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INTRODUCTION

Student’s pooled t-test is a powerful procedure for testing the equality of two means based on
independent random samples {X; s} and {X;’s} from normal populations with equal variances. If
the assumption of normality is vioclated the test is fairly robust in holding the specified level and
maintaining good power. However, the test can perform poorly if 03 # o3 , especially if the sample

sizes are very different. As an alternative, consider the statistic:

(X~ X) = (= 1)

st . SH\'"*
s S

In large samples, ¢’ is approximately distributed N(0,1) whether or not the variances are equal. But

=

if n, and n, are “small,” say both less than 30, ¢ may have a distribution which is quite different from
a standard normal.

Testing for differences between two means of normal distributions when the variances are une-
qual is generally called the Behrens-Fisher problem. Linnik (1966) has showed that there is no
reasonable exact solution to this problem. Several approximate solutions exist for this pmblem.
The tests Behrens and Fisher developed about 50 years ago are not freq;xenﬂy used. Behrens test
remains unclear, and Fisher’s test lacks uniform size. Approximate tests of Welch and several
others are more popular because they are easier to use, and require just some simple calculations
and a t-table.

Another procedure which can be used to test for differences of two means is the Wilcoxon rank
sum test. This nonparametric test is an exact test of location when the underlying distributions are
otherwise identical. Not much is known as to how this test performs as a solution to the

Behrens-Fisher problem.



When testing for differences of two means, sometimes the assumptions go unchecked. Conse-
quently, tests are used inappropriately. How well do Student’s t-test and Wilcoxon's rank sum test
perform if the variances are moderately unequal? extremely unequal? What is the effect of differing
sample sizes? Hov.w accurate are the results of Welch's approximate t-test when the populations are
nonnormal?

I will investigate these questions via a simulation study. I will compare the power of Student’s
pooled t-test, Welch’s approximate t-test and Wilcoxon’s rank sum test under a variety of condi-

tions encompassing unequal variances, departures from normality and differing sample sizes.



LITERATURE REVIEW

The problem of testing the equality of two means based on independent random samples from
normal distributions with unequal variances has been studied for over 50 years. In this section, I
will review some major historical contributions to the Behrens-Fisher problem, especially the works
of Fisher and Welch. My discussion includes a brief presentation of several approximate tests based
on Fisher’s or Welch’s solution. Since Student’s pooled t-test and Wilcoxon’s rank sum test are
often used under conditions of unequal variances, I will compare their performance to tests specif-
ically developed for the Behrens-Fisher problem.

Behrens developed the first approximate solution in 1929. Then, in 1935 Fisher used fiducial
probability to derive Behrens’ solution. Fisher found a distribution based on a weighted difference

of two separate t distributions. He showed that the test statistic d:

(X; — X)) — (4 — pp)

d= S,z . S§ o
n m

could be expressed as:
d=tsinR + t,cos R

where 4 and ¢, are independent random variables with t-distributions having »n, and #, degrees of
freedom, respectively and tan R = (5,/5,)(m/n)¥* He found the distribution of d by using his idea
of logical inversion. This step made his solution controversial (Robinson 1982). Sukhatme, Fisher
and Hearly tabulated significant points to Fisher’s solution for 0° < 6 < 907, where
0 = arctan(R). Fisher and Yates published these tables in 1938. However, these tables did not gain
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wide acceptance because the test’s nominal significance level varied from 3.9% to 5.0% throughout
the parameter space {James 1959).

Welch (1947) derived a second order series approximation to the Behrens-Fisher distribution
which maintained power under the null hypothesis. Aspin (1948) expanded the series to include
fourth order terms. F;earson and Hartley (1954) tabulated critical values to the Welch-Aspin sol-
utionforf; > 6and f; > 6ata = .05and f; > 10and f; > 10ata = .05 where ;= n, — 1. Some
statisticans criticized the Welch-Aspin tables because Welch verified them for only one set of pa-
rameters. Wang (1971) and Lee and Gurland (1975) found them to be accurate for several sets of
sample sizes. After investigating the nominal significance level of the Welch-Aspin solution, Lee
and Gurland (1975) reported the maximum deviation for the examined sample sizes to be .001 from
.05.

