*/EHPLEHENTATION OF DATA SEGMENTATION

IN A GKS BASED GRAPHICS SYSTEM ,
i

by,
REBECCA EDWARDS MAY

B. S., Appalachian State University, 1978 .

A MASTER'S REPORT

subnitted in pertial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KARSAS STATE UNIVERSITY
Manhattan, Kansas

1983

Approved by:

LD
2468

iALlEﬂE 592193

243 NTENTS

M3
C.2

1.

SUMMARY

1.1

1.2 Scope of Report

1.3 Scope of Implementation
1.4 Conclusions

GKS SPECIFICS FOR DATA SEGMENTS

2.1 Concept of Data Segmentation
2.2 Data Segment Attributes
2.3 Clipping and Transformations for Segments
2.4 Workstation Independent Segment Store

vs Workstation Dependent Segment Store
2.5 Segment Functions Defined by GKS

GKS VS CORE ON SEGMENTATION

DISCUSSION OF SEGMENTATION DESIGN ISSUES IN GKS

4.1 Attribute Binding for Segments
4.2 Permanent Segment Library Concept

KSU-GKS IMPLEMENTATION OF DATA SEGMENTS

5.1 Data Flow

5.2 Data Structures

5.% Segment Manipulation Functions
5.4 Project Status

APPENDICES

REFERENCES

Definition of Graphic Kernel System (GKS)

13

18

22

FIGURES

GKS LAYERS

PICTURE STRUCTURE

TRANSFORMATION PIPELINE

FLOW of PRIMITIVES into WISS and WDSS

ATTRIBUTE BINDING

KSU - GKS DATA FLOW

DATA FLOW WITH SEGMENTS

WISS DATA STRUCTURE

1a

Ta

9a

10a

19a

22a

22b

25a

Page 1

1. SUMMARY

1.1 Definition of Graphic Kernel System

The Graphic Kernel System (GKS) [Draf83], as proposed by
the International Standards Organization (ISO), is expected
to be approved in 1983 as an ISO standard for developing
device-independent graphic software. At the highest level, GKS
defines a language and device independent nucleus of graphics
procedures allowing access to a wide range of physical devices,
within the particular conventions of a given language. A

layered model of GKS is shown in Figure 1, GKS Layers.

With the cost of hardware technology steadily dropping,
graphics hardware now represents a much smaller percentage of
the system cost than it once did. Users are becoming
increasingly aware of the costs of writing and maintaining
software. Thus,’the primary motivation behind the GKS proposal
is software compatibility across product lines and into future
products, preserving software investments [Fich@}l. And equally
important, standards would allow a programmer to transfer the
experience gained on one application +to others; thereby
increasing the productivity of now scarce graphics programmers

[Bails3].

The GKS package provides application programs the

Application Proj fem

La.nj uage- de PencienT

GKS

_OPero.:\'ma gxﬂs#_e_m_

| __
Other (esources | cim‘:hlc. respDusees
|

thu..re.z |

GKS LAYERS

Page 2

capability to work with varied input and output devices. This
capability is provided through callable graphics procedures
which in +turn drive the virtual graphics devices. Each device
is driven by a device-dependent driver which maps the virtual
interface onto the hardware interface. This mapping is defined
by ANSI's Virtual Device Interface { VDI). VDI specifies the
data format for describing a picture in a device-independent
form amenable to a wide range of graphic devices fWarrBBW. For
an application program 'to access a new device, all that is
needed is a new device-dependent driver. It is not necessary to

rewrite the program [Shres2].

A workstation is a console that includes at least one or
more various input devices such as an alphanumeric keyboard,
function keys, a joystick, a control ball, or a lightpen. The
various devices that make up a workstation are treated as one
logical unit. For each workstation in a given GKS
implementation, an entry exists in a workstation des&ription
table defining the capabilities and characteristics of that
workstation. These tables are maintained at the GKS level, not
at the application program level. The program may inquire via
GKS as to which capabilities are available on & given
workstation and proceed accordingly [Enca80]l. The VDI specifies
both a lean set and a rich set of functions. The lean set is

designed to the lowest level and is intended to be supported by

Page 3

all devices. The rich set, while not bound to the host language,
could be emulated as device firmware and includes such optional

functions as color and polygon fill.

A related standard also supported by GKS is the Virtual
Device Metafile (VDM). VDM defines a data format for
describing a picture in a device-independent form for
translation and display on a variety of graphics devices. The
real advantage here is the ability +to transfer computer-
generated pictures not only between graphics devices, but also

between any graphics package supporting VDM.

