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CHAPTER 1
INTRODUCTION

vhen a viscous fluid enters a conduit (a circular pipe or a flat duct)
from a very large reservoir through a well-rounded entrance, the assumed
flat velocity profile at the entry will gradually change as fluld moves down
the conduit because the walls of the conduit tend to retard the flow.
Bventually, the velocity profile will develop to a form which remains
unchanged with respect to the direction of flow, The flow in the region of
changing velocity profile is so-called hydrodynamic entrance region flow.

Applying the concepts of boundary layer theory, the boundary layer form
at the walls, beginning with zero thickness at the entry, and increase
continuously in the down stream direction. At a certain distance from the
entrance, the boundary layers become so thick that they meet each other at
the center line of the conduit (excluding the cases of fluids with a yield
stress). During the formation of the boundary layers in the entrance
region, the flat velocity profile near the walls changes to a curved one
duc to the viscous drag at the fluid-solid interface, and the velocity dis-
tribution ocutside the boundary layer remains uniform. Since the total flow
rate is constant along the conduit for steady-state flow, the fluid in the
center core of the flow is accelerated in consequence of the altered
velocity profile in the boundary layers. Because of inereasing kinetic
energy and higher viscous friction the pressure drop in the entrance region
is considerably larger than that in the fully developed region where the
velocily profile 1s invariant with respect to the direction of flow.

Originaily the study of entrance region flow was of interest in

cormection with the correciion of capillary viscometric data. It became of



practical importance in engineering design because an exact description of
e volocity and pressure fields in the entrance region would provide a
basis for analysis and understanding of the energy and mass transport in
the entrancs region of a flow system, especially a compact one.

The literature on hydrodynamic entrance region flow before 1965 is well
survoyed and c¢lassified by Fan and Hwang (11). Attempts to examine the
hydrodynamic entrance flow theoretically have beon made by many researchers
for the last hundred years. They tried to obtain the welocity profile, the
prossure drop and the wvalue of the entrance length at which the fully
developed flow is attained. The earliest effort in this field was to predict
the total pressure drop from the reservoir to the fully developed rezion by
Hacenback (13) in 1860, The second effort was due to Boussinesq (3) in
1890 and 1891, Although the boundary layer theory was not yeot formulated
at that time he analyzed this problem by neglecting the small term in the
Navier Steokes equation and assuming that pressure could be considered
constant across the c¢ross section.

After Prandtl's classic paper published in 1904, the boundary layer
concept has been used to reduce the difficulties in solving the non-linear
partial differential eguation. Although the equations of motion are much
simplified by the approximation based on the boundary layer model, we are
still unavle to obtein their exact analytical solutions. Therefore, various
epproximation methods have been employed to solve the entrance region flow
problem based on the boundary layer model.

The basie momentum integral method was devised by Schiller (31) in 1922
Tor Newtonicn flow in a circular pips. The flow is divided into two
vortions, the boundary layer near the waell with the assumed parabolic velo-

city profile and the potential flow in the center core. The boundary layer



oquation of motion is integrated across the boundary layer and then solved
analytically or numerically. Later the method was modified and different
fluid models employed (2, 4, 12, 30, 38).

The second approximation method is to linearize the boundary layer
equation by assuming the inertial terms equal to some function of the
coordinate in the direction of flow. This method was developed first by
Langhaar (21) in 1940 and by Targ (37) for Newtonian fluids with different
functions in 1951, To date it has been applied to Newlonian fluids only.

The third caltegory of solutions, which was first used by Schlichting
(32) in 193% for a Newtonian flat duct flow, is obtained by matching the
vouvndery layer solution, wvalid near the entry, with the solution for
approaching fully developed flow. The same technique was employsd by
Collins and Schowalter (7, 8) to power law non-Newtonian fluids both in a
channel znd a circular pipe.

In another approach finite difference equations obtained from the
continuity anc momentum equations are solved numerically on a digital
computer. For a Newtonian fluid this method was used by Dodoria and Osterle
(1) in 1961 and Hwang and Fan (15). The same approach was applied to the
Powell-Eyring fluid model by Hornbeck (14) and to the power law fluid by
Christiansen and Lewmon (6) in 1965.

The variational method was originally given in a paper by Uematsu et
al. (B0) in 1955 to treat the Newtonian entrance region flow in a cirecular
pipe. In 1961 Tomita (39) extended it to power law fluids and the same
zoproach was applied to Bingham fluids by Michiyochi et al. (29) in 1966,
In this method, instead of solving the equation of motion, the weloecity
field is detormined so that some functional of welocities is an extremun.

The theorstical study on some hydrodynamic entrance region flows of



Newtonlan fiuids was reviewed and summarized by Dealy (9) and Ii (25). This
report treats non-Newtonian entrance reglon flow, especially that assoclated
with power law and Bingham fluids.

Chapter 2 provides the classification of non-Newtonian fluids, their
shear stress expressions, (or the rheclogical equations of state) and flow
behaviors in the fully developed region of pipes arxd channels, Since the
entrence region flow will eventually approach the fully developed one, exact
information concerning the fully developed flow is necessary.

Chapter 3 presents a preliminary study of the governing equations. The
general form of the governing equations is first derdived in terms of shear
stress. Tho various assumptions, approximations, and shear stress expressions
in terms of velocity gradients and rheclogical parameters can be used to
obtein simplified governing equations for each non-Newbtonian entrance region
flow problem, The boundary layer equations of power law and Bingham fluids
are derived in the later part of this chapter.

Some published work on the entrance region flow of power law fluids is
classified and introduced in detail in Chapter 4. The approach and the
results of ezch method are compared and discussed.

The bacic momentum integral method and the Campbell-Slattery method are
used to analyze the entrance region flow of Bingham fluids in Chapter 5. The
mumerical resulis are compared with those of Michiyochl's variational method

which is the only published paper on the Eingham entrance region flow.



CHAPTER 2

NON-NEWTONIAN FLOW

In this chapter we shall describe various models of fluids in general,
and mathematical models of non-Newtonian fluids in particular. The fully
developed laminar flow of non-Newtonian fluids in pipes and channels is

also discussed in the later part of this chapter.
2.1 CLASSIFICATION OF FLUIDS

In the field of fluid dynamies it is customary to classify fluids into
wo main categories, i.e., perfect (or ideal) fluids and real fluids. The
iraginary porfect fluids which are frictionless and incompressible offer
much simplification to theoretical study of the flow of fluid. On the other
hand, 21l of the real fluids experience a certain degree of internal
resistance to a change in shape, or tangential (shear) stresses between two
contact layers of the fluids. The existence of tangential stresses which
may depend upon the extent of deformation or duration of applied shear, or
upon both, characterizes the special properties of each fluid.

For theoretical analysis, rheologists subdivide the real fluids into
iwo general groups, namely, Newtonian fluids, and non-Newtonian fluids
according to their flow behaviors (26, 27). To further simplify the study of
gach fluid, non=-Newtonian fluids are again subdivided. It should be noted
that any of the real flulds may belong to one of the rheologically
sucdivided groups of fluids but sometimes it may ahve complex properties

conbining tuo or more fluid groups.
2.1-1 Newtcrnlzn Fiuids

Newtorian fluids are those which behave according to Newton's law of



viscosity widch states that shear siress, T, is directly proportional to
shear rate in the laminar flow region at constant temperature. For

incomprossible fluids it can be expressed in the form of (42)

=—/U,g (1)

In this expression /A. is the viscosity of the fluid and Q is the symmetrdical

ned

“rate of deformation tensor" with cartesian components

v
A= “>+< ) (2)

in which avi/axj is the velocity gradient of vy in the j direction. 1In
c¢ylindriczl coordinates (r, 8, z), Aij can be obtained from Eg. (2) by
coordinate itransformation. The coefficient of viscosity /u. depends on the
local temperaturs and pressure but it is independent of the shear stress or
the rate of deformation tensor.

Consider a fully developed flow of a Newtonian fluid between the two

parallel plates as shown in Fig. 1. Then Eq. (1) may reduce to a simple form

= - uS (3)
where Tyx is the shear stress acting on the layer perpendicular to the y
axis and in the direction parallel to the x coordinate and u is the wvelocity
in the x directdion.
Graphically Eg. (3) can be shown on arithmetic or logarithmic
coordinates as given in Figs. Za and 2b. All gases and all homogensous liquids
or solutions of low molecular weight materials (i.e., non-polymeric) obey

this Newtonian flow behavior.

2.1-2 Noa=Nowtorian Fluids
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Non=Newionian fluwids are those which do not yield the Newtonlan flow
curve, 1.6., a straight line passing through the origin as shown in Figz. 2a,
. Non-Newtormian flulds are usually divided into three general groups (26):

(1) Fluids with properties independent of time of duration of shear
stress (i.e., steady state).

(2) Fluids with properties dependent upon duration of shear stress
(unsteady state).

(3) Fluids which have characteristics of both solids and liquids and
exhibit partial elastic recovery after applied stress is released, the so-
called visco-elastic materials.

In a mathematical sense, non-Newtonian fluids are those which do not
cbey the relationship between T and - dufdy by Ey. (3) at constant pressure
and temperature. For time-independent fluids which are also called non-
Hewtonian viscous fluids, shear rate ia a function of shear stress only,

i.el 4

du
-3 = f(T ) (&)

The time-independent fluids obey the following relationship

- E§ = (2, 1) (5)

in vhich the duration of shear stress, t, is included. In addition to‘tyx
the shear rate of visco-slastic fluids is a2lso a function of the shear strain

Yy
35 = 2T Y) (6)

lore coxzplete descriptions of iime-dependent and visco-elastie fluids are

available elsewhere (26, 27, 28).



2,2  TDIE-INDEPENDENT NON-NEWTONIAN FLUIDS

Timo-independent non-Newtonlan fluids are sometimes called non-Newtonian
viscous fluids. Thoro is another term, "purely viscous fluid", to represent
bolh Nowtonian and time-independent non-Newtonian fluids.

The formulation of shear stross for timo-independont non-Newtonian fluids
in torms of shear rate is, in general, a complex problem and needs a well-
developed theoretical basis (42). Let us consider the simple types of time-

independent non-Newtonian fluids. The relation between T and & can be

expressed by a generalized form (42)
T=-y2 (7)

vhere the non-Newtonlen viscosity ¥ is a scalar function of 4 (or T) and
also a function of temperature and pressure. If the flow situation is the
seme as deseribed in Fig. 1, i.e., fully developed flow, Eq. (7) can be

expressed by
du
— Y 8
Tyx Yldy (8)

in which ¥ is a positive value and a function of Tyx or =du/dy. When N is
equal to consta.nt/u, the expression in Eq. (8) reduces to Newton's law of

viscosity.
2.2-1 The Constitutive Equations

Various empirical models using two or more adjustable parameters and
oboying the tensor transformation have been proposed (42) in order to
woroximate the behaviors of various fluids. They are described belows

The Ostwald-de Waele Model (or Power Law Model):



1. n-1

Ty:cz -m f% 'gyE (9)

The non-Newltonian viscosity 7 can be expressed as

at™t

1=n |5
This two-paramoter model which 1s also called the power law model 1s simplest
and most uwseful for theorstical caleulations. For n less than unity, it
represents pscudoplastic behavior where by definition decreases with the
increzsing shear rate in some range of Ty:r.' For n larger than unity,
increasss with increasing shear rate and the fluid is called dilatant. For
n ecgual to willy, it reduces to a Newtonian fluid with jt: m, It is zlso
noted that n is not a real constant for all possible ranges of shear rate.
It mey vary., but for some reange of shear stress it may be regarded as constant.
The flow curves of the power law model are shown in Fig. 3.

The Bingham Models

To | du .
Tyx = - (/“o + F——l‘i—,-) Iy if ITyxl > T, (10)
dy
_‘%‘3_.0 i Al i 1. (11)
dy_ Iyxl< [o)

Mary substances such as blood, waste water, suspension of a catalyst in liquid,
paste, fuels, and drilling muds follow this two-parameter model which has a
flow behavior such that it remains rigid when the applied shear siress is less
thzn the yield stress, 'I:o. When the shear stress excoeds the yield stress,
the chear stress of a Bingham fluid is proportional to shear rate as shown in
Tiz. 3. Threc other models with the yield stress and nonlinear relation

betwoen Ty and - du/dy have also been proposed (U46).



The Prandtl-IDyring Model:

.. =1,1 du
- [P2E B e (12)
yx du dy
dy

This two-paramotor semi-theoretical equation was derived by Eyring based on
the molecular theory of liquids. At a finite wvalue of T, =’ the Prandtl-
Cyring fluicd has pseudoplastic behavior. It reduces asymptotically to a
Hewtonian fluid with M= A/B as Tox approaches zero.

The Satterby Model (or Generalized Eyring Model):

] duy o
sinh (F_d_y.) .

This model contains three adjustable constantsel, g, and ?o‘ If of is set
equal to unity, this reduces to the Prandtl-Eyring model.

The Ellis Model:

7(0 du
T = - — (lq,)
yx T X1 &y
4 e l—E‘\
T
2
or
1 du

T ==

T g+ ‘Pl\ryxl& =

This 1s a very useful model with three adjustable positive parameters. T L
is the shear stress vhen the non-Newtonian viscosity )is equal to ILO/Z.

I7 ol is lerpor then unity this model reduces to Newton's law for small 'l‘yx:
if ol ig lcss than unity, it also reduces to Newton's law for large Tyx' In

2ddition, the Zilis model becomes Newton's law for J’Dl = 0 and the power law



1l

Tor g = 0.
o

The Meter-bBud Model:

T oo Lo du
= =)
L o) dy

Lt /Tyl L)

dere s is the lower limiting viscosity which is equal to the non-Newtonian
viscosity at the lower 1imdt of Tyx' whereas *Z oo 15 Tthe upper limiting
viscosity. ’Cm is the shear stress when the non-Newtonian viscosity )Zis
cqual to the arithmetic average of 7[0 and -’zpé

The Reiner-Philippoff Model:

Ho =Moo )9_1_1_

Tﬁ-'-"-"&uw"}' &

7.2
a2
1+<Ts)

This thres-constant model may be reduced to Newton's law both at wvery high

and very low shear rate with /u=/um and /u= /Mo respectively.
2.,2-2 Laminar Flow in a Fully Developed Region

In this section we consider the fully developed flow of time-
independent non-Newtonian fluids in a circular pipe and between flat parallel
olates. Ey fully developed we mean that the velocity profile is independent
of the direction of flow. As a result, the velocity component perpendicular
to the flow direction is zero for the case of steady state flow (16).

In the course of derivation of the welocity profile, pressure drop, and
voiuwme rate of flow, it is assumed that the flow is laminar, isothermal,
steady; and no external force. The gravitational force may be neglecled if

R

the fiuids flow in a horizontal conduil.
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ds  Elow in o etrewlar tibo
Considor the flew of a fluid in a horizontal eircular pipo of constant
radius R shown in Fig, 4. Mzking a momentum balance over the contrl volure
e have
o rzP 2 rLt 0 (15)
¥y =nr s vz = “
vaicle Ey oand P2 aro pressures aculng over the cross-scetions 1 and 2, and
e

f}n is ike shear stress acting on the contrl volume by the adjacent fluid layer

Tlrerefore, ve obtain

423
’C“»:,— = |i—:l r (16)
and
az a2l (17)
v~ 2L ¥
TLErE

S _ D LD
Al =2, J.‘i

and absolute sign is used here since P2 is less than Pl'
At the wall,

(7:_?1” )-,._-= :‘Cr — 142

o

R (18)

=

Zquation (16) indicates that the shear stress is directly propotional to the
radive r. The volume rate of flow @ is obtained by integration of the velocitly

JE R . S
[ P S . _
CoLLUTTOLLOn

R
Q= 27{0Jf v r dr
> il
= 2% ( erZ/Z % jr'“/z dvz )r_:“ (19)

Tae coodivion of ro slip botween the fluid ard the wall eliminates the fiprst

verm of Hg. (1G9),
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P r=R
Q=~-x([r"av_) 20
n(fs av, 5 | (20)

llany two-phase suspensions show a characteristic slippage at the wall surface
(17); hence, the so-called wall effects should be considered in Bg. {1g).
As can be seen from the form of many rheological equations of state the

time-independent non-Newtonian fluids have the flow equation

dv

2

-~ ot = 2T, ) (21)

ar

which can be substituted in to Eq. (20) to obtain

R .
a=T [+ «t,) ar (22)
0
Combining Eqs. (16), (17), and (18) gives
2
r 2 R
TI‘Z -‘-"C'W —R—' or r = _th'z (23)
Tw :
and
R B
dr = — & 24
Ty v )

Substituting these two relations into Eq. (22) we obtain

A T

w
_ _TR? 2
%:1:3 j’rrz £(T,,) 4T, (25)
W

0

The averzge velocily across the cross section can be obtained by dividing the

volume rate of flow by the cross sectional area Rz,

TN
- Q R 2
w=" ='C 3 _f Trp HTpp) 4T, (26)
W 9

The velocity profile can be obtained by substituting the expression of ’I;’rz in

17
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Eq. (23) into Bq. (21) and integrating it with respect to r,

v, =- J f('c,.{?ﬁ':) dr (27)

Egs. (16), (25), (26), and (27) are the generalized expressions to be used %o
obtain tho shear stress distribution, the relation between volume rate of flow
and pressure drop, the average velocity and velocity distribution when the
appropriate functions of fft;z) of time- independent non-Newtonian fluids are
inscried in these equations. The derivation of these expressions are shown in
Appendix I and the results are tabulated in Tables 1 through 3.
B. Flow in a Channel

Consider the steady flow of a fluid between two horizontal pgrallel
plates separated by a distance 2h as shown in Fig. 5. The plates are stationary
and extend infinitely to eliminate the end effects.

