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1.0 INTRODUCTION

Shale drilling represents about 50% of the oil well footage in
the United States [ 1). Shale is a term used to describe a rather broad
category of rock formations which typically do not have high compressive
strength but are highly ductile, especially when subjected to confining
pressure,

Toothed roller cone drill bits are used to drill most of the
011 well footage, but often these bits do not perform well in shale because
ductility impedes chip removal, Within the last few years a new type of
diamond cutter (synthetic polycrystalline diamond compact, PDC) has become
commercially available and appears to have a great potential for oil well
drill bits. A PDC cutter is shown in Figure 3. Several companies are now
manufacturing these bits and many designs have emerged., Examples of POC
drill bits are shown in Figures 1, 2 % 4, The design of these bits are
diffarent from each other and there is no fundamental design which gJoverns
the number of individual cutter edges, their relative placement, bit shape
and other parameters which influence the bit performance. Several of these
bits have been sucessful in shale. !lowever, bit design and development has
been done primarily by empirical analysis and trial and error methods. For
continuad improvement of these bits there is need for a basic theory of
cutting for PDC cutters. This would then be the basis for a drilling theory
for PDC 0il well drill bits which could be used to develop improved bits.

Some research work has been done on cutting shale with PDC cutters

but the experimental results seem somewhat contradicting and the theoretical
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model naeds improvement.

J.5. Cheatham and W.H, Daniel [ 2 ] have studied the factors
influencing the cutting of shale with single PDC cutters by conducting
experiments on a shale sample under pressure.

J.A. Salzer and J.F, Melaugh [1 ] have also performed single cutter
experiments with PDC cutters but the results of their experiments do not
seem to agree well with Cheatham's experiments. The reascns for the difference
are not clearly understood. Furthermore these experiments are very costly.

M. Miller and J.B. Cheatham [3 lhave also developed a simplified
cutting theory but it does not satisfactorily explain the behaviour of
PDC cutters in drilling shale.

Therefore, the development of a satisfactory cutting theory which
can explain the results of the experiments and which can be effectively
used to improve the design of drill bits is necessary.

| The present study is aimed at developing a viable cutting theory
for a single PDC cutter. This work is the first step in the development of
a drilling theory for actual multiple PDC cutter drill bHits.

A Merchant's type plasticity solution is proposed in this study.
The effects of borehole pressure, pore pressure in the rock, cutter velocity
and rock properties have been incorpcrated in the theory.

It is known from the literature ([4, 5] that there are two thecries
of plasticity which have been proposed for materials with strength that varies
with mean pressure, and neither of them explains all aspects of the benaviour
of such materials. Dath the theories will be used in solving the cutting
problem and the solutionrs will he compared.

The rock failure ciriterion used is the well known !ohr's envelope



which is widely used for engineering analysis of problems involving rock
failure,

A first attempt has been made to theoretically model the effact
of cutting velocity on the cutting forces. It appears that this is
significant because the differences in the results of previous experiments
are partially explained by the velocity effect,

The cutting problem is formulated by considering equilibrium,
continuity and failure criterion and is solved by a numerical procedure to

calculate the cutting forces.



2.0  FORMULATION OF THE CUTTING PROBLEM

2.1 Introduction

The basic cutting problem involves the movement of the single edge
cutter in the transversa direction over a stationary rock matarial to produce
a chip. Figure 5 shows the cutting process. Although the actual process is
three-dimensional the analysis is done for a two-dimensional flow field.

The problem is therefore considered to be a plane strain two-dimensional
problem, The tool is rigid and has a straight edge of unit width., The rake
angle, a , of the tool which is the angle between the upper face of the tool
and the normal to the material surface being cut is considered to be negative
as shown, The depth of cut is designated by t, as shown in the Figure. It

is assumed that the friction between the rake face of the tool and the chip
can be represented by the coefficient u., The rock material is assumed to be
rigid-plastic. The rock is assumed to be a composite material of solid rock
and fluid pores. The fluid in the pores exerts a pressure, which affects the
cutting process. The effect is not clearly understood and in the present
study, it is assumed that there is a variation of the pore pressure from near
the 'shear plane' to the surface near the rake face. Referring to the Figure,
the pore pressure near the ‘shear plane' is Gpl and the pore pressure near

the rake face is GpZ'

The whole cutting process takes place at large depths at the
pottom of a borehole and the borehola mud exerts a pressure on the chip and
the tool. This effect makes the problem different from conventional metal

cutting processes, PReferring to the Figure, o, is the borehole pressure

b
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assumed to act in a direction perpendicular to the rock surface.

The cutter moves with a velocity V in the direction shown. It is
assumed that yielding of the rock material occurs, according to the Von-Mises
Yield criterion, along a single plane known as the 'shear plane', designated
by the plane AB. Side flow, work hardening and temperature effects are
neglected. The angle made by the ‘'shear plane' with the direction of travel
of the cutter is denoted by ¢. The normal and tangential cutting forces are
denoted by Fn and Ft-

2.2 Equilibrium Condition Formulation

Figure 6 shows the various stresses in equilibrium on a rock
element which is at yield conditions along the 'shear plane'. The stresses
on the rake face BC are the normal stress o and the shear stress Ty The
borehole prassure o, acts on the plane AC perpendicular to the rock surface.
On the 'shear plane' AB the stresses are %4 and Ty The planes A3, BC & CA
are of unit width and their areas are a1, Ay & a4 respectively.

The areas are given by the following relationships in terms of

the angles,

1
gy # s (2-1)
sin{s)
a, '
— = sin(¢-a)+ tan[@«(¢~a)] cos ( -a) (2-2)
|
a3 cos{é-a)
= = (2-3)

3 cos [5-(¢-u5]

Figure 7 is a schamatic representation of the tool-chip interface.



The surface of the tool is in contact with both solid rock and fluid in the
pores.

J.C. Jaeger and N.G.W. Cook {6] and L.L, Karafiath and E.A, Nowatzki
(5] have analysed the void areas as a percentage of the total area. Using the
same idea and assuming the porosity effect to be va/3 (v is the rock porosity},

the effective stress is given by the expression

5 pefd -
o, =V Up2 (2-4)

The shear stress on the tool face is given by
(2-5)

For the rock element shown in Fiqure 6 to be in equilibrium, the
forces and moments must balance, Balancing the forces in the direction

parallel to the 'shear plane' gives

cos{¢ - a) + o, a, sin(8) = 0 (2-6)

sin{¢ - o) - o, a b 49

+
T 4a T, a t %2

n 1 t 2

Salancing the forces in the direction perpendicular to the
‘shear nlane' yields
- - - i - - = -
9.8 7T, 4, cos(¢ - a) 9, 2, sin(4 - a) o, a, cos( 8} {2-7}
Taking clockwise moments about the point D on Figure 6, the

following mement equation is obtained,

a a a a
3 1 2 1
fo a b, — CO"(B) - O a ——— = d— S]n(¢ - a)
h 3 { 2 2 ] t 72 l 2 2
!
+ T, 2, -E- cos(e = a) = C {2-8)
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BOREHOLE FLUID

ROCK

FIGURE 8 : CUTTING FORCE COMPONENTS ON THE TOOL.
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Substituting the value of 7y from (2-5) in (2-8) gives the

expression for the normal stress on the rake face as

63 d aZ
[cb —_ - cos(e)] - w3 o — cos{¢-a)

p
a; - a a
e 1 (2-9)
a a2
3 sin(¢-a) - u cos(¢—a)]
gy L odg

The shear stress on the tool is given by the expression (2-5).

2.3 Cutting Forces on the Tool

The cutting forces on the tool are made up of two components;
Ft the tangential force in the direction of travel of the cutter; Fn the

normal force in the direction perpendicular to the direction of travel of the

cutter.

Figure 8 shows the two componénts of the force, The forces per

unit area of cut are given by balancing the stresses shown in the Fijure.

Ft 32 1
—_— = [(ct -cb) cos(a) + u (ot - v2/3 UDZ) sin{a)| =—— ~—— {2-10)
t ' al S';n(ff)}
Fn 3.2 1
- =[—(ct -Ub) sin{a) + u {ct - v2/3 GpZ) cos(a)| — —= {2-11)
ay sin(¢)

Thesa expressions are used in the computer grograms in Appendix I

& IT to calculate the forces.
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3.0 ROCK FATLURE CRITERION

3.4 Introduction

The general failure characteristics of a rock can be reasonably
well represented by the commonly known Mohr's envelope. Therefore in the
present study the Mohr's envelope is used as the basic failure criterion for
the rock being cut.

The Mohr's envelope is usually constructed from experimental data.
Figures 30 & 31 in Appendix IV give typical envelopes from experimental data.
The shape of the envelope is different for different rocks. The exponetial
form of approximation to the envelope has been used in this study. The

general form of the envelope equation is

T=1-~0b eV o (3-1)

3.2 Effect of Cutter Velocity

J.A. Salzer and J.F. Meltaugh [1] have demonstrated in their
experiments with stratapax drill blanks that the cutter velocity has an
effect on the cutting force. Theoretically the effect of cutter velocity has
not been clearly understood.