Welch also produced two approximations to the asymptotic series solution using a Student’s
t-distribution with degrees of freedom weighted by the sample variances and sizes. In 1947, Welch
proposed approximating the distribution of d by a t-distribution whose degrees of freedom are
functions of n,, m,, Sf and S Welch’s approximate degrees of freedom are obtained by equating
S2/m + S3/m, with the moments of a scaled chi-square variable {(Wang 1971). The estimate of f is:

)

PR (1)
HCE+ £l -C Y

where:

T - Siiny

c= 3 3
S5
n m

In 1937 Welch had developed another approximate solution which has not received much recog-
nition. Fenstad (1983) compared Welch’s two approximate solutions by Monte Carlo simulation.
He found that the earlier obscure test maintained its nominal level closer to 5% than the more

popular approximation.



Several statisticans compared the power of Fisher’s test and Welch’s two tests. Scheﬂ'e/ (1970)
argued that the Welch-Aspin solution was more powerful than Fisher’s test, because for constant
conditions the critical values of Fisher's test were larger than Welch-Aspin’s test. He also stated
that the power of the approximate Welch test was similar to the Welch-Aspin test because the
critical points were close in value. Wang (1971) examined the size of these three tests. She found
that the Fisher’s test deviated the most from a nominal significance level whereas the Welch-Aspin
test varied the least. The size of Fisher’s test was always below the nominal level; thus, it was more
conservative than both of Welch’s tests. For f; = 6, 5 = 12 and .03 < o}/o} < 32, Wang (1971)
reported the maximum deviation from @ = .05 for Fisher's test was .0144 below a , whereas it was
.0024 for Welch's approximate test. Lee and Gurland (1975) found similar results for n, = 5 and
m=9

Other statisticans have developed solutions to the Behrens- Fisher problem. Most of these tests
are approximations to either Fisher's or Welch's solution. Cochran and Cox (1950), Banerjee
(1961) and Patil (1965) devised approximations to Fisher’s solution. Banerjee and Cochran and
Cox’s tests are easy. to use. However, the tests’ size deviates in a similar magnitude to Fisher's test.
Wald (1955), Pagurava (1968) and Lee and Gurland (1975) developed approximations to Welch's
solution.

Despite the many tests developed for testing for the equality of means when ¢} # o3, researchers
often use Student’s pooled t-test or Wilcoxon’s rank sum test. Statisticans have investigated the
performance of these tests when the variances are unequal. For equal sample sizes, Van der Vaart
(1961) reported that Student’s pooled t-test was insensitive to small inequalities of variance. He
also found that the power under the null hypothesis of the nonparametric test exceeded its nominal
value in the range of —1 < ¢ < | where ¢ = (o} — o3)/(c} + o), while Student’s test did not. In
contrast, he noted as opposite trend when », # n,. He concluded that Wilcoxon’s test performed
more poorly than Student’s test when 1/2 < n/n, £ 2. Wetherill (1960) found that Wilcoxon'’s test
was slightly more robust with regard to unequal variances than Student’s test. However, he re-
ported that the size and power of the former test was more affected by variation of the third and

fourth moment.



I found only one study which compared Student’s pooled t-test or Wilcoxon’s rank sum test
with a test developed for unequal variances. Murphy (1967) simulated the power of Student’s and
Welch-Aspin’s tests. He reported that Welch-Aspin’s test maintained its significance level closer to
.05 than Student’s test while in the range of 1/16 < o3/o} < 16. When n, = m,, he found that Stu-
dent’s test was robust with regard to unequal variances.

There exists a lack of information about the performance of commonly used tests which test for
differences of two means versus tests devised for the Behrens-Fisher problem. This motivated my
comparative study of Student’s pooled t-test, Wilcoxon’s rank sum test and Welch’s approximate

t-test.



METHODS

I simulated the power of Student’s pooled t-test, Welch's approximate t-test and Wilcoxon's
rank sum test under several combinations of means, variances, sample sizes and population dis-
tributions. The mean and variance of population 1 were set equal to 0 and 1, respectively. I set

the means of population 2 equal to values which yield noncentrality parameter values 9,
)
8 =
2
1, 9)"
m |

equalto 0, 1, 2, 3, 4 or 6. The variances of population 2 were set equal to 1, 2, 4, 9 or 16. I selected

equal and unequal samples of small, medium and large size. I ran the simulation using nine dif-
ferent pairs of n, and n, I investigated the tests’ performance under two distributions, the normal
and the double exponential. Overall, I simulated the tests’ power for 6¢5¢9e2 = 540 combinations
of y,, 03, n,, m, and distributions.

