
 

 

 

ESSAYS ON THE ADOPTION AND INTENSIFICATION OF CONSERVATION 

AGRICULTURAL PRACTICES UNDER RISK 

 

 

by 

 

 

DOMINGA ELIZABETH CANALES MEDINA 

 

 

 

 
B.S., Pan-American Agricultural School, El Zamorano, 2006 

M.S., Kansas State University, 2010 

 

 

AN ABSTRACT OF A DISSERTATION 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Department of Agricultural Economics 

College of Agriculture 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2016 

  



 

 

Abstract 

In recent years, great attention has been placed on conservation systems for agricultural 

production. Conservation practices offer economic and environmental benefits, yet conventional 

practices remain the prevailing system in some regions. As conservation efforts are launched by 

different local and federal agencies, understanding farmers’ motivations when adopting 

conservation practices is important to ensure the continuation of adoption through the 

development of programs that are tailored to meet farmers’ preferences and constraints. 

   The purpose of the first essay was to identify the factors affecting farmers’ choice of 

tillage practice at the crop level. Farmer’s choice of No-till, Strip-till and Conventional tillage 

was modeled for dryland corn, wheat and soybean production in Kansas.  The results show that 

tillage decisions are crop-specific and that factors such as risk aversion, baling and grazing of 

crop residue, crop acreage, and farmers’ approach to adopting new technologies are significant 

factors affecting farmers’ decisions. 

The second essay focused on the adoption of continuous no-till, conservation crop 

rotation, cover crops, and variable rate application of inputs and the effect that incentive 

payments, payment mechanism, and off-farm environmental benefits from conservation have on 

the decision to adopt. This essay also examined the risk associated with the variability of net 

returns and its effect on farmers’ willingness to adopt using a non-linear extended expected 

utility framework, allowing for the estimation of a utility parameter for net returns, farmer’s 

subjective judgment of probabilities, and farmers’ risk attitudes. Farmers were found to exhibit 

risk aversion, with an estimated risk premium of approximately 3% of net returns. Results also 

suggested a preference for federally-run programs and for programs with higher off-farm 

environmental benefits.  



 

 

The third essay examined the timing of adoption of continuous no-till, cover crops, and 

variable rate application of inputs. This study found that risk aversion delays the timing of 

adoption of cover crops and variable rate application of inputs. However, the timing of adoption 

of continuous no-till was not affected by risk aversion. Findings also indicated that farmers who 

consider themselves innovators adopt at a faster rate than their counterparts. 
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The third essay examined the timing of adoption of continuous no-till, cover crops, and 

variable rate application of inputs. This study found that risk aversion delays the timing of 

adoption of cover crops and variable rate application of inputs. However, the timing of adoption 
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Chapter 1 - Introduction 

In the last few decades, much attention has been given to environmental degradation and to the 

ways in which sustainable production can be achieved in agricultural systems. The ecosystem 

services produced when conservation practices are in place have a value in society, and by 

creating a market for these services, farmers could receive an incentive to adopt these practices 

(Ribaudo et al., 2010; Whitten and Coggan, 2013). Adoption of conservation practices has 

increased over the past several years, due in part to the increasing public interest in improving 

the environment and the voluntary programs that encourage the adoption of conservation 

practices through monetary incentives and cost-share. These programs primarily focus on water 

quality and conservation, conservation of soil and land, wildlife habitat, air quality and energy 

conservation (Claassen et al., 2008).  

There is a myriad of available conservation practices that can be adopted in crop 

production. No-till is one of the most widely adopted practices in the U.S. however, in many 

cases farmers rotate their tillage practice and continuous no-till might not be as widely adopted 

(Grandy et al., 2006) . It has been suggested that some no-till farmers may till the ground, 

specifically in response to economic and seasonal drivers (Llewellyn et al., 2012). While the 

adoption of no-till provides a variety of benefits, when a no-till-field is tilled some of the 

benefits, particularly carbon sequestration, may be lost when these are tilled (Grandy et al., 

2006). Efforts to intensify conservation may require the adoption of continuous no-till, which is 

using no-till for all the crops planted in a particular field. The choice of no-till practice may 

change based on the crop being planted and it is important to identify how exogenous factors 

affect farmers’ choice of tillage at the crop level. Continuous no-till systems may not always 
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work alone without other practices. In order to control for some pest issues that may arise in 

continuous no-till systems, farmers may need to intensify conservation on their farm to include 

other practices such as conservation crop rotations or cover crops. Conservation practices may in 

many cases be interrelated and provide synergetic benefits. Thus, it is important to encourage 

farmers not only to adopt a particular practice, but to intensify conservation by adopting groups 

of practices that are complementary. 

A large and growing body of literature has investigated factors affecting the adoption of 

conservation practices. Numerous modeling approaches have been used to study the adoption of 

conservation practices and new agricultural technologies and the factors that affect the decision 

to adopt. Several of these studies have relied on approaches to model the adoption at some point 

in time and in some cases the level of adoption. These studies compare the differences in the 

factors between the group of adopters and those of non-adopters at a particular point in time. In 

many cases, these studies do not consider the process of adoption over time and how some 

factors not only affect the decision to adopt but also the timing of adoption. By the same token, 

some factors do not directly restrict the adoption of conservation practices, but they delay the 

adoption process (Fuglie and Kascak, 2001). 

The diffusion of technologies is a gradual process; it takes time for the information about 

these new practices to be diffused (Jaffe et al., 2002). Given that farmers adopt a conservation 

practice based on their knowledge or expectations about the benefits of the practice, the timing of 

information collection (learning) and formation of expectations is important (Au and Kauffman, 

2003) and may not be captured in traditional binary adoption models (Burton et al., 2003). In 

addition, different sources of heterogeneity across farmers make them more likely to adopt at 

different points in time (Fuglie and Kascak, 2001). Thus, the process and timing of the adoption 
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of agricultural technologies is important (Hoppe, 2002). Duration models are an important tool 

that can be used to examine the adoption and the speed of adoption (or disadoption) of 

agricultural technologies. 

Another powerful tool in adoption research is the use of stated choice methods that allow 

for the examination of attributes that are not present in the market, or if they are present, do not 

have sufficient variation to estimate their parameters (Louviere et al., 2000). For example, the 

use of stated choice methods has allowed researchers to study the effect of varying incentive 

payments/cost-share levels on the adoption, and extent of adoption, of conservation programs. 

The use of stated choice methods have also furthered the study of other attributes in conservation 

programs that are of interest for policy makers.  Some of these attributes are contract length, risk 

attributes, payment mechanism, availability of technical assistance or insurance through a 

conservation program, restrictions on land use, and contract default (Cooper, 2003; Cooper and 

Signorello, 2008; Espinosa‐Goded et al., 2010; Ma et al., 2012; Ruto and Garrod, 2009). 

While different model approaches have been used to analyze factors affecting adoption, 

some important factors are consistently analyzed. One of those factors is risk. Risk is an 

important component of agricultural production, and it plays an important role in farmers’ 

production decisions, particularly decisions concerning the adoption of conservation practices. 

The introduction and intensification of conservation on the farm introduces potential risks into 

the farm operation and can result in shifts in net returns (crop yields and/or costs). When 

outcomes are uncertain, farmers may be more hesitant to introduce new practices, and additional 

compensation may be necessary to induce adoption. When studying the adoption of new 

agricultural technologies, the perception of the probabilities of the distribution of net returns, the 

variance of net returns, and the strength and direction of risk attitudes are factors affecting that 
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decision (Marra et al., 2003). The effect of risk in adoption models has been commonly studied 

under a deterministic framework and distinctive elements of risk have been partially or 

separately addressed in several studies, however they have not been extensively studied in stated 

choice applications.  

As conservation policies are implemented by different local and federal agencies, 

understanding farmers’ motivations and their thought process when adopting conservation 

practices is important. In many cases the lack of knowledge about some conservation practices 

can be a deterrent to adoption (Lamb et al., 2008). Previous findings in the literature suggest that 

withdrawals from conservation programs take place within the first years of the contract, because 

expectations regarding private benefits may not be met while implementing those practices 

(Cattaneo, 2003). Studying farmers’ adoption processes provides governments and extension 

agencies with important insights into the adoption of important conservation technologies and 

the key aspects that need to be addressed to increase the level of conservation efforts by 

producers. Understanding these factors is important to ensure the continuation of adoption 

through the development of programs that are tailored to meet farmers’ preferences and 

constraints. 

 

1.1 Research Objectives 

The main purpose of this this dissertation is to study the factors affecting farmers’ decisions to 

adopt conservation practices. Specifically, the objectives of this research are: 

i) To identify factors such as farm management characteristics, farmers’ attitudes, farmers’ 

risk aversion, and socio-demographic factors that impact farmers’ choice of no-till (NT), 
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Strip-till (ST), and Conventional tillage (CT) for dryland corn, wheat and soybean 

production in Kansas.  

ii) To examine farmers’ willingness to adopt and intensify in-field conservation practices 

under risk using a stated preference approach.; and  

iii) To examine factors affecting the adoption and the time of adoption of conservation 

practices in Kansas and to gain insights regarding the time-path diffusion of these 

conservation practices since their introduction.  

 

The following section presents an overview of the three essays that comprise this dissertation. 

The overviews present a summary of the methods used to meet the research objectives outlined 

above. In addition, the overview of the essays presents some of the results that emerged from 

each research objective. 

 

1.1.1 First Essay: Modeling the choice of tillage used for dryland corn, wheat and 

soybean production by farmers in Kansas 

In recent years, great attention has been placed on conservation systems for agricultural 

production, especially conservation tillage. Conservation tillage offers economic and soil quality 

benefits, yet conventional tillage remains the prevailing system in some regions.  The purpose of 

this essay was to identify the factors affecting farmers’ choice of tillage practice at the crop level 

using data collected from a survey conducted face to face. Farmer’s choice of No-till (NT), Strip-

till (ST) and Conventional tillage (CT) was modeled for dryland corn, wheat and soybean 

production in Kansas using a multinomial logit model.  Studies on tillage adoption are 

commonly conducted at the farm level, or on a particular crop.  This study contributes to the 
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body of literature by modeling the adoption of different tillage practices at the crop level. An 

empirical model that accounts for farm management characteristics, farmers’ attitudes, farmers’ 

risk aversion, and socio-demographic factors was used.  In addition, the effect of crop rotation 

decisions on tillage practice adoption was studied. Including crop rotation decisions provided a 

mechanism to capture the interconnectedness of production decisions.  

An important finding to emerge from this study is farmers’ response to risk, where risk 

averse farmers were found to be more likely to use no-till practices. This may indicate that no-till 

practices are believed by farm managers in this study as a risk reducing practice. This study also 

provides evidence that some no-till adopters change their tillage as crop choice changes. In 

addition, factors such as baling and grazing of crop residue, crop acreage, and farmers’ 

promptness to adopting new technologies were also found to be significant factors affecting 

farmers’ decisions. A better understanding of the factors affecting the adoption of tillage 

practices at the crop level may facilitate the development of policies and educational programs to 

encourage the adoption of conservation tillage methods. 

 

1.1.2 Second Essay: Adoption of in-field conservation practices under risk 

The second essay focuses on the adoption of conservation on the farm and the factors that may 

affect farmer’s decision to adopt conservation using a stated choice experiment. For the stated 

choice experiment, farmers evaluated twelve different conservation contracts. This study 

expands on previous research by examining conservation program attributes that have not been 

widely evaluated in the conservation adoption literature to-date, such as incentive payments, 

incentive payment mechanisms and off-farm environmental benefits from conservation. This 

essay also examined the risk associated with the variability of net returns and its effect on 
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farmers’ willingness to adopt conservation practices using a non-linear extended expected utility 

model that combines aspects of expected utility and prospect theory (Hensher et al., 2011). This 

approach results in a non-linear utility specification within the random utility model and it is 

more flexible because it allows for the estimation of utility parameters for net returns, farmer’s 

subjective judgment of probabilities, and farmers’ risk attitudes.  

Farmers were found to exhibit risk aversion with respect to changes in net returns from 

the adoption of new conservation practices. This study also found significant risk premiums for 

the enrollment in the conservation contract under the different probability weighting 

specifications. Findings suggest farmers require approximately 3% of their current net returns as 

a payment for bearing the risk of potential variability in net returns under a conservation 

contract. The results also suggest that farmers make limited use of subjective probabilities when 

evaluating risk in net returns under the conservation contract. Results also provided evidence 

suggesting a lower likelihood of adoption, for the same level of incentive payment, if the 

mechanism through which the incentive payment was offered was a carbon credit program (as 

opposed to a federally-run program). Findings in this study provide support for the importance of 

considering uncertainty in outcomes when designing incentive programs to encourage the 

adoption of in field conservation systems. 

 

1.1.3 Third Essay: Modeling the factors affecting farmers’ timing of adoption of in-

field conservation cropping practices 

The diffusion of new technologies is a gradual process; it takes time for the information about 

these new practices to be diffused (Jaffe et al., 2002). While the first essay examines adoption at 

a point in time, it is also possible to examine adoption over time using a dynamic model. Using 
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duration models allows for the temporal aspect to adoption and the heterogeneity in the timing of 

adoption to be accounted for (Abdulai and Huffman, 2005). The third essay examines the timing 

of adoption of three conservation practices: continuous no-till, cover crops, and VRA of inputs. 

The timing of adoption is measured as the time it takes for farmers to adopt a practice since they 

first started managing the farm or since the introduction of the practice if the practice became 

available after the farmer starting farming. This study seeks to uncover the effect of farmers’ 

demographics (age, education), farmer characteristics and farm management characteristics (risk 

aversion, off-farm work, percentage of income from crop production) and farmers’ attitudes 

(stewardship, innovation), and the adoption of previous conservation practices on the duration of 

farmers decision to adopt a particular practice. In addition, this study seeks to investigate how 

conservation on the farm affects the speed of adoption of other conservation practices. 

Findings in this study suggest that the adoption of certain practices delay the adoption of 

other conservation practices. For example, the adoption of conservation crop rotation and VRA 

of inputs were found to delay the adoption of continuous no-till, and the adoption cover crops 

was also found to delay the adoption of VRA of inputs. In addition, the findings in this study 

suggest that risk aversion is not a significant factor delaying the speed of adoption of continuous 

no-till. Similar to the first paper, it is possible that farmers do not see no-till as a risky practice, 

thus risk aversion may not affect its adoption or speed of adoption. However, risk aversion was 

found to delay the adoption of cover crops and VRA of inputs. In addition, the results in this 

study suggest that farmers who considered themselves innovators adopt the three conservation 

practices at a faster rate than their counterparts. This study provides insight into the factors 

affecting the speed of adoption of some in field conservation practices. Understanding what 

factors delay adoption can allow conservation agencies and extension efforts to tackle such 
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factors in order to accelerate adoption. 
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Chapter 2 - Modeling the choice of tillage used for dryland corn, 

wheat and soybean production by farmers in Kansas 

 

2.1 Introduction 

In recent years, great attention has been placed on conservation systems for agricultural 

production.  The Soil Science Society of America (SSSA, 2012) defines conservation tillage as a 

sequence of tillage operations that leaves at least 30% of crop residue on the soil surface and 

whose objective is to diminish the loss of soil and water.  Similarly, reduced tillage (RT) 

practices consist in reducing the number of tillage passes, resulting in a soil coverage ranging 

from 15 to 30 percent (EPA, 2013; SSSA, 2012).  Conservation tillage practices include no-

tillage (NT) and strip tillage (ST) and have proven to be beneficial for the soil. Some of the 

benefits linked to conservation tillage systems are: increase in soil organic carbon; soil microbial 

biomass; reduction of wind and water erosion; and enhancement of nutrient cycling (Blanco-

Canqui et al., 2009a; Campbell et al., 2001; Kladivko, 2001; Kushwaha et al., 2001; Lal 1999; 

Paustian et al., 2000; Wang et al., 2011; Zibilske et al., 2002).  Another advantage is 

conservation of soil moisture (Daniel et al., 1999; Blevins et al., 1971), which may allow farmers 

to reduce the number of fallow periods to increase production intensity in dryer areas while also 

reducing the risk from droughts (Ding et al., 2009).  Overall, conservation tillage practices have 

demonstrated to provide a better alternative for enhancing the physical condition of the soil and 

to increase carbon sequestration (West and Marland, 2002; West and Post, 2002).  

Notwithstanding the benefits associated with conservation tillage, some negative aspects 

have also been reported in the literature.  In some regions, retention of moisture by crop residue 
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on the soil surface could increase the incidence of diseases (Anaele and Bishnoi, 1992, Bockus 

and Shroyer, 1998) and result in lower yields (Heer and Krenzer, 1989).  The need to control 

weeds chemically and the potential for an increase in diseases with NT could result in higher 

chemical costs that in some cases may offset the savings from labor and machinery costs 

(Williams et al., 2000; Williams et al., 2012).  A study by Kaval (2004), who compared the 

profitability and production costs of 198 NT and conventional tillage (CT) systems in the 

literature, suggested that NT is the least costly system.  However, yields and cost savings from 

NT systems vary across regions.  In the short-term, NT practices could result in higher costs and 

increase risk, due in part to the purchasing of new equipment (or modifications) and variability 

of yields during the adoption period (Epplin and Tice, 1986).  However, increased soil stability 

and reduction of the risk of soil erosion, particularly in row crops with limited biomass cover, 

can be observed in the long-term (Alberts et al., 1985; Blanco-Canqui et al., 2009b).   

Although conservation tillage may be more beneficial to the environment, conventional 

tillage still remains the prevailing tillage system for some crops in Kansas.  A 2010 survey of 

tillage practices in 23 Kansas counties showed that conventional tillage was the predominant 

tillage practice in wheat production, being used on approximately 56% of land planted to wheat 

(Kansas State University Research & Extension, 2010).  Only 27% of the land was under 

conservation tillage practices and 12% under RT, which consisted of tillage practices that leave 

15-30% crop residue after planting. Conversely, 56% of corn land was under conservation 

tillage, while 25% was under conventional tillage and 17% under RT.  Soybean land was largely 

planted using conservation tillage practices (62%), while 22% of the land remained under 

conventional tillage and 14% under RT (Kansas State University Research & Extension, 2010).  
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A study by Langemeier (2010) found that NT farms in Central Kansas were generally 

larger and more profitable.  These farms produced less wheat and more feed grains and had 

lower machinery and labor costs than farms with other tillage systems The adoption of 

conservation tillage practices has changed the dynamics of crop production.  According to 

Gasper and Langemeier (2010), corn and soybean production has increased due in part to the 

adoption of conservation tillage practices, which has allowed soils to maintain more moisture in 

the dryer areas of Kansas.  NT practices can facilitate double cropping and increase the 

flexibility of crop rotations (Sandretto, 2001). Langemeier (2010) also suggested that using NT 

improved farms flexibility by allowing them to include feed grains and oilseeds into their crop 

rotations.  

Despite the benefits associated with NT, farmers may choose not to adopt if they believe 

NT requires a big technological adjustment (Schneider et al., 2010).  Hence, the choice of tillage 

practice is a critical decision for any farm enterprise.  To date, the literature has predominantly 

focused on studying the adoption of conservation tillage at the farm level (Belknap and Saupe, 

1988; D’Emden et al., 2008; Davey and Furtan, 2008; Gould et al., 1989; Shortle and 

Miranowski, 1986; Vitale et al., 2011)
1
.  However, tillage decisions may be crop-specific.  Farm 

operators could use NT for some crops, but they may face constraints to adopting NT in other 

crops, because the investment in management skills for these crops is higher (Epplin and Tice, 

1986).  

 

                                                 

1 Fuglie (1999), Soule, Tegene, and Wiebe (2000), and Uri (1997) focused their study of 

conservation tillage adoption on corn production. 
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2.2 Objective 

The objective of this paper is to identify factors such as farm management characteristics, 

farmers’ attitudes, farmers’ risk aversion, and socio-demographic factors that impact farmers’ 

choice of No-till (NT), Strip-till (ST), and Conventional tillage (CT) for dryland corn, wheat and 

soybean production in Kansas.  A multinomial logit model was used to study farmers’ choice of 

tillage practice at the crop level.  Dryland corn, wheat and soybeans were analyzed because of 

their economic importance to agriculture in Kansas.  Knowing the factors affecting the adoption 

of tillage practices at the crop level may facilitate the development of policies and educational 

programs to encourage the adoption of conservation tillage methods. 

 

2.3 Literature Review 

Ervin and Ervin (1982) found studies looking at factors influencing the adoption of soil 

conservation practices dating back to the 1950s.  To date, numerous studies have looked at 

factors affecting the adoption of different tillage systems, in particular conservation tillage, using 

different methodologies and sets of explanatory variables.  Commonly, models used in the 

literature to examine famers’ adoption of tillage systems have included logit, probit, ordinary 

least squares and multinomial logit models.  

Most frequently, studies have looked at the adoption of a particular tillage technology as 

a binary response using logit or probit models.  Belknap and Saupe (1988) looked at the adoption 

of no-plow tillage practices among farmers in Wisconsin.  Their findings suggest that the 

decision to adopt no-plow tillage was positively influenced by farm size and percentage of land 

owned, but negatively affected by the level of risk aversion.  Soule et al. (2000) studied the 

adoption of conservation tillage as affected by the type of lease arrangement.  In a base model 
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where no differentiation was made between types of renter, land ownership, land tenure had no 

statistical significance in the model.  However, when a distinction was made between cash-

renters and share-renters, findings suggest that the farmers in the former group are less likely to 

adopt conservation tillage.  Rahm and Huffman (1984) studied adoption and adoption efficiency 

of RT among corn farms in Iowa.  They modeled the efficiency of adoption as the difference 

between the actual farm adoption decision and the predicted probability of adoption, which 

represents the utility maximizing decision.  They found that characteristics of the cropping 

systems affect the decision to adopt RT, while human capital decisions affect the efficiency of 

the decision of tillage technology adoption.  Using data collected in Iowa for the National 

Resource Inventory on farming practices, Pautsch et al. (2001) estimated a model on the 

adoption of conservation tillage and the potential for carbon sequestration.  Their results suggest 

that some climate variables may affect the decision to adopt conservation tillage.  Davey and 

Furtan (2008) investigated the adoption of conservation tillage by prairie farmers in Canada 

using data from an agricultural census.  Variables found to explain the adoption of conservation 

tillage were farm size as well as soil and weather variables.  A study by D’Emden et al. (2008) 

also looked at the adoption of NT in Australia and found that perception of erosion reduction 

associated with NT practices did not explain adoption.  However, other crop production benefits 

associated with NT practices and extension information increase the likelihood of adoption.  

Banerjee et al. (2009) studied the adoption of conservation tillage practices and herbicide 

resistance cotton using a logit model.  Their findings did not find evidence of the use of herbicide 

resistance seed as a factor affecting the adoption of conservation practices. 

Other studies have looked at the adoption of multiple tillage practices using multinomial 

logit models.  Fuglie (1999) conducted a study looking at factors affecting the selection of CT, 
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NT and other conservation tillage practices (mulch or ridge till) in corn production, in the 

Cornbelt region, using data from a survey conducted by the USDA.  In their study, conservation 

compliance was found to be a significant factor in determining the selection of NT.  Their 

findings also suggest that farm size was a significant variable affecting the choice of tillage 

system, while college education and operator experience were not significant factors in the 

adoption of NT.  Pereira de Herrera and Sain (1999) studied the adoption of CT, NT and RT by 

corn producers in Panama.  Their results varied among the studied regions.  The proportion of 

land under livestock and the acreage of corn had a positive effect on the decision to adopt NT 

and RT for some regions and had a negative effect in other regions.  Land ownership was not 

significant in explaining the decision to adopt a particular tillage system. 

The adoption of conservation tillage and the intensity of adoption have also been studied 

using two stage models where the probability of adoption is assessed in the first stage and 

intensity of adoption in the second stage.  Uri (1997) assessed the adoption of conservation 

tillage in corn production using variables related to the farm and farmland characteristics and 

other variables related to agricultural input use from a survey conducted by USDA-NASS.  In 

their study, cash grain farmers were found to be more likely to adopt NT practices.  A slightly 

different approach was used by Gould et al. (1989) and Traore´et al. (1998).  In their two stage 

model, a farmer’s perception or awareness of an environmental degradation was assessed in the 

first stage and in the second stage they modeled the adoption of conservation tillage as affected 

by the farmer’s perception of an environmental problem.  

Additionally, some research has been conducted looking at the adoption of conservation 

tillage as part of a bundle of multiple practices.  Wu and Babcock (1998) conducted a joint 

analysis of the choice to adopt conservation tillage, rotation and soil testing in Central Nebraska.  



 

18 

 

Other studies looking at the choice of conservation tillage in a joint framework are Cooper 

(2003), who used a multinomial probit model to estimate the use and nonuse of different 

practices including conservation tillage; and Bergtold and Molnar (2010) who examined factors 

affecting the adoption of conservation tillage and other practices in the Southeast using a 

multinomial logit approach.  

Most of these studies have included farmers and farm household characteristics, farm 

management characteristics and attitudinal variables.  Additionally, other studies have included 

farm biophysical and climatic data.  A study by Pautsch et al. (2001) on the adoption of 

conservation tillage using a logit model included climatic and land characteristic but did not 

included farm characteristic or attitudinal factors.  Nonetheless, attitudinal factors and farm 

structure are important determinants in the decision to adopt environmentally-friendly practices 

(Welsh and Rivers, 2011).  

Past studies on the adoption of NT or ST examined the choice of tillage when practices 

were not widely embraced by producers.  These practices have now been more widely adopted 

and it is possible that changes in perception have occurred.  The adoption of conservation tillage 

practices, especially NT, has expanded with the dissemination of knowledge (i.e. due to new 

research findings; famers’ experiences; interaction of adopters and non-adopters; and the 

improvement of NT equipment) (Coughenour, 2003).  Hence, it is possible that there may be 

some changes in the way farm household and farm management characteristics impact the choice 

of tillage practices for crop production.  

Studies on tillage adoption are commonly conducted at the farm level, or on a particular 

crop.  This study contributes to the body of literature by modeling the adoption of different 

tillage practices at the crop level for dryland corn, wheat and soybean production for medium to 



 

19 

 

large size farms.  An empirical model that accounts for farm management characteristics, 

farmers’ attitudes, farmers’ risk aversion, and socio-demographic factors is used.  In addition, the 

effect of crop rotation decisions on tillage practice adoption is studied.  Including crop rotation 

decisions provided a mechanism to capture the interconnectedness of production decisions.  This 

study found new insights into how risk-averse farmers’ attitudes affect the adoption of 

conservation tillage practices compared to previous literature.  

 

2.4 Data and methods 

2.4.1 Model 

The decision of tillage practice at the crop level for dryland corn, wheat and soybeans is modeled 

empirically using a random utility framework that allows the model to account for economic 

motivations, as well as other farm and farm management characteristics that may play an 

important role in farmers’ motivation to adopt a particular practice (Skaggs et al., 1994; 

Robinson et al., 1984). Following this approach, farmer i's  utility ( ijU ) from the adoption of 

tillage practice j can be denoted as a function of farm management characteristics )( ix , 

attitudinal factors )( iΓ , farmer’s risk aversion )( ir , and socio-demographic factors )( iz . Farmer’s 

subjective utility from the adoption of a tillage practice can be expressed as 

ijiiiiijij VU  ),,,( zrΓx , where ijV  represents the systematic component of utility, explained by 

observed factors, and ij  is a random component containing unobserved factors affecting the 

utility. Farmers compare the utility derived from each tillage practice available from their choice 

set ( CTSTNTj ,, ) and choose the practice that maximize their utility, i.e.  
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),,max( 0 iJiij UUU   (Louviere et al., 2000). If the random component of the utility is 

distributed Extreme Value type I and assuming linearity of the utility function, the choice model 

becomes (McFadden, 1973): 
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where iT  is a polychotomous index denoting the choice of tillage practice by farmer i, 

),,,( iiiii zrΓxX   is a )1( k  vector containing the observed explanatory variables for the i
th

 

individual, and jβ  is a )1( k vector of unknown parameters for tillage practice j. Marginal 

effects )( ii XP   where P represents the probability that farmer i chooses practice j were derived 

following Greene (2012) and asymptotic standard errors for the marginal effects  were computed 

using the delta method (Greene, 2012).  

 

2.4.2 Survey and Data Description 

A survey was administered by Kansas State University, the USDA, and the National Agricultural 

Statistics Service (NASS) from November 2010 to February 2011 in the northeast, south central 

and western regions of Kansas. Farmers with 260 or more acres in size and a minimum of 

$50,000 in gross farm sales were randomly selected and contacted to participate in the survey.  

The survey was conducted face to face by USDA-NASS enumerators. A total of 485 farmers 

were initially contacted, of which 290 completed the survey and 38 could not be located, were 

out-of-business, or did not farm; resulting in a response rate of 65%. The sample of farmers 
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surveyed is relatively representative of farmers’ demographics in Kansas. The average age of the 

farm operators as reported in the 2007 U.S.  Census of Agriculture is 57.7 years and the average 

market value of agricultural products is $219,944 (National Agricultural Statistics Service - 

USDA, 2007). The average age of the sample of farmers used in this study was 55.87 and the 

category for market value of agricultural products chosen with the highest frequency by 

respondents was $200,000 to $399,999.  The average farm size reported by farmers in the survey 

was 2,123 acres, larger than the general population (707 acres) since the survey focused on 

medium to larger farmers.  Hence, results in this study should be interpreted as representing 

tillage decisions by medium to large farm operators in Kansas. 

The survey was used to gather data on respondents’ farm management characteristics, 

farmers’ attitudes, farmers’ risk version, and socio-demographic information.  Farmers provided 

information on tillage practices used on dryland corn, wheat and soybean.  These crops were 

selected for this study due to the economic importance of these crops in the state of Kansas.  

Respondents were asked questions relevant to the agronomic practices for each particular crop, 

including their predominant crop rotation patterns, and if they graze or bale their crop residue.  

Respondents also provided information on the acreage planted, as the average values from the 

past three years.  While no questions were asked regarding farmers’ production costs, 

respondents were asked to indicate whether they considered themselves low cost producers using 

a Likert scale.  In addition, questions were included to determine the percentage of household 

income from farming operations; total acreage of land owned and rented from others; and if the 

farmer had a conservation plan.  Farmers’ attitudes such as promptness in adopting new 

technology and whether maximizing farm profits was more important than environmental 

stewardship were elicited using a Likert scale.  To elicit farmers’ risk preferences, farmers were 
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asked to self-identify their level of risk aversion by indicating how they thought their neighbors 

would describe their (the interviewed farmers) risk taking behavior with respect to their farm 

operation.  The respondents were presented with six options to this risk taking behavior question. 

Farmers who considered being perceived by their neighbors as an “extreme risk avoider” or 

“cautious” were classified as risk-averse.  Farmers who considered they were perceived as “a 

real gambler,” “enjoy taking risks,” “not concerned about risk” or “willing to take risk after 

adequate research” were denoted as risk-takers or risk-neutral.  Data on farmers’ demographics 

collected included age and education.  

Tillage practices were analyzed at the crop level for dryland corn, wheat and soybeans.  

