
Towards Automatic Grading of SQL Queries

by

Vijay Kumar Venkatamuniyappa

B.E., S.J.C Institution of Technology, India, 2012

A REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computer Science
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2018

Approved by:

Major Professor
Dr. Doina Caragea

Copyright

© Vijay Kumar Venkatamuniyappa 2018.

Abstract

An Introduction to Databases course involves learning the concepts of data storage, ma-

nipulation, and retrieval. Relational databases provide an ideal learning path for under-

standing database concepts. The Structured Query Language (SQL) is a standard language

for interacting with relational database. Each database vendor implements a variation of the

SQL standard. Furthermore, a particular question that asks for some data can be written

in many ways, using somewhat similar or structurally different SQL queries. Evaluation of

SQL queries for correctness involves the verification of the SQL syntax and semantics, as well

as verification of the output of queries and the usage of correct clauses. An evaluation tool

should be independent of the specific database queried, and of the nature of the queries, and

should allow multiple ways of providing input and retrieving the output. In this report, we

have developed an evaluation tool for SQL queries, which checks for correctness of MySQL

and PostgreSQL queries with the help of a parser that can identify SQL clauses. The tool

developed will act as a portal for students to test and improve their queries, and finally to

submit the queries for grading. The tool minimizes the manual effort required while grading,

by taking advantage of the SQL parser to check queries for correctness, provide feedback,

and allow submission.

Table of Contents

List of Figures . vi

List of Tables . vii

List of Algorithms . viii

List of Listings . ix

Acknowledgements . ix

Dedication . x

1 Introduction . 1

1.1 Automatic Evaluation of Computer Programs 1

1.2 Previous Work in SQL Query Evaluation . 3

1.3 Proposed Approach . 4

2 Tool Implementation . 6

2.1 Architecture . 6

2.2 Project Components . 7

2.3 Parsing SQL Queries . 8

2.3.1 Pre-parser Operations . 11

2.3.2 Post-parser Operations . 14

2.4 Query Evaluation Phase . 15

3 Tool Evaluation . 17

iv

3.1 Testing Life Cycle . 17

3.2 Evaluating An SQL Assignment . 18

3.2.1 Quantitative analysis . 18

3.2.2 Qualitative analysis . 19

4 Tool Readability And Reusability . 23

4.1 Project Setup and Execution . 23

4.2 Style Guide . 24

4.3 Additional Application . 25

5 Future Work and Conclusion . 26

Bibliography . 28

v

List of Figures

2.1 Architecture and Components of the Grading Tool 7

2.2 User Login Page . 8

2.3 MySQL Query Response Page . 9

3.1 Tool response on a query with syntax error 19

3.2 Tool response on a valid query that failed to parse 20

3.3 Identifying a correct query result and its output 21

3.4 Query with an incorrect result . 22

3.5 Valid query interpreted as wrong . 22

vi

List of Tables

2.1 Regular expressions to identify SQL clauses 11

2.2 JSON form of SQL clause . 14

3.1 Assignment evaluation: quantitative report 18

vii

List of Algorithms

1 Pre-parsing algorithm . 10

2 Post-parsing algorithm . 16

viii

List of Listings

1 Sample query for parsing . 11

2 Intermediate result of query and JSON in the pre-parser step 12

3 Dictionary for storing clauses for later processing in the pre-parser step . . . 13

4 Output of the post-parser step . 15

5 Steps on setting up the project . 24

6 Coding conventions followed . 24

ix

Acknowledgments

I would first like to thank Dr. Doina Caragea, for guiding and mentoring me in master’s

report. I express my gratitude to Dr. Caragea for the time and effort spent on providing

positive critique and suggestions that molded the outcome of project and report. I credit

Dr. Torben Amtoft for teaching programming language course which has equipped me with

the knowledge in the implementation of the project. I am thankful to Dr. Daniel Andresen

for his contribution.

x

Dedication

For the Lord giveth wisdom; out of His mouth cometh knowledge and understanding.

Proverbs 2:6

xi

Chapter 1

Introduction

Classroom and take-home assignments represent a way of evaluating the knowledge gained

on a course by students. These assignments are graded either by the instructor or by the

teaching assistant (TA). Grading involves comparing the submission of the student with a

standard sample solution. The effort and time consumption in grading depends on the type

of assignment.

Assignments vary in complexity from simpler assignments with multiple choice answers,

to more complex assignments such as open-ended essays and reports, graphic design and

model building, programs written to execute on a particular electronic device, etc.