Following the method used in the preceding section the general
expressions of the distribution of shear stress at the walls, volume rate of

flow, and velocity distribution can be expressed as follows:

bPI 'Ew
T}Oﬂ =1L ¥= 2y J (28)
_— |AP‘ N (29)
bl — L -
Lr"—-iz TW
C=—"7 _f yx f(tyx) 4 Tyy (30)
Ty
0
and
T,
vo= - £ —E—"-— y) dy (31)

The expressions of Tyx' ’CW. Qs vx' the average velocity u and center-line
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velocity U for some time-independent non-Newtonian fluids are derived in
appendix I and the results are shown in Tables 2 and 3.

For illustration, Isome fully developed velocity profiles of the power
law and Bingham fluid are shown in Figs. 6 ard 7 and pressure drops in Figs.
8 and 9.

The fully developed laminar flow of the powor law, Bingham, and Ellis
fluids in anmuli has been reviewed extensively by Skelland (46) and will not
be repeated here.
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Table 3. Average and center velocities of laminar
flow in fully developed region.

Fluid model Average velocity u Center velocity U
2 2
i/a 1/:1
nR ,|4P|R nR, |
p Power law 3!1:1{ Sl ) 'ﬁ;—( )
8
3 2 4 2 2
4 |aPI R 4207, . 1 2LToy]| L8PIRT,, _ 2L%
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; : o
2 ol =1
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e ‘8‘70"[1 * _(27_1_1. ] LE‘yDLL"'[ + o) )
14| h° [4P|n?
Newtonian _?-f— 2/'1'
1i/n 1/n
nh - APIh nh MP#h

FaweE: ik 2n + 1 ) n+ 1l ( )
8
a -~ L 2
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CHAPTER 3
GOVERNING EQUATIONS OF NON-NEWTONIAN ENTRANCE REGION FLOW

In this chapter the general form of governing equations of non=-
Newtonian flow inside a conduit is first derived in terms of shear stresses.
In order to obtain the solutions of the velocity field and the pressure
field from three governing equations, the appropriate expressions for the
shear stresses in terms of velocity gradients and fluid proﬁerties are
introduced and inserted in the governing equations. Then, several assumptions
are made to simplify the entrance region flow problem. The resulting
differential equations are still very complicated due to their nonlinearity.
Therefore, the eguations are further simplified using the beoundary layer
concept. The boundary layer equations are to be solved with appropriate
boundary conditions by different approximate methods which will be presented

in the following chapters.
3.1, GOVERNING EQUATIONS
Consider a fluid entering a circular tube or a channel as shown in Figs.

10 and 11. The equations of continuity and motion for isothermal entrance

region flow are respectively (42)

Bt - PEY (1)
and
oV
Pp=-Yp - (VD (2)

Fere the external forces are neglected, and %? is the substantial derivative,
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Fig.10. Coordinate system of the entrance

flow in a pipe .



cil

> V. /£ 7 7 /77 L L L L L 7 L LS 2]

, L’x ' 2h
._—.) ) -
—_—
—_—
L P L i K A )
Fig.1|. Coordinate system of the entrance flow

~in a channel .



(’is donsity of the fluid, V is the gradient operator, V is the velocity
vector,

In order to obtain velocity distributions from the equations of
continuity and'motion. we need expressions for various stresses in terms of
velocity gradients and fluid properties. For two-dimensional fully developed
flow, theose expressions were given in Section 2.2. For incompressible
Newtonian fluids the rheological eciuation of state can be written in the

general form

Tag = Py f (3)
in which the component of the rate of deformation tensor A 13 has been defined
in Chapter 2.

For incompressible non-Newtonian fluids the empirical expressions in
complex geometries are (42):

Power law model

T-- = |4 2 (8)
Bingham model

fg =-(/uo+ %)é for%—(gzg))fg (5)

A=0, for % (T:2)< ’Ci (6)

where 4) can be expressed in rectangular and cylindrical coordinates as
follows (42):

Rectangular coordinates:

5 1 v >Vy 2 Y, 2
sP=3 @ =2(52) + GB% e G27)
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2V av aV AV av 3V
v X £ 2 Z Y \R pr % 12
*lxe¥gyd vl eaed v U 59 (R

Cylindrical coordinates:

2 1 &% 2 13%  r 2 3%z 2
S Ve 13V 2 13V 3% 2 Ve 3V .2
taga)rr e Ese e v ) 8

In obtaining solutions of the equations of motion for entrance region
flow, the following assumptions have been made to simplify the problem by
investigators in this field.

(1) The velocity distributions are independent of time, i.e., a steady
state flow.

(2) The flow is laminar.

(3) The fluids are assumed to have constant physical properties, i.e.,
the flow is incompressible and rheclogical parameters are constant.

(%) The flowlis isothermal and there is no mass transfer in the flow
system.

(5) The flow is two dimensional in case of flat ducts or chamnels and
axisymmetric in case of cirecular tubes or cylindrical annuii.

(6) The velocity at the tube entrance is uniform. Since the solutions
of the equations of motion applicable to the flow from a large reservoir to a
conduit entrance with a square cut are not available (5), this assumption is
necessary.

The governing equations, Egs. {1) and (2) can be greatly simplified under
the conditions of (1) through (5). |

Rectangular coordinatess
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continuity:
3V, IV
——--ax + 57 =0 (9)
motion: 7
(x~-component) (v 2 4 v ﬁ-— = oE ( 2 ) (10)
; F Xax Yoy '  ox
(y-component) F( xéx + Vy—Lay ) = y -( v ) Ci1)
Cylindrical coordinates:
continuity:
1 2 avz
;;—- (rvr) + = 0 (12)
motion:
Ve 1 3 a’crz
(r-component) P (v rar A —pl = ar (?5?-(1‘?”) + "'a—z') (13)
dVz,  3p b a 9 z2
( z-component.) f( rar + v, 3 z) o i - (?aT(rer ) (i4)
The expression of becomes
Rectangular cobrdinates:
2 v v, 2
2 _ L4y = 2y S S x
¢° = Ha:a) = 2[( X )+c ”> JrisL+ 55 (15)
Cylindrical coordinatess
s 1 av 2 3V, 2 ;v
$° = 5(4:8) _2(( >+ c— # {550 ) (16)
The component of the rate of deformation tensor i» also become
Rectangular coordinates
v



7y
=2
4 vy oy (18)
v V.
e g (— g e,
Cylindrical coordinates
bv
s (20)
oV
A — 2 rull : (21)
Azr=Arz= o2 T (22)

Making use of the above expressions forAij we have the following expressions
of shear stress in terms of velocity gradients and fluid parameters,
Power law model:

Rectangular coordinates:

= _2 IcHn—ia X (23)
- -2n o122 (e
= g U2+ 25 (25)
Ty = U || 3y

Cylindrical coordinates:

_1 3V, | |
T, = ~20|9|" 1 (26)
- 9 ; '
Teg = ~0 H’In g (27)
N v
Tre = Tpp = m#f ( é,;z + izz.) (28)

Bingham model:
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Rectangular coordinates:

M [cﬂ (29)

A o .
Cyy = 2o * |¢|)—§ (30)

;V

Tyx = =il + I‘H ax+ ) (31)

Cylindrical coordinates:
T

Tor = 2(H, + Hﬁ = (32)

T,y = -2 + H’l 2z (33)
2Ys

Toy =T, -(//' I‘Pl az+ 55 (34)

The desired governing equations under the assumptions of (1) through
(5) can be obtained if the corresponding expressions of shear stresses in
Egs. (23) through (34) are substituted into Egs. (10),(11), (13), and (14),

The boundary conditions which have often been used in solving the
differential equations of motion are

(1) The velocity components are zero at the solid wall.

(2) At the center line of the conduit in general ard in the region
beyond the edge of the boundary layer (or in the plug flow region for a fluid
with a yield stress), the velocity derivatives in the direction perpendicular
to the flow direction are zero.

(3) The velocity at the conduit entrance is uniform.

(4) Far from the entry, the velocity profile becomes fully developed.

In general, the attempt to find exact solutions of Egs. (10), (11), (13)
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and (14) is confronted with great mathematical difficulties, primarily due to
the nonlinearity of the convective terms. The superposition prineiple which
applied so well in linear partial differential equations, is thus excluded
in this case. Except for certain particular flow systems in which non-linear
terms vanish automatically or potential flow outside of the boundary layer is
restricted to a certain parttern, exact solutions are very difficult to obtain.
To obtain an approximate solution of the griginal governing differential
equations (equations of motion) of the entrance region flow, the boundary layer
model has been developed to simplify the original differential equations. The
boundary layer model has been successfully used to solve many other fluid
flow problems. Howsver, the resulting governing equations for entrance region
flow based on the boundary layer concept ars usually not sufficiently simple
for exact analytical solutions. Thus various approximation methods of solution
have been employéd torsclveAthe entrance region flow problem. These methods

will be discussed in detail for non-Newtonian fluids in the later chapters.
3.2, DERTVATION OF THE NON-NEWIONIAN BOUNDARY LAYER EQUTIONS

The boundary layer equations for a Newtonian fluid were derived by
Schlichting (45) based on Prantl's boundary layer model and a consideration
of approximaté orders of magnitude. The mathematical simplificatlon achieved
in this derivation is considerable. The equation of motion in the direction
perpendicular to flow direction is completely dropped out and the viscous
force in the flow direction is also dropped out as will be shown later.
Schowalter {(34) applied the same order of magnitude argument to obtain the
boundary layer equation for the power law fluid. Michiyochi et al. (29) also

used the same technique to derive the Bingham boundary layer equations which
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are different from the results obtained here. This will be discussed in
Section 3, Chapter 5.

We shall derive the boundary layer equations for the power law and
Bingham fluids using an approach different from that discussed above. It is,
however, still based on the fundamental concept of the boundary layer theory.
The results for power law fluids are identical to those obtained in Schowalter's
work on steady two-dimensional flow of the power law fluid and the boundary
layer equations for the Bingham fluid obtained in this section have never
appeared in the literature. To show the approach used in this section, Newtonian

fluids will be considered first.
3.2-1. Newtonian Fluids

Consider the two dimensional flow shown in Fig., 12. Under the basic‘
assumpiions of the boundary layer model, the thickness of the boundary layer
5L is very small compared with some characteristic length L of the solid body
adjoint to the boundary layer. In other words, the flow is at a sufficiently
large Reynolds number so that the viscous forces are of the same order of
magnitude as the inertia forces in the immediate neighborhood of the surface

of the body. Since

Inertial force P OVy [>x PUz/L (PUL ) 51,) SN ( _5;02
Viscous force /“3 v /QY /uUu/SL = /u Re L
we must have
§~ i (35)

where U, i1s some characteristic velocity and



Fig. 2. Boundary layer flow along a wall .




y = UL
Re—/u

In addition, it is also considerd that the order of magnitude of each
term in the two-dimensional continuity equation (Eg. (9)) is the same; that
is,

L P | (36)
VY lgL

Hence the velocity component %rperpendicular to the solid boundary is of
: 1/2
vy~ Uy /L = U/ Ny {37)

Utilizing the results obtained above, the following dimensionless

guantities can be introduced.
X =x/L ¥=yls, =Wl

U

]

Ve /Uy V= Np vy/U,, (38)
p/(Ui

P

It follows from Egs. (35) and (37) that the dimensionless quantities, Y, and
V are of the order of unity.

The equations of continuity and motion in x and y components under the
assumptions (1) through (5) given in Section 3.1 can be written in the

following form:

S
S F3¥° 0 (39)
2 Vy V% _1s _E | a?vx E?Vk
°x__1L =z 40
“ex T Vysy T T Pax T G ,3“2?5) Cio)
2 2, '
Vé_vz +v§lrx- (Dv ° y) (Ll'l)

133:

1p
3Y=T f5y 32

Substituting the dimensionless quantities in Eq. (38) into Egs. (39), (40),



ard (41), we obtain after rearrangement

30 . | |
é“" + 5— =0 | (42)
| 2. |2

R i

c SlH A £ o Ag

2

L3V oW, _ 3P 1 v 1 Yy

NRG(UE_K sl & v E o YV 3 el

L=

The assumption that all the dimensionless terms are of the same order
of magnitude for a large Reynolds mumber NRe' gives rise to the limiting

expressions of the equations of continuity and motion as follows (Lk):

35U 3V _
SY+5y=0 (45)
I S (46)
XTI TS TSR ‘

SP
0= -3 (47)

Equations (45) through (47) are the Newtonian boundary layer equations in
dimentionless form under the assumptions (1) through (5) given in Section

3.1, The corresponding dimensional boundary layer equations are

>V OV
st y= 0 ()
2
;vx évx 1 /”;vx
AT A A e
J
2
“\"!_5? (50)

Applying the same approach we obtain the boundary layer equations in

cylindrical coordinates in the form of

o

%_a-(rv).i. oY =0 (51)

Sy 32
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5, 57 13p M >, Y .
Vr—-r”z“i*:"FS‘?*f?s#rs'%’ (52)
_ 13

0= - 132 (53)

3.2=-2. Power Law Fluids

For a power law fluid the same method can be employed if the following

form of the Reynolds number is used.

n -n
M il 2l | (54

Re ~ m
where n and m are parameters of the power law fluid model defined in Chapter
2, If the condition that the inertia forces are the same order of magnitude as

the viscous forces in the boundary layer is satisfied, we can write

Inertial force _ vaavxlax a PUW/L N (5_;)“1,\, 1
Viscous force — 3V gh ntl 7 "Re' |
r2 ¢ whix @ “’ISL
3y ¥ :
or
6, = —% (55)
N T
Re

Consequently, the condition that each term in the continuity equation has the
same order of magnitude leads to the conclusion,
Usa, _ _ U
Ve~ T 0L T T Ifmel (56)

NRe

The dimensionless quantities Y and V can then be defined as

T Sil = NRi/n+i y/L, V= NRi/"*l v, [T, (57)

Introducing the corresponding dimensionless gquantities for the power law fluid

into Eg. (15) yields



L2z

Ol =

o]

w) [OU2 3V . . /13U
‘P"'L_{?'[(ax ] 1/n+1 ax+Ne/n+ )} ()

When Noo is very large, Eq. (58) becomes

U 1/n+1 31U
+ 'l':hj NRe SY (%)

Equations (10) and (11) now can be rewritten in dimensionless form using
the quantities U, X, and P in Eq. (38), Y and V in Eq. (57) and shear stress
expressions in Egs. (23), (24) and (25).

X=component:

' -1
dU . ,oU _ OP 1 3,120 U
Ué'if’“va_"ax*ﬁ—fﬁzm%ﬁ(lﬁl 5
Re
-1
3 [pu™t av . 2/net a_u] |
# A_Y'UTY (5x*Y%e 57 } (80)
y-component:
borol UEL 4+ Pl 2.2k ek ﬁ-ﬁ-‘ln'ic YL
y &+l 22X 2Y T oY 2/n+l 5% 15T . 2/n+l X T 5T
Re NRe Re
2 220" 2 (61)
oY [BY 2Y
when NRe becomes very large, we have '
. ' -1 '
3T 42U . 3B 22y U ]
v+ VY- el @ (62)
3P :
0=-3% _ (63)

Equations (62) and (63) are the dimensionless boundary layer equations for the

power law fluid. In dimensional form these can be written as

v
v2X4yS X= =13

n-1 v
> r % o'x
X3x Yoy pox ?— Xl ( ))

oY (&)
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19
b EE
oV, JV.
.
ax4-ay 0 (66)
In cylindrical coordinates the boundary layer equations become
12 aVs
TRt 5y =0 (€7)
Vg sV, 1dp m1il 2 ;vzn-l >’z
Yooy * zéz"'?;z*??ﬁ[r[ﬁ ¥} (68)
0=-232 (69)

The two-dimensional boundary layer equations, Egs. (64), (65), and (66), are
identical to those obtaired by Schowalter (34) which have been widely accepted.
Tt should be noted that the applicability of Eqs. (64) through (68) is

determined by the criterion that Np ~ (LA&L)n+1>> 1s
3.,2-3. Bingham Fluids

Procedures for deriving thé boundary layer equations for the Eingham
fluid are essentially the same as those given in sections 3.2-1 and 3.2-2.
Let us consider a Bingham fluid entering a ecircular tube from a large
reservoir, The equations of motion and continuity in cylindrical coordinates
under the assumptions (1) through (5) in section 3.1 have 5een derived in the
same seciion. The Reynolds number for the Bingham model is similar to that

for the Newtonian fluid axceptjﬂ% is used in piace of/ptas follows .