Information regarding the tillage practices performed by farmers on their planted crops was 

added to form three distinct categories for the analysis here.  The NT and ST category consisted 

of farmers who exclusively responded that they used no-till or strip-till on their crop fields.  The 

CT category comprised reduced tillage, harrow and the combinations of strip tillage-harrow, and 

harrow-chisel as well as moldboard plow, disc, cultivator, ripper and practices where these 

tillage operations were done in different combinations.  

Of the sampled individuals growing dryland corn, 18% used CT, 16% ST and 67% used 

NT.  Twenty-two percent of the farmers used CT in wheat production, while 25% used ST and 

53% used NT.  For dryland soybean production, 18% of the sampled individuals had their land 

under CT, 18% under ST and 65% under NT (Table 2.1).  The distribution of tillage practices 

was contrary to what was expected considering the results of the 2010 survey of tillage practice 

in Kansas previously referenced in this paper, in which a larger percentage of conventional 

tillage was observed.  Differences in the distribution may arise since the Kansas tillage practice 

survey is based on the number of acres under each particular practice as opposed to the number 
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of farmers using that particular practice.  In addition, data from the 2010 Kansas tillage practice 

survey was available only for 23 counties located mainly in the central and northeast regions of 

the state.  The data used in this study included observation from farmers in western Kansas 

where NT practices are more commonly used.   
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Table 2.1   Adoption percentage of tillage practices by crop in Kansas  

  Corn  Wheat  Soybean 

NT 67%  53%  65% 

ST 16%  25%  18% 

CT 18%  22%  18% 

N. Observations 177  165  114 

NT=No tillage, ST= Strip tillage, CT= Conventional tillage  
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2.4.3 Explanatory Variables used in the Analysis 

Variables affecting farmers’ choice of tillage practice at the crop level were grouped into four 

categories: farm management characteristics, farmer’ attitudes, farmers’ risk aversion, and socio-

demographic factors.  These variables have been generally identified in the literature as 

important determinants in the adoption of conservation practices (Baumgart-Getz et al., 2012; 

Prokopy et al., 2008).  Variable descriptions and their descriptive statistics are reported in Table 

2.2.  

Farm management characteristics evaluated are crop rotation, baling or grazing of crop 

residue, acreage planted to the crop being examined, if the farmer is a low cost producer, on-

farm income (percentage of household income from the farming operation), percentage of land 

rented, and if the farmer has a conservation plan
2
.  Crop rotation variables were included as crop 

rotation and tillage decisions may be interdependent.  Crops in the rotation were grouped into 

three crop categories: corn/sorghum, legumes (i.e. soybeans, alfalfa) and cereals (i.e. wheat, rye).   

A dummy variable was used to indicate the crop type preceding the crop of interest in the 

rotation.  The same crop type was used as the base scenario (i.e. in the corn model, the 

corn/sorghum category was used as the base scenario). Refer to Table 2.2 for additional 

explanation.  Farmers who rotated their crops were expected to be more likely to adopt 

conservation tillage than farmers in a monoculture (Vitale et al., 2011).  It was also hypothesized 

that crop rotations including corn/sorghum and soybean would result in a higher likelihood of 

using NT practices because of these crops sensitivity to moisture stress and NT potential to 

                                                 

2 A variable indicating whether farmers have a conservation plan was included as an alternative to a 

variable indicating whether they receive cost-share or incentive payments (for adopting conservation 

tillage) due to lack of variation within the data which makes it difficult to estimate its effect. 
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enhance soil moisture retention (Baumhardt and Jones, 2002; Norwood, 1999).  Famers may also 

use NT to improve water retention in rotations with wheat in dryer areas.  As a whole, the effect 

of crop rotation was expected to be significant if farmers take a systems approach where all the 

elements in the production systems are considered when deciding what tillage practices to adopt. 

Farmers who graze or bale their crops were expected to be more likely to adopt CT.  

Grazing and crop residue removal could result in soil compaction problems, CT practices may be 

used as a tool to break the soil and reduce soil compaction (Hamza and Anderson, 2005; Vitale et 

al., 2011).  The acreage of the crop planted was expected to have a positive effect on the 

adoption of NT because of the potential efficiency gains, particularly labor savings (Prokopy et 

al., 2008; Langemeier, 2010).  Costs considerations are a major factor farmers need to consider 

when making decisions regarding what practices to adopt on their farm (Lichtenberg, 2004; 

Sijtsma et al., 1998).  Due to lack of cost data, this study included a proxy to measure the effect 

of cost as a dummy variable, which takes on a value of 1 if the farmer indicated they were a low 

cost producer and 0 otherwise.  Low cost producers have a greater incentive to adopt cost saving 

practices.  Conservation tillage practices result in lower labor and fuel costs, but they could also 

result in higher herbicide costs (Williams et al., 2012; Mueller et al., 1985).  Production cost 

advantages will then depend on input allocation and prices (Rahm and Huffman, 1984), but 

ultimately farmers’ decision to adopt is affected by their perception of how costly the practice is.   
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Table 2.2  Definition of variables and summary statistics  

Variable Corn Wheat Soybean  Description 

Rotation with corn/sorghum --- 
0.220 

(0.414) 

0.761 

(0.426) 

The crop preceding in the main rotation is 

corn or sorghum )0,1( noyes  . 

Rotation with legume 0.346 

(0.476) 

0.351 

(0.477) --- 
The crop preceding in the main rotation is a 

legume )0,1( noyes  . 

Rotation with cereal crop 0.559 

(0.497) --- --- 
The crop preceding in the main rotation is a 

cereal (e.g. wheat, rye) )0,1( noyes  . 

Graze crop residue 0.447 

(0.497) 

0.149 

(0.356) 

0.257 

(0.437) 

Farmer grazes the crop or crop residue of the 

crop modeled )0,1( noyes  . 

Bale crop residue 0.078 

(0.268) 

0.274 

(0.446) --- 
Farmer bales crop residue of the modeled 

crop )0,1( noyes  . 

Acreage planted of crop 

being examined 

405.447 

(448.33) 

581.875 

(534.54) 

435.195 

(372.65) 

Number of acres planted to the crop modeled 

averaged over the past three years. 

Low cost producer 0.824 

(0.381) 

0.853 

(0.355) 

0.794 

(0.404) 

The farm operator is a low cost producer 

)0,1( noyes  . 

On-farm income percentage 69.318 

(33.59) 

67.815 

(34.78) 

66.991 

(32.5) 

Percentage of household income derived 

from the farming operation. 

Percentage of land rented 57.824 

(30.97) 

55.907 

(31.49) 

58.037 

(31.06) 

Percentage of total land rented or leased 

from others. 

Conservation plan 0.804 

(0.397) 

0.815 

(0.388) 

0.867 

(0.340) 

Existence of a conservation plan for the farm 

)0,1( noyes  . 

First time technology 

adopter 

0.810 

(0.392) 

0.780 

(0.414) 

0.779 

(0.415) 

Farm operator usually adopts new 

technology (e.g. no-till, new seeds, etc.) 

before neighbors )0,1( noyes   

Profit motivation 0.531 

(0.499) 

0.542 

(0.498) 

0.549 

(0.498) 

Maximizing farm profit is more important 

than environmental stewardship to the farm's 

operator )0,1( noyes  . 

 

Risk-averse 

 

0.391 

(0.488) 

 

0.381 

(0.486) 

 

0.407 

(0.491) 

Risk taking behavior in farm management 

decisions )0,1( otherwiseaverserisk   

Age 55.486 

(12.04) 

55.494 

(11.78) 

54.451 

(11.52) 

Farmer's age in years. 

Education 0.307 

(0.461) 

0.321 

(0.467) 

0.292 

(0.455) 

Farm operator has a college degree 

)0,1( noyes  . 

Number of observations 177 165 114 
 

Numbers in parenthesis represent the standard deviations of the estimates. The standard deviation of binary 

variables was calculated as: )1(   where  is mean value of the binary variable. 



 

28 

 

There was not a prior expectation with respect to the effect of on-farm income on tillage 

decisions.  Farmers who depend more heavily on farm income may be more interested in 

conservation practices to maintain and enhance the productivity of their land.  However, this 

variable could also be capturing some of the effect of off-farm labor.  Farmers who work more 

off the farm could have an incentive to adopt NT practices because of labor savings (Gould et al., 

1989).  The percentage of land rented was hypothesized to have a negative impact on the 

adoption of NT practices.  Tenants have a shorter planning horizon and potentially lower interest 

in the long-term productivity of rented land (Soule et al., 2000).  Farmers with a conservation 

plan were expected to be more likely to use NT practices on all their crops. 

Attitudinal variables consisted of dummy variables denoting if the farmer was a first-time 

technology adopter and if stewardship was more important than profit maximization to the 

farmer. Farmers with these characteristics were expected to have a better attitude towards 

conservation (or the adoption of new practices) and to be more likely to use conservation tillage 

practices (NT and ST).   

Farmers’ risk aversion was captured through the use of a dummy variable taking a value 

of 1 if the farmer was risk-averse and 0 otherwise.  The adoption of NT practices may require 

new machinery, knowledge, and management skills, which when coupled with the potential 

variability in yields, may increase the risk of using NT for some farm operators (Larson et al., 

2001).  Several studies have attempted to determine which tillage system would be preferred by 

farmers under different risk preferences by estimating the distribution of returns and/or using 

stochastic dominance analysis.  Some of these studies have suggested that risk-averse famers 

would prefer NT or RT over CT practices (Ribera et al., 2004; Williams et al., 2000). In contrast, 

other studies have found that NT practices might not be an attractive practice for risk-averse 
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farmers (Varner et al., 2011; Larson et al., 2001). While these studies provided important 

insights into what tillage practice risk-averse farmer would prefer, they do not provide evidence 

into farmers’ choices given their perceptions of crop returns and variance of returns under each 

tillage practice.  In the past, when NT or ST practices were not widespread, it was possible that 

risk-averse farm operators were less likely to adopt ST or NT practices.  As conservation tillage 

practices have become more widespread and farmers have more knowledge about their benefits, 

farmers’ perceptions regarding the risk-mitigating potential of conservation tillage practices may 

have changed.  

Socio-demographic factors included in the model were age and education. Education was 

denoted by a dummy variable taking a value of 1 if the farmer had a college degree and 0 

otherwise.  Farmers with a college degree were expected to be more likely to adopt conservation 

practices because of a higher exposure to and use of information.  Age was expected to be 

positively related to the use of tillage practices more conventional in nature.  Younger farmers 

may be more eager about trying newer technologies (D'Souza et al., 1993)
3
.  

 

 

2.5 Results 

Parameter estimates and statistical measures from the multinomial logit model of tillage adoption 

in dryland corn, wheat and soybean production are reported in Table 2.3. Marginal effects 

representing the change in the probability of choosing a particular tillage system given a one unit 

change in an explanatory variable are reported in Table 2.4. The models of tillage choice in corn 

                                                 

3 Information on race and gender was not included in the model given the limited variation across 

respondents. 
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and soybean performed better than the model of tillage choice in wheat.  The percentage of 

correct predictions of the choice of tillage use in corn was 71% and 81% for soybean, while 55% 

of the choices were correctly predicted for wheat.  Across the three crops, the decision to use NT 

had the highest rate of correct predictions with 74% for corn, 83% for soybeans, and 56% for 

wheat (Table 2.3).  The McFadden Pseudo R-squared for the corn, soybean, and wheat models 

were 0.16, 0.36, and 0.06, respectively.  

 Crop rotation was not found to be a statistically significant factor in the decision of tillage 

practice for corn, wheat or soybean production. This result supports the idea that tillage decisions 

are crop-specific, and not connected to considerations of the entire cropping system dynamics, 

particularly crop rotations. Previous research in the literature suggested that practices may be 

seen by farmers independently and adopted in a stepwise form (Bergtold and Molnar, 2010; 

Byerlee et al., 1986).  However, the importance of managing the farm as an integrated system in 

order to exploit the synergy benefits from practices that are interrelated cannot be undermined 

(Ikerd, 1993). It was also worth noting that approximately 48% of the farmers who reported 

using NT in corn, wheat, or soybeans had not adopted the use of continuous NT in rotations with 

these crops. For instance, several farmers reported using NT for corn and/or soybeans, but not for 

a wheat crop in the same rotation. An interesting observation to emerge from this result is that 

while NT is widely used by crop producers, continuous NT has not been fully adopted.  This 

finding is in agreement with Williams et al. (2000); and with Grandy et al. (2006), who 

suggested that some NT systems in the U.S. are periodically tilled.   

http://www.sciencedirect.com/science/article/pii/016788099390020P
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Table 2.3  Parameter estimates for the choice of tillage system in dryland corn, soybean 

and wheat 

 

Corn 

 

Wheat 

 

Soybean 

 

 

NT ST 

 

NT ST 

 

NT ST 

Intercept 1.9883  -0.6440   0.5822  1.0091   0.2612  0.7497  

 (2.148)  (2.741)   (1.724)  (1.916)   (2.728)  (3.224)  

Rotation with corn/sorghum           ---    ---   -0.4060  -0.2670   1.2841 * 1.0808  

    (0.588)  (0.643)   (0.746)  (0.948)  

Rotation with legume -0.0114  -0.6515   0.0849  -0.7203           --- 
 

    ---  

 (0.782)  (1.038)   (0.546)  (0.634)     

Rotation with cereal crop 0.5021  -0.2097         ---  ---          --- 
 

    ---  

 (0.780)  (0.991)        

Graze crop residue 

 

0.2158  1.3274 **  -0.3197  -0.4280   1.5627  2.1223 * 

(0.472)  (0.616)   (0.634)  (0.742)   (1.096)  (1.230)  

Bale crop residue -1.4513 * -0.8364   -0.6182  -0.0830         ---    ---  

 (0.796)  (0.951)   (0.527)  (0.592)       

Acreage planted of crop being 

examined 0.0021 ** 0.0023 **  0.0003  0.0005   0.0057 *** 0.0034  

 (0.001)  (0.001)   (0.000)  (0.000)   (0.002)  (0.002)  

Low cost producer 0.1748  1.0086   0.6330  0.6289   0.4935  2.6085 * 

 (0.551)  (0.920)   (0.577)  (0.681)   (0.833)  (1.457)  

On-farm income percentage -0.0173 ** -0.0216 **  -0.0098  -0.0124   -0.0039 

(0.011) 

 0.0020 

(0.013) 

 

 (0.008)  (0.009)   (0.007)  (0.008)     

Percentage of land rented -0.0084  -0.0068   0.0015  -0.0036   -0.0025  -0.0282 ** 

 (0.008)  (0.011)   (0.008)  (0.008)   (0.012)  (0.014)  

Conservation plan 1.2869 ** 0.3287   0.7055  0.5078   1.8203 * -1.2117  

 (0.523)  (0.644)   (0.535)  (0.602)   (0.954)  (0.999)  

First time technology adopter 0.3311  -1.2963 *  1.0588 ** 0.3170   1.3218 * -0.3821  

 (0.599)  (0.681)   (0.511)  (0.558)   (0.820)  (0.853)  

Profit motivation 0.4177  0.9633   0.1113  0.1122   -0.4417  0.7279  

 (0.464)  (0.619)   (0.451)  (0.509)   (0.669)  (0.842)  

Risk-averse 0.6957  0.5451   1.0184 ** 0.7122   1.9170 ** 0.9448  

 (0.503)  (0.635)   (0.506)  (0.573)   (0.806)  (0.894)  

Age -0.0308  0.0117   -0.0227  -0.0197   -0.0888 ** -0.0536  

 (0.022)  (0.300)   (0.021)  (0.023)   (0.037)  (0.044)  

Education -0.0133  -0.4218   -0.0742  -0.1807   0.3085  -0.9857  

 (0.510)  (0.680)   (0.464)  (0.527)   (0.743)  (1.023)  

               

   

Fit Statistics 

Number of observations 

 

177  

    

165  

    

114  

 Log likelihood 

 

-128.90 

    

-155.77 

    

-64.81 

 Likelihood Ratio Statistic 

 

49.156  

    

22.875  

    

73.576  
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Table 2.3 continued              

 

Corn 

 

Wheat 

 

Soybean 

 

 

NT ST 

 

NT ST 

 

NT ST 

McFadden Pseudo R-squared 

 

0.160 

    

0.068 

    

0.362 

 Percentage of correct predictions 

 

71% 

    

55% 

    

81% 

 NT 

 

74% 

    

56% 

    

83% 

 ST 

 

50% 

    

50% 

    

69% 

 RCT 

 

57% 

    

42% 

    

78% 

 Note: ***, ** and * indicate the estimated coefficients are significantly different from zero at the 1%, 5% and 10 % level of significance. 

Numbers in parenthesis represent the standard deviations of the estimates. NT=No-till, ST= Strip-till, RCT=Reduced/Conventional tillage.  
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Table 2.4  Marginal effects for the choice of tillage system in dryland corn, soybean and wheat

 
 

Corn 

 

Wheat 

 

Soybean 

 

NT ST CT 

 

NT ST CT 

 

NT ST CT 

Intercept 0.4393  -0.2442  -0.1950   0.0047  0.1092             -0.1139   -0.0242  0.0446  -0.0204  

 (0.322)  (0.222)  (0.2496)   (0.335)  (0.284)  (0.257)   (0.308)  (0.235)  (0.174)  

Rotation with corn/sorghum --- 
 

--- 
 

---   -0.0636  0.0059  0.0577   0.0916  -0.0091  -0.0825  

     (0.110)  (0.092)  (0.088)   (0.092)  (0.072)  (0.052)  

Rotation with legume 0.0556  -0.0677  0.0121   0.1205  -0.1471  0.0266   --- 
 

--- 
 

---  

 (0.122)  (0.088)  (0.0922)   (0.107)  (0.093)  (0.082)      

Rotation with cereal crop 0.1151  -0.0666  -0.0485   --- 
 

--- 
 

---   --- 
 

--- 
 

---  

 (0.118)  (0.082)  (0.0918)          

Graze crop residue -0.0762  0.1208 ** -0.0446   -0.0200  -0.0363  0.0563   0.0463  0.0597  -0.1060  
 (0.072)  (0.049)  (0.0551)   (0.129)  (0.115)  (0.095)   (0.104)  (0.073)  (0.072)  

Bale crop residue -0.2047  0.0405  0.1642 *  -0.1415  0.0698  0.0717   ---  ---  ---  

 (0.132)  (0.089)  (0.0906)   (0.105)  (0.089)  (0.078)         

Acreage planted of crop being 

examined 

0.0002 ** 0.0000  -0.0003 ***  0.0000  0.0001  -0.0001   0.0005 
**

* -0.0002  -0.0004 
**

* 

(0.000)  0.0001   (0.0001)   (0.000)   (0.000)   0.(000)    (0.000)  (0.000)  (0.000)  

Low cost producer -0.0558  0.0908  -0.0350   0.0698  0.0308  -0.1006   -0.1419  0.1886 * -0.0467  
 (0.100)  (0.085)  (0.0651)   (0.118)  (0.106)  (0.086)   (0.125)  (0.111)  (0.056)  

On-farm income percentage  -0.0014  -0.0007  0.0022 **  -0.0007  -0.0010  0.0017 *  -0.0007 

(0.001) 
 0.0005 

(0.001) 
 0.0002 

(0.001) 
 

 (0.001)  (0.001)  (0.0009)   (0.001)  (0.001)  (0.001)      

Percentage of land rented -0.0010  0.0000  0.0010   0.0009  -0.0009  0.0000   0.0019  -0.0023 ** 0.0003  
 (0.001)  (0.001)  (0.0010)   (0.001)  (0.001)  (0.001)   (0.001)  (0.001)  (0.001)  

Conservation plan 0.2182 
**

* -0.0795  -0.1387 **  0.1045  -0.0020  -0.1025   0.3514 ** -0.2531 ** -0.0983  
 (0.085)  (0.058)  (0.0614)   (0.109)  (0.094)  (0.079)   (0.142)  (0.112)  (0.076)  

First time technology adopter 0.1786 ** -0.1660 
**

* -0.0126   0.2182 ** -0.0866  -0.1316 *  0.2150 ** -0.1402 * -0.0748  
 (0.089)  (0.055)  (0.0700)   (0.104)  (0.087)  (0.074)   (0.098)  (0.074)  (0.058)  

Profit motivation -0.0051  0.0645  -0.0594   0.0121  0.0057  -0.0178   -0.1203  0.0994  0.0209  
 (0.072)  (0.052)  (0.0546)   (0.086)  (0.074)  (0.068)   (0.079)  (0.063)  (0.043)  

Risk-averse 0.0854  -0.0042  -0.0811   0.1537 * -0.0068  -0.1469 
*

*  0.1907 ** -0.0721  -0.1187 * 

 (0.076)  (0.052)  (0.0587)   (0.092)  (0.0797)  (0.075)   (0.094)  (0.066)  (0.065)  
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Table 2.4 continued                     

 

Corn 

 

Wheat 

 

Soybean 

 

NT ST CT 

 

NT ST CT 

 

NT ST CT 

Age -0.0070 ** 0.0040 * 0.0030   -0.0029  -0.0006  0.0035   -0.0080 * 0.0025  0.0056 * 

 (0.003)  (0.002)  (0.0026)   (0.004)  (0.003)  (0.003)   (0.004)  (0.003)  (0.002)  

Education 0.0349  -0.0433  0.0084   0.0066  -0.0237  0.0171   0.1226  -0.1112  -0.0113  

 
(0.080)  (0.058)  (0.0600)   (0.092)  (0.079)  (0.069)   (0.092)  (0.074)  (0.048) 

 

Note: ***, ** and * indicate the estimated coefficients are significantly different from zero at the 1%, 5% and 10 % level of significance. Numbers in parenthesis represent the standard 

deviations of the estimates. NT=No-till, ST= Strip-till CT= Conventional tillage. 
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Given the agronomic challenges to implementing continuous NT, alternating NT and tilling 

practices could be in the farmers’ best interest in the short-term (Grandy et al., 2006; Williams et 

al., 2000).  Grandy et al. (2006) highligt the need for active research participation to overcome 

agronomic and economic aspects where continuous NT may be still challenging to farmers.  In 

addition, research and extension education programs could stress the combined effect from 

adopting complementary conservation practices and the importance of an integrated systems 

approach to ease the transition into continuous NT systems (Grandy et al., 2006).  

Producers who graze their corn crop or corn residue were found to be 12.08% more likely 

to use ST.  On the contrary, a study by Vitale et al. (2011) found that operators who graze cattle 

or whose main income source was from livestock were less likely to use conservation tillage, 

including both NT and ST practices.  Grazing crop residue is a common practice among farmers 

to reduce livestock feed cost, but a potential problem that arises from grazed fields is soil 

compaction.  Since tillage could be used by farmers to break the soil and eliminate soil 

compaction, practices such as ST that limit soil surface disturbance may be desirable for some 

farm operators (Hamza and Anderson, 2005).  Farmers who bale their crop residue were found to 

be 16.4% more likely to use CT in corn production. Crop residue is usually harvested and baled 

either for livestock feed or bedding
4
.  Conservation practices (NT and ST) require at least 30% of 

crop residue to remain on the soil surface, which could allow for the possibility of harvesting 

some residue depending on the level of crop biomass produced.  However, in some cases, if crop 

biomass residue is limited, harvesting small volumes of crop residue can be difficult due to 

                                                 

4 An additional future potential use for crop residue is for biofuel feedstock (Banowetz et al., 2008; 

Berndes, Hoogwijk, and van den Broek, 2003). 
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equipment limitations (Perlack et al., 2005).  Using CT does not impose any constraints on the 

amount of crop residue that can be harvested and baled. This may explain why farmers who bale 

their crops are more likely to use CT.  

Crop acreage for the modeled crops was a significant factor in the models of tillage 

choice in corn and soybeans.  Crop acreage was found to reduce the likelihood of using CT 

practices and to increase the likelihood of adopting NT.  CT practices comprise several passes 

across fields with tillage equipment, resulting in a higher use of machinery, fuel, labor, and time.  

NT practices are less labor and machinery intensive than conventional practices, reducing 

production costs and the opportunity cost of time (Harman, et al., 1996; Pendell et al, 2007).  

Opting for this time-saving alternative may allow farmers to cultivate more acres (Williams et 

al., 2012).  A study by Langemeier (2010) found that NT farms in central Kansas are generally 

larger than farms adopting other types of tillage practices.  Another aspect that could explain a 

higher likelihood of adoption for larger crop acreage is that the investment in human capital and 

machinery per unit of land is smaller for larger farms (Epplin and Tice, 1986; Decker et al., 

2009). 

Results with respect to low cost producers suggested that these farmers were 18.9% more 

likely to use ST in soybean production.  The major difference in costs between tillage systems 

arises from the intensity of the primary tillage practice and the number of tillage passes (Karlen 

et al., 2013).  Thus, farm operators may see ST as a lower cost practice when compared to 

conventional tillage systems (i.e. from labor and fuel savings).  ST has been recommended as a 
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good alternative to NT practices because of its economic returns and conservation benefits, 

especially in soils with drainage and compaction issues (Archer and Reicosky, 2009).  

Results with respect to on-farm income indicated that higher on-farm income increases 

the likelihood of using CT by 0.22% in corn and by 0.17% in wheat production.  Farmers with a 

larger portion of income coming from the farm operation may work less off the farm and be less 

time constrained to work the ground and perform tillage passes.  Land tenure was not found to 

significantly affect tillage practice choice in corn or wheat production.  Results from the soybean 

model suggested that a one percentage increase in the proportion of rented land reduced the 

likelihood of using ST by 0.23%.  A study by Lee and Stewart (1983) found that the adoption of 

minimum tillage was lowest among operators with full land ownership.  They suggested that 

land ownership did not pose a constraint for the adoption of minimum tillage because of the 

independence of tenant decisions under common leasing arrangements.  In addition, they argued 

that this practice could be adopted by renters with the objective to reduce costs.  Other studies 

have not found evidence of land tenure effects in the decision to adopt tillage practices (Wu and 

Babcock, 1998; Rahm and Huffman, 1984; and Shortle and Miranowski, 1986).  

Compliance with a conservation plan through farm programs gave rise to an increase in 

the adoption of NT practices since 1990 (Sandretto, 2001).  In this study, farmers with a 

conservation plan were 21.8% and 35.4% more likely to use NT practices in corn and soybean 

production, respectively.  Farmers with a conservation plan were less likely to use CT in corn 

production and less likely to use ST in soybean production.  Conservation is likely an important 
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aspect to farming for those farmers who have a conservation plan, explaining why they would be 

more likely to adopt NT practices.  

Farmers who considered themselves first time adopters of new technologies were 17.9%, 

21.8% and 21.5% more likely to adopt NT practices in corn, wheat and soybean production, 

respectively.  These farmers who adopt new technologies before their peers were less likely to 

use ST or CT practices for the crops examined.  Korsching et al. (1983) suggested that there is 

similarity between farmers who adopt innovative technologies and farmers who adopt 

conservation practices as both are preventive innovations.  They also suggested that the adoption 

of soil conservation practices follows a similar pattern to the adoption of other practices, 

explaining why farmers who adopt new technologies (e.g. seed varieties, GPS, etc.) before other 

farmers may be more likely to adopt NT technologies.  Results with respect to profit motivation, 

the variable indicating whether profit maximization was more important to the farm operator 

than environmental stewardship, was not significant in either model.  While some farmers may 

adopt NT or ST practices because of the environmental benefits, other farmers’ decision to adopt 

these practices may be driven by profit motivations (e.g. higher yields, lower costs). 

Risk aversion was found to be a significant factor in explaining the choice of tillage 

practice in dryland soybean and wheat production.  Risk-averse farmers were 19.1% and 15.4% 

more likely to use NT practices in dryland soybean and wheat, respectively.  Risk-averse farmers 

were also found to be less likely to use CT in both wheat and soybean production.  Previous 

research has identified no-plow adopters as risk-takers (Belknap and Saupe, 1988) and has 

catalogued risk aversion as a delaying factor in the adoption of NT practices (Krause and Black, 

http://www.jswconline.org/search?author1=Peter+F.+Korsching&sortspec=date&submit=Submit
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1995).  And while other studies have also suggested that NT practices may not be an attractive 

practice for risk-averse farmers (Varner et al., 2011; Larson et al., 2001), this study found 

evidence suggesting that risk-averse farmers were more likely to adopt NT practices. Provided 

that farmers who perceive risk in adopting conservation practices are less likely to adopt them 

(Shortle and Miranowski, 1986), it is possible that a higher likelihood of NT adoption by risk-

averse farmers suggest that these farmers consider NT a practice with risk-reducing potential.    

The increase in the adoption of conservation tillage practices and risk averse farmers’ preference 

for NT practices could be the result of positive results experienced by early adopters and 

subsequent flow of information from farmer to farmer over time (Sundermeier et al., 2009; 

Krause and Black, 1995).  In addition, the introduction of herbicide-resistant crop varieties and 

different herbicide options (as alternatives to fight weed pressure mechanically) have reduced 

some of the risk associated with NT adoption over the years (Givens et al., 2009).    

Age was found to reduce the likelihood of adopting NT by 0.70% in corn and by 0.80% 

in soybean production.  The likelihood of using CT was found to be higher (0.56%) in soybean 

production as age increases, in agreement with a prior expectation that older farmers may be 

prone to use tillage practices that are more conventional in nature.  In previous literature, mixed 

results have been found about the effect of age on the adoption of conservation practices (See 

Okoye, 1998; Soule et al., 2000; Vitale et al., 2011; Warriner and Moul, 1992).  Findings in the 

literature with respect to the effect of education on the adoption of conservation tillage practices 

are mixed.  Some studies have found a positive effect (Shortle and Miranowski, 1986; Traoré et 

al., 1998; Wu and Babcock, 1998), while others have found a negative effect (Bergtold and 
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Molnar, 2010).  In this study, college education was not a statistically significant factor in 

explaining tillage choice in any of the models.   

 

2.6 Conclusions 

The decision of NT, ST and CT  practice was evaluated at the crop enterprise level for dryland 

corn, wheat and soybeans production by medium to large farmers in Kansas.  The effect of farm 

characteristics, socio-demographic factors, risk aversion, and farmers’ attitudes were evaluated.  

The results in this study provide additional evidence with respect to the factors affecting the 

adoption of conservation tillage and areas that need reinforced in farmers’ education programs 

and when identifying target populations in designing policy incentives for conservation 

programs.  The key findings of this study are: 

 This study found evidence suggesting that famers’ crop rotation may not affect farmers’ 

choice of tillage practice as evidenced by the statistically insignificant rotation parameters 

across all models.  While dissemination of management information could be targeted at the 

crop level (e.g. dealing with crop residue and adjusting planting timing with different tillage 

practices), an integrated systems approach to production should be encouraged. 

Particularly, the joint adoption of complementary practices (e.g. crop rotation) that could 

provide farmers with weed and nutrient management strategies to reduce their reliance on 

more conventional tillage practices.  In addition, it was found that while crop-specific NT 

was the predominant tillage practice, continuous NT has not been widely adopted. The 

continuity of conservation tillage should be encouraged in order to preserve soil structure 
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improvements attained under NT. These soil improvements can be lost when the land is 

disrupted with tillage passes (Grandy et al., 2006).  