In the present study an attempt has been made to account for the
velocity effect in calculating the shear stresses on the 'shear plane' and on
the rake face. The effect has been taken to be a function of the velocity
discontinuity in the case of the shear stress on the 'shear plane'. The

expression assumed for the shear stress is

T, - B0 (3-2)
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In the case of the shear stress on the rake face the effect is
taken to he a function of the chip velocity, The assumed expressiocn for the

velocity effect is
T, - Fz(VC) {3-3)

3.3 Effect of Pore Pressure

The effect of pore pressure on the stresses on the rake face has
been dealt with in Section 2.2. The pore pressure affacts the stresses on the
'shear plane' also 5 . The effective normal stress on the ‘shear plane' is

given by the expressian
c, - 0 (3-4)

This is the value of the normal stress used in the construction of

the Mohr's envelope.
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4.0 GENERAL PLASTICITY THEORY

4.1 Conditions and Assumptions

The basic theory used in this work is the analysis of the
behaviour of a continuum during plastic flow. The yield strength of the
continuum varies and depends on the hydrostatic part of the stress tensor.
The rock material is assumed to be rigid-plastic and isotropic. The assumption
that the material is rigid-plastic implies that the elastic strain is
negligible.

The flow is assumed to be a plane strain two-dimensional flow.
For the (x, v, z) set of co-ordinates the strains in the z direction are
considered to be negligible.

To formulate the relevant equations for plastic flow two
requirements are to be met by the continuum.

a) The continuum as a whole is in dynamic equilibrium
b) The stresses at every noint in the flow field obey the Tresca-Von ilises
criterion of failure.

4.2 Stress Field Theory

As the stresses are predominantly compressive in the flow field,
compressive stresses are considered positive and the stress element is shown
in Figure 3. Using this convention the equilibrium equations are formulated as
given below.
3o 3T

X ¢ XY _ ¥
ax Yy

[}
(&)
P
4=
1
f e
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FIGURE 9 : STRESS ELEMENT

T

FIGURE 10 : MOHR'S CIRCLE AMD MOHR'S ENVELOPE
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3o a1
_l+._...."y-v=o (4-2)
3y ) 4 :

The Tresca-Yon Mises criterion of failure for the (x, y) system

of co-ordinates is
g, - a
N R e

The yield shear stress k is assumed to be a known function of the
hydrostatic pressure p of the stress tensor. This follows from the fact
that at yield the Mohr's envelope is tangent te the !Mohr's circle.:

The yield criterion is satisfied by defining the stress components

in the x-y plane as follows:

Ge =P~k sin{24) (4-4)
o, =P + k sin(2¢) (4-5)
Tyy = K cos{24) (4-6)

Figure 10 shows these stress components on the !ohr's circle.
The angle ¢ is measured positive in the counter clockwise direction. The
angle made by the maximum normal compressive stress with the positive

direction of the x axis is (¢ + v/4)., The hydrostatic pressure p is given by

p= 2 (4-7)

For the pliane strain condition of flow the normal stress in the z

direction is equal to the hydrostatic pressure p, and Tyz and 1., are zero.

¥z
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Differentiating (4-4), (4-5) & (4-6) according to the differentials

in @-1) & (4-2) and substituting yields the following two equations.

ak
ll + s5in(2¢) -—-]

ap ax

ak 1 3p
[cos(2¢) -—-] —_ + 5in(2¢)

ap 1 ax

[1

cos(2¢)

3p ak qap I
S— {cos(2¢) —-—] — + 2 k cos(2¢) —
ap | 3y ax
3¢
2 k sin(2¢) —= =YX (4-8)
3y
akK 3p 8d
—-—] — - 2 k sin{2¢) =
op 1 ay ax
dd
— = Y (4-93)
ay

These two quasilinear hyperbolic partial differential equations

can be solved by the method of characteristics.

families of stress characteristics.

1 & J and along these lines the values of p and ¢ are known.

at every point in the flow field are

The direction derivatives

ap op
— dx + — dy =
ax oy
39 od
~— dX + == dy =
N 3y

Solving (4-8), (4-9), (4-10) &

This method defines two

The lines are designated by the letters
The stresses
defined by these lines.

are given by

dp (4-13)

dd (4-11)

(4-11) by the method of
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characteristics, the slopes of the i and j lines are found to be

dy
— = tan{¢ + y/2) (4-12)
dx

dy
— = tan(4 - v/2 + n/2) (4-13)
dx

The value of y/2 is defined by the expression

1 1 ak
¥/2 = =— 5in"° — (4-14)
2 an

Figure 11 gives the orientation of the stress characteristics with
respect to the element. The stresses (uI, rI) and (cJ, rd) on these
characteristics are also indicated. The stress components (oI, TI) and

(UJ’ rJ) are shown in the Mohr's circle in Figure 10.

4.3 Velocity Field Theory

The plane strain two-dimensional plastic flow problem is not
completely solved until the velocity field solution is satisfied in addition
to the stress field solution.

The velocity field theory will be formulataed separately for tuo
different cases. The property of the continuum for the two cases are
a) The continuum is assumed to be incompressible and the principal axes
of stress and strain coincide,

b) The continuum is assumed to be compressible.

In both the theories the yield shear stress k is the same known
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function of the hydrostatic pressure p. However, the orientation of the
velocity field is different for the two cases.

4.3.1 Incompressible Theory

For an incompressible continuum the continuity equation is given

by

au av

— o —

x ay

1]
o

(4-15)

then the principal axes of stress and strain coincide, for a rigid
plastic material, the ahg!e 2¢ for the incompressible case can be written in

terms of the strain rate as

au v
Y. PEpuTEE C—
g, - @ L 39X ay |
tan(24) = ——2 = (4-16)
2%, T AU V7 '
Xy e 3 reee & s
oy ox

The relation for angle 2¢ is illustrated in Figure 12. Rearranging

{4-16) yields a partial differential eguation.

av au 3u v
[___ B s +[ i m s COt(Ecb) = 0 (4-17)
ax Ay ax oy

The directional derivatives are given oy the following two equations,

av av
e X+ = dy = dv (4-18)
3x 3y
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FIGURE 12a : MOHR'S CIRCLE FOR STRESS

y A

FIGURE 12b : MOHR'S CIRCLE FOR STRAIM RATE
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au au
— dx + — dy = du (4-19)
3x ay

Solving (4-15), (4-17), (4-18) & (4-19) by the method of

chracteristics, the slopes of the velocity characteristics are

3y
— = tan{¢) (4-20)
ax
3y
— = tan{¢ + n/2) (3-21)
X

The orientation of the velocity field and stress field for the
incompressible theory is shown in Figure 13. The velocity characteristics
do not coincide with the stress characteristics in this case., The angle
between them is y/2.

4.3.2 Compressible Theory

This method is based on the principle of plastic potential.
According to this principle the stress and strain rate during plastic flow
are related by the following expressions.
3f

8, = A = {4-22)

30y

e. I Q—— {4'23)

BTXY

f is the yield surface criterion given by the expression
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26

c. - 4a
ez +[_X.__.J] <2 (4-25)
The compressive Strain rates are related to the velocity by the
expressions
. au

- — (4-26)
X

[}

av
. (4-27)

3y

[1= Y
[t}

au av
= -[.._.+_. (4-28)
y X

Using equations {4-22) through (4-28) and (4-2) through {4-5) the

following two quasilinear hyperbolic partial differential equations are

obtained,
au oy v au
[.__ - — | cot(29) + ~=— +t — =70 (4-29)
ax 3y X Ay
oV au ak 3u v
[-— + — | sec(2¢) — + — + — =70 (4-30)
ax 3y ap ax 3y

Solving (4-29), {4-30), (4-18) & (4-13) by the method of
characteristics, the slopes of the velocity characteristics are
dy

— = tan(¢ + y/2) (4-31)
dx
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gz— = tan(¢ - yv/2 + w/2) (4-32)
dx
Figure 14 shows the orientation of the velocity characteristics
and stress characteristics with respect to the stress element. In this case
the velocity and stress characteristics coincide,
The cutting problem is solved separately by the two theories

formulated above to determine if there is any significant difference in the

predicted cutting forces.
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5.0 INCOMPRESSIBLE THEORY SOLUTION

5.1 Failure Criterion

The theory introduced in the previous chapter is now applied to

the yielding which occurs along the 'shear plane' in the cutting problem. The
‘shear plane' is a velocity characteristic. The velocity discontinuity occurs
along this 1ine but its direction is not necessarily parallel to the velocity
characteristic. Figure 15 gives the basic stress element corresponding to the
incompressible case on the 'shear plane' and Figure 16 gives the corresponding
Mohr's circle. For this case the stress and velocity characteristics do not
coincide. The normal and shear stresses on the 'shear plane' are the stresses
corresponding to the maximum point on the Mohr's circle. The stresses on the
i line rotated by an angle of v/2 in the clockwise direction gives the stresses
on the 'shear plane'. This is indicated in Figures 15 & 16.

