simulated in MC and are removed from the data later via

visual scanning. More data is shifted towards higher X values, this is also because of

through-going muons that are parallel to the cathode where electric field non-uniformities

tend to break the track into more than one and a vertex is reconstructed.

Figure 5.4: X vs Z vertex distribution of all data events that pass the automatic cuts.
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Figure 5.5: X vs Y vertex distribution of all data events that pass the automatic cuts.

Figure 5.6: X vertex distribution for reconstructed data and MC that pass automatic cuts.
Data and MC plots are both normalized to one.
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Figure 5.7: Y vertex distribution for reconstructed data and MC that pass automatic cuts.
Data and MC plots are both normalized to one.

Figure 5.8: Z vertex distribution for reconstructed data and MC that pass automatic cuts.
Data and MC plots are both normalized to one. Through going muons entering the detector
are not simulated and are removed from data while visual scanning.

Track matching with MND is an important element of this analysis, as mentioned before.

It helps reject NC background and also helps select antineutrino events based on the charge

reconstruction by MND. An ArgoNeuT track that is exiting the TPC is projected to the

MND and the cuts are selected based on MC to avoid any wrong match between the tracks.
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The angle between the projected ArgoNeuT track and the MND track must be less than

0.4 rad, and the radial distance between them at the MND must be less than 27 cm.

Figure 5.9, show the relative size and position of the ArgoNeuT and MINOS detectors.

Figure 5.10 shows ArgoNeuT display with a track from ArgoNeuT exiting the TPC and

entering MINOS, being matched with the negatively charged track in MINOS. One can also

see other tracks in the MINOS for the spill. In case there is more than one match for an

ArgoNeuT track, the best match is taken based on the least value of ∆r/ cos θ; here, ∆r

is the radial distance between ArgoNeuT projected track and the MND track, and θ is the

angle between them. After the geometric matching between tracks is complete, a non-zero

momentum and a positive charge reconstruction of the track is required.

Figure 5.11 shows the muon momentum for data and MC events as reconstructed by

the ArgoNeuT. Total muon momentum is obtained by adding three measurements; energy

deposited in the ArgoNeuT TPC, energy lost between the ArgoNeuT and MND, and the

energy deposited in the MND. MND measures the muon momentum which corresponds

to the momentum when the muon enters the MND detector. ArgoNeuT corrects for the

muon momentum by measuring the energy deposited by a muon as it travels through the

TPC, whereas the energy lost by muons between two detectors is estimated using a Geant4-

based study. Figure 5.12 shows the energy loss of muon as a function of distance traveled

between the two detectors (through the inner and outer cryostat to the MND). The non-

linear functionality of energy loss is attributed to the non-homogeneous composition of the

materials between the detectors. The muon energy loss is also correlated with its angle

but a stronger correlation is found with the distance. The energy lost by a muon traveling

a known distance between the two detectors is calculated using the linear fit parameters.

Figure 5.13 shows the muon angle for data and MC events as reconstructed by ArgoNeuT.

The difference in distribution is due to -3.30 difference in neutrino beam angle in MC and

data. The MC beam is pointed at 00 whereas the NUMI beam is pointed at -3.30 to reach

the MINOS far detector in Soudan, Minnesota. The effect of the difference in MC and data
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is calculated by assigning weights to the MC events in muon angle bins and is assigned as

systematic error to the final measurement.

Figure 5.9: ArgoNeuT (orange) and MINOS (purple); an image showing their relative size
and position in the MINOS ND hall at Fermilab. Figure is taken from Ref. [102].

Figure 5.10: ArgoNeuT’s event display, showing tracks in ArgoNeuT and MINOS detec-
tors. A negatively charged track is matched between ArgoNeuT and MINOS. Other tracks
in both detectors are also visible for the same spill. Figure from Ref. [75].
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Figure 5.11: Distribution of muon momentum for all data and MC events that pass the
automatic cuts. Data and MC plots are both normalized to one.

