LOAD FLOW PROGRAM DEVELOPMENT

613-8301

by

ALAN GLEN BARTA

B. S., Kansas State University, 1970

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1973

Approved by:

Major Professor

ILLEGIBLE DOCUMENT

THE FOLLOWING DOCUMENT(S) IS OF POOR LEGIBILITY IN THE ORIGINAL

THIS IS THE BEST COPY AVAILABLE

LD 2668 R4 1973 B37 CD 264

PREFACE

The purpose of the project reported here was to develop a digital load flow computer program to be used by engineering students who wish to study the behavior of electric-energy systems.

I gratefully acknowledge the help and suggestions received from Professor Floyd W. Harris, my academic advisor. I would also like to thank the Kansas State University Computing Center in helping with the troubleshooting of my program when I could not find the error.

Alan G. Barta

TABLE OF CONTENTS

Chapter		
I.	NTRCDUCTICH	1
	Introduction	
II.	CAD FLOW ITERATIVE METHODS	11
*	Introduction Network Representation. Gauss-Seidel Method. Newton-Raphson Method. Program Printout.	12 14 19
III.	APPLE SOLUTICIS	38
٠	Gauss-Seidel Solution	ЦŲ
IV.	ROGRAN IPROVEMENTS	59
	General Program Improvements	60
BIBLI	RAPHY	62
APPEN	X A	63
APPEN	X B	66

LIST OF FIGURES

Figur	∙e F	Page
1.	Transmission Line Representation	. 14
2.	.Transformer Representations	15
3.	Gauss-Seidel Flow Diagram	7-18
4.	Newton-Raphson Flow Diagram21	i - 25
5.	14 Bus System	46
6.	57 Bus System	58

CHAPTER I

INTRODUCTION

The purpose of the project reported here was to develop a digital load flow computer program to be used by engineering students who wish to study the behavior of electric energy systems. Digital computer programs of this variety have existed in the industry for a number of years, however none have existed at Kansas State University. With the resurgence of interest in the study of electric energy systems on the part of students and faculty of the College of Engineering, it became apparent that there was a need for a package of digital computer programs that would allow one to study electric energy networks of realistic size. The program developed and reported here is the first such program.

The term load flow studies is used by engineers engaged in the planning, design, and operation of electric energy systems to describe technical studies requiring the solution of the static load flow equations of an electrical network for specified bus conditions.

In its most fundamental form the load flow problem can be stated as follows:

Given the following information about the network and its equipment

- The injected real power at each bus except one (referred to as the swing or slack bus).
- 2. The desired voltage at all buses where there is an active source of reactive power (generator or synchronous condenser).
- 3. Capability limitations on the injected reactive power at the buses where there is an active source of reactive power.

- 4. The real and reactive demand (load) at every bus.
- 5. An appropriate model for each transmission line, each transformer (including static tap settings), and each static capacitor/ reactor.
- 6. The bus interconnection scheme.

Determine

- 1. The injected real power at the slack bus.
- The injected reactive power at all buses where there is an active source of reactive power.
- The transmission line real and reactive power flows.
- 4. The real and reactive power flows through all transformers.
- 5. The magnitude and phase of all bus voltages.
- 6. The total system transmission losses.

The digital computer program developed by the author and presented in this report implements this classic form of the load flow problem.

The load flow problem differs from the classic network problem in that the primary objective of the load flow studies is to calculate power flows directly, whereas the primary objective in classic network studies is to calculate voltages and currents directly. This means that the load flow studies require that we solve a set of nonlinear algebraic equations rather than the linear set normally associated with the classic network problem. There is also a more subtle difference. The classic network problem is usually formulated in such a way that either the terminal voltage or terminal current of every energy source is specified, and one is required to calculate the voltages and currents associated with the passive (load) elements. The load flow problem is always formulated in such a way that the product of the current and voltage associated with the load elements is specified, and one is charged with finding the products of source terminal voltages and currents that are necessary to

maintain network equilibrium. In the case of power networks, network equilibrium means maintain constant frequency.

Many numerical techniques [1, 2] have been used to solve the load flow equations. The more successful programs have used either the Gauss-Seidel or the Newton-Raphson procedure to solve the equations. Both procedures were studied and implemented in the program developed for this project.

The network equations have been formulated using either a loop frame of reference or the bus frame of reference. Each has some advantages and some disadvantages, depending upon one's ultimate objectives. The bus reference frame was selected for this project since it easily allows the modelling of shunt passive elements, i.e. passive elements with one terminal connected to a non-ground bus and one terminal connected to ground. Transmission line charging capacitances and static reactive power sources are examples of passive elements that are connected in this way. More detail about the actual formulation and sclution of the network equations will be given later.

A brief history of the development of digital computer lead flow programs is given in the last section of this chapter.

Chapter II gives the details concerning the equations to be solved and outlines the procedure used. A complete listing of the program is included in Appendix A, along with appropriate remarks identifying the program variable names.

Chapter III presents sample results from two electric energy systems that were used as test cases during the program development.

One of these is a small system (14 buses and 20 transmission lines), and the other is a moderately large system (57 buses and 80 transmission

lines). Both are test systems that have been used extensively in the industry to compare various numerical techniques. The data for these test systems was made available by the American Electric Power Service Corporation and represents a part of that system.

Chapter IV contains some suggestions for program improvement.

A User's Guide for the program is included as an Appendix B.

History of Load-Flow Studies

Many load flow studies of a power system are needed in order to operate that system satisfactorily. In the early days of power systems the only means of accomplishing these load flow studies was by hand calculations. The procedures, for even a simple system, were very tedious and time consuming. In 1929 the General Electric Company and the Massachusetts Institute of Technology built an A-C Network Analyzer 3 . This A-C network analyzer, also called an A-C calculating board or an A-C network calculator, was a single-phase miniature replica of an actual power system. It consisted of a number of A-C voltage sources, which could be adjusted in magnitude and phase. It included several resistors. inductances, and capacitances, all of which were adjustable. The voltage sources and circuit elements could be interconnected in many configurations to represent an actual network scaled down to a convenient size. The frequency used with the first board was 60 hertz, but other boards were built using frequencies of 440, 480 and 10,000 hertz [3] . The use of higher frequencies allowed the use of smaller components on the boards. The measurements made on the calculating board were easily converted by means of multiplying factors to values that would exist on the actual system or by meters with special scales where the system quantities

could be read directly. The A-C calculating board was relied upon heavily because of its versatility and flexibility. Adding or deleting components which had been added or deleted to the actual system was a simple process. The calculating board was a tremendous time-saving device compared to the hand calculation method. In addition to its time-saving advantages, it could also be used for short circuit studies. In 1947 [4] , there were approximately fourteen calculating boards costing approximately two million dollars each. The importance of the calculating board is borne out by the fact that some 30 of the 50 calculating boards operated in North America in 1959 were installed after 1950, even though this same period saw the wide acceptance of the digital computers in solving electric energy system problems. Just before 1950 the idea of using a desk calculator to make the repetitious calculations necessary to solve the loop equations was developed. This idea was later expanded to the use of accounting machines. The use of these mechanical digital computers had the advantage of greater accuracy, less chance for error, fewer restrictions on the size of the network, and provided a means of determining the system losses. Another important feature the mechanical calculators had was that a nontechnical person could perform the computations [4] . The use of nontechnical persons was an important advantage because the costs incurred when using an A-C calculating board were substantial. A person had to have a great deal of experience in order to properly handle the calculating board and even then the process was time consuming and subject to errors. There were certain disadvantages associated with the mechanical calculators, such as the computed solution was more difficult to modify at the time it was being prepared and the mechanical calculators lacked the psychological advantage of the

calculating boards where the measurements were taken on an actual electric circuit. The electronic digital computers of the future were destined to remove some of these disadvantages.

In the early 1950's the use of mechanical multipliers [1] was more commonplace and ideas such as using master card decks and computing two cases simultaneously made the calculations faster and just as accurate as the A-C calculating boards. About this same time electronic digital computers were being developed to the point where they were more readily available for these kinds of studies.

The task of obtaining a formal closed form solution for even a very simple network was often made more difficult because of differences in type of data generally available for the different buses in the system. The mechanical calculators used earlier often took hours to get the solution and some iterative process which converged on the solution was needed. The idea of using mesh equations and an impedance matrix 1 to solve the problem first appeared in the mid 1950's. In June 1956 a classical paper by J. B. Ward and H. W. Hale [2] was published suggesting the Gauss-Seidel iterative process and using node-pair voltage equations as a basis for formulating the solution. The nodal method using the bus admittance matrix was found to be more efficient since a matrix inversion technique was not needed as was the case with the mesh method. Ward and Hale made a number of significant contributions to the development of general purpose digital load flow programs. Among these are 1) establishment of a mathematical description of the network that included transformers with off-nominal turns ratios, 2) an iterative technique for determining bus voltages that satisfy prescribed bus conditions, 3) the computation of complete bus information such as the injected real

and reactive powers, voltage magnitudes, and phase angles, and 4) the computation of the individual line flows. The use of the nodal method readily permitted rigorous representation of the off-nominal turns ratio that could be changed without extensive recomputation of the network parameters. Ward and Hale developed a general program which accepted any network up to 50 buses and 200 branches (lines).

The advent of the digital computer and the associated fast iterative processes permitted more effective planning of future cases to study. System planning could be made on a continuous basis rather than a periodic review and ideas of expanding the concept to include the economicdispatch problem began to take form. Another advantage that the digital computer enjoyed when compared with the A-C calculating board was its accessability and relative cost of operation. When a power company did not own its own A-C calculating board, it was necessary to rent one. To rent one, one would reserve time on the board well in advance. The initial adjustments and all the contemplated conditions necessary for the study usually took a day. After a study was made much time was spent interpreting the results in order to make the necessary engineering decisions to determine what conditions should be studied next. As a result much time was consumed with the calculating board idle. On the other hand charges for using a digital computer are made for only the actual computation time and if one particular study appeared to be very important, data could be transmitted to a computing center, and the results could be obtained almost immediately. Data for the base case could be permanently stored on punched cards or tape. It was evident that from purely an economic standpoint, digital computers were quickly becoming the best means of performing load flow studies. Some of the

other advantages of the digital computer include the handling of very large systems, whereas A-C calculating boards often times did not have enough sources, lines, and other components to solve an extensive problem. Also computer programs have the capability of including additional features such as automatic tap settings, automatic control of interchange, and the control of generator reactive power within prescribed limits.

Starting in the mid and late 1950's there was a push to optimize the Gauss-Seidel iterative process. The use of the so-called acceleration factor [5] to speed the convergence was being considered. Several studies were made to find an optimum acceleration factor. The bus voltages were multiplied by the acceleration factor to speed convergence. The optimum value of the acceleration factor was found to vary between 1.6 to 1.7. Since the bus voltages were complex quantities, the idea of using two acceleration factors [5] , one for real part and one for the imaginary part of the voltages, became popular. Selecting the optimum acceleration factors was a guessing process, since the factors varied from system to system. Other ideas such as periodic "blasting" of the voltages towards the solution [6] by an extrapolation process were found to have little effect. The greatest single factor in determining the convergence speed was found to be the initial values selected for the bus voltages and angles. The best way to select these voltages 6 was to use the results from earlier studies as the initial values in future studies. Another important factor in determining speed of convergence was the acceptable tolerance of the results. Some of the earlier studies used tolerances [7] of 5 x 10^{-7} on voltage magnitudes. Later it was found practical to use voltage tolerances of 1×10^{-3} .

While optimization of the iterative process was going on, modifications

the input and output routines and additional auxiliary programs were being created. The input was being modified so as to allow a user to pick the kilovolt-ampere base to fit his needs. Bus numbers could be assigned [8] at the user's convenience with no restrictions regarding the sequence of numbers. The output modifications consisted of getting the results into a form that facilitates interpreting the results.

Additional data such as bus power mismatches were incorporated to provide a measure of the precision of the results. Auxiliary programs performed such features as adding new lines or transformers or removing lines or transformers. Programs were developed to handle other outages such as temporary removal of facilities and for replacement of facilities that were previously taken out of service. There were also auxiliary programs for changing existing impedance values because of reconductoring, rerouting, double-circuiting or converting to a different voltage level.

In the late 1950's another method called the transfer-ratio or Hybrid method [7] came into the picture. It combined the driving-point transfer admittance method (nodal method) with the driving-point transfer impedance method (mesh method). It was the general approach, however problems arose in the time required for data preparations and in changing components for further studies. Once it was set up, the hybrid method converged much faster than the Gauss-Seidel method. The Gauss-Seidel method was still used, however, because of the ease of handling the input data and the ease with which system changes could be studied.

In the early 1960's a very sophisticated method came into use called the elimination method, or as it is now recognized, the Newton-Raphson [9] method. The approach of this method is to solve the non-linear equations dealing with the real and reactive powers at the buses.

One iteration in the Newton-Raphson method took approximately twice as long as one iteration [9] in the Gauss-Seidel method; however, if one were to compare the iteration count and the time per iteration, the Newton-Raphson method was much faster than the Gauss-Seidel method.

Unlike the Gauss-Seidel method, the decrease in error with the Newton-Raphson method was independent of the size of the system. There were certain types of systems, especially those with negative reactances in some elements that would not converge with the Gauss-Seidel method [9]. The Newton-Raphson method handled these systems without any difficulty. The only disadvantage with the Newton-Raphson method was that it required more computer storage.

Throughout the 1960's improvements in the Newton-Raphson method have been in the matrix inversion process and in the development of various computer storage extension techniques. Improvements in the techniques used will be a continuous process. Areas such as computer methods for inverting matrices, and sophisticated acceleration factors will no doubt be the major areas of improvement.

CHAPTER II

LOAD FLOW ITERATIVE METHODS

Introduction

The load flow problem consists of the calculation of voltages and power flow of a network for specified bus conditions. Associated with each bus are six quantities: the real and reactive power generation, the real and reactive power load or power demand, the voltage magnitude, and the phase angle. Three types of buses are represented in load flow calculation and at a bus, four of the six quantities are specified. It is necessary to select one bus, called the swing bus, to provide the additional real and reactive generation to supply the transmission losses, since these are unknown until the final solution is obtained. At this bus the voltage. magnitude, phase angle, real and reactive demands are specified. This is the reference bus. The remaining buses of the system are designated either as voltage controlled buses or load buses. The real power generation, voltage magnitude, and the real and reactive demands are specified at voltage controlled bus. The real and reactive generation and the real and reactive demand are specified at a load bus. The real and reactive generation are zero since load buses are characterized by their lack of generating equipment. See reference [10], Chapter 7, for additional information.

In the remainder of this chapter there will be some mathematical terminology used. At this point it seems appropriate to define this

terminology.

٧	Magnit ude
V	Absolute magnitude
Å	Complex quantity
<u> 7</u>	Vector quantity
Ÿ	Complex vector quantity
* *	Complex conjugate quantity

Also in this chapter formulation of suitable network models are discussed before an iterative method can be applied. The iterative methods discussed will be the Gauss-Seidel and the Newton-Raphson.

Network Representation

The network components must be modelled before an iteration process can be applied. The pi representation will be used for the transmission lines and transformers.

The transformer line [1] is represented by a per unit, series impedance and line shunt admittance. One-half of the line shunt admittance is put at each end of the model (see Figure 1a).

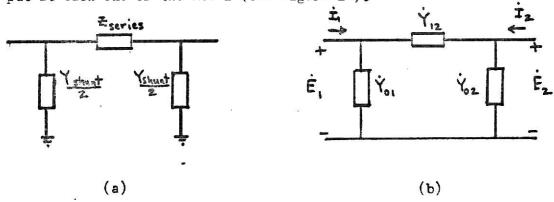


Figure 1. Transmission line representation (a) Equivalent pi circuit (b) Equivalent pi circuit with parameters expressed in admittance.

The nodal equation for the two port network in Figure 1b is

$$\begin{bmatrix} \dot{\mathbf{I}}_1 \\ \dot{\mathbf{I}}_2 \end{bmatrix} = \begin{bmatrix} \dot{\mathbf{y}}_{11} & \dot{\mathbf{y}}_{21} \\ \dot{\mathbf{y}}_{12} & \dot{\mathbf{y}}_{22} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{E}}_1 \\ \dot{\mathbf{E}}_2 \end{bmatrix}$$
(2-1)

where $\dot{y}_{11} = \dot{Y}_{12} + \dot{Y}_{01}$, $\dot{y}_{22} = \dot{Y}_{12} + \dot{Y}_{02}$, and $\dot{y}_{12} = \dot{y}_{21} = \dot{Y}_{12}$.

The transformer with an off-nominal turns ratio can be represented by its per unit impedance connected in series with an ideal autotransformer as shown in Figure 2(a). An equivalent pi circuit [12] can be obtained as shown in Figure 2(b).

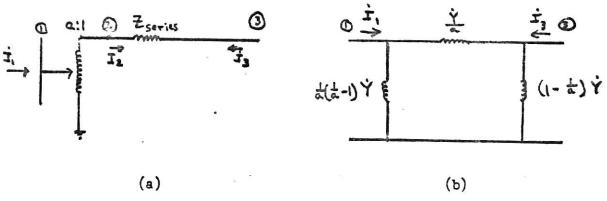


Figure 2. Transformer representations (a) Equivalent circuit (b) Equivalent pi circuit with parameters expressed in terms of series admittance and off-nominal turns ratio.

The nodal equations for the two port network between nodes 2 and 3 (Figure 2(a)) can be written as

$$\begin{bmatrix} \dot{\mathbf{I}}_2 \\ \dot{\mathbf{I}}_3 \end{bmatrix} = \begin{bmatrix} \dot{\mathbf{Y}} & -\dot{\mathbf{Y}} \\ -\dot{\mathbf{Y}} & \dot{\mathbf{Y}} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{E}}_2 \\ \dot{\mathbf{E}}_3 \end{bmatrix}$$
(2-2)

where $\dot{\mathbf{Y}}=1/\dot{\mathbf{Z}}$. The two port network between nodes 1 and 2 is an ideal autotransformer. Since $\mathbf{E_1}=\mathbf{aE_2}$ and $\mathbf{I_2}=\mathbf{aI_1}$ then $\mathbf{E_1}$, $\mathbf{E_2}$ and $\mathbf{I_1}$, $\mathbf{I_2}$ can be expressed in terms of $\mathbf{E_1}$, $\mathbf{E_3}$ and $\mathbf{I_1}$, $\mathbf{I_3}$ as

$$\begin{bmatrix} \dot{\mathbf{E}}_2 \\ \dot{\mathbf{E}}_3 \end{bmatrix} = \begin{bmatrix} 1/a & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\mathbf{E}}_1 \\ \dot{\mathbf{E}}_3 \end{bmatrix}$$
 (2-3)

and

$$\begin{bmatrix} \dot{\mathbf{I}}_1 \\ \dot{\mathbf{I}}_3 \end{bmatrix} = \begin{bmatrix} 1/a & C \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\mathbf{I}}_2 \\ \dot{\mathbf{I}}_3 \end{bmatrix}$$
 (2-4)

combining these equations yields

$$\begin{bmatrix} \dot{\mathbf{I}}_1 \\ \dot{\mathbf{I}}_3 \end{bmatrix} = \begin{bmatrix} 1/a & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\mathbf{Y}} & -\dot{\mathbf{Y}} \\ -\dot{\mathbf{Y}} & \dot{\mathbf{Y}} \end{bmatrix} \begin{bmatrix} 1/a & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\mathbf{E}}_1 \\ \dot{\mathbf{E}}_3 \end{bmatrix}$$
(2-5)

$$\begin{bmatrix} \dot{\mathbf{I}}_1 \\ \dot{\mathbf{I}}_3 \end{bmatrix} = \begin{bmatrix} \dot{\mathbf{Y}}/a^2 & -\dot{\mathbf{Y}}/a \\ -\dot{\mathbf{Y}}/a & \dot{\mathbf{Y}} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{E}}_1 \\ \dot{\mathbf{E}}_3 \end{bmatrix}$$
(2-6)

Recalling the admittance matrix for the pi circuit of the transmission line that $\dot{y}_{11} = \dot{Y}_{01} + \dot{Y}_{12}$, $\dot{y}_{22} = \dot{Y}_{02} + \dot{Y}_{12}$, and $\dot{y}_{12} = \dot{y}_{21} = -\dot{Y}_{12}$, then $\dot{Y}_{12} = \dot{x}_{01} + \dot{Y}_{01} = \dot{x}_{01} + \dot{Y}_{01} = \dot{x}_{02} + \dot{Y}_{01} = \dot{x}_{02} + \dot{Y}_{01} = \dot{x}_{02} + \dot{Y}_{01} = \dot{x}_{02} + \dot{y}_{01} = \dot{y}_{01} + \dot{y}_{01} + \dot{y}_{01} + \dot{y}_{01} = \dot{y}_{01} + \dot{y}_{$

The static capacitors and/or reactors are handled as a per unit susceptance. The static capacitor or reactor is simply added to the diagonal of bus admittance matrix. The position along the diagonal is determined by the bus location.