1.2 Scope of Report

GKS supports two-dimensional output to and input from
single or multiple workstations. The output primitives include
line drawing, text drawing, and raster graphic primitives. Five
classes of logical input devices are supported: locator,
valuator, pick, choice, and string. Coordinates are transformed
in a two-stage transformation process. The first stage can be
set for each primitive; the second stage can be set for each

workstation.

A segment facility provides the means for structuring =a
picture into subparts. Segments may be created and deleted, the

segment attributes may be dynamically modified, and the segments

Page 4

may be independently transformed. They can be displayed

simultaneously or alternatively on different workstations.

Segmentation allows a logical association between
individual primitives, such that each segment can be uniquely
identified and manipulated as an entity. This provides one way
of making selective modifications to the picture. The concept
of data segments leads to the notions of multiple instances of a
given segment within a picture, segments composed of smaller

segments, and libraries of stored segments.

GKS specifies a sét' of allowable operations for data.
segments and defines a unique set of attributes to be associated
with each segment. In addition to CREATE and DELETE, segments
can be COP(Y)ied, INSERTed as a part of another segment, and
independently ASSOCIATEd with a given workstation. The set of
attributes includes a transformation matrix, visibility,

highlighting, segment priority, and detectability.

1.3 Scope of the Implementation

A GKS based computer graphic system has been implemented at
Kansas State University. This implementation evolved over a
period of time as the result of the efforts of several students.
Data segmentation capabilities were incorporated into KSU's

already-running system. The GKS concepts were adhered to as

Page 5

much as was feasible. Therefore, the data segmentation also
followed the GKS guidelines. The data flow is as specified in
GKS. Data structures were designed within the constraints
imposed by an Interdata 3220 host under a UNIX* operating
system. The heart of the system was implemented in PASCAL, not

including some of the device drivers.

The preliminary study of the GKS specification raised
several questions that were not clearly defined or well
Jjustified in the ISO docuﬁent. The decision whether to bind
segment attributes at creation time or display time can be
argued both wayé; depending on the intended uses for the system.
Provisions for a permanent segment library are not explicitly
defined. In fact, certain GKS requirements preclude a flexible

segment library.
1.4 Conclusions

Through research and the experience of an actual GKS
implementation, certain conclusions became obvious. C(learly,
GKS was intended to be used by an application program as opposed
to being used interactively. The defined functions are hardly
'user friendly'. It seems there are an unnecessarily large
number of functions defined. The user is burdened with every

detail. An intimate knowledge of both the internal and external

Page 6

coordinate systems is a requirement. Transformations must be
defined by a full transformation matrix. Some of these things

could be more transparent to the user.

The data segment concept should be extended to explicitly
provide for a flexible segment library. This would seem a basic
requirement; to preserve 'building blocks', or segments, from

one session to the next.

0f course, GKS claims that a standard promotes software
portability. The reader may or may not subscribe to the idea of
portable software. However, standardization does improve the
user's understanding of ﬁny particular graphics system, thué
programmer portability. That is surely worth something in =

time when software costs ocutweigh hardware costs.

As the first international graphics standard, the GKS will
certainly have a big impact on future graphics software design.
Several Furopean and U.S. companies with GKS-compatible software
are now supporting the standardization of the system. Whether
the supporters of Core will abandon their efforts and
considerable investment to convert to GKS is unclear at present.
Peter Bono, ANSI x3h3 chairman, isn't sure that Core will
disappear. He feels that GKS doesn't provide enough

functionality for all users.

* UNIX is s trademark of BELL LABORATORIES.

Page 7

2. GKS SPECIFICS FOR DATA SEGMENTS
2.1 Concept of Data Segmentation

Data segments provide a means for structuring a picture
into subparts. Output primitives, bound with their attribute
values, can be grouped together in a segment. The segment
defines a logical association between the individual primitives
such that each segment can be uniquely identified and modified
as an entity. It is the basic unit for manipulation and change.
The primary motivation behind structuring a picture into
segments. is to- allow selective modifications to the picture,
which is simply a collection of segments. Any segment can be
individually transformed or deleted without affecting the rest
of the picture. Primitives that are generated outside segments,
non-segment primitives, are sent to all active workstations, but
the application program has no further access to them. A
picture can contain multiple instances of a given segment. And,
a segment can be a part of several pictures, or even a part of
another segment, thus implying a hierarchical picture structure.