Evaluating some assignments involves human inspection, but there are also assignments

whose evaluation involves a comparison of the output with an expected sample output. This

chapter describes the process of grading computer programs in Section 1.1. Developments

and insights into the evaluation of SQL queries from other works are presented in Section 1.2.

Section 1.3 briefly provides a high level overview of the project work.

1.1 Automatic Evaluation of Computer Programs

Computer programs have an advantage over any other type of assignments in grading. Es-

says, reports, and graphics need extra tools to decipher and test, while computer programs

1

have the advantage that, like a Math problem, they often have a single correct result. Just

like the steps involved in solving a Math problem vary based on the method or formula used,

and the time the method/formula is used, computer programs are also susceptible to such

complexity. In general, for a programming question there are multiple ways of achieving the

desired result.

Automatic evaluation can help the instructors and TAs in eliminating redundant tasks

and save precious time. Generally, grading requires the collection and extraction of all the

student submissions to an environment. Then, the grader will go through each assignment

and will run the program comparing the result with the expected outcome. When the

program encounters errors, as a result of running in an environment other than the one

program is developed on, the grader has to examine and setup/change specific parameters.

An incomplete program submission will involve extra effort on the grader’s side in order to

find the errors in the program. Once the grading is done, the grades and feedback will be

made available to the students.

An ideal automatic evaluation tool will take the student submissions as input, execute

each submission, identify errors, if present, and finally assign a grade. This will eliminate

the need for the grader to log in to the specific program execution environment, as well as

the need for the transfer of data from the grader’s machine to the execution environment.

Furthermore, in addition to benefits from automatic evaluation of the program, the process

of submission can also be improved by an automated tool. Such a tool will check for syntax

errors in the program and will warn the students of an incorrect syntax, thereby alerting

students to re-check their submission, and allowing only correct syntax submissions. As a

result, this can free the graders from evaluating submissions for syntax errors. Furthermore,

the process will enable the students to test their submissions in the grading environment,

which will eliminate errors due to the program migration. As the same environment is used

for student testing and grader evaluation, this will reduce the effort of both students and

graders. The grader will have all the submissions in the desired environment, which can be

accessed through any remote system. The submission portal will also offer timely feedback

to the students, as students can test multiple times before submitting. The final grades

2

and feedback can be published quickly when the assignments are still fresh in the minds of

students.

The automatic grading described by Cheang et al. (2003) involves three things: correct-

ness, efficiency, and maintainability. Correctness is verified using the output of the program.

Efficiency aspects in grading refer to feedback on performance, by identifying the resource

usage of the program. Thirdly, maintainability is measured by the ease of readability and

modifiability of the program. The priority in grading, as part of learning a programming

language, should be to achieve correctness. Once this has been established, one needs to

focus on maintainability and understandability.

In this project, we focus on automatic evaluation of queries written in the SQL language,

specifically MySQL and PostgreSQL variants of the standard SQL.

1.2 Previous Work in SQL Query Evaluation

Queries can be written in multiple forms including casing, aliasing, inner queries, conditions

and projection clauses, etc., and are evaluated for correctness with a set of test cases. Ac-

tiveSQL (Russell and Cumming, 2005) is a tool which contains a standard dataset, visible

to the students and useful for testing the correctness of their queries, and a hidden dataset

used for submission evaluation and grading. The hidden test cases are developed with a

different set of data, to find and penalize the hard-coded results in the query. Grading using

ActiveSQL is done by checking the accuracy of a number of column cells retrieved for the

solution with the number of cells from the expected result.

ActiveSQL has the limitation that it checks with only two test cases/datasets when

grading. Each test case should involve its specific data, which the grader has to setup while

creating new questions. Partial credit is provided based on query output, but query clauses,

which play an important role in the solution, are not considered in evaluation. To check for

the clauses in the query, the instructor should provide a correct sample query solution. Since

there are multiple ways to write queries, the system should identify all the possible solutions

to a query, so that it will look for the suitable solution that will best match with the student’s

3

submission. This method is followed in building the XData system (Chandra et al., 2016),

which provides an automated platform for learning and grading SQL queries. The queries

are canonicalized to identify the predicates, projections, relations and other clauses, and

then submitted queries are awarded or penalized based on the conformity with the solution

query. This will result in partial credit irrespective of the query output. Although the pre-

processing steps will reduce a query to a standard form, the instructor should provide a

number of possible ways to write the query.

SQLify (Dekeyser et al., 2007) uses a method of feedback on a query with assessment

tool and peer review. Immediate feedback is provided by the system for syntactical and

query correctness. Two other students randomly selected by the system provide elaborate

feedback, which enables students to develop higher order thinking, while evaluating other

students’ work.