Gauss-Seidel Method

The solution of the load flow problem [10, 12] is initiated by assuming voltages for all buses except the swing bus, where the voltage is specified and remains fixed. Then, the net injected complex power solutions at any bus n is

$$(\mathring{s}_n)^* = P_n - jQ_n = \mathring{I}_n \mathring{\nabla}_n^*$$
 (2-7)

and the bus currents calculated for all buses except the swing bus are

$$i_n = \frac{P_n - jQ_n}{\dot{V}_n^*}$$
 $n = 2,3$ NB (2-8)

where \dot{I}_n is the net injected current and is positive when flowing into the bus and NB is the number of buses. The bus current can also be obtained from the equation

$$\dot{I}_{n} = \sum_{m=1}^{NB} \dot{Y}_{nm} \dot{V}_{m} \tag{2-9}$$

Equations (2-8) and (2-9) yield, upon solving for \dot{V}_n , a set of NB-1 equations. These equations are

$$\dot{V}_{n} = \frac{1}{\dot{Y}_{nn}} \left[\frac{P_{n} - jQ_{n}}{\dot{V}_{n}^{*}} - \sum_{k=1}^{NB} \dot{Y}_{nk} \dot{V}_{k} \right]$$
 (2-10)

To simplify equation (2-10) some constants [10] are defined.

$$\hat{A}_{n} = \frac{P_{n} - jQ_{n}}{\hat{Y}_{nn}} \qquad \text{for } n = 2,3 \text{``NB}$$

$$\hat{B}_{nk} = \frac{\hat{Y}_{nk}}{\hat{Y}_{nn}} \qquad \text{for } n = 2,3 \text{``NB};$$

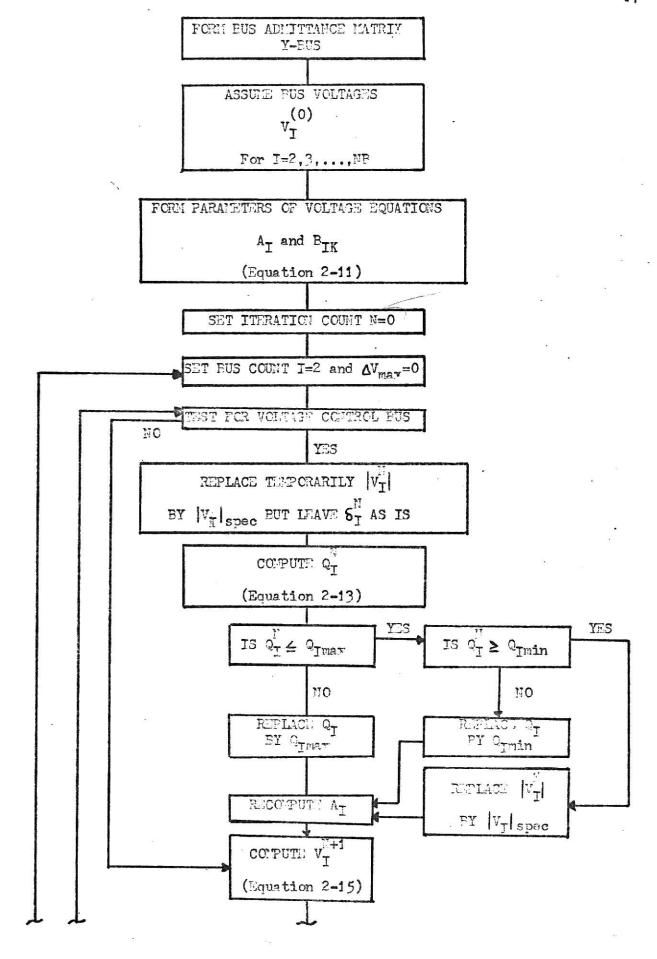
$$k = 1,2 \text{``NB (except } k = n)$$

Substituting (2-11) into (2-10) yields

$$\dot{v}_{n}^{u+1} = \frac{\dot{A}_{n}}{(\dot{v}_{n}^{u})^{*}} - \sum_{k=1}^{NB} \dot{B}_{nk} \dot{v}_{k}^{u}$$
 (2-12)

where the superscript u refers to the iteration count. The bus currents as calculated from equation (2-8), the swing bus voltage, and the estimated bus voltages are substituted into equation (2-12) to obtain a new set of bus voltages. These new voltages are used in equation (2-8) to recalculate the bus currents for subsequent solution of equation (2-12). The process

is continued until changes in all bus voltages are within a specified tolerance. After the voltage solution has been obtained, the line flows and the power at the swing bus can be calculated. The sequence of steps for the load flow solution by the Gauss-Seidel iteration method is shown in Figure 3.


The injected reactive power at a voltage controlled bus must be calculated before proceeding with the calculation of the bus voltages. From equation (2-7) the reactive bus power is

$$Q_{n} = -I_{mag} \left(\sum_{m=1}^{NB} \dot{Y}_{nm} \dot{V}_{m} \right) (\dot{V}_{n}^{*})$$
 (2-13)

where $\dot{V}_n = e_n + jfn$ and $\dot{Y}_{nm} = G_{nm} - jB_{nm}$. The real and imaginary values of the bus voltage must satisfy the relationship

$$e_n^2 + f_n^2 = (|V_n| \text{ scheduled})^2$$
 (2-14)

in order to calculate the reactive bus power required to provide the scheduled bus voltage. The phase angles [12] of the estimated bus voltages are $\int_{n}^{u} = \arctan\left(\frac{\pi^{n}}{n}/e_{n}^{u}\right)$. Assuming the angles of the estimated and scheduled voltages are equal, then the new $e_{n}^{u} = \left\{ \left| V \right| \text{ scheduled} \right\} \cos \int_{n}^{u}$ and the new $f_{n}^{u} = \left\{ \left| V \right| \text{ scheduled} \right\} \sin \int_{n}^{u}$. These values are substituted back into equation (2-13) to obtain the reactive power which in turn is used in estimating the new bus voltage $\dot{V}_{n}^{u} + 1$. The voltage control buses generally have maximum and minimum injected reactive power limits. If the calculated Q_{n} exceeds these limits, then the scheduled voltage can no longer be held and the reactive power is set equal to its limit. This procedure is also shown in Figure 3.

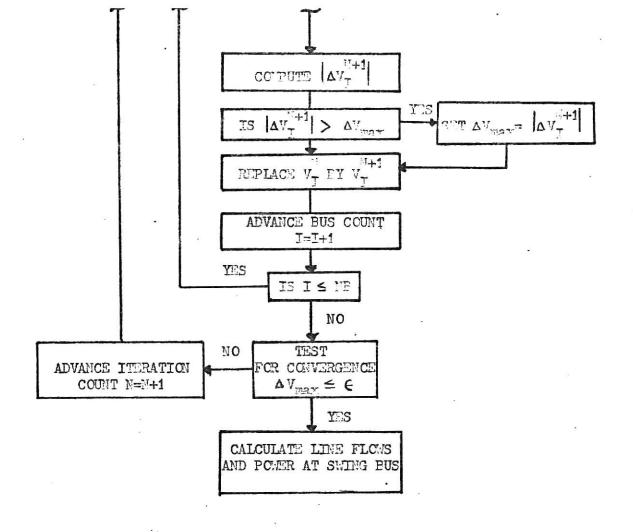


Figure 3 GAUSS-SHIDEL METHOD USING Y-BUS

Newton-Raphson Method

A set of nonlinear equations that express the scheduled injected bus powers in terms of bus voltages is used in the Newton-Raphson method 12 . The Newton-Raphson method is initiated by assuming voltages for all buses except the swing bus, where the voltage is specified and fixed. Then, a net real power and a net reactive power is calculated using the estimated bus voltages. These net real and reactive powers are then compared to the scheduled net bus powers. If the calculated powers are within a specified tolerance of the scheduled powers, then the line power flows and swing bus power is calculated. If the calculated powers are outside the tolerance then a new set of bus voltages are estimated. These new bus voltages are then used to calculate a new set of calculated net real and reactive bus powers to compare with the scheduled bus powers. The process is continued until changes in all calculated bus powers are within the specified tolerance. The key to the whole technique is the estimating of a new set of bus voltages. It can be shown that the net real and reactive powers form a set of nonlinear equations. By use of the Taylor's series it can also be shown that the change in the net real bus power (AP) relates to the changes in the real (Δe) and imaginary (Δf) parts of the bus voltages. The change in the net reactive bus power AQ has a similar relationship. A coefficient matrix called the Jacobian relating the Δe 's and Δf 's with the ΔP 's and AQ's can be set up. The elements of the Jacobian are determined below. One then simply solves for the Δe 's and Δf 's which in turn are used in estimating a new set of bus voltages.

The remainder of this section will derive and demonstrate the equations used in the Newton-Raphson technique. The procedure used closely follows that given by Stagg and El-Abiad [12].

Upon substituting $\mathring{V}_n = e_n + jf_n$ and $\mathring{Y}_{nm} = G_{nm} - jB_{nm}$ into equation (2-9) and the results into equation (2-7) one obtains

$$P_n - jQ_n = (e_n - jf_n) \sum_{m=1}^{NB} (G_{nm} - jB_{nm})(e_m + jf_m)$$
 (2-15)

Separating this equation into its real and imaginary parts,

$$P_{n} = \sum_{m=1}^{NB} \left\{ e_{n} (e_{m}G_{nm} + f_{m}B_{nm}) + f_{n} (f_{m}G_{nm} - e_{m}B_{nm}) \right\}$$

$$Q_{n} = \sum_{m=1}^{NB} \left\{ f_{n} (e_{m}G_{nm} + f_{m}B_{nm}) - e_{n} (f_{m}G_{nm} - e_{m}B_{nm}) \right\}$$
(2-16)

The result is a set of nonlinear simultaneous equations with two equations for each bus. The net injected real and reactive bus powers are known and the bus voltage components are unknown for all buses except the swing bus, where the voltage remains a fixed value and the swing bus powers are unknown. Thus there are 2(NB-1) equations to be solved.

Using Taylor's Series a set of linear equations is formed expressing the relationship between the changes in net real (Δ P) and net reactive (Δ Q) powers with the bus voltage components. Using only the first term in the Taylor's series and neglecting the rest, a coefficient matrix called the Jacobian can be set up as follows

In matrix form, equation (2-17) is

One can derive the entries in the Jacobian matrix from the bus power equations (2-16) by finding the appropriate derivatives.

The off diagonal elements of J_1 are

$$\frac{\partial^{P} n}{\partial e_{m}} = e_{n}^{G} - f_{n}^{B} n_{m}$$

and the diagonal elements of J_1 are

$$\frac{\partial^{P}_{n}}{\partial^{e}_{n}} = 2e_{n}G_{nm} + \sum_{m=1}^{NB} (e_{m}G_{nm} + f_{m}B_{nm}). \qquad (2-18)$$

The diagonal elements of \underline{J}_1 can be simplified somewhat by noting the bus current equation (2-9) can be separated into the real and imaginary parts. Thus, if $I_n = c_n + jd_n$, then:

$$c_{n} = e_{n}G_{nn} + f_{n}B_{nn} + \sum_{m=1}^{NB} (e_{m}G_{nm} + f_{m}B_{nm})$$

$$m \neq n$$

$$d_{n} = f_{n}G_{nn} - e_{n}B_{nn} + \sum_{m=1}^{NB} (f_{m}G_{nm} - e_{m}B_{nm})$$

$$m \neq n$$
(2-19)

Substituting the real part of the current into equation (2-18) the $\underline{J_1}$ diagonal becomes

$$\frac{\partial^{P_n}}{\partial^{e_n}} = e_n^{G_{nn}} - f_n^{B_{nn}} + c_n$$

The off-diagonal elements of \underline{J}_2 are

$$\frac{\partial^{P} n}{\partial^{f} m} = e_{n} B_{nm} + f_{n} G_{nm} \qquad n/m$$

and the diagonal elements of \underline{J}_2 after combining with equation (2-19) are

$$\frac{\partial^{P_n}}{\partial^{f_n}} = e_n^{B_{nn}} + f_n^{G_{nn}} + d_n.$$

The off-diagonal elements of \underline{J}_3 are

$$\frac{\partial^{Q}_{n}}{\partial^{e}_{m}} = e_{n}B_{nm} + f_{n}G_{nm} \qquad n \neq n$$

and the diagonal elements of $\frac{J}{2}$ after combining with equation (2-19) are

$$\frac{\partial^{Q_n}}{\partial^{e_n}} = e_n^{B_{nn}} + f_n^{G_{nn}} - d_n.$$

The off-diagonal elements of J_1 are

$$\frac{\partial Q_n}{\partial f_m} = -e_n G_{nm} + f_n B_{nm} \qquad n/m$$

and the diagonal elements of $\underline{J_{j_1}}$ after combining with equation (2-19) are

$$\frac{\partial^{Q}_{n}}{\partial^{f}_{n}} = -e_{n}G_{nn} + f_{n}B_{nn} + c_{n}.$$

Given an initial set of bus voltages, the real and reactive powers are calculated from equations (2-16). The Δ P's and Δ Q's are the differences between the scheduled and calculated powers. The Jacobian elements are evaluated from the calculated powers and estimated bus voltages. The new set of estimated bus voltages are then determined. This process is repeated until the Δ P's and Δ Q's are all within a specified tolerance. The flow diagram of the Newton-Raphson Method is shown in Figure 4.

In the case of voltage control buses the reactive bus power must be calculated at their buses before proceeding with the solution.

The equation for the voltage controlled bus is

$$|\dot{v}_n|^2 = e_n^2 + f_n^2$$
 (2-20)

where equation (2-20) replaces the equation for the reactive bus power.

The matrix equation for the new relationship is:

The submatrices \underline{J}_1 , \underline{J}_2 , \underline{J}_3 , and \underline{J}_4 are the same as before. The off-diagonal elements of \underline{J}_5 , as oftained in equation (2-20) are

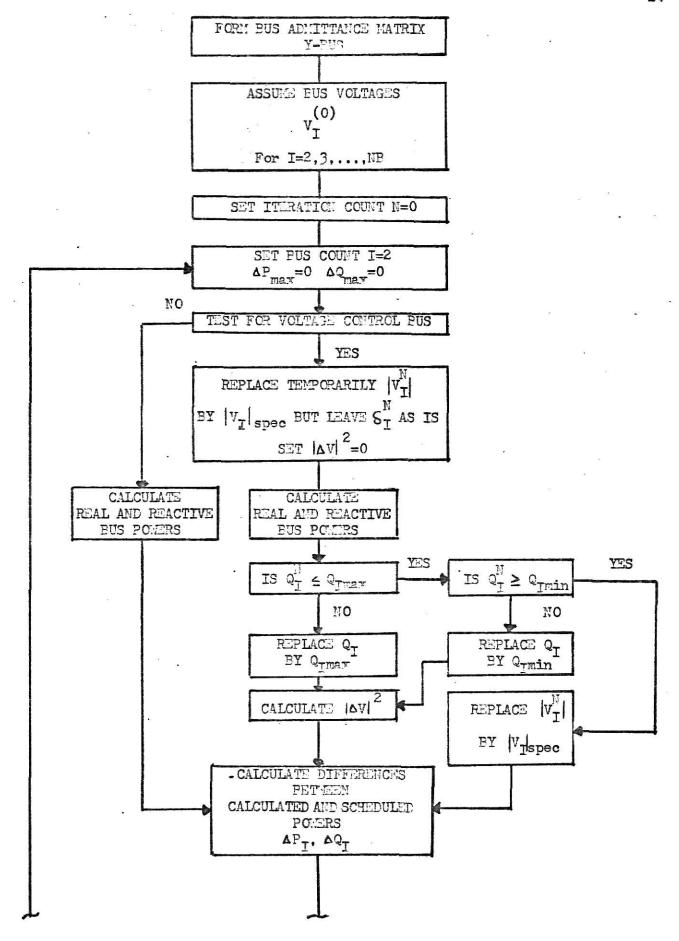
$$\frac{\partial |\dot{\mathbf{v}}_n|^2}{\partial e_m} = 0 \qquad \text{nfm}$$

with the diagonal elements being

$$\frac{\left| \dot{\mathbf{v}}_{n} \right|^{2}}{\left| \partial \mathbf{e}_{n} \right|^{2}} = 2\mathbf{e}_{n}.$$

Similarly, the off-diagonal elements of \underline{J}_6 are

$$\frac{\int |\dot{\mathbf{v}}_n|^2 = 0}{\int \mathbf{r}_m}$$


and the diagonal elements are

$$\frac{\partial |\dot{v}_n|^2}{\partial f_n} = 2f_n$$

The change in the square of the voltage magnitude $\Delta |v_n|^2$ is zero unless a reactive power limit is encountered. In that case

$$\Delta \left| \mathbf{v}_{n}^{\mathbf{u}} \right|^{2} = \left| \mathbf{v}_{n} \right|^{2} \text{ scheduled } - \left| \mathbf{v}_{n}^{\mathbf{u}} \right|^{2}$$

where u is the iteration count.

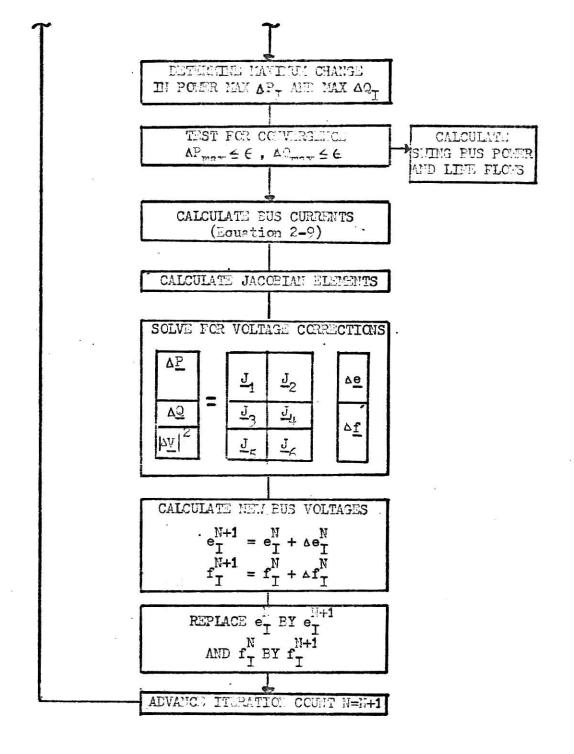


Figure 4 NEWTON-RAPHSON METHOD USING Y-BUS

Program Printout

This section contains the detailed computer program for the solution of the Static Load Flow Equations (SLFE).

The iterative computations of the SLFE follows the flow diagrams of Figures 3 and 4. The program implements only one iterative method at one time; the user has his choice.

The reader should note that the Newton-Raphson method is not as efficient as it should be. The Newton-Raphson routine was not optimized with respect to computation speed. Chapter IV presents some suggested improvements. Chapter III gives some sample results obtained for two test systems.