See Figure 2, Picture Structure.

A segment is simply a collection of the output primitives
that define a particular object, a subpart of a picture. The

attributes which control the appearance of the primitives are

Picture

Seqment
ej A

Stﬁm%‘r
D

FI3MC— ;'l

Picture

Sejme,n‘r
B

S mén'\”
eaE.

Scelm.ud'

Segmexﬂ'
o

?; cture Structure

Page 8

specified modally and are bound to the primitives when it is
created. These attributes include all the geometrical aspects

of the primitives such as line width or character height.
2.2 Data Segment Attributes

In addition to the primitive attributes associated with the
primitives of a given segment, the segment itself has attributes
associated with it. The segment attributes affect the appearance
of the view whose description is stored in the segment. They
are characteristics of a segment's image; not of the object of
which the imﬁge is a view.- They are defined uniquely for each

segment and they affect all the primitives of a given segment.

VISIBILITY indicates whether or not a ségment is
displayable. It is possible to have a segment included as a
part of a picture, but not be visible. HIGHLIGHTING simply
indicates whether & visible segment is highlighted or not. It
is a variation on the visual characteristic "blink".
DETECTABILITY indicates if a segment is selectable with a pick
device. PRIORITY establishes a preference for overlapping
segments. It determines how GKS will handle picking and display
of overlapping segments. And finally, a TRANSFORMATION matrix
is specified for each segment. It defines any translation,

scaling, or rotation to be applied to. the primitives of the

Page 9

segment.
2.3 Clipping and Transformations for Segments

Segment transformations are done in normalized device
coordinates. They are performed after the normalization
transformation, but before any clipping. The transformation 1is
actually stored in the segment state list, it is not performed
in the segment storage. Each time the segment is redrawn, the
transformation is performed. Clipping is performed after the
normalization and segment transformations have been applied. It
iz delayed until fhe segment is to be displayed éﬁ the
workstation. Each primitive is clipped against the clipping
rectangle associated with the primitive when it was created.
Figure 3, Transformation Pipeline, shows the relationship
between the normalization transformation, segment

transformation, and clipping.

2.4 Workstation Independent Segment Store

vs Workstation Dependent Segment Store

The Workstation Independent Segment Store (WIss) is the
"community"” storage for segments. The segment manipulation
functions access this storage. Only one WISS is permitted in a

GKS implementation. The point in the flow of data at which

APPLICATION
PROGRAM

i

NORMALIZATION
TNHSFO!_C‘HJHON INSERT

.i

CLIPPING
RECTANGLE
STORED

ACTIVE WORKSTATIONS

~SEGME SEGMENT ~SEGM.
o ASSOCIATE
SEGMENT- SEGMENT-
TRANSFORMATIO TRANSFORMATION
. R __CoPY
CLIPPING INSERT—
! TRANSFORMATIO
WORKSTATION .
TRANSFORMATION : INSERT
'ORK.'!TATION
Ftrjud < %

Transformation F\).‘Pe\lnt

Page 10

primitives are recorded in the WISS immediately follows the
point at which data are distributed to the workstations. For
this reason, WISS is a valid workstation category. The
relationship between the WISS and the WDSS is shown more clearly
in Figure 4, Flow of Primitives into WISS and WISS. If no
segment is open at the time a primitive is generated, then it is
recorded in the Workstation Dependent Segment Store (WDSS) for
each active workstation as a non-segment primitive. The WDSS
stores the picture defin;tion for that workstation. Because a
WDSS exists for each workstation, and they are independent of
each other, an application program can be building sevéral
diffefent pictures simultaneously. And, each piéture may share
some common elements through the WISS. The non-segnment
primitives in a HDSS‘ are transient. They provide a one time
view. Invoking any of the following functions will clear all
non-segment primitives from the specified workstation: CLEAR_WS,

REDRAW_WS, or UPDATE_WS.

2.5 Segment Functions Defined by GKS

There are seven segment manipulation functions defined in
GKS: CREATE, CLOSE, DELETE, DELETE FROM WS, ASSOCIATE WITH WS,

COPY_TO_WS, and INSERT. They are discussed individually below.

The CREATE function opens or begins a new segment. All

No non-segment primitives

added 10 inactive WOSS.

New P(‘. miives added
here only F no
Seﬂmm‘i’ S O‘P-&ﬂ .

New P('.m'. tves added

here onl\1 \‘S'\ L
Scame.n‘l' us BPED .