1.3 Proposed Approach

We have developed a tool that can help students test their queries and, at the same time,

help graders evaluate submissions. Building the tool for testing and evaluating SQL queries

involves developing a front-end user access, and a two-step validation process. The first step

is to check the syntax of the query, and the second step is to test the semantic conformity

of the query with respect to the sample solution query.

The user interface should allow students to validate the credentials and connect to their

database account. It will provide the list of questions from an assignment for the students

to work on. Then, it will allow students to test queries, see the output to their queries, and

also to get feedback on the assignment questions. Students can then submit their solution

for grading using the same interface.

In the first step of validation, the query submitted by the student/user is executed in

the database on either MySQL or PostgreSQL server. The error message thrown by the

database for an invalid query is shown to the user. When the query is free of errors, the

output is displayed to the student. To test for semantic conformity, the query is verified

4

for the presence of required SQL clauses, identified based on the sample solution query. To

achieve this, the query parser will bring the SQL query to a standard form. The output of a

parser is stored in JSON format, and is used to check for conformity with the solution query.

The final step is to improve the aesthetics in the user interface and code of the tool.

The user experience is enhanced by the responsive and dynamic nature of the web-page.

Furthermore, the code of the tool is optimized for increased readability, re-usability and

modularity.

5

Chapter 2

Tool Implementation

2.1 Architecture

The portal contains a front-end user interface, which the user can access through the web

browser. Students and graders will interact with the systems through the user interface. For

a single question testing, the input query is provided through an HTML text-box, while for

multiple questions, the input queries are provided as a file. The back-end server acts as a

middle-ware to execute operations requested from the browser. Based on the user inputs,

the browser interacts with the file system and with the database to serve the requests. The

result of an operation will be rendered and displayed by the server on a web-page. Figure 2.1

shows the order of interactions between different components in the project.

The front-end will be used as a channel for users to provide a query to test in a specific

database. It will also allow the users to submit a query for evaluation, and allow graders

to provide feedback on the correctness of query. The database is used to identify errors in

query syntax, fetch query output and meta-data information of the query and tables used.

The file system is used to store student submissions as a persistent data and to retrieve and

display the assignment questions.

6

Figure 2.1: Architecture and Components of the Grading Tool

2.2 Project Components

As mentioned above, development of a portal which encompasses user interface, database,

and file system access, and is accessible through any remote system, has to be developed on a

web server. The server should be robust, secured, scalable to handle large requests. Node.js

is used in constructing such a server. Node.js serves request through the asynchronous

execution. Additional packages are available through Node Package Manager (npm), and

can be used to extend the features of Node.js.

Connection and database operations are enabled by using mysql and pg npm packages

for MySQL and PostgreSQL databases, respectively. Reading and writing operation to a file

system is achieved through the fs package. Express.js, a Node.js web framework is used to

build the web application. To extract the specific components of the SQL query, an SQL

parser package, node-sqlparser is used. The user interface is built using HTML, CSS with

Bootstrap framework. The user interface is made responsive and interactive with Javascript,

7

Figure 2.2: User Login Page

jQuery, Embedded Javascript (EJS). Figure 2.2 shows the user login screen of the tool, while

Figure response shows a response page for a MySQL query.

The organization of the project file structure is influenced by the Express.js framework.

Each web page has a dedicated router method to handle the GET and POST method.

The router method invokes a series of JavaScript function to process the POST methods.

Database and file transactions are handled through a dedicated function. Every time data is

retrieved from the database or from a file file, this dedicated function is invoked. Rendering

of the output as HTML pages is done through the EJS templates. Each page includes

multiple templates, used as a series of partial templates to render a specific web page.

2.3 Parsing SQL Queries

The project’s main component will focus on the correctness of the query, which is a task

achieved by the SQL parser. The SQL parser will identify all the tokens from the query

string and categorize them to different SQL clauses. Then, they are converted to the JSON

format. The resulting JSON file contains a representation of the query string, and is used

8

Figure 2.3: MySQL Query Response Page

for evaluation by extracting and comparing the specific clauses of the submitted query, to

the equivalent clauses from the solution query.

To help with the parsing, the parser should identify the SQL select statement. The

available packages in npm for parsing SQL queries are node-sqlparser (Fish, 2015) and sql-

parser (Kent, 2015). The sql-parser encompasses a tokenizer and a parser, the output of

the parser is a formatted string with the identified SQL expression from the original query.

The sql-parser can parse where, group by, order by and limit clauses. The node-sqlparser

package can identify the type of expressions, literals and arguments, and writes the output

to a JSON file.