Figure 5.12: Energy lost by a muon as a function of distance traveled between ArgoNueT
TPC and MND as predicted by Geant4-based study. The non-linear functionality is at-
tributed to the non-homogeneous composition of materials between the two detectors. Figure
from Ref. [102].
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Figure 5.13: Distribution of muon angle for all data and MC events that pass the automatic
cuts. Data and MC plots are both normalized to one.

The effect of all automatic cuts is 78.7% signal acceptance (εcuts) and 81.3% background

rejection. Remember that the ‘signal’ is defined as the event where a neutral hyperon

eventually decays to a proton and a pion. The branching fraction of a Λ0 or Σ0 to decay to

the charge particles is 63%. After applying all the automatic cuts, a data sample of 1753

events is selected. Figure 5.14 shows the signal acceptance and background rejection rates

for the cuts in this analysis.

Figure 5.14: Signal acceptance and background rejection rates along with the number of
data events after each cut.
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Figure 5.15 shows the distribution of number of reconstructed tracks in MC and data

after all automatic cuts. Figure 5.16 and Figure 5.17 show the distribution of number

of Linemerger clusters in Induction and Collection wire view for MC and data after all

automatic cuts, respectively. Figure 5.18 shows the distribution of exiting tracks in MC and

data after all automatic cuts. A track is an exiting track if its end point is within 3 cm of

the TPC boundary. The data and MC are in agreement. All the plots are normalized to

one.

Figure 5.15: Number of tracks distribution for data and MC after all automatic cuts. Data
and MC plots are both normalized to one.

Figure 5.16: Distribution for the number of Linemerger clusters in Induction wire plane
for data and MC after all automatic cuts. Data and MC plots are both normalized to one.
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Figure 5.17: Distribution for the number of Linemerger clusters in collection wire plane
for data and MC after all automatic cuts. Data and MC plots are both normalized to one.

Figure 5.18: Distribution for the number of exiting tracks for data and MC after all auto-
matic cuts. Data and MC plots are both normalized to one.

5.2.2 Visual Scanning

The second step of the analysis is the visual scanning. Events that pass the automatic cuts

are visually scanned by a scanner. During the visual scanning the scanner is asked to fill in

the topological information about the event. The ArgoNeuT event display showing a CCQE

Λ0 event and a scan window that scanner fills for each event is shown in Figure 5.19 and
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Figure 5.20, respectively.

The scanning process proceeds as follows; the scanner zooms-in to the primary vertex

and counts and records the number of primary tracks. He or she then looks for any detached

vertex in the event. If located, the scanner counts the number of tracks from the detached

vertex (named as secondary tracks) and record the information in the scan window. In

the case of more than one detached vertices, the scanner picks up the vertex that has the

most straight tracks originating from it. Event display tool also allows the scanner to reject

events with through-going muons by finding the 3D start point of the track and determine

if it the track is entering.

1. 1 or 2 primary tracks,

2. exactly 2 secondary tracks,

3. no 2 or more showers.

are selected. After applying these scanning cuts, 36 data events are selected.

A very simple example MC event (CCQE Λ0) is shown in the Figure 5.19, where one

can see a detached vertex having two secondary tracks originating from it. The scanner will

fill the information as 1 primary track, 1 detached vertex, 2 secondary tracks in an event,

with checking No in the ‘2 or more Showers in Event’ field. A set of 1081 MC events that

pass all automatic cuts is scanned using the same rules as on data. The efficiency of picking

up the signal events (εscan) is 75.7% whereas the background rejection rate is 98.6%. The

smaller efficiency of picking up rather simple topology signal events is attributed to when

the hyperon decays very close to the primary vertex. If the primary and detached tracks are

very close and also parallel to each other in the wire plane, the scanner can only distinguish

between them if the start point of both is at least three hits apart. The signal selection and

background rejection rates predict 10 signal events and 20 background events for the MC

scaled to 1.2 x 1020 protons-on-target (POT) in the final selected data sample.
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Figure 5.19: ArgoNeuT MC, CCQE Λ0 production. A detached vertex is visible with two
secondary tracks.