F:|3uurb L

Flow of Pendives

WDHSS |

Not
C’A—C,Jf‘l Ve

WDIS 2

priml‘\"-u-e_,

'Prlmi'l-lvb

d\rcxu)s-eq \

drawsey 3

WISS

Seem:z,r\'\’ \

Segment A

Seqmw k.
Yegmend +

inte LIDSY amd WISS

Page 11

subsequently generated primitives will become a part of the
current segment. CREATE does not force an implied CLOSE of a
currently open segment. Instead, this function returns an error
if another segment is already open. A segment may be RENAMEd
while it is open, and any of its dynamic attributes may be

changed.

The CLOSE segment function completes - the previously open
segment. No further primitives can be appended to it. However,
any of its dynamic attributes may be changed. GKS does not
check to see that the segment is non-empty. The program could

" conceivably generate null segments.

The RENAME function replaces each occurrence of the old
name with the new segment name. The old name may be reused by

the program.

The DELETE function removes all access to the segment. It
is effectively canceled and its name may be reused. A segment

cannot be DELETEd while it is still open.

The DELETE_FROM WS function disassociates the segment from
the specified workstation. If afterwards, the segment is no
longer associated with any workstation, the segment itself is
DELETEd. This seems a somewhat rigid restriction imposed on the

user, not lending itself to libraries of stored segments.

Page 12

The ASSOCIATE WITH WS function adds the segment to the set
of segments associated with the specified workstation. The

clipping rectangles are copied unchanged.

The COPY function dumps the segment oprimitives to the
specified workstation after transformation and clipping. The
primitives are not stored in a segment, i.e., the segment does

not exist on the workstation as with ASSOCIATE_FITH_FS.

The INSERT function copies the primitives of ;nother
segment into the currently open one after the segment
transformation has been performed. A second transformation can
-also 5e specified, possibiy the normalization transformatioﬁ.
Each primitive processed is assigned a new clipping rectangle in
the same manner as directly created primitives. This is not
intended to be a recursive function: a segment cannot be copied
into itself. After a segment is closed it cannot be modified or
exteﬁded, i.e., no primitives can be added or deleted from it.
No provisions were made to allow segments to be "edited".
Segments can be "extended" awkwardly by beginning a new segment,
INSERTing the segment to be extended, then appending the

gdditional primitives.

Page 13

3. GKS VS CORE SEGMENTATION

In April of 1974, ACM SIGGRAPH commissioned a Graphics
Standards Planning Committee to develop a package of basic
graphics primitives (Core) to allow creation and viewing
transformations of 2D and 3D line drawings. Soon thereafter,
the German Standardization Institute, DIN, began design of a
graphics package that became GKS. Although very similar to
Core, GKS was designed to be a 2D system with less extensive
functionality than the Core specification [ShreB2l. There are
many basic ideas that both systems share. But the systems differ

in the implementation of some of the concepts [Stat771.

Both GKS and Core are intended to provide device
independence by shielding the applications program from specific
hardware characteristics. This shielding is done at the
functional 1level: the user's device-independent routines call
device-dependent internal routines to map specific commands to

the selected hardware device driver.

Floating point world coordinates are used by both Core and
GKS to describe an object to the graphics system. Thus,
application programs can define a picture in device-independent
coordinates. Because the coordinates passed to either graphics
package are inherently dimensionless, a program can use

coordinates that are natural to the application at hand

Page 14

[BergTB].

Iﬁ order to produce an image on a view surface, the user's
world coordinates must be mapped onto the appropriate
coordinates of the physical device. First, the world
coordinates of the window are scaled to the normalized device
coordinates of the viewport such that the window Dboundaries
coincide with the edges of the viewport. This is the
normalization transformation of GKS. Both Core and GKS allow
the 'window' to be dynamically specified. Secondly, the picture
is clipped to the current window so that only those portions of

objects that lie within the window will be displayed.

GKS allows a workstation transformation in addition to the
normalization transformation. The appearance of a primitive is
essentially defined by two stages. In a first step, a
"workstation independent picture" is drawn on an abstract
viewing surface. In a second step, for each active workstationm,
this "picture" is combined with workstation dependent data and
sent to the physical viewing surface associated -with each of
these workstations. The ability to specify a window and a
viewport for each workstation allows different views of the
composed picture to be displayed on different workstations. For
example, a drawing could be output on a plotter to scale and
simultaneously some part of that drawing could be displayed on

the entire view surface of an interactive terminal.