For our purposes, the node-sqlparser is better, as compared to sql-parser, as it can parse

more clauses and outputs JSON file. However, it has a limitation in terms of the clauses

it can identify. Specifically, the parser fails with an unidentified keyword error for inner

queries, functions with more than one argument, having, not null and case statements.

To overcome this limitation, the capability of the parser is extended by explicitly parsing

each of the above-mentioned clauses, as described in detail in Section 2.3.1, before running

9

the parser on node-sqlparser. Thus, the extended clauses are parsed by our tool, and the

equivalent JSON form is produced. A word/placeholder is used to replace an expression

in the query which cannot be parsed by node-sqlparser. This word acts as a key and the

JSON form of the SQL expression acts as a value. The key-value information is stored as

a dictionary using a map data type. Once the query is parsed by the node-sqlparser, in the

generated JSON, the key is replaced with the value from the dictionary, and thus the parser

functionality is extended to parse more SQL clauses. Further details on the replacement of

the key with the value from the dictionary are provided in Section 2.3.2.

Algorithm 1 Pre-parsing algorithm

1: function preParseQuery(query)
2: result = {query:query,store:new Map(),json:{}}
3: result← replaceAllString(result)
4: result← replaceNotNull(result)
5: result← removeExtraSpaces(result)
6: result← replaceFunction(result)
7: result← buildCaseJSON(result)
8: result← reduceSubQuery(result)
9: json = parseSQL(json.query)
10: json.having = buildHavingJSON(json.query)
11: result.json← json+json.having . Having is appended to JSON
12: return result

To identify the presence of a specific expression or SQL clause, a regular expression is

used. Both expression types and values are extracted through regular expressions and string

operations like substring and match functions. The regular expressions used to identify SQL

clauses are listed in Table 2.1. These clauses are stored in a dictionary data type. Dictionary

keys are assigned a unique sequence number for each of these SQL clauses. This step acts

as an extension to the node-sqlparser and is classified as a pre-parsing step, i.e., a step

performed before calling the node-sqlparser. All operations performed in the pre-parsing

step are shown in Algorithm 1.

10

Table 2.1: Regular expressions to identify SQL clauses
Regular expression SQL clause

'[^']*' String identifier
\s+(true|false)\s+ Boolean identifier

[0-9\.]+ Number identifier
[0-9A-Za-z_.$]+ Column names
\(\s*select.*\) Inner query

([\w$.]+)\((\s*[\w$.]+\s*,\s*)*\s*([\w$.]+){1}\s*\) Function call
case\s.*when\s.*then\s.*end Case statement

\s+(having)\s+ Having clause

2.3.1 Pre-parser Operations

The pre-parsing operation will identify those SQL clauses that should be reduced/replaced

in the JSON representation of the query, before passing the query to the node-sqlparser. A

regular expression is used to identify the presence of a clause or identifier, and the clause is

reduced in the equivalent JSON form of the query. The dictionary key is the SQL clause string

from the query, and the value is the JSON form which is stored in this phase. The dictionary

is used in a post-parser operation which is described in Section 2.3.2. Table 2.1 defines the

regular expressions used to identify the SQL clauses, and the JSON forms generated for each

clause are shown in Table 2.2. Listing 1 shows a sample query that needs to be verified. The

output of the pre-parsing step executed on the sample query is shown in Listing 2 12 and

the dictionary stored for extending the parsing functionality is shown in Listing 3.

Listing 1 Sample query for parsing

SELECT title,CASE ('released') WHEN 1987 THEN 'before' WHEN 1988 THEN 'same'

END AS output FROM albums WHERE released IS NOT NULL GROUP BY title,released

HAVING released=1987 OR released=1988;

The first step is to find strings in the query. String literals represented by single quotes

can have any printable characters. If quotes need to be added to the string, extra quotes or

special characters are used to escape the quotes, and to allow the interpretation as a string

literal. The node-sqlparser doesn’t handle strings that contain quotes. To avoid such strings

preventing the identification of other clauses, they are replaced with a key and the actual

11

Listing 2 Intermediate result of query and JSON in the pre-parser step

{ query: 'SELECT title,rep_string_5 AS output FROM albums where released is

rep_string_3 group by title,released having released=1987 or released=1988',

json:

{ type: 'select',

distinct: null,

columns: [{ expr: { type: 'column_ref', table: '', column: 'title' },

as: null },

{ expr: { type: 'column_ref', table: '', column: 'rep_string_5' },

as: 'output' }],

from: [{ db: '', table: 'albums', as: null }],

where:{ type: 'binary_expr',

operator: 'IS',

left: { type: 'column_ref', table: '', column: 'released' },

right: { type: 'column_ref', table: '', column: 'rep_string_3' } },

groupby: [{ type: 'column_ref', table: '', column: 'title' },

{ type: 'column_ref', table: '', column: 'released' }],

orderby: null,

limit: null,

params: [],

having:

{ type: 'binary_expr',

operator: '=',

left: { type: 'column_ref', table: '', column: 'released' },

right: { type: 'number', value: 1988 } } } }

replaced string is stored in the dictionary for later recovery.