Figure 5.20: Scan window, the fields are filled by the scanner during the visual scanning
of the neutrino events.
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Figure 5.21 shows the distribution of number of reconstructed tracks for MC and data

events after they pass the scanning cuts. The distributions of Linemerger clusters are

seen in Figure 5.22 and Figure 5.23 for induction and collection wire plane after scanning,

respectively. Also, the distribution of exiting tracks for MC and data events that pass all

scanning cuts is shown in Figure 5.24. According to MC prediction, the decay particles in

the signal events, a proton and a pion from a neutral hyperon, both exit the TPC 40% of

times: 19% events have only the proton exiting, 10% of events have only pion exiting; and

both the proton and pion stop in the TPC in 31% of events. Figure 5.25 - Figure 5.31 show

few ArgoNeuT data events selected after the scanning cuts.

Figure 5.21: Number of tracks distribution for data and MC after scanning cuts. Data and
MC plots are both normalized to one.

108



Figure 5.22: Distribution for the number of Linemerger clusters in induction wire plane
for data and MC after scanning cuts. Data and MC plots are both normalized to one.

Figure 5.23: Distribution for the number of Linemerger clusters in collection wire plane
for data and MC after scanning cuts. Data and MC plots are both normalized to one.
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Figure 5.24: Distribution for the exiting tracks for data and MC after scanning cuts. Data
and MC plots are both normalized to one.

Figure 5.25: Data event selected after scanning cuts.
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Figure 5.26: Data event selected after scanning cuts.

Figure 5.27: Data event selected after scanning cuts. Five consecutive dead channels in
the collection plane of the ArgoNeuT are visible as a ‘gap’ in the tracks.
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Figure 5.28: Data event selected after scanning cuts.

Figure 5.29: Data event selected after scanning cuts.
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Figure 5.30: Data event selected after scanning cuts.

Figure 5.31: Data event selected after scanning cuts.

The visual scanning of events allows for determining the 3D quantities in an event, such

as separation between the primary and detached secondary vertex; ‘vertex separation’, the

opening angle and lengths of the two secondary tracks. Figure 5.32 shows the 3D vertex
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separation in the data and MC events after scanning cuts. Figure 5.33 show the 3D opening

angle of the secondary tracks in data and MC events after scanning cuts. Figure 5.34 and

Figure 5.35 show 3D length of the longer secondary track and the 3D length of the shorter

secondary track in the data and MC events, respectively.

Figure 5.32: Vertex separation – the distance between primary and the secondary detached
vertex in the data and MC events after scanning cuts. Data and MC plots are both normal-
ized to one.

Figure 5.33: 3D opening angle of the secondary tracks in the data and MC after scanning
cuts. Data and MC plots are both normalized to one.
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Figure 5.34: Length of the longer secondary track in the data and MC after scanning cuts.
Data and MC plots are both normalized to one.

Figure 5.35: Length of the shorter secondary track in the data and MC after scanning cuts.
Data and MC plots are both normalized to one.

5.3 Background

The background is calculated by normalizing the MC to 1.2 × 1020 protons-on-target (POT).

Any event in MC that passes all the analysis cuts but is not a CCQE neutral hyperon event
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shown in Equation 5.1. Background events are in which the scanner sees a detached vertex

with two tracks originating from it along with one or two primary tracks. One example

of such event is charge current deep inelastic (CCDIS) interaction, where particles such as

K0, Σ0 or Λ0 are produced in pairs and one of them exits the detector without decaying, or

decays to neutral particles. Another example could be when a charged hyperon is produced

along with a neutral one in a CCDIS or neutral current deep inelastic (NCDIS) interaction.

Other examples would include events when a neutron produced in the primary interaction

scatters off of an argon nucleus and produce exactly two tracks in the detector. A total of

64% of the total background is such processes.