The starting point for Gauss-Seidel routine was taken from Appendix B of Elgerd's book [10], Electric Energy Systems Theory. The Newton-Raphson equations and routine were taken from Chapter 8 of Reference 12.

```
DATE = 73082
ORTRAN IV G LEVEL 21
                                          MAIN
                                                                                    01/18/00
                   COMPLEXES SERY(100), SERZ(100), SHTY(100), YSHT(100), ZSER(100),
0001
                   18 (130). S(153), 81 (060). VN(C50), 4(360), V(060), B(360,660), V(060,060).
                   2000E1, COGUS, VII, SUM, DX, VI, TS, TEG, TE
                   REAL JETTES, 1181, LENGTH(100), TH(100), TS(100), MIN(060), OMAX(060),
0002
                   1VSP=C(367).P(060).0(060).P3(060).PL(060).0G(060).QL(060).
                   20(U.D).CMVAR[060].CP(060].CQ[060].DP(060].DQ[060].PV(060].DE(060].
                   BDE (060), OBASE, NBASE, ALPHA, DVMAX, DELTA, MAGV, DELV, CONV, TCR, CC, ST
0003
                    INTEGER SHIDE ! , EBILOU! . ITER . NE . NR . NC . NR . MB . AN . K . L . M . BM
                   COMMON/DATA/YSHT,ZSER,R,S,LENGTH.TS,PG,PL,QG,QL,VSPEC,QMIN,QMAX,
0004
                   1C. CMVAS, P. Q. BRASE, NBASE, MAGY, DELTA, ALPHA, CC. ST. CONV, SB, EB, NB, NL.
                   3MP. LC, BN.BM. ITER
             103
0005
                   FURMAT(415,4F5.0,F10.7,15)
             100
                   FORMAT(15.F10.5)
0006
                   FORMAT(F10.5,F6.2,F5.2)
7000
             104
                   FORM AT (215-4F10.5, F5.3, F5.1)
8000
             136
0009
             109
                   F0943714F10.31
                   FORMAT(*1* 1/1/T30.*FAILED TO CONVERGE IN*, 14.* ITEPATIONS*)
0010
             110
                   GROWAT (*1:, 120, *NEWTON-RAPHSON TECHIQUE CONVERCED IN:,14,1X.
0011
             112
                  11) TERATIONS. ALL VALUES ON: . E6.0.1X, MVA BASE!//1
0012
             114
                   FORMAT(*1*, T20, *GAUSS-SEIDEL TECHNIQUE CONVERGED IN*, 14,1%,
                   1 TERATIONS. ALL VALUES ON F6.0.1X. MVA BASE ///
0013
                   SORMATETO:,T31,*VOLTAGE*,T111.*INJECTED POWER*/T30,*MAGNITUDE*,
             116
                  AT42, MOFITA(DEGS)*, T64, MGENERATION*, 195, MEDAD*, T114, MISTATIC)*/
                  ATTR. + PU* . TEG. * MH* . T74. * MVAR* . TEE. * MH* . T102. * MVAR* . T116. * MVAR*)
                   F9RMAT(*C*, 120, *BUS*, 15, 2X, F7.3, 5X, F9.4, 5X, F9.3, 5X, F9.3, 5X, F9.3,
0014
             118
                  ASE-#9.3.5X, F9.31
0015
             120
                   FREW 17 (* - 1, 130 - 15 - 2X - F9 - 3 - 2X - F9 - 3 - 2X - TAP* - 1X - F5 - 3)
                   FORMAT(* *.730, 15, 2X, F9. 3, 2X, F9. 3)
0016
             122
                   FDSMAT(*1*//T48, *TOTALS*, 28X, *MW*, 11X, *MVAR*//T42, *GENFRATION*, 24X,
0017
             174
                  AF11.3.2X,F11.31
                   FORMAT (*0*, T42, *STATIC CAP/REACTORS*, 28X, F11.3)
0018
             176
                   FOF647(*0*,742,*LDAD*,30X,F11.5,2X,F11.3)
0019
             351
                   FORMATION . TAZ. "LINE LOSSES" . 23X. F11. 3.2X, F11. 31
0020
             130
             C READ IN NUMBER OF OF LINES, NUMBER OF BUSES, NUMBER OF VOLTAGE CUNTROL BUSES.
             C NUMBER OF STATIC CAPACITORS OF REACTORS, BLD BASE, NEW BASE, ITERATION METHOD
             C DSED. TOTAL OR ONE-HALF SHUNT ADMITTANCE USED, MAXIMUM ITERATIONS ALLOWED.
             C AND TOLERANCE ALLOWED
0021
                   PIADI5-1001 NL:Nd:BM-NC:DBASE,NBASE.GSNR:ST:CONV:ITER
0022
                    MI. = AM&1
             C ASSUME STANDARD VALUES FOR OLD BASE AND NEW BASE IF NONE READ
0023
                   THICHASE LE . 01 ORASE=100.
0024
                    IF (NAASE.LE.O) NBASE#190.
0025
                    IF (GSNR.EQ.O) GO TO 1
             C STANDARD MAXIMUM ITCRATIONS AND TULERANCE ALLOWED FOR NEWTON RAPHSON METHOD
0026 -
                   IFILITER.LE.O) TTER=15
0027
                   IF(CUNV.LE.O) CONV=.001
0028
                   GD TO 2
             C STANDARD MAXIMUM ITERATIONS AND TOLERANCE ALLOWED FOR GAUSS SEIDEL METHOD
0029
                  IF (ITER-LE-0) ITER=75
             1
0030
                   IF (CONV.LE.D) CONVE.0001
                   CONTINUE
0031
             2
0032
                   00 3 I=1.NB
                   20 3 J=1,NA
0033
0034
                   Y(1, J)=CMPLX(0.0.0.0)
             3
2035
                   DO 4 1=1,N9
0036
                   C(1)=0.0
0037
                   IFINC.LE.OI GO TO 8
```

C READ IN BUS NUMBER AND STATIC CAPACITOR/REACTOR VALUE IN PER UNIT

f

```
DATE = 73082
FORTRAN IV G LEVEL 21
                                        MAIN
                                                                                 01/18/00
                   DO 6 1=1.NC
0038
0039
                   READIS, 1021 BN.CC
0040
                   CC#CC*OBASE/NBASE
0041
                   Y(BO, UN) = CMPLX(0.0.CC)
0042
                   CIBNI=CC
                   CONTINUE
0043
             8
             C PEAD IN SWING BUS VOLTAGE MAGNITUDE, ANGLE(IN DEGREES) AND THE
             C ACCELERATION FACTOR.
                   READ(5,104) MAGY, DELTA, ALPHA
0044
0045
                   DELTA=DELTA*AFSIN(1.0)/90.0
                   V(1)= YAGV # C"PLX(COS(PELTA), SIN(DELTA))
0046
             C ASSUMB STANDARD ACCELERATION FACTOR IF NONE READ
0047
                   IF (ALPHA.FO.C) ALPHA=1.65
             C READ IN STARTING BUS, ENDING BUS, SERIES IMPEDANCE, AND SHUNT ADMITTANCE IN
             C PER UNIT, ALSO TAP SETTING AND LENGTH -
0048
                   DO 10 I=1.NL
                   READ(5,106) SB(I), EB(I), ZSER(I), YSHT(I), TR(I), LENGTH(I)
0049
0050
                   ZSER(I)=ZSER(I) +NBASE/OBASE
0051
                   YSHT([)=YSHT([)*OBASE/NBASE
0052
                   TSII)=TR(I)
0053
                   IF (TR(I).LE.O) TR(I)=1.0
0054
                   TF(1)=1/TR(1)
             C ASSUME STANDARD VALUE FOR LENGTH IF NONE READ
0055
                   IF(LENGTH(I).LE.O) LENGTH(I)=1.0
                   SHTY[[]=YSHT[[]*LENGTH[])
0056
0057
                   IF(ST.NE.O) SHTY(I)=SHTY(I)/2
0058
                   SEPZ(I)=ZSER(I)*LENGTH(I)
0059
                   SERY(I)=1.0/SERZ(I)
             C ASSEMBLE THE BUS ADMITTANCE MATRIX.
0060
                   L=SB(I)
0061
                   Y(L,L)=Y(L,L)+(SERY([)+SHTY([))*TR([)*TR([)
0062
0063
                   Y(M, M) = Y(M, M) + SERY(1) + SHTY(1)
                   Y(L,M)=Y(L,M)-SERY(I)*TR(I)
0064
0065
                   Y(M,L)=Y(L,M)
             13
0066
                   K=MB+1
0067
                   IF(MB.LE.1) GO TO 13
             C READ IN VOLTAGE CONTROL BUS VOLTAGE MAGNITUDES AND REACTIVE POWER LIMITS.
0068
                   00 12 I=2, MR
                   READ(5,108) VSPEC([],QMIN([],QMAX([)
0069
             17
0070
                   CONTINUE
             13
             C READ IN SCHEDULED BUS POWERS IN MEGAWATTS AND MEGAVARS
0071
                   DU 14 I=1.NB
0072
             14
                   RE48(5.108) PG(I).QG(I).PL(I).QL(I)
             C WRITE OUT INPUTTED DATA
0073
                   CALL INPUT
             C CALCULATE NET REAL AND REACTIVE POWERS FOR ITERATION PROCESS
0074
                   DO 18 I=2.NB
0075
                  -P(1)=PG(1)-PL(1)
             18
0076
                   DO 20 1=K.NB
0077
             20
                   Q(I) = QG(I) - QL(I)
0078
                   IF(43.LE.1) GO TO 23
             C PUT POWERS IN PER UNIT AND ADJUST REACTIVE POWER LIMITS TO GENERATOR LIMITS
0079
                   00 22 I=2,MB
                   P(I)=P(I)/NRASE
0080
1800
                   UMIN([]=DMIN([]-OL([]
0082
                   QMAX(I)= QMAX(I)-QL(I)
6800
                   DMIN(1)=DMIN(1)/NBASE
```

1

```
FORTRAN IV G LEVEL 21
                                        MAIN
                                                           DATE = 73082
                                                                                  01/18/00
0084
             22
                   QMAX(I)=QMAX(I)/NBASE
                   CONTINUE
0085
                   DO 24 I=K, NB
0086
                   P(I)=P(I)/NBASE
0027
0088
             24
                   Q(I)=Q(I)/NBASE
             C ASSUME INITIAL VALUES FOR BUS VOLTAGES
0089
                   DO 26 I=2, NB
                   V(I)=CMPLX(1.0,0.0)
0090
             26
0091
                   N=O
                   IF(GSNR.EQ.0) GO TO 600
0092
             C BEGIN THE NEWTON RAPHSON ITERATION METHOD
0093
                   NP = 2 * (NB-1)
0094
                   DVMA X=0.0
             206
0095
                   DO 224 I=2,NB
                   VII=V(I)
0096
             C FOR VOLTAGE CONTPOL BUSES ADJUST VOLTAGE TO SPECIFIED MAGITUDE AND CALCULATE
             C REACTIVE POWER, IF Q LIMITS ARE EXCEEDED SET Q EQUAL TO LIMIT AND RETURN
             C VOLTAGE TO PREVIOUS VALUE
                   IF(I-MB) 208,208,220
0097
                   V(1)=V(1)/CARS(V(1))*VSPEC(1)
0098
             208
0099
                   Dv(1)=0.0
0100
                   SUM=CMPLX(0.0.0.0) .
0101
                   DO 210 J=1.NB
0102
             210
                   SUM=SUM+Y(I+J)*V(J)
                   CP(I)=REAL(SUM#EDNJG(V(I)))
0103
                   CO(I) =- AIMAG(SUM + CONJG(V(I)))
0104
0105
                   O(1)=CO(1)
                   IF(C3(1)-0MAX(1)) 212,220,214
0106
                   IF (CJ(I)-QMIN(I)) 215,220-220
0107
             212
0108
             214
                   O(I)=QMAX(I)
0109
                   (1)p=(1)p3
                   GO TO 218
0110
                   O(1)=QMIN(1)
0111
             216
                   CO(I)=Q(I)
G112
                   V(1)=VII
0113
             213
                   DV(I)=VSPEC(I)**2-(CABS(VII))**2
0114
0115
                   GP TO 223
0116
             220
                   SUM=CMPLX(0.0,0.0)
                   DO 222 J=1,NB
0117
             C CALCULATE THE REAL AND REACTIVE POWERS
                   (L)V=(L+1)Y+M12=M62)
0118
             222
0119
                   CP(I)=REAL(SHM+CONJG(V(I)))
0120
                   CO(I) =-AIMAG(SUM+CONJG(V(I)))
             C CALCULATE DIFFERENCES BETWEEN THE SCHEDULED AND CALCULATED POWERS
0121
             223
                   OP ( 1 ) = P( 1 ) - CP( 1 )
                   D2(I)=0(I)-CD(I)
0122
             C DETERMINE MAXIMUM CHANGE IN POWERS.
                   IF (ABS(DP(I)).GE.DVMAX) DVMAX=ABS(DP(I))
0123
                   IF(ABS(DQ(I)).GE.DVMAX) DVMAX=ABS(DQ(I))
0124
             C TEST FOR CONVERGENCE
                   IF (DVMAX.LE.CONV) GO TO 300
0125
             C LIMIT ITERATIONS AS A PROTECTION AGAINST DIVERGENCE
                   IF (N.LT. ITEP) .60 TO 226
0126
0127
                   WRITE(6,110) N
0128
                   GU TO 1973
0129
             226 . N=N+1
             C CALCULATE BUS CURRENTS
0130
                   DO 228 I=2,NR
```

```
FORTRAN IV G LEVEL 21
                                                                                         MAIN
                                                                                                                                  DATE = 73082
                                                                                                                                                                                  01/18/00
   0131
                                            RI(I)=CMPLX(CP(I),-CQ(I))/CONJG(V(I))
                              C CALCULATE ELEMENTS OF THE JACOBIAN MATRIX
   0132
                                            00 229 I=1,NR
   0133
                                            DO 229 J=1.NR
   0134
                              229
                                            JJ([,])=0.0
                              C THE CALCULATION OF J-1 MATRIX
   0135
                                            DO 234 I=2.NB
                                            00 232 J=2.NB
   0136
   0137
                                           IF(I.NE.J) GO TO 230
                                            JJ(I-1,J-1)=REAL(Y(I))*REAL(Y(I,J))+AIMAG(Y(I))*AIMAG(Y(I,J))*
   0138
                                          AREAL (BI(I))
   0139
                                           GO TO 232
   0140
                              230
                                            JJ(I-1,J-1)=REAL(V(I))+REAL(Y(I,J))+AIMAG(V(I))*AIMAG(Y(I,J))
   0141
                              232
                                           CONTINUE
   0142
                              234
                                           CONTINUE
                              C THE CALCULATION OF J-2 MATRIX
                                            DO 240 I=2.NB
   0143
   0144
                                           DO 238 J=2,NB
                                           IF(I.NE.J) GO TO 236
   0145
                                            JJ\{I-1,N6-2+J\}=-REAL\{V(I)\} #AIMAG\{Y\{I,I\}\} #AIMAG\{V\{I\}\}#
   0146
                                          APEAL(Y(I,I))+AIMAG(BI(I))
   0147
                                           GO TO 238
                                            JJ(I-1,NR-2+J) = -REAL(V(I)) *AIMAG(Y(I,J)) +AIMAG(V(I)) *
   0148
                              235
                                          AREAL (Y(I,J))
0149
                              238
                                           CONTINUE
   0150
                              240
                                           CONTINUE
                              C THE CALCULATION OF J-3 MATRIX
   0151
                                           D9 246 I=K.NB
   0152
                                           DO 244 J=2,NB
   0153
                                            IF(I.NE.J) 60 TO 242
                                            JJ: NR-K+J, J-I) = -REAL(V(I))*AIMAG(Y(I,I))*AIMAG(V(I))*REAL(Y(I,I))*AIMAG(V(I))*REAL(Y(I,I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG(V(I))*AIMAG
   0154
                                         ALIMAG(81(11))
   0155
                                           GO TC 244
                                            JJ(NB-K+1,J-1)=-REAL(V(I))*AIMAG(Y(I,J))*AIMAG(V(I))*REAL(Y(I,J))
   0156
                              242
   0157
                              244
                                           CONTINUE
   0158
                              246
                                           CONTINUE
                              C THE CALCULATION OF J-4 MATRIX
   0159
                                           DO 252 I=K.NB
  0160
                                           DD 250 J=2,NB
   0161
                                            IF(I.45.J) GD TO 248
                                            JJ(NB-K+1, NB-2+J)=-RE4L(V(I))*REAL(Y(I, II)-AIMAG(V(I))*
   0162
                                         AAIMAG(Y(I,I))+REAL(BI(I))
   0163
                                           GO TO 250
  0164
                              246
                                           JJ(NB-K+I\cdot NB-2+J)=-REAL(V(I))*REAL(Y(I\cdot J))-AIMAG(V(I))*
                                         AAIMAG(Y(I,J))
  0165
                              250
                                           CONTINUE
   0166
                                           CONTINUE
                              252
                                            IF(MP.LE.1) GO TO 265
  0167
                              C THE CALCULATION OF J-5 MATRIX
  0168
                                           DC 258 I=2,M8
  0169
                                           DO 256 J=2.NR
   0170
                                           17 (I.NT.J) GO TO 256
                                           JJ(NR-MB+[,J-1)=2*REAL(V([])
  0171
  0172
                             256
                                           CONTINUE
                                          CONTINUE
   0173
                              253
                              C THE CALCULATION OF J-6 MATRIX
  0174
                                           DO 264 I=2.MB
  0175
                                           DD 262 J=2,NB
```

```
DATE = 73082
                                                                                   01/18/00
                                          MAIN
FORTRAN IV G LEVEL 21
                    IF(I.NE.J) GO TO 262
 0176
                    JJ (NP-48+1,NB-2+J)=2#AIMAG(V(1))
 0177
 0178
              252
                    CONTINUE
                    CONTINUE
 0179
             264
 0180
             265
                    CONTINUE
             C INVERTING THE JACOBIAN MATRIX
                    NRR=NR+1
0181
 0182
                    KK=0
                    NN=0
 0183
 0184
                    DO 288 K=1,NR
 0185
                    nn 266 J=1,NR
                    JJ(J, NRR)=0.0
 0186
             266
                    JJ(K, NRR)=1.0
 0187
                    NN=KK+1
 0188
                    LL=NN
 0189
 0190
                    KK=KK+1
                    IF (ABS(JJ(NN,KK))-1.E-4) 270,270,272
 0191
             268
 0192
             270
                    NN=NN+1
 0193
                    GO TO 268
 0194
                    IF(LL-NN) 274,278,274
             272
                    DO 276 MM=1.NRR
 0195
             274
 0196
                    DTEMP=JJ(LL,MM)
 0197
                    JJ(LL,MY)=JJ(NN,MM)
                    JJ(NN,MM)=DTEMP .
 0198
             276
 0199
                    DIV=JJ(K,K)
             278
- 0200
                    DO 280 LJ=1,NRR
 0201
                    J=NRR+I-LJ
 0202
             280
                    JJ(K.J)=JJ(K.J)/DIV
 0203
                    DO 284 I=1,NR
                    FAC=JJ(I,K)
 0204
 0205
                    DO 284 LJ=1,NRR
                    J=NRR+1-LJ
 0206
 0237
                    IF(I-K) 282,284,282
 0208
             282
                    JJ([,J)=JJ(T,J)-FAC*JJ(K,J)
 0209
             284
                    CONTINUE
 0210
                    DO 296 J=1,NR
0211
             296
                    JJ(J,K)=JJ(J,NRR)
                    CONTINUE
 0212
             288
                    K=MB+1
0213
             C DETERMINE THE REAL AND IMAGINARY VOLTAGE CHANGES
0214
                    On 296 I=2.NB
0215
                    DE(1)=0.0
 0216
                    DF(I)=0.0
                    DI 290 J=2,NB
0217
                    DF([] = DF([] + JJ(NR-2+[, J-1] + DP(J)
0218
0219
             290
                    DE(I) = DE(I) + JJ(I-1, J-1) * DP(J)
0220
                    DO 292 J=K , NR
 0221
                    DF(I)=PF(I)+JJ(N5-2+I+N8-K+J)*DQ(J)
0222
             292
                    DE(I)=DE(I)+JJ(I-1,N8-K+J)*DQ(J)
0223
                    IF(48.LE.1) GO TO 295
                    DC 294 J=2.MB
0224
                    DF(I)=DF(I)+JJ(NB-2+I-NR-MB+J1*DV(J)
0225
0226
             294
                    DE(I)=DE(I)+JJ(I-1,NR-MB+J)*DV(J)
G227
             295
                    CONTINUE
0228
             296
                    CONTINUE
             C UPDATE BUS VOLTAGES
0229
                    DC 298 I=2.NB
             298
0230
                    V(1)=V(1)+CMPLX(DE(1),DF(1))
```

,

```
DATE = 73082
FORTRAN IV G LEVEL
                                        MAIN
                                                                                01/18/00
0231
                   GO TO 206
             C THE START OF THE GAUSS-SEIDEL METHOD
                   nn 605 1=2.NS
0232
             C CALCULATING INITIAL CONSTANTS
0233
                   IF(I.LT.K) 0(1)=0.0
0234
                   IF(I.GT. MR) A(I)=(CMPLX(P(I),-Q(I)))/Y(I.I)
0235
                   PD 605 J=1.NB
0236
             605
                   IF(I.ME.J) B(I.J)=Y(I.J)/Y(I.I)
0237
             606
                   DVMAX=0.0
0238
                   I = 2
             607
0239
                   VII=V(I)
             C FOR VOLTAGE CONTROL BUSES ABJUST VOLTAGE TO SPECIFIED MAGITUDE AND CALCULATE
             C REACTIVE POWER, IF Q LIMITS ARE EXCEEDED SET Q EQUAL TO LIMIT AND RETURN
             C VOLTAGE TO PREVIOUS VALUE, CALCULATE ALL)
                   IF (I-MA)608,638,615
0240
0241
             608
                   V(I)=(V(I)/CABS(V(I)))*VSPEC(I)
0242
                   SUM=CMPLX(C.C.O.O)
0243
                   DO 609 L=1.NB
0244
             609
                   SUM=SUM+Y(I.L)*V(L)
0245
                   D(1)=-AIMAG(SUM*CONJG(V(I)))
0246
                   IF(2(1)-044X(1)) 610,614,611
0247
                   IF(Q(I)-QMIN(I)) 612,614,614
             610
0248
                   Q(I)=QMAX(I)
             611
0249
                   GO TO 613
0250
             612
                   O(I)=OMIN(I)
0251
             613
                   V(1)=VII
0252
                   A(I)=(CMPLX(P(I),-O(I)))/Y(I,I)
             614
0253
                   SUM=CMPLX(6.0,0.0)
             615
0254
                   (I)V=IV
0255
                   DO 616 L=1.NB
                   IF(L.NE.I) SUM=SUM+B(I,L)*V(L)
0256
             616
                   VN(I)=A(I)/CONJG(V(I))-SUM
0257
0258
                   DX=AN(1)-A1
                   VN(1)=VI+4LPHA*DX
0259
             C DETERMINE THE MAXIMUM VOLTAGE DIFFERENCE BETWEEN ITERATIONS
0260
                   DELV=CAPS(VN(I)-VII)
0261
                   IFIDELV. GE. DVMAXI DVMAX=DELV
             C UPDATE VOLTAGES AS AVAILABLE
0262
                   V(I)=VN(I)
0263
                   1=1+1
                   IF(1.LE.NB) GO TO 607
0264
             C UPDATE VOLTAGES BY DNE ITERATION
0265
                   N=N+1
             C COMPARE MAXIMUM VOLTAGE DIFFERENCE AGAINST CONVERGENCE CRITERIA
0266
                   IF (DVMAX.LE.CONV) GO TO 300
            C LIMIT ITERATIONS AS A PROTECTION AGAINST DIVERGENCE
0267
                   IF (N.LT.ITER) GO TO 618
0268
                 . WPITE (6,110) N
0269'
                 - GO TO 1973
0270
                   GO TO 606
            C CONVERGENCE OBTAINED-FINAL CALCULATIONS
0271
                   SUM=CMPLX(0.0.0.0)
0272
                   DO 305 I=1.NR
                   0273
            305
            C CALCULATE SWING BUS POWER
0274
                   P(1)=REAL(SUM#CONJG(V(1)))
0275
                   Q(1)=-AIMAG(SUM+CONJG(V(1)))
0276
                   IF(GSNR.EU.O) GU TO 307
```