The NULL keyword is used to check uninitialized columns. Similarly NOT NULL key-

word is used to identify the columns which are initialized with an actual value. The node-

sqlparser handles NULL comparisons but not the NOT NULL comparisons. To account for

this, NOT NULL is replaced with a constant word representing NOT NULL where-ever it

is present in the query and its JSON is stored in a dictionary.

Functions with a single argument are classified as aggregate functions by node-sqlparser.

Aggregate functions handle distinct keyword and all columns represented by *. Functions

with more than one argument are generated in the pre-parser step. The argument key in

the corresponding JSON form has an array type to store each argument type.

Case expressions in MySQL and PostgreSQL are written with a value which is used for

12

Listing 3 Dictionary for storing clauses for later processing in the pre-parser step

Map {

'rep_string_0' => { type: 'string', value: '\'released\'' },

'rep_string_1' => { type: 'string', value: '\'before\'' },

'rep_string_2' => { type: 'string', value: '\'same\'' },

'rep_string_3' => { type: 'not null', value: 'not null' },

'rep_string_4' => { type: 'expr_func', name: '',

args: [{ type: 'column_ref', table: '', column: 'rep_string_0' }] },

'rep_string_5' => { type: 'case_expr',

value: { value: { type: 'column_ref', table: '', column: 'rep_string_4' },

cond_result:[{ condition: { type: 'number', value: '1987' },

result: { type: 'column_ref', table: '', column: 'rep_string_1' } },

{ condition: { type: 'number', value: '1988' },

result: { type: 'column_ref', table: '', column: 'rep_string_2' } }],

default: null } }

}

comparison or as an expression condition statement. Both these forms are handled using a

regular expression. The JSON form of the case consists of three key-value pairs. The first

and third key-value pairs are optional, and have a value used for comparison and a default

case if none of the condition expression is applicable. The second key-value pair has an array

of condition expressions. Table 2.2 shows the definition of the JSON expressions for case

statements.

Handling the having expression is different from the other pre-parsing steps. Instead of

replacing an expression with a word, having is attached as a new key-value pair to the select

statement. The having expression is similar to the where expression but it is applied on a

group by expression for filtering aggregated results. Generating the JSON form for having

leverages the way the where expression is parsed in node-sqlparser.

If the query has inner queries (a.k.a., subqueries), the inner queries are isolated and each

is parsed as an independent simple query. The parsed inner queries are then attached to the

final JSON as sub-expressions in the post-parser step.

13

Table 2.2: JSON form of SQL clause

SQL Clause JSON
Identity {type:<type>,value:<value>}

Column name {type:'column_ref',table:<table_name>,column:<column_name>}

Table name {db:<db_name>, table:<table_name>, as:<alias>}

Select query

{ type: 'select',distinct: null,

columns: [<expression>],

from: [<expressions>],

where:<binary_expressions>,

groupby:[<expressions>],

orderby:[<expressions>],

limit:[<start_limit>[,<end_limit>]],

params: [<params_list>] }

Function call {type:'expr_func',name:<function_name>, args:[<args_list>] }

Inner Query {type:'inner_query',value:<json_query_expression>}

Having {having:<expression>}

Case Expression

{type:'case_expr',

value:{value:<value>,cond_result:[<sub_expressions>],

default:<value>}}

2.3.2 Post-parser Operations

The pre-parser step simplifies the query to be parsed by the node-sqlparser package. The

output has the corresponding JSON form and partial JSON forms of the SQL clauses that

can’t be parsed by node-sqlparser in a dictionary. The partial JSON forms consist of a string

constant which is a key (i.e., an SQL expression) and a value which is the JSON form of the

corresponding SQL expression. The post-parser function iterates through all the key-value

pairs in the parsed JSON, by identifying the type of expression it encounters. Then, it checks

whether a value is a string constant corresponding to a dictionary key which was replaced as

part of the pre-parser step. If it is found to be a key, then it is replaced with the value from

the dictionary. The function starts with the outermost part of the query and go into depth

until each key is reduced to its JSON form recursively. After every key is replaced, the final

JSON generated is used as the representation of the given query. The JSON for the sample

query shown in Listing 1 is provided in Listing 4, and the post-parser algorithm is described

in Algorithm 2.