. Based on the velocity effect and pore pressure affect discussed in

Chapter 3.0 the normal and shear stress on the Mohr's circle are given by

On=- @97 0+ tan(y) = (5-1)

n pl

N (' Y- (5-2)

121 -be O (5-3)

The values of t and o are obtained by simultaneously solving {5-1},

(5-2) & {5-3). Differentiating equation (5-3) with respect to angle y yields
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FIGURE 16 : MOHR'S CIRCLE FOR INCOMPRESSIBLE SOLUTION
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dt
— =b ype ¥ = tan(y) (5-4)
dy

A particular value of o is assumed and the following parameters

are calcualted from the relevant expressions.

(i) Angle y from (5-4)

(i1) < from (5-3)

(ii1) T from (5-2)

(iv) o from (5-1)

5.2 Velocity Relation and Hodograph

For the incompressible case the other velocity characteristic
is perpendicular to the 'shear plane'. Hence the condition that the velocity
discontinuity has its direction perpendicular to the other characteristic
makes its direction along the 'shear plane'. The hodograph is shown in
Figure 17. The velocity of the chip and the velocity discontinuity are given

by the expressions

sin(¢)
V 3 e Y/ (5'5)
€ costs - a)
. cos(a)
Yy = Y (5-6)
cos{¢ - a)

5.3 Method of Solution

A numerical procedure is adopted to find the cutting forces on the
tool corresponding to the state of minimum energy. The procedure consists of

three iterations; one %to find the values of % and T, to fit the Mohr's
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envelope; the second to find the values of & at which equilibrium conditions

and failure criterion are satisfied simultaneously; the third to find the
value of ¢ at which the force per unit area Ft/t is minimum,

The Mohr's envelope is constructed from experimental data and
for the approximate envelope the values of t_, b & ¢ in equation (5-3) are
determined by curve fitting.

A value for the rake angle a is chosen and a particular value for
¢ and 8 are picked, The stresses on the tool o, and Ty are calculated from
(2-5) and (2-9).

The normal and shear stress on the 'shear plane' must have values
which simultaneously satisfy equilibrium conditions and failure criterion, In
order to differentiate the stresses formulated from equilibrium conditions and

failure criterion they are denoted as follows:

"
9, & 1, - from equilibrium conditions,

n

& t. - from failure criterion.

%n n

The values of o, is calculated from equation (2-7). To satisfy

the failure criterion an error function is defined as

e{a) = c; -a (5-7}

h

A Newton iteration is performed on the value of ¢ to make the
error function e{o) small.

The value of T, is calculated from (2-6) and an iteration is
performed on the value of @ to make the error function e(8), defined by the
expression (r; -rﬂ], very small,

An iteration is performed on the value of ¢ to obtain tha minimum
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value of Ft/t. For each value of ¢, the iterations on o and 6 are performed,
which is a necessacity to satisfy the equilibrium conditions and failure
criterion.

The computer program in Appendix I performs the numerical procedure

outlined in this chapter,.
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6.0  COMPRESSIBLE THEORY SQLUTION

6.1 Failure Criterion

Figure 18 shows the basic compressible theory stress element on the
'shear plane'. The element is at an angle y in the clockwise direction from
the 'shear plane'. In this case the velocity and stress characteristics
coincide. The Mohr's circle is shown in Figure 13, The normal and shear
stresses on the 'shear plane' are the stresses corresponding to the point at
which the Mohr's envelope is tangent to the !ohr's circle. The normal and
shear stresses in the Mohr's circle are given by

O = Opy = © (6-1)

*

Ty - FI(V ) = 1 (6-2}
The equation to the envelope is given by
r=r, - be¥d (6-3)
The values of ¢ and t are found by simultaneously solving (6-1),

(6-2) & (6-3).

6.2 Velocity Relations and Hodograph

The velocity discontinuity for the compressible case does not
occur in the direction of the 'shear plane', The orientation of V¥ is in a
direction perpendicular to the other velocity characteristic, The hodograph
is shown in Fiqure 20, The velocity of the chip and the velocity discontinuity

are given by the following expressions.
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FIGURE 19 : MOHR'S CIRCLE FOR COMPRESSIBLE SOLUTION
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sin(e + v)

cos(¢ =~ a + v )

& cos{a)
¥y = v (6-5)
cos{p - a + v) -

5.3 Method of Solution

The numerical procedure is similar to that for the incompressible
solution. The only difference is that the values of the stresses on the
'shear plane' are those corresponding to the tangential point and hence there
is no iteration involved to calculate the values of o, and v, to fit the
Mohr's envelope. The rest of the procedure is the same to find the values of
8 and ¢ for minimum cutting energy.

The computer program in Appendix Il performs the numerical procedure

outlined in this chapter.



4]

7.0 COMPARISON WITH EXPERIMENTAL RESULTS

7.1 Introduction

The validity of the cutting theory as a tool to improve the design
of PDC bits is best analysed by comparing the predicted results with experimental
data from studies on the performance of PDC cutters to cut shale. The work
done by J.3. Cheatham and Y.H. Daniel [2] and the work by J.F. !'elaugh and
Jd.A., Salzer [1] are compared in this study. The incompressible theory solution
is used to predict the cutting forces.
The effect of friction is not incorporated in the theory. The
value of p is found by trial and error. The factor which controls the value
of u is the necessary condition for all shear stresses to be within the !ohr's

envelope.

7.2 Comparison with Cheatham's Experimental Results

J.B. Cheatham 2 conducted experiments on single cutters to cut
shale. The velocity of the cutter was small {2 cm/ sec) and hence it is
assumed that the velocity effect on the cutting force in the present
comparitive study is negligible.

For comparision the parameters such as confining pressure, area of
cut and rake angle were given the same values in the theory as Cheatham had in
his experiments. The rock material used in the study was Mancos Shale and the
Mohr's envelope was drawn from Cheatham's experimental tests.

Table 1 shows the theoretical results from the incompressible

theory solution for a 0.38" rectangular tool with a depth of cut of 0.01".
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The confining pressure is 2030 psi and the pore pressure is considered
negligible. The rake angle is 0 degrees.
Cheatham's experimental results show that for a cutter depth of
0.01" the range of Ft/t is approximately 13040 psi to 19405 psi. In the present
study the value of Ft/t depends on the friction factor M For the cutter
depth of 0.01" and for a range of u from 0.1 to 0.3 the range of Fi/t is
11750 psi to 21513 psi. In F./t there is good agreement between the
theoretical results and Cheatham's axperimental results,

7.3 Comparison with Melaugh's Experimental Results

J.F. Melaugh [1] conducted experiments with stratapax blanks to
cut Mancos shale. The velocity of the cutter was much higher (140 fom and
350 fpm) than that in Cheatham's experiments. The cutting forces in ilelaugh's
experiments are much higher than those in Cheatham's experiments. This
appears to be partially due to the velocity effect.

The Mohr's envelope was constructed from experimental results of
Melaugh. The cutter area is 0.004 in2 and the confining pressure is 13000 psi.
Figure 21 shows the comparision of rake angle vs cutting force for a cutter
velocity of 140 fpm. The numerical results are shown in Table 2 in Appendix
[II. Figure 22 shows the same graph for a cutter velocity of 350 fpm and
Table 3 in Appendix III gives the corresponding numerical results. Figure &3
shows the variation of friction factor u in relation to the rake angle a for
two velocities, The value of u has been found by trial and error to satisfy

the Mohr's envelope.
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8.0  CCMPARISON BETWEEN THE TWO THEORIES

A comparitive study of the results obtained by the incompressible
theory solution and the compressible theory solution was done for the same
rock properties and confining pressure. Figure 24 shows the graph of cutting
force vs rake angle for a cutter velocity of 140 fpm for the two theories.
The corresponding numerical results are given in Tables 4, 5 & 6 in Appendix
IIT. Figure 25 shows the same graph for a cutter velocity of 350 fpm and the
corresponding results are shown in Tables 7, 8 & 9 in Appendix III.