L Duf
N = =00l (70)
Re //%
Applying the same approach described before we first introduce the

follewing non-dimensional quantities



1/2

U=v /U, V= NR01/ zvr/U,, (71)

p= p/f’Ui
The quantity‘i’ becomes

7 + (7 + D7 lcél)z F23HRY 4 29277 (g
LTZ[ (7 N, 'oZ 5Z%5R’ * “Re‘3R
When NRe is very large this reduces to
Vo, 1/220
cl> L'mRe = (73)

Substituting the dimensionless quantities into Egs. (13) and (14) we obtain

r-component:

oV NV 2P 112 2 BV
TV + Ué_z) §-§+}T—{-ﬁ —EER(l +—7— J
e Re I
S Ta 1y 13V >u
'E[“ d w7 2] T szt )J ()
z=component;
—_ %
WU _ 9, 113 o 3
SRT%z=-5 +NRe{R SR 1“’_?_'3111 ReDR)
_3_[(1+ ) (75)
Z 172]311‘
For a large LA Egs. (74) and (75) becomes
_op
0=-5% . (76)
N .
vl w20 9P 1 9 (77)
BR"'La_z" _.3__"”_1?"?[(14'—17_2_531-{;3}

Re oR



The corresponding dimensional equations are

2P _ g |
S (7¢)
oV, Yy, 12 1 2 T >V
cZ C T Y. . 8 By EE
ysr TV T {J-az rio .)r[:r(/uo'!' 5 ) r] (79)
>r
The equation of continuity is
aV» Y 3V '
Sr¥ Tt 50 (80)
Since
To O '
Trzh - (/u'o * Y, ) 3r {BL)
or
Eq. (79) becomes
3V, Vg idp _ 1 2
et iy T T e T R b iea)

Let us consider the case in the rectangular coordinates. Applying the
same treatment as shown above, we will come up with the following boundary

layer equations in dimensional form:

oL
3%  x _ 13p . 13,, 9% >y
et ey "FM‘*Fa_y{/‘o”*t"ﬁ"x) vea
>y
3>
20 (84)
2Vx Y
c X =0 8
x, 2 | (85)

It should be noted that the applicability of the boundary layer

equations for the Bingham fluids derived above depends on the conditions



Ny, ~(Lf5 )% 5> 1

and

* 1/2
To/ NRe
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CHARPTER &4

ENTRANCE REGION FLOW OF POWER LAW FLUIDS

4,1 INTRODUCTION

This chapter presents the various methods available in literature for
solving the governing equations, based on the boundary layer model, of the
entrance region flow in a circular pipe using the cylindrical coordinate
system as shown in Fig. 10. A power law fluid with uniform velocity u enters
the pipe at z =0 and flows horizontally in the z direction. Under the given
assumptions and with the known boundary conditions (see Section 3.1), we wish
to obtain the velocity and pressure fields in the entrance region and the
entrance length required to attain the fully developed flow.

Four major methods have been developed, namely, the momentum integral
method (2, 30), the variational method (39), the matching method (7, 8) and
the finite differnce method (6). In the following sections these methods will
be introduced and their results compared.

4.2 FOMEWTUM INTEGRAL METHOD

The basic momentum integral method for the entrance region flow was

developed by Schiller (31) for Newtonian flow in a circular pipe. He assumed

a parabolic velocity profile

2
vz={3(z) (2%-%2 Yy Ocye §

in the boundary layer with a thickness § (z) and a uniform velocity profile

v, = U(z)

outside the boundary layer (y > §). Here v, is the velocity in the flow direc-
tion, U is the center core velocity and y is the radial coordinate measursd

from the wall, or



y=R=1r

hose assumed forms of the veloeity profile are used in the momentum integral
equation to obtain the relationship of U or to z. Note that tho assumed form
of the velocity profile should satisfy all the boundary conditions shown in
Section 3.1. | |

The basic momentum integral method (31) was first extended to the power
law fluid by Bogue (2) using the cubic boundary layer velocity profile. Later
Pawlek and Tien (30) used the same approach but with a fourth degree polynomial
as the boundary layer velocity profile. The arbitrary constants occuring in the
assuned profile are determined by the constancy of volume rate of flow and
kinetic energy at the entrance length calculated from the assumed velocity
profile or from the fully developed one. Because of its simplicity and typical
procedure of the method, Pawlek and Tien's work will be introduced in detail
in this section.

The egquations of continuity and motion are

3z

19

T ar: r) + z 0 (1)
aY, >V, 1d nld, Oz n=l ¥,

V3Rt Vse T tpmt pratlesl 3w (2)

hccordirg to the boundary layer assumption, the flow outside the boundary

layer can be assumed as

14 au

where U is the center core velociiy and is a function of z only. It follows

from Eq. (1) that the veloeity in the r direction can be written in the form

X v
=-4 2z
r rRazl‘dl‘ i (4)



Substituting the expressions of Egs. (3) and (4) into Eq. (2) we have

1 23% 3% 'y dU  ,m1 d Vs P 1av,
AT T AR T AR Rl Cl R

Multiplying Eq. (5) throughout by rdr and integrating it from the wall (r=R)
to the edge of boundary layer (r = R-§) we have

d0 (R~ S(

d (R-5
= vz)rdr + 2= RI vz(U-vz)rdr

n-1
- 2D | G, (8)

where § is the boundary layer thickness.
The velocity profile in the boundary layer is assumed to be of a
fourth degree polynomial,

2= oD + B+ oD+ cl,,c;‘g)u (?)
where

Yy=R=-1r : (8)
The coefficients Ci' Cz. 03 and Ca can be determined from the following
boundary conditions,

v, =0, at y=0 - (9)
v, =U at y=§ | (10)
s _ 0, at y=§, (11)
oY

and the compatibility conditions that the volume rate of flow and kinetiec
energy at entrance length must be constant whe't.her- it is calculated from the

assumed velocity profile or from the fully developed velocity profils,

v n+l/n |
s=1-(1-5 (12)



The compatlibility conditions can be written respectively as

R
rs EC.('-—%HC; = 25 4 (= EP - £ Jadn

R? pt
2_[ [i—(% 1 JAML’V (13)

K L
0= B+ G- 20 G- 29+ Go- 2 Tad

R ml 2
= - ._j!'.._h_' /},a’/b (14)
| J (-t ] .
Since Eq. (9) is automatically satisfied by Eq. (7), the coefficients Ci's

of Eq. (7) are determined by Egqs. (10), (11), (13) and (14). Combining these
equations we obtain the following four simultaneous equations

ci+cz+03+c4=1 (15)
Cy + 20, + 305 + 40, = 0 | (16)
C c C C

i 2 2 L 2n

5 78 t0t13= " Tom e
2 2 2 2

C C c C c.C c,C C.C c.C ¢.C

1, % G 1%, G2 20y G4

Tt R REQT IR It It R

= -% - -3%-_% + E—n% (18)
Solving for C s for various values of the power law parameter n 1 from Egs.
(15) through (18) yields the results shown in Table 4. Note that for n=1, the
velocity profile reduces to the parabolic form used in the basic momentum
integral method.
The integration in Eq. (6) can be performed if the assumed velocity
profile (Eq. (7)) is used. Eq. (6) can be integrated in the form



The Coefficients C

i

Table 4

for Assumed Velocity Profile

4 G 2 3 Cy
1.00000 | 2,00000 ~1.00000 0 0
0.80000 | 2.23813 -1.30832 | -0.09776 0.16795
0.75000 | 2.32052 -1.44875 | -0.06406 0.19229
0.60000 | 2.65803 ~2.14727 0.32047 0.16778
0.50000 | 3.00000 ~3.00000 1.00000 0
0.40000 | 3.50758 . 11699 2.37124 | -0.43183
0.33333 | 4.00000 -6.00000 4,00000 ~1.00000
0.20000 | 5.79192 -12,45958 | 11.54342 -3.87575
0.10655 | 10.38180 -32.77036 | 38.38518 | =15.00000




chnU"
(K1UR6+K2U6)+——(KBUZR6- 4026) =
where
G G G G
he1-2-3-2-%
1. & G G G
K2=-'§+'-3—+-&—+—52+'3-
2 2 =2 =2
szfl_+fa+°3+&_f;._5.2._fz_5&
2 37L TR 3 -1 7 9
i c,C, ) 26,C, _ €6y Cply i 26,0, 4Gy
2 5 3 ~ 72 Iy
ST S T PP < S~ = WL <
WEI Y LY R YT Ty T T T e
26Cs G Cs  26Cs _ 26cy  CiCo _20Cq
I 3 7 T 7 % q

If the folloﬁ:i.ng dimensionless quantities,

U= U/5, 6 =5/R o =2/RN , (2R)*52"PpP/m

Npo =

are used, Eq. (19) becomes

s‘_U_{Klna + EUS )+—(K30 a-xuu 52)_020*"/5*“

(19)

(20)

(21)

(22)

(23)

This differential equation determines the relationship between the center

H
core velocity U*. boundary layer thickness & , and tube distance from the

3
entry z .
be derived as follows. 4

the pipe, we have the relation

R
(R —5)2U + [ 2LV, rdr = KRZE
R=5

For a steady flow, U* and 6* have a certain relationship which can

From-the_macroscopic mass balance at any section in

(24)
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When the welocity profile Ey. (17) is used in Egq. (24) to carry out the
integration, Eg. (24) turns out teo be

K67 + KRS = 2RAL = %) | (25)
U ‘
or
2 ms” = H1 - -&%,-) (26)

Solving Eq. (26) for 8" in terms of U we obtain

« K . 1 -
5 =E€,-1+Jl+§—(l-?) ] . (27)

Equation (27) determines the relation between the dimensionless boundary
layer thickness 6* and dimensionless center core veloclity U*. Eliminating the
dimensionless boundary layer thickness 6 between Eqs. (23) and (27) yields

K I'Jl"' Zk.r.! l L
g [ T ]} gu*(_n.m__m,ﬁ_
22U C.K,. 2 K. Kk* K,

P2

e GRS (R

! » (28)
+ ZJ, = zk’;(, ( )}dU dj

This can be numerically integrated with the initial condition U* =1, at z*=0,
i.e., the uniform velocity at the entry. The computation terminates when U*
reaches the value of fully developed flow

- L+dn (29)

~ l4n

Combining Eq. (27) and the solution of Eq. (28) gives the relationship



botwsen & and z + The computational results from Bq. (28) for n = 1/, 1/2
and 3/4 are plotted in Fig. 13. The entrance length z; as a function of the
parameter n is shown in Fig. 14, the original plot.

The pressure drop,|sPls» in the entrance region can be approximated by
performing the integration of Eg. (3) from the entry to any cross section in

the entrance region.

lap*l=30( 07 - &) (30)
or
lap'| = -l'—%’-'- - 3y (31)
2fe

Since U* is related to é.*. the pressure drop can be calculated using the
numerical results of Eq. (28) as shown in Fig. 15.
The pressure drop from the tube inlet to any cross section in the
fully developed region z is customarily defined as
% - * ¥
|ap | =]apg |+ Japg | (32)

where IAP:l is the total pressure drop in the entrance region and |a p;] is
the pressure drop in the fully developed portion of the tube, Az; = z* - z:.
* %
apg | = 22332 457 (33)
Eq. (32) can be written as

|a p|= Uzz -1+ 2n+2(1—';25)nA z; (34)
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_ ¥ _ 4 _ o2, 1l43n\n  *
C=0S -1=2"(=2)" o (36)

The correction factors are plotted against n in Fig. 16.

Table 5 presents the numerical values of entrance length, fully
developed center velocity and boundary layer thickness, pressure drop, amd
correction factor. The pressure drop and correction factor are calculated here
based on the numerical results of Eq. (28) given by Pawlek and Tien {30).
Hence Figs. 15 and 16 do not appear in their work. Also note that Fig. 14
does not appear in their work (30).

Results and Discussion

The center line velocity obtained by the present method is plotted
against pipe length z* in Fig. 13 ard is a:I:so compared with experimental data
(for the Newtonian fluici only) and the results from the finite difference method
by Lemmon (24) which is presented in Section 4.5. This figure indicates that
the center line velocity from the present work does not approach the fully
developed value asymptotically and 1s somewhat higher that obtained from the
finite difference method for the same values of n. On comparing the results
from this work with the experimental data for the Newtonian fluid, the

agreement is good only in the region near the entry

* 2 0,020 ( 2° =2, n, ={ZR)P (37)
2 (Z-RNRe Re ./u)

The entrance length shown in Fig. 14 for different values of n is
considerably shorter compared with those from the matching method, variational
method and finite difference method which will be presented in the later
sections, This is because the center line velocity obtained by the momentum
integral method does not approach the fully developed values asymptotically.

The pressure drop curves shown in Fig. 15 indicate that the results
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from the present method are in good agreement with those from the matching
and finite difference methods and also with the experimental data by Dodge (8)
for n=0.725 and n=0.515. The pressure correction factor C plotted against n
as shown in Fig. 16 is, in general, consistent with the results obtained from
other three methods mentioned in the preceding paragraph.

4.3 VARIATIONAL METHOD

In this section the calculus of variation is used to analyze the
entrance region flow problem. The so-called variational method was first
introduced to solve entrance region flow problems for Newtonian fluid in
circular pipes by Uematsu (40) and later it was extended to the power law
fluid by Tomita (39).

The basic notion of the variational method is that instead of solving
the equation of motion, the velocity field is determined so that a certain
functional of velocity is an extremum.

Consider a power law fluid which flows from a large reservoir into a
circular pipe with uniform velocity u as shown in Fig. 10. Under the flow
conditions described in Séct.ion 3.1 the equations of continuity and motion

are respectively -

== (rv.) =0 (38)

JUnt gv Ant g v
R AR Tl REREIC) S )

Zd% rar r ar

where v, and v, are velocity componants along the coordinate axes 2z and r of
the cylindrical coordinates respectively, p is the pressure, 1s the density,
m' and n' are the rheological parameters for the power law model of the form

J-n
dvy ‘ nr dvy
dn

1
TJL&"_’.“-—T“'E-'] ar



wherefcrz is shear stress, and n' and m' are related to n and n' by

‘ 1
n' ==
n
and
n' = ml/n
To make the dimensionless form of Eqs. (38) and (39), we let
z _
X = ; y= r/R, uev /11
e | : (40)
v N
v = Z;IRG' ‘= P/f‘ﬁz
where N is the Reynolds number for the power law fluid defined by
--Lu Za % P
_ (2r) M u
N, = W (41)

and R is the radius of the circular tube and u is the average velocity. Egs.
(38) and (39) respectively become

1l 2
o e
b ;-t-v;; ji a}tgg)n ? ) (43)

The dimensionless boundary conditions at the conduit entry and at the
wall are expressed in the following form.

u=1l v=0, atx=0,

uv=0, v=0, aty=1, x>0,
Combining Egs. (42) and (43) yields

QUNT o L 3UaT
-Eﬁtle) 5’ d_"+ ay,(}_‘)n + }(é}) (&%)
Equation (44) can be rearranged to yield
| i i
oD ) dunw_ o ou\w o dP
‘7";1(?")*"’ y' a;,t(ia'“') "}—(a )" =" ax (45)
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Note that the right-hand side of Eq. (45) is a function of x only. Therefore,

if v is a function of y, Eq. (45) becomes a differential equation with respect

to u over the cross section at given x. Letting ¢
- g_b_ .Bu ou 1/x* 1l ,ou 1/n
i) =- 355 M+ v 3 S}{ay) 5 63 (6)
Eq. (45) becomes
E[u(y)] = - % .(47)

Now let us consider the funotional J(w, w) of u(y) ard w(y) defined as

cf wE(u)ydy
1
. of wydy
where w(y) is an auxiliary function. In the following paragraphs it will be

IJ(u(y), w(y)) =

(48)

shown that the first necessary condition for the functional J(u(y), w(y)) to
have an exiremum corresponds to the differential equation of the form of Eg.
(47). The second necessary condition will give the relationship between the
auxiliary function w(y) and the function u(y). Hence to solve Eq. (47)
corresponds to the wariational problem of finding the extremal wvalue of the
functional defined by Eq. (48).

As shown in any standard text on the caleculus of variations the
necessary conditions for the functional J{u, w) to have an extremum can be
obtained by perturbing the functional by the amounts represented by the
variations 6u and 6w of u and w. Let us first vary only w(y) and keep u(y)
fixed. Choose a certain function 6w that satisfies the conditions

6w(0) = 0, &w(l) =0 (49)
If |¢] is sufficiently small, the function
w(y) = W(y) +edu(y) (50)

lies in the neighborhood of w(y) which gives the functional J(w) an extremum.



Substituting Eq. (50) into Eq. (48) gives

of G +£8w) Bu)yay
of (i + € ow)ydy

J(u, w+ebw) = (51)

which is now a function of g only, that is,

J(u, W +g6w) = (&) (52)
This equation indicates that the necessary condition for the functional J to
be at an extremum is equivalent to the derivative of the functicnal J (or the
i‘unction*) with respect to the parameter £ at £= 0 be zero, that is

Bi'fiz

o€

- 3 (53)
£=0 :

Thus differentiating Eq. (51) with respect to £ gives
I ! !
shie) S (wagswdydy [Eyswly - [(essw)EWdy [ 5wdy
<& ({’rﬁw QSWJjD‘j)L
Setting £ = 0 in Eq. (54) yields

! | /
,,J:W/ydgf' E(wyswdy — [ w Ewydy [ $Swoly
('f Wy.dj,)‘

l-. "
Knowing that f wydy and { wE(u)ydy are constant we have

° /
_J{E(u)afl‘iydy -[fﬁE(u)ydy}yﬁwdy= 0 (56)

Thus, in order that Eq. (56) may hold for and arbitrary 6w the following

equation must be satisfied.

/
_fo w E{u)yd'j,_

E(u) = = = extremal value of J (57)
Lwydy
On comparing Eq. (57) and Eq.(47) it can be seen that the necessary condition

for the functional J to be at an extremum with respect to w gives rise to an

equation which is of the same form as Eq. (47). Thus, we can conclude that the
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pressure gradient equal to the extremal value of the functional J, that is

- %’:—:— = the extremsl value of J (58)

Considering next the case of 6w = 0, the condition of the wariation of

J to be zero is
2. J(u +¢6u, w) =0 (59)
€ ¢=0
Substituting the expression
u=1+€dun (60)
into Eq. (43) and carrying out the differentiation with respect to ¢ and

setting ¢ = 0, we obtain

S{ow 280 4 o 20, 1o 2y 2, '(’“)L?'L'La_v:’_
e v Y } 3} “lx? 3} }}; ; )}
',:'-?( ol } Sudy =0 (61)

Here the boundary conditions éu =0, w= 0, at y = 1 are used., For arbitrary
du Eq. (61) becomes

(=2n 1-n’
WYY W Ly N U 1) oW ) ouy S
2? a;{«.}vé?-}_(? a oy }}I +n’(4;) Sy
= constant . (62)

Equation (62) determines the relationship between the auxlliary function w(y)
and the function u(y).