 Increases in crop acreage increases the likelihood of adopting NT practices. The adoption of 

NT practices could be promoted among farmers who want to expand their production land 

under corn or wheat. Information on labor and time savings might be useful for these 

farmers. In addition, to encourage the adoption of NT among smaller farmers, financial aid 

could be provided to help farmers cover some of the start-up costs (e.g. investment in 

management skills and machinery). 

 Baling of crop residue seems to exert a positive effect on the adoption of more conventional 

tillage practices. To encourage the adoption of NT practices among farmers who graze or 

bale their crop residue, programs could engage these farmers by providing them with soil 

conservation methods that would eliminate or alleviate the constraints they faced in adopting 

NT practices. For example, combinations of conservation tillage with other practices (e.g. 

cover crops, crop rotations) that could help provide needed forage and alleviate soil 

compaction issues.  

 Farmers who are low cost producers are more likely to use ST in soybean production. 

Providing research-based information on cost differences between practices might entice 

farmers to adopt cost reducing conservation tillage practices. 
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 While some previous literature has suggested that NT practices may not be attractive to risk-

averse farmers, this study found evidence suggesting that risk-averse farmers were more 

likely to adopt NT, which suggests a change in perception regarding the risk reducing 

benefits of NT practices.  For example, well managed NT can stabilize soil structure and 

improve other soil characteristics, allowing for better crop resilience to mild drought risk 

(Dickey et al., 1989). Effectively conveying information on how NT practices could reduce 

risk in the long-term could be an important component to conservation programs. There is 

room for progress in determining how risk plays a role in farmers’ adoption of conservation 

tillage.  A study with greater focus on the role of risk could be conducted to clearly 

understand how specific aspects of risk (e.g. yield, returns, pest and diseases, resistant-

weeds) affect farmers’ decisions.  In addition, an individual-specific quantitative measure of 

risk aversion could be included to determine how farmers’ decisions are affected at different 

levels of risk aversion. 
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Chapter 3 - Adoption of in-field conservation practices under risk 

 

3.1 Introduction 

Risk is an important component of agricultural production, and it plays an important role in 

farmers’ production decisions, particularly decisions concerning the adoption of new 

conservation practices. In some cases, risk can have a larger effect than cost factors (Sattler and 

Nagel, 2010). The introduction and intensification of conservation on the farm introduces 

potential risks into the farm operation due to the introduction of new practices and their impacts 

on the dynamics of cropping systems, contract or practice limitations, and changes in production 

costs. These changes can result in shifts in net returns (due to changes in crop yields and/or 

costs) that may not be anticipated a priori.   

When outcomes are uncertain, given their stochastic nature or their dependence on 

stochastic events (i.e. weather), farmers may be more hesitant to adopt a practice, requiring 

additional compensation to induce adoption (Kurkalova et al., 2006). Thus, risk is an important 

aspect that needs consideration when studying farmers’ adoption decisions.  However, the risk 

associated with stochastic variables affecting conservation adoption has not been researched in 

much detail, particularly in stated choice applications.  In many cases, outcomes are simply 

assumed to happen with certainty, while in reality, farmers bear a risk of unknown changes in 

yields, costs and returns, as a result of adopting a particular practice or a bundle of practices, 

especially under contract.  

Conservation-based programs that promote the adoption of conservation practices by 

offering financial incentives can be used to ease farmers’ transition into the use of conservation 

practices and to reduce the risk faced by farmers from changes and variability of yields and 
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costs. However, withdrawal from these programs in some cases is significant (Cattaneo, 2003). 

To improve the environmental benefits from these programs, it is important to understand the 

factors that go into farmers’ decision, to ensure increasing levels of adoption and the continuous 

maintenance of conservation practices, especially for those practices that offer significant 

societal benefits. With greater understanding of how farmers go about making decisions when 

establishing a conservation system on their farms, policymakers can better design conservation 

programs that are tailored to farmers’ preferences, as well as limitations. Having programs that 

meet farmers’ needs would ensure that once practices are adopted, they are not abandoned later 

in the process. Knowing the factors affecting farmers’ adoption decisions is useful for the 

dissemination of informational materials in a more efficient manner, to encourage farmers to 

adopt and maintain sustainable production systems. 

 

3.2 Objective 

The purpose of this study is to examine farmers’ willingness to adopt in-field conservation 

practices under risk, using a stated preference approach. Farmers’ decision making for 

conservation practice adoption under risk was elicited using a stated choice experiment. 

Following Hensher, Greene, and Li (2011), a framework that accounts for the stochastic nature 

of net returns under a conservation contract is used. Probabilities of changes in net returns were 

included as an attribute in the choice experiment and were used to estimate an attribute-specific 

expected utility term within the random utility model, allowing for the estimation of a parameter 

for risk attitudes towards net returns in addition to the net return attribute parameter. Specifically, 

this study examines farmers’ willingness to adopt in-field conservation practices under different 

contractual arrangements with varying levels of conservation intensity, external environmental 
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benefits, levels of incentive payments, and incentive payment mechanisms. Marginal willingness 

to accept (mWTA) values were estimated for each conservation practice, incentive program 

mechanisms, and off-farm environmental benefit. The mWTA estimate for each conservation 

practice was calculated for both non-adopters (farmers who had not adopted a particular practice 

at the time of the survey) and adopters (farmers who were currently using the practice at the time 

of the survey). To study the effect of the risk associated with net returns on farmers’ willingness 

to adopt and intensify conservation practices, farmers’ risk attitude towards changes in net 

returns and the risk premium for the adoption and intensification of conservation practices under 

a conservation contract are estimated.  

 

3.3 Background Information  

3.3.1 Conservation practice background information 

Many conservation practices employed in agriculture provide benefits to the ecosystem, 

commonly referred to as ecosystem services. Some common ecosystem services derived from 

the use of in-field conservation practices are carbon sequestration, climate regulation, soil and 

nutrient cycling, water quality, erosion control, soil quality and productivity, groundwater 

recharge, pollination by wild species, biodiversity and bio-control (Robbins, 2005).  

Some in-field conservation practices that provide numerous benefits to the environment 

and will be examined in this study are continuous no-till, conservation crop rotations, cover 

crops, and variable rate application (VRA) of inputs (e.g. precision agriculture). These practices 

were selected because they are in-field practices commonly known and adopted at different 

degrees in the region of study. These practices provide benefits to the environment in terms of 

soil carbon sequestration, erosion reduction, runoff mitigation, as well as providing potential 
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yield increases and reductions in production costs. 

 

3.3.1.1 Continuous no-till 

The Soil Science Society of America (SSSA, 2012) defines conservation tillage as a sequence of 

tillage operations that leaves at least 30% of crop cover on the surface and whose objective is to 

diminish the loss of soil and water. Conservation tillage practices such as no-till, strip tillage 

(ST) and other tillage systems leaving at least 30% of surface cover have proven to be beneficial 

for the soil. In no-till systems, soil disturbance is limited to nutrient injection. Plant residue is 

left on the soil surface and only partial removal is allowed. No-till practices leave the greatest 

level of crop residue on the soil surface. Different from rotational no-till, in continuous no-till, 

all the crops in the rotation are planted using a no-till drill/planter and no-till equipment is used 

year round.  

Some of the benefits associated with conservation tillage systems are an increase in soil 

organic carbon, soil microbial biomass, reduction of wind and water soil erosion, and 

enhancement of nutrient cycling (Blanco-Canqui et al., 2009; Campbell et al., 2001; Kladivko, 

2001; Kushwaha et al., 2001; Lal, 1999; Paustian et al., 2000; Wang et al., 2011; Zibilske et al., 

2002). Another advantage associated with no-till is the preservation of soil moisture (Blevins et 

al., 1983; Daniel et al., 1999), which may allow farmers to increase production intensity in dryer 

areas. While benefits can still be obtained when using rotational tillage, when no-till soils are 

disrupted with tillage, some of the soil benefits obtained while in no-till are lost, especially soil 

organic carbon and improvements to soil structure (Grandy et al., 2006).  

Along with the positive aspects attributed to conservation tillage, some negative effects 

have also been reported in the literature. A potential drawback from NT practices is the delay in 
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planting due to slower soil warming (DeJong-Hughes and Vetsch, 2007). In addition, large 

accumulations of crop and/or cover crop residue on the surface of no-till fields could obstruct 

other activities, such as planting, due to residue plugging up equipment. In some regions, 

moisture retention by crop residue left on the surface could increase the incidence of diseases 

(Anaele and Bishnoi, 1992; Bockus and Shroyer, 1998) and possibly result in lower yields (Heer 

and Krenzer Jr, 1989). The need to chemically control weeds and the increase in diseases could 

result in higher chemical costs that in some cases could offset the savings in labor and 

machinery (Williams et al., 2000).  

Overall, no-till practices have shown to be a great option for the improvement of soil 

health and to increase carbon sequestration (West and Marland, 2002; West and Post, 2002). 

No-till practices may result in lower fuel and machinery labor expenses due to a lower number 

of field passes (Epplin et al., 1982). This may allow for an increase in cropping intensity 

(Williams et al., 2012). The base cost associated with implementing no-till in Kansas is 

estimated at $19.8 per acre by the NRCS (2015b). A comparison of studies in the literature 

suggested that no-till systems are the least costly when compared to conventional systems 

(Kaval, 2004). Regarding yield risk, while some studies agree that no-till practices reduce risk 

(Ribera et al., 2004; Williams et al., 2000), other studies suggest that no-till increases risk 

(Larson et al., 2001a; Varner et al., 2011).  In order to improve the benefits associated with no-

till practices, other conservation methods such as cover crops and crop rotation are encouraged.  

 

3.3.1.2 Conservation crop rotation 

Crop rotation consists of rotating different unrelated crops within the same field in a 

predetermined sequence. A conservation crop rotation would include green manures, perennial 
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grasses, heavy residue cash crops and reduction of fallow periods (NRCS, 2015b).  Some 

benefits associated with crop rotation are the mitigation of diseases, pests, and weeds that 

accumulate from continuous cropping of the same taxonomic crop families. Other benefits are 

the carryover of residual herbicide and reduction of allelopathic or phytotoxic effects (Lodhi et 

al., 1987; Pierce and Rice, 1988; Roth, 1996).  

Fertility of the soil can be improved by avoiding depletion of common nutrients required 

by particular crops, using nitrogen fixing crops such as legumes (Zotarelli et al., 2012) or other 

crops that can introduce necessary elements back into the soil. The use of high residue crops (i.e. 

wheat, sorghum) and  legumes  in  the  rotation  have  the  potential  to  increase  carbon  and  

nitrogen concentration in the soil over the long-term (Kelley et al., 2003; Miglierina et al., 

2012). Additionally, improvements in soil structure arise when deep and shallow rooted crops 

are used in the crop rotation. The increase in soil aggregate stability and improvements in water 

utilization are further results from the use of crop rotations (Chan and Heenan, 1996; Raimbault 

and Vyn, 1991).  

Lastly, continuous crop rotation or increasing the number of crops in a rotation could 

increase carbon sequestration (West and Post, 2002). The benefits mentioned above could result 

in an improvement in soil health and soil productivity.  Additionally, studies have demonstrated 

yield advantages from crop rotation, reductions in yield variability (Helmers et al., 1986); and 

income diversification. The cost associated with a conservation crop rotation as estimated by the 

NRCS (2015b) is $14.0 per acre. Studies in the literature have stressed the importance of the 

joint use of crop rotation and other conservation practices. For example, the combination of crop 

rotation and no-till practices are important for weed control, soil carbon sequestration, and to 

increase nutrients in the soil (Cardina et al., 2009; Havlin et al., 1990; McConkey et al., 2003). 
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3.3.1.3 Cover crops 

Use of cover crops as a conservation practice consists of growing seasonal crop varieties 

between annual cash crops. The objective of the cover crop is to provide protection of the soil 

surface from soil and water erosion. Cover crops may be a cost-efficient alternative for 

improving crop nutrient management, while also providing additional conservation benefits. 

Additional benefits associated with the  use  of  cover  crops  are  the  reduction  of  wind,  water  

and  soil  erosion;  weed suppression; conservation of soil moisture; improvement in soil 

structure and the levels of organic matter; and the provision of habitats for beneficial organisms 

(Snapp et al., 2005).  

Some cover crops contribute to the addition of nitrogen into the soil while other crops 

are good nutrient scavengers. Grain, grasses and perennial legumes contribute to production of 

soil organic carbon. Legume cover crops are more effective at increasing cash crop yields 

compared to other cover crops (Miguez and Bollero, 2005). Cover crops in combination with 

no-till systems may provide significant benefits to the soil through increases in soil carbon 

sequestration and nitrogen concentrations (Nascente et al., 2013). Reicosky and Forcella (1998) 

stressed the importance of cover crops in conjunction with conservation tillage to maximize 

additions to soil carbon. For a comprehensive review of the use of cover crops varieties in 

conjunction with other conservation practices such as conservation tillage and crop rotations, see 

Clark (2008).  

Using cover crops can be costly and users face economic and operational constraints 

(Sarrantonio and Gallandt, 2003). The main cost in stablishing a cover crop is the seed cost (for 

seed varieties, planting rates and costs see Clark (2008). Cost estimates by the NRCS (2015b) 

for annual grass or legume covers are around $82 per acre. Cover crops could result in higher 

yields and reduce production risk (Jaenicke et al., 2003). However, this may not always be the 
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case. The benefits obtained in some cases may not compensate for the cost of establishing the 

cover crop (Larson et al., 2001b) and higher profits may not always be obtained (Lu et al., 

2000).  Some of the benefits of cover crops may not be realized in the first years during adoption 

and in many cases they may be difficult to quantify monetarily (Clark, 2008).  

 

3.3.1.4 VRA of inputs 

Variable-rate application of inputs consists of spatially varying input rates based on field 

requirements with the aid of computer-controlled devices. The objective of the VRA of inputs is 

to maximize the economic efficiency of input application. For example, fertilizer applications 

can be managed to increase fertilization in zones with high soil productivity and reduce 

fertilization in areas with low productivity.  

It has been argued that the primary cause of fertilizer pollution stems from the 

inefficiency in its use (Khanna and Zilberman 1997). It is estimated that leaching of residual 

nitrogen in major field crops ranges from 10 to 35 percent (Meisinger et al., 2008). VRA of 

fertilizer technology increases the efficiency of input application, reducing runoff and leaching 

of nutrients (Khanna and Zilberman, 1997), improving surface and ground water quality. This 

technology may increase output quantity and quality and reduce input cost, leading to an 

increase in profitability (Vellidis et al., 2013). The use of positioning systems also reduces the 

repetition of machinery passes over the same area, reducing labor costs (Adrian et al., 2005). 

The adoption of VRA technologies may require a large investment in new equipment 

and an in human capital  to  develop  the  necessary  skills  and  knowledge  that  are  required  

to  operate successfully (Batte and Arnholt, 2003). Equipment cost for precision fertilizer 

application is estimated around $11.30 per acre; however additional cost may be incurred, like 
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the use of special skilled labor and soil/tissue testing (NRCS, 2015a). The high cost of VRA 

technologies may lead to the use of custom applications by third parties in some areas. Although 

this technology may increase yields and reduce input cost, profitability is site-specific and varies 

according to the characteristics of the field (Roberts et al., 2000). In many cases however, the 

benefits may not be significant (Biermacher et al., 2009). The uncertainty about the benefits 

from this practice has been a factor slowing its adoption (Schimmelpfennig and Ebel, 2011). 

This technology results in additional environmental benefits to those provided by no-till, cover 

crops and dynamic crop rotations by reducing the risk of agro-chemical related pollution.  

 

3.3.2 Payment mechanisms and conservation programs 

In the last few decades, much attention has been given to environmental degradation and to the 

ways in which sustainable production can be achieved in agricultural systems.  Environmental 

degradation is defined as any disturbance to the environment that can deteriorate soil, water, 

and/or air resources (Johnson et al., 1997). Some agricultural activities such as soil 

mechanization and the application of agrochemicals can result in soil erosion, pollution of water 

bodies, and greenhouse gas emissions (Aneja et al., 2009; Carpenter et al., 1998; Galloway et al., 

2008; Kim and Dale, 2008; Lal, 1993). 

The ecosystem services produced when conservation practices are in place have a value 

to society, and by creating a market for these services, farmers could receive an incentive to 

adopt conservation practices (Ribaudo et al., 2010; Whitten and Coggan, 2013). While it has 

been argued that market-based instruments may be more efficient to encourage conservation 

(Freeman and Kolstad, 2006), to date, the U.S. government has primarily relied on cash 



 

59 

 

payments through voluntary contractual programs for the adoption of conservation practices 

(Claassen et al., 2008). 

Conservation-based programs that promote the adoption of conservation practices by 

offering financial incentives are in place in the United States (U.S.). These programs are used to 

ease farmers’ transition into the use of conservation practices and to reduce the risk faced by 

farmers from changes and variability of yields and costs. The Natural Resource Conservation 

Service (NRCS) administers voluntary federal conservation programs such as the Environmental 

Quality Incentive Programs (EQIP) and the Conservation Stewardship Program (CSP), which 

have the main objective of promoting the adoption of structural or in-field conservation practices 

in agricultural and forest land to meet environmental conservation goals (NRCS, 2013). These 

programs primarily focus on water quality and conservation; soil conservation; land 

preservation; wildlife habitat; air quality; and energy conservation (Claassen et al., 2008). 

In some cases, the limited knowledge farmers have about the availability of conservation 

incentive programs, how they work, and the complexity of the programs may deter farmers from 

participating (Brewer et al., 2004; Reimer and Prokopy, 2014). In other instances, some of the 

practices in the contracts are never implemented or practices are withdrawn from already signed 

contracts (Cattaneo, 2003).  A study by Cattaneo (2003) revealed that 11% of the practices in 

EQIP contracts are never implemented, 17% of the contracts are partially withdrawn, and 6% are 

completely withdrawn.  The author attributed those results to the fact that practices may be seem 

attractive when farmers submit their proposals, while in practice, these conservation practices do 

not provide sufficient private benefits. Withdrawals from EQIP contracts were also found to be 

more likely to occur during the first years of implementation. 
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 An alternative approach to encourage conservation adoption is the use of market-based 

instruments. For example, given the greenhouse gasses (GHG) emissions mitigation potential of 

agriculture (Smith et al., 2008), market-based mechanisms have been developed in order to meet 

GHG reduction targets (Williams et al., 2009). An example of such a mechanism is carbon 

offsets issued through a carbon sequestration program that compensates landowners for the 

adoption of conservation practices that improve soil carbon sequestration and/or reduce carbon 

emissions (Williams et al., 2009). Under this mechanism, carbon offset credits are traded in a 

carbon exchange where companies who have emitted GHG above their target can buy carbon 

credits from sellers who are committed to provide carbon offsets from carbon sequestration 

efforts (Williams et al., 2009). For a comprehensive review of carbon offsets from agriculture 

refer to Williams et al. (2009) and González-Ramírez, Kling, and Valcu (2012). 

 In the U.S., carbon trading has mainly taken place under a voluntary cap and trade 

platform, the Chicago Climate Exchange (CCX) that operated from 2003 to 2010 (Hamilton et 

al., 2009). However, in 2008 less than 1% of the carbon offset credits traded came from 

agricultural soils, where participating farmers were compensated per ton of carbon sequestered 

(Hamilton et al., 2009). Under this program, farmers did not directly trade their credits, but 

various offset aggregators served as trading representatives. Some of the offset aggregators were 

the National Carbon Offset Coalition (NCOC) in Montana; AgraGate, a subsidiary of the Iowa 

Farm Bureau; North Dakota’s Farmers Union; and the Environmental Carbon Credit Pool, LLC. 

The CCX closed in 2010 when carbon prices fell to 0.10-0.15 $/ton CO2 (See Figure 3.1).  
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Figure 3.1  Chicago Climate Exchange, historical price and volume traded 

 
 

Source: Chicago Climate Exchange. Available at: https://www.theice.com/ccx 

  

https://www.theice.com/ccx
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Another market-based carbon trading mechanism is “over the counter retail markets”, 

which are voluntary programs where consumers pay for activities to help reduce their carbon 

footprint (Ribaudo et al., 2010). An example of a well stablished carbon market was the 

European Union where a mandatory market was developed under the Kyoto Protocol’s Clean 

Development Mechanism (Galatowitsch, 2009; Williams et al., 2009). In the U.S., there was an 

unsuccessful attempt to pass a policy, the Clean and Energy Security Act of 2009 (i.e. H.R. 

2454), to regulate carbon emissions (Golden et al., 2009).  The development of a carbon market 

has proved difficult without a binding GHG policy (Young, 2003). However, while carbon 

trading schemes and efforts to implement a cap-and-trade policy to regulate GHG emissions 

have not been successful in the U.S. (i.e. H.R. 2454), it is likely that efforts to pass a 

comprehensive policy will reappear in the future (González-Ramírez et al., 2012). Currently, the 

Environmental Protection Agency (EPA) has proposed rules to regulate GHG emissions. While 

the regulatory mechanisms proposed by the EPA do not use market-based instruments, 

discussions around the lower cost of market-based mechanisms have surfaced (Kotchen and 

Mansur, 2014).Thus, it is important to understand farmers’ preference for this mechanism as 

carbon markets could potentially develop again in the future.  

Currently, the level of adoption (including the level of voluntary adoption under 

conservation contracts), is low for some conservation practices. The National Crop Residue 

Management Survey showed that 21% of corn acreage, 39.3% of soybeans, 19.6% of sorghum, 

and 14-16% of small grains were managed under no-till (NT) by 2008 (CTIC, 2013).  This 

survey also found that conventional tillage (CT) and reduced tillage (RT) still accounted for 

approximately 58% of the cultivated land (CTIC, 2013).  A survey looking at the adoption of 

cover crops in the Corn Belt found that only 18% of the farmers had planted cover crops.  They 
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also found that adopters had used cover crops on only about 6% of their land (Singer et al., 

2007). Evidence found in the Agricultural Resource Management Survey also suggests that 

variable rate technologies have been adopted at a low rate of 8 to 14% between 2005-2009 

(Schimmelpfennig and Ebel, 2011). Considering the conservation benefits and carbon 

sequestration potential these practices provide, current adoption rates might not be socially 

optimal.  Farmers’ adoption decisions are mainly based on economic motives (Cooper, 2003), 

and in many cases economic incentives deter conservation on the farm (Antle and Diagana, 

2003). As Ribaudo et al. (2010) notes, if payments for environmental services do not reflect their 

value to society, given market price signals, farmers produce less environmental services than 

socially optimal. In addition, lack of knowledge of the social benefits may also contribute to sub-

optimal adoption levels (Kurkalova et al., 2006). As evidence in the literature suggests, off-farm 

environmental benefits are also important drivers for the adoption of conservation practices in 

agriculture (Reimer and Prokopy, 2014). 

The lack of knowledge about the benefits from conservation practices, lack of 

infrastructure, lack of support, practice incompatibility, and financial support are some of the 

potential constraints for the adoption of conservation practices (Rodriguez et al., 2009). 

Additionally, subsidy programs for certain agricultural commodities may have discouraged 

sustainable practices, causing slower rates of adoption (Derpsch et al., 2010).  For example, 

subsidies to agricultural inputs and subsidies to corn-ethanol production, which have also 

resulted in higher commodity prices, may have indirectly resulted in the intensification of 

agricultural production and the removal of land from conservation retirement programs (Comito 

et al., 2013; Gill-Austern, 2011). There is also evidence suggesting that higher commodity prices 
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have encouraged some producers to have less diversified rotations on their farms (Fargione et al., 

2009; Tyner and Taheripour, 2008). 

 

3.4 Literature Review 

3.4.1 Conservation practices adoption 

In recent years, great attention has been placed on the use of conservation systems in agricultural 

production. While the literature has presented evidence indicating that conservation practices 

offer a great alternative for enhancing soil and water resources, conventional systems still 

remain the prevailing norm in many regions.  

A large and growing body of literature has investigated factors affecting the adoption of 

conservation practices. Studies looking at the factors influencing the adoption of conservation 

practices date back to the 1950s (Ervin and Ervin, 1982). These studies have used different 

econometric models and sets of explanatory variables. Several of these studies have used 

revealed preference data and fewer have used stated preference methods. 

Early work in the adoption literature examined the adoption of single practices, often 

modeled as a discrete choice using univariate logit or probit models. Many of these studies 

examined the adoption of reduced/conservation tillage practices (Belknap and Saupe, 1988; 

Davey and Furtan, 2008; Rahm and Huffman, 1984; Soule et al., 2000). Other studies examined 

the adoption of newly introduced production technologies. Shapiro, Wade Brorsen, and Doster 

(1992) studied the adoption and the extent of adoption of double-cropping soybeans and wheat. 

Other studies evaluated the adoption of intensive sustainable and low input agricultural practices 

among farmers in Montana (Saltiel et al., 1994); the adoption of precision agriculture; and the 

adoption of genetically modified corn and soybean crops (Fernandez-Cornejo et al., 2002). Other 
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studies have also examined the adoption of best management practices (BMP) in agricultural 

production. Kim, Gillespie, and Paudel (2005) studied the adoption of  BMP (cover and green 

manure crops, critical area planting, filter border/filter strips, grassed waterways, heavy use are 

protection, livestock exclusion, regulating water, riparian forest buffer) in beef cattle production 

using probit models. They found that risk negatively affects the adoption of rotational grazing 

and cover crops in beef cattle production. 

There are a myriad of conservation practices farmers can implement on their cropland, 

and the adoption of a particular practice may not be independent or isolated from the decision to 

adopt other practices.  In some instances, examining the adoption of an individual practice may 

belay the complex decision farmers’ face. Several studies have attempted to analyze the 

adoption of multiple practices using multinomial logit models (Caswell and Zilberman, 1985; 

Fuglie, 1999). Caswell and Zilberman (1985) studied the factors affecting the adoption of drip, 

sprinkler, and surface irrigation by fruit growers in California. The adoption of drip and 

sprinklers was compared against traditional surface irrigation. A study by Fuglie (1999) 

examined the adoption decision for tillage practices (CT, NT, RT or conservation tillage) in corn 

production using data from a survey conducted by the USDA.  

The joint adoption of conservation practices has also been examined using multinomial 

logit models. Wu and Babcock (1998) conducted a joint analysis of the choice to adopt 

conservation tillage, crop rotation and soil testing in Central Nebraska using a multinomial logit. 

Another study looking at the choice of conservation practices in a joint framework is Bergtold 

and Molnar (2010) who examined factors affecting the adoption of conservation tillage, crop 

rotation and soil testing by small limited-resource farmers in the Southeast. While using a 

multinomial logit model allows examining joint adoption, in many cases the independence from 
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irrelevant alternatives (IIA) property of the model could be very restrictive in modeling the 

correlation between bundle of practices (Maddala, 1983).  

In order to model the correlation among the practices adopted by producers, Dorfman 

(1996) proposed a multivariate adoption model. His study modeled the adoption of integrated 

pest management (IPM) and improved irrigation using a multinomial probit model. Dorfman’s 

approach allowed for the modeling of interrelationships among conservation practice adoption 

choices, represented as the nonzero correlation among the errors from a system of adoption 

equations. Lichtenberg (2004) modeled the adoption decision of seven on-farm conservation 

practices (critical area seeding, contour farming, strip-cropping, cover crops, grass, terraces, and 

diversions) by farmers in Maryland. His study found evidence of cost responsiveness in the 

adoption decision and complementarity among some of the conservation practices considered. 

The previous studies mentioned all used revealed preference methods with observed 

choices. Stated choice methods have also been widely used to study adoption decisions as they 

provide some additional advantages. Stated choice methods allow for the examination of 

attributes that are not present in the market, or if they are present, do not have sufficient 

variation to estimate their parameters (Louviere et al., 2000). For example, the use of stated 

choice methods has allowed researchers to study the effect of varying incentive payments/cost-

share levels on the adoption and extent of adoption of conservation practices and programs. The 

use of stated choice methods have also furthered the study of other attributes in conservation 

programs that are of interest for policy makers.  Some of these attributes are contract length, risk 

attributes, payment mechanisms, availability of technical assistance or insurance through a 

conservation program, restrictions on land use, and contract default (Cooper, 2003; Cooper and 

Signorello, 2008; Espinosa‐Goded et al., 2010; Ma et al., 2012; Ruto and Garrod, 2009). 
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Some examples of studies eliciting the adoption of conservation practices using stated 

choice methods are Cooper and Keim (1996), Cooper (2003), Cooper and Signorello (2008), and 

Ma et al. (2012). Cooper and Keim (1996) studied farmers’ adoption of five EQIP practices 

(integrated pest management (IPM), legume crediting, manure testing, split applications of 

nitrogen, and soil moisture testing) using a dichotomous choice contingent valuation approach to 

elicit farmers’ WTA. They modeled the decision to adopt and the potential level of adoption 

(acres) given the incentives offered, by farmers not currently using the practice. In their study, 

the adoption for each of the practices was modeled independently.  

A study by Cooper (2003) examined the adoption of five conservation practices 

(conservation tillage, IPM, legume crediting, manure testing, soil moisture testing) in a joint 

framework. In their study, farmers were presented with hypothetical cost shares for adopting 

each practice individually, and the decision to adopt was modeled jointly using a multinomial 

probit to account for the correlation among conservation practice adoption choices through the 

errors in the latent adoption equations. In another study, Cooper and Signorello (2008) examined 

the adoption and risk premium for the adoption of a conservation protocol that included crop 

rotation, soil tillage, organic fertilizer, and mechanized weeding with data collected using a 

multiple-bounded format for the willingness to accept adoption question.  

In a study conducted by Ma et al. (2012) individuals were presented with four systems 

with bundle of practices with increasing level of intensity. The attributes examined in their study 

were payment, payment provider (government or a non-governmental organization), and 

sequence of conservation intensity (environmental benefit) in which the four systems were 

presented (increasing or decreasing). For each of the four systems, the authors modeled the 

willingness-to-consider decision using a probit model, and the acreage enrollment decision using 
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a tobit model.  

 

3.4.2 Risk in the adoption literature 

Various sources of risk affect agriculture (Beal, 1996). Studies in the literature have provided 

evidence of the importance of risk in agricultural decisions (Marra and Carlson, 1990) and it has 

been long argued that risk represents an obstacle in the adoption of new agricultural practices 

(Aimin, 2010). In some instances, risk factors may me more important than other production 

factors (Sattler and Nagel, 2010).  While risk is central to the study of farmers’ decisions to 

adopt agricultural technologies, studies addressing risk in context of adoption have been limited 

(Marra et al., 2003).  

Marra, Pannell, and Abadi Ghadim (2003) identified distinctive elements of risk that 

affect the adoption of new agricultural technologies, namely, perception of the probabilities of 

the distribution of net returns, the variance of net returns, and the strength and direction of risk 

attitudes (i.e. risk aversion). Measuring risk aversion without adequate data can be difficult. 

Researchers have used different strategies to measure the impact of risk on the adoption 

decision. 