Page 15

The workstation concept of GKS (based on a description
table, a state 1list, and a set of management and inquiry
functions) not only provides a means for the optimal adaptations
of application programs to hardware capabilities of graphic
terminals, it also lends itself to an adequate treatment of
remote graphic operations. Also the idea of treating the
workstation as a functional entity supports the trend toward
intelligent graphical systems: an operator handles a collection

of graphical I/0 devices as one operational unit [Encaso].

When an output primitive is called, it is defined by the
va}ues of several attributes, including color, intensity, liﬁe
style and width, and text font, size and precision. The Core
system defines each attribute singly. This method of specifying
attributes requires that the programmer set each attribute
individually and then redefine each one as the program changes
or moves to a different output device. The programmer is forced
to anticipate the device-dependent attributes, and additional
coding for each accessed device is necessary. The GKS method
allows the flexibility of singly defined attributes, and also
provides a bundling technique. With bundling, an output
primitive can be essigned a group of attributes selected by a

primitive index.

The idea of data segmentation is conceptually the same in

GKS and Core. The purpose being to facilitate picture

Page 16

modification. Both systems define a segment to be a separate

entity, and a picture to be a collection of segments.

Two segments types are specified in Core: non-retained and
retained. Non-retained segments provide for picture definition
without the possibility for subsequent access or modification.
They correspond to the non-segment primitives of GKS. Non-
retained segments or non-segment primitives are displayed on the
view surface until the view is updated or the picture is redrawn
in its entirity. Retained segments are the counterpart for GKS
segments. They can be renamed and deleted, also, a retained
_ segment's attributes can be dynamically modified. The segment
manipulation functions specified by Core are CREATE, CLOSE,
RENAME, DELETE, and DELETE ALL. In addition, GKS specifies

INSERT, DELETE FROM WS, ASSOCIATE WITH WS, and COPY_TO_WS.

A segment's dynamic attribute values can be changed any
time after the segment has been created. Both GKS and Core
define visibility, highlighting, detectability, and a segment
(view) transformation. However, segment priority is only defined

in GKS.

When a segment is CREATEd, it becomes the currently open
segment and all subsequent primitives become a part of that
segment. The dynamic attribute values for the newly opened

segment are determined from the current attribute values, but

Page 17

may be changed at any time. Also, the current selection of view
surfaces (workstations) is recorded in a list associated with
the segment. This list is permanently bound to the segment in
Core. But, GKS allows dynamic view surface selection via
DELETE_FROM WS and ASSOCIATE WITH_WS. In Core, there is no
corresponding list associated with the view surface

(workstation) as in GKS.

Core specifies that at segment creation, the "current
position"” is set to the origin of the world coordinate system.
GKS supports only absolute positioning, where each primitive has
its coordinates fully .defined. The use of current position
value is inconsistent and can be confusing at .times ArBaiIBEW.
In addition, when a segment 1is created in Core, the current
value for each attribute is reset to a prespecified system
default for that attribute. Core does this in an effort to
allow the appearance of objects described by various segments to
be completely independent of the order in which the segments

were created.

Page 18

4. DISCUSSION OF SEGMENTATION DESIGN ISSUES IN GKS

4.1 Attribute Binding for Segments

Each instance of an output primitive has both geometric and
non-geometric attributes assigned to it at creation time. The
geometric attributes restrict the shape and size of a primitive.
They are individually specified and therefore workstation
independent, and where _appropriate, are expressed in world
coordinates. Once these attributes are bound to their respective
primitives at creation, the <wvalues are subject to the same
normaiization transformation as the data contained in the

definition of the primitive.

Non-geometric primitive attributes restrict the appearance
of output primitives. They are specified via a bundle table,
there is one attribute per primitive called the index. The
index is used to access the specific bundle table entry that
defines the non-geometric attributes. There 1is a separate
bundle table for each primitive and a separate set of tables for
each workstation. Therefore, the non-geometric attributes are
considered to be workstation dependent and their values are
restricted to the valid values for a given workstation. Even
though a primitive's attribute index cannot be changed, the

values in the bundle tables may be dynamically modified. When

Page 19

the oprimitive is displayed, its non-geometric attribute values

are resolved.

Once a segment is closed, the primitives that make up that
segment cannot be modified. The clipping rectangles and the
primitive attributes are stored along with the primitives in the
segment storage. But, it is still possible to change the
segment attributes and the workstation attributes, and to apply
geometric +transformations. Figure 5, Attribute Binding, shows
the flow from creation through display and where attributes are

bound.