I wrote a computer program which approximated power based on 1000 Monte Carlo simu-
lations for each combination of parameters. I coded the program in FORTRAN77 and executed
it on an 1BM 4381-1 computer. The program utilized routines in the International Mathematical
and Statistical Libraries (IMSL) to access normal, exponential and‘binomial random number gen-
erators, Student’s t probability Mbuﬁon function and the Wilcoxon rank sum test. I generated
double exponential deviates from exponential and binomial deviates using the following equation:

D; = BpE; + (B, — 1)*E; + «

where:
D, ~ Double Exp (a,25%)
B, ~ Bin(1,.5)



E,~ Exp(B)
a=0ory,
B = (1/2)"2 or (a3/2)\A,
The program estimated the power by recording the proportion of times the simulated test sta-
tistics led to rejection of the null hypothesis in 1000 iterations at @ = .10, .05 and .01. A two sided

alternative was used in all cases.



RESULTS

The reported results are estimated powers based on 1000 iterations. Each test was conducted
with nominal (but not always actual) level a = .05. I do not include powers calculated with
a = .10 or @ = .01 in this discussion. I present the results first under the normal distribution then
the double exponential distribution. For each distribution, I report the power of each test under
the null hypothesis and under several alternative values of p; (with o} fixed).

Table 1 contains 95% confidence intervals for the level of each test at various sample size and
variance conditions under the normal distribution. I judge test performance on whether the 95%
confidence limit includes a = .05. This criteria is not valid for Wilcoxon’s rank sum test for small
sample sizes. The level of this test is based on a permutation distribution and is not exactly
a = .05. In the case of n, = n, = 4 and 6} = 0%, the actual level of the test is .0286. This effect is
negligible for all but small sample sizes.

Welch’s approximate t-test maintained a level a = .05 test more often than Student’s pooled
t-test or Wilcoxon's rank sum test. Welch’s test excluded a from the 95% confidence intervals in
five instances. The maximum deviation was .008, whereas the remaining cases barely missed .050.

Student’s pooled t-test held its level under the condition of equal sample size for all but two
cases. It exceeded the nominal level when the variances were extremely unequal (63 = 9 or
o} = 16) and the sample sizes were small (7, = n, = 4). In all but one occasion, it performed very
poorly for unequal sample sizes and unequal variances. It erred on the conservative side when [
associated the larger sample size with the larger variance. Conversely, the level grossly exceeded
a = .05 when the smaller sample came from the population with larger variance.

The level of Wilcoxon's rank sum test was close to .050 for most simulations of equal sample
size. It departed from o when the sample size was small (7, = », = 4) and variances were equal
or slightly unequal. As previously mentioned, a = 0286 is the exact level of Wilcoxon's test under
small sample sizes of equal variance. The test also exceeded a level a = .05 test for large departures

9



*359) WNE Juwl $ WOXOOITIHN ST
*3593-3 9jvmixoxddw s ysfopn ST M
*31501-3 pojood s ,juopnig St §
"98T0° ST 1891 S ,UOX0I[IN JO [IAAT I0UXD 9L ae

*gQ*=p opnyoutl jou s20p [HAIAJUT 97} BN} s9jwITpuy

.|

-

:ALON
«(680°°LS0") *(660°°590") (8L0°*8%0") (€50°°620°) (150°°LZ0") 1 oz=tu oz=lu
(¥90°* LEO" ) (TLO** ¥#0") (0L0** T#0") »(6¥0°°ST0") (150°° LT0") A 0z="u oz=Tu
(890°* 0¥0" ) (9L0°* 9¥0" ) (#L0°*S¥0") (050°* 920" ) (150°° LZ0°) s 0z=tu  oz=Tu
*(860°°¥90") (60" 090°) (LSO"“T€0°) (090" $£0°) (950°“0€0°) a  zi=tw gr=Tw
(990° °8€0° ) (990°*8£0° ) (050" * 920" ) (590" *LEO") (950°°0€0° ) A 7i=tn gr-Te
(LLO" " L¥0") (ZLO"" €40°) (850°*T€0") (L90°*6£0°) (LS0"*T£0°) 8 1=t 71w
(690°*1¥0° ) (9L0°* 9¥0" ) (150°* LZ0") o (9F0°“FT0°)  ws(SPO"“€20°) 'Y p=lu y=lu
(690" * 170" ) (6L0°*6¥0°) (990°*8£0° ) (190°*5£0°) (£50°°620°) A p=lu p=lo
+ (060" *850") « (£0T°*690") (6L0°“6¥0") (PLO**PPO") (090" *¥£0°) $ p =u p =tu
91 6 v z 1 1s0], oz1§