For the Mancos shale rock material considered in this study the
two theories show similar results and their differences are not very
significant. A possible reason is that the mean stress is large and the
Mohr's circle is far from the origin where the slope of the Mohr's envelape
is small and hence the angle y in the Mohr's circle is small. This makes the
the maximum shear stress in the !ohr's circle close to the tangential point,

The results of the two theories may differ more for other rock
materials in which the stresses are not as high or the slope of the envelope

is very large.
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9.0 PRESSURE EFFECTS

8.1 Effect of Baorehole Pressure

The borehole pressure % changes the cutting forces considerably
in rock cutting. The effects are analysed in this study. The other parameters
remaining the same, an increase in borehcle pressure increases the cutting
FOPEEs,

Figure 26 shows the normal and tangential forces vs borehole
pressure using the compressible theory solution. The numerical results are
shown in Table 10 in Appendix III. The rake angle is -15 degrees, the pore
pressure negligible and the area of the cutter 0,004 in2,

It is evident from the graph that the normal and tangential
forces increase with increase in borehole pressure. The possible reason for
this effect is that an increase in borehole pressure makes the rock stronger
and a larger cutting force is necessary to remove the rock material.

9.2 Effect of Pore Pressure

The fluids in the pores of the rock material tend to weaken the
strength of the rock. The pressure created by the fluid affects the cutting
process. The distribution of the pore pressure in the rock is not clearly
understood. In the present analysis it is considered to be uniform. All the
parameters remaining the same, an increase in pore pressure decreases the
cutting forces,

Figure 27 gives the behaviour of the normal and tangential forces
with respect to changes in the pore pressure, The corresponding numerical

results are shown in Table 11 in Appendix III1, The rake angle is -15 degrees,
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the borehole pressure 10000 psi and the cutter area 0.004 in2, The velocity
of the cutter is 140 fpm. The graph indicates that the cutting forces tend to
decrease with increase in pore pressure. The reason is that the effective

strength of the rock is decreased.
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10.0  DISCUSSION AND CONCLUSION

The cutting theory developed in this study is the basis for a
drilling theory for PDC 0il well drill bits which can be used to davelop
improved bits. Even though the only material considered in the examples is
Mancos Shale, the theory could be effectively used for other rock materials by
changing the Mohr's envelope accordingly.

It is inferred from the results that for Mancos Shale, the two
different plasticity theories namely the incompressible theory and the
compressible theory, give similar values for the cutting forces, The main
reason is that the Mohr's circle for the stress state is far from the origin
where the slope of the Mohr's envelope is small. Hence the angle y in the
Mohr's circle is small and the maximum shear stress in the Mohr's circle is
very nearly equal to the value of the shear stress at the point on the Mohr's
circle at which the Mohr's envelope is a tangent. For other rock materials
the results obtained from the two theories may differ more. The controlling
factors are the position of the Mohr's circle with respect to the Mohr's
envelope and the slope of the Mohr's envelope.

The differences in the experimental results of J.B. Cheatham [2]
and J.F. Melaughf 1] are partially explained in this study. Since the velocity
of the cutter was small in Cheatham's experiment the velocity effect has been
neglected in the incompressible theory solution used to compare the results.
The results obtained from the theory compared well with Cheatham's experimental
results,

Melaugh conducted his experiments with much higher velocities. The
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velocity effect incorporated in the solution has produced results which
compare fairly well with the experimental results. The theoretical results
might be better if the velocity effects were more completely understood. The
normal force curves from the theoretical results are below the experimental
results. One possible reason is that there is underflow below the cutter
edge. This would cause increased normal force.

Material in the litreature [7, 8, 9 ] suggest that the yield
strength of rocks increases with strain rate. Thus there is a possibility
that the Mohr's anvelope may become bigger when the velocity of the cutter
increases. The theory would then fit the experimental curves better,

Further study to obtain better understanding of velocity effects is
recommended.,

A theory for the friction magnitude between the tool and the
rock material has not yet been developed. The friction magnitude has been
determined by trial and error to fit the experimental curves as close as
possible, Further work is required to develop an effective theory to properly
predict the friction magnitude.

The pore pressure distribution has been assumed to be uniform in
the rock. More work needs to be done to better understand the actual

distribution of pore pressure in the rock.
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START

1/

MAIN PROGRAM
READ a;ablaplldpartlhvl,&lrwlvuu'

SUBROUTINE VELDIS
CALCULRTE v¥*

PRINT ,F,st,Fy/t

SUBROUTINE SHRANG

ITERATE ON ¢ TO OBTRIN
MINIMUM F,/t

$ SUBROUTINE VCHIP
CALCULATE Vg

SUBROUTINE STRESS

ITERATE ON § TO MINIMISE €

CALCULATE Oy, Ty, Fo/t,Fyst

J? SUBROUTINE RATE
SUBROUTINE THETA CALCULATE F (V% ,F (V)
CALCULATE €= T *- 1

.

SUBROUTINE MOHR
ITERATE ON ¢ TO MINIMISE €

CALCULATE O, T,

FIGURE 28 : FLOW CHART FOR THE INCOMPRESSIBLE SOLUTION.
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Yo xr sk ok sk R R ok R A R ek R ook ok e ek Bk ok Rk dkak kR ok R KRR R A kR
* A
FCCK CJTTING THEURY FOR POL CUTTERS-INCOMPRESSIBLE THEURY=
%* *
2 e a5 ok R R R ROk R ek 3o el Ak e e ne e o o ok e AR R NOoR ol e ok ok ok ok ok ok sk ok grskaodd femeale ok
IMPLICIT REAL=B(A~b,C-L,%)
REAL®4 Nu
COMMCH T
PI=3.14159265358979
PIC=PI/18).33
REAL,T
READ WO +TAUL,PSI oV KST )AL »SISR,ALPE
ALP=ALPO*P L
CCSALP=DCCSTALP)
WRITE(E457) V,ALPD,T
50 FCRMAT ('O, '"W=1,015.8/ "3y 'ALP=",015,3/'2',"'T=1,015.8)
WRITE {o.867) MU, TAUL24PSI
&0 FURMAT Y QY , ' MU=" 015 .3/007, ' TAad[="",D15,8/' 01 ,13=1,315,4/
AVZV P sl = 7015031
REAC,S5IG2L,S5IGP2
CALL SHRANGULALP NU,TAUL,PSTy By SICB Y yPHI»SION TAUNsFHUTHFT
X0T,5106P2,150LsSIGPLySIGT»TAUT I ,J)
CaLll VELDISUIPHI ALPWYyVDIS)
CALL VCrmIP(PHI JALP,yv VL)
ARITELE,85) VEIS,vC
35 FURMAT (V3 P NEIS=t ,FLll4/ %0, =1, F1D.4)
STCP
ENC
e ek o Xk o e e e
Mo ARk R KR PR K
AFNCTyFTUTySIGP2y ISCL ) SIGEL,SIUThTALT Ly i

OOy

R

:L

REFY &

skwrk=T CALCULATE THE SFEAP ANGLE PRl

YOOy

[MPLICIT REAL*8(A=r,0=Ly3)
REAL*3 NU

=1
TCL=5.[-3
NPHEI=J).1107
IDIH—L

Fe=1.008
PHILL=".07
PHIAR=1,57 79632 +ALD
PHI=2.7209
L=

20 PHl=FPAl+CPHI
[FIIDIR a2 s LaANI «PHI JOE o PHIRR) FRI=
[F{ILIReEus— l.A‘J PrHl.Lz.PHILL)Y PRI
CALL STRESSUIPHIZALP  NL,TALL,PST 1 By3

XS5LGP2,516PL, FTuT;FFOT:aIuT,THA.I)

IFTISULeses) GO TG DD

a5 IE(PHILYPRIAT
=u.ﬁL3*(jF{HPP!{LL3
I{.E!"ﬂ‘i S]JJ’\ Tl«;l?!:)r\l_r
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30

35

40

60

IF{I.GTe2.AND.IL.EQ.2) GC TO 30

[=1+1

IF(IL.EQ.L) GO TO 25
IL=1

PHILL=PHI

GC TC 20

IL=d

FL=FTGT
PHIL=PHI
DPRI=0.1D0
GC TC 20

IFIIDIR.EQ.1ANDLFTOTLGTL.FL) GO TO 40
IFIICIRJEQe=1.ANDSFTOT .GTLFR) GO TC 40
IFIIDIR.EG.-1) GO TO 135

PHILL=PHIL
FL=FTOT
PHIL=PHI
GC TC 29
CONTINUE

PHIRR=PHIR

FR=FTOT
PHIR=PHKI
GC TC 29
CONTINUE

IF{ICIRLEQ+l «AND W IPHI-PHILL) /(PHI+PHILL)LLT.TOL) GO TO 460
IF{ICIRSEQa=1+AND{PHIRR=-PHII/(PHIRR+PHII.LT.TCL} GC TO 62
IF(ICIR.EQ.-1) GO TO 59

PHIRR=PHI
FR=FTOT
PHIR=PFI

[DIR==IDIR

DPHI==C.2D00% (PHIRRF=PHILL}
GO TC 22
CONTINUE

PHILL=PHI
FL=FTQT
PHIL=PHI
IDIR=~IDIR

OPHI=2.200%{PHIRR-PHILL]