14

Listing 4 Output of the post-parser step

{ type: 'select',

distinct: null,

columns: [{ expr: { type: 'column_ref', table: '', column: 'title' },

as: null },

{ expr: { type: 'case_expr', value: [Object] }, as: 'output' }],

from: [{ db: '', table: 'albums', as: null }],

where:

{ type: 'binary_expr',

operator: 'IS',

left: { type: 'column_ref', table: '', column: 'released' },

right: { type: 'not null', value: 'not null' } },

groupby: [{ type: 'column_ref', table: '', column: 'title' },

{ type: 'column_ref', table: '', column: 'released' }],

orderby: null,

limit: null,

params: [],

having:

{ type: 'binary_expr',

operator: '=',

left: { type: 'column_ref', table: '', column: 'released' },

right: { type: 'number', value: 1988 } } }

2.4 Query Evaluation Phase

The validation of the query is done by comparing the JSON of the student submitted query

with the JSON of the solution query. The evaluation is carried out in two phases, one by

comparing the output of the query, and another by the comparing the clauses in the query.

To compare the output of the query, columns and tables from both the parsed query and

the solution query are used. Both these queries are joined using a full outer join, and the

output will be used to see if there are any differences in the two solutions.

Individual columns, tables, and clauses such as group by, having extracted from stu-

dent’s submitted solution are validated by checking their presence among the expected SQL

clauses extracted from the sample solution. If all the expected clauses are present, then the

query is deemed as correct. Otherwise, feedback is provided with respect to which of the

expected elements are missing.

15

Algorithm 2 Post-parsing algorithm

1: function postParseQuery(clause)
2: if clause.type = identity then . Basic datatypes
3: return clause.value
4: else if clause.type =′ column ref ′ then
5: clause.type = postParseQuery(clause.value)
6: return clause
7: else if clause.type =′ case expr′ then . Case statement
8: clause.value.value = postParseQuery(clause.value.value)
9: for var clause in clause.value.condition result do
10: clause.condition result = postParseQuery(clause.condition result)

11: clause.value.default = postParseQuery(clause.value.default)
12: return clause.value
13: else if clause.type =′ aggr func′ then . Function calls
14: clause.args = postParseQuery(clause.args)
15: return clause
16: else if clause.type =′ binary expr′ then . Conditions and filters
17: clause.right = postParseQuery(clause.right)
18: clause.left = postParseQuery(clause.left)
19: return clause
20: else if clause.type =′ expr list′ then
21: for var subClause in clause.value do
22: subClause = postParseQuery(subClause)

23: return clause

Both of these results are provided in the web browser for the students to review. Students

can improve queries by correcting and re-testing, or can submit the query for evaluation which

will be stored persistently for grading.

16

Chapter 3

Tool Evaluation

This chapter concentrates on testing the implementation as well as on improving the effec-

tiveness of the grading of an SQL query. In Section 3.1, testing methods for verifying the

working of modules, desired functionality, and end-to-end correctness are described. Then,

the tool is tested on a set of queries, and quantitative and qualitative observations based on

the results are described in Section 3.2.

3.1 Testing Life Cycle

Unit, integration and end-to-end testing are three different testing phases employed to check

for bugs and verify the correct implementation of the project. The project is decomposed

into files and each file has one or more functions dedicated to some specific functionality. In

the unit testing phase, functions are tested by providing the function inputs and observing

the return values. The mutated value in a variable is tracked to check whether the data

is propagated as expected. The unit test cases are available for each function under its

description and before the declaration in the source file.

In integration testing, data and control propagation from more than one function is

verified. Functions residing in other files are tested. End-to-end testing involves testing of

complete flow from the user input through the web browser, then a call to the server, reading

17

of data from file or database, processing of the data and finally the time until the response

is received and rendered on the web page. End-to-end testing verifies the correct interaction

between different technologies. Testing was conducted with queries similar to those that

can be used in a relational database assignment to verify the behavior in a production

environment.

3.2 Evaluating An SQL Assignment

The accuracy of grading an assignment is evaluated with a set of queries. The quantitative

analysis provides the accuracy of the tool in recognizing correct and wrong queries. The

qualitative analysis provides an elaborate description of the distinct observations from the

testing.

3.2.1 Quantitative analysis

Table 3.1: Assignment evaluation: quantitative report
Class Number of queries
Total queries 120
Parser error 30
Syntax error 2
True positive 62
False positive 0
False negative 5
True negative 21

The application was used for grading an assignment with six questions. The assignment

questions were stored in a JSON file along with their answers as SQL queries. For each

question, 20 different queries are used to test the behavior of the application. The responses

are categorized into several classes as follows: a query that failed to parse (parser error),

a query with syntactical errors (syntax error), wrong query identified as incorrect (true

negative), correct query reported as correct (true positive), queries that are correct but the

tool that failed to recognize the correct output (false negative) and queries that are wrong

18

but the tool identified them as correct (false positive). The table 3.1 lists the count of queries

that fall into each of these categories.