Figure 5.36: An example of a background event (after scanning cuts).

Based on the scanned MC sample, 7% of the background comes from CCQE interactions,

50% from NC/CCDIS, 43% from CC-resonant interactions. The event rates for each inter-
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action are calculated by convolving the cross section from NUANCE and flux histograms.

After scaling the MC to 1.2 x 1020 protons-on-target (POT), 20 background events are pre-

dicted. Figure 5.36 and Figure 5.37, each show an example of background event that is

selected during the visual scanning. Figure 5.36 shows an event where a neutron scatters

to produce a detached vertex with two secondary tracks. Figure 5.37 shows an example

where a K0 and Λ0 are produced (associated production) and one of them decays to charge

particles inside the TPC.

Figure 5.37: An example of a background event (after scanning cuts).

5.4 Flux

The flux in the antineutrino NUMI beam mode in low energy (LE) is shown in the Fig-

ure 5.38.
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Figure 5.38: Antineutrino flux of νµ(red), ν̄µ(blue), νe(green) and ν̄e(cyan) in the low
energy (LE) antineutrino-mode NUMI beam [? ].

The analysis uses total integrated flux of 2.4 × 105 ν̄µ/m
2/109POT [? ] for the

antineutrino-mode beam. ArgoNeuT took 1.25 × 1020 POT in the antineutrino-mode run.

However, since the analysis makes use of the muon track information from MINOS, which

demands to correct for the amount of POT when both the detectors were active, hence 1.20

× 1020 POT are used in this analysis.

5.5 Errors

The statistical error is dominant in this analysis and is due to the small number of events.

The error on the number of selected data events and the predicted background events, error

on efficiency of automatic reconstruction cuts and scanning cuts contribute to the statistical

errors;

(
δσstat
σ

)2

=

(
δNdata

Ndata −Nbkg

)2

+

(
δNbkg

Ndata −Nbkg

)2

+

(
δεcuts
εcuts

)2

+

(
δεscan
εscan

)2

. (5.3)
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The first two terms in the Equation 5.3 dominate the total (statistical) error. Their

contribution to the total (statistical) error are 37% and 33%, respectively. Error on the

background comes from the uncertainties in the background selection efficiencies of each cut

on the MC sample and the uncertainty in the NUANCE scaling factor (to scale the MC to

the 1.2 × 1020 protons-on-target). Binomial errors are considered for all the efficiencies.

Although the analysis is statistically limited, systematic errors from prominent sources

are also calculated and accounted for. Equation 5.4 shows different contributions to the

systematic error on the cross section measurement. The flux is assigned a flat 11% uncer-

tainty that accounts for the uncertainty in hadron production and beamline modeling [? ].

Systematic error introduced due to visual scanning is also taken into account. A set of 4680

data events that pass automatic reconstruction cuts (excluding muon sign requirement) is

scanned by two scanners. The scanning cuts are then applied to the events and considering

the number of common events that the scanners selected out of the total number of events

that each of them selected, the maximum difference in their selection efficiency is calculated

to be 3.5%. The difference between beam angle in MC and data also introduces systematic

error. The MC events after passing all cuts are weighted in the muon angle bins and an

error of 6% is assigned. The systematic error due to the fiducial volume cut is calculated

by increasing and decreasing 1 cm on all sides of the fiducial volume (FV). The maximum

difference in the event density (number of events per unit volume) is determined to be 1%.

Systematic error on the POT count is 1% [103]. Error associated with the number of targets

is 2% [10]. Background prediction uncertainty is also included in the systematic error.

There are two estimates of the background, which are consistent (and have same mean

value of 20 estimated events, likely a coincidence); one is the estimated background from MC

after applying all analysis cuts. A conservative estimate of 50% uncertainty is assigned on

the background prediction from NUANCE model. The second estimate of the background

comes from the shape fit (described in the next section), which also gives the uncertainty

in the number of background events. Combining the two uncertainties, a total systematic
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error in the background prediction is found to be 39%, which is the biggest contribution to

the systematic error.