Some studies examining adoption in the literature (both, with revealed and stated 

preference data) have included risk aversion as a dummy variable indicating whether the farm 

operator is perceived to be risk-averse (Kim et al., 2005; Shapiro et al., 1992). Shapiro et al. 

(1992) evaluated both the effect of risk attitudes and farmers’ subjective perceptions of risk on 

the adoption of double crop soybeans. However, while they estimated farmers’ Pratt-Arrow 

measures of risk aversion, in their empirical model they used dummy variables indicating if 

farmers were risk averse (they used the midpoint of the range of risk aversion as the dividing 
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point). Kim, Gillespie, and Paudel (2005) examined the adoption of BMPs in beef cattle 

production using probit models. In their study, they included farmers’ self-identified risk 

preference as a dummy variable indicating if the farmer was risk averse. Both studies found that 

risk aversion was an important factor affecting adoption.  

Other studies have included a risk aversion coefficient (i.e. Pratt-Arrow measure of risk 

aversion) when modeling adoption. Ghadim, Pannell, and Burton (2005) examined adoption of 

chickpeas in Australia using a probit and tobit model. They examined the effect of farmers’ risk 

preferences (Pratt-Arrow risk aversion coefficient); the perception of riskiness of chickpeas 

production; an interactions between the risk aversion coefficient and area (hectares); relative 

riskiness of chickpea production; and perceived variance of the net revenue from chickpea 

production.  They found that both risk aversion and riskiness of the practice, reduced adoption 

of chickpeas and underweighted the benefits from farm diversification from undertaking this 

crop enterprise on the farm.  

In studies examining the adoption of conservation systems under conservation incentive 

programs, the incentive payment always plays an important role on farmers’ willingness to 

adopt.  Since introducing new practices on the farm may result in changes in net returns, famers 

may demand a higher incentive payment to offset any risks from adoption.  For example, risk-

averse operators may require a risk premium to induce their adoption of new practices, even if 

they obtain higher income as a result of their decision to adopt (Kurkalova et al., 2006).  The 

existence of this risk premium may result in higher WTA estimates. A study by Cooper and 

Signorello (2008) expanded on previous literature about conservation adoption by proposing a 

theoretical model that included a risk premium component, as a function of the variance of 

profits from adopting a new practice, within a random utility framework.  To estimate their 
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model empirically, the proposed risk component was estimated as the difference between the 

mean WTA and the difference in profits from the base state and the adoption state. While 

additional information on changes in profits is required to estimate the risk premium, farmers 

were not provided with this information during the decision process. Thus, there may be 

asymmetry of profit information across farmers, impacting results. 

 Several of the studies examining the effect of risk (e.g. risk preference) in adoption 

models have done so under a deterministic framework. Few have considered the stochastic 

nature of the adoption process (i.e. Ghadim, Pannell, and Burton, 2005). While the distinctive 

elements of risk identified by Marra, Pannell, and Ghadim (2003), have been partially or 

separately addressed in some studies, they have not been extensively studied, particularly in 

stated choice frameworks.  

 

3.4.3 Uncertainty and risk attitudes in stated preference methods 

In many cases, individuals are subject to decisions for which outcomes are not known with 

certainty, they are stochastic in nature. However, when studying decisions using stated choice 

frameworks, in most cases individuals are asked to choose between alternative options in a 

deterministic environment. Recent studies have attempted to study decisions under risk by 

introducing stochastic attributes in stated choice studies.  In these studies, the probability 

distribution of potential attribute outcomes is provided explicitly in the stated choice tasks.  

One approach to model risk is to introduce the probability of occurrence of the attribute 

in an additive form. That is, the outcome attribute and the risk (i.e. the probability of the attribute 

outcome) are treated as two separate attributes and a utility parameter is estimated for each one 

of them individually. A study by Glenk and Colombo (2011) followed such an approach. In their 
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study of public preferences for a climate change mitigation program, they assessed the 

introduction of risk associated with the program’s potential to achieve emission reductions. In 

their study, individuals were first presented with a set of choices with no risk. If they chose the 

program at least once, then they were presented with a second set of choices which provided 

information on both the percentage of annual emission reductions from a soil carbon 

sequestration program and the probability that the program fails to achieve that level of 

emissions reduction. They estimated three models: (1) no-risk, (2) risk (probability) was modeled 

as being continuous, and (3) risk (probability) was modeled as being discrete. They found that 

while risk did not affect the WTP estimates for the non-stochastic attributes, it did affect 

respondents’ preference for the program. They also found a larger WTP for a higher risk of 

program failure.  

In a study of the WTP for a program to reduce the risk of wastewater floods in 

Switzerland, Veronesi et al. (2014) examined the effect of risk by including an attribute with the 

frequency of flooding events and a forecast confidence attribute consisting of probabilities that 

the forecast was correct. They found that uncertainty (probability) of the forecast was not a 

statistical significant factor and was found to be the least important factor in individuals’ 

preference for the abatement program. The authors attributed this result to the respondents’ using 

heuristics to evaluate the probability of forecast occurrence.  

Another approach used by some researchers consisted of estimating the effect of the 

stochastic attribute, and the effect of an interaction term between the attribute and its probability 

of occurrence (this mirrors the expected value or the use of a linear utility function for the 

expected utility model). Burghart, Cameron, and Gerdes (2007) studied peoples’ preference for a 

program to invest in energy saving air-conditioning technologies funded with tax credits. They 
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examined the risk that the technology would be successful. Individuals were asked if they were 

willing to invest their tax credits in the development of energy saving technologies that would 

save them money in the future, but with caveat that there was a probability (risk) that these 

technologies would fail. They modeled risk using a linear discounted expected random utility 

framework.  

In a study of preferences for water quality in lakes, Roberts, Boyer, and Lusk (2008) 

included the risk associated with two attributes, an algae bloom and changes in water level. They 

presented risk as the probability of occurrence of the algae bloom and the probability to observe 

a given water level. They introduced aspects of prospect theory by using probability weights. 

Respondents were asked to complete stated choice tasks with either certain outcomes or risky 

outcomes. They modeled risk in a multiplicative fashion, by multiplying the probability of 

occurrence by the attribute outcome (expected value), and estimated a model coefficient for the 

expected value of the attribute (algae bloom and each of the water levels). They found higher 

WTP estimates in the presence of risk. They also found that a model using probability weights, 

instead of linear weights provided a better statistical fit.  

Akter, Bennett, and Ward (2012) studied public support for a climate change mitigation 

plan. The choice experiment presented choice alternatives varying by cost (higher household cost 

from higher electricity bills, fuel, etc.), expected rise in temperature, and its probability of 

occurrence. They estimated a parameter for the probability of a rise in temperature and another 

parameter for the interaction of the rise in temperature and its probability of occurrence 

(expected increase in temperature). They found greater support for the plan with greater 

probability of temperature rises.  
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A study by Rolfe and Windle (2013) analyzed different management programs for coral 

reefs. They introduced risk in their study by providing decision makers with the percentage of 

coral reef protected in good condition under each management mechanism conditional on the 

probability that this level of protection will be obtained. They modeled the choices using a mixed 

logit model where the condition of the reef, and an interaction term between reef condition and 

probability of protection were included in the model.  

While using the expected value of the stochastic attribute to model choices under risk 

allows a modeler to capture how respondents’ preferences are affected when faced with 

uncertain outcomes, it assumes risk neutrality (preferences for the risky attribute are assumed to 

be linear). In order to allow for risk aversion/risk seeking behavior in decision making under 

risk, some stated choice studies (mainly in the transportation literature) have incorporated risk 

and uncertainty into choice decisions by introducing aspects of expected utility theory and 

prospect theory into the random utility decision framework.  This approach allows for the 

estimation of a decision-maker’s risk attitude toward the stochastic attribute in addition to the 

marginal utility (parameter) for the stochastic attribute (Hensher et al., 2011). 

Hensher, Greene, and Li (2011) and Li et al. (2012) studied the risk associated with time 

variability in a scheduling model for car commuters using a choice experiment. Commuters were 

presented with a distribution of departure times with an associated probability of occurrence. The 

time attribute was incorporated in the random utility function using a general power 

specification, which exhibits constant relative risk aversion. Probabilities were transformed using 

separable probability weighting functions. That is, the probability transformation is independent 

of the outcomes (dependent only on the original probabilities). Other deterministic attributes 

were included in the random utility in a linear form. They found that the risk-based model 
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predicted optimal departure times better than a purely linear functional form where decision-

makers are assumed risk neutral. They also found evidence suggesting that commuters exhibited, 

in general, risk-taking attitudes.  

Other studies have modeled risk within the random utility framework using a non-

expected utility approach, which transforms probabilities of occurrence of an event using 

weighting functions. Probability weights are used as evidence in the literature suggests, 

individuals transform absolute probabilities into decision weights using heuristics (Kahneman 

and Tversky, 1979). Van Houtven et al. (2011) studied disease treatment preference in the 

presence of mortality risks. They estimated three model specifications with varying treatments 

for risk: (1) a categorical model for risk (dummy variables for the probabilities of each risk were 

used), (2) independent weighing functions, and (3) rank dependent utility where probability 

weights depend of both the original probability and the outcome. They found evidence that 

supports the use of probability weights and rank dependent utility models. A study by 

Wibbenmeyer et al. (2013) examined wildfire managers’ preferences for fire suppression 

strategies under two sources of risk: probability that the fire reaches homes or watershed in the 

absence of a suppression strategy, and the probability of success of the suppression strategy. 

They found larger responses to risk for lower probabilities in proportion to the response observed 

with greater probabilities. They also found that the risk of houses burning had a greater effect 

among managers than the risk of watersheds burning. 

Using data from a stated choice experiment examining people’s preferences for a soil 

carbon sequestration program, Glenk and Colombo (2013) tested different model specifications 

for the treatment of risk within the random utility model using combinations of: linear expected 

utility functions of emission reductions (expected value); non-linear expected utility functions, 



 

75 

 

linear probability weights (probability to achieve the emission reductions); non-linear probability 

weights; and inclusion of a separate disutility parameter for risk (i.e. probability of failure to 

achieve reduction levels) (Glenk and Colombo, 2011). Their results suggest that significant 

differences in WTP estimates can be obtained when using different model specifications, as each 

model revealed different behavioral assumptions. They recommend using models with a non-

linear specification for the expected utility component. 

Li and Hensher (2013) extended the above studies by embedding a ranked dependent 

expected utility model within a random utility framework, in which the probability weighting 

functions are determined by both, the original probabilities and the rank of the outcomes in terms 

of preference. In addition to revealing preferences and risk attitudes (like in Hensher, Greene, 

and Li, 2011; and Li, Tirachini, and Hensher, 2012), this approach reveals beliefs by 

differentiating how decision makers transform probabilities for preferred and least preferred 

outcomes. They found that commuters, in general, underweighted the probability of arriving on-

time, implying conservative beliefs. 

 

3.4.4 Summary 

Research has consistently pointed to the importance of risk in decision making. However, 

studies on the subject of conservation adoption have been mostly restricted to the effect of risk 

attitudes in the adoption of conservation. Few studies have addressed the stochastic nature of 

the factors involved in the adoption process. This study expands on previous research by 

examining conservation program attributes that have not been widely evaluated in the 

conservation adoption literature to-date, such as farmers’ risk attitudes and adoption decisions 

under risk, and preferences for conservation payment mechanisms through government 
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programs or market-based mechanisms. This study also examines if the environmental benefits 

obtained off the farm from the adoption of conservation practices is an important factor in the 

farmer’s decision to adopt conservation practices on the farm. Results from this study provide 

an understanding of farmers’ decision process when adopting conservation practices and 

conservation program participation. The identification of motivations, as well as obstacles in 

the adoption of conservation practices is a fundamental necessity for improving conservation 

policies and programs. 

 

3.5 Methods 

3.5.1 Random utility framework 

Individuals’ choice decisions in stated preference models are constructed on the basis that 

individuals derive utility from product attributes - Lancaster’s theory (Lancaster, 1966). In this 

study, farmer i derives utility from choosing conservation contract j with a given set of attributes

jX . Now, let iq  be farmer i’s expected net return in the status quo and ij  be net returns 

(excluding any incentive payment) under a conservation contract for farmer i. Since there is 

uncertainty concerning the value of net returns, particularly under a conservation contract, iq  

and ij  are stochastic in nature with associated variances given by 2

q
  and 2

j , respectively. 

Now let the i
th

 farmer’s utility )( ijU  from signing a conservation contract be a function of the 

contract attributes )( ijX , and the stochastic net returns )( 2

jij  . That is, farmers receive utility 

from contract j: 
1

2 )])((,[ iijijijij j
FXVU    , where ijV  represents the systematic component of 

utility explained by contract attributes and is a function of net returns;  F  is a function 

describing farmers’ valuation of stochastic returns under the contract, allowing for the possibility 
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of a nonlinear relationship,  and ij  is the random component of utility accounting for 

unobserved factors unknown to the researcher.  

 Based on random utility theory, farmers choose to enter into a conservation contract if the 

contract provides them with the highest utility, i.e. ),max( iqiji UUU   where iqU  is the utility 

obtained if the farmer chooses to remain with the status quo or what they are currently doing on 

their operation. Following Hensher et al. (2005), the probability of entering into the conservation 

contract can be written as )()( iiiqiqijij VVV   PP . While ijV  and iqV  are not 

separably identifiable, the difference between the two utilities )( iV  is. The difference in 

utilities can be expressed as   ];,)([ 2
βiii XFfV  , where β is the vector of parameters of 

the utility function (e.g. marginal utilities).  

 

3.5.2 Choice under uncertainty and risk preferences 

A concept commonly associated with risk is variance, the dispersion of potential outcomes 

around its mean (Hardaker et al., 2004). An event is thought to be riskier, the higher the 

dispersion around its mean (i.e. the higher the variance). Hence, the expected value or mean 

][xE ) and the variance of an attribute ( 2

 ) can be used as factors to analyze individuals’ 

responses to risk. This method is known as the mean-variance approach. The mean variance 

approach has been used in stated choice applications to study variability in attributes (Li et al., 

2010). The mean-variance approach can be represented by a corresponding variant, the mean-

standard deviation approach (Hardaker et al., 2004). While the mean-variance (mean-standard 

deviation) approach to modeling risk in decision making can be attractive, it is more restrictive 

in that it does not allow for the estimation of a quantitative measure of risk attitude. 
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3.5.2.1 Expected utility 

Decisions under risk and risk preferences have long been evaluated using both expected utility 

theory and prospect theory. Expected utility theory initially introduced by Bernoulli and later 

refined by von-Neumann and Morgenstern (1945) postulates that individuals act as if they 

maximize expected utility. Under expected utility theory, individuals make decisions between 

gambles by evaluating the function  mmUpEU ; where E  is an expectation operator, and mU  

is the utility associated with a monetary outcome mx  with probability of occurrence mp . 

Assuming constant relative risk aversion (CRRA), the utility expression can be specified 

using a general power specification (Pratt, 1964). Individual utility for monetary outcomes can 

be specified as follows: 

(3.1)     
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
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where   represents the risk aversion coefficient (Pratt, 1964). If 0 , the utility function 

converges to a linear utility function (expected value) indicating risk neutrality.  If 0 , the 

utility function over net returns is concave indicating risk aversion. On the other hand, values of 

0 indicate risk seeking attitudes. CRRA utility specifications are widely used in the literature 

as they are simple to implement making them tractable in empirical applications (Meyer, 2010). 

For a review of other functional forms see Meyer (2010).  
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3.5.2.2 Prospect theory 

While expected utility has been widely used in modeling decisions under risk, it has received 

some criticism due to its failure to represent individuals’ behavior in some empirical applications 

(e.g. Allais paradox -Allais, 1953).  In a seminal paper, Kahneman and Tversky (1979) proposed 

prospect theory as an alternative to expected utility theory to model decisions under risk.  In 

prospect theory, probabilities are replaced by decision weights that represent the impact of the 

outcome from the appeal of the prospects evaluated (Kahneman and Tversky, 1979).   

 In prospect theory, individuals evaluate the function  )()( mm xpw   when faced with a 

gamble (prospect); where m is a value function (utility) and )( pw  is a probability weighting 

function with 0)0( w  and 1)1( w  (Kahneman and Tversky, 1979). Decision weights are used 

because as empirical research has shown, decision makers do not treat probabilities linearly, 

rather they transform probabilities by assigning different weights to low and high probabilities 

(Gonzalez and Wu, 1999). Under this assumption, risk attitudes are determined by both, the 

utility from monetary outcomes ( ) and the probability weighting function )( pw .  Here, the 

value function  can take different specifications. In this study, the utility specified in equation 

(3.1) will be adopted. Different probability weights have been proposed in the literature of which 

the most commonly used functions are (Stott, 2006): 

i. TK-PWF: The Tversky and Kahneman (1992) probability weighting function is a one-

parameter function. When 1  the weighting function is reduced to the linear form: 

ppw )( . The function is specified as follows:  

(3.2)    0,)(
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ii. GE-PWF: The Goldstein and Einhorn (1987) probability weighting function is a two-

parameter function. This function is reduced to the TK-PWF when 1 . This function takes 

the following specification:  

(3.3)    0,,)( 
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iii. P1-PWF: This function is a one-parameter probability weighting function proposed by 

Prelec (1998), and is specified as follows: 

(3.4)    0,)(
)ln(


 


mp

m epw  

iv. P2-PWF: This function is a two-parameter probability weighting function proposed by 

Prelec (1998).  P1-PWF is a special case of the P2-PWF when 1 . The function is 

specified as: 

(3.5)    0,,)(
)ln(


 

 mp
m epw  

 

In these probability weighting functions,   is the parameter that controls the curvature (shape) 

of the functions, allowing for both concave and convex regions of the function.  If 1 , the 

function is characterized by an inversed S-shape with overweighting ( ppw )( ) of low 

probabilities and underweighting ( ppw )( ) of high probabilities. Conversely, if 1 , the 

function is characterized by a S-shape with underweighting of low probabilities and 

overweighting of high probabilities. For the two-parameter weighting function (i.e. GE-PWF 

and P-PWF), the additional parameter   controls the elevation of the inflection point where the 

function goes from concave to convex (or convex to concave). If individuals weigh probabilities 
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equally (assign the same weight to low and high probabilities), then a linear probability 

weighting function results, where mm ppw )( .  

 Separable decisions weights can be used. That is, probability weights can depend on the 

original probability only and not be affected by the outcome of interest. In a later study, Tversky 

and Kahneman (1992) proposed cumulative prospect theory, allowing the probability weighting 

functions to also depend on the outcomes.  

 

3.5.2.3 Incorporating risk in the random utility framework 

One of the approaches to evaluate the effect of risk is the mean-variance approach. Under this 

approach, the variance of an attribute is assumed to be a direct source of disutility. Introducing 

the mean-variance approach into the random utility framework, the systematic component of the 

indirect utility function can be written as: 

(3.6)   
k

kkxx XxEV  
2

0 ][  

where ][xE  is the expected value (mean) of the stochastic attribute, estimated as 
m

mm xpxE ][

; 2
x  is the variance of the stochastic attribute, estimated as 222 ][][ xExEx  ; and   is the 

parameter associated with the variance, directly capturing an individual’s response to the 

variability in the stochastic attribute x . kX  contains the deterministic attributes (attributes for 

which the outcome is known with certainty); and k is a vector of parameters associated with 

the deterministic attributes. 

 A richer specification following Hensher et al. (2011) combines the elements of expected 

utility and prospect theory into the random utility model. Using expected utility theory to model 
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risk allows for the estimation of individuals’ risk preferences based on the curvature of their 

utility over the stochastic attribute. This approach also draws from prospect theory the 

introduction of probability weights (Equation 1.2-1.5) to allow for individuals to subjectively 

assign decision weights to the original probabilities. This approach results in a non-linear utility 

specification within the random utility model. In addition, this approach is more flexible in that 

it allows for the estimation of a utility parameter for net returns in addition to farmers’ risk 

attitudes. By embedding the extended utility term into the random utility model, the systematic 

component of indirect utility can be written as follows: 

 (3.7)                                       
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where r  is the parameter associated with the risky attribute x ; )( mpw  is a non-linear 

probability weighting function;   is an attribute-specific risk aversion coefficient, representing 

individuals’ attitude towards the risk associated with the stochastic attribute; kX  is a set of 

deterministic attributes (attributes for which the outcome is known with certainty); and k is a 

vector of parameters associated with the deterministic attributes. Hensher et al. (2011) refer to 

the term 

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  as the attribute specific expected utility. 

 

3.5.3 Model estimation 

Two modeling approaches are used to model the risk associated with net returns under a 

conservation contract. The first model considers the stochastic nature of net returns within the 

random utility framework by using a mean-standard deviation approach (using the standard 

deviation instead of the variance), however the assumption of risk neutrality is implicitly 
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imposed. The second model is an attribute specific extended expected utility model, which is a 

more complete specification as it takes into consideration the stochastic nature of farmers’ net 

returns and risk preferences by embedding expected utility and prospect theory within the 

random utility framework, allowing for the estimation of a parameter for net returns in addition 

to farmers’ risk attitudes.  

 

3.5.3.1 Mean-standard deviation approach 

In each choice situation, farmers faced potential changes in net returns when adopting a 

conservation contract under each choice scenario. Farmers were presented with three potential 

net return outcomes: gains in net returns (
 ), no changes in net returns ( 0 ), and losses in net 

returns (
 ). The baseline net return ( 0 ) indicates that farmers will receive 100% of their 

annual level of net returns. The gain (loss) in net returns is the percentage above (below) their 

current level of net returns (100%). Expected net returns can then be estimated as the probability 

weighted average of the three potential outcomes Equation (3.8).  

(3.8)   )()()( 030201

   pppENR  

In this study, a variant of the mean-variance approach was estimated using the standard deviation 

of expected net returns. This model is estimated to study the effect that expected net returns and 

the variation of net returns under a conservation contract exerts on farmers willingness to enroll 

in the conservation contract. The indirect utility model estimated using the mean-variance 

approach to model risk in net returns within the choice model is then given by the following 

expression:  
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(3.9)  
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where ENR is expected net returns and SD_NR is the standard deviation of net returns. Pay 

represents the level of incentive payment in dollars per acre; Program is a binary variable taking 

a value of 1 if the program through which the incentive is offered is a carbon payment through a 

carbon market and 0 if the program is a direct government payment. NT , Rot , Cover , and 

VRA are binary variables indicating if continuous no-till, conservation crop rotation, cover crops, 

and VRA of inputs were included in the practices required under the conservation contract. 

SQNT , SQRot , SQCover , and SQVRA are binary variables indicating if a farmers has already 

adopted the specified conservation practices in the proposed conservation bundle. These 

parameters were interacted with the practices in the contract to adjust for the effect of prior 

practice adoption on the willingness of farmers to enter into the contract and to identify the 

maintenance payment necessary for farmers to maintain these practices. LowEnv and MidEnv 

denote the level of perceived offsite environmental benefits from the conservation contract, and 

could be low (LowEnv), medium (MidEnv), or high (used as the base case during estimation)
5
.  

 The parameter SD  directly captures farmer’s response to the variability of net returns 

(risk) under the conservation contract and it is expected to be a direct source of disutility. On the 

other hand, the parameter associated with expected net returns ( ENR ) is expected to be positive 

under the assumption that farmers are profit maximizers. The parameters nt , rot , ccrop , VRA  

are expected to be negative. Since adopting conservation practices may require additional 

                                                 

5 The levels of offsite environmental performance are a qualitative description of perceived benefits, and 

therefore can be subjectively interpreted by the decision maker. 
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investment, may increase labor requirements, and may require changing crop management; a 

lower willingness to adopt the contract is expected when this requires that the farmers adopts 

new practices into their operation. A larger negative effect is expected for practices that are not 

as widely adopted like cover crops and VRA of inputs. In contrast, the parameters sqnt _ , 

sqrot _ , sqccrop_ , and sqVRA _  are expected to be positive, as farmers  with previous conservation 

experience may  be more likely to enter into a conservation contract, particularly when the 

contract requires practices already in place on their farms. Incentive payment is an important 

element of conservation contracts and is expected to be a positive factor ( 0pay ) in farmers’ 

decision to enroll in the contract. There is no a prior expectation regarding the sign of prg  as 

there are different factors that could both negatively or positively affect farmers response. First, 

while a carbon payment can represent an additional source of income for the adoption of 

practices, payments are subject to market fluctuations and are not fixed as they would be under a 

federal conservation program. Second, carbon markets may produce a negative response 

because of negative views on the climate change debate potentially originating these carbon 

trading schemes. On the other hand, some farmers may favor a market-based mechanism where 

those using  the carbon offsets (in this case, GHG emitter companies) pay for the sequestration 

service and not the government (Ribaudo et al., 2010). Farmers are expected to have preference 

for contracts with higher offsite environmental benefits (used as the base case in estimation), 

thus a low or medium level of benefits is expected to be less preferred by farmers (i.e. 

0 and MELE  ).  
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3.5.3.2 Attribute specific extended expected utility 

Following Hensher, Greene, and Li (2011), the attribute specific expected utility term that 

models the stochastic component of net returns for the situation modeled here is given by the 

following expression: 

(3.10)             1/))(())(())(( 1
03

1
02

1
01 pwpwpwEEUT EUT  

where expected utility is the probability weighted average utility of the potential three net returns 

outcomes, and EUT  is a utility parameter measuring farmers preference for net returns. This 

parameter is expected to be positive under the assumption that farmers are utility maximizers. 

Risk perception is an important factor in individual’s choices (Weber and Milliman, 1997), 

especially in the agricultural sector where outcomes are stochastic in nature (Beal, 1996). A 

higher risk associated with the conservation contract is expected to result in a lower willingness 

to enroll in the contract. Under this model specification,   is the risk attitude towards net returns 

and is expected to be positive a priori, indicating risk aversion. Since risk attitude can vary across 

individuals, the risk attitude parameter was modeled as a function of regional characteristics and 

farm size measured by total acreage such that, FarmSizeCentralWestern 3210   .  

 The model where the attribute specific expected utility term is embedded into the random 

utility framework to model decisions under risk is estimated using the following functional form 

for the systematic component of the indirect utility function:  
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In this functional form, the expected net returns (ENR) and the standard deviation of net returns 

(SD_NR) used to estimate the mean-standard deviation approach in equation (3.9)  are replaced 

by the attribute specific expected utility term (EEUT) specified in equation (3.10). Four different 

models were estimated using the probability weighting specifications outlined in Equations (3.2) 

to (3.5) and an additional model was estimated where the probability weighing function was 

assumed to be linear ( ppw )( ). Separable decision weights were used, that is, probability 

weights depend on the original probabilities only, and not on the outcomes. Since farmers form 

their own expectations of potential net returns based on their own (or their peers’) experiences, 

the probability weighing function’s parameters are expected to be statistically significant and are 

expected to result in an overweighting of low probabilities and underweighting of large 

probabilities as findings in previous empirical applications suggest (Kahneman and Tversky, 

1979; Lattimore et al., 1992; Prelec, 1998; Tversky and Kahneman, 1992). Since probability 

weights can also reveal risk, risk attitude is expected to be larger in the linear probability 

specification where no weighting functions are applied to the original probabilities. 

 

3.5.3.3 Error component model specification 

The models were estimated using a general error component framework to capture heterogeneity 

across farmers. Let the utility of farmer i (i=1,…,235) associated with contract j (j= 1,2) in each 

choice scenario t (t=1,…,12) be: 

(3.12)     ijijjijtijt EVU   ),( xβ  

where )(V is the systematic component of the utility and can take a linear specification 

following Equation (3.9), or a non-linear specification as described in Equation (3.11). The 
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models examined are embedded into this general specification, the systematic component of 

utility ( )(V ) changes in each model. ijE is the error component or alternative specific random 

individual effects, included to control for unobserved heterogeneity not accounted for in the 

model specification; and j is the standard deviation of the error component and assumed to be 

equal to one. The individual random component ij is independent and identically distributed 

(IID) extreme value Type I (Louviere et al., 2000). The structural model that estimates the 

conditional probability of farmer i choosing contract j is then given by (Bhat, 1998; Greene, 

2012): 
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A restriction was imposed by setting the systematic component of the utility associated with the 

status quo equal to zero ( 00 tiV ). Models were estimated using the PROC NLMIXED 

procedure In SAS
6
.  

 

3.5.3.3.1 Risk premium 

The risk premium P , is the dollar amount that would need to be paid to make risk averse farmers 

indifferent between adopting a risky contract versus a risk-free contract.  Farmers are said to be 

indifferent between the two contracts if the probability of adoption between the two contracts is 

equal as follows: 

                                                 

6 The PROC NLMIXED procedure fit the model by maximizing an integrated likelihood approximation 

by adaptive Gauss-Hermite quadrature. 
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where (.) is the logistic cumulative distribution function, and P is the risk premium. Equation 

(3.14) shows the probability of a risk-free contract in the right hand side, and the probability of 

adopting a risky contract in the left-hand side. This expression can be further simplified to:  

(3.15)     PEUUE  ][)]([  ,      or 

(3.16)      PEUE 


][)]([
1

  

The right hand side of Equation (3.16) is also known as the certainty equivalent )(CE and 

represents the sure amount farmers will be willing to accept to avoid a risky contract with a 

higher return. The risk premium then is estimated as the difference between the expected net 

returns (mean of net returns) under the contract and the certainty equivalent (Pratt, 1964).     

(3.17)            CEEP  ][  

The risk premium represents the amount farmers would be willing to pay to avoid a risky 

contract by replacing it for a contract with a sure payoff, that is, a contract where they obtain the 

mean net returns (expected profits under the contract). The risk premium was estimated 

numerically for each farmer using the parameter estimates from Equation (3.11) and individual 

farmer data. The average across farmers is reported in Table 3.8. 

. 
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3.5.3.3.2 Model assessment 

Since the different models evaluated in this section have different parameters and specifications 

for the probability weighing function, a test for non-nested hypothesis is necessary to judge 

goodness of fit across the different models. A method commonly used to evaluate a model in 

empirical applications is the likelihood ratio index or Pseudo R-squared (Greene, 2012). Let each 

model be indexed by ),,1( Ggg   with a set of Kg parameters given by ̂ , the likelihood 

ratio index adjusted for the number of parameters is then given by (Ben-Akiva and Lerman, 

1985): 

(3.18)      
 
 0

ˆ
1)( 2

L

KL gg

g





  

where  ̂gL  is the log-likelihood for the estimated model,  0L  is the log-likelihood for the 

constant only, and gK is the number of parameters in the model. The measure of   gg KL 2ˆ2    

is known as the Akaike Information Criterion (AIC) and is also used to compare models, where a 

smaller AIC value is better (Greene, 2012). In order to discriminate between two models (model 

1 and model 2), on the basis of which performs better, Ben-Akiva and Swait (1986) proposed a 

test where under the assumption that model 1 is the true specification, and given that the 

probability that the measure of fitness for model 2 )( 2
2   is greater than that of model 1 )( 2

1  by 

some 0Z , it asymptotically holds that:  

(3.19)      )()0(2Prob 12
2

1
2
2 KKLZZ    
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where   is the standard normal cumulative distribution function. Equation (3.19) represents the 

upper bound for the probability of incorrectly selecting the wrong model based on the goodness 

of fit (Ben-Akiva and Lerman, 1985). 