S

	FORTRAN	IV G	LEVEL	21		MAIN	Γ	ATE =	73082	01/18/00
	0330			WR ITE(6, 126)	TCR					
	0331			WRITE (6,128)	TLD					
	0332			WRITE (6, 130)	TL					
	0333			CALL MISMAT						
	0334		1973	CONTINUE						
	0335			RETURN						
17.00	0336			END						

01/18/00

DATE = 73082

SUBROUTINE INPUT 0001 C THIS SUBROUTINE WRITES BUT THE INPUTTED DATA USED IN THE LOAD FLOW STUDY 0002 (DYPLEX*R ZSEP(160),YSHT(100),R(100),S(100) REAL LENGTH(1331, TS(136), PG(060), PL(063), OG(060), QL(060), 0003 1VSPEC(360).0MIN(360).0MAX(360).C(360).CMVAR(360).P(360).Q(360). ZORASE, NBASE, MAGV, DELTA, ALPHA, CC, CONV, ST INTEGER SB(100), EB(100), NL, NB, MB, NC, BN, ITER, M, BM 0004 COMMON/DATA/YSHT, ZSFR, R, S, LENGTH, TS, PG, PL, QG, QL, VSPEC, QMIN, QMAX, 0005 1C, CMVAR, P, Q, OBASE, NBASE, MAGV, DELTA, ALPHA, CC, ST, CUNV, SB, EB, NB, NL, 3MB, NC, BN, BM, ITER 100 FORMAT("1"//T57," I N P U T D A T A"/) 0006 FORMAT(*0*,T2C.*NO. OF LINES(NL) =*,15,5X,*NO. OF BUSES(NB) =*, 0007 102 AI5.5X. NO. OF CAPACITORS/REACTORS(NC) =1.15.//T20. A'NO. OF VOLTAGE CONTROL BUSES (RM) =1,15//T20. A'BASE FOP INPUTTED DATA(OLD BASE) =',1X,F6.0,1X,'MVA',5X, APRASE FOR OUTPUT (NEW RASE) = ". 1x. F6.C. 1x. "MVA") FORMAT('C' . T20 . TOLERANCE FOR CONVERGENCE = . F9.6.5X. 8000 104 A MAXIMUM NO. OF ITERATIONS ALLOWED = 1,14) 0009 FORMAT(*0 , T2C , ACCELERATION FACTOR = , F6.2, 1X, 106 A' (USED WITH GAUSS-SEIDEL METHOD ONLY)'//T20. A'SWING BUS VOLTAGE MAGNITUDE = ",FIG.5,1X, "PU",5X, A'SWING BUS PHASE = '.F7.2.1X, 'DEGREES'//) FORMAT('0', T2C, 'STATIC CAPACITORS/REACTORS (OLD BASE) 1//T20. 0010 103 A'BUS',5X, SUSCEPTANCE'/) FOPMAT(',T17, 15, 5x, F10.5) 110 0011 FORMAT (*01//T20, *TRANSMISSION LINE DATA (OLD BASE)*/T20, 0012 112 1'Y SHUNT IS TOTAL LINE CHARGING ADMITTANCE / TZO. SB. 5X. 2'FB',14X,'Z SERIFS',19X,'Y SHUNT',11X, LENGTH'/T40, R',11X, X', 314X, 'G', 11X, 'B'/) FORMAT('C' //T20, 'TRANSMISSION LINE DATA (OLD BASE) "/T20, 0013 113 1 Y SHUNT IS DNF-HALF OF THE TOTAL LINE CHARGING ADMITTANCE 1720. 2*S8*,5X,*EB*,14X,*Z SERIES*,19X,*Y SHUNT*,11X,*LENGTH*/T40,*R*, 311X, 'X', 14X, 'G', 11X, 'B'/) FORMAT(* *,T17,I5,2X,I5,5X,F10.5,2X,F10.5,5X,F10.5,2X,F10.5,5X, 0014 114 AF5.1) 0015 116 FORMAT('0', T20, 'TOTAL TRANSMISSION LINES =', 1X, 15) FORMAT('0'//T20, TRANSFORMER LINE DATA (CLD BASE)'/T20, 0016 118 1'Y SHUNT IS TOTAL LINE CHARGING ADMITTANCE"/T20, "SB", 5X, 2'ER',14X,'Z SERIES',19X,'Y SHUNT',12X,'TAP SETTING',11X,'LENGTH'/ 3T40, "P", 11x, "X", 14x, "G", 11x, "B"/) FURMAT ('G' //T2), 'TRANSFORMEP LINE DATA (OLD BASE)'/T20. 0017 119 1'Y SHUNT IS ONE-HALF OF THE TOTAL LINE CHARGING ADMITTANCE ! / T20. 2"58",5X,"EB",14X,"Z SERIES",19X,"Y SHUMIT",12X,"TAP SETTING",11X, 3'LENGTH'/T40,'R',11X,'X',14X,'G',11X,'B'/) 0018 120 FORMAT(* *,T17,I5,2X,I5,5X,F10.5,2X,F10.5,5X,F10.5,2X,F10.5,9X, AF5.3,14X,F5.1) 0019 122 FORMAT('0',T20,'TOTAL TRANSFORMER LINES =',1X,15) FORMAT(*6*//T20,*VOLTAGE CONTROL BUS DATA*//T20,*BUS*,10X,*VSPEC*, 0020 124 Alox, "OMIN", 10x, "QMAX"/T35, "PU", 11x, "MVAR", 10x, "MVAR"/) 0021 "FORMAT(" ",T17,15,6X,F10.3,5X,F10.3,4X,F10.3) 126 FORMATI'C'//T20, 'SCHEDULED BUS POWERS'//T20, BUS', 13X, 0022 128 A*GENERATION*,25X,*LCAD*/T33,*M#*,12X,*MVAR*,14X,*MW*,12X,*MVAR*///) FORMAT(*,T17,T5,5X,F10.3,5X,F10.3,7X,F10.3,5X,F10.3) 0023 130 FORMAT (* *,T17,15,5X,F10.3,6X,*UNSPECIFIED*,5X,F10.3,5X,F10.3) 0024 132 FORMATE * ,T17,15,6x, UNSPECIFIED 4,4x, UNSPECIFIED 5X, F10.3, 0025 134 A5X.F10.31 0026 WRITE (6,100) 0027 WRITE(6,102) NL,NB,NC,BM,ORASE,NBASE

```
INPUT
                                                             DATE = 73082
                                                                                    01/18/00
FORTRAN IV G LEVEL 21
                    WPITE(6,104) CONV.ITER
 0028
                    WPITE (6, 106) ALPHA, MAGY, DELTA
 0029
                    IF (NC . EQ. 0) GO TO 15
 0030
 0031
                    WRITE(6,108)
                    nn 5 I=1,NB
 0032
                    IF (C(I).EQ.0) GO TO 5
 0033
                    C(1)=C(1) *NBASE/OBASE
 0034
 0035
                    WRITE(6,110) I,C(I)
 0036
              5
                    CONTINUE
                    DO 10 I=1.NB
 0037
                    C(I)=C(I)*OBASE/NBASE
 0038
              10
                    CONTINUE
              15
 0039
                    IF(ST.EQ.O) GO TO 17
 0040
                    WRITE (6,112)
 0041
                    GO TO 18
 0042
              17
 0043
                    WRITE (6,113)
              18
                    M=0
 0044
 0045
                    DO 20 I=1.NL
                    YSHT(1)=YSHT(1)*NBASE/OBASE
 0046
 0047
                    ZSER(I)=ZSER(I)*OBASE/NBASE
                    IF (TS(1).NE.0) GO TO 20
 0048
                    WRITE(6,114) SB(I), EB(I), ZSER(I), YSHT(I), LENGTH(I)
 0049
 0050
                    M=M+1
              20
                    CONTINUE
 0051
                    WRITE(6,116) M .
 0052
 0053
                    DC 25 I=1.NL
 0054
                    1-(TS(1).NE.0) GO TO 30
 0055
             25
                    CONTINUE
 0056
                    GO TO 40
 0057
              30
                    IF(ST.EQ.O) GO TO 32
                    WRITE (6,118)
 0058
 0059
                    GD TD 33
              32
 0060
                    WRITE(6,119)
 0061
              33
                    M=0
 0062
                    DO 35 I=1.NL
 0063
                    IF(TS(I).EQ.0) GO TO 35
 0064
                    WRITE(6,120) SB(I), EB(I), ZSER(I), YSHT(I), TS(I), LENGTH(I)
 0065
                    M=M+1
                    CONTINUE
 0066
              35
 0067
                    WPITE(6,122) M
              40
                    CONTINUE
 0068
 0069
                    IF (MB.LE.1) GO TO 50
 0070
                    WR ITE (6, 124)
 0071
                    DO 45 I=2.MB
                    WRITE(6,126) I, VSPEC(I), OMIN(I), OMAX(I)
 0072
             45
                    CONTINUE
 0073
              50
 0074
                    WRITE (6,128)
                    DO 65 I=1.NB
 0075
 0076
                    IF(1.EQ.1) GO TO 60
 0077
                    IF(I.LF.MB) GO TO 55
 0078
                    WRITE(6,130) I.PG(I),QG(I),PL(I),QL(I)
 0079
                    GO TO 65
                    WRITE(6,132)1. PG(1), PL(1), QL(1)
 0080
              55
 0081
                    GO TO 65
                    WPITE(6,134) I,PL(I),QL(I)
 0082
             60
                    CONTINUE
 0093
              65
 0084
                    RETURN
 0085
                    END
```

01/18/00

MISMAT

1

DATE = 73092

0022 410 BMM=BMM+R(I) CONTINUE 0023 415 0024 IF(J.EQ.1) GD TO 420 C CALCULATE THE BUS MISMATCH 0025 BMM=BMM-CMPLX(P(J)+Q(J))-CMPLX(O.O.CMVAR(J)) 0026 420 WRITE (6,102) BMM 0027 IF(J.E0.1) GD TO 425 C CALCULATE THE TOTAL MISMATCH 0028 TWW=TMM+BMM 0029 425 CONTINUE 0030 WRITE(6,104) TMM C CALCULATE THE AVERAGE MISMATCH 0031 AMM=TMM/(NB-1) 0032 WPITE (6,106) AMM

IF(M.EQ.J) GO TO 410

GO TO 415 BMM=BMM+S(I)

GO TO 415

RETURN

END

405

FORTRAN IV G LEVEL 21

0018

0019

0020

0033

CHAPTER III

SAMPLE SOLUTIONS

There are several factors one should consider in comparing methods.

Among these factors include the number of iterations for convergence, time

per iteration, tolerance allowed, type of computer used, size of system

used, and finally the accuracy of the results.

A fourteen bus system was used to compare the Gauss-Seidel method with the Newton-Raphson method. The fourteen bus system contains seventeen transmission lines, three transformer lines, one static capacitor, and four voltage control buses. The input data is given on the next page.

The Gauss-Seidel method used .0001 tolerance for the bus voltages compared to .001 tolerance for the bus powers in the Newton-Raphson method. These tolerances used are approximately equivalent to each other.

Since the same computer and sample power system was used by both methods, one can rule out these factors in comparing methods.

Twenty-two iterations were required before convergence was obtained with the Gauss-Seidel as compared to six iterations with the Newton-Raphson method. However, in comparing time per iteration or total time, the Gauss-Seidel method was approximately 1½ times faster than the Newton-Raphson method. Normally the Newton-Raphson method is faster, but no serious attempt was made to optimize the computer routine as given in this report. (See Chapter IV for suggested program improvements.)

The Newton-Raphson method has better accuracy in its results. This can be seen when comparing the mismatches. At all buses as well as the

total and average mismatches the Newton-Raphson method was better. The results of these studies are given on the next pages.

A moderately large power system was also studied using the developed load-flow program. The results of that study are presented in the next several pages. The sample system contained 57 buses, 3 static capacitors, 6 voltage control buses, 63 transmission lines, and 17 transformer lines.

The program is dimensioned to handle as many as 60 buses, 100 lines (any combination of transmission and transformer lines), 100 static capacitors/reactors, and 59 voltage control buses.

Essentially, the program could handle any size power system. All that is needed is adequate computer core storage to handle the data.

INPUT DATA

NA. UF CAPACITORS/REACTORS (NC.) = 10C. MVA 0.0 DEGREES BASE FOR CUTPUTINEW BASE! -MAXIMUM NO. OF ITERATIONS ALLOWED = SWING BUS PHASE . ACCELERATION FACTOR = 1.65 (USED WITH GAUSS-SEIDEL METHOD ONLY) 7 ICO. MVA NO. OF BUSES(NB) SWING BUS VOLTAGE MAGNITUDE = 1.06000 PU TOLERANCE FOR CONVERGENCE = 0.000100 BASE FOR INPUTTED DATA(OLD BASE) = NO. DF VOLTAGE CONTROL NUSES (BM) 20 NO. OF LINES(NL) =

STATIC CAPACITORS/REACTORS (OLD BASE)

BUS SUSCEPTANCE

0.19000

LENGTH .. 0.32460 TRANSMISSION LINE DATA (OLD RASE)
Y SHUNT IS OME-HALF OF THE TOTAL LINE CHARGING ADMITTANCE
SR ER Y SHUNI . 0000000000000000 0.17512 0.17103 0.04711 0.0907 0.04711 0.127511 0.12703 0.11691 0.17615 0.17615 0.17615 0.17615 0.17615 0.17615 0.17615 0.17615 0.17615 0.17615 0.17615 0.17615 0.17615 0.05917 1.1.1.0 TOTAL TRANSMISSION LINES -0,031/11 0,12711 0,03205 0,72097 6,17093 0.04911 0.01335 0.0438 0.0438 0.12291 0.0438 0.01938 0.05403 0.1.0.0.0

LENGTH 1.0 TAP SETTING 0.978 0.0 TRANSFORMER LINE DATA (OLD DASE)
Y SHUNT IS ONE-HALF OF THE TOTAL LINE CHARGING ADMITTANCE
SR E8 O 0.20912 0.0

00						ŧ
						1
8						
6.0				8		
0.969			1			
				•		
			:		MVAR	0.0 17.70 7.500 7.500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
00		*			ž	9 7 2 4 9 4 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
				2	LOAD	65 325
00			0000	× "	3 2	0.0 21.700 94.200 11.200 0.0 47.800 47.800 7.600 9.000 9.000 9.000 13.500 14.900
00		QMAX MVAR	56.000 40.000 24.000		Σ	2000 470 670 670 670 670 670 670
			*			
0.55618		7	0 00			66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
00 "	m.	NAVE	-40.000 0.0 -6.000		MVAR	UNSPECTETED UNSPECTETED UNSPECTETED UNSPECTETED UNSPECTETED 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
•	. ¥	s a			MITION	UNN SERVICE OF SERVICE
0.0	TO SO	ບ_	w000	IER S	GENERATION	ED
. C	OKMEN RDL F	VSPEC	1.045	in Pri	3	UNSPECIFIED 40.000 0.00 0.00 0.00 0.00 0.00 0.00 0
0. 4. 4 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	VOLTAGE CONTROL RUS DATA			SCHEDULED BUS POWERS		UNSF.
1	TAL T	v		HEDOL	S	
- 00 G	E. \$	PUS	NW4R	SC	808	100400V80C11111

GAUSS-SEIDEL TECHNIQUE CONVERGED IN 22 ITERATIONS. ALL VALUES ON 100. MVA BASE

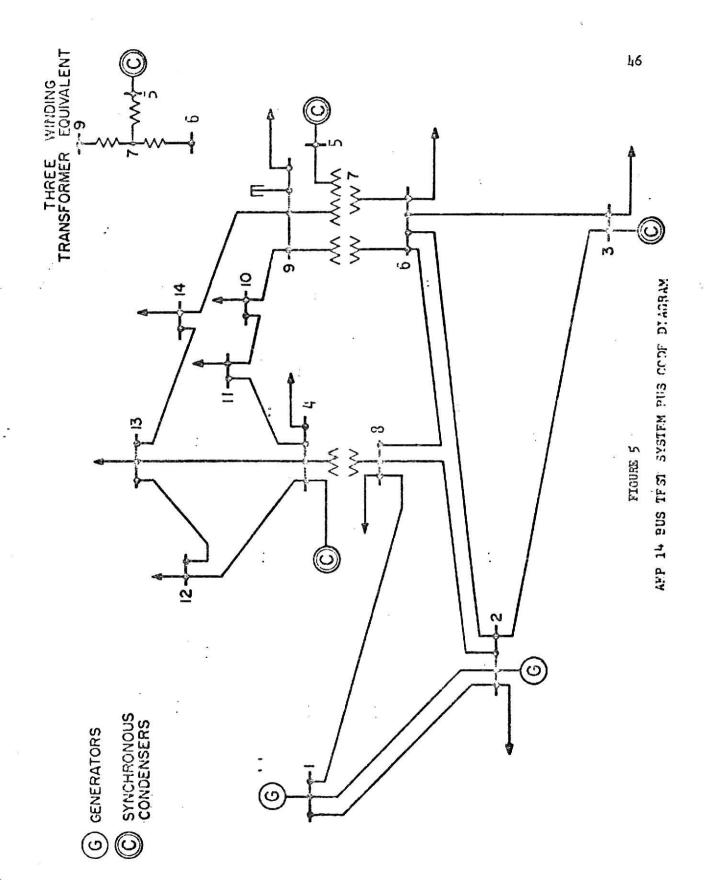
		VOLTAGE MAGNITUDE PU	E NELTA(DEGS)	GENERATION	I ON MVAR	LOAD	MVAR	INJECTED POWER (STATIC) MVAR
AUS	-	1.050 2 8	0.0 156.800 -20.369 75.549 3.506	232,349	-16.864	0.0	0.0	
808	N	1 045 3 3	-4.9797 -152.507 27.627 73.184 3.567 56.136 -2.287 41.518 0.758	40.000	42,383	21.700	12.700	
RUS	en .	1.010	-70.464 1.581 -23.330 2.806	0.0	23,399	94.200	19.000	
AUS	•	1.070 11 12 13 13	-14.2210 7.349 3.469 7.740 2.494 17.746 7.169 -44.354 -8.393	° °	12,261	11,200	7.500	
BUS	ĸ	1.090	-13.3651 0.027 17.359	0.0	17,371	0 0	0.0	
BUS	•	1.019 2.2.3 3.3 7.7	-10.3229 23.701 -5.419 -61.189 15.646 28.091 -9.423 16.095 -0.322	0.0 TAP 0.978 TAP 0.969	0.0	47.800	-3.900	
RUS	7	1.062 5 9 6	-0.027 -16.912 29.104 5.794 -28.091 11.115	0.0	0*0	0.0	0.0	
BUS	6 0	1.020	-8.7821 -40.616 -1.628 61.705 -15.349 44.054 12.821	0.0 TAP 0.932	o.	7.600	1.600	p.
RUS	•	1.056 7 13 14 14	-28,105 -4,990. 5,247 4,293 9,436 3,664 -16,095 1,627	0.	0.0	29.500	16.600	21.201
Bus	01	1,051	-5.234 -4.263 -3.784 -1.524	0.0	0.0	000*6	5.800	
808	=	1.057	-14-1941	0.0	0.0	3.500	1-800	#1 1885