opdumg
1,, 2
NBNNB
*UOTINQYIISF( [PWION O3 I0pun [SA07] PAIUWIISH OYj) INOGE [EAIOIU] 0OUGPYJUO) %e6 [ OlAvy

10



*318931 wnS YuRIX S5 ,UOXOI[IMN ST I

13913 91vwyxordde s,yofoy ST A

1s21-1 pajood s ,juspnig st §
“$0*=p SpPNIOUT JOuU S0P [VAIIIUT OY]l By} SAJEIIPUY .

: ALON
#(ZT1°°9L0°) +(860°“¥90°) #(860°°¥90") (0L0"*T¥0") »(6¥0°*ST0") ' A
(£50°°620") (LSO"*T€0°) (190°‘S€0") (950°*0£0°) (950°*0£0°) A =0 gz=Tu
«(LVT°“SOT") «(STT"*L8O") *«(9TT°°080°) »(¥80"“250") (¥50°*0E0") 8 z1=tn oz=Tu
(950°“0€0° ) *(6¥0° 70" ) (150" LZ0*) (950" ‘0£0") (750" *870°) 2 ot="n 1=t
(290°“9£0° ) (690" * 140" (890" 0v0°) (080° 050" ) (590 LEO") M 0z=tn z1='w
+ (670" “S00°) «(£20°°L00") +(8€0°°8T0°) (950" “0£0° ) (290°*9€0") s oz=t  z1="w
» (221" ¥80°) *(6E1°“660°) +(860° 90" ) (YLO" " ¥¥O") (950°“0£0°) 1 ¢ <‘u gt
(990 *8£0°) (9L0"*9$0°) (990°°8€0°) (590°* L£O") (0L0"*Z0") M ¢ <tu gp=Tu
+(6LT°°STT") «(FLT"*0TT") + (PLT"*0ET") «(TT1°°9L0°) (990°°8£0°) ] ¢ =t gr=lu
*(670"°500") (610" “5S00°) +(1£0°£10°) «(620°° TT0°) +(6¥0°*520°) 1 s1=tu ¢ =Tu
+ (690" *520°) (050° 920" ) (850°Z€0°) +(950°$Z0") (290°*9£0° ) A s1=tn ¢ =Tu
«(500°*000°) «(PT0°*200") «(Z10° “200°) +(¥20°*800°) (290" “9£0° ) 8 s1=u g =Tu
*(PPT° POT") +(9T1°“880") #(ETT°“LLO") «(180°° 1507 ) (290" 9€0°) 1 yp=lu g =lu
«(FBO**750°) (090°“#£0°) (6L0"*6¥0°) (0L0*“T¥0") (¥90°*9€0°) A p=u g =lu
»(612°°69T") * (LT "TET") «(LPT**SOT") +(L60°*€90°) (190°*5£0°) s p=tu g =Tu
*(SE0°°STO") +(SP0"* €20°) «(L20°“110°) *(6€0°*610") (890" *0r0°) a 8=yl
(050°°920") (0LO" *TFO") » (290" *020") (¥50°*0£0" ) (SLO**S¥O") A g =u p="u
+(STO"“€00°) + (E£0°*¥T0°) «(LT0"*£00°) +(9€0°* 910" ) (990°'8£0") s g =fu p =lu
91 —6 12 T T 389 T azZig ojdueg
ﬂﬁb\ﬂﬂ.ﬂ-

*uoTINQTIISTQ [BWION o] Iopun [0A0’] PoIBWIISy oY) Inoqe [BAIOIU] 90UAPTJUO) HCE

‘Juoo T SIq8Y

11



of variance (0 = Qoro} = 16) when sample sizes were of medium (», = n, = 12) or large
{n, = n, = 20) size. Like Student’s t-test, Wilcoxon’s rank sum test performed inadequately for
unequal sample sizes. However, its accuracy improved slightly with larger sample sizes. Again,
Wilcoxon’s test did not maintain a nominal significance level under equal variances in two instances
(n, = 5,m, = 15and n, = 20,7 = 12). I ran seven additional simulations of each violation. The
95% confidence interval included a for all but one simulation, therefore I attributed the initial de-
viations to random error.