Now we shall solve the variational problem by Ritz's method which is
briefly outlined in AppendixIIl for a general case, First we ohdose the

function u(y) in the form

“*’ (1 - 1) (63)

vhere o, is the parameter and a function of x only. The assumed form of the

wy) =



velocity profile, Eq. (63), is similar to the form of the velocity profile in
the fully doveloped region

wy) =522 1 L") (64)
and A has the following limiting values,
ol (0)=> oo ard  ol{)~ n' (65)
The transverse velocity v is found by using the equation of continuity. .'I‘he

results is

[ ( o, + | ot l ]dd.’, (66)
= e + e 0 P

(o, +1 )% ¢ ) oL, il Je 7%

where o« 1is the value of o in Eq. (63) which gives the functional J an
extremal value., The awdiliary function w(y) in the entrance region can be
chosen to be

oyt !
w=(l-3" )(1+c.vHI)

(67)
where ¢ is function of x only. Equation (67) may be partially justified from
the solution of Eq. (62) in the fully developed region, Note that both Egs.
(6l4) and (67) satisfy the boundary conditions

w(1) = 0, (68)

w(l) = O, (69)

According to Ritz's method, the assumed forms of u(y), w(y) together

with v(y) in Egs. (64), (67) and (66) are substituted into the functional J
in Eq. (48). The parameter 4(x) anmd c(x) can be determined by the system of
equations

o¢

a.T[d';C) - _ .
=z s 0 _ (71)

From Eq. (70) the relationship between o o and X can be determined. This

0 (70)

66
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relationship is used in the assumed form of the velocity profile u(y), Eq.(63),
to give the complete velocity profile of u(x, y) in the entrance region. For
the details of derivation the reader is referred to the original paper by
Tomita (39). The numerical results of the entrance length and pressure
correction factor are shown in Figs, 14 and 16.

4.4 MATCHING METHCD

In this section the technique developed by Collins and Schowalter (7,
8) for solving the entrance region flow problem of the power law fluid is
introduced. The technique is an extension of the approach employed by
Schlichting (32) for the Newtonian flow.

Consider a horizontal parallel plate channel of height 2h as shown in
Fig. 11. A rectangular coordinate system with its origin at the entry on the
lower plate isr used, Near the entry, the effect of viscosity of the fluid is
important only in a relatively thin layer near the wall and, therefore, the
boundary layer model is applicable. In a region approaching fully developed
flow, the velocity profile can be described in terms of perturbations on the
fully developed flow. These two solutions are matched at an appropriate value
of x in the flow direction.
Solution Near the Entry

The boundary layer equation for the x-component velocity can be

written as
xi—‘i‘+vh";=u-:“—1x{+ %"-9—3’ ) (78)
Since avx/ay is always positive in the lower half region of the channel we
have
2% e AU mn 3 ™3,
+ ) = (79)

vx-;§+v?ag. dx = P (a;



According to the concept of the boundary layer, Eq. (79) is valid in the
boundary layer where the x-component velocity L is a function of y and x.
Outside of the boundary layer v, is a function of x only and denoted as U(x).

To reduce the partial differentisl equation, Eq. (79), to a set of
ordinary differentlal equations, we define a stream function

§I-='ih§‘£;,c,._,(:t) (80)
where
P
ey (=) = —
- m X el
& [ .KHH -3"“? ] (82)
The velocity components Vo and vy are expressed in terms of stream
functions by
-1 S
v, = 7 (83)
>¢
vET X (8%
Therefore, combining Eqs. (80), (83) and (84) we obtain
v, = El ¢4 () (85)
th = ' ! o
Vs Z ¢ (£, 1f.) (86)
in which £; is the first derivative of fi with respect to Y. The velocity

outside of the boundary layer is a function of x and can be expressed in terms
of ¢ by

L f
Ux) =1 Z Ki € (87)
=0

whereKo=1andKifori=1. 2, =+ are to be determined later.



Combining Eqs. (79), (85), (86) and (87), we obtain a differential
equation containing terms of £ raised to different powers (0,1,2,¢**) multiplied
by coefficients which are fnn-ct:!.ons'oi‘ N alone. When coefficients of like
powers of £ are squated, an infinite set of ordinary differential equations
is obtained, For the case of zero power of £ we have

) fl LB f LB ] z_n o ¢ 88
n{nel) £ + £ (£ ) = (88)
Boundary conditions are

far Zrom the bowndary layer (f»s)s £,(2) =1  (89)
at the wall (i(=0): £,0) =0  (90)
£,00) =0 (51)
For the case of the first power of £ we have
£1£7 - 2827 = 2,2 = n(nrl)(a-1)(£0) " L)
(0l )(£0)" ) - K = 0 (92)

Boundary conditions are
far from the boundary layer ('[—?“). fi(w) =K (93

at the wall ('{:0): rl(o) =0 (9k)
£,(0) = 0 (95)
Repeating the same process, we obtain equations for f2 through i‘5 from the

coefficients of gz. ;,3 ' 34. and 25 » These equations and boundary conditions

are shown in the appendix of Collins and Schowalter's paper (7).

In order to solve Eqs. (88), (92), ete., we must have mmerical values
for coefficients Kls Kz. see o The following method for obtainming Kl’ Kz,
is adopted from the paper by Collins and Schowalter (8) which is simpler than
the original method used in the paper (7) mentioned in the preceding paragraph.
Since v_ approaches U for largeY], the axpressiog in Eq. (85) for large
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becomes

=]
- -1 !
U=1 ,E‘, £ £, M)
Comparing this equation with Eq. (87) and equating the coefficients of like
power of ¢ we obtain

f50 =%,
Integrating this equation with respect to 7Lyields
£ =K M*hiye 1=1,2 3., (96)
‘where Ai_l's are integration constants. From the continuity conditions we have
e [ Y JPUET 5
u_pf vxdy-_!.;;dy-s(cly:o (97)
Since at 7 =0 (or ¥ =0), fi(O) = 0, it follows from Eq. (80) that
‘P|3’=° =0 - (98)
Therefore, from Eq. (97), we have
§ |gen = B8 (99)
Combining Eq. (80) for y = h and Eq. (99) and utilizing the expression in Eq.
(96) we obtain
El g (K M +hy ) =2 (200)
Since

)Z(:-lé at y=h,

Eq. (100) cin be written as
Elﬁi_l (K g +24s )
=K + £(K1+A°) - gz(Kz +A1) G vas
# k% igl*‘-i (K +45)

=1 : (101)



Equating the coefficients of 1ike powers of £ on both sides of Eg. {101) we
have

K

i-l-A

41 =0, i= 1, 2| sse (102)

Combining Eqs. (102) and '(95) and lettingY; be the large value of J we have
=G - fialh) (103)

Equation (103) shows that Ki can be obtained from the previous values of K. 3

and £, (). |

Solution Approaching Fﬂ]y Developed Flow

The equation of motion in the region near the fully developed flow may

]

be approximated by

V% 3V 1dp _ mn Vg, BL a‘/x
vxasx"'vyay,:"fdx"‘ 7 (ay) (-"'fby) (104)

¥y >> >V
a ;:- a xl-
velocity in the y dirsction

with the assumptions that and p = p(x). Substituting the

0
oV
vy = j —dy
g—
and introducing the dimensionless quantity Y = 1 - y/h into Eq. (104) gives
oV 9% oV 1dp, m 1 ,°%% -1V,
xS SSEIcFE Ty 5T 52 (W09)

Differentiating Eq. (105) partially with respect to Y ylelds

z
oVx v x 19Vx 3Vx é Vx
Vxaxer T U ax 2 ) f,n+1 3T [( ? (108)

The velocity v, can be expressed as a perturbation of the fully developed
velocity profile as (32)
%
V.=Vt (107)
where u is the perturbetion velocity, and v, the ﬁJJJy developed velocity



profile given by

on n+l
ve=u(EEha-vr ) (208)

Substitution of Egs. (107), (108) into (106) we have

Enely oy )‘;‘; - (22 Y f"“ oY

=1 n-l [

_ m(.?.n-i-l)“ Su* _ > u™

-W'{ Y W.,-rzn(n DY W’—
)

-(n-1) X W—} (109)

where terms containing u* or its derivative to power greater than one are
small and can be neglected. The validity of this approximation was discussed
in the original paper (7) and the error was reduced by using a special
numerical scheme. Using the method of separation of variables, we set

v =1 S ¢ (-, ) P (D) (110)
vihers
- e
xaé%_;h iﬁ:nl{, e ?‘) 1 e e
Substituting Eq. (110) into Eq. (109) gives
n-t oL - (=)
Y "ﬂ.’" s2u(n)Y " (D + @)Y P

‘—

)x )\'-F(I) 0 (112)

s (2 (1 -1 )A*f’ (1) + (=

The boundary conditions given below represent the symmetric conditions at the
center of the channel and no slip conditions at the walls,

$,(0) =¢3(0) (123)
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P,(1) =, (1) =0 (114)

Since the values of C, are still arbitrary '-p'(o) can have any non-zero value
and can bo convenlently set lf;.(O) = 1. This additional bourdary condition en-
ables us to determine the eigenvalues )., and soluticn of Eq. (112) resu‘.‘i_.‘r,!s‘ in |
a set of corresponding eigenfunctions ¥ i satisfying the boundary conditions.
The wvalues of Ci are those which wa.]_'l. provide the best fit of the
upstream solution to the downstream solution at the jointing point of the two
solutions. Ci are determined by minimizing the integral
] ! 2
JEx o e (29 -7 Jar (15)
by differentiating it partially with respect to Cy and setting the results
squal to zerc. v; is the perturbation velocity of the solution near the entry
at the point X = Xj where two solutions are jointed. A set of simultaneous equ-
ations is obtained and C, can be evaluated.
Pressure Loss
It follows from Eq. (38), Appendix I, that the volume rate of flow of
the power law fluid in the fully developed region of the parallel plate channel

is

2 1/n
- n 2ih lap
Q = ZhuW = """1 +"2n '}?n (h Ax') (né)

Hence the pressure drop lapf] in the fully developed region for a certain duct
length 4x is
ntl 2n+l\n
lapl_ 2 F) ax

0 e B

(117)

2n)2 -2-nP '
Koo = '(_lﬁ—u'— (118)



ldpfl = prossure at the beginning of duct lengtha x
~ pressure at the end of duct length 4 x.

The pressure loss |ap| between x = 0 and some point x in the fully
developed region may be represented by

n e
= —— +C (139)
% u2 NRe h
C is the correction factor defined by
' n
lap,]  2HED) x
=7 e§ n '};Te' (120)
7 u NRB

waere |aPg| and x, are the pressure drop and the length of the entrance region

respectively. The pressure drop in the entrance region can be obtained by a

momentum balance over the differential length dx as follows:

4
d + ol P
Pﬂ[“xd#‘h;;"%x yus & 0 (121)

Substituting the shear stress expression and dimensionless coordinate in Eq
(121) and integrating it from x = 0 to x = x_ we have

I ;v,dY]m “f’h f |Wx| an [ (122)

Substituting the velocity profile at x = 0 and X = Xy into the first term on

the right hand side of Eq. (122) and carrying out the integration, we obtain

A Pel 2 (zn+1) Ve ™ ;vi
i:_"‘Z. 3In+ 2 l - o n-Hf [I ’ J "lx (123)
=fu f’h

Let

n-1 n-1
X = 5_2%1&)__ i <2“+1113 ) (224)

7
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Then Eq. (123) can be rewritten in the form of

Afe _ o p2lantl) 9] 2% "5y
Leu® [ An+ 2 lJ o (J.n-n)"'f[] jJ dx (125)

A

The correction factor C then becomes

= of&nil) 4] o Vi ™ |
¢ 2[3"'*'2- 1] (zn-i-l)“"j[ >Y | :}?]Y-TIX

nﬂ 2h+l
_ = )xe R

Ne. h

It should be noted here that the expressions of pressure correction factor C
both in the paper by Collins and Schowelter (7) and in the Ph. D. thesis by
Collins have some errors. To correct the error, the first term on the right
hand side of Eq. (28) in the paper should be 2[—£——l l] and the
coefficient of the second term should be 2n /-n(2n+l)n'l .

Let us consider briefly the case of circular pipes. Here Collins and
Schowalter (8) applied the same technique as in the case of the horizontal
parallel plate channel but with a different stream function(, dimensionless
similarity transform 7] and dimensionless coordinate ¢~ difined for axial
position. |

Define a stream function t}' as follows:

13y 1% . ' ‘
w55, T il - (127)
and
Llf‘-R“‘Z@' £;(p) | : (128)
=1
where . A
(-

V= "_E"F'_ - (129)
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1
_ ¢ R2zy ndl
o (—-—-RNRG) (130)

Note that ¥ satisfies the continuity equation., From Eqs. (127) and (128), we
have |

v, =12 Icri'l £,(0) (131)
Rzﬁ Lod o 4.
Yo = Woi)s (.E.”r fiuYL;Za"le: ) (132)

The velocity outside of the boundary layer U(z) can be expressed as a function
of

U= &1 43 oiK) (133)

=l
where Ki is constant and can be determined in the same manner as shown in the
case of flow through flat plates.
The expressions of Egs. (131), (132), and (133) are then substituted
into Eq. (68), Chapter 3, and the coefficients of like powers of ¢ are
equated to obtain an infinlite set of ordinary differential equations, for

example, the first being

1-n

Zn"ln(ml)fl L (61)Z =0 (13%4)
with the boundary conditions |

:ﬁ'l(O) = fl(o) =0 (135)

£(=) =1 (136)

Equating coefficients of terms with powers of ¢ higher than one gives rise te
equations for fz. f3. «»+ The procedure of the solution from here on is carried
out in manner comparable teo that described previously in the case of parallel
plates and will not be repeated here (see reference (8)).
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Note that the set of nonlinear ordinary differential equations of the
two-point boundary value type, Eqs. (88), (92), and (134), which was solved
by the modified Runge-Kutta technique by Collins and Schowalter, can also be
solved by the technique of quasilinearization (23).

Results and Discussion

The values of the entrance length, pressure drop, and correction factor
for the case of the tube entrance region flow of power law fluid are shown in
Figs. (14}, (15), and (16) respectively. It is seen from Fig. (14) that the
dimensionless entrance length increases from 0 to the maximum value, 0.31, as
the flow behavior parameter increases from 0 to 0,1, The pressure drops in the
entrance region for various flow behavior parameters are in good agreement
with Dodge's experimental data. The results for n < O.4 are all interpolated
from the values of n=0 and n=0.4 becaus§ of difficuliies in the numerical
calculation.

4,5 FINITE DIFFERENCE METHCD

The numerical method developed by Lemmom (24) for solving the entrance
region flow of power law fluids in pipes is briefly presented in this éection.
The flow system is shown schematically in Fig. 10. The assumptions and
boundary conditions are the same as those listed in Section 3.1. The

governing equations are

2% Ve 1P wm % 3% 1 Y
za}'l'vr—a_}f:"é-—- FJ‘;TI (31:." llr .M-) (137)
aF
L1 STV S -
3-5.+Jb+an,"0 ' 7(138)
R -
J2rvar =y (139)
0

vhere Eq. (137) is the equation of motion in the z direction. Equations (138)



and (139) are the equations of microscopic and macroscopic material balance
respectively. In writing Eqs. (137) and (138), it is assumed by Lemmon that
the pressure gradient across the diameter of the pipe is negligible and the
only shear stress of importance is trz' Actually, they are exactly the same
as the boundary layer equations we have derived in Section 3.2.

Then the pipe is divided into N concentric annuli with radial distance
h apart and the pipe is further cut by vertical planes with horizontal distance
k apart as shown in Fig. 17. Equations (137) and (138) now can be written in
appropriate finite difference form for each grid point. The pressure and (M+1)
velocity are known at the entry and those of the next grid points in the flow
direction can be delermined by solving the N+l equations with an assumed value
Tfor pressure such that the volume rate of flow is constant. The wvelocity pro-
files for n = 0.5, 1.0 obtained by finite differnce method are also showm in
Fig. 13. The results corresponding to the Newtonian fluid are in good
agreement with experimental data both for velocity profile and pressure drop.
The entrance length and pressure correction factor obtained by this investi-
gation for n=1 compared with experimental data and theoretical results are
shown in Table 6. The entrance length and the pressure drop and correction
factor are plotted aginst n in Figs. 14, 15, and 16, respectively. It should
noted that for n < 0.5 the pressure correction factor from this investigation
is not greater than the kinetic energy correction only. This is not true
because the kinetic energy correction is based only on the change of kinetic
energy, i.e., the difference of kinetic energy calculated from a flat profile
at the entry and from the fully developed pro.fi‘!.ler while the usual pressure
correction is based on both the effects of change in kinetic energy and
viscous friction in entrance region. As a result, the finite difference
mehtod employed by Lemmon fails for n<0.5.
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Reported velues of Newtonian entrance

Table 6 ®

length z; and pressure correction factors C in pipe flow

Theoretical results

g0

Authors Reference c z; = 2zo/RNpg
Atkinson and Goldstein (43) 1.4 0.130
Bogue (2) 1.16 0.0576
Boussinesq (3) 1.24 0.130
Cempbell and Slattery (%) 1.18 0.1350
Collins and Schowalter (8) 1.33 0.122
P (21) 1.28 0.1150
Lemmon (24) 1.274 0.1108
Schiller (31) 1.16 0.0576
Siegel (quartic profile) (35) 1.106 0.0592
Siegel (cubic profile) (35) 1.08 0.06
Sparrow, Lin, and Lundgren (36) 1.24
Tomita (38) 1.22 0.133
Tomita (39) 1.35 0.0517

 Experimental results

sy (24) 1.08, 1.00
fnihbs (24) 1.27 + 8%
Kilkuradse (8) 1.32 0.125
Rieman (24) 1.248 + 1%
Schiller () | 1-R:10%
Weltnern and Keller (24) 1.20 ¥ 10% (3, = 283p/ )
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CHAPTER 5
ENTRANCE REGION FLOW OF ELINGHAM FLUIDS

Consider that a Bingham fluid enters ; horizontal circular pipe from a
large chamber as shown in Fig. 10. Since the boundary layer model can be
applied to the entrance region flow, near the entry of the pipe, we need only
solve the approximate equation of motion, or boundary layer equation, of the
Bingham fluid (see Chapter 3)

12 27z
T ¥ 330 1)
v2'z Yz 1dp 1
Iar+v_z'5'5"-'fdz-ﬁ'ﬁ'{rrrz) (2)
where
To g
?;z"'/“of.avy )5y (3)
3%

It is worth noting that in addition to the boundary layer (velocity)
there exists a shear stress boundary layer for the flow of the Bingham fluid
as shown in Fig. 18. At the edge of the velocity boundary layer, the velocity
gradient is zero, while at the edge of the shear stress bourdary layer, which
is thicker than the velocity boundary layer, the shear siress becomes zero.