-0.005

0.003

AVERAGE MISMATCH

140													*										
	1.400	5.800	5-000												¥								
	*				MVAR	78.550	21.201	73.500	26.251	o = 8													
	6.100	13.500	14.900																				
		WE00*		8	X	272.349		259,000	13.349	ES	-16.863	-0.018	-0.023	-0.012	420°0-	0.024	-0.03	0.013		0.002	6.005	-0.060	
	0.0	0	0.0	. •						MISMATCHES	1			11257	2200							7222	
			v v		3.50	12				Σ	232,349	0.032	0.022	120.0	0.038	-0.013	-0.016	-0.018	0.00	-0-075	-0.003	0.035	
	0.0	0.0	0.0				ORS	17	50														
-3.354 1.553	755 -2.344 0.739	-6.752 -0.734 1.688	389 -3.416 -1.579	•3	TOTALS	1110N	STATIC CAP/REACTORS	ě	.osses					•							53	TOTAL MISMATCH	
3.797	-15.0755 -7.708 1.614	-17.535 -1.607 5.637	-16.0389 -9.319 -5.583			GENERATION	STATIC	LOAD	LINE LOSSES													TOTAL	
701	1.055	1.050 4 12 14	1.036											ž									
	21 .	ഇ	•			¥			8														


BUS

RUS

BUS

			VOLTAGE							INJECTED POWE
				E DELTATE	TEGS I	GENERA	TION	1.0	40	(STATIC)
			PU			, GENERA	MVAR	MM '	MAN	MVAR
	BUS	,	1.060	0.0		232.386	-16.891	0.0	0.0	
	503		2			232.300	-10.071			
				75.553	3.499					
	BUS	2	1.045	-4.98	109	40,000	42.377	21.700	12.700	
	505	-		-152.538						
•			3	73.188	3.565		5 10			
			6	56.138	-2.292		32			
			8	41.512	0.757					
	BUS	3	1.010	-12.71	80	0.0	23.391	94.200	19.000	
			2	-70.868	1.585					5
			6	-23.333	2.806		·			
	BUS	4	1.070	-14.22	27	0.0	12.234	11.200	7.500	
			11	7.341	3.472					
	0.00		12	7.782	2.492			•		
				17.740	7.170			n n n		
			8	-44.063	-8.399					
	BUS	5	- 1.090	-13.36	582	0.0	17.362	0.0	C.0	
				-0.000	17.362	 				
	805	6	1.019	-10.32	242	0.0	0.0	47.860	-3.000	
			2	-54.461	3.398					-
	8			23.705	-5.418					
			8	-61.220	15.661		•			
				28.087	-9.413	TAP 0.978				
			9	16.090	-0.320	TAP 0.969				
	BUS	_7_		-13.36	582		0:0	C.O	C.0	
			5 9	0.000	-16.915 5.786			¥		
			6	28.087 -28.087	11.105					
		-		23. 701	110103					
	BUS	8		-8.78		C.O	0.0	7.600	1.600	
			1	-72.789						
•			2	-40.610	-1.628		3		•	(a)
			6 4	61.736 44.063	-15.362	TAP C.932				355
				77.003	120020	1AT 00732				·····
	BUS	9	1.056			0.0	0.0	29.500	16.600	21.201
				-28.087	-4.984					
			10 14	0.439	4.306 3.665				8.4)	
			14 6	-16.090						
	2116	7.0	1 051	16 16)43	2.0	0.0	9.000	5.800	
	305	10	1.051				0.0	7.000	9.500	
			11	-5,226 :- -3,775						

		4 10	-7.286 3.787	-3.357 1.558					
RUS	12	1.655	-15.07	775	5.0	0.0		6.17.	1.60
		4 13	-7.710 1.610	-2.343 0.743	manufacture in the same of the			entre (s. en en emañ a l em	
BUS	13	1.050 4	-15.15 -17.528	-6.754	0.0	0.0		13.500	5.80
		12	-1.604	-0.737					
		14	5.632	1.692					
BUS	14	1.036	-16.03		0.0	0.0		14.906	5.00
		9 13	-9.321 -5.579	-3.417 -1.583					201002201000000
				•	W.	•			
	×*				•				<u> </u>
					22 E				
<u> </u>			т	OTALS			MW	MVAR	
			GENERAT	ION			272.386	78.473	
			STATIC	CAP/REACTOR	S			21.201	
			LOAD				259.000	73.500	
			LINE LO	SSES	8		13.386	25.174	
				-			X		
					alan and a state of the state o				-
					MI	SMATCHES	5		
				•••••					
					232.386		-16.891		
				•	232.386 -0.006		-16.891 0.006		
				•	232.386		-16.891		
				•	232.386 -0.006 -0.001 -0.001 -0.000		-16.891 0.006 -0.000 0.002 0.000		
					232.386 -0.006 -0.001 -0.001 -(.000 0.001		-16.891 0.006 -0.000 0.002 0.000 0.007		
				•	232.386 -0.006 -0.01 -0.001 -0.000 0.001 0.000		-16.891 0.006 -0.000 0.002 0.000 0.307 -0.624		
					232.386 -0.006 -0.001 -0.001 -(.000 0.001 1.000 0.000		-16.891 0.606 -0.000 0.602 0.000 0.307 -0.724 0.023		
					232.386 -0.006 -0.001 -0.001 -(.000 0.001 0.000 0.000		-16.891 0.606 -0.000 0.002 0.000 0.307 -0.724 0.023 0.310		
					232.386 -0.006 -0.001 -0.001 -(.000 0.001 000 0.001 -0.001		-16.891 0.606 -0.000 0.002 0.000 0.307 -0.724 0.023 0.310 -0.001		
					232.386 -0.006 -0.001 -0.001 -0.000 0.001 0.000 0.001 -0.001 0.001		-16.891 0.606 -0.000 0.602 0.000 0.307 -0.724 0.023 0.310 -0.061 0.001 0.000		
					232.386 -0.006 -0.001 -0.001 -(.000 0.001 0.000 0.001 -0.001 0.000 -0.000		-16.891 0.606 -0.000 0.602 0.000 0.307 -0.724 0.023 0.310 -0.001 0.000 0.000		
					232.386 -0.006 -0.001 -0.001 -0.000 0.001 0.000 0.001 -0.001 0.000 -0.000 0.000		-16.891 0.006 -0.000 0.002 0.002 0.007 -0.724 0.023 0.310 -0.961 0.000 0.000 0.000		
			TOTAL	I SMATCH	232.386 -0.606 -0.001 -0.001 -(.000 0.001 0.001 -0.001 0.001 0.000 -0.000 0.000		-16.891 0.006 -0.000 0.002 0.000 0.307 -0.724 0.023 0.310 -0.001 0.000 0.300 0.300		
					232.386 -0.006 -0.001 -0.001 -0.000 0.001 0.000 0.001 -0.001 0.000 -0.000 0.000		-16.891 0.006 -0.000 0.002 0.002 0.007 -0.724 0.023 0.310 -0.961 0.000 0.000 0.000		
				I SMATCH	232.386 -0.606 -0.001 -0.001 -(.000 0.001 0.001 -0.001 0.001 0.000 -0.000 0.000		-16.891 0.006 -0.000 0.002 0.000 0.307 -0.724 0.023 0.310 -0.001 0.000 0.300 0.300		
				I SMATCH	232.386 -0.606 -0.001 -0.001 -(.000 0.001 0.001 -0.001 0.001 0.000 -0.000 0.000		-16.891 0.006 -0.000 0.002 0.000 0.307 -0.724 0.023 0.310 -0.001 0.000 0.300 0.300		
				I SMATCH	232.386 -0.606 -0.001 -0.001 -(.000 0.001 0.001 -0.001 0.001 0.000 -0.000 0.000		-16.891 0.006 -0.000 0.002 0.000 0.307 -0.724 0.023 0.310 -0.001 0.000 0.300 0.300		

								- 350 50
					•		· · · · · · · · · · · · · · · · · · ·	
			<u> </u>	A C T U S	T A			
	NO. OF LINES	(ML) = R)	NO. OF BUSES	S(NA) = 57	NO. OF CAL	PACITORS/PFACTOR	(SINC) = 3	
	NO. DE VOLTAG	SE CONTROL BUS	ES (BM) = 6	5		The contract of the contract o		
- V	3.45E E18 TVP	בותואלים ביינו	BASE1 = 103	S. WVA BA	SE FOR OUTPUT	(NEW BASE) = 1	CO. MVA	
		R CONVERGENCE				S ALLOWER = 75		
						J PELONE ()		
		FACTOR = 1.6						
	SWING AUS VOL	LTAGE MAGNITUD	E = 1.04020	PU SWING	BUS PHASE =	C.3 DEGREES		
	20 N	Senting to Marcher March	Market Base Secretarian					
200	STATIC CAPACI	TORS/REACTORS	(OLD BASE)					
	BUS SUSCE	POTANCE						
		1 1000						
ii.		35933 36370			- ER			in the second
					•			
		LINE DATA INL			+1005			
		AHALF IF IME	TOTAL LINE CH	ANKPINE STATI	TANCE			a a
			ERIES	· Y	SHUNT	LENGTH		
			ER I ES X	. G	SHUNT B	LENGTH		
%	\$8 EB	Z S 18 3.00839	X 0.02800	G C.O	B J. C6450	1.0		
9	\$8 EB	Z S: 18 2.00839 2.02985	X 0.02800 J.08500	G C•O C•C	B 0.06450 0.04090	1.0		
	\$8 EB	2 Sing 2	x 0.02800 0.02500 0.03660	6 0.0 0.0	8 0.06450 0.04090 0.01900	1.0 1.0 1.0		
	1 2 2 3 3 8 8 9	2 Sing 2	X 0.02800 0.02500 0.03660 0.13200	6 0.0 0.0 0.0	8 0.06450 0.04090 0.01900 0.01290	1.0 1.3 1.0 1.0		
*	1 2 2 3 3 8 8 9 8 4	2 S R 0.00039 0.22980 0.01120 0.06250 0.04300	X 3.02800 3.02500 3.03660 3.13230 0.14834	6 0.0 0.0 0.0 0.0	B 0.06450 0.04090 0.01990 0.01290 0.01740	1.0 1.0 1.0 1.0		
ž.	1 2 2 3 3 8 8 9	2 Sing 2	X 0.02800 0.02500 0.03660 0.13200	6 0.0 0.0 0.0	8 0.06450 0.04090 0.01900 0.01290	1.0 1.3 1.0 1.0		
8	1 2 2 3 3 8 8 9 9 4 4 10	Z Sing 2	X 0.02800 0.02500 0.03660 0.13200 0.14830 0.14830	6 C.C O.U C.O O.O O.O	B 0.06450 0.24090 0.01900 0.01290 0.01740	1.0 1.0 1.0 1.0 1.0	1	
*	1 2 2 3 3 8 8 9 8 4 4 10 4 5	Z Sing 2	x 0.02800 0.02500 0.03660 0.13200 0.14800 0.17300	6 0.0 0.0 0.0 0.0 0.0 0.0	B 0.06450 0.04090 0.01900 0.01290 0.01740 0.01380 0.02350	1.0 1.0 1.0 1.0 1.0		
	1 2 2 3 3 8 8 9 8 4 10 5 5 6	Z Sing 2	x 9.02800 0.02500 0.13200 0.14800 0.17300 0.17300 0.17300 0.16790 0.08480	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	B 0.06450 0.24090 0.01900 0.01290 0.01740 0.01380 0.02350 0.02350 0.02200 0.01090	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
N N	1 2 3 3 8 8 9 8 4 10 4 5 5 6 6 12 6 7	Z Sing 2.00339	X 0.02800 0.03500 0.03660 0.13200 0.14800 0.17300 0.17300 0.05050 0.08480 0.29500	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	B 0.06450 0.04090 0.01900 0.01290 0.01740 0.02350 0.02350 0.02740 0.0200 0.01090 0.03860	1.0 1.0 1.0 1.0 1.0 1.0 1.3 1.0 1.0		
	1 2 2 3 3 8 8 9 8 4 10 4 5 5 6 6 12 6 11 6 7 6 13	Z Sing Control of the	x 0.02800 3.03500 3.03660 3.13200 0.14830 0.17300 2.05050 0.16790 0.08480 0.29500 3.15330	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	B 0.06450 0.04090 0.01900 0.01290 0.01740 0.02350 0.02740 0.02260 0.01090 0.03860 0.0230	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
	1 2 3 3 8 8 9 8 4 10 4 5 5 6 6 12 6 11 6 7 6 13 13 14	Z Sing Control of the	X 0.02800 0.02500 0.03660 0.13200 0.14800 0.17300 0.17300 0.05050 0.16760 0.08480 0.29500 0.15300 0.04340	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	B 0.06450 0.24090 0.01900 0.01290 0.02350 0.02350 0.02740 0.02200 0.01090 0.03860 0.02030 0.02030	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		7
	S8 EB 1 2 2 3 3 8 8 9 8 4 4 10 4 5 5 6 6 12 6 11 6 7 6 13 13 15	Z Sing 2	x 9.02800 0.02500 0.03660 9.13200 0.14800 0.17300 0.17300 0.05050 0.08480 0.29500 0.15300 0.04340 0.03690	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	B 0.06450 0.24090 0.01900 0.01290 0.01740 0.02350 0.02350 0.02250 0.02250 0.03860 0.02650 0.00550 0.01156	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
	S8 EB 1 2 2 3 3 8 8 8 9 8 4 10 5 5 6 6 12 6 11 6 7 6 13 13 14 13 15	Z Si 9 3.00839 3.2283 0.01120 0.04303 3.2200 0.2359 0.03590 0.2559 0.256489 0.26890 0.2690 0.2690 0.2690	X 0.02800 0.03500 0.03660 0.13200 0.14800 0.17300 0.17300 0.05050 0.16790 0.08480 0.29500 0.15300 0.15300 0.04340 0.29500 0.04340 0.29500 0.04340	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	B 0.06450 0.04090 0.01900 0.01290 0.01740 0.02350 0.02350 0.02360 0.03860 0.03860 0.0230 0.0150	1.0 1.3 1.0 1.0 1.0 1.3 1.0 1.3 1.0 1.3 1.0		
	S8 EB 1 2 2 3 3 8 8 9 8 4 4 10 4 5 5 6 6 12 6 11 6 13 13 14 13 15 1 15	Z Sing Control of the	X 0.02800 0.02500 0.03660 0.13200 0.14830 0.17301 0.05050 0.16790 0.08480 0.29500 0.15300 0.15300 0.04340 0.02600	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	B 0.06450 0.24090 0.01900 0.01290 0.02350 0.02350 0.02200 0.01090 0.03860 0.0250 0.0150 0.0250 0.02740 0.02740	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
	\$8 EB 1 2 2 3 3 8 8 9 8 4 4 10 4 5 5 6 6 12 6 11 6 7 6 13 13 14 13 15 1 15 1 16 1 17	Z Sing Company	X 0.02800 0.03500 0.03660 0.13200 0.14800 0.17300 0.17300 0.05050 0.15760 0.08480 0.29500 0.15300 0.04340 0.02600 0.043800	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	B 0.06450 0.24090 0.01290 0.01290 0.01240 0.02350 0.02740 0.02260 0.01090 0.03860 0.02030 0.00550 0.0150 0.0150	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
	\$8 EB 1 2 2 3 3 8 8 8 9 8 4 4 10 5 6 6 12 6 13 13 14 13 15 1 15 1 16 1 17 3 15	Z Sing Communication of the co	X 0.02800 0.52500 0.03660 0.13200 0.14800 0.17300 0.17300 0.05050 0.16790 0.08480 0.29500 0.15300 0.15300 0.26690 0.15800 0.15800	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	B 0.06450 0.24090 0.01900 0.01290 0.01740 0.02350 0.02350 0.02200 0.01090 0.03860 0.02030 0.00550 0.01156 0.04940 0.02730 0.01430 0.01430 0.01430	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
	\$8 EB 1 2 2 3 3 8 8 9 8 4 4 10 4 5 5 6 6 12 6 11 6 7 6 13 13 14 13 15 1 15 1 16 1 17 3 15 9 4	Z Si 9 3.00339 3.2285 3.0255 3.04303 3.2200 0.2399 0.03590 0.2590 3.56480 3.56480 3.56480 3.6481 3.1320 3.92690 0.21780 3.64540 3.64540 3.64540 3.64540 3.64520 3.63020	X 0.02808 0.02500 0.03660 0.13200 0.14830 0.17300 0.05050 0.16790 0.08480 0.29500 0.15300 0.34340 0.08690 0.15800 0.15800 0.15800 0.15800 0.15800	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	B 0. C6450 0. C4090 0. 01900 0. 01290 0. 01740 0. 02350 0. 02750 0. 0350 0. 0350 0. 0350 0. 0350 0. 04940 0. 02720 0. 01430 0. 02720 0. 01430 0. 02720 0. 01430 0. 02720 0. 01430 0. 02720 0. 01620	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
	\$8 EB 1 2 2 3 3 8 8 9 8 4 4 10 4 5 5 6 6 12 6 11 6 13 13 14 13 15 1 15 1 16 1 17 3 15 9 4 10 5	Z Si 3.00339 3.2285 0.01250 0.06250 0.06250 0.03993 0.03599 0.2599 0.2599 0.2599 0.2590 0.2590 0.2580 0.6480 0.6480 0.6480 0.6480 0.6480 0.6480 0.6380 0.6380 0.6380 0.6380 0.6480	X 0.02800 0.02500 0.03660 0.13200 0.14850 0.14850 0.15790 0.08480 0.29500 0.15300 0.04340 0.02600 0.10800 0.10800 0.05300 0.10800	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	B 0.06450 0.24090 0.01900 0.01290 0.02350 0.02740 0.02200 0.01090 0.03860 0.02030 0.00550 0.01156 0.04940 0.02730 0.01430 0.02730 0.01430 0.0620 0.0620 0.0620	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
	\$8 EB 1 2 2 3 3 8 8 9 8 4 4 10 4 5 5 6 6 12 6 11 6 7 6 13 13 14 13 15 1 15 1 16 1 17 3 15 9 4 12 7	Z Sing Comments of the comment of th	x 9.02800 0.03500 0.03660 9.13200 0.14800 0.17300 0.15790 0.08480 0.29500 0.15300 0.4340 0.26600 0.10800 0.05300	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	B 0.06450 0.24090 0.01900 0.01290 0.01740 0.02350 0.02740 0.02260 0.01090 0.03860 0.02030 0.00550 0.01150 0.04940 0.02730 0.01430 0.02720 0.0620 0.0976	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
	\$8 EB 1 2 2 3 3 8 8 8 9 8 4 4 10 5 6 6 12 6 13 13 15 1 15 1 16 1 17 3 15 9 4 12 5 11 13	Z Si 9 3.00839 3.2285 3.0255 3.0255 3.0250 6.2399 6.03590 0.2590 0.2590 0.2590 0.2590 0.2770 0.2390 0.2590 0.2770 0.2390 0.2380 0.2	X 9.02800 3.03500 3.03660 9.13200 0.14800 0.17300 0.17300 0.08480 0.29500 0.15300 0.15300 0.04340 0.36690 0.05300 0.05300 0.05300 0.05300 0.05300 0.05300 0.05300 0.05300 0.05300 0.05300	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	B 0.06450 0.24090 0.01900 0.01290 0.01740 0.02350 0.02350 0.02200 0.01090 0.03860 0.02050 0.0150 0.0150 0.01430 0.02720 0.0620 0.00550 0.01430 0.02720 0.0620 0.00940	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
	\$8 EB 1 2 2 3 3 8 8 9 8 4 4 10 4 5 5 6 6 12 6 11 6 13 13 14 13 15 1 15 1 16 1 17 3 15 1 16 1 17 3 15 1 27 11 13 7 13	Z Sing Control of the	X 0.02800 0.02500 0.03660 0.13200 0.14830 0.17301 0.05050 0.16790 0.08480 0.29500 0.15300 0.15300 0.04340 0.2600 0.13800 0.05300 0.05410 0.07120 0.17620 0.17620 0.17620 0.17620 0.17620 0.17620 0.17620 0.17620	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	B 0.06450 0.24090 0.01290 0.01290 0.02350 0.02250 0.01090 0.03860 0.02550 0.01150 0.02550 0.01150 0.02730 0.02730 0.02730 0.01430 0.02730 0.01430 0.02730 0.01430 0.02730 0.01430	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
	\$8 EB 1 2 2 3 3 8 8 8 9 8 4 4 10 5 6 6 12 6 13 13 15 1 15 1 16 1 17 3 15 9 4 12 5 11 13	Z Si 9 3.00839 3.2285 3.0255 3.0255 3.0250 6.2399 6.03590 0.2590 0.2590 0.2590 0.2590 0.2770 0.2390 0.2590 0.2770 0.2390 0.2380 0.2	X 9.02800 3.03500 3.03660 9.13200 0.14800 0.17300 0.17300 0.08480 0.29500 0.15300 0.15300 0.04340 0.36690 0.05300 0.05300 0.05300 0.05300 0.05300 0.05300 0.05300 0.05300 0.05300 0.05300	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	B 0.06450 0.24090 0.01900 0.01290 0.01740 0.02350 0.02350 0.02200 0.01090 0.03860 0.02050 0.0150 0.0150 0.01430 0.02720 0.0620 0.00550 0.01430 0.02720 0.0620 0.00940	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		