GO TO 29

63 COCNTINUE

200

IF[IDIR.EQeLl) PHI=J345D0*(PHILL+PHI)
IFIICIRWEQe—=L) PHI=1,503*(PRIRR+PHKI)

CALL STRESSIPHIALP NUTAUI+PSIT+BsSICByV2SIGN, TAUN,ISOL,
XSIGP 2, SIGP L FTOT »FNUT,SIGT,THA, L)

ARITE[64200) PHIWFTCT »FNCTSIGN,ySIGT yTAUN,TAUT +SIG3,S5IGPL,

X5IGP2, THA

FORMAT {01 3 'PHI=Y, FL2. 7/ 'Oty FTOT= ,FLl 3.2/ 2y 'FNOT=?,F19D.2

XZPOQP 3" SIGN="3015.8/'0", 'SIST=2,D15.8/% 01, ' TAUN=" yD15.8/
XPOr ' TAUT=",D15.8/"') " ,'SIGB=",015,8/'2',*'SIGPL=",yD15,8/

YOV,ISIGP2=1 0158/ 01 Y THET A= ,F12.7)
RETURN
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100 DPHI=N.1D0
GO TQ 20
END
CREREH SR REREHRERE
CakedkpkdtneInesdk
SUB ROUTINE STRESSIPHIJALPNU,TAUIPSI B+SIGB,VySIGN,TAUN,
XISCLSIGPZ,,SIGPY FTOT FENCY,SIGT, TAUT yTHA,T)

C *x¥xxk¥xTO CALCULATE THE ANGLE THETA#kk#xkdxxs

[MPLICIT REAL*=B{A~-H,(0-Z,8)
REAL*3 NU
COMMCN T
I=1
TCL=1.C-6
[TIR=1
DTHA=G.J3100
THARR=1,570707946+PHI-ALP
THAMAX =1 57070796 +PHI-ALP
THALL=PHI
THA=0,CDD
iL=0
10 THA=THA+CTHA
IFITHA .GE.THAMAX) GO TC 15
CALL THETA(PHI yALPyTHAZNUYTAUIL,PSI,B,SIGB,V,ySIGNsTAUN, ISCL
XySIGPZ,SIGPLFTOTFNCT,SIGYT, TAUT,LCIF,TAUSTR)
IFII.3Te2.AND.IL EQe2) GL TO 35
=[+1
[FIIL.EQsL1) GO TJ 25
IL=1
THALL=THA
GG TC 10
25 IL=2
DIFL=DIF
THAL=THA
DTHA=0,2102
GG 7C 13
35 IFIDIFL.GT40.D0.ANDCIF.LTL0.00) GO TO 55
DIFL=DIF
THALL=THAL
THAL=THA
DTHEA=2,21D2
GO TG 12
55 [FITAUSTR.LT Q4004 CRTAUNGLT LJ.00) GC TG 1D
THALL=THAL
THARR=THA
DIFR=DIF
60 THANW= [ { THARR-THALLI *(-DIFL} /{OIFR-DIFL} I +THALL
THA=THANW
CALL THETA(PHI JALPsTHA,NU,TAUL4PST8,SIGB,V, SIGN,TAUN,1S0L
XySIGP2,SIGPLFTOTFNCT,SIGT, TAUT,0IF ,TAUSTR)
IF(DIF.LT.2.02) GG TU 65
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IF(CIF.GT.0.02) GO TC 75
65 IF(LITHA=THALL)/{THA+THALL)) .LT.TCL) GC TO 35
THARR=THA
DIFR=0OIF
GO TC &0
T5 IF(({THARR-THA}/{THARR+TFHA)} +LT.TCL) GG TO 85
THALL=THA
CIFL=0IF
GO TC &0
895 CONTINMNUE
IFIDIF.LT.0.00) THA=Q.5D0*{THALL+THA)
IFIDIF 4GTdaD0) THA=Q.500%{THARR+THA)
CALL TFETA{PHI JALP,THANUL TAUT»PSI+B+51GBV:SIGNsTAUN,ISCL
X2SIGP2 4SIGPLFTOTFNCT,SIGT»TAUTCIF,,TAUSTR)
SINPMA=DSINIPHI=-ALP)
COSPMA=DCUS{PHI-ALP)
TANPMA=DTAN{PHI-ALP)
TANPMT=DTAN{THA=-PHI+ALP)
COSPMT=DCOS{THA-PHI+ALP)
SINPMT=DSIN{THA=-PHI+ALP)
A2CAL=SINPMA+TANPMTCCSPMA
A3CAI=COSPMA/COSPMT
A20A3=COSPMT=TANPMA+SINPMT
COSTH=0COAS{THAI
SINTR=CSIN(THA)
Al=T/DSINIPHI)
AZ2=A20A1 %A1
A3=A30A1=A1

#xxx sk TO SATISFY ELQULIBRIUM®xxxkkksxzx

OO O

SUMY=S [OMN*AL =A% TAUT*COSPMA=SIGT*A2SIANPMA-SIGEB*A3®COSTH

SUMX=TAUN¥AL+A2*TAUT*SINPMA-SIGT*A2*(OSPMA+S [GB* A3%S INTH

AMCMD=SIGOB*A3*(A3/2.C0-A1*COSTH/2.D0)-51GT*Aa2%{(A2/2.D0—
XAL*SINPMA/ 2,00 )+ TAUT®A2xA 1%L ISPMA/ 2,00

wkakkkdsrxTO CALCULATE THE CUTTING FLRCESk#*#ssnstsss

OO0

FNCT={(S5IGB8~-SIGT}*DSIN(ALP)+NU%(SIGT~-S15P2*OCOS(ALP))*
XAZOAL/DSIN(PHI
FTOT={(SIGT-SIG3)*DCCSIALPI+NU*{SIGT~-SIGP2)=DSINIALPY)*
XAZ20AL/C0SIN(PHI)
WRITE(A,40) SUMX,SUMY ,AMCHMD
43 FCRMATI('D7,015.8,5X,015.8,5X,015,8)
RETURN
15 ISCL=4
WRITE(E,16) [SOL
lé FOCRMAT('Q",'ISGL=",14)
o TC 140
126 RETURN
END
Cretsnsedtstse
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Crreskrsddbndx

OO0

SUB ROUTIME THETA{PHIJALPTHANU,TAUIL,PSI+BySIGBsVySIGN,

XTAUN,ISOL,SIGP2,SIGPL,FTCT,FNOT,SIGT yTAUTDIF, TAUSTR)

*% %70 CALCULATE THE DIFFERENCE BETWEEN TAUN AND TAUSTR*=

[MPLICIT REAL*BlA-Hy0-2Z,%)

REAL=*8 NU

PCROS=0.200

FAC=POROS*=*{2,00/3.D0C)

SINPMA=DSIN(PHI=-ALP)

COSPMA=DCGS({PHI-ALP)

TANPMA=DTAN(PHI-ALP)

TANPMT=DTAN{THA-PHI+ALP)

COSPMT=DCOS(THA=PHI+ALP}

SINPMT=DSIN{THA=-PHI[+ALP}

A20AL=SINPMA+TANPHTHCOSPMA

A30A1=COSPMA/CCSPMT

A20A3=COSPMT*TANPMA+SINPMT

COSTE=LCOCS(THA)

SINTH=CSIN(THA)

[SCL=1

COSBR=A30AL1~-COSTH
ANRSGT={SIGB*A30ALI*COSBRI-{NU*FAC*SIGP2*A2CA 1x*CUSPMA)
DRSGT=A20AL*[A20AL-SINPMA-NU*COSPMA)

SIGT=ANRSGT/DRSGT

TAUT=NU*[{SIGT-FAC*S5IGP2)
SIGN=A20A1*TAUT*COSPMA+A2CAL*SIGT*SINPMA+ABCAL*S [GB*COSTH
CALL MCHR{PHL,ALP,yTHA,TAUIL,PST,B,SICB,VySIGN,TAUN,SIGP2Z,
XS51GP1, ISCL)
TAUSTR=A20AL*SIGT*COSPMA~-AZOAL*TAUT*SINPMA-S [GE®AZUAL*SINTH
DIF=TAUSTR-TAUN

RETURN

ENEC

R-EL RIS LR L2 20
Cleddkkkodri g fk i

O OO

SUB ROUTINE MOHR{PHIALP,THA,TAUL 4PSI+B,SIGB,VSIGN,TAUN,
XSIGP2ySIGPL,1S0L )

#ksxre kT FIT THE MOHR'S ENVELOPE®ssixssxkxs

IMPLICIT REAL*BlA-HyO-L,8)
REAL*8 NU

TOL=5,D0-3

ETA=1.C3

CALL RATE(PHI,ALP,V,Fl,F2)
SIG=SIGB

SIGO=S1G
EXP=DEXP(~-PSI*®*51G0)
TALU=TAUI-B%EXP
TANG=B*EZXP%PS]
GAM=CATAN(TANG)