(
δσsyst
σ

)2

=

(
0.11 flux

)2

+

(
0.035 scan

)2

+

(
0.01 FV

)2

+

(
0.01 POT

)2

+

(
0.02 Ntarg

)2

+

(
0.06 angle

)2

+

(
0.39 bkg

)2

.

(5.4)

5.6 The Measurement

This analysis measures the total cross section for charge current quasi-elastic neutral hy-

peron production and sets an upper limit to the cross section at 90% confidence-level. Two

independent approaches are used to make the measurement. The first is model dependent

(absolute normalization to the cross section model), and the second one is nearly model

independent and uses only the shape distributions for MC signal and background.

The cross section generally can be written in the form of Equation 5.7. One can write

the expression for cross section for this specific analysis;

σ(CCQEΛ0+Σ0 ) =
f × (Ndata −Nbkg)

φ×Ntarg × εcuts × εscan
. (5.5)

Here, Ndata is the number of total data events that pass all the cuts in analysis, Nbkg

is the predicted number of background events, φ is the integrated antineutrino flux of the

NUMI beam in antineutrino mode, Ntarg is the number of targets in the fiducial volume of

the detector, and εcuts and εscan are the efficiencies of the automatic cuts and the scanning

cuts, respectively. f is the correction factor for the branching ratio of neutral hyperon

decay to the neutral particles. Using the model dependent approach, after plugging in all

the values as shown in the table in Figure 5.39, the measured cross section is

σ(CCQEΛ0+Σ0 ) =
(
3.7 ± 1.9(stat.) ± 1.5 (sys.)

)
× 10−40 cm2. (5.6)
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The observed excess in the event yield is consistent with the expectation of CCQE Λ0

and Σ0 production in the model. A common convention in high energy physics is that a

measurement is considered statistically significant observation if it is at least three standard

deviations (3σ) away from zero, which is not the case here, hence the study sets a 90%

confidence-level (C.L.) upper limit on the total cross section of CCQE Λ0 and Σ0 production

following the procedure described in [104].

σ(CCQEΛ0+Σ0 ) < 7.3 ×10−40 cm2 at 90% C.L. (5.7)

Figure 5.39: Numbers for cross section calculation. Ndata, Nbkg and Ntarg correspond to
fiducial volume (FV) of the TPC.

For consistency check, the measured total cross section of CCQE Λ0 and Σ0 production

by the model dependent method, shape fits are employed on the MC signal and background

events. This method estimates the number of signal and backgrounds events in the selected

data events without relying on the absolute normalization to the cross section model, and

using only the signal and background shapes from the MC. The vertex separation distribu-

tions for MC signal and MC background events (selected after all analysis cuts) are each

fitted with an exponential function and the combination of both is fitted to the 36 data

events that passed all cuts. Figure 5.40 show the fits for signal, background and data. This

method predicts 16±8 signal events and 20±8 background events, with a fit χ2/d.o.f. = 0.08.
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The central value of the result matches with the results from the model dependent method

but gives bigger errors. The statistical errors come from the data statistics and the limited

MC statistics. More MC signal and MC background statistics can improve the precision

in shape descriptions for signal model and background model. Systematic errors on this

measurement also come from Equation 5.4. We exclude the last term in the equation since

for this (model-independent) method, systematics from the model are much reduced. The

cross section measurement from this method gives

σ(CCQEΛ0+Σ0 ) =
(
3.7 +3.2

−2.9(stat.) ± 0.5 (sys.)
)
× 10−40 cm2. (5.8)

Figure 5.40: MC signal model (blue), MC background model (red) and signal + background
model (green) fit to data events (after scanning cuts). Roofit provides the estimates of
signal and background events in the data events that pass all analysis cuts. MC signal and
MC background models are normalized to the number of MC events in each category (after
scanning cuts).