5,1 THE BASIC MCMENTUM INTEGRAL METHOD

The basic momentum integral method for the entrance region flow of
Newtonian fluid was first developed by Schiller (31). He assumed a parabolic
velocity profile in the boundary layer with a thickness §(z) and a uniform
velocity profile outside the boundary layer. From the form of the velocity
profile in the fully developed region, it appears that the basic momentum

integral method can also be used to analyze the entrance region flow of the
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Bingham fluid because the uniform velocity distribution outside the boundary
layer is analogous to the plug flow region of the Bingham flow. Hence it may
be expected that this model can describe correctly the flow characteristics of
the Bingham fluid in the entrance region.

It 1s assumed that the pressure gradient can be related to the plug
flow velocity by

dU _ 1d
UEE=-?EE (&)

where U is a function of z. Substitution of Eq. (%) into Eq. (2) gives

3% % _ . du _1
Yor * Va e = U T T or e (5)

Integrating Eg. (5) with respect to r from r=R at the solid wall to
r=R-és at the edge of the shear stress boundary layer where no shear stress

exists, we have

A=R=3s

oz 3 4u 3
2R (vr-a—r- AT i U a—i) rdr = = ?[ r TTZJJLGR (6)

Combining Eq. (6) with the equation of continuity Eg. (1) and carrying out the
integration we obtain (see Appendix A II.1)

au a % R
& (U-vz)rdr+a-;{ ACERAL IS 2 (7)

vhers

év
Ty = (rrz\rcR) ' (?%)mn +T,

Since U - v, becomes zero outside the velocity boundary layer, r=5, Eq. (7)

becomes
R-$ R=S RT
du d _ Rl 2" 0 8
dzI& (U-vz)rdr + -&-;{ vz(U-vz)rdr = —F,— (—5—5)123 - --?— ( )

As in the case of Newtonian entrance region flow, the following



Parabolie form of velocity profile inside the boundary layer is assumed.

v

= 20) - (D)? (9)
where y is the new coordinate as shown in Fig. 10 and defined by
y=R-r (20)
The assumed forﬁ of veloclity profile sa'hisfies the following boundary conditions.

vz=0' B‘ty:OV

v,=U, aty=96 (11)
av

3-5}——0: aty=6

Substituting the assumed velocity profile, Eq. (9), into Eq. (8) and
carrying out the integration, we have (see Appendix AIT.2)
2R U

w2 R - 4t 5)d" v (> —'o“%%%( +RT)  (12)

If the dimensionless quantities

=6/R U =Uf, " =pmafB= 2/RN, , @)

= R‘Z.;//b‘!)u. Npe = puR/ o
are introduced in Eg. (12), it becomes (see the second part of Appendix AIT.2)
*2 5 _ Ut

* & 03 *dU '
au(;_—---—-a) o + U rr 6)——;-—26*+T (14)

The relation between the boundary layer thickness, &, and the center
core velocity, U, can be obtained by using the macroscopic mass balance as

follows:
. 2-
(R - 8)“U +{ g 2gv,rdr = 7R3 (15)

When the assumed form of velocify profile given by Eq. (9) is used, Eq. (15)
can be reduced to (see Appendix AIT.3)



&5

8 i o B — 1) (16)
U
Solving Eq. (16) for & and noting that 8 < 1 and U » 1, we obtain
§ =2 a|l===2 (17)

Equation (14) now reduces to a first order differentlal equation if the
relation of 6" and U' in Eq. (17) is used (see the second part of Appendix

AII.3),
S % 2 % | iy au _ 20  _*

('—6"U +T§'UD--§—D——§)?='2TD'+TO (18)
where

D=(= =~ 2 (19)

i}

The initial condition of Eq. (18) is

U'=1 at 2z =0 (20)

Equation {(18) can be integrated numerically by using any standard mehtod of
nunerical integration. The solution of Eq. (18) will give the relation
between the dimensionless center velocity, U*, and the dimensionless tube
length, 2, for a given value of 7,. Using the relationship of 5" and U
given by Eq. (17) and the velocity profile given by Eg. (9) we can also
calculate 6* ard the velocity distribution for a given z* a.nd’C:.

To obtain a clear visualization of the characteristics of the Eingham
flow, it is preferable to use the dimensionless plug flow radius, r: — ro/R
in place of the dimensionless yield nstress. ‘t.':. as a parameter. The relation
between these two quantities can be‘ob‘t.ained from the expression of the ave-

rage velocity in the fully developed tube flow as follows:
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bly L (Toyh

E-T[l T (21)

Here the shear stress at the wall, ' and the yleld stress, o' are related

by
- 5 (22)

Combining Eqs. (21) and (22) together with Eq. (13), we obtain

*
12r
T = : o (23)
0

°3 N

For each r: there exists a correspording T‘: which is called the plasticity
number. When r: is zero tﬁe fluid is Newtonian. When r: approaches unity, T
is infinite corresponding to the plug flow. Thus r: may be used as a
parameter together with the Reynolds number NR - in the Bingham flow.

The entrance length, Ty is the distance from the tube inlet to the
point dovmstream where the boundary layer velocity profile asymtotically
approaches that of the fully developed flow. In other words, at z = %y the
bourdary layer thickness 66 is equal to R - r, and the center velocity Ue is
squal to the velocity in the fully developed plug flow region, or

2
atz=g, b =R-r, U = R(‘Z‘w-'L'o) /.'«zfo'l:w

Using dimensionless quantities defined by Eq. (13) and the relations given by
Eqs. (22) and (23), we obtain

*® L
66 =1 = ]-:‘o (24)

g (25)
= ] 7
3 + 21-0 4 r,

For each given r:. we can calculate U: from Eq. (25), The corresponding
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dimentiorless entrance length z, is then obtained by utilizing Eq. (18).
The pressure drop, |ap|, from the tube inlet to any section in the
entrance region can be obtained by integrating Eq. (4) from z = 0 to z,

lAPl=1ac,--p=-£{02--ﬁ2 (26)

where P, is the pressure at the tube inlet without taking inte account of

contraction loss. If dimensionless pressure is defined as

o =2
p =/ 35

Eq. (26) becomes

* ® * *
|4p|=po-p=U2-1 (27)

Therefore, the pressure drop in the entrance region, |a p:|. can be expressed
in terms of dimensionless center velocity at z = Zgr

* * L U*z
[4Pgl =P, = Py =

: -1 (28)

For the purpose of comparison, the dimensionless pressure drop based on
the fully developed region for tube length 4 2 is (see Appendix AII.Y4)

%

L
* 1Bz _ 4z -z,)
*l

. e (29)
3 - lpro + T,

Therefore, the pressure drop from the tube inlet to any cross section z* in
the fully developed region is customarily defined as

. |
PRy [N .o WE— g (30)
"
3 - llrro + T,

where the correction factor C is



*2 L8z
C= Ue -1-

& (2)

r
+ ° i

0o w0 #*

3 -

Numerical Procedures and Results

The computational procedure is as follows;
(1) Given a value of plug flow radius r:, the corresponding yield stress
7% can be calculated from Eq. (23). The results are shown in Fig. 19. In the
following numerical procedure, JL: in the range from 0 to 0.9, is used as the
parameter.
(2) The relationship between center velocity UT and tube distance z can
be obtained by numerical integration of Eq. (18) using the trapezoidal rule.
The results are shown in Fig. 20.
(3) For given values of U*. the corresponding boundary layer thickness 6"
can be obtained from Eq. (17). Thus the relationship between 6* and z* is
established using Step (2) and Eq. (17) and the results are shown in Fig. 21.
(%) The velocity profile at a given z" is then calculated from Eq. (9). The
results for the case of r: = 0, 0.2 are shown in Figs. 22 and 23 respectively.
(5) The entrance length z: is obtained in Step (2) when v approaches the
fully developed center velocity U;. which can be calculated from Eq. (45). The
entrance length z: is plotted against r: in Fig. 24,
(6) The pressure drop from the tube entry to any cross section dowmstream
in the pipe is obtained from Eqs. (30) and (31). The results are shown in Fig.
25,
(7) The correction factor defined in Eq. (31) can be calculated for given
values of r:. The results are plotted in Fig. 26.
Discussion

The characteristic behavior of the Bingham fluid is that it remains
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Fig.19. Yield stresses of the Bingham fluid as a
function of plug flow radius.
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Fig.24. Entrance length of the Bingham fluid as a function
of plug flow radius by various methods.
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Fig.25 . Pressure drop of Bingham fluids as a function of
tube distance by the Campbell -Sigttery method and

the bosic momentum - integral method.
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Fig. 26. Correction factor of entrance region pressure drop
for the Bingham fluid as a function of plug flow
radius compufed by various methods.
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rigid when the shear stress is less than the yleld stress, but flows when the
shear stress is larger than the yleld stress. This flow behavior implies that
there always exists a true plug flow region outside the boundary layer if the
yield stress is not zero. At the edge of the 'bounda.ziy layer, the velocity
gradient AVZ/ar is zero, and the shear stress T, is equal to the yleld stress
T, as can be visualized from Eg. (3). The fluid outside the boundary layer flows
like a solid body with elastic properties because the fluid is under stress
with '1‘0 at the edge of the boundary layer. This consideration prompted us to
study the Bingham entrance region flow problem using the momentum integral
nethed.

The center line velocity u* plotted against %z for each r: (see Fig. 20)
does not approach the fully developed value asymptotically. This results in
shorter entrance length (see Fig. 24 ) compared with those obtained from the
Campbell-Slattery method and the variational method, which will be described
later. As shown in Figs., 20 and 21, the center line velocity and boundary layer
thickness increase with increasing r: at a given tube length z*. but near the
tube entry z' = z/RN;_ = 0.02 and the variation of U and § for different
values of r: is very small. Figure 24 indicates that the entrance length z:

decrezses with increasing r:.
5.2 SOLUTION BY THE CAMPEELL-SIATTERY METHCD

The unrealistic results in the region far from the entry, z* > 0.02,
obtained from the basic momentum integral method for Newtonian fluids were
corrected by Campbell and Slattery (4). In addition to the basic assumptions
erployed in the basic momentum integral method, they used the macroscopic
mechanical energy balance to account for viscous dissipation within the

boundary layer. Their results are good in over~ all descripition of the velocity
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field within the entrance ragion. The method of correction by Campbell and
Slatitery originally developed for Newtonian flow will be applied to Eingham
fluids in this section. s

The macroscopio momentum balance in the entrance region of a pipe may
be written (42) as |

A(f<v§>s+p5)+F=0 (32)

where S is the c¢ross-sectional area, F is the friction force of the fluid on
the tube wall, and<v;1> is defined as

R i R M R
4"3>= //vqrd:dz 6/ b/_frdrda= // vordrd®/s  (33)
[ o [ o O

Here it is assumed that vi >> vi. If Eq. (32) is applied to a differential

length dz, we have (for the derivation of Egs. (34), (37) and (38), see
Appendix AII.5)

fk“ B dp )
vrdr + 5 ==+ (T_) R=0 (34
/ = 2 dz rz’ g

P-rlﬂ-
(5]

P

The assumed form of the velocity distribution inside and outside of the
boundary layer given in the preceding section,

v 2

= 2% -I, for y ¢ &, (35)
vz

=1 fory 26 (36)

R
can be used in performing the integration of f vi rdr and calculating the
e
shear stress at the wall (Trz) ~p in Eq. (34). The result is
2

2 24 RU
d r2 B _ 7 2 .2 R dp ., 24 =
Paal (_5"'1'5_35"'1'5'6)]+ >S4+ Za_+TR=0 (37)



The dimentionless form of this equation is

* *
d *2,1 7 % 2 . %2 ld U *
U5 -=6 +=8°)]++ 2 + L 4+T =0 (38)
dz* [ 2 15 15 J L dz* 26* e
where dimentionless quantities are defined in Eq. (13).

The macroscopic mechanical energy balance (42) in the entrance region

may be written as

- ,
aGgsevi) +w [ ‘-?,2 +E =0 ()
7,

where w is mass flow rate, w = f<vz->s. and Ev is the total rate of irreversible
conversion of mechanical to internal energy. Equation (39) can be applied to

the fluid from the tube inlet to any cross section in the entrance region,

R R E

1 1,32 1 -2 %

3¢ [ vrar - L4k +p[ v,rdr - gp G + zL= 0 (40)

o
where
¥ 20 R
E, = - // (T + ¥ v) rdrdédz (41)
2 0

Using the scalar or expanded expression of (z:g¢ y) (42) and the usual
boundary layer assumptions, i.e., neglecting the small term of velocity deriva-

tive except av z/e:ir. we have

(Tt v V) To 2%z (42)
=t XY =$/“o'avz ST

a2

Equation (41) can be integrated with respect to r and ® by using the expression
of Eq. (42) and using the assumed form of the velocity profile, Egs. (35) and
(36). The result is (see Appendix AII.6)

¥ ¥
5, = 214 f -uz(%% - %)dz - 21¢, f u(-% - R)dz (43)
(o] ]



100

Combining Eqs. (40) and (43) and differentiating the resulting equation with
respect to z we have (for the details of derivation of Eqs. (44), (45), and
(66), see Appendix AII.7)

.
ud 1lad 3,12 1 L7 2
TR -5 g VE - S g, )

LR 1 1
T AAETEEREATC TS (44)
The dimensionless form of this equation is

1dp _ 1d (.*3,1 uy #2
S it bed CRICEE LIRS )

S S - U G- (45)

Eliminating the pressure graﬂient. dp*/dz* between Egs. (38) and (45) gives

d *2 0l 7 ¥ 2 N2 d {.* 10 . * L7 #2

G-+ 5027 [‘33‘ -5t e )
2

-U*(%l* 3)+ +'£ [1+U(— -l)J =0 (46)

The boundary layer thiclmess, 6*. can be expressed in terms of center velocity
U by
fap-] 22 | (47)

or

¥ = : (48)
*2—46*4-6 :

E-3
Using the relation Eg. (48) we can eliminate U from Eq. (46) and carry out
the differentiation of the resulting equation to obtain (see Appendix AIL.8)

| .
6%(1126™5 - 10366™% 31306™2 - 357462 + 20046 + 432) Lo

dz
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= 140(6"0 - 1186™5 + s46™™ - 10862 + 2366™2 - 2046* + 72)

-- -gé 'Z.‘: 6*2( 6*? - 1#6*6 - 946*5 - 3406“" + 8126*3

- 12246™% 4 10806 - 432) (49)

Equation (49) is the differential equation which determines the relationship
between 6* and z*. The boundary condition is 6* =0 at z* = 0, For Newtonlan
fluid, Eq. (49) can be integrated analytically (4). Equation (46) reduces to
the differential equation which relates U° to 2 i Eq. (47) is used (see the
last part of Appendix ATT. 8). The boundary condition is U =1 at z = O.
Entrance length z: is determined by the numerical integration of the resulting
differential equation at 1.'1-.‘g = -U:-.

The pressure drop in the entrance region can be obtained by integrating

either Eq. (38) or (45) from the tube inlet to any cross section in the

entrance region

} *
|ap'| = 4511*2(% Lt B m a2 f‘i 4’ +7, ’*} (50)
: [+]
or
po= G -2 6" =67 -1
P N R T .“.

+-5fu (?—l)dz +§;;f0(3-6)dz (51)

-] ]

If the expression of Eq. (50) is used to calculate the presswre drop, the

correction factor becomes

. i 4
_ *21__ 7 L% _2__ %2 !__ EE_ #* * *}
C'“‘{Ue 2-ﬁ6e+ 1559)-2"'2] a*dz T By
[+
*-
Ty (52)
3 - 4r +r:E
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The numerical procedure is , in general, similar to that i-l.'l the basic
momentum integral method. The determination of pressure drop as a function of
z* needs an additional integration. The center velocity and boundary layer
thicimess as shown in Figs. 20 and 21 as function of tube length are obtained
by numerical integration of Eq. (49) combined with Eg. (47). The entrance
lengths are plotted against r: in Fig. 24, P;-essure drop calculated from Eg.