10

20

SING=DSIN{GAM)

CCSG=DCO5(GAM)

TAUN=TAU/COSG+F1

SGNSTR=SIGPL+SIGO+TAU=TANG

EPS=SGNSTR-SIGN

DTAU=PSI#*B=EXP

D2TAU=-PS1=*DTAU

DGAM=D2TAU*CUSG*COSG
C2CAM=-DGAM*PST+2.00% (-D2TAU ) *COSG*S ING*DGAM
DEPS=100+DTAU*TANG+TAU*CGAM/COSG**2
D2EPS=+D2TAU*TANG+2.DO0*0TAU*DGAM/COSC**2+TAU*D2GAM/COSG
X¥Fx2+2 ., DOFTAURSING*DGAMROGAM/ COSG**3

SIG=SIGO

ARG=DEPS*%2-2,00*0EPS*EPS

[F{ARG+GT+J3.D0) SIG=SIG+(-DEPS—DSQRT{ARG)}/D2EPS

CONT INUE

X=-PSI*S]IG
[FIXeGTT70.00) X=70,00
IF(XeLTe=72.D001 X==70.D0

EXP=DEXP{X)

TAU=TAUI-B=*EXP

TANG=B*EXP*PS]

GAM=CATAN(TANG)

SING=DSINIGAM)

COSG=0COS(GAM)

TAUN=TAU/COSG+FL
SGNSTR=SIGPL+SIG+TAU*TANG
EP5=SGNSTR-SIGHN

DTAU=P SI*A=EXP

D2TAU==-PSI*DTAU

DGAM=D2TAU*COSG*CCSG
DEPS=1.00+DTAU*TANGH+TAU*LGAM/CCSG*%2
SIG2=51G-ETA*EPS/DcP5
[FO(DABS(SIG2-SIG)I/TAUI.LT.TGL) GC TC 20
SIg=S5IG2

GC TC 12

CCNTINUE

RETURN

END

ChsEdtakseRpmbknnk
Chss sk ok dderd b kkxkk

OO0

Co dde %

SUB ROUTINE VCHIP{PHIsALP,V,VC)
*xssxx2xxT0 CALCULATE THE CHIP VELCCITY®#xsdskiksss

IMPLICIT REAL*8{A-F,C-2,%)
VO=Vv*DSIN{PHL)/DCUS(PHI-ALP)
RETURN
END
XK AEFEDFREX

64
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(C 3¢ skaie e Jeofe e e e s ok X
SUB ROUTINE VELDIS(PHI+ALP,V,VDIS)
i
C *x¥xx¥xd%kxT0 CALCULATE THE VELOCITY CISCONTINUITY *$*¥xkx%
C
IMPLICIT REAL#8(A-H,C-Z,%)
VDIS=Y*DCOSIALPI) /0COS(PHI-ALP)
RETURN

ENC
Co¥ ok ko ook ok sk ok

R RS EERELEELFE I TR
SUB ROUTINE RATE[PHI JALP,VsF1,F2)
c
C *xk2%xT0 CALCULATE THE VELOCITY EFFECTS*#kkdkdkx
C
IMPLICIT REAL*8(A-H,0-2,8%)
A=3.4D0
CALL VCRHIP{PAI,ALP,V,VC)
F2=A%V(
CALL VELDIS{PHI,ALP,V,VCIS)
Fl=A*V(CIS
RETURN
END



APPENDIX 11

Computer Program for the Compressible Solution
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\L/

MAIN PROGRAM

READ O, 0p, 01,020t a0, T Vil

SUBROUTINE VELDIS
CALCULATE v*

PRINT @,F,/t,Fyst

SUBROUTINE SHRANG

ITERATE ON ¢ TO OBTAIN
MINIMUM F.-t

SUBROUTINE VCHIP

JL CALCULATE V.
SUBROUTINE STRESS
ITERATE ON # TO MINIMISE €

CALCULATE O, ,T,,F /t,Fyst

SUBROUTINE RATE

SUBROUTINE THETA CALCULATE F V™, F atv,)
CALCULATE €= T *- T

SUBROUTINE MOHR

CALCULATE O,, T,

FIGURE 29 : FLOW CHART FOR THE COMPRESSIBLE SOLUTION.
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C B LR e R s L TR T T T e R e g T e e R P P
g * *
C R OCK CUTTING THECRY FCR PDC CUTTERS-LCOMPRESSIBLE THEQRY =
C * &
C R T2 LT T o L PR S P R R P R R I SR E E  EE

IMPLICIT REAL*8{A-H,0-Z,%)

REAL*3 MU

COMMCN T

P1=3.14159265358979
PIC=PI/180.00
READ ST
READy By TAUTSPSI,VyKST NU,SIGB,ALPD
ALP=ALPD%*PIC
COSALP=DCOS({ALP)
WRITE(&+50) V,ALPD,T

50 FORMAT('D','V=*,015.8/'Q","ALP=",D015.8/"'2%,'T=",015.8}
WRITE {6,631 NU,TAUIL,B,PSI

60 FORMATI('0' ,"NU=",D15.8/'"0", " TAUI=1",015.8/'0*,'8="',D15.8/
X'QC',PSI=4,D15.8)
REAC,SIGPL ,SIGP2
CALL SHRANGULALP,NU,TAUL,PSL,BySTGBVPHI,SIGN, TAUN,FNOT

Xy ISOLySIGPLySIGT s TAUT»1,J,VDIS, VC,GAM,FL,FTOT,SIGRP2)

WRITE(E,85) VDIS,VC

85 FORMAT ('O, ' VDIS=",F10.4/'0" ,'VWC=1,F1).4)
STCP
EMND

CHxdxkpfxfk Ry ryx
Cemede o ek ok e

SUBROUTINE SHRANGIALP NU,TAUL PSI B, SIGB sV PHI SIGN,TAU
AN FNOT s ISOLSSIGPLSIGT» TAUT L4 J s VOIS WWVC+GAM,FL,FTCT»SIGCP2)

*¥2%2%T() CALCULATE THE SHEAR ANGLE PHI*%%x%k¥x¥x

OO

IMPLICIT REAL*3{A~H,0~2,%)
REAL#*83 NU
I[=1
TOL=5.0-3
CPRI=D 31D
IDIR=1
FR=1.08
PHILL=D.DD
PHIRR=1,57079632+ALP
PHI=3.0D0
IL=0
20 PHI=PHI+LPHI
IFIIOIRsEWeLeANDSPHIWGEPHIRR) PHI=)SO0*{PHIL+PHIRR)
IF{IDIREQ =1+ ANDPHIJLELPHILL) PHI=Ca500%{PHIR+PHILLI
CALL STRESSIPHIL,ALP,NU,TAUI PSTBsSIGByV»SIGNy TAUN, ISOL,
XSIGPZpSIGPlyFTDTyFNDT,SIGTfTAUTyTHA!{tVQISrVC|G&MyFlj
IF(ISOL.EQ.4} GO T 100
IF{I.CTe2.AND.ILLEQ.2) GC TO 30
[=1+1
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IF(IL.EQ.1) GO TQ 25
L=l
PHILL=PHI
GO TO 20
25 1L=2
FL=FTOT
PHIL=PHI
DPHI=0.1D0
GO TC 20
30 IF(IDIRLEQ.1.AND.FTOT.GT.FL} GO TC 40
IF( IDIR.EQ.=1.AND.FTOT.GT.FR) GG TO 40
IF{IDIR.EQ.~1) GO TO 35
PHILL=PHIL
FL=FTOT
PHIL=PHI
G0 TC 20
35 CCNTIHUE
PHIRR=PHIR
FR=FTCT
PHIR=PHI
GG TO 20
49 CCNTINUE
IF(ICIR.EQeloAND W (PHI-PHILL} /{PHI+PHILL) LLT.TOL) GG TC 60
IF(ICIR.EQ.~1.AND.(PHIRR=PHI}/{ PHIRR+PHI ). LT.TOL) GO TO &9
[F{IDIRLEQ.=1) 5C TQ 50
PHIRR=PHI
FR=FTOT
PHIR=PHI
ICIR==[DIR
OPHI=-0.200% (PHIRR=PHILL)
GU TG 2)
50 CCNT INUE
PHILL=PHI
FL=FTOT
PHIL=PHI
IDIR==IDIR
CPFI=0.2D0%(PHIRR-PHILL)
GO TG 29
63 CONTINUE
IF(ICIR.EQoL) PHI=0.500% (PHILL +PHI)
IF(IDIR.EQ.=1) PHI=0.,500% (PHIRR+PHI)
CALL STRESSIPHI,ALP MU, TAUL,PST+8+SIGB,YV,SIGN, TAUN, I SCL,
XS1GP2, SIGPL yFTCT +FNOT ,SIGT s TAUT s THA, I, VDIS,vC, GAM,FL)
WRITE(6,200) PHI,FTCT,FNGT,SIGN,SIGT ,TAUN,TAUT,SIGB,SIGPL,
XSIGP2,THA
200 FURMAT (P DV iPHI = s FL2. 7/ 0 2 'FTCT =1, Fl2.2/'3 s *FNOT=1,F10.2
X/, SIGN=1,D15,8/'0¢,'SIGT=",015,8/' 21, ' TAUN=',D15.8/
X104, 'TAUT=*,015,8/'0",'SIGB=",C15.8/ %0, 'SIGPL=",015.8/
XP0', 'SIGP2=1,015.8/'0, ' TRETA= ,F12,7)
RETURN
120 DPHI=2.100
60 TO 20
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ENE