   

3.6 Survey Design and Data 

3.6.1 Survey methods 

This study examined the adoption of conservation practices by farmers in Kansas. A stated 

choice survey was administered during a series of workshops held across 10 locations spanning 

the state of Kansas from December 2013 to March 2014. Workshop locations were selected 

based on different weather, landscape and farm demographic characteristics. The cities where 

the workshops were held are: Salina, Great Bend, Colby, Dodge City, Wellington, Pratt, 

Hiawatha, Topeka, Manhattan, and Parsons, Kansas. Prior to administering the stated choice 

experiment during the workshops, the stated choice survey was field tested with farmers during 

three focus groups held in Manhattan, Salina and Wellington. 

A sample of farms was obtained from the Kansas Farm Management Association 

(KFMA), which has approximately 2,300 farms across Kansas in their database that produce 

crops and livestock. Of these farms, approximately 76% are identified as primarily crop 

producers and 16% are identified as crop/livestock producers. A map depicting KFMA’s 

membership by county is shown in Figure 3.2. Working with members of KFMA allowed for 

respondent data to be matched to historical financial data collected by KFMA for the 

participating farms. A total of 1,513 farmers from the KFMA were mailed letters asking them to 

attend a workshop. Of the farmers contacted, 40 were no longer farming, were deceased or 

could not be located; and 432 responded to the letter. The letters of request resulted in about 250 
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of the farmers attending the workshops. The rest of the farmers who responded were interested 

in participating, but could not attend the workshops on the dates these were held. This resulted 

in an adjusted response rate of approximately 30%, and an attendance rate of 17%. Workshop 

attendees were compensated for their time and travel expenses with a stipend of $125.  

The workshops consisted of an introductory presentation covering the basic aspects of 

the conservation practices under study, a time for farmers to answer a survey questionnaire and 

the stated choice experiment, and a focus group to discuss farmers’ views on conservation. Prior 

to administering the stated choice experiment, farmers were asked to complete a survey with 

questions to elicit their farming history, farm operation, and conservation practices used on their 

farm. Subsequently, farmers were provided with general guidelines on how to respond to the 

stated choice experiment questions. After farmers completed the stated choice exercise, a focus 

group was conducted where farmers discussed their views on conservation, their experience 

using conservation practices, benefits and disadvantages from using conservation practices on 

their farm, and their experience participating in conservation programs. 
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Figure 3.2  Kansas Farm Management Association membership by county  

 

 

 

Source: KFMA (2015) http://www.agmanager.info/kfma/  

 

  

http://www.agmanager.info/kfma/
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3.6.2 Survey data 

Data from farmers with incomplete responses for needed variates were not considered, leaving 

234 farmers’ data for analyses. Table 3.1 presents these farmers demographics reported in the 

survey and compares them to the 2012 U.S. Census of Agriculture (NASS-USDA, 2014) and the 

demographics of KFMA members in 2013 (KFMA, 2014).  All of the farmers in the study were 

between 20 and 84 years of age, with a sample average of 56 years which could be considered 

representative of the average Kansas farmer (58 years – as reported in the U.S. Census of 

Agriculture). However, the average size (including CRP land) of farm operations in the sample 

(2,508 acres and sales value of $400,000 to $599,999) is larger than the average farm size of 747 

acres and sales value of $298,845 in Kansas, as reported in the 2012 Census of Agriculture. It 

should be noted that, small size farms, hobby/residential farms or farms operated by retired 

operators (sales < $250,000) represent a significant share of the total U.S. farm population 

(Lambert et al., 2007). In the U.S. Census of Agriculture, farmers with sales lower than $99,999 

represent roughly 74% of the total farms (NASS-USDA, 2014). This study focuses on medium to 

large farms, excluding small hobby farmers, retired farmers, and very large operations. Medium 

and large farmers were chosen as the study group as the goal was to examine farmers that 

produce a higher percentage of the overall crop production. In addition, this group was selected 

because farm size plays an important role for conservation practice adoption, particularly for 

practices that are management intensive as they require operators to be devoted to farming 

because of the additional learning, time and financial investment needed (Lambert et al., 2007).   

When comparing the farm demographics of the farmers who participated in the survey to 

those of all KFMA members, the sample is representative of the KFMA group. KFMA members 

are a good sample of farmers to study as they generally operate medium to large size farming 

operations, which is the main target of this study. Hence, results in this study should be 
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interpreted as representing conservation practices adoption decisions by medium to large farm 

operators in Kansas. 

Figure 3.3 shows the percentage of farms whose operators reported using the selected 

conservation practices. While the adoption numbers are high, some farmers may no longer use 

the practice or use the practice on a small amount of their crop land. A higher percentage of 

farmers reported the use of continuous no-till (62.4%) and conservation crop rotation (62.8%). 

While 86% of the farmers had periodically used no-till practices on a particular crop (rotational 

tillage), only 62.4% of them had practiced continuous no-till on some part of their farm 

operation. Consistent with findings by (Grandy et al., 2006), only a fraction of no-till producers 

have adopted continuous no-till. A fewer number of farmers indicated that they had used cover 

crops (33.3%) and VRA of inputs (27.8%). The adoption rates of these practices was high in the 

study group compared to adoption rates previously reported (CTIC, 2013; Schimmelpfennig and 

Ebel, 2011; Singer et al., 2007), this is due to the nature of the survey which focuses on 

intensification of conservation. Thus, the survey group sample targeted and design made more 

favorable for farmers that had already adopted some sort of conservation on their farm.  
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Table 3.1  Average farm characteristics  

Variable N Mean SD Min. Max. 

Mean 2012 

Census of 

Agriculture 

Mean 2013 

KFMA 

Age (yrs.) 234 56 13 20 84 58 ---- 

Acres 234 2,508 1,981 110 14,875 747 2,196 

Sales 234 6.20
b
 2.04 1 9 $ 298,845 $618,416 

a Source: National Agricultural Statistics Service, USDA (2014) 
b Mean sales of 6.20 corresponds to the sales category of $400,000 to $599,999 
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Figure 3.3  Percentage of farmers who currently used the selected conservation practices. 
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Figure 3.4  Percentage of farmers who currently use or have used the selected conservation 

practices for select cash crop.  
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Results of adoption rates at the crop level (Figure 3.3) indicate the highest rate of adoption of no- 

till is in soybeans (79.9%), while the lowest rate of adoption is in corn (68.0%). In the case of 

VRA of inputs, corn has the highest rate (32.4%) and sorghum has the lowest rate (13.8%). 

Several of the farmers who indicated using these practices have not fully adopted them on all 

their cropland; some of them have only experimented, whereby the minimum percentage of 

cropping land under each selected practice ranges from 1 to 3 percent (see Figure 3.5). Only a 

small fraction of farmers who have adopted conservation practices have participated in 

conservation programs. The program with the highest participation rate is Conservation Reserve 

Program (CRP), with 61.8% of the farmers participating. With respect to programs that provide 

incentive payments for the adoption of management practices, farmers reported current or past 

participation in EQIP (38.1%) and CSP (22.8%). This result is consistent with findings by 

(Reimer and Prokopy, 2014) who found higher rates of participation in CRP, and low 

participation rates in the EQIP and CSP programs. 

 The percentage of farmers who receive incentive payments through EQIP or CSP for 

using the practices in this study is reported in Table 3.2. Among farmers who have adopted these 

practices, continuous no-till and cover crops seem to be the most common practices for which 

they receive incentive payments through CSP (18.3% for no-till and 19.1% for cover crops).  

However, it is important to note that payments for tillage practices could include other types of 

conservation tillage and not strictly continuous no-till. A smaller percentage of cover crop 

adopters receive payments through EQIP (1.6%). VRA of inputs, which is the least adopted 

practice, has the lowest rate of incentives being received for its use on-farm. 
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Table 3.2  Farmer receiving incentive payments for practices used 

 
EQIP (%)ª CSP (%) 

Continuous no-till 6.62 18.38 

Conservation crop rotation 4.48 11.19 

Cover Crops 1.37 19.18 

Variable rate application of inputs 1.69 8.47 

ª Percentage calculated based on the number of current adopters 

EQIP = Environmental Quality Incentives Program, CSP = Conservation Stewardship Program 
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Figure 3.5  Percentage of crop land under each practice 
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3.6.3 Stated choice design 

In order to assess farmers’ willingness to adopt and intensify conservation on their farms, 

farmers were asked to complete a stated choice exercise. The attributes in the contract were 

selected in a way to mimic current conservation programs. Under current government 

conservation program, farmers receive an incentive payment for a conservation plan consisting 

of various conservation practices. In order to address environmental concerns, through monetary 

incentives, programs like the CSP encourage farmers to maintain existing conservation practices 

and to intensify conservation on their working lands by adopting new conservation practices 

(NRCS, 2015a).  Farmers who adopt new practices are faced with potential changes in their 

bottom line as yields and input costs change due to the implementation of new agricultural 

practices.  

 Respondents were presented with twelve hypothetical contract choice scenarios with two 

contract alternatives, a conservation contract and a status quo contract. Contract attributes and 

attribute levels evaluated are presented in Table 3.3 and are as follows::  

i. Conservation practices to adopt under the contract: the conservation practices evaluated 

were continuous no-till, conservation crop rotations, cover crops and VRA of inputs. The 

conservation practices were treated as dichotomous attributes in the experimental design 

to determine if the practice was required under the contract. The practices present in each 

set were presented in the contract as a bundle to represent different levels of conservation 

intensification. This attribute was included not only to account for adoption but also for 

conservation intensification. Some practices are currently widely adopted; however, 

conservation programs strive for additionality by encouraging farmers to undertake more 

conservation efforts while also providing incentives to maintain and manage existing 

conservation practices.  



 

103 

 

ii. Incentive payment: the annual per acre incentive payments evaluated were $0, $15, $30, 

$45, $60, and $75. These payments, while hypothetical, are similar to base payments 

reported under CPS and EQIP in Kansas
7
. 

iii. Incentive program: this study evaluated two incentive programs, a federal program 

(EQIP/CSP-like program) and a carbon credit payment through a carbon market. 

Payments for carbon sequestration can be established though contracts where farmers get 

paid per ton of carbon sequestered, as an alternative to per-acre payments for the 

practices implemented (Antle et al., 2003). To avoid further complicating the choice task 

in the experiment, in this study farmers were presented with a payment per acre for the 

practices adopted.  

iv. Off-farm environmental benefits from adopting conservation practices: While economic 

drivers are a main factor in conservation contracts, the decision to adopt conservation 

practices is also affected by factors other than economic motivations (Bergtold et al., 

2012; Chouinard et al., 2008). It has been argued that famers who are more conservation-

minded are more likely to adopt conservation practices (Greiner et al., 2009a), and that a 

higher level of benefits from conservation motivates greater adoption (Reimer and 

Prokopy, 2014). This study examined the extent to which the effectiveness of 

conservation practices in achieving environmental benefits off-farm affects farmers’ 

actions on-farm. Three hypothetical levels of off-far environmental benefits were 

included: Low, Medium and High.  

                                                 

7 EQIP payment rates for the conservation practices examined in 2012 are: No-till practices=$12.26/acre; 

Conservation crop rotation=$6.73/acre; VRA of fertilizer=$13.94; and Cover crops=$27.40 for single 

species and $47.15/acre for multiple species. Kansas Practice Payment Schedule for EQIP - Fiscal Year 

2012 available at:  http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_031993.pdf.  

http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_031993.pdf
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v. Riskiness of the contract: While some agricultural practices have proved to be profitable, 

they have not been fully adopted. This indicates that there are factors other than the 

profitability of a technology affecting farmers’ choices. An important factor farmers 

consider is the risk associated with a technology. Risk is introduced to the operation as 

new practices are adopted that could increase the variability of costs, crop yields, and 

returns. In addition, the restrictions of the contract may introduce inflexibility which may 

affect a famer’s ability to react to external events. For example, if a farmer enrolls in a 

contract that requires him to plant cover crops for the next five years, planting a cover 

crop in a dry year may affect the yields of the following cash crop.  

 In this study, the riskiness of the contract was introduced in the experiment by 

presenting a distribution of potential changes in average net farm income over the 

timeframe of the contract with corresponding probabilities of occurrence. The design of 

the experiment had four distributions for potential changes in net returns for adopting the 

contract. The distributions of potential changes in net returns were assumed symmetric 

with equal potential gains and losses, varying only by the level of potential changes: (1) 

5% Loss, 0% change, 5% Gain; (2) 10% Loss, 0% change, 10% Gain; (3) 15% Loss, 0% 

change, 15% Gain; and (4) 20% Loss, 0% change, 20% Gain. The design also consisted 

of four distributions of probabilities associated with the potential changes in net returns. 

Two of the probability distributions are symmetric with equal probability of observing 

losses and gains. The first distribution (P: 30% of loss, P: 40% of no change, P: 30% of 

gains) is meant to represent a scenario where the outcomes are more uncertain with the 

probability of occurrence of the three outcomes being almost equal. The second 

distribution (P: 10% of loss, P: 80% of no change, P: 10% of gains), represents a 
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distribution where there is a high probability that net returns will not change, with a low 

and equal probability of obtaining a loss or a gain. The third distribution (P: 5% of loss, 

P: 60% of no change, P: 35% of gains) is more heavily weighted towards observing a 

gain than to observing a loss, while the forth distribution (P: 35% of loss, P: 60% of no 

change, P: 5% of gains) is more heavily weighted towards losses than to gains. While 

farmers were only presented with three probability outcomes (a discrete distribution as 

opposed to a continuous distribution), for illustration purposes Figure 3.6 depicts that 

distributions that are intended to be represented in the design, using the example where 

the distribution of outcomes is 20% Loss, 0% change, 20% Gain.  
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Figure 3.6  Distribution of the probabilities of net returns change in stated choice design 
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Table 3.3  Contract attributes and attribute’s levels   

Contract Feature Description Levels 

Continuous no-till Planting crops directly into the crop residue without disturbing 

the soil in all the crops in rotation in a particular field. 

Included, Not included 

Conservation crop rotation Three or more year rotation with three or more crop types, 

including a combination of high residue crops, grasses and/or 

legumes. 

 

Included, Not included 

Cover Crops Planting a single or multiple cover crop species between regular 

cash crops for primarily conservation purposes. 

Included, Not included 

VRA of inputs Use of site-specific information for input application rates within 

a field, including sensor-based and/or map-based methods. 

Included, Not included 

Incentive payment  

 

Payment ($/acre) offered annually during the length of the 

contract.  

$0/acre,    $15/acre,  $30/acre,  

$45/acre,  $60/acre,  $75/acre  
 

Incentive Program Type of mechanism through which the payment is offered, 

administered and regulated.  

Federal Program or  Carbon 

Credit Payment through a 

Carbon Market 
 

Offsite Environmental Impact Potential off-farm environmental benefits of the practices stated 

under each scenario (e.g. downstream water and air quality).  

Low, Moderate, High 

     Riskiness: Impact on Net Returns 

Average Change in Net returns 

over 5 years
1
 

Distribution of income changes over a 5 years period (length of 

the contract). 

-20% 

0% 

+20% 

-15% 

0% 

+15% 

-10% 

0% 

+10% 

-5% 

0% 

+5% 

Probability of changes in net 

returns
2
 

Probability distributions for potential net income changes. 

5% 

60% 

35% 

30% 

40% 

30% 

35% 

60% 

5% 

10% 

80% 

10% 
1,2 Each column represents a distribution. The first row in each column represents losses, second column represents no changes in net returns, and the third row represents gains. 
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The contract presented to farmers was a standard 5-year contract (like CSP contract length) with 

verification of compliance by a program professional. A clause included in the contract stated 

that farmers had to make a full repayment of the incentive payments received plus any 

administrative costs if they were found in violation of the contract (if they fail to provide the 

practices stipulated in the contract). The specifications of the contract shown to famers in the 

choice experiment are presented in Appendix A. 

 A fractional-factorial experimental design with 288 choice sets was obtained from a 

25 4362   full factorial design. This design allows for the identification of main effects and 

two-way interaction effects (Louviere et al., 2000).  The set of choice scenarios chosen was the 

candidate set with the highest D-efficiency score (D-efficiency =93.6). The 288 combinations 

were blocked into 24 blocks with 12 choice sets. Each farmer was presented with 12 choice 

scenarios, each containing a conservation contract and a constant status quo option. An example 

of a choice set is presented in Figure 3.7. The design was generated using PROC OPTEX in 

SAS® (SAS Institute Inc, 1999). 

 Descriptive statistics of the data, including contract attributes, demographics, and farm 

characteristics used in estimating the models are presented in Table 3.4. Observations from 234 

farmers were deemed appropriate for estimation, resulting in 2,808 usable observations.  
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Figure 3.7 Example of choice task. 

Conservation Practices   

  Continuous No-till 

  Conservation Crop Rotation 

  Cover Crops 

  Variable Rate Application of Inputs 

Incentive Program Carbon Credit Payment through a Carbon Market 

Incentive Payment   $45/acre 

Riskiness   

 

 Average Change in Net  

Returns Over 5 Years 
 

    10% Loss        
   No change        

   10% Gain      

 

Probability of 
Occurrence 
 

5%     Very unlikely    

60%   Likely    

35%   Medium likelihood 

Off-farm 

Environmental Benefits 
  Moderate 

   
Would you adopt this system or stay with the Status Quo?    

           Adopt          Status Quo           
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Table 3.4  Data summary statistics  

 

Complete Sample (N=2,808) 

Variable Mean SD Min Max 

Dependent variable: (adopt=1, status quo=0) 0.462 0.499 0 1 

     

Contract attributes:     

Incentive payment ($/acre-year) 37.121 25.613 0 75 

Incentive program  (1= carbon market, 0= federal program) 0.504 0.500 0 1 

Conservation practices     

   Continuous no-till 0.516 0.500 0 1 

   Conservation crop rotation 0.507 0.500 0 1 

   Cover crops 0.517 0.500 0 1 

   Variable rate application of inputs 0.523 0.500 0 1 

Percentage change in net returns 

        Percentage of loss in net returns 12.46% 5.60% 5% 20% 

    Percentage of gains in net returns 12.46% 5.60% 5% 20% 

Probability of changes in net returns 

        Probability of loss in net returns 19.99% 12.75% 5% 35% 

    Probability of no change in net returns 59.95% 14.14% 40% 80% 

    Probability of gains in net returns 20.06% 12.75% 5% 35% 

Offsite environmental benefits     

    Low  0.337 0.473 0 1 

    Moderate  0.325 0.468 0 1 

    High  0.338 0.473 0 1 

Farm/farmers’ characteristics: 

    Adopted continuous no-till 0.624 0.484 0 1 

Adopted conservation crop rotation 0.628 0.483 0 1 

Adopted  cover crops 0.333 0.471 0 1 

Adopted variable rate application of inputs 0.278 0.448 0 1 

Western 0.218 0.413 0 1 

Central 0.419 0.493 0 1 

Total acres (hundred acres) 25.088 19.814 1.1 148.75 
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3.7 Results 

3.7.1 Model results  

3.7.1.1 Mean-variance approach 

Results for the mean-standard deviation model are reported in Table 3.5. The parameters 

estimates for the contract attributes are all statistically significant and have the expected sign. 

Consistent with prior expectations, higher net returns increases farmers’ willingness to enter into 

the contract. The variability in net returns (standard deviation of net returns) was negative, 

indicating that farmers’ utility under a conservation contract is reduced as the variability of net 

returns increases. This result reveals aversion to risk, farmers’ willingness to adopt a 

conservation contract declines if the contract is risky. While this model reveals farmers’ response 

to risk, it does not provide a measure of the level of farmers risk attitudes, assuming risk 

neutrality.  

 The incentive payment parameter was positive indicating that a higher conservation 

incentive would increase farmers’ willingness to participate in the conservation contract. The 

results also indicate farmers’ preference for federal programs in lieu of carbon credit based 

programs. The conservation practice parameters were negative; indicating that adding a practice 

to the contract reduces farmers’ willingness to enter into the contract. The parameter estimates 

associated with interaction between the practices required in the contract and the variable 

indicating if the farmer had already adopted such practice (e.g. SQj NTNT  ) were positive. This 

result indicates that farmers who have already adopted the conservation practices are more likely 

to enter into a conservation contract. In addition, a lower off-site environmental performance is 

likely to reduce farmers’ enrollment in the conservation program. 
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Table 3.5  Model estimates for the mean-variance model 

 

Parameter  

estimates 

 

Standard  

   Error 

Constant -12.5537 *** (1.8503) 

returnsnetExpected  0.1191 *** (0.0183) 

returnsnetofDevSt ..   -0.0336 ** (0.0144) 
Payment 0.0492 *** (0.0025) 
Program -0.2531 ** (0.1037) 
NT  -1.2993 *** (0.1681) 

SQj NTNT   1.7732 *** (0.1998) 

Rot  -0.7019 *** (0.1602) 

SQj RotRot   0.4561 ** (0.1906) 

Cover  -0.7578 *** (0.1264) 

SQj CoverCover   0.5206 *** (0.1951) 

VRA  -0.8566 *** (0.1225) 

SQVRAVRA  0.8695 *** (0.2039) 

LowEnv  -0.3865 *** (0.1274) 

MidEnv -0.2545 ** (0.1264) 

EC  2.3615 *** (0.3568) 

  
No. of Observations 2808   
Log Likelihood 1452.9   
AIC 2937.8   
Pseudo R-squared 0.253   

Adjusted R-squared 0.244   

*,**,*** statistically significant at the 1%, 5% and 10% level. Standard errors in parenthesis. 
1 Carbon Credit Payment through a Carbon Market was used as the base scenario. 
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The mean-standard deviation model was also estimated using a random parameters logit (results 

are reported in Appendix B). In this model, significant heterogeneity in farmers’ responses to net 

returns, variance of net returns, conservation program and conservation practices required in the 

contract were found as evidenced by the significance of their standard deviation estimates. No 

evidence was found of heterogeneity in famers’ preference for the off-farm environmental 

impacts of the conservation practices in the contract (see Appendix B).  

 

3.7.1.2 Attribute specific extended expected utility 

3.7.1.2.1 Model fit 

Results of the models estimated using expected utility and probability weights are reported in 

Table 3.6. The parameter estimates for incentive payment, incentive program, conservation 

practices and off-farm environmental benefits are consistent in sign and magnitudes across 

probability weighting specifications. Parameters results will be discussed in the following 

section. In terms of goodness of fit, the TK-PWF and GE-PWF models would seem to be 

preferred based on the adjusted Pseudo R-squared and the Information Criterion (AIC). Results 

from the Ben-Akiva and Swait (1986) test (Table 3.7) suggest that the GE-PWF is the preferred 

model, followed by TK-PWF and P2-PWF which are preferred to P1-PWF and to the linear 

probability weighting specification. For an example of how to interpret results, from the Ben-

Akiva and Swait (1986) test considerer the results comparing model P1-PWF and TK-PWF in 

Table 3.7. The resulting probability of 0.006 indicates that the probability that the goodness of 

fit of P1-PWF is larger than that of TK-PWF in a sample of 2,808 observations is less than 

0.006. 
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Table 3.6  Model estimate results for the attribute specific extended expected utility models 

 

Linear 

probability  
TK-PWF 

 

GE-PWF 

(Best model)  
P1-PWF 

 
P2-PWF 

               Constant -51.7204 *** 
 

-42.7103 
  

-60.8061 *** 
 

-35.7249 
  

-43.4662 
 

 
(8.0624) 

  
(54.2032) 

  
(10.1715) 

  
(31.5567) 

  
(64.2332) 

 

Risk attitude parameters ( )              

0  0.7528 *** 
 

0.7085 * 
 

0.8135 *** 
 

0.6440 ** 
 

0.7113 * 

 
(0.0105) 

  
(0.3718) 

  
(0.0159) 

  
(0.3194) 

  
(0.4298) 

 
Western  0.0485 

  
0.0153 

  
-0.0610 

  
0.0117 

  
0.0156 

 

 
(0.0322) 

  
(0.0439) 

  
(0.0414) 

  
(0.0084) 

  
(0.0553) 

 
Central  0.0125 

  
0.0082 

  
-0.0079 

  
0.0065 

  
0.0083 

 

 
(0.0087) 

  
(0.0195) 

  
(0.0064) 

  
(0.0052) 

  
(0.0240) 

 
Acres  -0.0004 ** 

 
-0.0002 

  
0.0002 * 

 
-0.0002 

  
-0.0002 

 

 
(0.0002) 

  
(0.0005) 

  
(0.0001) 

  
(0.0001) 

  
(0.0006) 

 

Probability weighting parameters 
          

   --- 
  

1.1398 *** 
 

0.9607 
  

0.9916 *** 
 

0.9924 *** 

    
(0.0994) 

  
(0.6510) 

  
(0.0242) 

  
(0.0215) 

 
   --- 

  
   --- 

  
0.9804 *** 

 
     --- 

  
1.0185 *** 

       
(0.0205) 

     
(0.0296) 

 

Contract parameters 
             

r  4.0307 *** 
 

3.2394 
  

4.7886 *** 
 

2.4154 
  

3.3127 
 

 
(0.6469) 

  
(5.5350) 

  
(0.8371) 

  
(3.5555) 

  
(6.5216) 

 
Payment 0.0491 *** 

 
0.0494 *** 

 
0.0492 *** 

 
0.0492 *** 

 
0.0494 *** 

 
(0.0025) 

  
(0.0025) 

  
(0.0025) 

  
(0.0025) 

  
(0.0025) 

 
Program -0.2501 ** 

 
-0.2462 ** 

 
-0.2474 ** 

 
-0.2502 ** 

 
-0.2462 ** 

 
(0.1025) 

  
(0.1027) 

  
(0.1026) 

  
(0.1026) 

  
(0.1027) 

 
NT  -1.3622 *** 

 
-1.3650 *** 

 
-1.3506 *** 

 
-1.3645 *** 

 
-1.3643 *** 

 
(0.1695) 

  
(0.1700) 

  
(0.1696) 

  
(0.1696) 

  
(0.1700) 

 
SQj NTNT   1.8234 *** 

 
1.8308 *** 

 
1.8188 *** 

 
1.8285 *** 

 
1.8304 *** 

 
(0.2031) 

  
(0.2038) 

  
(0.2034) 

  
(0.2033) 

  
(0.2038) 

 
Rot  -0.6514 *** 

 
-0.6554 *** 

 
-0.6491 *** 

 
-0.6610 *** 

 
-0.6561 *** 

 
(0.1608) 

  
(0.1616) 

  
(0.1611) 

  
(0.1609) 

  
(0.1619) 

 
SQj RotRot   0.4026 ** 

 
0.4143 ** 

 
0.4013 ** 

 
0.4133 ** 

 
0.4147 ** 

 
(0.1938) 

  
(0.1948) 

  
(0.1942) 

  
(0.1940) 

  
(0.1951) 

 
Cover  -0.7479 *** 

 
-0.7626 *** 

 
-0.749 *** 

 
-0.7530 *** 

 
-0.7639 *** 

 
(0.1265) 

  
(0.1271) 

  
(0.1268) 

  
(0.1266) 

  
(0.1272) 

 
SQj CoverCover   0.4950 ** 

 
0.5140 ** 

 
0.4926 ** 

 
0.5081 ** 

 
0.5166 ** 

 
(0.1989) 

  
(0.2001) 

  
(0.1994) 

  
(0.1991) 

  
(0.2006) 

 
VRA  -0.7953 *** 

 
-0.8038 *** 

 
-0.8053 *** 

 
-0.7962 *** 

 
-0.8041 *** 

 
(0.1206) 

  
(0.1211) 

  
(0.1208) 

  
(0.1207) 

  
(0.1211) 
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Table 3.6 continued.                

 
Linear 

probability 
  TK-PWF   

GE-PWF 

(Best model) 
  P1-PWF   P2-PWF  

SQVRAVRA  0.7676 *** 
 

0.7735 *** 
 

0.7798 *** 
 

0.7652 *** 
 

0.7737 *** 

 
(0.2061) 

  
(0.2068) 

  
(0.2063) 

  
(0.2063) 

  
(0.2068) 

 
LowEnv  -0.3646 *** 

 
-0.3675 *** 

 
-0.3755 *** 

 
-0.3653 *** 

 
-0.3671 *** 

 
(0.1255) 

  
(0.1258) 

  
(0.1257) 

  
(0.1255) 

  
(0.1258) 

 
MidEnv  -0.2401 * 

 
-0.2497 ** 

 
-0.2578 ** 

 
-0.2410 * 

 
-0.2495 ** 

 
(0.1253) 

  
(0.1257) 

  
(0.1256) 

  
(0.1253) 

  
(0.1257) 

 
EC  2.2312 *** 

 
2.2713 *** 

 
2.2413 *** 

 
2.2508 *** 

 
2.2711 *** 

 
(0.3263) 

  
(0.3313) 

  
(0.3278) 

  
(0.3281) 

  
(0.3316) 

 
               

 
------------------------------------------ Model fit statistics ----------------------------------------- 

No. of Observations 2808 
  

2808 
  

2808 
  

2808 
  

2808 
 

Log Likelihood -1415.6 
  

-1412.7 
  

-1411.1 
  

-1415.7 
  

-1412.6 
 

AIC 2869.1 
  

2865.3 
  

2864.1 
  

2871.5 
  

2867.1 
 

Pseudo R-squared 0.273 
  

0.274 
  

0.275 
  

0.273 
  

0.274 
 

Adjusted R-squared 0.263 
  

0.264 
  

0.264 
  

0.262 
  

0.263 
 

*,**,*** statistically significant at the 1%, 5% and 10% level. Standard errors in parenthesis. 
1 Carbon Credit Payment through a Carbon Market was used as the base scenario. 
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Table 3.7  Ben-Akiva and Swait test results 

Model 1 Model 2 Probability
1
 

GE-PWF Linear probability 0.0041 

GE-PWF TK-PWF 0.0694 

GE-PWF P1-PWF 0.0019 

GE-PWF P2-PWF 0.0414 

TK-PWF Linear probability 0.0143 

TK-PWF P1-PWF 0.0066 

TK-PWF P2-PWF 0.1830 

P2-PWF Linear probability 0.0231 

P2-PWF P1-PWF 0.0105 

Linear probability P1-PWF 0.1221 

1 Probability of incorrectly choosing model 2 given that model 1 is the true model.  
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The alternative specific constant was negative in all the models and statistically significant in 

only two of the models (linear probability weighting specification and GE-PWF). Given that the 

alternative specific constant is associated with the contract alternative, this result could indicate 

a preference for the status quo. An error component was included in the model to control for 

unobserved variability across individuals. The error component was highly significant in all the 

models, indicating significant unobserved heterogeneity across respondents.  