	18	19	0.46100	0.68500	0.0	0.0	1.3	
	19	20	0.28300	0.43400	0.0	0.0	1.0	
	21	22	0.07360	0.11700	0.0	0.0	1.0	
	22	23	U.C. 395	3.01520	0.0	0.0	1.0	
	23	24	0.16600	2.25630	0.0	0.30420	1.5	•
	25	27	J. 16503	2.25+30	0.0	0.0	1.0	
	27	28	0.06130	0.09540	0.0	0.0	1.0	
	28	29	0.04180	0.05370	0.0	0.0	1.0	
	25	30	0.13500	0.20200	0.3	0.3	1.0	
	30	31	J.32600	3.49733	0.3	G.0	1.0	
	31	32	3.50700	0.75540	0.0	0.0	1.0	
	32	33	0.03920	0.03600	U.C	0.0	1.0	
	34	35	0.05200	0.07800	0.0	. 0.00160	1.0	
	35	36	0.04300	0.05370	0.0	0.0080	1.0	24. (A*
	36	37	0.02900	0.03660	0.0	0.0	1.0	
	37	3.8	U.16513	0.10,30	Û.U	6. J1006	1.0	
	37	39	0.02390	0.03793	0.0	0.0	1.0	
	36	43	0.03000	3.04500	0.3	0.0	1.0	
	22	38	0.61920	0.02950	6.0	0.0	1.0	
	41	42	0.20700	0.35200	0.0	0.0	1.0	
	41	43	0.0	3.41200	0.0	0.0	1.0	
	38	44	0.02890	2.05853	V.0 -	0.03130	1.0	
	46	47	0.02500	0.36300	0.0	0.00160	1.0	
	47	48	C.C1823	0.02330	3.0	0.0	1.0	
¥1	48	49	0.08340	0.12906	0.0	0.00240	1.3	
	49	50	0.08010	0.12890	0.0	C. 0	1.0	¥
é	50	51	0.13860	0.22000	0.0	0.0	1.0	
	29	52	0.14425	0.1873C	0.0	ú. Ó.	1.0	
	52	53	0.07620	0.09840	0.0	0.0 .	1.0	
	53	54	0.18783	0.23200	0.0	0.0	1.0	
	54	55	0.17323	0.22650	0.0	0.0	1.0	
ST ST	44	45	0.06240	0.12420	. 0.0	0.30200	1.0	
	56	41	0.55300	0.54900	0.0	û.J	1.0	
	56	42	··21250	J.354JJ	5.5	Ú.O	1.0	
	57	56	0.17400	0.26000	0.3	0.0	1.0	
	38	49	0.11500	0.177.0	0.0	0.00300	1.0	
	38	48	0.03120	0.04820	3.0	0.0	1.0	

			INE DATA (OL	D BASE) E TOTAL LINE CHA	DCING ADMI	TYANCE		
*	SB SB	EB 12 04		SERIES		SHUNT	TAP SETTING	LENGTH
			Đ	X	Ğ	9		
	8	18	3.3	0.55500	0.0	0.0	0.970	1.0
	8	18	0.0	. 0.43000	0.3	0.0	0.978	1.0
85	21	20	0.0	0.77673	0.0	0.0	1.043	1.0
	24	25	0.0	1.18200	0.0	0.0	1.000	1.0
	24	25	i.9	1.233.0	6.5	6.0	1.000	1.0
	24	26	0.0	0.04730	0.0	0.0	1.043	1.0
	10	29	0.6	0.96480	0.0	5.0	0.967	1.0
	34	32	6.0	0.95370	3.0	. 6.0	0.975	1.0
	11	41	0.0	0.74700	0.0	0.0	0.955	1.0
	15	45	0.0	0.19420	0.u	0. U	0.955	1.0
	14	46	A. j	0.0735	0.0	L.O	0.923	1.0
	12	51	0.0	0. 37125	ú.ū	0.0	0.930	1.0
	13	49	∴ 0	0.19100	J.C.	0.0	0.695	1.0

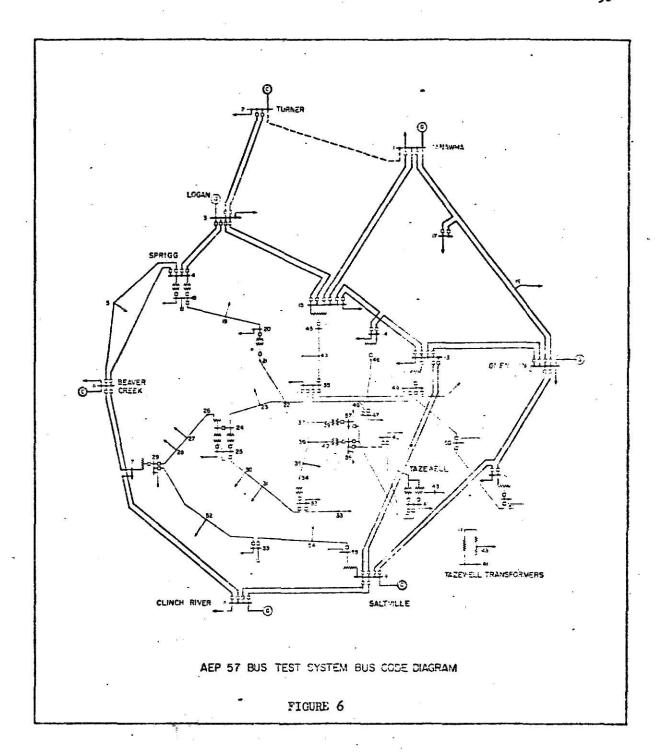
TOTAL TRANSMISSION LINES =

	11	43 C.3 56 C.3	0.15300 1.1950	0.0	0.0	0.958	1.0
	39	57 0.0	. 1.35500	0.0 0.0	0.0	0.980	1.0
		55 (.)	3.12050	5.5	0.0	3.940	1.0
	TOTAL	LSTAZEDSMED FIN	ES = 17		19		
							
	VOLTA	SE CONTROL BUS D			9 ×		
				9			
	305	VSPEC PU	OMIN MVAR	QMAX MVAR	*		
	2	1.010	-17.000	50.000		120	
	3),585	-13.000	63.000			
	4	€.98€	-8.030	25.000			
	5	1.305	-140.000	260.000			
200	5 7	0.980 1.015	-3.000 -50.000	9.000 155.000		1.2	
37		. 1.517	-50.00	155.000		-	
	66:450	# 55 Bus 00005					25
	20 HEAL	JLED BUS POWERS					
		····					
	BUS		ATION		DAD	- S	
	BUS	GENER MW	ATION MVAR	MW LE	DAD MVAR		
	BUS		MVAR			*	
	1	fin25=ClelEu WM	MVAR IMSPECIFIED	55.050	MVAR 17.000	× ×	
	1 2	UNSPECIFIED 0.0	MVAR IMSPECIFIED UNSPECIFIED	55.050 3.050	17.000 88.000		
	1 2 3	#W #NSPECIFIED 6.0 40.000	MVAR IMSPECIFIED UNSPECIFIED UNSPECIFIED	55.050 3.000 41.000	17.000 88.000 21.000		
	1 2 3 4	#W UNSPECIFIED 0.0 40.000 0.0	MVAR INSPECIFIED UNSPECIFIED UNSPECIFIED	55.030 3.000 41.000 75.000	17.000 88.000 21.000 2.000		
	1 2 3 4	#W UNSPECIFIED 0.0 40.000 0.0 450.000	MVAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED	55.050 3.000 41.000 75.600	17.000 88.000 21.000 2.000 22.000		
	1 2 3 4	### UNSPECIFIED 0.0 40.000 0.0 450.000	MVAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED	55.030 3.000 41.000 75.000 150.000 121.000	17.000 98.000 21.000 2.000 22.000 26.000		
	1 2 3 4 5 6 7	#W UNSPECIFIED 0.0 40.000 0.0 450.000	MVAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED	55.050 3.000 41.000 75.600	17.000 88.000 21.000 2.000 22.000		
	1 2 3 4 5 6 7	### ##################################	MVAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED 0.0 0.0	55.050 3.000 41.000 75.000 150.000 121.000 277.010 0.0 13.000	17.000 88.000 21.000 22.000 22.000 26.000 24.000 0.0		
	1 2 3 4 5 6 7	### UNSPECIFIED 0.0 40.000 40.000 450.000 313.000 0.0 0.0 0.0	MVAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED O-9 G-9 G-0 O-0	55.030 3.000 41.000 75.000 150.000 121.000 0.0 13.000 0.0	17.000 88.000 21.000 22.000 22.000 26.000 24.000 0.0		
	1 2 3 4 5 6 7 8 9	### UNSPECIFIES 0.0 40.000 40.000 450.000 3.3 310.000 0.0 0.0 0.0	MVAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED 0.9 0.0 0.0	55.030 3.010 41.099 75.000 150.000 121.009 0.0 13.000 0.0	17.000 88.000 21.000 2.000 22.000 26.000 24.000 0.0 4.000 0.0		
	1 2 3 4 5 6 7 8 9 10	### ##################################	MVAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED O.9 0.0 0.0 0.0	55.000 3.000 41.000 75.000 150.000 121.000 0.0 13.000 0.0 0.0 5,000	17.000 88.000 21.000 2.000 22.000 26.000 24.000 0.0 4.000 0.0 2.000		
	1 2 3 4 5 6 7 8 9	### UNSPECIFIES 0.0 40.000 40.000 450.000 3.3 310.000 0.0 0.0 0.0	MVAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED 0.9 0.0 0.0	55.030 3.010 41.099 75.000 150.000 121.009 0.0 13.000 0.0	17.000 88.000 21.000 2.000 22.000 26.000 24.000 0.0 4.000 0.0		
	1 2 3 4 5 6 7 8 9 10 11 12	### ##################################	MVAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED ONSPECIFIED	55.050 3.000 41.000 75.000 150.000 121.000 0.0 13.000 0.0 0.0 13.000 13.000 13.000 13.000	17.000 88.000 21.000 22.000 22.000 22.000 24.000 0.0 4.000 0.0 0.0		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	### ##################################	MVAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED O.9 O.0 O.0 O.0 O.0 O.0 O.0 O.0	55.000 3.000 41.000 75.000 150.000 121.000 0.0 13.000 0.0 0.0 18.000 10.500 10.500 22.000 43.000	17.000 88.000 21.000 22.000 22.000 26.000 24.000 0.0 4.000 0.0 2.000 2.300 5.300 5.000		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	### ##################################	MVAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED O.9 O.0 O.0 O.0 O.0 O.0 O.0 O.0	55.050 3.000 41.000 75.000 150.000 121.000 0.0 13.000 0.0 (.0 5.000 18.010 10.500 22.000 43.000 42.000	17.000 88.000 21.000 22.000 22.000 24.000 0.0 4.000 0.0 0.0 2.000 2.000 2.000 2.000 3.000 8.000		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	### #################################	MVAR IB-SPECIFIED UNSPECIFIED	55.050 3.000 41.099 75.099 150.000 121.009 377.000 0.0 0.0 0.0 0.0 13.000 0.0 13.000 22.000 43.000 42.000 42.000	17.000 88.000 21.000 22.000 26.000 24.000 0.0 4.000 0.0 2.000 2.000 2.000 2.000 3.000 3.000 8.000 9.800		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	### ##################################	#VAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED O	55.000 3.000 41.000 75.000 150.000 121.000 0.0 13.000 0.0 0.0 18.000 10.500 22.000 43.000 42.000 27.200 3.300	#VAR 17.000 88.000 21.000 2.000 22.000 26.000 24.000 0.0 4.000 0.0 2.000 2.300 5.300 5.000 8.000 9.800 9.800		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	### ##################################	#VAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	55.050 3.000 41.050 75.000 150.000 121.000 0.0 13.000 0.0 0.0 18.010 10.500 22.000 43.000 42.000 27.235 3.350	17.000 88.000 21.000 22.000 22.000 24.000 0.0 4.000 0.0 2.000 2.000 2.000 2.000 3.000 8.000 9.800 9.800 0.600 1.000		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	### ##################################	#VAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED O	55.050 3.010 41.000 75.000 150.000 121.000 0.0 0.0 0.0 0.0 13.000 0.0 13.000 10.500 22.000 43.000 43.000 43.000 22.000 43.000 22.000 43.000 0.0 23.000 23.000 24.000 25.000 26.000 27.235 3.350 0.00	#VAR 17.000 88.000 21.000 2.000 22.000 26.000 24.000 0.0 4.000 0.0 2.000 2.300 5.300 5.000 8.000 9.800 9.800		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	### ##################################	#VAR IMSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED ONSPECIFIED	55.050 3.000 41.050 75.000 150.000 121.000 0.0 13.000 0.0 0.0 18.010 10.500 22.000 43.000 42.000 27.235 3.350	17.000 88.000 21.000 22.000 22.000 24.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	### ##################################	MVAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED ONO ONO ONO ONO ONO ONO ONO O	55.050 3.000 41.000 75.000 150.000 121.000 0.0 13.000 0.0 13.000 0.0 18.010 10.500 22.000 43.000 42.000 27.235 3.350 0.0 6.300 0.0	17.000 88.000 21.000 22.000 22.000 24.000 0.0 4.000 0.0 2.000 2.000 2.000 2.000 3.000 8.000 9.800 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 27 27 27 22 23 24 25	### #################################	#VAR IB-SPECIFIED UNSPECIFIED	55.050 3.000 41.099 75.090 150.000 121.009 377.000 0.0 0.0 0.0 0.0 0.0 13.000 22.000 43.000 42.000 42.000 42.000 27.295 3.300 0.30 0.0 0.0 0.0 0.0 0.0 0.0 0.0	17.000 88.000 21.000 22.000 26.000 26.000 26.000 2.000 2.000 2.000 2.000 2.000 2.000 3.000		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	### #################################	#VAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	55.000 3.000 41.099 75.000 150.000 121.009 377.000 0.0 13.000 0.0 5.000 18.010 10.590 22.000 43.000 42.000 27.235 3.300 0.2 6.300 0.0 6.300 0.0	#VAR 17.000 88.000 21.000 22.000 26.000 26.000 24.000 0.0 4.000 0.0 2.000 2.300 5.300 5.300 8.000 8.000 9.800 0.600 1.000 0.0 2.100 0.0 2.100 0.0		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	### ##################################	#VAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED OSPECIFIED OSPECI	55.040 3.000 41.050 75.000 150.000 121.000 0.0 13.000 0.0 10.500 22.000 43.000 42.000 27.205 3.300 0.0 0.0 0.0 0.0 0.0 0.0 0	#VAR 17.000 88.000 21.000 21.000 22.000 26.000 26.000 0.0 4.000 0.0 2.000 2.300 5.300 5.300 5.000 3.000 8.000 9.800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	### #################################	MVAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED O.9 O.0 O.0 O.0 O.0 O.0 O.0 O.0	55.050 3.000 41.000 75.000 150.000 121.000 21.000 0.0 0.0 0.0 0.0 18.000 22.000 43.000 42.000 27.200 2.300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	#VAR 17.000 88.000 21.000 2.000 22.000 26.000 24.000 0.0 4.000 0.0 2.000 2.300 5.300 5.000 3.000 9.800 0.600 0.600 0.600 0.0 0.0 0.0 0.0 0.0		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	### ##################################	#VAR INSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED OSPECIFIED OSPECI	55.040 3.000 41.050 75.000 150.000 121.000 0.0 13.000 0.0 10.500 22.000 43.000 42.000 27.205 3.300 0.0 0.0 0.0 0.0 0.0 0.0 0	#VAR 17.000 88.000 21.000 21.000 22.000 26.000 26.000 0.0 4.000 0.0 2.000 2.300 5.300 5.300 5.000 3.000 8.000 9.800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		

				323	≅ (150)	
	×					
	#3					
32			1.600			
32	0.0	0.0 0.0	3.200	0.800 . 1.900		
34	0.0	3.5		0.0	START AW	
35	J_0	ú.O	6.000	3.600	u	
36	3.3	6.0	0.0	0.0		ā
37		0.0	C.3 14.000	7.000		
39	s.s	0.0	0.0	0.0		
40	0.0	0.0	0.0	0.0		
41	ن ۾ آ	9.0	6.333	3.000		
42	0. ⊃	0.0	7.130	4.400		
43 44	0.0	0.0	2.0.0 12.00C	1.600		
45	2.0	0.9	3.0	0.0		
46	0.0	0.0	0.0	0.0		
47	ن د ن	0.0	29.700	11.600		
48	5.7	3 . 9	6.3	0.0		
49 50	<u>}.s</u>	3.0	18.000 21.000	8.500 10.500		
51 .	0.0	0.0	18.330	5.300	20	*
52	0.0	0.0	4.930	2.200	20	
53	3.0	0.0	20.006	10.000	899	
54	0.0	0.0	4.105	1.406		
55 56	0.0	0.0	6.800 7.600	3.400 2.200		
57	G.5	0.3	6.700	2.000		
			01.00	20000		* T
			1.6	78		
8			NA.	(# 		
				<u> </u>		
						
			1	У.		
ite.						
(2 0		
				59 		
		<u> </u>				4 50000
					*	
			•		(* 3	
· · · · · · · · · · · · · · · · · · ·			······································			
	ä					
				•		
15*				8		
						- 5 (1-1) - 1 (1) (1) (1) (1)
		Ë				
						

			VOLTAGE	F DFLTA(DEGS)	GENER	ATICN	to	AD	INJECTED POWER
			PU			MVAR	MW	MVAR	HVAR
	aus	1	1.040	0.0	478.358	128.613	55.000	17.600	
	003		2	151.979 75.0		1206013	3.7.003		
				143.911 33.5					
			15	79.186 -0.8 93.282 3.9					
			11	93.202 3.9	43	- 6			
	BUS	2	1.010	-1.1863	0.0	-0.766	3.000	88.000	
				100.665 -6+.1					
			3	97.671 -4.6	11				
	PUS	3		-5.9898		-1.428	41.000	21.000	
				-94.385 4.4					
			<u>g</u> 15	60.144 -8.2 33.773 -19.6					
\$ <u>2</u> 5			1-	234113 -1340	,				
	#IJ¢	4		-8.5513		0.780	75.000	2.900	
				-14.022 2.0					
10				-17.806 -1.7 -42.513 -6.5				090	
				-0.624 5.0			4 3"		
	• management		200.00 100.00 //20100804244			Wildlage Indication 1	P convenient sections	190000 2000000	
	BUS	5		-4.4639 43.157 5.2	450.000	62.012	150.000	22.000	
			6	178.055 19.8	17		8		
			10	78.822 14.9			¥ 8		
	(3000356405	-		020 0200000000		**************************************	consequence or another consequence		
	BUS	ť	0.950	-9.5715 174.897 -9.1	0.0	1.786	121.000	26.000	
			12	17.161 -9.3	18				
			11	12.922 1.8					
			7	2.566 -15.8					
			13 55	2.341 -2.1 18.928 10.3					
			22						
	BUS	.7	1.015	-10.4610	310.000	128.016	377.000	24.000	
			6	-2.462 8.6	47				
			12	17.734 17.5 -1.506 59.8					
				-33.334 8.7				8	
				-49.4021 5.1					
843		_							
	BUS	3	0.981	-7.3237 -59.722 5.9		0.0	0.0	0.0	
				13.777 4.4					
			4	14-116 -5-0	69				器
· · · ·			1º	13.956 2.4	13 TAP 6.970				
			18	17.866 1.1	60 TAP 0.978				
						_			
	RUS	9	0.976	-8.5354	0.0	0.0	13.000	4.500	E 8

			32					(C (F (I)			21
	80	5 1	0 9.98	4 -7.°	-0.549	0.0	0.0	. 0.0	0.0	0,000	
	9		5	-77.932	-12.311						
			39	63.363	12.863	0.0 TAP 0.957					
	વા	5 1	1	-12.1	1947	0.0	0.0	0.0	0.0	1999	
						0.8					
			13	-3.896	-4.486						
			41	9,187	3,463	TAP 0.955					
				_							
	Pt	5 1	2 0.99	-11.4	+371		0.0	5.000	2.000		
			7	-17.627 -17.550	-19.978						
			51			TAP 0.930					
	BU	5 · 1	3 0.979	9 -9.7 -7.329	7977 -1.750	0.0	0.0	18.000	2.300		
			14	-10.366	22.057						
			15	-48.861	4.891			200		55	
	2 2		11	9.922	2.779			<u> </u>			
			7 49	1.192	-63.650	TAP G.895					
S. S.	BU	S 1				C.O	0.0	10.500	5.300		
6				10.452 -68.789				. 1			105
			46	47.859	26.899	TAP C. 900					
	Bu	s 1	5 1 03:	-7 . 1	1672	- 3	0.0	22.000	5.000		
			13	49-541	-4.920	<u> </u>	0.0	22.000	5.000		
				-145.014	-23.748						
			3	-33.540							
			14	69.663	10.747			×-			
			45	- 5		TAP 0.955					
	90	S 1		-8.5			0.0	43.000	3.000		
			1		7.062						
				33.545	-15.059						
	BU	S 1	7 1.017	7 -5.3	3922	0.0	0.0	42.000	8.000		
			1	-91.360	1.751						
			7	49.356	-9.755			. 3			
- 181	30	5 1	B 1.051	-11.7		0.0	0.0	27.200	9.800	10.016	
			9	-13.955	-1.324			*			
			. 8	-17.866	0.211 1.329	- T			et •	*	
			19	4.621	1.329						
	Bu	S 1		L ÷13.2	2742	0.0	0.0	3.300	0.600		
			18	-4.514	-1-170						27
			20	1.216							
	91)	5 2		-13.4	489	0.0	9.0	2.309	1.000		
	6		10	-1-211	-0.559		(•)				
			21		-0.441						×
	91)	5 2		-12.	378	2.0	J.0	0.0	6.0		•
	R 80		25	1.087	0.453	TAP 1.043					
			2.2	-1.091	-5-471						