(50) is shown in Fig. 25 and correction factor C from Eq. (52) is shown in
Fig, 26.

Resulls and Discussion

Since the present investigation is the first work applying the Campbell-
Slattery method (4) originally developed for the Newtonian entrance region
flow to the Bingham fluid, the numerical results obtained are compared with
those obtained by the basic momentum integral method presented in the prece-
ding section and with the variational method (29). Although the plug flow
velocity and the boundary layer thickness plotted against pipe length for
different values of plug flow radius indicate the opposite trend with respect
to inereasing plug flow radius as compared with those of the basic momentum
integral method, both plug flow velocity and boundary layer thickness from
this work approach the fully developed values asymptotically. Furthermore, the
pressure drops in the entrance region are in good agreement with the results
from the baslc momentum integral method as shown in Fig 25. The results of
pressure drop from the basic momentum integral method and the Campbell-
Slattery methed are also compared with those from the wvariational method in
Fig. 27. The entrance lengths and correction factors for different values of

N .

r as shown in Figs. 24 and 26 are in general longer and higher than those

obtained from the basic momentum integral method and the wvariational method.



Q9
e

spoyjaw

SNOMOA  woly pajojnojpd pinyy woybuig ayy jo dosp aunssaid jo  uosLIBAWOY * l2'bi4
mmzmxu = 2
o0 0g0 020 oo 0o
I T T T ] T 1 T T _ 0
O _ &y
S0y~ N
0:=9 v .
(62) ‘Ip "1 ysofiyorn ___.o _@_ o1
Aq Djop |pjuswiiadxl el'o % o
€20= 1 o
POY}3W [DUONDIIDA ———= == 02
poyjaw piBaju wnjuawow 21$0q
8y} puo poyjlaw A19}D|S-j18qdwp) a8yy .M
og =
10 =
>
v
o)
v op™|—.
» -0
’ ] ]
~ Fd N
\\\ m\\
P \\\\ 10S
00:=2 ~ | {o'e
\\
\\\mu \.\\\ :
# / 0 102




104

5.3 THE VARIATIONAL METHOD

As indicated in the introduction of this report, the first work on the
entrance region flow of the Bingham fluid was done by Michiyochi et al. (29)
using the variational method. In reviewing their work it was found that their
approximate form of the equation of motion based on the boundary layer mecdel
(Eq. (61) in this section) is different from the rigorous form derived in
Section 3.2, Chapter 3. The walidity of their approximate form of equation
of motion merits further study. Nevertheless, it was assumed correct and the
analysis part of their work will be briefly presented in this section.

Let us consider the flow system as shown in Fig, 10. The equatior; of
continuity and the equation of motion in the z direction under the conditions
that the flow is steady, laminar, and incompressible are (42)

-ﬁ+'—a—;+—;+3~§-=0 (53)
3V 3’z lap _ 137z Btzz
TRt TR e Tt EEErEe

The components of the stress tensor for Bingham fluids are (29),

BV
Trr=’2(/‘o+">3“§

BVQ 1
Too= 2U6 *X) (G + V3
3V,
’C-zz = =2k, +X) Sz (55)
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I oV, DV,
} = Ge /u" Mg ag e)
_ __( +>\) QVA QV})
a" Lo + 2)(5
where
%, % | (56)

Substituting the expressions Trz' Tﬂz' and Tzz in Eg. (55) into Eq. (54) and
using the axisymmetric condition, i.e., 38 = 0 and Vg = 01 We obtain

v z
v 25 Ve BB et A 2 ‘5:+Lé!z+>_\’.}_)
Faa 'l oy €2 P A A 2n 337

Y
=t ~—)§; (57)

25 °
Here the following relation which is obtained by partial differentiation of
Eq. (53) with respect to z has been used,

z
s‘véu 2%, . 1%

0
>3t 3)!.3} N a}
Equation (56) can be written as
To
(8)
Vv, \/ v, V
Jz[(éa. _; n,)J (ba, a&

It is assumed by the authors that by using the boundary layer approxi-

mation the following two expressions can be obtained.
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My . _ 2% (%)
33 Y3
and
~ vy IV,
4)"" Y & 2N 50

Under the assumption of Eqs. (59) and (60), Eq. (57) can be simplified as

Vi 3% 1 dP ., OV | 3V
vV g i L, e (2% 1 3%
vran,'*}a& e é’+f’(>1b"+ﬁraa’1«)
LY
T, > A
- — 61
2% ol
The equation of continuity is
2Va +_\ég+_a_\f’}_= 0
A vy (62)
If the dimensionless variables
x=% y=g | (63)
v v
us—2% vs-Z (65)
u u
p =25 (65)
P'IJ.
43 (66)
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e o (67)

are intrduced, Eqs. (61) and (62) can be written as

3u >u dp’ e | su
- + — —
ox TV TTUX Ny T o)

e
l
+
P
]

* ou )
o 9 f 24
+ (68)
N ‘ou L, oV
ke °¢ 5S¢ T 2 >y
ou I a
FY + '}S}(W) =0 (69)
The boundary conditions are
u=1l, v=0Q at x=0
’ (70)
u=0, v=0, at y=1l, x>0
Combining Eqs. (69) and (68) yields
L2 au dp’ . 1 3% . | su
- (g} ¥ = - + 2= 4
¥ o4 oY adX N o ol o7
au .
(A oF 1\
+ Ng 91}(_&_} v (71)
. TyARTT
In the center core of uniform velocity region, it is assumed that
' *
- —3—% = U*% = function of x only (72)

where U = U/Q 1s the dimensionless center velocity.

If v is a function of y, Eq. (71) is a differential equation of u(y)
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for a cross section perpendicular to the pipe axis at given x. Let the
functional E{u{y)) be

Huly)) = wi 2 lyy) Ml 5‘_‘*4._’9_“_.
wy ? a,’(YV’ + Vv 3 Nga( a?l- ? aj’)
U
EF 5 Y
+ N a—y"( ;ua XY, ) (73)
Re -5——-} 2-}?
Then, Eg. (71) becomes
__ ar
Eu(y)) = T (74)

Let us consider the functional J(u, w) of u(y) and w(y),

J w E(w)y'dy
J(uly), w(y)) = —= 4 (75)

S w gy

where w(y) is an auxiliary function. Here we want to show that solving the

differential equation, Eq. (74), corresponds to the variational problem of
finding the extremal of the functional J(u, w). To obtain the necessary
conditions for the extremal of J(u, w), it is assumed that the wariations
éu and 6w of u and w may be taken independently of each other. First, if
we vary only w(y) and keep u(y) fixed, we obtain

f ! ;
[{E(u)j’;;y?dy- fﬁmu)yady}yzowdno (76)
[ ¢ 0

where w(y) is a plecewise-smooth are which gives J(w) a weak relative extremum.
For en arbitrary 8w, Eq. (76) yields the relation
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] .
J WEW yTdy

Eu) =
[wygdy

(77)

The right-hand side of Eg. (77) is the extremal of J(u, w), and is a constant

for given x

B(uw)

constant = sationary wvalue of J(u, w)
= . %'

= Tax (78)
Equation (78) is a differential equation of the same form as that of Eq. (74).
Thus the solution of Eq. (74) is equivalent to finding the stationary values
of u and corresponding v which can be obtained from equation of continuity,
and the pressure gradient - dp'/dx is equal to the stationary value of
functional J(u, w).

Next, let u(y) vary and éw be zero., The condition that J(u) has a

stationary value is

j[ w+ ByW-r-yz i%/+-l—(§-z%%+ 3?3;*‘"\/)
il wi 3 us i :; )
2 —=2 24 }—2 ° o J§ud
N, 39| ou 2 N 391 o4 wil
Re. ¢ (-;-g_—i-?.-j—y—) 7 Re } 9?+ a.? 5
z | .17V | T* W?L-j-::_va'-
e Rt e o 2
{{ NR@.. 8'5-' 'NRe. :‘:'f 2';;,)
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°¢ 2 o
1
*
+ [—&-wdu,+z;5k ?“” ]9—(‘5“) (79)
37’

]

The boundary condition, u=0at y =1 gives Su= 0 at y = 1, The boundary
condition for w(y) is assumed to be

w=0 at y=1

Hence, the second and third terms on the left-hand side of Eq. (79) become

zero. From the macroscopic mass balance

'
J uydy = constant ‘ (80)
o

we have

!

J youdy = 0 (81)
]
For arbitrary &u, Eg. (79) becomes

AV ow ! %
2y S W 3V v DLW G § 02 o H-)

oy AT A )

w o ( WE oyt ] = constant (82)



Now, we shall solve the foregoing variational problem by Ritz's method (see
Appendix III). The velociity distribution in the fully developed region is
given in Appendix I. From the relationship 'zol'rw =T o/R = r:, the dimension-

less form of the fully developed velocity profiles are

- r:)2 -(y - r:)ZJ

™
o
b Y ny
- forr < 1 83)
3+2n:+JL,*L[l (t—A* )J vz (83
Tl -a) 6(1-23)" »
U= —— - = o %)4 for 0<¢y<r, (84)
21, 3-41]7-0F

The velocity distribution in the entrance region can be generalized in a
form similar to Eqs. (83) and (84) as follows:

=
l

[1-('__”'* ] forr:f_ygl (85)

U= a, i‘orOf_y_fr: (86)

vhere a and b are functions of x only and a can be determined from the

macroscopic mass balance

, R
2Tlf ﬁardr+27[f

o 2

(87)

which gives



R=Ao,  apiaR
> TP A*)bf(y 2, )yd; LR & (88)

- -
-?-Jlua-é- + 2jual

The integral of the last term on the left-hand side of Eq. (88) can be

integrated by parts,

' [ # b+l
(v = =) Pdy = Iy - (d=4) 4
4]* g b+i(7 ) . ,af* b+ | s
° J_’ 2
b+!} s
_ (V- JL:') - (|—4;*) ) (89)
N b+ | (b+1)(b+2)

Hence, Eq. (88) becomes

2(1+b - bt =2
af1- T ]=1 (90)
or
ao_(b+1)(b+2) (1)

br+ (225+ 1 )b +22}"
Thus Egs. (85) and (86) become

~_(b*1)(b+2)
TP (2af 1 )pt2a%R

_(?—ﬂ*) J for r &y &1 (92)

u = (b+i)(b+2) forOgyf_r: (93)

b+ (2AF+1 )b + 24}

At the tube entry, x =0, u=1, i.8., b »m, and in the fully developed

region, x 3w, b + 2,
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Let bo be the value of b which gives the functional J an extremum. The
distribution of w is then given by Egs. (92) and (93) with bo in place of b,
The corresponding v can be obtained from the equation of continuity, Eq. (69).

In determining the awdliary function w, let us first obtain w in the
fully developed region. In the ful'l.y developed region, i.e., in the region
vhere x »mand v = 0, Eq. (82) becomes

1, 3w wow o -
Ng; y)r +jay. + })-constant k (on)

The solution of Eq. (94) with the boundary condition, w=0aty =1, is

Z

we - JelNee (-4 (95)
% ¢
The generalized auxiliary funetion w in the entrance region for arbitrary x is
p s ?LO % _Jz"' & . %
_w.-.(-—_—)[1+c<—°-)J for vt <y <1 (96)
rg 1=
_ * b, .
< | 2, for 0< y < r, (97)

vhere ¢ is determined by the condition that J has an extremum.
Substituting the quantities u, v and w into the functional J in Eq.
(75), we obtain J as a function of b and e,

J = J(b, ¢) : (98)

Since the results are lengthy the reader is referred to the original paper
(29). The conditions that J has an extremum are

o
N
o
o,

[}
o

=0, (99)

[ %
o
&
[+
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The latter condition gives ¢ = 0 and we obtain

o %XE; = BBy =) (100)

Equation (100) can be integrated from x = 0, b, = to x and b_
x ”*
ey f F(b,, ) db_ (101)

From Eg. (101) the relation between b, and x can be obtained by mmerical
integration. Thus, from Egs. (92) and (93) the velocity distribution at each
value of x in the entrance region can also be obtained. The entrance length

x = ze/R is obtained corrssponding to the value of b__, where (bo a--.?.)/2 = 0.0]

i.e., 99% of the fully developed value of 'bo. The entrance length z;=ze /R'NRe

is plotted against r_ as shown in Fig. 24, For Newtonian fluid, r'=0,
zg:O.?JW—-

Since the pressure gradient - dp'/dx is equal to the stationary value of
Jy we put e=0 in Ey. (98) and integrat the resulting equation from the tube
entry x=0 to an arbitrary cross section to obtain the pressure drop in the

enirance region as shown in Fig. 27. The correction factor C defined by

lapl _ |oF'] _ 48 X

L. o L s g a0 *
Z.Pu Z Nz(3 42, +le 4)

+C for x >X, (102)
R

and

- ]APél _ 48 x,

T N G- bt a2

(103)

can be obtained by usirig the results of pressure drop in the entrance region

and entrance length as shown in Fig. 26.
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Discussion '

It is worth noting that the assumed velocity profile, Egq. (92) will not
give true uniform velocity in the region where r;gil and where shear stress
is less than the yield stress 't‘o. Nevertheless, in the region near the tube
entry the large portion of velocity profile will remain almost flat except
near the wall., This is because b approaches infinity at the tube entry and
decreases gradually to the fully developed value 2 at x»co,

The experiments performed by Michiyochi et al, (29) with alumina-water
slurry indicate that the entrance length for the Bingham fluid is shorter
than the Newtonian fluid. Accordingly, the measurements were fairly
difficult and the resulis can be used qualitatively only.

It has been pointed out at the beginning of this section that the
validity of the approximate form of equation of motion, Eq. (61), is doubtful.
We shall derive the equation of motion equivalent to the form of Eq. (61) by
following the authors' assumptions and derivation. Let us start with Eq.
(57). Equation (57) can be written as

dV, Vs 1 oP A [ 2%

v T iy T TPy o(.}v 4W)

s DY, L% oA 2 o Mod a_ﬁ LaYa oxn
e an* f/Lbe’Jba)L pa;* a3t {’},m

2 3% o (204)
¢ 23 o

If By, (60) is assumed to be correct the third and fourth terms on the right-
hand side of Eq. (104) can be rewritten as follows:
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IV,
A 91\/&:__1%_3&:12_()\‘5_‘/&),\,11_3_( i ) (105)
Proar Coror o'/~ pon oy , 2V
N?f+ N
Combining Egs. (104) and (105) we have
V. Vv, 2 P_Y}:.
2 5'.'. vb L4 = .._'...é_ﬂ.‘./_u._o.(a__.t.v .‘._‘.‘E.Y&).'. IE_.B_.( e )
o L Coy € ot Aaal Pty L, own
2N >N
V. %,
i 2 : Z 3.
T n +4$9%+1q oy )
(¥ 2, payr ety 00
oN I YR Py
2 V |
’Z:o 2 Xk 2To 2 & 2
+ =2 ¥ (106)
e (9\/} a\’4) g 2F "3( IV +2fﬁ‘.)
Sa T* T T

The reduction of Eq. (106) to Eq. (61) based on the boundary layer concept
cannot be achieved because the fourth term on the right-hand side of Eq. (106)

is not neglegible. Therefore, the term

VY

To o
A oV,
(L 2%, 2%
SN i

should be added in Eq. (61). Later the authors made the assumption in the

same paper that

¥V, Y SV,
Ll + 2 5 (207)

If the assumption Eq. (107) is applied at this stage to Eq. (106), the
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following boundary layer equation derived in Section 3.2 and used in
Section 5.1 and 5.2 is obtained.

2V
v 2%, 2% Ldr, ﬁl__g 12%), T Fa  (108)
Ton o Vg e dy

f’ A: A XN PA lﬁ‘
on

5.4  CONCLUSION

The theoretical analysis of the entrance region flow of the Binghanm
fluid in a circular pipe was first presented in the paper by Michiyochi et
al. (29), using the variational method. The method involved the boundary
layer simplifications and vardational arguments. The validity of these
simplifications and arguments needs further verificatien.

The starting form of the governing equation used by the variational
method should be modified. The proposed velocity profile used in this method
would not provide the true flow behavior of the Bingham fluid. Furthermore,
the method needs an excessive mathematic procedure as shown in the original
paper. The results from this theoretical analysis can not be justified with
one or two points of pressure drop in the entrance region from the
experiments performed by the authors with an alumina-water slurry.

For the entrance length and the pressure correction factor, the results
from the veriational method show reasonable irend, i.e., both decrease with
inereasing plug flow radius. The pressure drop curves for various plug flow
radius cross each other in the entrance and the fully developed region. This
phenomenon may contradict the actual physical situation.

The basic momentum integral methed and the Campbell~Slattery method
have been used in this work to studj' the Bingham entrance region flow in a
circular pipe. Sélutions of the governing equations obtained by using both

f
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nethods appear to give rise to the characteristics of the Bingham fluid. The
momentum integral method is historically important in the field of fluid
dynamics of the boundary layer type. The results obtained by the momentum
integral method provide some general idea of the Bingham flow in the entrance
region.

The Campbell-Slattery method for Newtonian entrance region flow problem
has been accepted as a successful approach and is discussed in detail in their
paper. The curves of entrance length and pressure drop correction factor for
Bingham fluids show the same trend but are somewhat higher than those from
the variational method.

The pressure drop curves in the entrance region have no crossing
between each other and are consistent with the case of fully developed flow,
i.e., for higher plug flow radius, the pressure drop is higher. Therefore,
we may conclude that the Campbell-Slatlery method which involves less
mathematics provides a solution which is good in over-all description of
actual physical behavior of a Bingham fluid in the entrance region of a

circular pipe.