3.7.1.2.2 Contract attributes 

The payment coefficient was positive and statistically significant in all the model versions 

(Table 3.6). Incentive payment has consistently been identified in the literature as an important 

factor in the decision to adopt conservation practices (Cooper, 2003; Dupont, 2010; Kurkalova 

et al., 2006; Lichtenberg, 2004; Ma et al., 2012). While to some farmers the incentive payment 

may not be the primary motivation for adoption, monetary incentives can ease their transition 

into a new production system (Reimer and Prokopy, 2014). Incentive payments can cover the 

cost of the practice, allowing farmers to experiment with conservation practices to determine if 

these are suitable for their operations. Results from a study of farmers’ participation in a cost-

sharing program for the adoption of BMP found that a one percent increase in the incentive 

payment increased participation by 0.23 to 0.25% (Dupont, 2010). It has been also suggested 

that the lack of benefits from conservation programs, in many cases is, a barrier for participation 

by adopters and non-adopters alike (Reimer and Prokopy, 2014).  

The program coefficient was negative and statistically significant in all models. These 

results provide evidence indicating a lower likelihood of adoption for the same level of incentive 

payment if the mechanism through which the incentive payment is offered is a carbon credit 

program. This result suggests a preference for federal programs over market-based programs. In 



 

118 

a study of farmers’ willingness to participate in conservation programs, Ma et al. (2012) found 

no statistical difference between a conservation incentive program provided through the 

government and a non-governmental organization. However, the type of program run by the non-

governmental organization was not specified in the choice experiment.  

A lower willingness to participate in a conservation program that offers incentives 

through a carbon market could be related to famers’ unfamiliarity with this type of program. 

Only 14.3% of the farmers in this study had participated or knew someone who had participated 

in any carbon credit trading program (specifically, the Chicago Climate Exchange). Of these 

farmers, about one third rated their experience as poor, specifically due to the lack of payment. 

Similarly, about 30% of the farmers agreed that the payments offered were fairly low. A negative 

experience with a previously established and failed carbon market could create unfavorable 

views towards market-based approaches to incentivize conservation adoption. In addition, 

uncertainty about the development of a GHG federal policy that would create demand for carbon 

offsets that could lead to the establishment of a robust carbon market may be another important 

factor affecting farmers’ perceptions and willingness to enroll in a carbon credit program. Zeuli 

and Skees (2000) argued that the risk of non-binding policies being developed is a factor that 

could affect the development of a carbon market, mainly due to the uncertainty about trading 

volumes and the price of carbon credits. Being locked into a contract to supply carbon credits in 

a market without legal binding of credits for potential buyers may be a deterrent to farmers’ 

willingness to participate. In addition, the past history of carbon markets, such as the Chicago 

Climate Exchange could have colored farmers’ views about this potential payment mechanism. 

 The parameters associated with the four conservation practices were negative and 

statistically significant in all the models. In agreement with prior expectations, the magnitude of 
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the utility parameters indicates a lower likelihood of adoption for farmers who have not 

previously adopted these practices. For farmers who have adopted these practices, the likelihood 

of enrolling in a conservation program increases as the positive parameters estimated from the 

interaction between the practices required in the contract and the indicator of previous practice 

adoption suggest. Figure 3.6 depicts the differences in the likelihood of adoption for each of the 

conservation practices for adopters and non-adopters. As shown in the graphs, farmers are more 

likely to enter into a five year contract if they have previously adopted the practice. This 

difference is more significant for continuous no-till, where for each level of incentive payment, 

non-adopters are less likely to adopt continuous no-till than any other practice, but for the same 

level of incentive, adopters of no-till are more likely than adopters of the other practices to enter 

into the contract.  

 The parameters for low and medium off-farm environmental benefits were negative and 

statistically significant, indicating that farmers were less likely to adopt contracts with lower off-

farm environmental benefits. Consistent with previous research, this finding suggests that 

farmers care for the environmental impacts of their practices, not only at the farm level, but also 

off the farm. In a study of famers’ participation in U.S. Farm Bill Conservation Programs, 

Reimer and Prokopy (2014) found that off-farm environmental benefit was one of the main 

drivers of program participation. They also found that awareness of external environmental 

benefits was an attitude that characterized the highest adopters (adopters of numerous 

conservation practices). In addition, their results indicated that on-farm environmental benefits 

and financial benefits were likewise important to those farmers who cared about external 

environmental impacts. A study by Ma et al. (2012) found that a higher environmental 

performance increased farmers’ likelihood to consider entering into a conservation program, 
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however, farmers were less likely to enroll land in these programs potentially due to the higher 

costs associated with higher conservation intensity. An application that stems from this result is 

the importance of stressing the benefits from conservation not only on-farm but also off-farm to 

encourage higher levels of conservation adoption. Based on the results of a study of carbon 

offset program for the adoption of no-till and permanent covers, it has been suggested that 

incentive payments coupled with farmers’ better understanding of the benefits from adopting 

these practices could encourage greater adoption levels (Morand and Thomassin, 2005). 
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Figure 3.8 Probability of adoption for each practice under varying incentive payments 

 

 

 

Note: Probabilities estimated assuming high off-farm benefits, mean values for changes in net returns, and a federal program. 
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3.7.1.2.3 Probability weights, risk attitude, and risk premium 

Results corresponding to the probability weights showed minimal transformation of probabilities 

into decision weights. While the probability weighing function parameters were statistically 

significant, the results suggest little use of subjective judgments of original probabilities when 

assessing risk. This reveals limited use of heuristics, that is, the use of previous experience 

and/or current knowledge about the likelihood of net returns outcomes. Probability weighting 

responses are illustrated in Figure 3.9. The direction of the GE-PWF and P1-PWF models 

showed a behavior consistent with overweighting of low probabilities and underweighting of 

large probabilities, while TK-PWF suggests underweighting of low probabilities and 

overweighting of large probabilities. Both, overweighing (Kahneman and Tversky, 1979; 

Lattimore et al., 1992; Prelec, 1998; Tversky and Kahneman, 1992), and underweighting of low 

probabilities have been found in empirical applications (Humphrey and Verschoor, 2004; 

Roberts et al., 2008). However, as discussed above, there is minimal transformation of original 

probabilities in this study. The lines are nearly flat and virtually undistinguishable from the linear 

specification, as seen in Figure 3.9.  
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Figure 3.9  Probability weighing functions  
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 Subjective probabilities could reflect people’s perception of uncertainty (Anderson and 

Dillon, 1992) and aversion to risk as certain outcomes are underweighted, revealing some level 

of pessimism (Lattimore et al., 1992). For example, consider the probability associated with no 

changes in net returns.  While it was the most certain outcome in each choice set (with a 

probability of occurrence ranging from 50-80%), it was slightly underweighted. In addition, no 

strong evidence of prospect pessimism was found as the sum of the probabilities was close to 

one in all the models (when the sum of the weights is less than one, this is referred to as prospect 

pessimism (Lattimore et al., 1992). However, it is important to note that, as evidence in the 

psychological literature suggest, the context and format in which the probabilities are presented 

during the experiments affects respondents’ transformation of probabilities and assessment of 

risk (Visschers et al., 2009). 

 The parameters associated with the expected utility of net returns (
r ) was positive in all 

models but only statistically significant in the linear probability weighting specification and GE-

PWF models (Table 3.6). A positive parameter indicates that farmers are more likely to enter 

into a conservation contract as the value they place on net returns increases. However, the 

insignificance of the parameter may indicate that the risk associated with the contract and 

farmers’ assessment of uncertainty through probability weights could have a greater effect on 

farmers’ likelihood of entering into the contract than the value they place on the actual outcome. 

 The constant parameter of risk attitude towards net returns was positive and statistically 

significant across all models (Table 3.6). Risk attitude parameters corresponding to 0  

indicate risk aversion. In this study, regional variables were not found to significantly affect 

farmers’ level of risk aversion. Farm size as measured by acres was found to be positive and 

statistically significant in the GE-PWF model, indicating that farmers with larger farms are more 
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likely to exhibit higher risk aversion. This could be associated with the fact that more acres under 

the contract could represent a larger potential change in and impact on total net returns. The 

distributions of the predicted risk attitude parameter for each model specification are depicted in 

Figure 3.10. It can be seen from this graph that the risk parameters have little dispersion; this is 

due to the small effect of regional and farm size characteristics. It can also be noted that the 

predicted level of risk aversion varies across model specifications, with the linear probability 

specification and the GE-PWF models having more dispersion and revealed risk attitude. It is 

expected that risk attitudes would fluctuate according to the model used, as these have different 

underlying behavioral assumptions. It is important thus, to identify the model that best suits the 

data. Risk aversion parameters found in agriculture-related literature differ depending on the 

model used and the context of the study. However, most studies agree that, in general, farmers 

exhibit risk aversion. For some risk aversion estimates in previous studies see (Kumbhakar, 

2002; Pennings and Garcia, 2001; Saha et al., 1994). 
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Figure 3.10  Distribution of predicted risk attitude parameters 
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The risk attitude parameters estimated in this study was relatively small, indicating 

modest risk aversion. However, risk attitude is context specific (MacCrimmon and Wehrung, 

1990). In numerous studies, individuals’ risk attitude is elicited using money lotteries. When 

assessing risk using lottery ticket experiments, responses may represent risk attitudes for 

extreme events. Nonetheless, issues in agricultural production (e.g. yields, prices) are mainly 

associated with non-extreme probabilities (Just, 2003). In this study, farmers where presented 

with a situation where deviations from their expected returns could occur as a result of their 

decision to enter into a conservation contract. In this scenario, farmers may behave as to prevent 

losses, especially if adopting these practices is not considered a production priority.  

 It has also been suggested that risk may be related to outcome expectations, whereby 

expectations of a better outcome could also influence people’s perception of risk (March and 

Shapira, 1987; Sitkin and Pablo, 1992). Commonly, farmers adopt practices if they receive a 

private benefit (e.g. profit improvements through increasing yield or cost reductions). If farmers 

expect to improve their income streams when adopting conservation practices, then an outcome 

with lower or unchanged net returns may be perceived as an undesirable outcome. For example, 

62% of the farmers in this study reported that that they would not adopt conservation practices if 

these failed to improve net farm income. In addition, further analysis of the data reported by 

these farmers (see Figure 3.11) revealed that increases in yields is the factor most desired in a 

conservation practice (ranked as the top three benefits by 62.2% of the farmers), above both soil 

erosion reduction (48.1%) and soil moisture retention (41.3%). Thus, it is plausible that famers 

have higher expectations for net returns under conservation. 
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Figure 3.11  Benefits from conservation practices selected by farmers as the three most 

important factors  

 

 

 

  

10.2%

11.0%

16.2%

18.3%

19.6%

23.8%

27.2%

41.3%

48.1%

62.6%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Percentage of farmers

Reduces weed/insect pressure

Reduces fertilizer use

Reduces runoff

Low labor requirement

Maintains soil organic matter

Increases soil fertility

Improves soil structure

Improves soil moisture retention

Reduces erosion

Increases yields



 

129 

Another factor affecting risk perception is contract restrictiveness. Contract restrictiveness seems 

to be a major factor in farmers’ decision to not enter into a conservation contract. Contract 

restrictiveness was listed by 34.8% of the farmers as one of the top three reasons for opting out 

in the stated choice experiment (Figure 3.11). Contracts could potentially limit farmers’ ability to 

respond and adjust their cropping systems to varying weather and market conditions. As De 

Pinto, Magalhaes, and Ringler (2010) suggest, being locked into a contract with certain practices 

increases a farmer’s vulnerability “to shocks and economic fluctuations”. Ma et al. (2012) found 

that the type of conservation program and the restrictions of the program affect farmers’ 

experience with these programs, influencing their willingness to adopt conservation contracts. 

Risk from restrictions imposed by a conservation contract could have a larger effect if farmers 

perceive that under a five year contract, their decision could have consequences that extend into 

the long-term. As Just (2003) pointed out, long-term changes pose a greater risk to farmers. Zeuli 

and Skees (2000) also note that the risk that stems from this type of contract, specifically carbon 

contracts, is the irreversibility of the decision. Some farmers may be less willing to commit to the 

contract if they have to bear risk for an extended period of time.  

 As previously discussed, there are different factors affecting farmer’s attitude towards 

risk and in some cases gains in net returns are not sufficient to induce farmers’ adoption of 

certain agricultural practices. In a study of the adoption cost of conservation tillage, Kurkalova, 

Kling, and Zhao (2006) found that the incentive to induce adoption was higher than the gains in 

net returns from the adoption of conservation tillage. The premium for the adoption of 

conservation practices could be the result of aversion to risk and sunk costs (Kurkalova et al., 

2006). However if not accounted for directly, the effect of sunk costs could be revealed in 

farmers’ risk attitudes (Ridier et al., 2012).  Some of these sunk costs could include the cost of 
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machinery ownership. In this study, results also indicated that equipment cost was an important 

consideration affecting farmers’ choices in the experiment.  

 Risk premiums for the adoption of the conservation contract estimated using the 

regression results are reported in Table 3.8 for the different attribute specific extended expected 

utility models. There are differences in the resulting measures of risk premiums across the 

different probability weighting specifications. From the results, it is also apparent that the use of 

probability decision weights increases the estimated level of risk, taking into account farmers’ 

subjective interpretation of the presented probability distributions and preferences. As shown in 

Table 3.8, the premium obtained with the linear probability weighting specification is lower 

compared to the estimates obtained with the nonlinear weights (TK-PWF, GE-PWF, P1-PWF, 

and P2-PWF). The risk premium obtained when using probability weights ranged from 3.56% to 

4.36% of net returns per acre for the preferred models (GE-PWF, TK-PWF, and P2-PWF).  

 The risk premium is the cost from risk bearing and in this application is found to be 

moderate. Results suggest that in order for farmers to enter into the contract, they require on 

average 3.56% to 4.36% of their current net returns as a payment for bearing the risk associated 

with the contract. Including subjective probability introduces farmers’ personal judgment/beliefs 

of how likely net returns outcomes are to occur, which could also reflect how optimistic or 

pessimistic farmers’ expectations are. In this study, subjective probabilities did not reveal strong 

pessimism in terms of the expectation of outcome occurrences. When perceptions about the 

probabilities of outcomes are largely pessimistic, this can result in a higher revealed level of 

risk. Nonetheless, while transformation of probabilities were not large, the effect from using 

probability weights was significant, as differences in risk premium estimates when compared to 

using a linear probability suggest. Since the models with probability weighting specifications 
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were preferred over the model with original probabilities, this suggests that it is important to 

evaluate respondents’ subjective probabilities; otherwise, estimates of risk perceptions could be 

underestimated.   
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Table 3.8  Risk premium estimates 

 

Risk premium 

Linear probability 0.25% 

TK-PWF 3.56% 

GE-PWF  4.36% 

P1-PWF 0.15% 

P2-PWF 3.90% 
Percentage levels are relative to the level of net returns. For example, 

the risk premium for the TK-PWF is 3.56% of a farmer’s net return. 
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3.7.2 Marginal Willingness to Accept  

Estimates of marginal willingness to accept (mWTA) per acre for the contract attributes are 

reported in Table 3.9. The range of mWTA estimates across farmers was also reported.  

Estimates of mWTA were estimated as the ratio of the marginal utility of the contract attributes 

to the marginal utility of incentive payment, i.e. payattribute  .  Estimates of willingness to accept 

for farmers, who have already adopted conservation practices, were adjusted using the estimates 

associated with previous adoption. For example, the mWTA for farmers who had not adopted 

continuous no-till was estimated as payjntNT   and as paySQjsqntjnt NTNTNT  )( _  for 

farmers who were using continuous no-till. Asymptotic standard errors were estimated using the 

delta method (Greene, 2012). As can be observed in Table 3.9, mWTA estimates are very 

consistent across the different model specifications, with estimates from the mean-standard 

deviation model differing, but only slightly, from the estimates from the attribute specific 

extended expected utility models. The mWTA estimates for the mean-standard deviation 

approach estimated using random parameters logit are shown in Figure B.1, in the Appendix. 

From these graphs, it can be seen that significant variability exists at the individual level. 

 

3.7.2.1 mWTA for conservation practices 

The mWTA estimates for the conservation practices (no-till, cover crops, conservation crop 

rotation and VRA of inputs) represent the per acre payment amount farmers require in order to 

adopt these practices. The mWTA for the conservation practices was estimated separately for 

adopters and non-adopters. Some of the factors that could affect the mWTA estimates for the 

conservation practices are opportunity cost of adopting these practices in comparison with 

alternative production methods and sunk costs that could include investment in human capital 
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and/or equipment ownership (Kurkalova et al., 2006). The cost of the practice is also an 

important factor in the adoption of conservation practices (Lichtenberg, 2004). Some studies 

have estimated the level of incentive necessary to encourage adoption for different conservation 

practices under different arrangements (Cooper, 1997; Cooper and Signorello, 2008; Peterson et 

al., 2012). 

The mWTA for farmers who have not adopted continuous no-till was estimated at 

$27.45 - $27.74 per acre across models with different probability weighting specifications (the 

estimate for the mean-standard deviation approach was $26.44). In a study conducted in Iowa, 

Kurkalova, Kling, and Zhao (2006) found that the incentive level to encourage the adoption of 

conservation tillage in corn was $4.10/acre and $6.00/acre in soybeans. Peterson et al. (2012) 

found a mean estimate of $9.68 for continuous no-till and $4.78 for rotational no-till.  

Kurkalova, Kling, and Zhao (2006) found that farmers’ premium for the adoption of 

conservation tillage in corn or soybeans represented ~13% of farmers’ expected returns under 

conventional tillage and for other crops it represented ~62%. Large willingness to accept 

estimates in the present study could be the result of the requirement that no-till would be 

continued over the five years of the contract, without room for soil disturbance if needed (as 

seen by the farmer). It was been suggested that some no-till farmers may till the ground in 

response to economic or seasonal drivers (Llewellyn et al., 2012).  
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Table 3.9  Farmers’ marginal willingness to accept ($/acre) 

  
Mean-SD 

 
Linear probability 

 
TK-PWF 

 
GE-PWF 

(Best model)  
P1-PWF 

 
P2-PWF 

Estimates for non-adopters 
                       Continuous No-till -26.44 (3.45) *** 

 

-27.73 (3.50) *** 

 

-27.65 (3.49) *** 

 
-27.44 (3.49) *** 

 

-27.74 (3.50) *** 

 

-27.64 (3.49) *** 

 [-33.22, -19.65]   [-34.62, -20.84]   [-34.53, -20.77]   [-34.33, -20.57]   [-34.63, -20.85]   [-34.51, -20.76]  

Crop Rotation -14.28 (3.28) *** 

 

-13.26 (3.29) *** 

 

-13.28 (3.29) *** 

 

-13.19 (3.28) *** 

 

-13.44 (3.29) *** 

 

-13.29 (3.29) *** 

 [-20.73, -7.84]   [-19.73, -6.78]   [-19.75, -6.80]   [-19.67, -6.70]   [-19.91, -6.96]   [-19.78, -6.80]  

Cover Crops -15.42 (2.60) *** 

 

-15.22 (2.59) *** 

 

-15.45 (2.59) *** 

 

-15.22 (2.59) *** 

 

-15.31 (2.59) *** 

 

-15.47 (2.59) *** 

 [-20.52, -10.32]   [-20.33, -10.11]   [-20.55, -10.34]   [-20.33 ,-10.11]   [-20.42, -10.2]   [-20.58, -10.36]  

VRA of inputs -17.43 (2.50) *** 

 

-16.19 (2.46) *** 

 

-16.28 (2.46) *** 

 
-16.36 (2.46) *** 

 

-16.19 (2.46) *** 

 

-16.29 (2.46) *** 

 [-22.34, -12.52]   [-21.04, -11.33]   [-21.13, -11.43]   [-21.22, -11.51]   [-21.04, -11.33]   [-21.14, -11.44]  

Estimates for adopters 
                       Continuous No-till 9.64 (2.55) *** 

 

9.39 (2.54) *** 

 

9.44 (2.53) *** 

 

9.51 (2.54) *** 

 

9.43 (2.54) *** 

 

9.44 (2.53) *** 

 [4.64, 14.65]   [4.39, 14.39]   [4.45, 14.42]   [4.52, 14.51]   [4.44, 14.43]   [4.46, 14.43]  

Crop Rotation -5.00 (2.55) ** 

 

-5.06 (2.53) ** 

 

-4.88 (2.53) * 

 

-5.04 (2.53) * 

 

-5.04 (2.53) ** 

 

-4.89 (2.53) * 

 [-10.01, 0.001]   [-10.05, -0.08]   [-9.86, 0.09]   [-10.02, 0.05]   [-10.02, -0.05]   [-9.87, 0.09]  

Cover Crops -4.83 (3.33) 
  

-5.15 (3.35) 
  

-5.04 (3.35) 

  
-5.21 (3.36) 

  

-4.98 (3.35) 
  

-5.01 (3.36) 
  [-11.36, 1.71]   [-11.76, 1.46]   [-11.64, 1.57]   [-11.82, 1.40]   [-11.58, 1.62]   [-11.62, 1.61]  

VRA of inputs -0.26 (3.62) 
  

-0.57 (3.63) 
  

-0.61 (3.62) 

  

-0.52 (3.62) 
  

-0.63 (3.62) 
  

-0.62 (3.62) 
  [-6.85, 7.38]   [-7.71, 6.58]   [-7.74, 6.51]   [-7.66, 6.62]   [-7.77, 6.51]   [-7.74, 6.51]  

Estimates for other attributes 
                       Incentive Program1 -5.15 (2.11) ** 

 

-5.09 (2.09) ** 

 

-4.99 (2.09) ** 

 

-5.02 (2.09) ** 

 

-5.09 (2.09) ** 

 

-4.99 (2.09) ** 

 [-9.30, -1.00]   [-9.22, -0.97]   [-9.10, -0.88]   [-9.14, -0.90]   [-9.21, -0.97]   [-9.10, -0.88]  

Low off-farm Env. Benefits -7.86 (2.60) *** 

 

-7.42 (2.56) *** 

 

-7.44 (2.55) *** 

 
-7.63 (2.56) *** 

 

-7.43 (2.56) *** 

 

-7.44 (2.55) *** 

 [-12.98, -2.75]   [-12.47, -2.38]   [-12.48, -2.41]   [-12.67, -2.58]   [-12.46, -2.39]   [-12.47, -2.40]  

Medium off-farm Env. Benefits -5.18 (2.58) ** 

 

-4.89 (2.55) * 

 

-5.06 (2.55) ** 

 

-5.24 (2.56) ** 

 

-4.90 (2.55) * 

 

-5.05 (2.55) ** 

  [-10.24, -0.12]     [-9.92, 0.15]     [-10.08, -0.03]     [-10.28, -0.20]     [-9.93, 0.13]     [-10.08, -0.03]   

*,**,*** statistically significant at the 1%, 5% and 10% level.  

Standard errors in parenthesis. Standard errors were estimated using the Delta method. Lower and upper estimates across farmers in brackets. 
1 Carbon Credit Payment through a Carbon Market was used as the base scenario. 
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For adopters of continuous no-till, the results in this study suggest that they would be 

willing to pay around $9.39 - $9.51 to keep using continuous no-till. This result may be related 

to sunk costs and irreversibility, particularly equipment ownership and human capital 

investment. These farmers may have already incurred the required investment to establish the 

practice on their farms. In addition, famers may be willing to pay as a result of the private 

benefits obtained (e.g. yield benefits, soil quality, etc.). A similar conclusion was reached by 

Cooper (1997) regarding conservation tillage in Iowa. Chouinard et al. (2008) also found 

evidence suggesting that farmers are willing to pay for stewardship. Specifically, they estimated 

that farmers were willing to pay $4.52/acre (estimated as forgone income). This result may also 

shed some light on the additionality to enrollment in conservation practices. It is apparent from 

this result than some farmers would adopt these practices in the absence of incentive payments. 

However, with low incentive payments, new adopters are less likely to be added. In a study of 

additionally from enrollment in federal programs in Ohio, Mezzatesta, Newburn, and Woodward 

(2013) found low levels of additionality for conservation tillage (19%), while additionality for 

cover crops was around 90%.  

 The mWTA for non-adopters of conservation crop rotation ranged from $13.19 to $13.44 

across probability weighting specification, and $14.28 for the mean-standard deviation approach. 

The estimate for adopters was around $5 per acre, but the estimate was not statistically 

significant. The mWTA estimated for cover crops ranged from $15.22 to $15.47/acre across all 

models. This estimate is lower than expected, considering the costs of plating cover crops and 

farmers’ lack of experience with this practice. Singer, Nusser, and Alf (2007) estimated that on 

average farmers in the U.S. Corn Belt required about $23 per acre to induce the adoption of 

cover crops. The estimated mWTA for VRA of inputs ranged from $16.29 to $16.36 across the 
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models with embedded expected utility. Farmers may be reluctant to adopt VRA technologies 

and may require a higher payment if they perceive these technologies as not being suitable for 

their operation and if they perceive they have relatively homogenous land (Hudson and Hite, 

2003). In addition, given the complexity of this practice, the lack of knowledge may deter 

adoption, especially for farmers who are not first-time adopters (Batte, 2000; Lamb et al., 2008). 

  

3.7.2.2 mWTA for other contract attributes 

The mWTA estimates for the incentive program ranged from $4.99 to $5.10/acre in Table 3.9. 

This result indicates that farmers require an additional payment if the channel through which the 

conservation program provides and administers the incentive payment is a carbon market. The 

lack of farmers’ awareness of this type of program, the lack of policies for the creation of a 

binding carbon market, and negative experiences with previous carbon markets may all explain 

this result. From the sample of farmers who previously participated in a carbon trading scheme, 

it seems likely that the low payments offered attracted mainly farmers who had already adopted 

conservation tillage, in the absence of any incentive payment. Thus, low incentive payments may 

result in low levels of additionality, a major component of program effectiveness (Mezzatesta et 

al., 2013).   

Findings in this study also suggest that conservation bundles with lower off-farm 

environmental benefits require a larger incentive payment when compared to bundles with higher 

benefits.  Farmers require an additional payment of ~$4.9 to $7.63/acre if the bundle of practices 

they are required to adopt under the conservation contract does not deliver high environmental 

benefits. This result has important implications for the development of conservation programs. It 
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is important to work towards improving farmers’ awareness of the external benefits (social 

benefits) of their production decisions (Bergtold et al., 2012). With higher benefits from 

conservation, adoption in the absence of monetary incentives could increase (Mezzatesta, 

Newburn, and Woodward, 2013). As the results in this study suggest, if farmers recognize the 

public (social) environmental benefits from the use of conservation on their farms, they may be 

more willing to enroll in conservation programs, and it may reduce the level of incentive 

payment required to encourage enrollment and adoption of bundles of conservation practices. 

 

3.8  Conclusion 

This study was designed to determine the factors affecting the adoption of conservation practices 

under a contract. Various factors involved in a conservation contract were analyzed, the risk of 

net returns, practices required under the contract, the type of conservation program, and the off-

site benefits from the program.  

 The results in this study suggest that the incentive payment required for farmers who 

have adopted conservation practices is significantly lower than the necessary payment for non-

adopters (farmers who are currently not using the practice). It is possible that if incentive 

payments are too low, programs may be more attractive to farmers who have already adopted 

these practices, reducing the potential additionality and associated benefits from these programs. 

While it is important to encourage adopters to maintain and manage existing conservation 

practices, for a program to be economically efficient, additional land should be put into 

conservation at the least cost. As the results in this study suggest, some farmers would adopt in 

field conservation practices in the absence of incentive payments. In the case of continuous no-
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till, adopters may be willing to pay to continue using this practice. This result could indicate that 

these adopters perceive private benefits from the use of this practice. The experience of farmers 

who are willing to pay to continue using a practice could be leveraged by extension agencies and 

conservation programs when promoting the benefits from conservation. 

The results in this study also suggest that farmers prefer federally-run programs over 

market based carbon programs. Given that a limited number of farmers are aware of the 

mechanism under which carbon offset programs work and that some of the farmers who 

previously participated in a carbon trading program had negative experiences, it is important to 

consider these factors if efforts for the establishment of a carbon market are to take place in the 

future. Farmers may require a premium if incentives are offered through a carbon market, and if 

incentives payments are low, mainly famers who have already adopted the practices may be 

attracted, resulting in low additionality to enrollment in such programs. More importantly, 

policies are to be in place if a carbon market is to be established. If a binding market exists and 

public trust in the programs increases, farmers’ willingness to participate could be higher.  In 

addition, findings in this study suggest that views regarding the off-farm benefits from 

agricultural conservation may have an important effect in farmers’ willingness to participate in 

conservation programs and the incentive required under adoption. Hence, education about the 

societal benefits of on-farm conservation may be an important element to increase the 

effectiveness of conservation programs. 

This study assessed the effect of risk on the adoption and intensification of conservation 

on the farm by evaluating the effect of the nonlinearity of expected utility for net returns and by 

including farmers’ subjective assessment of probabilities. This method allowed for the estimation 

of the marginal utility from stochastic net returns and a parameter that measures farmers’ risk 



 

 

140 

attitude towards variability in net returns. In this study, farmers were found to exhibit risk 

aversion and to moderately use subjective probabilities when evaluating risk of net returns under 

a conservation contract. Together, these results showed that risk exposure has a significant effect 

on the adoption of conservation practices. Net returns are stochastic (in part due to the variability 

in yields), and the distribution of potential outcomes affects farmers’ willingness to use 

conservation programs that may result in changes in their expected returns. These results offer 

some insight into the importance of considering uncertainty in outcomes when designing 

incentive programs and extension programs to encourage the adoption of conservation systems 

(Isik and Yang, 2004).  

The results in this study provide important information for extension applications. As 

some studies have previously suggested, it is important to provide farmers with the range of 

potential outcomes when promoting new technologies (Ghadim et al., 2005). As farmers are 

informed about the impact of these technologies in the first years of adoption, efforts can focus 

on providing farmers with tools to improve their probability of obtaining favorable outcomes to 

reduce their perception of uncertainty and the effect of perceived risk on the decision to 

implement and intensify conservation on their farms.   

While this study did not directly measure the effect of contract length, further analysis of 

farmers’ responses indicated its negative effect. Farmers reported that the inflexibility of the 

contract was the main reason for opting out on a contract option in the stated choice experiment. 

Longer contracts can increase the risk for farmers. Given the dynamics in commodity markets 

and the development of new technologies, it becomes difficult for farmers to anticipate what will 

happen in five years (Cattaneo, 2003). Shorter and more flexible contracts may increase farmers’ 

participation in conservation contracts and may reduce the risk of defaulting or withdrawing 
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from the contract (Cattaneo, 2003). Knowing the potential risk and what incentives farmers may 

require to reduce potential risks introduced to the farm would ensure that practices, once 

adopted, are not discontinued.  

Previous research findings have indicated that withdrawals from conservation contracts 

were more likely to occur during the first years of implementation (Cattaneo, 2003). This 

indicates that there is gap between farmers’ expectations and the reality when adopting 

conservation practices. When expectations are not met, then conservation practices may be 

unadopted. Thus, conservation education may be the most important factor when promoting 

conservation programs. It is important that farmers have realistic expectations about the benefits 

of the practices and how to manage them to obtain better results. A better understanding about 

the practices and how to manage them to reduce risk, the program mechanism, and the on-farm 

and off-farm benefits from using conservation may reduce the incentive needed to encourage 

adoption and may increase the effectiveness of conservation programs. 