I used two criteria to select tests whose performance | appraised under several alternative hy-
potheses. First, the test must contain a in the 95% confidence limit about the estimated size.
Second, the tests’ size must be statistically similar to make comparisons. 1 evaluated the last con-
dition by testing all pairwise comparisons for equality between two proportions at o = .05. Table
2 lists the tests that I compared under various alternative hypotheses.

Appendices 1-9 display the outcome of the tests in Table 2. As expected, Student’s pooled t-test
performed well when the variances were equal. Welch’s approximate t-test and Wilcoxon’ rank sum
test produced results similar to Student’s test but only when sample sizes were equal or unequal
sample sizes were large (n, = 12 and n, = 20 or vice versa).

In sitvations of unequal variance, the tests’ results depend on equality of sample size. For small
samples of equal size (m, = nm, = 4), the tests’ power were alike except under conditions of large
departures of variance (63/0? = 16) where Wilcoxon’s test was more powerful than Welch’s test
(Appendix 1). However, the tests’ results were indistinguishable when sample sizes were equal and
of medium (n, = n, = 12) or large (7, = n, = 20) size (Appendices 2 and 3, respectively). For most
cases of unequal sample size, the appendices reported power for only Welch’s test, because it
maintained its level at .05 most frequently (Appendices 4-6). Occasionally Wilcoxon’s test held its
level and competed against Welch's test. This comparison occurred three times and produced three
different results (Appendices 7-9). For n, = 15,n, = 5 and ¢} = 2 , Wilcoxon’s test was more
powerful (Appendix 7). When n, = 12, = 20 and o} = 4 or 0} = 16, Welch's test performed
better (Appendix 8). In contrast, there was no difference between the two tests for

n = 20, m = 12 and of = 2 (Appendix 9).

12



Table 2. Tests to Evaluate under Alternative Hypotheses for the
Normal Distribution.

2 2
0, /cr1

Sample

Size 1 2 4 9 16
n1- 4 n2= 4 S W S W S W R1 WR WR
n1=12 n2=12 SWR SWR SWR S W S W
n1=20 n2=20 SWR S R SWR S W S W
n1= 4 nzﬂ 8 SWR . 1Y) - W W
n1= 8 n2= 4 SWR W W W -
nlﬂ 5 n2=15 SWR - W 1 -
n1=15 n,= 5 SWR WR W W W
n=12 n,=20 SWR S WR® W R W WR
n1=20 n2=12 SWR W R W W W
NOTE:

lS vs. W and W vs. R are the only pairwise comparisons that can

be made.

2S vs. R is the only pairwise comparison that can be made.
S is the Student pooled t-test.

W is the Welch approximate t-test.

R is the Wilcoxom rank sum test.

13



Table 3 displays 95% confidence limits about the tests’ size under the double exponential dis-
tribution for the same variance and sample size combinations. Again, Welch’s approximate t-test
controlled for level a = .05 most frequently. However, it maintained its level more often and de-
viations were closer to .05 under the normal distribution than the double exponential distribution.
Welch's test performed poorly for small samples of equal size (7 = »n, = 4). It occasionally erred
on the conservative side when the variances were equal regardless of sample size. It did not ade-
quately hold its level at @ = .05 under large inequalities of variance for several pairs of unequal
sample sizes (m, = 8, ;= 4&m = 15,m, = Sand n, = 12,n, = 20).

Student’s pooled t-test maintained level @ = .05 for all but one case when samples were of equal
size (m = m = 20 and 03 = 16). Conversely for unequal sample sizes, it held its level only in sit-
vations of equal variances and medium or large sample sizes (n, = 5, = 15;m = 12,;;, = 20 or
vice versa for both pairs). These results were similar to the test’s performance under the normal
distribution.

Wilcoxon’s rank sum test controlled its level at .05 for most cases of equal sample size. How-
ever under equal variances, the test lacked level @ = .05 on three occasions. Once when
n, = n, = 4; but, as previously noted actually a = .0286. For the remaining cases (n, = n, = 12
and n, = 4, m, = 8), | ran additional simulations to investigate these violations. The 95% confi-
dence intervals included a = .05 in six of seven simulations. Again, 1 attributed the original devi-
ations to random error. The test’s size exceeded .050 for large inequalities of variance (o3 = 9 or
o} = 16) when samples were of medium (n, = m, = 12) orlarge (m, = n, = 20) size. This departure
also occurred under the normal distribution; however, these deviations were closer to .050 under
the double exponential distribution. The test performed poorly for unequal sample sizes, but im-
proved with increased sample size for n, = 12 and », = 20. The inaﬂequate performance of
Wilcoxon's test for unequal sample sizes was similar under both distributions.