C % %k dexe kar dek ks g kok sk
CEEr ik gyl

OO0

SUB ROUTINE STRESSIPHIALP,NU,TAUI,PSI,B,SIGB,V,SIGN,TAUN
Xy ISCL,SIGP2»SIGPLFTOT ,FACT»SIGTTAUT, THA, I, VDI5,VC,GAM,Fl1)

*x3%xx2%TO CALCULATE THE ANGLE THETA®%(®=xx%%%%

IMPLICIT REAL*B{A-H,0-2,5%)
COMMCN T
REAL*3 NU
=1
TCL=5.C-5
I[ITIR=1
CTFA=0 .J1D0
THARR=1.57070796+PHI-ALP
THAMAX=1.5T70T0T796+PHI-ALP
THALL=PHI
THA=0.00
IL=2
15 THA=THA+DTHA
[FI{THALGE.THAMAX) GO TO 15
CALL THETA(PHI +ALP)THAYNLyTAULPST »B4,SIGB,V,SIGN,TAUN, [S0OL
XeSIGPY ,SIGP2 ,FTUT yFHOT SIGT, TAUTWCIF,TAUSTR, VDISyVC+GAM,F1)
IF(IeGTe2AND.ILSEQa2) GC TO 35
[=1+1
IFLIL.EQds1) GC TC 25
IL=1
THALL=THA
GO TC 12
25 [L=2
CIFL=DIF
THAL=THA
ETEA=0Q 3100
GC TC 19
35 IF(DIFL.GT.0.,D0.AND.OIF.LT.2.00) GO 70 55
DIFL=DIF
THALL=THAL
THAL=TFA
DTHA=0,.21D0
GO TC 123
55 [FITAUSTR.LT ,0.DN.0RTAUNLLT.O.L0) GO TC 19
THALL=THAL
THARR=THA
DIFR=DIF
670 THAMW= ({ THARR=THALL)*{-DIFL) /{DIFR=-DIFL) )+THALL
THA=THANW
CALL THETA{PHI yALP s THASKNU s TAUL3PST+BSIOByV, SIGHN, TAUN, ISOL
XeSIGPLySIGP2yFTOTFNOT,SIGT, TAUT ,CIFyTAUSTRsVDISsVCL+GAM,F1)
[F{DIF.LT.2.D2) GL TC 65
IF{DIF.;GT.0.D0) GO TG 75
65 IF(({THA-THALL)/{THA+THALL)) .LT.TOL) GO TQ &85
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THARR=THA
DIFR=DIF
GO TO €0
75 IF{{(THARR-THA)/{THARR+TFA) )} .LT.TCL} GO 7O 85
THALL=THA
CIFL=DIF
GC TC &)
85 CONTINUE
IF(DIFLLT.N.D0) THA=0.5D0*(THALL+THA)
IF{DIF .GT.0.D0) THA=0.5D0*{THARR+THA)
CALL THETA(PHI sALPyTHA NUyTAUIL,PSI+B,51GB,V,SIGN,TAUN,IS50L
Xt SIGPLSIGP2yFTOT+ENCT+SIGT+TAUT 2 DIF+TAUSTR,VDIS VL yGAM, FL)
SINPMA=DSIN{PHI-ALP)
CCSPMA=DCOS(PHI-ALP)
TANPMA=DTAN{PHI-ALP)
TANPMT =0T AN{THA-PHI+ALP)
COSPMT=DLOS(THA-PHI+ALP)
SINPMT=DSINITHA-PHI+ALP)
AZOAL=SINPMA+TANPMT®CCSPMA
A30A1=COSPMA/CQOSPMT
AZOQA2=COSPMT*TANPMA+S INPMT
COSTH=DCOS(THA)
SINTH=DSIM{THA]
Al=T/DSIN(PHI)
A2=A2CA1*A1
A3=A30A1 %A1

*xxe3%xTO) SATISFY EQULIBRIUME¥Exasxksss

OO

SUMY=SIGN*AL-A2%TAUT*COSPMA-SIGT#A2*SINPMA=-S [GAB*AZI*COSTH

SUMX=TAUNTAL+AZ2®TAUT *S INPMA-SIGT*AZXCOSPMA+S IGB*®A3 RS INTH

AMCMD=S1GB*A3% (A3/2.00-A1%COSTH/2.00 -5 IGT*A2%(A2/2.00~-Al%
XSINPMA/Z2 DD+ TAUT#AZ2%=AL#COSPMA/2.09

*xakdkxxkxTO CALCULATE THE CUTTING FCRCES*Fx¥k¥xFdnkx

OO

FNCT={1SIGB=SIGT ) *LS IN{ALPY+NU*(SIGT-SIGP2)*DCOSTALP ) *
XKAZ0AL1/DSIN(PHI)
FIOT={(SIGT-SIGBI*DCCS{ALP I+NU*(SIGT-SIGP2)%DSIN{ALP)}=
XA2CAL1/0SIN(PHI)
WRITE{G6,40) SUMX,SUMY,AMCND
40 FCRMAT ("0 ,D15.8,5%X,015.895%X,4D15.8)
RETURN
18 ISCLi=%
WRITELE, 160 [SCL
16 FORMAT {10, ISOL=1,F7,2)
GG TG 199
100 RETURN
END
A ok g o koK ko
C %= %k Jook ook vk ok
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SUB ROUTINE THETA(PHI ALP,THANU,TAUIL,PST B, SIGR,V+SIGN,
XTAUNsISOL,SIGPL1ySIGP2,FTCT,FNUT+SIGT s TAUT,,DIFTALSTRW VDI Sy
XVC ¢GAM,F 1}

#%%%xT0 CALCULATE THE CIFFERENCE BETWEEN TAUN AND TAJSTR%*x

OO0

IMPLICIT REAL*ZB(A-HyO=Z, ¢)

REAL*8 NU

PORUS=0.200

FAC=PORQS**(2,00/3.D0)

SINPMA=OSINIPHI-ALP)

COSPMA=0COS(PHI-ALP}

TANPMA=DTAN(PHI-ALP)

TANPMT=0DTAN(THA=-PHI+ALP]

COSPMT=DCGS{THA=PHI+ALP)

SINPMT=DSIN(THA-PHI+ALP )

A20A1=SINPMA+TANPMT®COSPMA

A3DAL=COSPMA/COSPMT

AZ2DA3=COSPMT *TANPMA+SINPMT

COSTH=DCOS{THA)

SINTHF=DSIN{THA)

[SCL=1

COSBR=A30A1-COSTH
ANRSGT={SIGR®AR0ALI*COSBR)-{NURFACESIGP 2xA 20A 1=C{}SPMA)
DRSGT= AZbAl*{AZOAl SINPMA-NUX(LOSPMA)

SIGT=ANRSGT/DR 3

TALT=NU*(SIGT- FAC*SIGP2J
SIGMN=A20AL*TAUT*L0OSPMA+AZCAL=*=SIGT*SINPMA+AZOAL*S IGR*COSTH
CALL MCHRIPHIZALP, THA, TAUIL,PSIsB+SIGB,V,SIGN,TAUMN, SIGPZ,
XSIGP1,ISOLVDISV¥CsFLGAM)
TAUSTR=AZ20A1%SIoT*COSPMA—-A2DAL*TAUT*SINPMA-SIGE=A30AL=SINTH
DIF=TALSTR-TAUN

RETURM

END

O dok ek wk gk n
C% ok ok e kodok dok Kk

SUB ROUT INE MOHRIPHIZALP,THAsTAULPS1+8,SIGB ¥ ,SIGN,TAUN,
XSIGP2:;SIGPL,ISCL,VDISsVC,,F1,GAM)

*xxxexdxxT] CALCULATE SIGN AND TAUNZ®&kxk¥kExx

e Nale

IMPLICIT REAL*8[A-Hy (-1, ¢)
REAL*8 NU
X=—=PSI*(SIGN-SIGP1)
[IFIX.6T.72.001X=70.09
[IF{XJLTe=73.D00) X==T72.D9
EXP=CEXP{X}