 

3.9 Limitations and future research 

There are some limitations to this study that need to be acknowledged. This study does not make 

distinction among the crops for which the practices in the contract had to be implemented, and as 

findings in previous research suggest, the adoption premium may be vary across different crops 

(Kurkalova, Kling, and Zhao, 2006). Thus, the incentive payment estimated may be interpreted 

as a general estimate of the incentive required for the main crops grown in the studied region. In 

addition, the scope of this study was limited in terms of the sample of farmers studied. The 

sample of farmers surveyed was medium to large farmers in Kansas who were part of the same 
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farm management association. Thus, the extrapolation of results to the farmers in the Great 

Plains of the U.S. and beyond needs to be done with that in mind. 

 Notwithstanding its limitations, this study offer some important insights into the adoption 

of conservation practices and how some factors affect farmers’ decisions to enroll in 

conservation contracts. Further work needs to be done to establish how gains and losses affect 

the risk associated with potential net returns. This can be done by estimating a rank-dependent 

expected utility model or by adopting cumulative prospect theory in which a different utility is 

estimated for gains and losses. In addition, to improve the analysis, more net returns outcomes 

could be included to better trace the curvature of the utility of net returns and the risk attitude 

parameter. Further research may also explore heterogeneity across individual responses by 

adopting a random parameters logit model. However, as additional levels of complexities and 

nonlinearities are included, a larger sample size would be needed. 
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Appendix A - Stated choice contract instructions 

 

Name: _____________________________ 

Workshop: __________________________      

We are interested in your willingness to adopt and intensify conservation practices on your cropland 

under different contractual arrangements and different system characteristics. You will be asked to 

evaluate 12 scenarios. For each scenario you will be asked whether you would be willing to adopt a given 

bundle of conservation practices or to stay with the status quo. The status quo represents what you are 

currently doing. Although you may have already adopted all the practices presented to you under a 

particular scenario, please take into consideration the rest of the contract features before making your 

decision. You could still choose to adopt the contract if it is favorable. 

When considering each scenario, assume a program professional will inventory the land you enroll and 

will verify that you are complying with the contract.  The length of each contract is 5 years. If you fail to 

comply with the contract you will be required to make a full repayment of the incentive payments you 

have received plus any administrative costs. For a given contract option, there is not a minimum acreage 

requirement for enrollment and you choose the number of acres to enroll. 

Please evaluate each scenario independently. Other programs may exist that have different contract 

features, but when evaluating each scenario please consider only the contract features presented to you in 

this exercise.  

 

Each scenario will present different contractual options with the following features: 

Contract Feature Description 

C
o
n

se
rv

a
ti

o
n

 P
ra

ct
ic

es
  

 

 

Continuous No-Till 

 

 

 

Conservation Crop 

Rotation 

 

 

Cover Crops 

 

 

 

 

 

 

 

Variable Rate 

Application of Inputs 

 

Consists in planting crops directly into the crop residue without disturbing the soil with tillage. 

This practice will be in place year round on the cropland enrolled during the length of the contract. 

 

Implementation of a three or more year rotation with three or more crops types. The rotation 

includes a combination of high residue crops, grasses and/or legumes. 

 

Planting a single or multiple cover crop species between regular cash crops to protect the soil and 

improve soil organic matter. The crop residue should not be burned. Some cover crops species that 

could be grown are:  

-Legumes: winter peas, hairy vetch, cowpeas, crimson clover, sunn hemp, etc. 

-Cereal: rye, oats, millet, etc. 

-Grass: sorghum-sudangrass hybrid, etc. 

Variable costs of planting and managing (fertilizing, applications and termination) cover crops in 

Kansas range from $40/acre to $100/acre. 

 

This practice requires using site-specific information for input application rates within a field. 

Methods used can be sensor-based (input application equipment has sensors that calculate 

application rates in the field) and map-based (consisting of information gathering methods like 

remote sensing, topographical mapping, soil and/or plant tissue testing, yield monitoring to create 

site-specific application maps). 

Variable rate application of fertilizer (deliver and spread) could range from $8/acre to $25/acre. 

Extra charge for variable rate seeding could range from $2/acre to $5/acre. 
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Incentive 

payment 

 

 

The incentive payment is offered annually during the length of the contract. The incentive 

payment is in addition to any difference in net farm income.  

 

Incentive 

Program 

 

 

Incentive program refers to the type of mechanism through which the program is offered, 

administered and regulated. Two programs evaluated here are: 

  

a) Federal program: 

A voluntary conservation program administered by the government via the USDA’s Natural 

Resources Conservation Service (NRCS). This program is comparable to the Conservation 

Stewardship Program (CSP) or the Environmental Quality Incentives Program (EQIP) where 

farmers and ranchers are rewarded for taking on conservation activities that improve the long-

term sustainability of natural resources on their farms.  

 

b) Carbon Credit Payment through a Carbon Market: 

Climate change policy has long been debated in the U.S. A carbon credit trading mechanism 

that controls carbon emissions has been one instrument proposed to mitigate climate change.  

 

The conservation practices evaluated here have the potential to reduce emissions and/or to 

enhance the storage of carbon in the soil (this is known as soil carbon sequestration). Carbon 

sequestration is believed to mitigate the effects of climate change. However, there are 

additional benefits from sequestrating carbon in the soil. These benefits are the improvement 

of water and nutrient retention, reduction of soil erosion, improvement of soil tilth and 

productivity, and improvement of wildlife habitat and biodiversity.  

 

Carbon stored in the soil (carbon credits) can be aggregated by a third party and traded in a 

private market where large polluting companies can buy them to offset their emissions. You 

as a farmer could contract with this third party to receive a payment for the carbon credits 

earned from the carbon sequestered in your land as a result of using certain conservation 

practices.  

 

Off-farm 

Environmental 

Benefits 

 

Sediments, nitrogen and phosphorus are the number one pollutants of water bodies in Kansas. 

These pollutants can be transported to downstream water bodies in water runoff and through 

nutrient leaching. Another important pollutant is carbon dioxide which is believed to 

contribute to climate change.   

 

The conservation practices evaluated here reduce runoff and soil removal, reduce nutrient 

losses and improve nutrient cycling. They can also result in soil carbon sequestration or 

reduction of carbon emissions. You will be provided with a measure of the potential impact of 

the bundle of practices stated under each scenario. This benefit does not refer to the 

environmental benefits on your farm but rather the benefits to downstream water 

quality and air quality.  

 

Combinations of these practices can result in Low, Moderate or High off-site environmental 

benefits  according to their ability to reduce  sediment and nutrients transported to water 

bodies off the farm, reductions in carbon emission and carbon sequestration potential. The 

level of benefits provided is affected by your management of these practices as well as other 

climate variables.  
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Riskiness: 

Impact on Net 

Farm Income  

 

 

Introducing new practices into your cropping systems may change its dynamics. Some of the 

practices evaluated in this exercise can increase yields if implemented correctly. However, 

optimal benefits may not be observed in the first years. Some of these practices can reduce 

costs by reducing labor requirements, fuel, and pesticides use, but may require some 

additional investment or more intensive management. This could increase costs. In addition, 

many other environmental factors like weather or soil characteristics can affect your final 

costs and crop yields. Proper management is a key factor in ensuring income gains and 

stability. 

 

You will be presented with potential net income changes with their probability of occurrence 

for each combination of conservation practices. When evaluating changes in net farm income, 

take into consideration the average net farm income reported earlier in this survey to get an 

idea of the impact change. 
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Appendix B - Mean-standard deviation approach estimated with a 

random parameters logit 

 

Table B.1 Mean-standard deviation approach – Parameter estimated with a random 

parameters logit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Parameter  

estimates 

 

Standard  

   Error 

Constant -12.5537 *** (1.8503) 

returnsnetExpected  0.1191 *** (0.0183) 

returnsnetofDevSt ..   -0.0336 ** (0.0144) 
Payment 0.0492 *** (0.0025) 
Program -0.2531 ** (0.1037) 
NT  -1.2993 *** (0.1681) 

SQj NTNT   1.7732 *** (0.1998) 

Rot  -0.7019 *** (0.1602) 

SQj RotRot   0.4561 ** (0.1906) 

Cover  -0.7578 *** (0.1264) 

SQj CoverCover   0.5206 *** (0.1951) 

VRA  -0.8566 *** (0.1225) 

SQVRAVRA  0.8695 *** (0.2039) 

LowEnv  -0.3865 *** (0.1274) 

MidEnv -0.2545 ** (0.1264) 
2
u  2.3615 *** (0.3568) 

  
No. of Observations 2808   
Log Likelihood 1452.9   
AIC 2937.8   
Pseudo R-squared 0.253   

Adjusted R-squared 0.244   

*,**,*** statistically significant at the 1%, 5% and 10% level. Standard errors in parenthesis. 
1 Carbon Credit Payment through a Carbon Market was used as the base scenario. 
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Figure B.1 Distribution of farmers’ WTA for the mean-standard deviation approach 

estimated with a random parameters logit 
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Chapter 4 - Modeling the factors affecting farmers’ timing of 

adoption of in-field conservation cropping practices 

 

4.1 Introduction 

Current and future agricultural production needs to tackle problems such as environmental 

degradation, increasing public awareness of environmental concerns and demand for sustainable 

production (Sassenrath et al., 2008). Conservation practices play an important role in the 

sustainability of agricultural production. There is a large variety of conservation practices that 

address different environmental issues or simply prevent environmental degradation from 

occurring. Some conservation practices that improve soil conservation, like conservation tillage 

and crop rotation, have largely been adopted in the US. However the adoption of practices, like 

variable rate application of inputs, has been slower. This lower adoption rate may be due in part 

to farmers being unaware of or uneducated about this technology (Daberkow and McBride, 

2003). Given the significant conservation efforts by different local and federal government 

agencies, understanding farmers’ motivations and their decision-making processes concerning 

conservation on-farm is important. Studying farmers’ adoption decisions and the process 

provides government, extension and agribusiness with important insights into the adoption of 

important conservation technologies and the key aspects that need to be addressed to increase the 

level of conservation efforts being made by producers. 

Numerous modeling approaches have been used to study the adoption of conservation 

practices and new agricultural technologies (Feder and Umali, 1993; Knowler and Bradshaw, 

2007; Prokopy et al., 2008). Many adoption studies rely on approaches to model the adoption at 
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a given point in time or are cross-sectional in nature and are not able to take account of the 

timing (speed)
8
 of adoption. These studies often compare the differences in the factors between 

the group of adopters and those of non-adopters from a static point of view. Thus, these studies 

do not consider the process of adoption over time and how some factors may not only affect the 

decision to adopt, but also the timing of adoption. In the same token, some factors do not directly 

restrict the adoption of conservation practices, but may in fact delay adoption of a practice 

(Fuglie and Kascak, 2001). 

The diffusion of technologies is a gradual process; it takes time for the information about 

these new practices to be disperse within the farming community (Jabbar et al., 2003; Jaffe et al., 

2002). Given that farmers adopt a conservation practice based on their knowledge or 

expectations about the benefits of the practice, the timing of information collection (learning) 

and formation of expectations is important (Au and Kauffman, 2003) and may not be captured in 

traditional binary adoption models, which are often cross-sectional (Burton et al., 2003). 

Diffusion studies, while accounting for the dynamic nature of the diffusion of agricultural 

technologies, have done so at the aggregate level and have not been able to capture farm-level 

characteristics that affect the adoption process at the individual level (Fuglie and Kascak, 2001).  

Differences in farmers’ and farm management characteristics make farmers likely to 

adopt at different points in time (Fuglie and Kascak, 2001). The process and timing of the 

adoption of agricultural technologies is important (Hoppe, 2002). Interaction and learning from 

other adopters and the process and knowledge accumulation which takes place over time are 

                                                 

8 Timing and speed of adoption are used interchangeable in this study and they indicate the time it takes 

for a farmer to adopt a certain agricultural practices. 
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important determinants in the diffusion of technologies (Fischer et al., 1996; Jabbar et al., 2003; 

Llewellyn, 2007). In addition, the adaptability of conservation practices into farmers’ production 

systems is important (Hudson and Hite, 2003), and is likely to change over time as farmers 

systems are adapted to changing agronomic, climate, ecological, economic, policy, social and 

technological changes. Knowing the factors that play a role in the timing of adoption is important 

for agricultural educators (e.g. extension and agribusiness) and policymakers. Knowledge about 

the factors that accelerate or slow adoption for particular practices can be a useful information 

tool used to identify target populations where adoption can be potentially slow, allowing for the 

creation of programs that tackle barriers to adoption faced by farmers.  

The study presented here uses duration analysis to examine the timing of adoption of 

continuous no-till, cover crops and VRA of inputs. While previous studies have examined the 

adoption of these practices, they have done so from a static point of view. The time it takes for 

farmers to adopt a practice and the factors that accelerate or slow the adoption process have not 

been extensively evaluated. This study will examine farmer and farm management characteristics 

and how these factors affect the timing of adoption of in-field conservation practices in Kansas.  

 

  

4.1 Objective 

The purpose of this study is to examine factors affecting the timing of adoption of continuous no-

till, cover crops, and variable rate application of (VRA) of inputs for Kansas farmers to gain 

insight regarding the time-path diffusion of these conservation cropping practices since their 

introduction into the agricultural community. These practices provide numerous benefits to the 

environment, can provide profit advantages, and are commonly known and adopted at different 
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degrees in the study region. A duration analysis was used to account for the dynamics of 

adoption and changing factors that affect farmer’s likelihood of adoption. Specifically, this study 

will analyze the effect of profitability factors, farmers’ demographics, farm and farm 

management characteristics, attitudinal factors, and site-specific characteristics on the duration of 

farmers decision to adopt a particular practice. This duration begins from the date on which a 

farmer started operating their farm or from the date the practice was available if the practice was 

introduced after the farmer started their operation and until the date in which the practice was 

adopted on the farm. In other words, the study is examining what factors impact how long it 

takes a farmer to adopt these conservation practices. In addition, the study seeks to investigate 

how conservation on the farm affects the speed (timing) of adoption of other conservation 

practices.  Using duration models allows for the temporal modelling of adoption and the 

heterogeneity in the timing of the adoption decision (Abdulai and Huffman, 2005). 

 

4.2 Literature review 

4.2.1 Conservation practice adoption 

There is a large body of literature examining the adoption of conservation practices. Many of 

these studies have used discrete choice models, such as the binary logit or probit model to 

analyze factors that differentiate adopters from non-adopters at a particular point in time 

(commonly at the time a survey was conducted) or across a particular cross-section with no time 

dimensions examined (Belknap and Saupe, 1988; Davey and Furtan, 2008; Rahm and Huffman, 

1984; Soule et al., 2000).  
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Gould et al. (1989) studied the adoption of conservation tillage as a two-stage process. In 

the first stage of the process, farmers recognized the existence of a problem with soil health and 

in the second stage the farmer decides upon the level of conservation to help remedy the 

problem. Gould et al. (1989) found that the perception of a soil problem was an important factor 

affecting farmers’ decisions. Other factors that have shown to affect the adoption of soil 

conservation practices, such as conservation tillage, are education, farm size, income, age, debt 

ratio, percentage of land devoted to row crop production, and weather. Rahm and Huffman 

(1984) found that the size of the farm operation and soil characteristics affected the adoption of 

reduced tillage in corn production and that farmers’ level of education is an important 

determinant in the decision process. Soule et al. (2000) studied the factors affecting the adoption 

of conservation practices and structural practices among corn producing farmers, with different 

types of contractual arrangements. They found that land tenure was an important factor in the 

adoption of conservation tillage practices.   

A study of conservation tillage adoption in Oklahoma found factors such as age, farm 

size and crop rotation to be important factors explaining the adoption decision. This study found 

that farmers with a continuous wheat rotation and livestock production were less likely to adopt 

these practices (Vitale et al., 2011). Davey and Furtan (2008) studied the adoption of 

conservation tillage in Canada using a binary probit model and census data over three different 

years: 1991, 1996 and 2001. They found that farm size, weather and soil characteristics were 

important determinants of adoption. (D’Emden et al., 2008) studied the adoption of conservation 

tillage in Australia using a binary logit model. They found that attendance at extension programs 

and the benefits of conservation tillage to cropping systems in the short term were both important 
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factors affecting adoption of this practice. Long-term benefits like erosion reduction were not as 

significant.  

Larson et al. (2008) investigated the factors affecting the adoption of remote sensing for 

variable-rate application of inputs in cotton production in the southern US. They found that 

younger, educated farmers who operated larger farms were more likely to adopt VRA 

technologies. Daberkow and McBride (2003) used a two-stage model to evaluate farmers’ 

awareness of precision technologies and the adoption of these practices. They found that 

farmers’ awareness of VRA technologies, computer knowledge, on-farm employment and farm 

size positively increased the likelihood of adoption.  

A study of the adoption of cover crops by Singer et al. (2007) identified the factors 

affecting the use of cover crops by farmers in the US Corn Belt, including current or past use of 

cover crops. Their results suggested that crop diversity was the most significant factor affecting 

the use of cover crops. Perceived yield and soil benefits seem to also increase farmers’ likelihood 

of adopting cover crops. In addition, this study revealed that farmers who used covers crops 

planted them in only 6% of their crop area (Singer et al., 2007). A study by Bergtold et al. (2012) 

examined the factors affecting the adoption of cover crops and the perceive yield benefits from 

adoption by farmers in Alabama. They found that farmers who irrigate their crops and perceived 

greater environmental benefits from cover crops were more likely to adopt. Their results 

suggested that the percentage of rented land was a negative factor in farmers’ likelihood of 

adoption. Other studies have examined the adoption of different conservation practices and 

agricultural technologies. For a review of other studies in the adoption literature, see Feder and 

Umali (1993), Knowler and Bradshaw (2007), and Prokopy et al. (2008). 
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4.2.2 Duration analysis and technology adoption 

Duration analysis has been commonly used in the medical and engineering fields, and is 

becoming more common in economic and agricultural studies.  Specifically, a number of studies 

have employed duration analysis to examine the time path of adoption and to account for the 

dynamic nature of the adoption process of agricultural technologies. In the adoption literature, 

duration models that account for the temporal aspect of adoption and have been applied to the 

study of organic farming (Burton et al., 2003); conservation tillage (D'Emden et al., 2006; Fuglie 

and Kascak, 2001); soil nutrient testing and integrated pest management (Fuglie and Kascak, 

2001); weed control practices (Murage et al., 2011); fertilizer and herbicide (Dadi et al., 2004); 

drip irrigation (Alcon et al., 2011); and other production technologies (Abdulai and Huffman, 

2005). 

Burton et al. (2003) studied the adoption of organic horticulture in the United Kingdom 

using duration analysis. They found that the probability of adopting organic farming methods 

declines after the farmer has been farming for five years. In addition, attitudinal factors were 

important determinants of the timing of organic adoption, while factors such as education, farm 

size, household size, and income from farming were not found to be significant factors.  

Dadi et al. (2004) studied the adoption of fertilizer and herbicide by farmers in Ethiopia. 

Their findings suggest that the speed of adoption of fertilizer was more rapid than the speed of 

adoption of herbicides. Factors that accelerated adoption in their study were the availability of 

credit, output prices, and closeness to markets. Factors such as farmers’ education, awareness of 

technologies, and farm size were not significant determinants of the speed of adoption. Murage 

et al. (2011) studied the timing of adoption of weed control technology in corn production in 

Kenya using a duration model. They found that education, farm size and household size 
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increased the speed of adoption of this technology. Their results also suggested that field days 

were a more effective method at accelerating the adoption decision.  

Alcon et al. (2011) investigated the adoption of drip irrigation in Spain from 1975 to 

2005. They found that factors such as credit availability, water availability, price of water, 

information sources and trialing of prior technologies were significant determinants of the rate of 

adoption. The adoption of water conservation practices in Kenya and the Philippines was also 

analyzed by (Oostendorp and Zaal, 2012) using duration analysis. They found that land 

ownership was an important factor affecting adoption. Their findings also suggested that the 

likelihood of adoption decreased over time.  

Abdulai and Huffman (2005) examined the timing of adoption of crossbred-cow 

technology in Tanzania. They found that reductions in the price of the technology, farmers’ 

education, access to credit, and the number of farmers who have adopted the practice in the same 

village reduced the timing of adoption. In contrast, distance to the local market slowed the rate of 

adoption. They also found positive duration dependence, indicating that farmers were more 

likely to adopt the technology with time.  

Fuglie and Kascak (2001) used duration analysis to examine the dynamics of the 

adoption of conservation tillage, soil nutrient testing, and integrated pest management using data 

from a USDA survey conducted from 1991 to 1993, covering different watersheds in the High 

Plains, Iowa-Illinois, Central Nebraska basins, Mississippi Embayment, Upper Snake River 

Basin, Susquehanna River Basin, and White River Basin. In their study, they investigated the 

effect of farmer and farm characteristics, as well as natural resource characteristics (e.g. soil 

quality and rainfall) on adoption. They found a faster rate of adoption for conservation tillage 

during the late 1980s. Education, farm size, source of farm income, and soil characteristics were 
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important factors in explaining the timing of adoption in their study. They also found that 

farmers with better soil quality adopted more rapidly than farmers with poor soil quality. 

Duration analysis was also applied by (D'Emden et al., 2006) to study the adoption of 

conservation tillage by grain producers in Australia from 1983 to 2003. They found that the 

decrease in the price of glyphosate was an important factor accelerating adoption and that lower 

precipitation levels increased farmers’ likelihood of adoption. 

 

4.3 Methods and data  

4.3.1 Conceptual framework 

The adoption of conservation practices is a dynamic process. Farmers evaluate a practice and 

decide to adopt at a precise point in time when introducing the practice into their production 

systems maximizes their utility (Pannell et al., 2011). Different components may be evaluated as 

part of the utility farmers derive from adopting a particular technology, including economic, 

social and/or environmental benefits (Pannell et al., 2006; Pannell et al., 2011). For example, if 

farmers are profit maximizers, they would adopt a technology if they find it profitable (Hoppe, 

2002). More than likely, farmers have multiple goals or objectives (Pannell et al., 2006). Farmers 

may also seek to maximize their utility through environmental stewardship, by improving soil 

health. In this case, in addition to profit, the farmer would want to adopt a technology if doing so 

achieves their environmental objectives, as well. If a practice does not maximize farmers’ utility 

at a particular point in time, then farmers delay adoption until new information or knowledge 

about the suitability of the practice for meeting their economic, social and environmental goals 
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becomes available (e.g. cost of the technology, profitability, soil or environmental benefits, etc.) 

(Hoppe, 2002).  

An important temporal aspect in the adoption process in assessing a technology’s 

suitability is the adaptability of the practice. At the beginning, the uncertainty from adopting a 

new practice is high, however, with time the uncertainty is reduced (Pannell et al., 2006). In 

some cases, farmers may find it optimal to delay adoption until the practice becomes viable for 

their cropping system. That is, the new technology or practice can most easily be assimilated into 

their current cropping system with the lowest transaction cost, while meeting their objectives for 

adopting the practice (Ghadim and Pannell, 1999; Pannell et al., 2006). In some cases, this point 

is reached when sufficient information has been gathered to make an optimal decision (Fischer et 

al., 1996; Jabbar et al., 2003).Some factors that may affect the adaptability of a practice or 

technology and knowledge acquisition could be farm size, physical capital requirements, human 

capital requirements, weather, geography, and complementarity with other agricultural practices 

already used in the farmer’s cropping system (Ghadim and Pannell, 1999; Jabbar et al., 2003).  

The compatibility of a conservation practice, which concerns the stage of development of 

the technology, is another factor that will affect the adoption of a new technology or practice. For 

example in the case of VRA adoption, constraints to adoption have been linked to equipment and 

software issues (Robertson et al., 2012). External factors such as the complexity of the practice, 

the extent of trial ability, social network interactions,  and farmer’s characteristics will impact 

farmers’ perceptions of the adaptability and compatibility of a new practice, affecting the 

evaluation of that practice in the adoption process and in turn the decision of when to adopt 

(Pannell et al., 2011). For example, risk averse farmers may delay adoption to avoid uncertainty 
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and minimize the cost of information, which may become available as more farmers adopt a 

practice (Sassenrath et al., 2008). 

 The conceptual framework examines the timing of adoption of conservation practices by 

farmers, building on the framework used by Abdulai and Huffman (2005). Consider a farmer, 

indexed by i, who is considering the adoption of a conservation practice. Let )( it
E
it x represent 

the expected profitability of the adoption of the conservation practice at time period t as a 

function of a set of explanatory factors that can vary across individuals and time ( itx ). While 

profit is a strong motivation to adopt a practice, as mentioned earlier, it may not be the only 

objective. That is, farmers may be environmental stewards or want to provide security for the 

farm for future generations. Thus, a utility framework is utilized to capture these multiple 

objectives by the farmer. Let farmer i’s expected utility from farming in time period t be 

represented by ],,,),(,[ itiititit
E
itit

E
i

E
it rwzxIUU   . It is assumed that farmers’ expected utility is 

increasing in 
E

it such that 0 E

it

E

itU  . itI  is an indicator function taking a value of 1 if the 

farmer adopts the conservation practice in time period t and zero otherwise. The other arguments 

of farmer i's expected utility are farmer demographics )( itz ; farm and farm management 

characteristics )( itw ; attitudinal factors )( ir ; and site-specific characterisitics it . These different 

factors play an important role in farmers’ motivation to adopt a conservation practice as shown 

in prior research (Robison et al., 1984; Skaggs et al., 1994).  

The goal of the farmer is to maximize expected utility over time, i.e.  
t

E
itU )(max . 

Letting 
t  represent the optimal time to adopt the conservation practice, the utility maximization 
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problem implies the following condition: 
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where itI  is an indicator variable taking a value of 1 to indicate adoption beginning in time 

period t* and zero otherwise. The utility is maximized over the indicator variable and adoption 

occurs when the above condition is met. That is, a farmer will adopt in time period 
t if the 

stream of utilities over time after adopting a conservation practice at time 
t is greater than or 

equal to the sum of utilities when the practice is not adopted (or adopted at a different time). This 

suggests that a conservation practice is adopted not only when its expected benefit is positive, 

but by choosing 
t , we ensure that the adoption occurs at the point in time when that benefit is 

maximized (Abdulai and Huffman, 2005). Operationalizing this model requires that what is 

observed for the farmer is the actual point of adoption or 
t . Thus, we can look at the timing of 

adoption from a probabilistic framework empirically. 

 

4.3.2 Empirical model 

Duration analysis will be employed to study the length of time it takes a farmer to adopt a 

conservation practice (i.e. transition states). Let the time of adoption be represented by a random 

variable T . Then the probability distribution of the length of time (i.e. the duration) to adoption 

can be represented by the distribution function )(Prob)( tTtF  . That is, the probability of 

adopting a conservation practice before time period t is given by )(tF , where t is a particular 

realization of T . Associated with this distribution, is its corresponding density function 

dttdFtf /)()(  , which provides the relative frequency of adopting at time period t (Greene, 

2012; Kiefer, 1988).  
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The probability that a farmer adopts after time t can be represented by the well-known 

survival function (Lancaster, 1992):  

(4.1)                                             )(Prob)(1)( tTtFtS   

Using )(tF and )(tS , the probability that a farmer would adopt in a given interval of time t  can 

be modeled using the hazard rate (or function): 

(4.2)                   
dt

tSd

tS

tf

t

tTttTt
t

t

)(ln

)(

)()|(Prob
lim)(

0










  

The hazard rate represents the rate at which a farmer would adopt after he has farmed for t years, 

or alternatively, after the practice has been available for t years, whichever is latest. Different 

parametric specifications for the hazard function have been proposed, namely, exponential, 

Weibull, log-logistic, lognormal, and inverse normal (Kalbfleisch and Prentice, 2011; Lancaster, 

1992).  

A graphical nonparametric assessment of the proper functional form to utilize to model 

)(tF  can be done using the Kaplan-Meier estimator, which can be used to graphically assess the 

shape of the distribution to determine the distributional form of the survival and hazard functions 

(Kalbfleisch and Prentice, 2011; Lancaster, 1992). Based on the analysis of the Kaplan-Meier 

estimator of the survival curve (discussed later in the results section), the Weibull model, which 

is widely used to model monotonically increasing or decreasing hazard functions, was chosen to 

model the duration of adoption in this study (Greene, 2012).  

The hazard, survival and density functions, assuming a Weibull distribution for )(tF , are 

given by (Greene, 2012): 
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(4.3)                                               
1)()(  ptpt   

(4.4)                                             ])(exp[)( pttS   

(4.5)                                        ])(exp[)()( 1 pp ttptf     

where   and p  are distributional parameters. Equation (4.3) is the hazard function, Equation 

(4.4) represents the survival function, and Equation (4.5) represents the density function for the 

timing of adoption. When 0p , the distribution reduces to the exponential case, where the 

probability of adopting is the same in any year after the farmer begins farming.  

 

4.3.3 Survey method  

A survey was administered during a series of workshops held across 10 locations spanning the 

state of Kansas from December 2013 to March 2014. Workshop locations were selected based 

on different weather, landscape and farm demographic characteristics. The cities where the 

workshops were held were: Salina, Great Bend, Colby, Dodge City, Wellington, Pratt, 

Hiawatha, Topeka, Manhattan, and Parsons, Kansas. Prior to administering the survey, the 

instrument was field tested with farmers during two focus groups held in Salina and Wellington, 

Kansas. 

The sample of farmers contacted for the survey was obtained from the Kansas Farm 

Management Association (KFMA), which services over 2,300 farms that grow crops and 

livestock across the state of Kansas. Of these farms, approximately 76% are identified as 

primarily crop producers and 16% are identified as crop/livestock producers. A total of 1,513 

farmers from the KFMA were mailed letters to attend face-to-face workshops. Of the farmers 
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contacted, 40 were no longer farming, were deceased or could not be located and 432 responded 

to the letter. Some of the farmers who responded were interested in participating, but were not 

able to attend the workshops on the dates they were held. Of the farmers who responded to the 

letter, 250 farmers were able to attend the workshops, yielding a response rate of 30% and an 

attendance rate of 17%. Workshop attendees were compensated for their time and travel 

expenses with a stipend of $125 in cash. It is important to note that farmers who had 

conservation practices in place may have been more likely to attend the workshops; however, 

given the nature of slightly more intensity of the practices under study, they were the target 

population.  

Participating farmers were asked to complete a survey with questions covering their 

farming history, farm operation, and conservation on their farm. The survey required 

respondents to provide information on the practices adopted and the date in which these 

practices were adopted. Farmers also provided information on the date in which they started 

operating any part of their farm. Specifically, Question 22 in the survey was used to estimate the 

time of adoption for the different conservation practices. Explanatory factors and summary 

statistics are provided in subsection 4.4.4.2. 