Table 4 contains the tests of @ = .05 and equality of levels that I evaluated for the double ex-
ponential distribution and Appendices 10-18 display their performance under several alternative
hypotheses. Unlike the results obtained when sampling from the normal distribution, there did not

exist a test that was most powerful under conditions of equal variance. The tests’ perfformance was

14
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Table 4. Tests to Evaluate under Alternative Hypotheses for the
Double Exponential Distribution,

2, 2
0y /9
Sample
Size 7 1 2 4 9 16
nl- 4 n2= 4 S S W S S R S R
n1-12 n2=12 SWR SWR SWR S W S W Rl
n1-20 n2=20 WR SWR SWR S W -
n1= 4 n2= 8 R WR WR W W
n,= 8 n,= 4 R W W - -
n.= 5 n,=15 SWR W - W 1)
1 2 2

nl=15 n,= 5 SWR . W R - - -
n1-12 n2=20 SWR W R W R W R -
n1=20 n2=12 S R WR W W W
NOTE:

lS vs. R and S vs. W are the only pairwise comparisons that can

be made.,

2

no comparison between W and R can be made.
S is the Student pooled t-test.

W is the Welch approximate t-test,

R is Wilcoxon rank sum test,
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strongly related to sample size. For small samples of equal size (n, = n, = 4) only Student’s pooled
t-test held its level at @ = .05 (Appendix 10). There was no difference among the tests for medium
sample size (7, = m, = 12), except for one instance when Welch's test performed more poorly
(Appendix 11). Wilcoxon's test performed better for large samples of equal size (7, = n, = 20)
(Appendix 12). The results for unequal sample size were similar to the tests’ performance under
unequal sample sizes, except for small samples (n, = 4, n, = 8 and vice versa) (Appendices 13-18).
In this case, only Wilcoxon's test maintained its level at the value @ = .05 (Appendices 13-14).
Welch’s test did not perform well under equal variances regardless of sample size.

The results varied under the condition of unequal variances. Only Student’s test controlled its
level at @ = .05 under all departures of variance for small samples of equal size. Occasionally
Welch's test and Wilcoxon’s test competed against Student’s test. However, in this case Wilcoxon's
test sometimes performed worse than Student’s test (Appendix 10). For equal samples of medium
(m = m = 12) or large (n, = m, = 20) size, the power of Wilcoxon’s test frequently surpassed that
of Student’s and Welch’s test {(Appendices 11 and 12). Once again, the appendices listed Welch's
test most often under conditions of unequal variances and sample sizes. For about half of these
entries, Wilcoxon’s test competed against Welch’s test. When sample sizes were small
{m = 4, ,, = 8or vice versa) or medium (n, = 5, n,.= 15 or vice versa), there was no difference
between the tests’ performance (Appendices 13-16). However, Wilcoxon'’s test was more powerful
than Welch's test for large sample sizes (m = 12, n, = 20 or vice versa) (Appendices 17 and 18). I
did not observe this trend under the normal distribution.

- 18



DISCUSSION

[ will first discuss the tests’ performance under the normal and then under the double expo-
nential distribution. Under each distribution, I first consider equal sample sizes, then unequal
sample sizes. I will make test recommendations throughout this section.

With equal sample size from two independent normal distributions, Student’s pooled t-test and
Welch’s approximate t-test closely maintain a level of @ = .05 and have similar power. It appears
from my simulations that they are both insensitive to inequalities of variance. However, Wilcoxon’s
test is not (Table 5). Van der Vaart (1961) also found that Wilcoxon's test exceeded level o = .05
for equal sample sizes and Ia:gé departures of variance. Therefore, in this case I recommend either
Welch’s test or the pooled t-test.

For equal sample sizes, Welch's test statistic and the pooled t-test statistic are equal. The dif-
ference between the tests in this case is the loss in degrees of freedom for Welch’s test when the
sample variances are unequal. Table 6 presents the a = .05 critical points for both tests as a
function of sample size and ratio of variances. Note that the critical values are quite close in most
cases. One exception occurs when n, = n, = 4 and 53/57 = 9 or 8§3/5f = 16. For these two cases,
the confidence interval around the nominal significance level of Student’s test does not include
a = .05. Appendices 19-23 contain ﬁgurqs wﬁch show the connection between the ratio of vari-
ances and the approximate critical points of ‘Welch's test for samples of size 5, 10, 15, 20 or 25.