							.		
	RUS	22	1.011	-12,9793	G. 0	0.6	0.0	C.0	
20			21	1.082 0.473					
			23	9.712 3.164 -10.710 -3.835					
			858A5			-	and approximate a		
	PUS	23	1.010	-12.9446	0.0	0.0	6.300	2.100	
6			22 24	-9.702 -3.149 3.367 1.137			5		# B
	5110	24	1.000	-13.2861		0.0	0.0	C.0	
			23 25	-3.344 -1.951	TAP 1.000				
			25 		TAP 1.000				
76			26		TAP 1.343				
41-14-15	PUS	25	J. 984	-18.1563	0.0	0.0	6.300	3.200	5-711
	V .		24	-7.065 -1.075			2000	341.00	24.12
19			24	-6.793 -1.033					
	The second		30	7.559 4.605					
	BUS	26	0.960	-12.9779	0.0	0.0	0.0	0.0	W e
			24	13.467 1.464		St	, , , , , , , , , , , , , , , , , , , ,		21
			27	-10.497 -1.449					
	BUS	27	0.982	-11.5023		0.0	9,300	0.500	
			26	10.698 1.758					
			28	-19.992 -2.265					
	BUS	28	0.997	-10.4680	0.0	0.0	4.600	2.30ú	
			27	20.251 2.665					
3	rs.		29	-24.845 -4.971	ė.				120
	PUS	29	1.016	-9.7566	0.3	0.0	17.000	2.600	w 7=1
			28	25.115 5.350					
			10	-60.963 -10.503			•		
			52	17.428 2.563					
	BUS	36	3.964	-18.7032	0.0	0.0	3.600	1.800	
			25	-7.450 -4.441					
			31	3.849 2.643	19		₽ .		
	BUS	31	0.937	-19.3697	0.0	0.0	5.800	2.900	
			30	-3.773 -2.526					
N 67 N			32	-2.028 -0.375			#		
	BUS	32	0.952	-18.5087	0.0	0.0	1.600	0.800	
		17	31	2.052 0.412		**		The state of the s	200
			33	3.791 1.844					
	*	363	34	3.791 1.844 -7.465 -3.149	Œ				•
	895	33	0.949	-18.5494	0.0	0.0	3.800	1.900	
			32	-3.784 = -1.837	W. 78				
77	PUS	34	0.961	-14.1595	2.0	0.0	0.0	0.0	i i
			32	7.465 3.840	TAP C.975				
12			35	-7.455 -3.880				~	
	BrJS .	25	0.968	-13.9211		C. 0	6.000	3.0CG	
		23	34	7.494 3.541		C. C		3.000	
				-13.491 -6.664					

	RUS	34	2 078	-13.65	42	0.0	0.0	0.0	0.0		
	1.03	30	35	13.595	6.641	0.0		0.0	0.0		
	8		37	-17.039.	-10.877		000				
		0,110	+0	3.474	4.142						
	eus	17	0.987	-137	12	f-0	0.0	0.0	C.O		
			36	-13.+7 17.152	11.033						
			35	-21.016	-14.021	*					
			39	3.875	2.954						
	805	3.8	1.214	-12.74	40	0.3	0.0	14.000	7.000		
			3.7	11.424	17.651				1,85,88		
			22	10.734	3.873		4				
			44	-24.328	5.631						
			49	-4.641	-13.424					32	
			48	-17.195	-19.784						
	305	39	0.985	-13.51	62	0.0	0.0	0.0	0.0		
8			37		-2.945						4.10000AFT018
		25	57	3.954	2.991	TAP 6.980					18
	BUS	40	J.975	-13.57	68	0.0	C.O	0.0	0.0	· · · · · ·	
			36	-3.465	-4.128						
		-	56	3.453	4.170	TAP 0.958					
E/C	BUS	41	0.997	-14.06	46	0.0	0.0	6.300	3.000	20	
			11	-9.187	-2.769				A 12 1		
			42	8.886	3.197						-
			43	-11.592	-2.868			1.70			
			56	5.599	-0.569	<u> </u>					
	RUS	42	0.968	-15.52	97	0.0	0.0	7.100	4.400		
		0	41	-8.700	-2.881		**************************************			anne i room anno Berne	
			56	1.601	-1.521			124			
	BUS	43	1.610	-11-34	57	3. 0	S.C	2.050	1.000		
	21/2		41	-11.34 11.592	3.459						
			11	-13.600	-4.456						
	BUS		1 310	11 24	17		0.0	12.050	1 9/10		
	505	44	38	-11.86 24.504		C.0	0.0	12.000	1.800		
			45	-36.512		(4)					
	12117-121	0502	No. 000 (000 C)			200 (50)	100	500 * 700	2001 0000		
	BUS	45	1.037	-9.26		0.0	C.O	0.0	C.O		
			15 44	-37.335 37.323						·	
			77						12	21	
	RUS	46	1.051	-11.10	91 .	0.5	0.0	0.0	0.0		
2			14	-47.958		1900 (1908 - 1903) - 1903 (1904 - 1903) - 1904 (1908 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904				THE STATE OF THE S	See age
12			47	47.362	24.962						100
	BUS	47	1.034			0.0	0.0	29.700	11.600		
			46	-47.264							
	18.0		4.8	17.567	11.883						
	BUS	48	1.029	-12.61	10	0.0	0.0	6.0	C.O	£3	
	3	4.,	47	-17.491		•••	J. J				
			43	1.592	-7.24)						
			33	17.332							

PUS	49	1.037	-12.9301 -0.653 6.767	0.0	0.0	18.000	8.500	
		53	9.733 4.617					
 		15	-32.465 -29.003					
		38	4.779 10.006					
 RUS	50		-13.4926		0.0	21.000	10.500	
		49	-9.647 -4.479 -11.353 -6.017					
 		51	-11.353 -6.017					
RUS	51	1.053	-12.5183	0.0	C. O	18.000	5.300	
			11.571 6.363			3		
		12	-29.585 -11.660		ن			
 805	52	0.981		0.0	0.0	4. 900	2-200	
		29	-17.455 -1.963					
		53	12.559 -0.242					
 BUS	53	0.971	-12.2374	0.0	0.0	20.000	10.000	5.941
			-12.444 0.403					
 		24	-7.553 -4.461					
BUS	54	3.996	-11.6952	0.0	0.0	4.100	1.400	
 		53	7.711 4.650 -11.810 -6.051					
		55	-11.910 -6.051					
RUS	55	1.031	-10.7876	0.0	0.0	6.800	3.400	
		54	-10.7876 12.117 £.453		•			
		6	-18.928 -9.851			is.		
 BUS	55	0.970	-16.0734	0.0	0.0	7.600	2.200	
		40	-3.453 -3.832					
 		41	· -5.422 3.744					
		42 57	-1.590 1.540 2.955 -0.653			*		
RUS	57	0.966	-16.5984	0.0	0.0	6.700	2.000	
		39 56	-3.854 -2.672					
		76	-2.849 0.677					
				g				
								10
					· · · · · · · · · · · · · · · · · · ·			
		-					:	
					grane - preparation of property and the second			
			8	•			- 10	
							*	(9 4)
					•			

- MIS	SMATCHES
A	
423.357	111.615
· C.607	-0.004
0.033 0.035	-0.027 -0.027
0.034	-0.024
. 0.020	-0.019
0.030	-0.027
-0.006 -0.013	0.605 0.609
-7,013 0,003	0.039
0.016	90009 900•09
0.008	0.002
5.016	-0.012
0.022	-0.009
-c.017 -0.637	0.539 0.003
-0.604	-0.003
-c.co2	-0.001
0.002	-0.003
₩.C02	0.000
0.637	-0.018
C.034 -0.036	-0.198 G.038
0.051	-0.025
-ú.ú3	-0.014
-0.630	0.015
U.6.56	-0.367
0.036	-0.005
-0.020 -0.601	0.010 0.002
-3.696	+0.002
-3.022	-0.093
0.016	მ₌563
0.010	-0.040
5.073	-0.023 -0.094
0.031 6.022	0.094 -0.034
0.005	-0.003
-0.015	0.046
-0.012	0.043
0.035	-0.009
0.001 -0.008	-0.092 0.003
-0.907	0.016
-0.011	0.010
0.004	-0.023
0.003	-0.063
-6.018	C.063
-0.00 0.000	€.008 0.004
-0.00 -0.014	0.004
0.095	-0.004
-0.002	0.602
0.501	u.001
-9.010	J• (32
· -0.000 -1.000	-0.001 0.005

				HW	MVAR		
		GENERATION		1278.358	319.012 .		
		STATIC CAP/PEACTORS LOAD		1250-797	21.668 336,399	8	
		LINE LOSSES	· · · · · · · · · · · · · · · · · · ·	27.558	4.260		
			· ·				
		TOTAL MISMATCH	0.216	-0.412			
<u>. 4</u>		AVERAGE MISMATCH	0.304	-6.037			
				78			
<u> </u>				<u> </u>			
		•		•			
<u> </u>	<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·	5 9		Y E	4, 1, 1, 1 ₁
-				N2		*	
	# E		-		9	B 8	15
-	84		N.	<u></u>		<u> </u>	, ,
312	80 S N	· · · · · · · · · · · · · · · · · · ·		*			
			<u>, , , , , , , , , , , , , , , , , , , </u>				7.5
			2				
				e e e e e e e e e e e e e e e e e e e	*		e ej
	enera la ver						
		8 0 K 00 8	8 B 8		· · · · · · · · · · · · · · · · · · ·	(*)	
						e :	
		9					
							· · · · · · · · · · · · · · · · · · ·
							-
							
			*				

CHAPTER IV

PROGRAM IMPROVEMENTS

General Improvements

There are several general improvements that could be made in the input and output routines of the program. These improvements should make the program more efficient and easier to use. Some of the possible improvements include development of a free format routine for the input data. Another improvement would be to eliminate the bus numbering system. A name could be associated with each bus and all pertinent bus data would be placed on one card. One then would name the swing bus and all voltage control buses. Upon doing this the computer would assign a numbering system and find the load flow solution. The output printout would give the bus name instead of a bus number.

Improvements in the output could involve rearrangement of the output printout for very large systems. One way would be to put all the individual bus information together and then printout a "From Bus." Below this output printout all line flows leaving the "From Bus" going to other buses. Use this output format for all buses. This would provide a more efficient method in finding specific information for very large systems. Other improvements could be to add additional information to the system totals such as tie line flows.

Some other possible general improvements could be making better use of computer storage such as taking advantage of the fact that the admittance matrix is symmetrical and sparse. Another idea could be to limit the number

of voltage control buses and transformers. In this program one can have as many voltage control buses as there are total buses less one. This is a waste of storage since seldom is there NB/h voltage control buses, where NB equals the total number of buses. The same can be said of transformers.

There are several other general improvements to this program and only time and experience with the program will make them realizable.

Gauss-Seidel Improvements

Improvements to the Gauss-Seidel iteration process could include use of acceleration factors for both the real and imaginary parts of the bus voltages. A scheme of changing the acceleration factors during the iteration process, to prevent divergence and to speed convergence, could be another possible improvement.

Newton-Raphson Improvements

There are several improvements that can be made to the Newton-Raphson method as implemented in the program reported here. The most important of these is the matrix inversion process used to invert the Jacobian matrix. The process, as now implemented, is very slow but reliable. One should be able to find a more efficient method of inverting the Jacobian matrix. The Jacobian matrix may have to be rearranged, since in forming it as described in this report results in the diagonal elements in the lower half of the matrix being zero. In rearranging one simply interchanges the J_3 matrix with the J_5 matrix, and the J_4 matrix with the J_6 matrix, making the Jacobian diagonal elements nonzero. Also one must not forget to rearrange the $\Delta Q^{\dagger}s$, $\Delta |V|^2 s$, $\Delta e^{\dagger}s$, and $\Delta f^{\dagger}s$ accordingly. Implementation of the techniques [13] utilizing the advantages of sparse

matrices are also possible avenues of approach.

Another idea in making the Newton-Raphson method more efficient and faster would be to introduce an acceleration factor or factors for the real and reactive calculated powers. This idea may take some effort to perfect since in the Gauss-Seidel process certain acceleration factors made particular systems diverge while others converged faster.

The author of the Newton-Raphson method implemented here makes no claims about its computational efficiency. The only claim is that it does work.

BIBLIOGRAPHY

- Dunstan, L. A. "Digital Load Flow Studies." Trans. AIEE, vol. 73, pt. IIIA, pp. 825-832.
- 2. Ward, J. B., and H. W. Hale. "Digital Computer Solution of Power Flow Problems." Paper 56-164, Trans. AIEE, vol. 75, pt. III, pp. 398-404, June, 1956.
- Stevenson, W. D. "Elements of Power System Analysis." 2d ed., McGraw-Hill Book Company, New York, 1962.
- 4. Dunstan, L. A. "Machine Computation of Power Network Performance."
 Trans. AIEE, vol. 66, pp. 610-624, 1947.
- 5. Brown, Rodney J., and William F. Tinney. "Digital Solutions for Large Power Networks." Trans. AIEE, vol. 76, pt. III, pp. 347-355, 1957.
- 6. Glimm, A. F., and G. W. Stagg. "Automatic Calculations of Load Flows."

 Trans. AIEE, vol. 76, pt. III, pp. 817-828, 1957.
- Hale, H. W. and R. W. Goodrich. "Digital Computation of Power Flow -Some New Aspects." Paper 59-224, Trans. AIEE, vol. 78, pt. III, pp. 919-924, 1959.
- 8. Dyrkacz, M. A., and F. J. Maginnis. "A New Automatic Program for Load Flow Studies on the IBM 704." Trans. AIEE, vol. 78, pt. IIIA, pp. 52-62, 1959.
- 9. Van Ness, James E., and John H. Griffin. "Elimination Methods for Load Flow Studies." Trans. AIEE, vol. 80, pt. III, pp. 299-304, 1961.
- 10. Elgerd, Olle I. "Electric Energy Systems Theory: An Introduction." McGraw-Hill Book Company, New York, 1971.
- 11. Neuenswander, J. R. "Modern Power Systems." International Textbook Company, Scranton, 1971.
- 12. Stagg, G. W., and A. H. El-Abiad. "Computer Methods in Power Systems Analysis." McGraw-Hill Book Company, New York, 1968.
- 13. Sato, N., and W. F. Tinney. "Techniques for exploiting the Sparsity of the Network Admittance Matrix." IEEE Trans., Vol. 82, pt. III, pp. 944-949, December, 1963.

APPENDIX A

NOMENCLATURE

Symbol	.Quantity	Units
A	Gauss-Seidel constant	p.u. voltage ²
ALPHA	Acceleration factor	
В	Gauss-Seidel constant	*
BI	Bus current	p.u. amperes
EM	Number of voltage control buses	
BN	Number of buses	
c,cc	Static capacitor/reactor	p.u. susceptance
CMVAR	Static injected power	MVAR
CONV	Convergence tolerance	p.u. V.A., p.u. voltage
CP	Calculated net real power	P.U. MW
CQ	Calculated net reactive power	p.u. MVAR
DE	Change in real part of bus voltage	p.u. voltage
DELTA	Bus voltage angle	degree s
DELV, DVMAX	Maximum voltage differences between iterations of Gauss-Seidel Method	p.u. voltage
DF	Change in imaginary part of bus voltage	p.u. voltage
DP	Change in net real power	p.u. MW
DQ	Change in net reactive power	p.u. MVAR
D▼	Change in bus voltage	p.u. voltage
D X	Gauss-Seidel constant	p.u. voltage

Symbol	Quantity	Units
EB	Ending bus	
GSNR	Iterative method used	
ITER	Iterative limit	
JJ	Jacobian matrix	
L	Starting bus	
Length	Line length	Length
М	Ending bus .	
MAGV	Bus voltage magnitude	p.u. voltage
MB	Number of voltage control buses plus one	
NB	Number of buses	
NBASE	New base	MVA
NC	Number of capacitor/reactors	
NL	Number of lines	
NR	Jacobian matrix size (2(NB-1))	
OBASE	Old bases	MVA
P	Net real power	p.u. MW
PG	Real power generation	MW
PL	Real power load	WM
Q	Net reactive power	p.u. MVAR
QG	Reactive power generation	MVAR
QL	Reactive power load	MVAR
QMAX	Voltage control bus maximum VAR limit	MVAR
QM IN	Voltage control bus minimum VAR limit	MVAR
R.	Calculated line flow with ending bus as reference	MW,MVAR

Symbol	<u>Quantity</u>	Units
S	Calculated line flow with starting bus as reference	mw,mvar
SB	Starting bus	
SERV	Series line admittance	p.u. Y
SERZ	Series line impedance	p.u. Z
SHTY	Line shunt admittance	p.u. Y
ST	Total line shunt admittance	
SUM	Gauss-Seidel constant	p.u. voltage
TCR	Total injected power	HVAR
TG	Total network generation	MN, MVAR
TL	Total line losses	MW, MVAR
TLD	Total network load	MW,MVAR
TR, TS	Off-nominal tap setting	
V,∀I,∀II,∀N	Bus voltage	p.u. voltage
VSPEC	Voltage magnitude of voltage control bus	p.u. voltage
Y	Bus admittance matrix	p.u. Y
YSHT	Line shunt admittance	p.u. Y/length
ZSER	Series line impedance	p.u. Z/length

APPENDIX B

SLFE

User's Guide

I. PROGRAM DESCRIPTION

Static Load Flow Equations (SLFE) is a Fortran program which calculates, for a given power system, the "states" that will satisfy the given demands. Systems with up to 60 buses and 100 lines are possible.

Input to the program consists of:

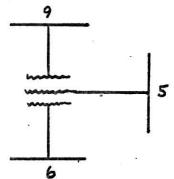
- 1. System parameters
- 2. Static capacitors
- 3. Transmission line parameters
- 4. Transformer line parameters
- 5. Voltage control bus parameters
- 6. Generation and Load

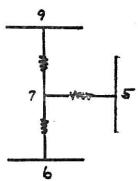
All the impedances, line charging admittance, static capacitor/ reactor susceptance, voltage magnitudes are in per unit on a known MVA base (old base). All powers are in megawatts and megavars.

Normal output consists of

- 1. Input data
- 2. Load Flow Solution
- 3. System Totals
- 4. Mismatch

SLFE uses either the Gauss-Seidel or Newton-Raphson technique.


II. PROGRAM INPUT


SLFE uses a fix-format input. In addition, the program assumes nominal values for the old base (100. MVA), new base (100. MVA), Iteration Method Used (Gauss-Seidel), Total or one-half line shunt admittance used (one-half line shunt admittance), tolerance allowed (.0001 for Gauss-Seidel and .001 for Newton-Raphson), iteration limit (75 for Gauss-Seidel and 15 for Newton Raphson), and the acceleration factor (1.65), and only those differing from the assumed values need be inputted.

The following steps are used in preparing the system and data cards.

Step I. Identifying the system

Number the buses in a numerical order where bus 1 is the swing bus. Voltage control buses may have either a generator or a synchronous condenser. The swing bus must have a generator. Buses 2 to MB are voltage control buses, and buses (MB + 1) to NB (total no. of buses) are the load buses. It may be necessary to renumber the buses of a system in order to satisfy the above criteria. Also in counting buses the three winding transformer is considered to have a bus located at its midpoint. (See example below). Number the lines consecutively from 1 to NL (number of lines) where each transmission line counts as one line, and each three winding transformers counts as three lines (see below).

3 WINDING TRANSFORMER

EQUIVALENT CKT
3 lines, 4 buses

The remaining steps will describe the data, its order, and the data format. The data cards are placed in the following order.

- 1. System Parameter card
- 2. Static/Capacitor/Reactor cards (if any)
- 3. Swing bus voltage and phase angle card
- 4. Transmission line cards
- 5. Transformer line cards
- 6. Voltage control cards
- 7. Generation and Load cards

Step 2. System Parameter Card

This card consists of the number of lines (NL), number of buses (NB), number of voltage control buses (BM), number of static capacitor/reactors (NC), old MVA base (OBASE), new MVA base (NBASE), Iteration method used (GSNR), Total or one-half line shunt admittance used (ST), tolerance allowed for convergence (CONV), and maximum iterations allowed (ITER). The card is in the Format (415, 165.0, F10.7, I5).