In the testing phase, minor issues were identified and fixed in the parser, and the testing

was resumed from the beginning. Issues which required major changes in the parser were

the star “*” symbol in a query (which represents all columns), a query having back quote,

double quotes for strings, a function call in projection without alias name and limit clause.

These changes were performed on the query and tested. Out of 120 total queries tested, 40

queries were found with these issues. Queries were changed as a workaround for successful

parsing. Major changes in the parser will be fixes that are taken up as future work.

3.2.2 Qualitative analysis

Figure 3.1: Tool response on a query with syntax error

The tool imitates the behavior of a database when a query with a syntax error is executed

in it. The tool stalls the query parsing and analysis operations by displaying the error

message from the database to the user. Figure 3.1 shows the result of the query with a

syntax error where, by is used instead of the select keyword.

19

Figure 3.2: Tool response on a valid query that failed to parse

The parser fails with an exception when it encounters unexpected tokens. Even the

valid SQL queries fail due to this limitation of the parser implementation. The query from

Figure 3.2 is one such example, where the parser failed to process it. The parser was unable

to interpret the DATE SUB function. Comparison of the row count operation is independent

of parsed JSON, hence the result of the query output and the row count alone is displayed.

A query parsed successfully will be analyzed for its output and each of its clauses. The

tool displays the identified output and clauses, then analysis on it for row count and output

comparison are displayed. Feedback will be provided on missing and undesirable tokens

in the query. Figure 3.3 shows a query with all evaluation step successfully accomplished.

The query has all necessary tokens and no undesirable ones, hence the query clause analysis

displays no suggestion.

A valid query that yields an incorrect output will be revealed when comparing the row

count of the sample query with the row count of the output. Figure 3.4 has a query where

the filter was supposed to be on the released column, but it is on the title column. The

query analysis provides feedback on the column expected in where clause.

20

Figure 3.3: Identifying a correct query and its output

Figure 3.5 shows a false positive case of the evaluation tool. The select statement uses

album id instead of artist id inside of an aggregate function. The tool failed to recognize

that the output is the same irrespective of any column name used inside the count function.

21

Figure 3.4: Query with an incorrect result

Figure 3.5: Valid query interpreted as wrong

22

Chapter 4

Tool Readability And Reusability

This chapter covers the usage of the tool, by providing details on the environment that tools

requires and the steps involved in setting up the project and running it, in Section 4.1.

Section 4.2 provides a style guide which enlightens on project structure, modularity of code

and naming conventions. The SQL parser has other applications, some of which are provided

in Section 4.3.

4.1 Project Setup and Execution

The project is built using the npm tool. The environment should have Node.js, PostgreSQL

and MySQL databases configured, for the project to run. The project code is available for

download at git repository (Kumar, 2018). The Javascript dependency packages for the

project are imported by npm install command in the root directory of the project folder.

Then, the server needs to be started with the npm start command. The default port is

3546. To use a different port, the port number is provided in the command as an additional

parameter as PORT=8080 npm start. This sequence of commands are listed in Listing 5.

23

Listing 5 Steps on setting up the project

$ git clone https://github.com/vijaykumardev/SQLAutoGrader .git

$ cd .git

$ npm install

$ npm start

4.2 Style Guide

The project follows a standard convention to enable readability, re-usability, and extensibil-

ity. The standard naming convention is followed for the developer familiarity and uniformity

within the project. Constants are used with all uppercase and underscore delimited, con-

stants used to store library imports are in lowercase without any spacing, functions, files and

variable names are in camel casing.

Listing 6 Coding conventions followed

/**

* @function checkValueType

* @description check the type of the value stored in a variable

* by identifying it's match to regular expression condition

* @param {String} identifier

* @return {"null"|"bool"|"number"|"column_ref"|"string"}

* returns the type of value stored in the variable

*/

function checkValueType(identifier){

if(NULL_REG_EXP.exec(identifier))

return 'null'

else if(NOT_NULL_REG_EXP.exec(identifier))

return 'not null'

else if(BOOL_REG_EXP.exec(identifier))

return 'bool'

else if(NUMBER_REG_EXP.exec(identifier))

return 'number'

else if(STRING_REG_EXP.exec(identifier))

return 'string'

//If the value is of extended sql JSON type

else if(COLUMN_REG_EXP.exec(identifier))

return 'column_ref'

return 'string'

}

24

Strings are wrapped around single quotes unless strings contain quotes in themselves, in

which case, the SQL queries are wrapped using double quotes. Line delimiter such as semi-

colon for Javascript statements are omitted. Block statements delimited by curly braces are

excluded if the block contains just one Javascript statement. ECMAScript 6 arrow function

is used for anonymous function declaration. JSON is used as a return type for returning

more than one variables. Comments for each function have a description, parameters used,

return value, function’s type and function call with the sample argument value. An example

of the convention used is shown in Listing 6.