My results show that Weich’s test performs well under conditions of unequal variance for small
sample sizes (m, = m = 4). Murphy (1967) simulated this sample size under the same inequalities
of variance and produced results similar to my findings. However, he advocated using caution when
sample sizes were less than six, because Welch's t-test could not be verified against the Welch-Aspin
series approximation.

When sample sizes are unequal, Student’s test is a powerful test to use under conditions of equal

variances. However, Student’s test and Wilcoxon’s test are sensitive to unequal variances and are
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Table 5. Recommendations for Testing Equality of Two Population Means
Under Various Combinations of Sample Size, Variance and Population
Distribution.

Normal Double Exponential

2 2
o, /o g, /ol
Sample
Size 1 2 4 9 16 1 2 4 9 16

n= 4 n,= 4 SW SW SW SW SW S S S S 5
n1=12 n2=12 SW SW SW SW SW SR SR SR SR SR
n1=20 n2-12 SW SW SW SW SW R R R R R
n,= 4 n,= 8 W W W W R W W
n,= 8 n,= 4 S W W W W R W W W
n1='r 5 n,=15 S %) W W W R W 1) W W
n1=15 n,= 5 W W W W R W W W W
n1=12 n,=20 S W W W W R WR WR WR WR
n1=20 n,=12 W W W W R WR WR WR WR
NOTE:

S is the Student pooled t-test,

W is the Welch approximated t-test.

R is the Wilcoxon rank sum test.
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Table 6. Comparison of the Critical a=.05 t Values Between Student's
Pooled t-Test and Welch's Approximate t-Test.

Student Welch
2 2
8, /8

Sample Table

Size Value 1 2 4 9 16
n1= 4 n2= 4 2,45% 2.45 2.57 2.78 3.18 3.18
n1=12 n2=12 2,07 2,07 2,09 2.12 2.16 2.18
n1=20 n2=20 1,96 1.96 1.96 2.05 2,07 2.08
n,= 4 n,= 8 2.23 2,45 2.31 2.26 2,26 2,31
n1= 8 n,= 4 2,23 2.45 2.78 3.18 3.18 3.18
n,= 5 n2=15 2.10 2,45 2.26 2.14 2.11 2.11
n1=15 n,= 5 2.10 2,45 2.57 2,78 2.78 2,78
n1=12 n2=20 1.96 2,07 2.05 2.05 2,06 2.07
n1=20 n2=12 1.96 2,07 2,11 2,15 2.18 2.20
NOTE:

*
The 95% confidence interval about the approximated power of S

' 2
under the null hypothesis did not include .05 when 022/01 =9
or Uzzlalzalﬁ.
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not recommended when o} # 0. I suggest the use of Welch's test. Chand (1950) reported this
same trend for Student’s test. Table 6 shows strong differences between the critical values of
Welch's test and Student’s t-test when the smaller sample is associated with the larger variance.
For this arrangement of sample size and variance, the critical points of Welch's test are highly re-
lated to inequalities of variance. For given sample means, sample variances and sample sizes, the
test statistic for Student’s test is larger than Welch’s test. This result coupled with a smaller critical
value causes Student’s test to frequently exceed .05. When I reverse the order between sample size
and variance, the critical points of Welch’s test are not strongly dependent on the variances. In this
situation, the degrees of freedom are not monotonic decreasing for all departures from equal vari-
ances. However, for given sample conditions Student’s test statistic is much smaller than Welch’s
test statistic which results in the frequent exclusion of a = .05 from the 95% confidence intervals
about the estimated level of the test. I do not have an explanation for the similar performance of
Wilcoxon’s test under equal versus unequal sample sizes.