NOTATION

il

parameter in the Prandtl-Eyring model

area

= B e
I

4 = cons:tant defined by Eg. (96), Chapter 4
a = parameter used in Eq. (85), Chapter 5

B = parameter in the Prarﬂtl—Ewring model

b = parameter used in Eq..(85). Chapter 5

b0 = optimal wvalue of b

C = pressure drop correction factor

Cy» Cyeer = constant defined by Egs. (15) through (18), Chapter &

c

parameter used in Eg. (96), Chapter 5

E = function defined by Eq. (73), Chapter 5

Ev = total rate of viscous dissipation of mechanical energy
F = function defined in Eq. (100), Chapter 5

f = function used in the matching method, Chapter &

h = half width of parallel-plate channel

J = functional defined by Eq. (75), Chapter 5

Kl' K;» «e. = constant defined by Eq. (20) through (23), Chapter 4
k = constant used in Ey. (95), Chapter 5

K, = constant defined in Eq. (87), Chapter &4

L = axial length of a channel or a pipe or a characteristic length
M = minimum value defined in Appendix IIIX

Hn = minimum value defined in Appendix III

m = parameter in the power law model

m' = parameter in the power law model, ml/ "

N = number of grid point used in the finite difference method, Chapter &4

119



n = parameter in the power law model, dimensionless
n' = parameter in the power law model, 1l/n

P = pressure in the fully developed flow
P

n

dimensionless pressure used in Chapter 3

p = fluid pressure

' = dimensionless pressure, 'P/Pﬁz. used in the variational method

* -
= dimensionless pressurs, p/(%—fuz)

pressure at the entry of a conduit

©

quantity defined by Eq. (33), Chapter 5
radius of a circular pipe

!
P
P
Q = volume rate of flow
q
R
R

dimensionless coordinate in the r direction, used in Chapter 3

r

radial distance in the cylindrical coordinates

r, = radius of the plug flow reglon of the Bingham fluid in a pipe

o

r, = dimensionless quantity of r_, r o/R

S = cross-sectional area

t = time

U = center-line or plug flow velocity

U = dimensionless veloecity in the flow direction used in Chapter 3

*
U

dimensionless center-line or plug flow velocity, U/u
U = characteristic velocity used in Chapter 3

u = velocity in the x direction

u = dimensionless velocity in the flow direction used in the wvariational

method, v, /2

(=1

= average velocity, Q/J{,R2 or Q/2hW
' = perturbation welocity

Y = velocity vector

120
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<
it

dimensionless veloeity in the y direction or r direction used in Chapter 3

i<
i

velocity vector used in Chapter 5

<
n

dimensionless velocity in the r direction used in the variational methed

Vyr vj. Vit Voo vy. Vo ve' = velocity components in the i, j, r, x» ¥, 2, @ -
direction respectively.

W = width of a plat |

auxiliary function used in the varlational methed

W =

w = mass flow rate

W = optimal value of the function w

X = dimensionless x coordinate, x/L

X = dimensicnless x coordinate defined by Eg. (111), Chapter 4
x = the rectangular coordinate

x = dimensionless coordinate in the z direction, z/ R
T xj = the 1 and j coordinates

Y = dimensionless y coordinate, y/éL

Y = dimensionless y coordinate, 1 - y/h

¥ = the rectangular coordinate

y = dimensionless coordinate in the r direction, r/R
Z = dimensionless z coordinate, z/L

z = the rectangular or cylindrical coordinate

% = dimensionless axial distance, z/RNR -
Greek Letters

o, = parameter in the Satterby or Ellis model
ol = parameter defined in Eq. (63), Chapter &4
o = optimal value of &

p = parameter in the Satterby model



Y = shear strain
4 = rate of deformation tenmsor
A The component of rate of deformation tensor

Aa = a, - ag, in which 1 and 2 refer to two control surfaces
&y 61. = boundary layer thickness

6 = dimensionless boundary layer thiclness, &/R

& = shear stress boundary layer |

0w = variation of the auxiliary function w

¢ = parameter introduced in the wvariational method

¢ = dimensionless coordinate of x, defined by Eq. (82), Chapter L
n= non-Newtoﬁia.n viscosity

7Z«= dimensionless variable used in the matching method

Y, = parameter in the Satterby, | Ellis or Meter-Bud model

7Zw= parameter in the Meter-Bud model

@ =the cylindrincal coordinate

A = quantity defined by Eg. (56), Chapter 5

A4 = elgenvalue defined by Eq. (110), Chapter 4

/l-_- viscosity

/“o = parameier in the Bingham or Reiner-Philippoff model

Mo = parameter in the Reiner-FPhilippoff model

f = density

dimensionless coordinate defined by Eg. (le), Chapter &

o
T = shear stress tensor

Tij = component of shear stress

= parameter in the Bingham model, or called yield stress
dinensionless parameter in the Ringham model, TR/

shear stress at the solid wall

SR



T 3= parameter in the Ellis model

Tp = parameter in the Meter-Bud model

T, = parameter in the Reiner-Philippoff model

¢ = quantity defined by Eqs. (7), and (8), Chapter 3
¢ = function defined by Eq. (52), Chapter &4

L}r = stream function used in the matching method

{fy = elgenfunction defined by Eq. (110), Chapter 4

by ﬁbl = parameters in the Ellis model

Subseripts

e = at entrance length

f = in the fully developed region
Dimensionless Groups

NRe = Reynolds number
Ruf _Lup

o (Newtonian model)
P(zR)® &2 p(an) FR PP PR
n ! m 4 m
f/—-ﬁi \ 3/%U-°—° (Bingham model)
o o

Mathematics Operations

= substantial derivative

14 QIU

= the " del" or " nabla" operator

(power law model)
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APPENDIX I
IAMINAR FULLY DEVELOPED FLOW OF
SOME TIME~INDEPENDENT NON-NEWTONIAN
FLUIDS IN PIPES AND CHANNELS

The laminar flow of time-independent non-Newtonian fluids in the fully
developed region of pipes and chamnels is presented in Sectlon 2.2-2. The
general expressions of the shear stress distribution, pressure drop, velocity
profile, and volume rate of flow are derived there without specifying the fluid
model. In this Appendix we shall restrict these expressions to those of four

fluid models, namely, Newtonian, power law, Bingham and Ellis fluids.
ALl Pipe Flow

‘Newtonian Fluids

From Newton's law of viscosity we have

dv
= - ———z
and ’Eaé /ud-’l'

|
f('r.n,}) = /";, T/lf
The volume rate of flow @ becomes

WK‘} Tw'- | AT,
Q::Tf:f—af ’CA}(FTA}) 8%
. XRTw _ xr'lap]
.;t./b( g;_/u

The average velocity u is

Q_ _ RTw _ _Kapl
TR" 474 ILm

The welocity distribution becomes

n =
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]
{

g g o
z = 'J/Rl' ('E'J"‘) dAn

= - Tw )?/L TNR.

MR T2 T m
= IwR - Ly
The maximum velocity U occurs at the center line of the tube r = 0,
s TwR__ _glap)

z T 4ML

In terms of U and 1, v, can be expressed by

<
]

2 UEI- _%);]

Power Law Fluids

The flow equation of the power law fluid can be expressed as

ol A
a
o
The volume rate of flow Q becomes

3 T, L
= X R 2 Ta n
- ——————
1= 2 Bf Tay (k) AT,
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n 3 -k
=aRn (Twy', nmRZ R 1sPLy

In+)

The average velocity , u, is

U =

R T R R14P \F
n w n n
3n+) () = ( )

The velocity distribution becomes

ok E - b -+
- Tw " ™ - Tw n n Tw ' nR
‘3"]&37’*’ Av = =500 w2 5 v

:a

In terms of u and U, we have

_3ns |l _ _ g AN
VZ- h4t u[ l (R_) J
and
" ntf
n
U - ("]
Bingham Fluids
The flow equation for a Bingham fluid is
dVv
= o i
T’“’} /uo dn +’t°)
and

T (T};‘;‘) = .'/'u!-o(-’tﬂ}" T ) " :JL ITA},I > Ts

f('CJL}):O) :f [T¢}\< T

The volume rate of flow Q becomes
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3 Tw
Q=T R 2l -
Tw.l oj ’C-'l}[ /Ap ( TJ:. 3, Tﬂ )J 0{ ’Cﬂk

4
_ AR’ (Ze ¢ P S
ST 4 3 4 3
3
- AR Twr 4 T 1 T
4/ - £ ot 3t )
The average velocity is
- _RT, T | T
U= - - = e B
A Gl o *3(1'.,):[
The velocity distribution becomes
T.
e ST =T )da
_ Tc }L"' TuJ ﬁ’ TWK TOR
o f/“oK 2/“0 /u"
TwR n To R N
& —  LEE - - — 1-1
z/,afl (] e U = (1-1)

which is valid in the region |7, | > T,+ The location r_ at which (Tp,l =T

can be obtained from Egs. (16) and (18) in Chapter 2.

2t T
Yo = [2 P b = TMK

Therefore, the velocity distribution in the region ltrzl < 'Co is constant and
can be obtained by replacing r by r, in Eq. G

U= R[;—{ )J—————(:-:z:“)
=I~K o Ty
/"‘(l Tw



The Ellis Model

The flow equation of the Ellis model is -

_ . dv;
Trz'- 4 (:{f_&:) -1 adn )
and
#Tyy) = —-k[: . (ﬁ&) ]

The volume rate of flow and the average velocity become

: 3T o]
_ TR w2z 'ta; 'rak
8= TS of Ly T L1 (T% ) JelTy

and

& ¢ T 5
oy, LV + Tﬁ(‘f;_) ]

The differential equation for velocity distribution can be integrated as

follows:
o=
v, = - ;”:[l—l- (%) 1da
e T 2 Tanrn *"’
= Z!ZJ{U * T (T_;_g Jar+c
where
T -1
Hence
nt o1
{!-—— ol )["_)J}
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and

29,

U=

1+ = (T"’) 3

od'-l‘l

AI.2 Channol Flow

Newlonian Fluids

For Newtonian fluids, f(Tyx) is given by
_

The volume rate of flow Q and the average velocity 1 become

e 2Wh Ty 2Wh7e]
3/”- 3/uL.
and
_hTw_ hlaPl
TR T 3AL

The velocity distribution and the center line velocity becoms

vx=-f}:ry—yd?=— Lo L{-' },")

h Mh HMh 2
_Iih_[i (U')J h [AP' ! _(_%__):'J

Z/ul...

u=Zuh _ _hap]
z/u 2 u L

Power Law Fluids

The function i‘(’l‘yx) for the power law fluid is

!
Tuu \F
i‘('{'yx) = (.__&L)

m

The volume rate of flow Q and the average velocity become

ZWh f Tgx ( ) AT
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al—

n_ 2Wh ik Lp)

2n+ | mw
and
hT.* h '
= n Tw® h Tic NP
U = ———— t
2n+| mi 2n+ | ( m)

The velocity distribution and the maximum velocity become

v = f (S y) dy
4 .n.'f.'. Ll
=== Syt )
R 3,—}'-' nel
=th (Y;:’) :-,% L1 - f%)—h—j
and ) _':%L ﬁ i
ey b GOl

Bingham Fluids
The function of f(T)m) for the Bingham fluid is

2(Ty,) = —-(Tj -T,)

The volume rate of flow Q and the average velocity become

= Zth ‘__(T T,Ty,x )0‘?})‘

= 2Wh {..L('cj_'rf)--'—(’r.'rf—r,’)l
Ta L3 z
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hTw Ta 'Ta 3
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T hTw 3 ?p ; Tu 3
ks R -4 PR e

The velocity distribution and the plug flow veloecity which occurs at Vo 2171

becone

/“v

El- EI- T a- D, yepen
U= '—E/"’—u-’;[:— (%")LJ- 322"‘%)
SRl @ G- B

%LI %)

The Ellis Model

The function f(Tyx) for the Ellis model is

f(rﬂ)=%[ - {;%._),e-uj

Hence,
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APPENDIX IT
DERIVATION OF EQUATIONS IN CHAPTER 5

AIL.1 DERIVATION OF EQ. (?7)

It follows from the equation of continuity, Eq. (1), that the transverse
velocity component v,, can be obtained by multiplying each term by r and
integrating it from the wall r=R to r, as follows

N

vo=-L [ 2% .
= ,,,Kj Sy adn (1-1)

in which no slip condition at the wall, v, = 0 for » = R, has been used. This

expression of v, is then inserted to Eq. (6) to obtain

k5 oY, U
S (%% f ndn+ V, ‘?-jf u‘d ]nd;;,=—l§- T (1-2)
R

where

z'w = TA}_ ’/U-‘R = —/L{ 24:& Hr

The first term can be integratrd by using the technique of integration by

parts as followss

- [] .zleL od

f%/bo!/v)(vé,)f -l-_f a-—;-_}‘bo{/]/

K é_s E"éj
ot e l 2 *
= U[ Jl-ol)?.. ¥ 1/& a—}(\@);wl,fv



o 1 A 2
=-y & vV, e o = Bs [ v di
Ty 2""}£ ’

(1-4)
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in which the boundary condition, v, = 0Oatr=Rard v, = Uatr =R - GS are

used. Substituting the expressions in Egs. (1-3) and (1-4) into Eg. (1-2)

gives
R"é_s R“S}
A | o I ol
-U=— | Vyndr + 5= [ Virda+=Z
d&'{ gred ?_d}{ 3 T,
R-6s
s ._L_r_f J'LOUL= ../.u_LR'(ﬂ_é"_ + _& ‘Z‘
Since
R-5s R-$
4 s 1
o!}«f Uvgadas= d}[uf V}"’“‘”’J
R~ %5 R- 5
_ A 12}
‘UT}{ vadn 4 %fx Vs adn
and
y A R-85 R 54 y
;rg:;£j ndr = d‘} _4; Jrdl

R=5s
V.o dn

é
R

(1-5)

- (1-7)

we can add the terms on the left hand side of Eq. (1-5) and rearrange it in

the forn
au "5." R"'S; ) a{
F ) u \/)fz,ol/u-l-——f V, (U= V3 )ndr
d3 ) ( ¥ PoA & &
" /.LR(J_‘{JL _ LR __R 4
e “on g P pw

This is Eq. (7).

AIT.2 DERIVATION OF EQ. (12) AND EQ. (1&4)
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Whon the assumed form of velocity profile is substituted into the
integral equation, Eq. (8), and the coordinate r is replaced by y by using the
relation, y = R- r, we obtain

s 2
%jU[l-2%+ B ] (R-y)dy

+.i 5 2o ¥ gy * Y |3,"
d}{{u.f«’--g - (10-2 < +E) J(R~p) Ay
- R/?U[ y, "")J (2-1)

Let the first term in the left-hand side of Eg. (2-1) be A, then

9._

—&-—j[f{(\- +}i‘—) (4 - 2—+y' ) Joly

b3

U G (R(5=5-5) - (2 -5+ 2]

L R-—) (2-2)

¢ 3’

Also let the second term in the left~hand side of Ey. (2-1) be B, then

'y 3 3 ?,4
-—-fuék’-;t)(z—s—-? —;—' %42%,-3-@)0’}

lJ:}

]

j‘*}{u‘[&(s— Ss+5-18)-(25-Fs' g5 f—)}}

It

[U( RS - ‘,_QS)J (2-3)
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Combining Eqs. (2-2) and (2-3) with Egq. (2-1), we have
SyvdU d oo 2,2 x|, 2RMAT
80 (2R. Z)M + 5 U R 560 F(—i;v—e«m'c,) (24)
Simplifying Eq. (2-4) gives

8U auv . 4 | dU
S (4R-3) 904 Us R~ )L

P UG R s) = (2R lag) g
Rearrangement of Eq. (2-5) gives
3e z R-L ds 1 2RAU
w(s 5) iosf}d}'f( p tR7) (2-6)

This is E}c (lz)c
Multiplying each term of Eg. (2-6) by / oﬁ’ we obtain

_U.) a S)
sus sy X&) utia s, dle
RE'S ho Rd(ﬂoé’) TrYs TIe R d(ﬂ,})
PR PR &
&) , (RT.\ (R
=205 () )
&)
which can be rewritten as
* 3 x—z #ds* _u?*

S)d}* H /5' /oé)dg* ?+T (2-7)

This is Eq. (14).