Another way of presenting the result is the ratio of CCQE hyperon production cross

section to CCQE neutron production cross section at the mean production energy of CCQE

hyperons (3.42 GeV), σ(CCQEΛ0+Σ0 )/σ(CCQEn). The 90% C.L. upper limit on this ratio is
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also reported. The upper limit is calculated as described before for the calculation of upper

limit of the total cross section in Equation 5.7. Many model dependencies associated with

NUANCE cancel when reporting the result as a ratio. σ(CCQEn) cross section is taken

directly from NUANCE model.

σ(CCQEΛ0+Σ0 )

σ(CCQEn)
= 0.06 ± 0.03(stat.) ± 0.02 (sys.). (5.9)

σ(CCQEΛ0+Σ0 )

σ(CCQEn)
< 0.12 at 90% C.L. (5.10)

The errors on the measurement are the same as reported in Equation 5.6, neglecting a

relatively small error on the predicted value of σ(CCQEn). The measured value of this ratio is

consistent with the predicted value from NUANCE model, σ(CCQEΛ0+Σ0 )/σ(CCQEn) = 0.04

at 3.42 GeV.

5.7 Results

The analysis gives the first measurement of the CCQE neutral hyperon production cross

section using data from ArgoNeuT; a LArTPC detector exposed to low energy neutrino beam

and sets an upper limit, at 90% C.L., on the total cross section of CCQE neutral hyperon

production. The analysis employs two separate methods to measure the cross section. First,

using the absolute normalization to the cross section model to predict the background events,

and second, using the MC shapes of the signal and background to predict the number of

signal and background events in the selected data sample. The analysis is statistically

limited; however, both methods give the same mean value with the latter having bigger

errors than the former. The event selection is based on two steps, automatic reconstruction

cuts and the visual scanning cuts. This is a topological analysis that looks for the events with

no more than two primary tracks and a detached vertex with exactly two secondary tracks
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and rejects events with two or more showers. The cross section measurement is reported at

the average energy of the CCQE neutral hyperon production. Figure 5.41 shows the energy

distribution of these events in MC. The distribution is fitted with a Gaussian, which gives

3.42 GeV as the mean energy of these interactions. The measured total cross section is

reported in Figure 5.42 at the mean production energy. A ratio of CCQE Λ0 and Σ0 total

cross section to CCQE neutron cross section is also reported.

Figure 5.41: Energy distribution of CCQE neutral hyperon interactions (MC) in Ar-
goNeuT.

Figure 5.42: Total cross section of charge current quasi-elastic Λ0 and Σ0 production from
the NUANCE model (red line) and the measured in this study (blue line). Errors are from
the MC dependent method of the measurement. Error bars include statistical and systematic
errors. The measurement is consistent with the expectation.
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5.8 Conclusion

The first measurement of CCQE neutral hyperon production cross section in a liquid argon

time projection chamber (LArTPC) is presented in this thesis. The analysis uses 1.20 ×

1020 protons-on-target (POT), in the NUMI beam operating in the low energy antineutrino

mode. The total cross section measurement is reported at the mean production energy of

3.42 GeV for CCQE neutral hyperons. The results are consistent with the NUANCE cross

section model. The study sets an upper limit on the total cross section at 90% confidence-

level. Also a ratio of CCQE Λ0 and Σ0 total cross section to CCQE neutron cross section is

reported. The study is statistically-limited which is attributed to the following factors. The

process studied here is naturally suppressed by a factor of sin2 θc as compared to CCQE

neutron production process, where θc is Cabibbo angle. Other obvious reasons are the small

size of ArgoNeuT detector and its short runtime (about five months). These results can be

improved by studying these processes in the current and future bigger LArTPC detectors

(with higher proportion of contained events), intense neutrino beams, and longer runtimes.

Since these processes are induced only by antineutrinos, these can serve as ‘antineutrino

tagger’ in those detectors. In future, this study will be extended by improving short track

reconstruction, and automatic particle identification and developing techniques of particle

identification for exiting tracks.
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