4.3 Additional Application

The extended SQL parser has potential for a wide range of applications. The parser will allow

users to quickly verify the syntax of SQL queries without any active database connection. It

can also enlighten the user about all the tables required to run a query. This is helpful for

setting up a new database, rather than using the brute force approach to finding the missing

database components. The parser will give the list of database components.

Finally, the parser can be used as a channel for learning the SQL language. For specific

values in the SQL clause, the parser using its JSON representation will generate equivalent

SQL queries, which the user can use to test the behavior and explore the SQL language.

25

Chapter 5

Future Work and Conclusion

The portal enables the student to get access to assignment questions, test their queries,

check query correctness and submit queries for evaluation. The query parser identifies the

constructs and clauses in the query such as tables, projections, filters, conditions, group by,

order by, having, functions and case expressions. The correctness of a query is validated

with the help of a query parser by comparing the presence of expected clauses from the

solution query in the query submitted by a student.

The functionality of the query parser is limited to identifying and parsing SQL constructs

and clauses in one SQL query. Combinations of two or more queries using union, intersect,

except are not supported. The parser works only on valid SQL statements. Issues in the

parser that need major code fixes are described in Section 3.2.1. Implementing these fixes will

enable query evaluation without a workaround. Identifying the syntax correctness will enable

better feedback for users. Improving functionality by analyzing the query statement on the

usage of indexes, removal of duplicates, restructure of the query, best practice structures and

explain plans will help students to not only write a correct query but also an efficient query.

This can be done as an extension in future work.

Furthermore, the user interface can be further enhanced to make it more accessible by

providing meta-data information about the query. The interface can be redesigned for a

cleaner, dynamic and uniform user experience. For front-end rendering, EJS can be replaced

26

with Vue.js to meet the redesign goals in future work.

The full-functionality portal will contribute to a greater learning experience of the stu-

dents, by allowing them to concentrate their time and effort on enhancing the knowledge of

writing SQL queries and minimizing the time spent on database configuration or environ-

ment setup. The portal will also give swifter feedback on assignment submissions. For the

graders, it will automate mundane tasks and streamline the process of assignment grading.

27

Bibliography

Chandra, B., Joseph, M., Radhakrishnan, B., Acharya, S., and Sudarshan, S. (2016). Partial

marking for automated grading of sql queries. Proceedings of the VLDB Endowment,

9:1541–1544.

Cheang, B., Kurnia, A., Lim, A., and Oon, W. (2003). On automated grading of program-

ming assignments in an academic institution. Computers & Education, 41:121–131.

Dekeyser, S., de Raadt, M., and Lee, T. (2007). Computer assisted assessment of sql query

skills. ADC Conference, 63:53–62.

Fish (2015). node-sqlparser. https://www.npmjs.com/package/node-sqlparser.

Kent, A. (2015). sql-parser. https://www.npmjs.com/package/sql-parser.

Kumar, V. (2018). SQLAutoGrader git location. https://github.com/vijaykumardev/

SQLAutoGrader/.

Russell, G. and Cumming, A. (2005). Automatic checking of sql: Computerised grading.

International Journal of Learning, 12:127–134.

28

https://www.npmjs.com/package/node-sqlparser
https://www.npmjs.com/package/sql-parser
https://github.com/vijaykumardev/SQLAutoGrader/
https://github.com/vijaykumardev/SQLAutoGrader/

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Acknowledgements
	Dedication
	Introduction
	Automatic Evaluation of Computer Programs
	Previous Work in SQL Query Evaluation
	Proposed Approach

	Tool Implementation
	Architecture
	Project Components
	Parsing SQL Queries
	Pre-parser Operations
	Post-parser Operations

	Query Evaluation Phase

	Tool Evaluation
	Testing Life Cycle
	Evaluating An SQL Assignment
	Quantitative analysis
	Qualitative analysis

	Tool Readability And Reusability
	Project Setup and Execution
	Style Guide
	Additional Application

	Future Work and Conclusion
	Bibliography