TANGAM=B2PSI=EXP
GAM=CATAN(TANGAM !}

CALL VELDIS{PHI ALP,GAM,V,VDIS)
CALL VCHIP{PHI ,ALP,GAM,V,VC}
CALL RATEI(VDIS,F1l)



YOy

73
TAUN=TAU [+F1-B*EXP
RE TURN
END
SUB ROUT INE VELDIS(PHI,ALPyGAM,V,VDIS)

wxgpxxdxeTO CALCULATE THE VELOCITY DISCONTINUITY®x&k#sx%

IMPLICIT REAL*8{A-H:+0-243%)
VOIS=DCOSIALP)I*=V/DCOUSIPHI-ALP+GAM)
RETURN

END

RE TITIETEIT)
Co ok dokw Rk %

c
c
=

SUB ROUTINE VCHIP(PHI,ALP,GAM,V,VC)
wxex#x*T0 CALCULATE THE CHIP VELCC ITY®us sk sk sk

IMPLICIT REAL*B{A=hyC—-Ly %)
VC=DSINMNPHI+GAM) *Y/DCCS(PHI~ALP+GAM)
RETURN

chND

C % % ook %o ok ke ke
CHxkdk s angxyk

C
C
C

SUB ROUTINE RATE(VDIS,Fl)
xx*xx*xx2T(] CALCULATE THE VELOCITY EFFECTS®=®¥&3&*xx

[MPLICIT REAL*¥B({A-H,0-Z,%)
A=1.4D0

FLl=A®VDIS

RETURN

END



APPENDIX III

Numerical Results
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TABLE 41 THEORETICAL RESULTS FOR THE TWO THEORIES.

RAKE ANGLE=-25° FRICTION COEFFICIENT=0.35
BOREHOLE PRESSURE=10000 psi

VELOCITY OF CUTTER=140 fpm

COMPRESSIBLE INCOMPRESSIBLE
TANGENTIAL FORCE PER
UNIT AREA F_/t (psi) 143192 142014
NORMAL FORCE PER
UNIT AREA F./t {(psi) 153289 152359
NORMAL STRESS ON THE
SHEAR PLANE o, (psi) 74587 72857
SHEAR STRESS ON THE
SHEAR PLANE <, (psi) 28004 27642
NORMAL STRESS ON THE
RAKE FACE o, {psi) 76007 74475
SHEAR STRESS ON THE
RAKE FACE Ty (psi) 26603 26066
SHEAR ANGLE ¢ (degrees) 19.60 19.25
ANGLE & (degrees) 66.56 66.26
VELOCITY i
DISCONTINUITY V (19@ 2347.23 2125.62
VELOCITY OF
THE CHIP Ve (1pm? 1076.38 773.23




TABLE 5: THEORETICAL RESULTS FOR THE TWO THEORIES.

RAKE ANGLE=-20"

BOREHOLE PRESSURE=10000 psi

FRICTION COEFFICIENT=0.39

VELOCITY OF THWE CUTTER=140 fpm

78

COMPRESSIBLE INCOMPRESSIBLE

TANGENTIAL FORCE PER
UNIT AREA Fy/t (psi) 132228 130842
NORMAL FORCE PER
UNIT AREA F,/t (psi) 129923 129009
NORMAL STRESS ON THE
SHEAR PLANE o, (psi) 68965 66831
SHEAR STRESS ON THE
SHEAR PLANE T (psi) 27450 26966
NORMAL STRESS ON THE
RAKE FACE a4 (psi) 69410 67565
SHEAR STRESS ON THE
RAKE FACE . (psi) 27070 26349
SHEAR ANGLE ¢4 (degrees) 20.54 20.02
ANGLE ® (degrees) 65.04 64.62
VELOCITY ,
DISCONTINUITY V* (ipm-) 2288.21 2061.42
VELOCITY OF '

G pm 1081.82 750.99

THE CHIP V.




TABLE 5: THEURETICAL RESULTS FOR THE TWO THEORIES.

RAKE ANGLE=-15°

FRICTION COEFFICIENT=0.42
BOREHOLE PRESSURE=10000 psi

VELOCITY OF CUTTER=140 fpm

79

COMPRESSIBLE INCOMPRESSIBLE
TANGENTIAL FORCE PER
UNIT AREA F¢/t (psi) 120278 118560
NORMAL FORCE PER
UNIT AREA F,/t (psi) 106538 105573
NORMAL STRESS ON THE
SHEAR PLANE o9, (psi) 62591 60150
SHEAR STRESS ON THE
SHEAR PLANE T, (psi) 26714 26062
NORMAL STRESS ON THE
RAKE FACE o4 (psi) 62958 60850
SHEAR STRESS ON THE
RAKE FACE T4 (psi) 26442 25556
SHEAR ANGLE ¢ (degrees) 21.54 20.86
ANGLE 8 (degrees) 63.07 62.54
VELOCITY "
DISCONTINUITY V (ipm) 2239.70 2002.20
VELOCITY OF
THE CHIP Ve {iEm) 1108.90 737.95




TABLE 7 i THEORETICAL RESULTS FCR THE TWO THEORIES

RAKE ANGLE=-25° FRICTION COEFFICIENT=0.38
VELOCITY OF THE CUTTER=350 fpm

BOREHOLE PRESSURE=10000 psi

COMPRESSIBLE INCOMPRESSIBLE
TANGENTIAL FORCE PER
UNIT AREA Fi/t (psi) 158838 157510
NORMAL FORCE PER
UNIT AREA Fnh/t {psi) 178913 177747
NORMAL STRESS ON THE _
SHEAR PLANE oy, {psi) 83196 81534
SHEAR STRESS ON THE
SHEAR PLANE Ty, (psi) 30005 29653
NORMAL STRESS ON THE
RAKE FACE o4 (psi) 82009 80546
SHEAR STRESS ON THE
RAKE FACE T4+ (psi) 31163 30606
SHEAR ANGLE 4  (degrees) 19.31 19.03
ANGLE 3 (degrees) 68.04 67.49
VELOCITY . )
DISCONTINUTITY V (3 pa) 5705.45 5294.30
VELOCITY OF
THE CHIP Ve Gom ) 2475.03 1904.70




TABLE 8 : THEORETICAL RESULTS FQR THE TWO THEORIES
RAKE ANGLE=-20° FRICTION COEFFICIENT=0.41
BOREHOLE PRESSURE=10000 psi VELOCITY OF THE CUTTER=350 fpm

COMPRESSIBLE INCOMPRESSIBLE
TANGENTIAL FORCE PER
UNIT AREA Fy/t (psi] 144164 142598
NORMAL FORCE PER
UNIT AREA Fp/t (psi] 145952 144817
NORMAL STRESS ON THE
SHEAR PLANE op, (psi 75466 73293
SHEAR STRESS ON THE
SHEAR PLANE T, (psi] 29384 28895
NORMAL STRESS ON THE
RAKE FACE oy (psi] 74233 72369
SHEAR STRESS ON THE
RAKE FACE 14 (psi] 30435 29671
SHEAR ANGLE ¢ ({degrees) 20.47 20.02
ANGLE o (degrees) £5.83 65.46
VELOCITY ,
DISCONTINUITY V* (ipm) 5610. 68 5153.54
VELOCITY GF
THE CHIP Ve (Gipm) 2551 .40 1877.50




TABLE 9: THEORETICAL RESULTS FOR THE TWO THEORIES.

RAKE ANGLE=-15

BOREHOLE PRESSURE=10000 psi

FRICTION COEFFICIENT=0.44

VELGCITY OF THE CUTTER=350 fpm

82

COMPRESSIBLE INCOMPRESSIBLE
TANGENTIAL FORCE PER
UNIT AREA F¢/t (psi) 131152 129322
NORMAL FORCE PER
UNIT AREA Fp/t (psi) 119451 118318
NORMAL STRESS ON THE
SHEAR PLANE oy, (psi) 68602 66189
SHEAR STRESS ON THE
SHEAR PLANE 1y (psi) 28693 28071
NORMAL STRESS ON THE
RAKE FACE o4 (psi) 67344 65287
SHEAR STRESS ON THE
RAKE FACE 1+ (psi) 29631 28726
SHEAR ANGLE ¢ (degrees) 21.58 20.99
ANGLE 8 (degrees) 63.90 63.45
VELOCITY "
DISCONTINUITY V ( ipm) 5500.80 5014.51
VELOCITY OF
THE CHIP Ve (ipm3 2627.80 1860.32
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APPENDIX IV

Mohr's Envelopes
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MOHR'S ENVELOPE FOR CHEATHAM'S DATA
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ABSTRACT

A rock cutting theory for PDC cutters is developed as a first step in
developing a drilling theory for oil well drill bits. The cutting problem

is solved by two different plasticity theories and the solutions are compared.
The solutions are also compared to experimental work. The cutting forces
calculated from the theory agree fairly well with the experimental results.
The velocity effect in the theory partially explains the differences in the

experimental results obtained previously by two different investigators.