ATI.3 DERIVATION OF EQS.(16) AND (18)

When the assumed form of the velocity profile is used and r is replaced
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by R = ¥, Eg. (15) can be written as
2 5 2y £ 2
(R-5) U-i-ofzxu(?-sl)(g—?,)d;=mﬁﬁ (3-1)
The second term may be integrated as follows

{

§ 29 y_l
ZIU[—S—-— F)(K— yr)dj’

$ 2 2
2xu [ (REEE- £)- (2E- £)]dy

"

: 2 .2 | .2
2RULR(S-2) - (55" - +57))

i

2 T .2
ZT{U[S‘ R&- 'I—z-é ]
Thus Zq. (3-1) becomes
& a_

MR - 60+ 2 RE- 78 = LR'D (3-2)

Dividing both sides of Eq. (3-2) by R2G we have
_ ¥ o * 2 -*__5 %2 _

(1 6)2U+2U(36 =5 ) = | (3-3)

Rearranging Eq. (3-3) we have

%2 * |
87 =48 =6 (;I-*- 1) (16)

This is Eq. (16)
Solving this for & we obtain
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a*=2il-f?*-2 (34)

Since the dimensionless center core velocity, U*. is always larger than unity
and the dimensionless boundary layer thickness, 6*. is less than unity, the

negative sign in Eq. (3-4) is used,

a*=2-'{~%-2 ' (17)
18}

*
Differentiating 5" with respect to z in Egq. (17) gives

as” 3 ) du® (3-5)

Substituting the expressions in Egs. (17) and (3-5) into Eq. (14) yields
3 %03 11 g du*
R et P LU G LS TR 1‘1}**‘2 )] a3*

I du*

*z . 2 | J’é_— 3
+ v [E';otz“b‘*“zuf—; U d3*
T

+# .
i B v + TF
2 e o
or ' s K 2
o S N T L3 ydur
{U [6 s du* 2o U*] Ly \o}dg*
2
3%
=2 u -7
or 2— a2
* *
(_S_U-‘_l._g._u.*p | _Z_[-_ GJU- _ 2U +T¢* (18)
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where

D= ?-2

This is Eq. (18).
AII.4 DERIVATION OF EQ. (29)

The pressure drop in the fully developed region, Apgpr can be obtained
from the relation

or

2LTw =% B o

where L is the tube length in the fully developed region. Dividing both sides
of Eq. (4-1) by Pic/2 yields

o R

41—

* |4P4| 2L T, M B
l'dpfl Y =

- 3 e
zfu ko-é-':u, R(—%ﬁ){&) RN, ) *

SinceL:z-ze, we have

& *
|ap}] = 2= h)*“; - (- 32 (42)

R Nge o

It follows from Hy., (23) that

r*_ 12

-4

2¥  3=4a) watt

Hence, Eq. (4=2) becomes



1

* W
48057 Je ) ... . Aé/* r (29)
3=t w22t 3= dak+a)E

*
[6Pp| =

This is Eq. (29).
AIT.5 DERIVATION OF EQS. (34), (37), AND (38)

If the control volume of the fluid is taken from the tube inlet to any
cross section z of the tube in the entrance region, not including the solid

wall, Eq. (32) becomes
nEZp ('ﬁ: !R\f’“‘k' i)+ KKL(F‘PO)*’-’LR!%; |4=zdj' =0
or
R 5
fofvird.r . -;-R‘pa‘-i- -ZLKL(F-F.)+R['£;LJ‘A=RA}= 0 (51)
Differentiating Bq. (5-1) with respect to z we obtain

R +
a (e Xdr -
Palyojvs*’d'”'*'ad?”(?a; 0 (34)

=R

This is Eq. (34).
Since the shear stress Trz for the Bingham fluid in the boundary layer

is

2V}
Trz < -/ua}—}; + T, (5-2)
we have
T (pErr] = aGE) 42
Tz e 23 * ek et N e @
"o S (5-3)
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Hero we use the fact that (see velocity profile, Eg. (35)

o>V
a.m“a;v[-u( _—3‘)1 "_[U(Z_"L)J
2¢ o
R R
( & 6 )’
ard
T3y Ly o ZY (52
2N J],:R- 3N ,:O_ 8

R
The integration of f vi rdr can be carried out as follows:
o

5 R=-$ 4
2 &
vzrdr=ofvj;wlx»+£\§¢d/»

jU (R-4)(-d¥) +f1r(—--—~)u< ;)(—dg)

R 5 .
P ((Reydye1t ((24R 4 48R, 48* REF
U{ ‘J)}+Uj(§, Do I ooh 54);
= U [RR-§)-o (= 59]+1 ($RS-5-R5+E5+ +R5 - 15 )
Z 3 Foryki-g

2 R, -30+20+3 I$-30+4-5 *
U e g st )

U lgg+——5 ] (5-5)

2

Substitution of Egs. (5=3) and (5-5) into Eq. (34) gives

2 2.7, RdP L 24RU
5 a7

Pd}{ (2 IS— +TaK= 0 (3?)
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This is Eq. (37).
Introducing the dimentionless quantities given in Eq. (13) into Eq. (37)

we obtain
L, > -
22 | d- ""'_'._l . 2_ %2 RV Pu Jp* 2 M4 RU I
T f_”_':dj*[u (2 »IS ‘S )]+ R'ue a!}*+ 5* R LR
Mo Ao

=0 (5-7)

or
7 e Lap*, U s
alé*[u- ( 5 )J 4d3*+2§"+'c' =0 (38)

This is Eq. (38).
AII.6 DERIVATION OF EQ. (43)

The quantity =% : ¥ v is always positive and can be written as (42)

]
nr?

1T Y= Qe ) 4 (6-1)

where ¢ is the square root of the quantity showm in Eq. (16), Chapter 3. If
the boundary layer assumption is applied to Eg. (6-10, i.e., if the velocity

derivatives are neglected except avZ/ar, we obtain

_T sV V= ( _E _;_"v’iz (6=2)
=tLi=tMem 5y, 1S
EY%

Note that avz/ar is negative. Therefore, Eq. (41) becomss

R 3 RS
= ZTEJ)I - (E:_?v_’)drdz = 2','[] / -(_Z_: ¥ ¥)rdrdz
e o ) ¢ o
+27L/ f -(tsvv)rdrdz

-] K._S



=27;/u°f“f AV;)/z,dMJ‘;,-z}Iij }Adﬂd}
] R"

OK—

The integration of Eq. (6-3) can be completed as follows:

S

J(a‘/")ndzz, =]u‘(—%+2—§-)z(i(-;t)d}

(-}

by
ot /R % 28R 2% ¥R A
-‘onf(?"S—;' 53 Vg ;34‘3%)0/}

2 %
xr , 4 R |
- U (35 -7)
and
Ke‘/ 7 2 25"
fsa‘f“f‘“/f-z*ﬁﬂf‘ﬁ-#}d}
R- P

=U(-2R+§ + R'BZ‘S)

=U(-R+35)
Combining Eqs. (6-3), (6-4), and (6-5) gives

F
E, = 21[/1,1 I-U- (é—’—’%-.;—)d}—ZIT;]U("R+3I—$)a{}

(6-3)

(6-4)

(6-5)

(43)
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This is Bq. (43).
AII.? DERIVATION OF EQS. (4%) AND (45)

The first integral in Eq., (40) is

R -« R=§ R
J v) xdr = J \gjzwbv + [ Yirda
¥ 0 R-§

5 9
3
=gf\-§ (R=y)(=ey) -I'Jvf(g-g)(.-a!?)

R 5 z 3
=U” [(rR-y)d (2t Ly (k-y)d
J¢ Py + [0 5) (-p

£y 4
3 ] g f3
“URGE$)- T/ J0f (2 - B2 5 L yydly
[}

=1 (R ere+ B eosk- B Rareasirs-£5- Lrs +57)
Lt 238 “.70'34*33“F 140 =448 +560-240435 ..
ulzr 35 e 220 5]
=127 e 18 47 .-
U [Z R 35 RE g 67 ] (7-1)

Also note that
R
rdr—Q— L ¢
I “$r B & # (7-2)

0

If Bys. (7-1), (7-2), and (43) are substituted into Eq. (40) and the
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resulting equation is differentiated with respect to z, we have

RoR dp

2d3_"—Pd}

2 19 47
(U(3R-1E R + AL 5%))

../uo U‘(%"..g_-zi-)q- T U(-R+ 3[-5) (44)
This is Eq. (44)
Intrducing dimensionless quantities in Eq. (44) gives

2 35 270
e “
o | ! -
-ty (.3‘&.8_ 3_).wcm_r R ( 1+—s) (7-3)
or
1dPF L d %30
;I;,‘“E"E*[U (2. ;gsoS )]
**, 4 | | | %
U (3m-) U] (- +5§7) (45)

This is Eq. (45).
Eliminating the dimensionless pressure gradient ci!.pa"/cl.z“= between Egs.
(38) and (45) yields

a_ ** _1_7 !9
c!;aﬁ[u (2-i5 8 -3 a*[u ('ZL w0 zw‘S J

% *
- (%%-})-%‘LT rUtlstnl=o )

 This is Eg. (46).
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AIT.8 DERIVATION OF EQ. (49)

The relationship between & and U from Eq. (48) will be used in Eq. (46)
to obtain a differential equation which determines the relation between 6*

i _
and z. From Eq. (16),

*2 ® b
we have
* b
ﬁhere
B=5*2—%*+6. ; (8=3)
Hence
#*
avt=-6 285 - 4 ds*

(§*-= 4§%+0)

_ 12 (2-8%) o+

= (8-4)
Bl
- 34 L = 36 (8-5)
(§F2— 4.8% + 1) B*
*3 216 216
U = = (8—6)
(5.,:.:_ 48*'{' é)‘,‘ BI
%2 ~72 (28" = 4) % _as(5*-2) jex
dv ~ = = < 8-
(8%=45%+46 ) 48 : AsT o
e —b4E(28F~4) ok _fziéfi*"Z)dg* (8-8)
. =

(5% 4% 4 )Y



B = 5™ - 86" & 286*2 - nas™ 4 36 (8-9)
B = 670 - 126%5 & 666" - 2086™3 + 3966"% - 432" + 216 (8-10)
= 6™ 1657 + 1206™0 - sus™d + 16286™ - 32663

+ 43206% - 565" + 1296 (8-11)

& fypxr L 7 ok, 2 a2
dé*[u (3 g8+ 8 )]

= [U* (_ 1.7 %2, 4l (2~ 8%)
[ s S RS '55+ > e 43+b)]o{3*
d_ZH 2 i
) LTk ey 148G S ) st
- [.%( e ,58) 2 Jd}*( 12)

G g i)

=[u* 19 475)+( 19 o#_ 47 cx2 1296 (2- 5*) ds*

35 40 2 35‘ 280 ) B4 0[3*
-*-[zle( L 8Lg%) 22 (o - oL - It Lss % 613
f40 z 4—80 _Jd*

Substituting Eqs. (8-12) and (8-13) into Eq. (46) gives

- *
% [34(_ !3*)1.’_4_5_(.{_5_)(%-%5&2-_5*‘)]

5 B 2y
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bT  *y 126 | ¢4 47 4.7 )dds*
253[-2“’(35 o)ty (% W _,{? + 5509 )]}g}:

-36ek |
e AL KA L s PR C AT G

Multiplying each term in Ey. (8-14) by B yields

§368(- 1L+ b 6%)+ el (2 s)B(-Z—-— 5% £6*)

- 2fies(- L+ 2T sh 1296 2- 94 4L 5 L”s*‘J}éa—

357 :40 430 dz*

=38 (;* 3'* 3‘-)- -%5—3-10*5“[14--[‘3'&(%5*—0] (8-15)
3652(-——-+-,“—,)_5*)- B (§ —7)

=?L(4s L 395* % 10350 =388 5"+ 4505%-252)  (816)

1%(2-6*)3(%-%_5% }%5“) = ’”5(?- §*)(45%= 145%+ %)

( 4s* 388%L 155 5¥ 4334 5% 378554 180)  (8-17)

3 I? =_-]08 _
- 3(216B)(~ =05 ,405) 2o B(-76+475%)
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27

-2 (478% - 20654 + K80 5% — 4sb) (8-18)

1
- az96)z- g*y(L o1 cx 4T x>
212902 873 (5 35‘5 280 &)

== 28 (0§47 ¥ 152 5%+ 140)

= - -38—;- (47 5%+ 2448%— 44l g™+ 280) (8-19)
3652(—g'——) % Bz (4"‘g*)

= Lo (- 72 5% b0 4 140 57 - 22857 4 144)  (8-20)

3
B

12B
8

12 (- 5425t 05 ™t 20 8 " 39b8% 4280 (s-21)

- '8 [ +§(§5*— )= -T*B [ =45 rb+25" 6]

c TS (5t lhs N Gos*s 3h08™Y 8125% ) 2245%"  (8o22)
+ 1080 8%~ 432)

Substituting Egs. (8-16) through (8-22) into Eq. (8-15), we have

4896 (x5, ¢ _ 02)(39) @) (38) v xk
%( 5')6 +1 _ 5 T Iy JS
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- [(az)uss) sy (z(47) L () (47) ]s%
& X 3y A%

s [ - (2)(388)  _(24)B34)__ (27)(580) _ [9;)(244)] gk
5 5 35 35

+ (12)(480) _ (24)(378) _  (27)(58) + (8l 444)15*
. 5 5 TS

+ (- U2)252) )80 | [LoN4ss) _ [31)(2-80) ]
5 S 3

=%ST*( S*L 11 §*T s4 5% 148 5% L 230% % p04 §* -72)

- T (5 L 145" 908 30054 g1z 5*E 1228% 0505 432)  (8-23)

or
AU
aléi-

6* {~112 5% 1034 5% 3130 8* 23574 5% 1014 5% 432.]

= 140 (~ §* %) 5* 5 r45*“+/43 s*L2305% 1 204 5% 72)
¢ 3 2
- %6 (571 590 5434057512 5% 2245 005" 432 (19)
This is Eq. (49)
If the relationship between 5" and U are used in Eq. (49) we obtain a
differential equation which determines the relationship of v and z*. Since

a*=z-f-‘2.-z =8 =P
U*
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* * #
;15* _ 3 !*; ZU* _ 3 - ;/U* (8-24)
v [E&-2 utdgT put dg
whers
D= i - e 2 (8"25)

U*

Equation (49) then becomes

_31%;%1 ﬁ- 2 (2~D)°+ 1034 (2= D)*= 3130 (2-p)’
- 3574 (2- Y = 1014 (- 0)- 432 ] DL
: 915*

= 140 {=(2-0) "+ 11 2-p) "~ 54 (2-0)"+ 148 (2-p)’
-234(2-p) ¢+ Q04 (2-D) -~ 72}
Y 4
-.935_-@*(2_-9) {(z-—Df—- /4(Z-D)‘+ﬁ’o (Z-D)i34o{z—o)

+ 812 (2-0)’— 1224(2-D) + [080(2-D) -431J (8-26)

This is the differential equation which relates U to z.
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APPENDIX ITI

RITZ'S METHOD OF SOLVING
VARTATIONAL PROBLEMS

In Sections 4.3 and 5.3 Ritz's method of solving the variational
prblems has been mentioned. In this Appendix the basic notion of Ritz's
method will be briefly described.

Consider the problem of finding a minimum (or maximum) of the
funetional J(y(x)) with r;aspect to a certain class of admissible function
y(x). By admissible function we mean the function y(x) satisfying the
boundary conditions, and the conditions like continuity and smoothness in
a specified region., Let the set of functions H?l(x). sz(x). } be
continuous and differentiable functions in the specified region and assume
that y(x) can be expressed as a linear conbination of the ?is in the same

region and converges, that is,
o
wx) = 2 X ¢, (1)
i=1

where the a(i are constants. Along y{x) which is a linear combination of
the ¢ 45+ the functional J(y(x)) becomes a function of the coefficients 0(1.

oy eess that is,
3 ‘P oy of 2
J(Y(x))=J( .j%;lo(i i)=J( ll 2! "') ( )
These coefficients are so chosen that the function J(dl. 4 U ..) has an

extremum. Therefore, c(l. 0(2, «++ shall be determined by the system of

equations

v
[

-..0, i-‘-l) 2, L (3)

2
R
[
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Assume that the functional has a minimum. Substituting the function y(x) in

Eq. (1) with the coefficients obtained from Eg. (3) into the functional J

we have
Hy(x)) =M

where y{x) gives J & minimum,
Suppose that the function y(x) can be approximated by a finite number
of the Cﬁ__.:.s. that is,

yn(x) = ifl D{i‘Pi

in which yn(x) must satisfy the bourndary conditions. Then the functional

becomes
n
Iy (x)) = I il % Py) = Jelyy oty veval )
Choose the a(_,:_s such that
ggT =0' i=1, 2! tet, I,
i
Then we have

Hy (x)) =¥
whers Hn is the approximation to the true minimum value M. Since §n(x)
is an approximation of y(x),

M2M

In genersl,

M2 My 2 cee 2 M 20t 2 M
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The convergence of y(x) in Eq. (1) depends on both characterisiics of the
problem and the choice of functions ¢, .

This method can also be extended to find the maximum (or minimum) of a
functional J with two or more than two dependent wvariables, yl. Tor coer Fpo
and independent variables, Xy Koy vees Koo
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AESTRACT

When a viscous fluid enters a conduit (a ciroular pipe or a flat
duct) from a very large reservoir through a well-rounded entrance, the
velocity profile which is flat at the entry will gradually change as the
fluid moves down the conduilt because the walls of the conduit tend to
rotard the flow. Eventually, the velocity profile will develop to a form
which remains unchanged with respect to the direction of flow. The flow
in the region of changing veloeity profile is the so-called hydrodynamic
entrance region flow.

This report is concerned with laminar, isothermal non-Newtonian
entrance region flow, especially that associated with power law and Bingham
fluids. The report is divided into five chapters. Chapter 1 contains a
general introduction to the problem. Chapter 2 provides the classification
of non-Newtoenian fluids, their shear stress expressions, (or the rheological
equations of state) and flow behaviors in the fully developed region of
pipes and channels.

Chapter 3 presents the governing equations. The general form of the
governing equations is first derived in terms of shear stress based on the
physical situation of the entrance region flow. The various assumptions,
approximations, and shear sitress expressions in terms of veloecity gradients
and rheological parameters can be used to obtain simplified governing
equations for each non-Newtonian entrance region flow problem. The boundary
layer equations of power law and Bingham fluids are derived in the latter
part of this chapter.

Some published work on the .ent.rance region flow of power law fluid is

= reviewed in detail in Chapter 4. The approach of individual methods and



their results are compared and discussed.

In Chapter 5 the basic momentum integral method and the Campbell-
Slattery method are used to analyze the entrance region flow of BEingham
fluids. The numerical resulis are compared with results which were
obtained by the variational method. It is found that the Campbell-Slattery
moethod which involves less mathematical manipulation appears to provide a
solution which is capable of describing behavior of a Bingham fluld in the

enfrance region of a circular pipe.