Example: One has a 14 bus, 20 line system. Also the system contains 4 voltage buses, 1 static capacitor, line data is on 100 MVA base and line shunt admittance is given as one-half of the total line shunt admittance. Also the Newton-Raphson technique is the desired method for the load flow solution. The solution is desired to be on a 100. MVA base.

, 20.000	NL	NB	BM	NC	OBASE	NBASE	GSNR	ST	CONV	ITER
Col's	20 ↑ 4,5	14 1 9,10	4 15	1 1 20			1 ↑ 31-35			

(Note: If Gauss Seidel method was desired, columns 31-35 would have been left blank.)

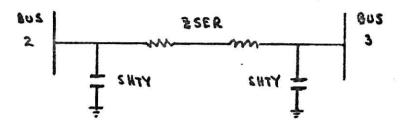
Step 3. Static Capacitor/Reactor Card

This card or cards consist of the bus number (BN) at which the static capacitor/reactor is located, and the capacitive/reactive susceptance (CC). If there are no capacitors or reactors, then this section is omitted. The cards are in the Format (15, F10.5).

Example: At bus 9 a capacitor of j.19

Step 4. Swing Bus Card

This card contains the swing bus voltage magnitude and phase angle (in degrees), and the acceleration factor. The acceleration factor is assumed to be 1.65 by the program. The entry for the acceleration factor is normally not made. The card is in the Format (F10.5, F6.2, F5.2).


Example: Swing bus voltage magnitude = 1.06 phase angle = 0 degrees

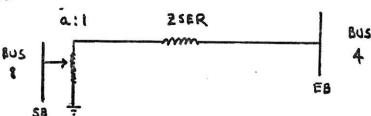
A Blank is read as a zero.

Step 5. Line Cards (Transmission Lines)

These cards consist of the starting bus (SB), ending bus (EB), series impedance of the line (ZSER), one-half of the total line charging admittance (SHTY), and the line length. The cards are in the Format (215, 4F10.5, 5X, **, F5.1).

Example: ZSER = .04699 + j.19797SHTY = j.0219 SB = 2 EB = 3

*	SB	EB		ZSER	SHTY
	2	3	.04699	•19797	.0219
Col's	5	10	15-20	25-30	45 - 50


* Assumed to be unity if left blank.

** 5% means skip 5 columns.

Step 6. Line Cards (Two and three winding transformer lines)

The transformer line card is similar to transmission line card. The major difference is the designation of the starting bus (SB) and the ending bus (EB) in relation to the tap setting (TS). The starting bus is always the bus where the tap setting is not nominal. If the turns ratio is increased by changing the tap setting then a < 1 and conversely. The series impedance is usually pure reactance and the line charging admittance is usually considered zero. These cards are in the Format (215, 4F10.5, F5.3, F5.1).

Example: Tap setting = a = .932, SB = 8, EB = h, ZSER = j.25202, SHTY = 0.0.

_	SB	FB	ZSER	SHTY	TS
	8	4		.25202	•932
Col's	5	10	8 0	25 - 30	52 - 55

Step 7. Voltage Control Cards

If there are no voltage control buses other than the swing bus, then BM = 0 and this section is omitted. However, if there are, then this card contains the constant voltage magnitude and the range of reactive power, maximum and minimum values that can be supplied by the generator or synchronous condenser. There will be BM data cards. These cards are in the Format (3F10.3).

Example:		VOLT MAG	MIN Q	MAX Q
•	BUS	PU	MVAR	MVAR
	5	1.09	- 6	24.0

,	VOLT MAG	ĆĀΙΤΙ	OMAX	BN
	1.09	-6.0	24.0	5
Col's	6 - 9	15 - 18	25 - 28	73 - 80

These cards must be in a particular order. This order is the numerical bus number order. In this case there would be 3 voltage control cards before this one. Also note columns 73 - 80 are comment columns and the number 5 can be put in any columns from 73 - 80.

Step 8. Generation and Load Cards

The set of cards are the scheduled Generation and load powers for buses 1 to NB. The card contains the real and reactive generations and the real and reactive loads.

If the bus is the swing bus, the real and reactive generation is assumed zero. Also if the bus is a voltage control bus, then the reactive generation is assumed zero. The program will calculate these values. If values are inputted the program will ignore them.

These cards must be in a numerical bus order starting with bus 1 going to bus NB. Once again columns 73 - 80 can be used for keeping track of the order. These cards are in the Format (LF10.3).

		GENE	RATION	LC	AD
Example:	BUS	WW	MVAR	MW	MVAR
	2	40	0	21.7	12.7

	PG	QG	PL	QL	BN
	40.0		21.7	12.7	2
Col's	5 - 8		25 - 28	35 - 38	73 - 80

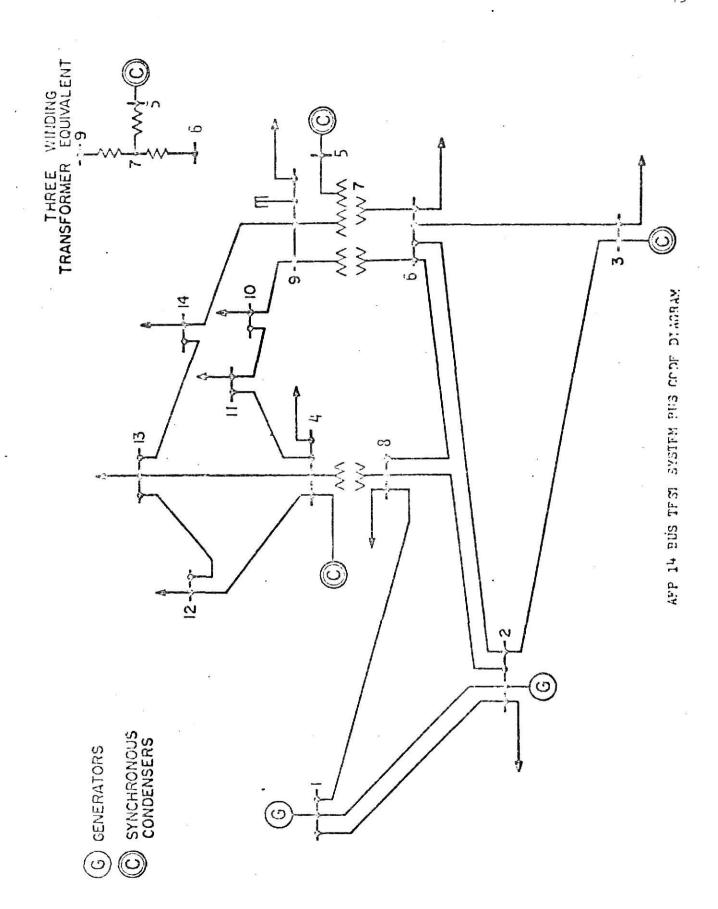
Step 9. Combine the data cards in the order described in Step 1.

III. PROGRAM OUTPUT

The program output consists of input data, load flow solution, system totals, and mismatch.

The input data is the data the user inputted. This section of the output is used for troubleshooting in case of errors in the load flow solution or no load flow solution.

The load flow solution gives the technique, the number of iterations for convergence, and the base MVA value for the output. At each bus the PU voltage magnitude, phase angle (in degrees), real and reactive generation, real and reactive load, and the injected power (if any) by a static capacitor or reactor are given. Below each bus are the line flows. This information consists of the ending bus and the real and reactive line flow in megawatts and megavars. The positive values of real and/or reactive power indicate the power flow towards the ending bus, whereas negative values indicate flow away from the ending bus. If one desires to calculate the losses in a line one simply goes to two buses which the line is between and notes the line flow is given twice. Each bus is used as the reference bus in turn, therefore the line flows are negatives of each other. The sum of the line flows is the line loss.


The system totals consist of total generation, load, injected power, and total losses. The total generation is simply calculated by adding the real and reactive generation at each bus. The static injected power and load are calculated similarly. The total losses are calculated by adding the total generation and the total static injected power and subtracting the total load.

The last part of the output is the mismatch. The mismatch tells how good the load flow solution is. The first value is the swing bus net power which is calculated by simply summing the line flows at bus 1. The remaining mismatch values are calculated by subtracting the total line flows from a bus from the net power at the tus. (Net power equals generation minus load.) Total mismatch is calculated by adding the individual mismatches. The average mismatch is the total mismatch divided by (NB-1).

IV. TROUBLESHOOTING

If problems arise in obtaining a load flow solution, then the input data listing is the best way to troubleshoot. If no input listing was printed then one either has the input cards in improper order or lacks the proper number of cards. Also values in the incorrect columns of the system parameter card may cause no listing.

Some of the more common mistakes are failure to correct the system bus indices if a power system already has a numbering system which does not correspond to the numbering system required by the program. Another common mistake is to enter data in an incorrect column. If a value is incorrect by a factor of 10, this often times makes the system diverge. The use of certain acceleration factors may also cause divergence. Another feature which is overlooked many times is that the system just converges slowly and more iterations are needed. This can be corrected by increasing the iteration limit.

AEP 14 BUS TEST SYSTEM IMPEDANCE AND LINE CHARGING DATA

Line No.	Line Designation	Resistance Per Unit*	Reactance Per Unit*	Line Charging Per Unit*
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 - 2 1 - 8 2 - 3 2 - 6 2 - 8 3 - 6 6 - 8 6 - 7 6 - 9 8 - 4 4 - 11 4 - 12 4 - 13 7 - 5 7 - 9 9 - 10	.01938 .05403 .04699 .05811 .05695 .06701 .01335 0 0 0 0 .09498 .12291 .06615	.05917 .22304 .19797 .17632 .17388 .17103 .04211 .20912 .55618 .25202 .19890 .25581 .13027 .17615 .11001 .08450	.0264 .0246 .0219 .0187 .0170 .0173 .0064 .0060 .00 .00 .00 .00 .00 .00 .00 .00
17 18 19 20	9 - 14 10 - 11 12 - 13 13 - 14	.12711 .08205 .22092 .17093	.27038 .19207 .19988 .3480 2	0 0 0

^{*} Impedance and line charging susceptance in per unit on a 100,000- kva base. Line charging one-half of total charging of line.

AEP 11 BUS TEST SYSTEM OPERATING CONDITIONS

Per Unit Degrees	
3 1.0 0 0 0 94.2 4 1.0 0 0 0 11.2 5 1.0 0 0 0 0 6 1.0 0 0 0 47.8 7 1.0 0 0 0 0 0 8 1.0 0 0 0 7.6	0 12.7 19.0 7.5 0 -3.9 1.6 15.8 1.5 5.8 5.0

^{*} Swing machine

AEP 14 BUS TEST SYSTEM REGULATED BUS DATA

Bus Number	Voltage Magnitude Per Unit	Minimum MVAR Capability	Maximum MVAR Capability
2	1.045	- 40	50
3	1.010	0	40
4	1.070	- 6	24
5	1.090	- 6	24

TRANSFORMER DATA

Transformer Designation	Tap Setting*
6-7 6-9	.978 .969
8-4	•932

* Off-nominal turns ratio, as determined by the actual transformer tap positions and the voltage bases. In the case of nominal turns ratio, this would equal 1.

STATIC CAPACITOR DATA

Bus		*	Susceptance**
Number			Per Unit
9	-		.19

** Susceptance in per unit on a 100,000-kva

INPUT DATA

A					
-		M V			
NO. OF CAPACITORS/REACTORS (NC) =		BASE FOR OUTPUTINEW BASE) . 100. MVA	75.		s
EAC			. 10		REE
OR S / B		BASE)	OMEO		0.0 DEGREES
LU		X	ALL		0.0
CAPA		DUTIN	IONS	2	SHING BUS PHASE .
P.)CI	RAT	ONL	ASE
C Z		"CR	176	400	P.
		SE	OF	MET	9
14		ΑA	O	JEL	9vI
NO. OF BUSES(NB) = 14		A A	MAXIMUM NO. OF ITERATIONS ALLOWED = 75.	S-SEI	S
SN		Σ.	X	AUS	2
JSES	4	100		E G	8
F. B.	h	h	100	3	90.
•	B.M.	3	00	SEO	~
2	S	BAS	•	=	
	LL.				
20	RUL BUS	4TA (OLD	RGENCE =	1.69	AGNITUD
- 20	ONTROL BUS	O DATA (OLD	NVERGENCE =	TOR = 1.65	SE MAGNITUD
(111.) = 20	GE CONTRIL RUS	UTTED PATA(OLD	R CONVERGENCE .	FACTOR = 1.65	LTAGE MAGNITUD
NES[NL) = 20	LTAGE CONTROL BUS	INPUTTED PATAGOLD	FOR CONVERGENCE .	10N FACTOR = 1.65	VOLTAGE MAGNITUD
- LINESTAL) = 20	VOLTAGE CONTROL BUS	COR INPUTTED DATA (OLD	ANCE FOR CONVERGENCE =	ERATION FACTOR = 1.65	BUS VOLTAGE MAGNITUD
NO. OF LINESTMI.) = 20	NO. OF VOLTAGE CONTROL BUSES (BM) =	845E FOR INPUTTED DATA(OLD BASE) = 100. MVA	TOLERANCE FOR CONVERGENCE = 0.000100	ACCELERATION FACTOR = 1.65 (USED WITH GAUSS-SEIDEL METHOD ONLY)	SMING BUS VOLTAGE MAGNITUDE . 1.06000 PU

STATIC CAPACITORS/REACTORS (OLD BASE)
BUS SUSCEPTANCE
9 0.19000

TRANS	TRANSMISSION LINE DATA	_	OLD PASE 1			
Y SHUI	Y SHUNT IS ONE-HALF	1	THE TOTAL LINE	LINE CHARGING ADMITTANCE	NOT	
SB	ER	7		Y SHUNI	ואס	LENGTH
		ſĽ	×	v	c	
-	2	0.01738	0.05017	0.0	0.02640	1.0
-	8	0.05403	0.22104	0.0	0.07460	1.0
~	E	0. 2. 2. 0	0.19797	0.0	0.17.0	1.0
rj	9	116.53.0	0.17.12	0.0	0.01870	1.0
~	æ	0.050.15	0.17:18	0.0	0.01700	1.0
m	÷	0.00.701	0.17103	2.0	0.01730	1.0
9	æ	0.01335	0.04.11	0.0	0.00640	1.0
4	11	3.0747R	0.19399	0.0	0.0	1.0
4	12	0.12291	19552.0	0.0	0.0	1.0
4	13	0,06615	0.13047	0.0	0.0	1.0
٢	r.	0.0	0.17415	0.0	0.0	1.0
_	D.	0.0	0.11901	0.0	0.0	1.0
c	10	0.03181	0.44.0	0,0	0.0	0.1
6	· † [0.17711	0.27038	0.0	0.0	1.0
10	11	0.08205	0.14207	0.0	0.0	1.0
12	13	0.22092	0.19988	0.0	0.0	1:0
13	14	0,17093	0.34802	0.0	0.0	1.0
TOTAL.	TPANSMISS	TOTAL TPANSMISSION LINES +	11	Đ		,

LENGTH 1.0 TAP SETTING 0.978 0.0 TRANSFORMER LINE DATA (OLD RASF)
Y SHUNT IS ONE-HALF OF THE TOTAL LINE CHARGING ADMITTANCE
S8
Y SHUNT G 0.0 0.20912 0.0 •

0.55618 0.0 0.0 0.969 1.0 0.25202 0.0 0.0 0.932 1.0	en en		OMIN QMAX MVAR MVAR	-40,000 50,000 0.0 40.000 -6.000 24.000 -6.000 24.000		MVAR MW MVAR	PECIFIED 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
0.55618	•	ATA	OM IN MV AR	000-9-			UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED UNSPECIFIED 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
0.0	'NTAL TRANSFORMER LINES	OLTAGE CONTROL BUS DATA	VSPEC PU	1.045 1.010 1.030	CHEDULED BUS POWERS	GENERATION **W	UNSPECIFIED 40.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
9 8	TUTAL	OLTAG	Sne	0 m 4 m	снери	Snı	

GAUSS-SEIDEL TECHNIQUE CONVERGED IN 22 ITERATIONS. ALL VALUES ON 100. MVA BASE

INJECTED POWER (STATIC) MVAR								ø	21.201	Gr.	
MVAR	0.0	12.700	19.000	7.500	0.0	-3.900	0.	1.600	16.600	5.800	1.800
LOAD	2				٠				is.		
3	0.0	21.700	94.200	11.200	0.0	47.800	0.0	7.600	29.500	000.6	3,500
TI ON HVAR	-16.864	42,383	23,399	. 12.261	17.371	0	0.0	0.00	0.0	0.0	0.0
GENERATION	232,349	40.000	0.0	0.0	0.0	0.0 TAP 0.978 TAP 0.969	0.0	0.0 TAP 0.932	0.0	0.0	0.0
DELTA(DEGS)	0.0 156.800 -20.369 75.549 3.506	-152,507 27,627 73,194 3,567 56,136 -2,287 41,518 0,758	-70.954 1.581 -23.330 2.806	7.349 3.469 7.740 2.494 17.746 7.169 -44.054 -8.393	-13,3651 0.027 17,359	-10.3229 23.701 -5.419 -61.189 15.646 28.971 -9.423 16.095 -0.322	-0.027 -16.912 28.104 5.794 -28.091 11.115	-72,785 2,577 -40,616 -1,628 61,705 -15,349 44,054 12,821	-14,9467 -28,105 5,247 9,436 -16,095 1,627	-15,1049 -5,234 -4,263 -3,784 -1,524	-14-1947
VOLTAGE Magnitude Pu	1.060 2 8	11.045	1.010	1,070 11 12 13	1.090	1.019 2 3 3 4 7	1.062	1.020	1.056 7 10 14	1.051	1.057
	-	8	e	4	5	•		æ	•	10	11
	BUS	BUS	BUS	RUS	BUS	BUS	BUS	BUS	BUS	BUS	RUS

													8											
	1.400	5.800	2.000																					
	ä	18 18		MVAR	78.550	21.201	73.500	26.251	%≝	٠									*:			×		
	6.100	13,500	14.900	X	272.349		259.000	13,349			-16.963	-0.018	10.01	-0.012	-0.024	\$00.0-	-0-03	0.013	100.0-	-0.035	0.05	. 090*0-	-0.005	
	0.0	0.0	ė.	•.:					MISMATCHES		232,149	0.032	0.00	120.0	8.0.0	E10.01	-0.016	-0.018	0.032	0.005	-0.03	0.035	0.003	
-7.295 -3.354 3.797 1.553	-15.0755 0.0 -7.708 -2.344 1.614 0.739	-15.1578 -6.752 -1.607 -0.734 5.637 1.688	-16.0389 -9.319 -3.416 -5.583 -1.579	TOTALS	GENERATION	STATIC CAP/REACTORS	LOAD	LINE LOSSES						•							*	TOTAL MISMATCH	AVERAGE MISMATCH	
10 - 3	12 1.055	13 1.050 4 -17 12 -1 14 5	14 1.036		3.3			ķ					¥										¥	

BUS

.

LOAD FLOW PROGRAM DEVELOPMENT

by

ALAN GLEN BARTA

B. S., Kansas State University, 1970

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1973

Name: Alan G. Barta

Date of Degree: May 11, 1973

Institution: Kansas State University

Location: Manhattan, Kansas

Title of Study: LOAD FLOW PROGRAM DEVELOPMENT

Major Field: Electrical Engineering

Scope and Method of Study: The purpose of the project reported here was to develop a digital load flow computer program to be used by engineering students who wish to study the behavior of electric-energy systems.

The digital computer program developed by the author and presented in this report implements the classic form of the load flow problem.

The Gauss-Seidel and Newton Raphson techniques were used to solve the power flow equations. Both procedures were studied and implemented for this project.

Findings and Conclusions: Two test cases were used during program development. The data for these test systems were made available by the American Electric Power Service Corporation and represents a part of that system. Both methods work, with the Newton-Raphson method giving more accurate results. However, due to lack of time the author was unable to optimize the Newton-Raphson technique to its fullest extent; as a result it is not as efficient with computer time as the Gauss-Seidel method implemented here. The author made several suggestions for possible improvements in both techniques for future users of the program.

Gloyd W. Harris

MAJOR PROFESSOR'S APPROVAL

ATIV

Alan G. Barta

Candidate for the Degree of

Master of Science

Report: LOAD FLOW PROGRAM DEVELOPMENT

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Axtell, Kansas, March 24, 1947, the son of Glen and Grace M. Barta.

Education: Attended grade school in Wichita, Kansas; attended Junior High and High School in Manhattan, Kansas; graduated from Manhattan High School in May 1965; received the Eachelor of Science degree from Kansas State University, with a major in Electrical Engineering January 1970; completed requirements for the Master of Science degree in May, 1973.

Professional Experience: Entered the United States Army in April 1970 as a 2nd Lieutenant in the Signal Corp; Honorably Discharged December 1971; member of Institute of Electronic and Electrical Engineers; Engineer in Training, Kansas, 1970.