The tests’ performance under the double exponential distribution is more dependent on sample
size than it is under the normal distribution. However, equality of sample size remains important.
For small samples of equal size (, = , = 4), I recommend using Student’s pooled t-test. The test
seems to maintain a = .05 without regard to variance. I do not suggest using Welch’s approximate
t-test for small samples because it does not maintain its power under the null hypothesis. As pre-
viously noted, Murphy (1967) cautioned its use when sample sizes were less than six. It is difficult
to make a recommendation for medium sample sizes (n, = n, = 12). Student’s test controls its
level at .05 for all variances, whereas the nominal significance level of Wilcoxon's test hardly exceeds
{05 in one case. However, Wilcoxon's test performs better than Student’s test in 6 out of 20 sim-
ulations. There is no difference between these tests for the remaining 12 comparisons. The
robustness of Student’s test under conditions of nonnormality allows it to rival Wilcoxon's test
when samples are of medium size. However for larger sample sizes (n, = n, = 20), I suggest using
Wilcoxon’s test. Although its nominal significance level barely exceeds .05 on two counts, its power
exceeds Welch’s and Student’s tests for 11 out of 15 simulations. None of the above tests display

sensitivity to unequal variances when sample sizes are equal.
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For uﬁequal samples of small (n, = 4, n, = 8 or vice versa) or medium (n, = 5, n, = 15 or vice
versa) size, 1 recommend Wilcoxon's test when the variances are equal. For unequal variances, I
suggest Welch’s test for the sole reason that it controls its significance level at .05 most often. In
comparisons among the tests at these sample sizes, Welch’s test holds a at .05 in 12 out of 20 runs.
In contrast, Wilcoxon'’s test and Student’s test maintain a nominal significance level in 6 out of 20
simulations and 2 out of 20 comparisons, respectively. For large sample sizes
{n, = 12, i, = 20 or vice versa), I suggest Wilcoxon’s test when variances are equal. For unequal
variances, trade-offs exist between Wilcoxon's test and Welch’s test. Welch’s test controls the
nominal significance level more often than Wilcoxon’s test. The former test maintains level
a = .05 for 8 out of 10 runs, whereas the latter test holds this level in 6 out of 10 simulations. This
may not seem different, but in cases of large variances, the level of Wilcoxon's test deviates from
a = .05 quite drastically. In regard to power under alternative hypotheses, Wilcoxon's test per-
forms better than Welch's test in 7 out of 20 comparisons. There is no difference between the re-
maining 13 simulations. Overall, Welch’s test is a more conservative recommendation for these
sample conditions. Although I advocate using Welch’s test in situations of unequal sample sizes
and variances, it does not perform as well under the double exponential distribution as under the

normal distribution.
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CONCLUSIONS

The test to recommend for testing the equality of two population means is highly dependent
on what distribution the samples come from and the sample sizes. Equality or inequality of sample
size governs whether or not equality of variances is important. If the sample sizes are equal, then
equality of variances is not crucial. Under the normal distribution, Student’s pooled t-test or
Welch'’s approximate t-test perform well in terms of the nominal significance level and power. In
contrast, for unequal sample sizes inequalities of variance are critical. For equal variances, I suggest
the use of Student’s pooled t-test. However for unequal variances, Welch’s approximate t-test is
the only test to suggest regardless of the magnitude of the inequality.

Test selection is more complicated when samples come from a nonnormal distribution such as
the double exponential distribution. The size of the sample along with its equality or inequality
strongly influences test recommendation. Once again, if samples sizes are equal, then departures
from equal variance are not important. I recommend Student’s test for samples of small size, either
Student’s test or Wilcoxon'’s test for medium size and Wilcoxon’s test for large sample sizes. For
unequal sample sizes, I advocate the use of Wilcoxon's rank sum test when the variances are equal.
If the variances are unequal, then [ suggest Welch’s test for sample sizes of small and medium size
and either Welch’s or Wilcoxon's tests for large sample sizes. Welch’s test does not maintain a
nominal significance level as well under a nonnormal distribution as it does under a normal dis-
tribution. In general, if either the ratio of 63/} or distribution is unknown, then I recommend

Student’s test when the sample sizes are equal and Welch's test when the sample sizes are unequal.
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ABSTRACT

I evaluate the performance of Student’s pooled t-test, Welch’s approximate t-test and
Wilcoxon's rank sum test under several combinations of variances, sample sizes and population
distributions. The study investigates 540 combinations by computer simulation. I appraise the
tests in terms of significance level and power. Test recommendation is dependent on sample size
and population distribution. Equality or inequality of sample size determines whether or not
equality of variances is important. If sample sizes are equal, then tests which perform well under
equal variances are insensitive to departures of variance. This is true for the performance of Stu-
dent’s test under either distribution. Likewise, Wilcoxon's test displays a similar behavior for equal
sample sizes under the double exponential distribution. In contrast, these tests perform poorly
under both distributions when sample sizes and variances are unequal. For these situations, I re-

commend Welch's test.