 

4.3.4 Survey data 

Table 4.1 presents a comparison of respondents’ demographics with those of Kansas farmers 

using the 2012 U.S. Census of Agriculture (NASS-USDA, 2014) and the demographics of 

KFMA members in 2013 (KFMA, 2014).  The average sample age was 56 years and was 

comparable to the average Kansas farmer (58 years) (U.S. Census of Agriculture). The average 

farm size (including CRP land) of the respondents (2,508 acres and sales value of $400,000 to 
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$599,999) was larger than the average farm size reported in the 2012 Census of Agriculture (747 

acres and sales value of $298,845). This particular study focuses on medium to large farms, 

excluding small hobby farmers, retired farmers, and very large operations which represented a 

significant share of the total farms in Kansas (Lambert et al., 2007; NASS-USDA, 2014).  
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Table 4.1  Average farm characteristics  

Variable N Mean SD Min. Max. 

Mean 2012 

Census of 

Agriculture 

Mean 2013 

KFMA 

Age (yrs.) 234 56 13 20 84 58 ---- 

Acres 234 2,508 1,981 110 14,875 747 2,196 

Sales 234 6.20
b
 2.04 1 9 $ 298,845 $618,416 

a Source: National Agricultural Statistics Service, USDA (2014) 
b Mean sales of 6.20 corresponds to the sales category of $400,000 to $599,999 
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4.3.5 Model estimation 

This study examined the timing of adoption of continuous no-till, cover crops and VRA of 

inputs. For the purpose of this research, the conservation practices examined are defined as 

follows: 

 Continuous no-till: Consists in planting crops directly into the crop residue without 

disturbing the soil with tillage, for all the crops in a rotation within a particular field. 

 Cover crops: Planting a single or multiple cover crop species between regular cash crops 

to protect the soil and improve soil organic matter. 

 VRA of inputs: This practice consists in using site-specific information for input 

application rates within a field. Methods used could be sensor-based and/or map-based. 

These practices were selected because they are cropping practices commonly known and 

adopted at different degrees in the region of study. An individual model was estimated for each 

practice to examine the time relative to the beginning of farming or introduction of the practice, 

when adoption of the conservation practice occurred. Given that farmers did not provide 

information regarding the date of adoption for some practices, the number of observations for 

each practice modeled varied. The start of the time period to adoption ( 0T ) begun at different 

years for each farmer. Fallowing (Alcon et al., 2011; Burton et al., 2003; D'Emden et al., 2006), 

the beginning of the duration for each farmer was estimated as either the year in which the 

farmer started operating the farm, or alternatively, the year at which the practice was 

commercially introduced if the farmer started operating the farm prior to the introduction of the 

practice. For adopters, the dependent variable was then calculated by subtracting the year in 

which farmers started operating the farm from the year in which the practices was adopted. If 

the conservation practice was not available until after the initial year of farming, then the timing 
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of adoption was calculated using the year in which the practice was available to the farmer.  

For no-till practices, the year used as the initial year of farmers’ exposure to the practice 

was 1962. While no-till practices were used since the existence of ancient cultures (Triplett and 

Dick, 2008), those used by mechanized farmers have only occurred in the last century. No-till 

experiments were conducted as early as 1951 in the U.S., however the practice was not adopted  

and field trials conducted until 1961 (Derpsch et al., 2010; Doraszelski, 2004). Successful 

introduction of no-till practices in mechanized farms was reported in 1962 (Derpsch, 2004). 

Specifically, the development of this practice in corn started in 1960 (Triplett and Dick, 2008). 

For VRA, 1993 was used as the date in which farmers had initial access to precision 

technologies. By 1993, the introduction of GPS made it possible for the development of crop 

monitoring and yield mapping (Taylor and Whelan, 2005), technologies that have been 

commercially available since the early 1990s (Daberkow and McBride, 2003). For cover crops, 

there was not an identifiable date when the practice was introduced since different types of cover 

crops have been used for a long time. 

In some cases, conservation practices were adopted on a farm by previous operators. This 

represents a case of left truncation if information on the adopter and the path of adoption are 

unknown. In this study, observations with left truncation were omitted following (Alcon et al., 

2011). The exit or date of adoption was estimated as the year when adoption took place for 

adopters ( tT  ). For right censored observations, where adoption had not taken place by the date 

of the survey ( c ), the survey date was taken as the exit time, i.e. ),min( ctT   (Kiefer, 1988). 

For censored observations, the process is still ongoing and adoption could take place sometime 

after t, but it is not observed.  
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4.3.5.1 Maximum likelihood estimation 

The parameters of the duration model can be estimated using Maximum Likelihood estimation. 

Given that the time of adoption for farmers who had not adopted a practice by the time of the 

survey is unknown, the data is censored and estimation needs to account for the censored nature 

of the data (Greene, 2012). Censoring is accounted for in the Likelihood function, where the 

likelihood function for a farmer who has adopted a practice is the density of time it took for the 

farmer to adopt, )()()( ttStfL  . On the other hand, the contribution to the likelihood function 

for a farmer who has not adopted a practice is its survival function, )(tSL  . The log likelihood 

function accounting for censoring can then be written as (Greene, 2012): 

(4.6)                             )|(ln)1()|(ln)(ln
1

 cStfL i

n

i

ii 


       

                                                                              or 

(4.7)                               )|(ln)|(ln)(ln
1

 cStL
n

i

ii 


 

where i represents the index of farmer observations, ),( p   is a vector of parameters, c

indicates the censoring time (time of the survey), and i is an adoption indicator (taking a value of 

1 if farmer i adopted and zero otherwise). When a farmer has not adopted a practice ( 0i ), this 

indicates that the observation is right censored, adoption has not been observed but it could occur 

in the future.  

The hazard rate can also be allowed to be a function of a vector of explanatory variables 

x  such that: 
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(4.8)                                               ),();(  xxti   

where   is a constant or baseline hazard. A commonly adopted functional form for )(  is 

)'exp()(  x , making Equation (4.8): 

(4.9)                                       )'exp()();( 1  xtpxt p

i

  

Equation (4.9) indicates that the explanatory variables enter the adoption rate (log failure rate) in 

a linear fashion. The explanatory variables do not affect duration dependence, (which is given by 

the parameter p), the explanatory variables affect the Weibull hazard multiplicatively (duration 

dependence is not a function of the exogenous variables) (Kalbfleisch and Prentice, 2011). It 

follows then, that the hazard, survival and density of T (Equation 4.3 – 4.5) can be written as: 

(4.10)      )'exp()()( 1  xtpt p  

(4.11)    )]'exp()(exp[)(  xttS p  

(4.12)              )]'exp()(exp[)'exp()();( 1  xtxtpxtf pp  
 

Using the density of time in Equation (4.12) in the Log Likelihood expression in Equation (4.7), 

this later form reduces to (Greene, 2012):  
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where p/1 . Models like that in Equation (4.9), where the hazard (  ) is a function of 

exogenous variables are often called accelerated failure time models (Greene, 2012). For more 

details on how the estimation model is derived, see Greene (2012). 

 

4.3.5.2 Explanatory variables used in the analysis 

There are multiple factors that affect farmers’ adoption of agricultural technologies. These 

factors differ by the type of technology adopted and the region where adoption takes place. Some 

of the determinants of adoption for conservation practices identified in the literature are farm and 

farm management characteristics; biophysical factors or site-specific characteristics; economic 

factors; attitudinal factors; and market factors such as input and output prices (Knowler and 

Bradshaw, 2007). For a comprehensive review of the factors affecting the adoption of different 

conservation practices in the literature see Baumgart-Getz et al. (2012) and Prokopy et al. 

(2008). In many cases, the factors evaluated in empirical applications are restricted to the 

availability of data. In this study, the factors evaluated are: profitability factors (perception of 

increased income), farmer demographics (age and education), farm and farm management 

characteristics (farm acres, farm income, crop income, previous practices adopted on the farm), 

attitudinal factors (risk aversion, stewardship, and if the farmer is a first-time technology 

adopter), and site-specific characteristics (regional variables). Descriptive statistics of the data 

are reported in Table 4.2. 

In this study, conservation practice profitability is a discrete variable that takes a value of 

1 if the farmer indicated that they would only adopt the conservation practices (evaluated in this 

study) if they perceived it would increase profit, and zero otherwise. This variable was used to 

control for the profitability of the practice at the time of adoption. If farmers indicated that they 
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would adopt these practices only if these resulted in higher profits, then it follows that they 

adopted a practice at a particular point in time because expected profits were higher with the 

practice than without it. Conversely, if farmers have yet to adopt these practices, then it indicates 

that they do not perceive these practices as necessarily being economically profitable for them at 

this point in time (i.e. the production, opportunity or transaction costs could be too high). 

Age of the farm operator is expected to be negatively correlated with the speed of 

adoption of a conservation practice. Older farmers have a shorter planning horizon and are 

thought to be more averse to change. While some studies have found that younger farmers are 

more likely to adopt conservation tillage (Davey and Furtan, 2008; Soule et al., 2000) and VRA 

of inputs (Hudson and Hite, 2003; Larson et al., 2008), other studies have found no statistical 

relation between the age of the farmer and their willingness to adopt agricultural practices 

(Abdulai and Huffman, 2005; Finger and El Benni, 2013). In a duration analysis, age was found 

to slow the time of adoption of drip irrigation (Alcon et al., 2011). 
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Table 4.2  Descriptive statistics of Dependent and Explanatory Variables 

Variable 

Mean 

(Standard Error) 
Definition 

Continuous 

no-till  

Cover 

Crops  
VRA 

Dependent Variable 

Duration 25.753 

 

32.043 

 

17.810 Time measured in years that it took for farmers to 

adopt.  (14.315)  (14.727)  (5.723) 

Explanatory Variables 
 

Profitability 2.252  2.236  2.227 The farmer would adopt the practice only if it 

increases net returns )0,1( noyes  .  (0.970)  (0.974)  (0.976) 

Age 49.188 

 

55.112 

 

55.310 Farmer's age in years. 

 

(14.247) 

 

(13.680) 

 

(13.896) 

College 0.507 

 

0.502 

 

0.513 Farm operator has a college degree 

)0,1( noyes  . 

 

(0.501) 

 

(0.501) 

 

(0.501) 

Acres 2458.34 

 

2469.60 

 

2493.12 Total crops acres (including crops, grazing, CRP). 

 

(2049.30) 

 

(2021.54) 

 

(2012.58) 

FarmInc 74.253 

 

73.610 

 

73.872 Percentage of household income derived from 

the farming operation.  (29.946)  (30.128)  (30.305) 

Crops 73.344 

 

72.437 

 

74.187 Percentage of farm income from crop production. 

 

(27.308) 

 

(27.764) 

 

(26.970) 

CNT ------- 

 

0.548 

 

0.576 Farmers was using continuous no-till before 

adopting this practice )0,1( noyes  .    (0.499)  (0.495) 

CCRot 0.431 

 

0.541 

 

0.578 Farmers was using crop rotation before adopting this 

practice )0,1( noyes  .  (0.496)  (0.499)  (0.495) 

CCrop 0.072 

 

------- 

 

0.250 Farmers was using cover crops before adopting this 

practice )0,1( noyes  .  (0.259)    (0.434) 

VRA 0.076 

 

0.393 

 

------- Farmers was using VRA of inputs before adopting 

this practice )0,1( noyes  .  (0.266)  (0.000)   

Risk 0.749 

 

0.747 

 

0.728 Risk taking behavior in farm management 

decisions )0,1( otherwiseaverserisk    (0.435)  (0.436)  (0.446) 

Stewardship 0.489 

 

0.481 

 

0.487 Maximizing farm profit is more important than 

environmental stewardship to the farm's 

operator )0,1( yesno  . 

 

(0.501)  (0.501)  (0.501) 

Innovators 0.507 

 

0.494 

 

0.504 Farm operator usually adopts new technology 

(e.g. no-till, new seeds, etc.) before neighbors 
)0,1( noyes   

 

(0.501)  (0.501)  (0.501) 

Western 0.215 

 

0.215 

 

0.220 If the farm is located in Western Kansas 
)0,1( noyes   

 

(0.412) 

 

(0.411) 

 

(0.415) 

Central 0.413 

 

0.412 

 

0.409 If the farm is located in Central Kansas 
)0,1( noyes   

 

(0.493) 

 

(0.493) 

 

(0.493) 

      

 

No. Obs. 223 

 

233 

 

232  

VRA = Variable rate application of inputs 
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Education was included to evaluate the effect of human capital in the timing of adoption.  

Farmers with a higher level of education are thought to have better access to information and to 

be able to make more efficient and informed decisions (Rahm and Huffman, 1984). Education 

has been found to be a significant factor in the adoption of no-till and other conservation tillage 

practices (D’Emden et al., 2008; Gould et al., 1989; Rahm and Huffman, 1984; Soule et al., 

2000). Other studies found no statistically significant effect (Davey and Furtan, 2008). The effect 

of education is expected to be larger for more complex technologies like in the case of cover 

crops and VRA application of inputs. Highly educated farmers have been found to be more likely 

to adopt various VRA technologies (Adrian et al., 2005; Larson et al., 2008; Robertson et al., 

2012). In duration analysis applications, education has been found to speed the adoption of 

agricultural technologies (Murage et al., 2011). A study conducted by (Fuglie and Kascak, 2001) 

found that farmers with a high school or college degree adopt conservation practices two years 

earlier than farmers without a high school diploma. Another study found that farmers’ education 

speeds the adoption of drip irrigation (Alcon et al., 2011). A priori, education is expected to 

accelerate the adoption process of the three conservation practices evaluated in this study. 

Total acres was included in the models to evaluate the effect of operation size on the 

speed of adoption of a conservation practice. Given that some of these practices may require 

human/capital investment and may have transaction costs, farmers that operate at a larger scale 

may be able to distribute the costs of adoption among more acres or enterprises, reducing the unit 

cost by taking advantage of economies of scale. Therefore, total acres is expected to be a positive 

factor in the timing of adoption.  Previous studies have found a positive relation between size 

measured in acres and conservation tillage adoption (Davey and Furtan, 2008; Soule et al., 

2000). In practices where the investment is greater, as in VRA of inputs, the presence of 
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economies of scale could be larger. Evidence in the literature suggests that VRA of inputs is 

more likely to be adopted on larger farms (Adrian et al., 2005; Daberkow and McBride, 2003; 

Hudson and Hite, 2003; Larson et al., 2008; Robertson et al., 2012). For mid-term or structural 

practices where there is no gain in economies of scale (e.g. investment is done at the acre level), 

a negative relation has been found between farm size and adoption (Soule et al., 2000). In 

duration analysis applied to the adoption of agricultural technologies, the effect of farm size has 

been mixed. Farm size was found to accelerate the adoption of a weed control technology in 

western Kenya (Murage et al., 2011). Fuglie and Kascak (2001) found longer lags of 

conservation tillage adoption as farm size decreased. They estimated an adoption lag of 7 years 

between the largest and smallest farm in their sample. Conversely, farm size was not found to 

have a significant effect in duration applications for the adoption of no-till (D'Emden et al., 

2006) and drip irrigation systems (Alcon et al., 2011). 

The percentage of off farm income is used as a proxy for the time devoted to work on the 

farm. A higher percentage of off-farm work is expected to slow the adoption of conservation 

practices. The adoption of agricultural practices require time and investment in learning the new 

technology (Llewellyn, 2007), which could represent a constraint to adoption for farmers whose 

main activity is not farming. For technologies like VRA, where a greater investment is required, 

particular investment in the development of technical skills and time devoted to operating the 

farm is particularly important. Farmers devoted to full-time farming were more likely to adopt 

VRA of input technologies (Daberkow and McBride, 2003) and were more likely to adopt 

conservation tillage (Soule et al., 2000). No significant effect was found in the adoption of other 

agricultural practices like extensive wheat production systems (Finger and El Benni, 2013).  
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Another variable included in the analysis was the percentage of farm income from crop 

production. This variable is expected to have different effects on each practice. Farmers with 

more livestock are expected to be more likely to adopt cover crops because these can be used for 

a dual purpose, such as feeding livestock. On the other hand, farmers whose income primarily 

comes from livestock and who allow their livestock to graze crop residues may be less likely to 

adopt conservation tillage (Vitale et al., 2011). 

Conservation practices used on the farm at the time of adoption was also included to 

examine that effect of complementarity or substitionability of conservation practices. A dummy 

variable was included to indicate if the farmer was using continuous no-till, conservation crop 

rotations, cover crops or VRA of inputs prior to adopting the practice being examined. Adopting 

different conservation practices on the farm could also indicate an attitude towards conservation 

and it is expected to speed the timing of adoption. However, a study by Bergtold and Molnar 

(2010) did not find evidence that the adoption of one practice influenced the adoption of other 

practices.   

Risk affects the adoption of agricultural technologies in different ways (Marra et al., 

2003) and has been found to reduce the adoption of agricultural technologies (Ghadim et al., 

2005). Risk affects farmers’ willingness to try new practices and the process of knowledge 

accumulation (Greiner et al., 2009b). Risk averse farmers are thought to adopt practices more 

slowly than risk-neutral or risk-loving farmers to avoid the cost of uncertainty and the cost of 

learning the new technology (Sassenrath et al., 2008). For example, (Krause and Black, 1995) 

suggested that risk averse farmers adopt conservation tillage slower because of the learning 

costs. In the case of no-till, at initial stages of the diffusion of the technology, studies found the 

practice to be riskier, and risk aversion was found to be negatively associated with adoption 
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(Bultena and Hoiberg, 1983). However as no-till technologies improved and improved herbicides 

were introduced, the risk associated with the practice decreased (Bosch and Pease, 2000). In 

addition, the way a conservation practices impacts soil quality, production costs, and crop yield 

variability may affect the way in which risk affects adoption (Kalaitzandonakes and Monson, 

1994). Generally, farmers with higher risk tolerance adopt more practices on their farms (Lynne 

et al., 1988) and are expected to adopt practices more rapidly than risk averse farmers (Chatterjee 

and Eliashberg, 1990). 

 Attitudinal factors such as farmers’ attitudes toward environmental stewardship are 

expected to speed the adoption of the conservation practices evaluated in this study. Farmers 

with conservation motivations were found to be more likely to adopt best management practices 

in previous empirical studies (Greiner et al., 2009b). In addition, innovators (farmers who 

considered themselves first time adopters), are expected to adopt more rapidly. However, as 

discussed by (Pannell et al., 2011), innovators are not always the first to adopt conservation 

practices. In some cases they may become later adopters if the practice is not attractive or 

suitable to their production system.  

Regional indicators were included to account for differences in the adoption across 

regions. Due to heterogeneity in land quality and weather, weed pressure and other factors that 

are not accounted for in the set of explanatory variables, it is important to capture the effect of 

geographical differences impacting the adoption of agricultural technologies (Green et al., 1996). 

D’Emden et al. (2008) found differences in the speed of adoption of conservation tillage across 

regions in Australia. Fuglie and Kascak (2001) found larger lag differences in the adoption of 

conservation practices across regions in the U.S. Regional factors have also been found to be 
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significant explanatory variables in the adoption of VRA of inputs (Daberkow and McBride, 

2003). 

Given the way the variables enter the model and method of data collection, it is implicitly 

assumed that the explanatory variables do not vary over time, which can be a strong assumption 

for many covariates. Education may not change much over time as it may be likely that the level 

of education attained at the time farmers started operating their farm may not have changed 

afterwards. While attitudinal factors and risk aversion may be affected by knowledge and 

experience, they could also be related to farmers’ personality and it could be argued that, in 

general, they are relatively constant over time. However, farm size and sales may have been 

affected by the adoption of the practices and other exogenous factors, and may not be constant.  

 

4.4 Results and Discussions 

Kaplain Meier survival estimates for the three practices are illustrated in Figure 4.1. The survival 

function represents the likelihood that a farmer continues farming without adopting the 

conservation practice. It can be noted that the survival curve for the three practices decreases 

over time, indicating that the likelihood that a farmer would adopt any of these practices 

increases over time. The three survival estimates decrease over time, indicating positive duration 

dependence (i.e. 0/)( dttd in Equation 3). That is, the likelihood of adoption increases with 

the number of years of farming (Greene, 2012). It can be noted that the adoption of these 

practices is more rapid during the first years of farming (or introduction of the practice) and later 

years are characterized by a slower pace of adoption.  It can also be noted from the graphs that 

the adoption of VRA has been slow. Under some conditions, farmers may have an incentive to 
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delay adoption until a technology is improved or more information becomes available 

(Chatterjee and Eliashberg, 1990), which could be the case for VRA of inputs.  

Since the survival function for the exponential distribution is constant,  and first 

increasing and then decreasing for the lognormal and logistic distributions, the Weibull 

distribution, characterized for being monotonically increasing (or decreasing), was a good fit for 

the data in this study (Greene, 2012). The Weibull distribution is appropriate as the probability of 

adoption is not expected to be constant over time, but to gradually increase. The parametric 

models were estimated using maximum likelihood estimation in LIMDEP 10. The model 

estimated was an accelerated failure time model. The “accelerated” refers to the fact that the 

hazard function is a function of exogenous variables and “failure time” refers to the time 

measured being the time until adoption occurs (i.e. in some applications this is referred to as 

failure time). The results of the models estimated are reported in Table 4.3. 
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Figure 4.1 Kaplan Meier survival estimates 
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The parameter p, is greater than one for all the conservation practices, indicating positive 

duration dependence. That is, the likelihood that a farmer would adopt any of these practices 

increases with the number of years of farming. Over time the cost of technology tends to 

decrease (Jaffe et al., 2002). In addition, over time, farmers acquire more farming experience and 

accumulate knowledge and capital. These factors are more likely to increase the likelihood a 

farmer adopts a conservation practice as more time passes. Given that the adoption of 

conservation practices by farmers creates an important source of information to assist with the 

diffusion of the technology to other farmers, the longer a farmer operates a farm, the more they 

are in contact with an increasing number of adopters over time, reducing uncertainty about the 

benefits and costs of using a particular practice. There are other external factors that overtime 

ease the adoption of some practices. For example, the development and improvement of 

technologies and equipment that facilitate the implementation of a practice. In the case of no-till, 

it has been suggested that the introduction of herbicides made it possible to speed adoption rates 

(Doraszelski, 2004). 

The parameter estimates for each model represent the effect of an explanatory variable on 

the conditional probability of adoption at time period t. While the magnitude of the coefficients 

cannot be readily interpreted, the sign of the parameters can be interpreted as speeding or 

slowing adoption.  A negative coefficient indicates that the effect of a particular variable is to 

accelerate adoption. On the other hand, a positive coefficient would indicate a factor that would 

delay adoption.  A highly significant factor in the adoption of all conservation practice models 

was a farmer’s age.  Younger farmers were found to adopt the three practices faster than older 

farmers. A potential implication of this result is that, as farmers start operating their farms at a 
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younger age, efforts should be directed towards those farmers to adopt environmentally sound 

conservation practices, because as they grow older, they are less likely to adopt. 

Farmers who adopt practices only when there is a corresponding increase in profit were 

found to lag behind those farmers for whom profitability of the practice is not the main driver for 

adoption. This result was found statistically significant for both continuous no-till and cover 

crops. This result may indicate that some farmers do not always perceive these practices as being 

profitable. In addition, farmers for whom profit maximization was more important than 

stewardship were found to adopt VRA of inputs at a higher speed. This result could indicate that 

adoption of VRA of input is driven by profit motives and not environmental motives.  

A surprising result was that farmers who adopted conservation crop rotation or VRA of 

inputs adopted continuous no-till at a slower pace than farmers who had not adopted these two 

practices. Similarly, the adoption of cover crops was found to slow the adoption of VRA of 

inputs. It has been previously suggested that while farmers may consider the adoption of various 

conservation practices, when it comes time to adopt additional practices, the higher cost of 

conservation intensification may make farmers less likely to adopt more practices (Ma et al., 

2012). In addition, Cattaneo (2003) found that conservation contracts with a larger bundle of 

conservation practices in the EQIP program were more likely to be withdrawn. It is possible that 

farmers see some of these practices as substitutes. They may obtain some benefits from a 

particular practice, and as a result, the likelihood of adopting an additional practice that provides 

the same or similar benefits may decrease. 
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Table 4.3  Accelerated Failure Time estimates 

 
Continuous no-till 

 

Cover Crops 

 

VRA of inputs 

 

Coefficient SD 

 

Coefficient   SD 

 

Coefficient    SD 

Intercept 0.564 ** (0.221) 

 

1.265 *** (0.257) 

 

2.219 *** (0.483) 

Age 0.058 *** (0.004) 

 

0.047 *** (0.004) 

 

0.038 *** (0.005) 

College -0.118 
 

(0.082) 

 

-0.099 
 

(0.099) 

 

-0.055 
 

(0.150) 

Acres 0.000 
 

(0.000)  

 

0.000 
 

(0.000)  

 

0.000 
 

(0.000)  

FarmInc 0.000 
 

(0.000) 

 

0.000 
 

(0.000) 

 

0.000 
 

(0.000) 

Crops 0.000 
 

(0.001) 

 

0.000 
 

(0.001) 

 

-0.008 ** (0.003) 

Profitability 0.000 *** (0.000) 

 

0.000 ** (0.000) 

 

-0.002 
 

(0.057) 

CNT ---- 
 

(0.000)  

 

0.000 
 

(0.000) 

 

0.001 
 

(0.059) 

CCRot 0.000 * (0.000) 

 

0.000 
 

(0.001) 

 

0.000 
 

(0.059) 

CCrop 0.001 
 

(0.148) 

 

---- 
 

(0.000)  

 

0.317 * (0.174) 

VRA 0.459 ** (0.179) 

 

0.000 
 

(0.036) 

 

---- 
 

(0.000)  

Risk 0.082 
 

(0.083) 

 

0.185 * (0.099) 

 

0.325 ** (0.142) 

Stewardship 0.008 
 

(0.070) 

 

-0.074 
 

(0.087) 

 

-0.253 * (0.135) 

Innovators -0.166 ** (0.077) 

 

-0.240 ** (0.097) 

 

-0.478 *** (0.172) 

Western 0.102 
 

(0.112) 

 

0.387 ** (0.166) 

 

0.838 ** (0.404) 

Central 0.056 
 

(0.086) 

 

-0.014 
 

(0.103) 

 

0.097 
 

(0.143) 

  0.326 *** (0.018) 

 

0.315 *** (0.025) 

 

0.428 *** (0.044) 

  0.033 
 

(0.022) 

 

0.021 
 

(0.003) 

 

0.020 
 

(0.035) 

p  3.068 *** (0.168) 

 

3.170 *** (0.255) 

 

2.335 *** (0.238) 

            
 ------------------------------------------------ Fit Statistics ------------------------------------------------ 

No. observations  

 

223 
 

 

 

233 
 

 

 

232 

Log likelihood function 

 

-121.2 
 

 

 

-107.5 
 

 

 

-98.7 

AIC  

 

274.3 
 

 

 

247.0 
 

 

 

229.3 

*,**,*** statistically significant at the 1%, 5% and 10% level.  
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 Risk aversion was found to delay the adoption of cover crops and VRA of inputs. It has 

been previously suggested that risk averse farmers may find it optimal to delay adoption to avoid 

the cost of learning. Risk aversion was not found to significantly affect the speed of adoption of 

continuous no-till. Similar to the findings in the first essay, this result could indicate that no-till 

practices are not seen as a risk increasing practice, and risk aversion does not slow the speed of 

adoption. As expected, farmers who considered themselves innovators adopt the three 

conservation practices at a faster rate than their counterparts.  

 The speed of adoption of cover crops and VRA of inputs in the western region of Kansas 

was found to be slower than in the eastern part of the state. Differences in the time of adoption 

across regions could indicate differences in climatic and soil conditions, as well as the 

profitability of the practices. In cases such as with the adoption of VRA of inputs, this could be 

related to the availability of custom options for precision services.  A slower rate in the adoption 

of cover crops in the western region of Kansas could be the result of dryer weather. During the 

workshops, some farmers expressed concern about the use of water by cover crops and the 

availability of water for subsequent cash crops.  

 The speed at which conservation practices are adopted are subject to various factors as 

the results of this study suggest. While some factors cannot be controlled, information and 

knowledge generation are important sources of change. For farmers who are not innovators, 

knowledge acquisition is an important step and precedes their decision to adopt (Jabbar et al., 

2003). It has been suggested that the slow rate of adoption for some practices could be related to 

slow rates of information acquisition (Fischer et al., 1996). Hence, extension plays an important 

role, not only in the levels of adoption, but also in the time of adoption. For practices with a 
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potential to provide large environmental benefits to society, a critical role for extension services 

then may be to help accelerate the rate of adoption of these practices (Marsh et al., 2000). 

In addition, since farmers may delay the adoption of conservation practices until they find 

it optimal, an important element to conservation efforts could be helping farmers to adapt 

practices to the conditions of their farming operation. Education efforts could focus on providing 

farmers with tools to successfully adapt conservation practices in a way that the perceived risks 

can be mitigated and synergies in the cropping system can be explored.  

 

4.5 Conclusions 

This study examined the factors affecting the timing of adoption of continuous no-till, cover 

crops, and variable rate application of (VRA) of inputs for Kansas farmers to gain insight 

regarding the time-path diffusion of these conservation cropping practices since their 

introduction into the agricultural community. A duration analysis was used to account for the 

dynamics of adoption and changing factors that affect farmer’s likelihood of adoption. Some of 

the factors examined are profitability factors, farmers’ demographics, farm and farm 

management characteristics, attitudinal factors, and geography. 

Findings in this study suggest that the adoption of certain practices delay the adoption of 

other conservation practices. For example, the adoption of conservation crop rotation and VRA 

of inputs were found to delay the adoption of continuous no-till, and the adoption of cover crops 

delayed the adoption of VRA of inputs.  In addition, the findings in this study suggest that risk 

aversion is not a significant factor delaying the speed of adoption of continuous no-till. Similar to 

the first paper, it is possible that farmers do not see no-till as a risky practice, thus risk aversion 
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may not affect its adoption or speed of adoption. However, risk aversion was found to delay the 

adoption of cover crops and VRA of inputs. In addition, the results in this study suggest that 

farmers who considered themselves innovators adopt the three conservation practices at a faster 

rate than their counterparts. Given that profitability factors and risk aversion seem to be 

important factors delaying the adoption of cover crops and VRA of inputs, information about the 

benefits obtained by these practices and how they may mitigate soil degradation and/or may 

increase profits may be an important message to deliver by extension educators.  

 

4.6 Limitations and future research 

Given the cross section nature of the data used in this study, the timing of adoption was modeled 

under the assumption that some of at factors measured at the time of the survey were the same at 

the time of adoption, which can be a strong assumption for some of the factors evaluated. For 

example, the size of the operation may have significantly changed since the date farmers started 

operating their farms to the date they adopted the conservation practice and finally to the date the 

survey data was collected. It could be argued, for example, that operational size may have 

increased over time. However, the time of adoption in this study is modeled under the 

assumption that farmers are operating at the same scale over time. This is an important issue for 

future research. A natural extension to this study is to include time-varying covariates to evaluate 

how changing factors affect the point in time at which farmers decide to adopt new conservation 

practices. Obtaining such data, however, can be difficult if the researcher does not have access to 

historical data at the farm level. If the data is collected from farmers it can be unreliable if based 

on recall (Burton et al., 2003).    
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