The alterﬁative would be to have a segment's primitive
attributes bound at display time. The view of the object would
be incorporated into the prevailing environment, i.e.,
jnfluenced by the current attribute values. The view of the
object, its appearance, would depend upon the picture at hand.
This approach is in fact the approach that was taken with the
implementation at Kansas State University. It was felt that the
gsegment would be more usable, less rigid, this way. A segment
that is intended to be used in several pictures, may indeed need

to take on thé characteristics of each.
4.2 Permanent Segment Library Concept

Another very important concept in computer graphics is that

- ~ ddD
2 'Y Y
SINAN)3s L” AVHYY TI3D
LUOdMAIA . [*x3% VIUY Tid
WINEY YINYYRAT0d
SINANDas 4 ANrA10d
= yAIILNGal
£ ¥old
. SaLNaLLY
‘ vauv Tid
ALHEYIO3LAa [| gainaniLy
ALINOINd 1X3L
LNANDAS SALNAIYLLY
ONLLHOTHOIN * yavnA1od
ALTHEISIA | | s3LnaldLLY
NowLvraodsnvaL ANMIAT0d
LNINDas mw._.ﬂ_._._“u__ﬂ‘
SALNAIYLLY A D AE—
INAMDAS e Luzscz_
| 13s
FUNLOId 1SIT dLVI1S JSIT dLVIS ISIT dLVIS SNOILLONNA
NOLLYLSHUOM LINANDIS SAD SAD

ONIANIE

J1Ngld L]

V

Page 20

of stored segments, with =2 segment being a modular picture
component. Data segmentation was initially implemented to allow
selective modifications to the picture. It is also advantageous
in that individual segments can be shared across several
pictures, saving generation time and encouraging uniformity. It
would seem only natural to build up a library of segments to Dbe
used over &and over and from one session to the next. At the
beginning of each session the library would be copied in from
disk storage, and at the end of each session a possibly updated

library would be copied out to disk for storage.

The GKS spécification includes no ﬁrovisioné for such a
library. Nor is there any specification for a facility to edit
segments after creation. In addition, two other GKS
characteristics do not easily 1lend themselves to the library
concept; attributes bound at creation, and fully specified

absolute coordinates. L

Binding primitive attributes at display time affords the
application program much more flexibility in using a segment.
As an item of a library, a segment is intended to be ™generic"
and used repeatedly. However, this is less likely if the view
of the object defined by the segment has been permanently bound

to a previous environment.

Given that a segment is expected to appear in several

Page 21

pictures, several times within a picture, and even within
another segment, it would make sense to express the primitives
in relative coordinates utilizing the current position.
Relative coordinates would preclude the need to transform the

segment for each picture.

Several of the segment manipulation functions could easily
be adapted to support a stored segment library. Already, £he
segments attributes can be dynamically modified. The
DELETE_FROM WS function should allow a segment's set-of-
associated-workstations to Ybecome empty. Now it seems
reasonable that all segments are not in use ;t all times.- The
counterpart, ASSOCIATE WITH WS, should allow non-existent
segments to be associated with a workstation, providing only a
warning message. The intent being to generate the segment at a
later date. Let it suffice to initially create only a skeleton

of a drawing.

Page 22

5. KSU-GKS IMPLEMENTATION OF DATA SEGMENTS

5.1 Data Flow

The GKS implementation at Kansas State University was
installed in stages. At the time when data segmentation
capabilities were added, only 2 minimal implementation had been
completed. Only one workstation existed, and therefore only one
WDSS instance existed. Multiple workstations were not enabled
in the GKS package nor did any appropriate device drivers exist.
The basic Line and Marker primitives were available, including
attribute bundles. The Text primitives had not been completed.

See Figure 6 KSU-GKS Data Flow.

To simplify the initial implementation, the normalization
transformation as well as window clipping were applied against
the primitives before the corresponding WIS record was built.
(Note +that the WDSS refered to in the GKS document [DrafBB} was
implemented as the WIS, and the WISS was implemented as the
SEGSTORE plus the SEGTBL.) At a later date however, the window
clipping will be applied just as the data is sent on to the
workstation. The clipping rectangle in effect when the
primitive is generated will be saved at the time the WIS record
is built. This will comply with the data flow prescribed in the

GKS document rDrafSB]. See Figure 7 Data Flow with Segments.

Appl . Preq.

N|%

10 \-—;IScanner

;ﬁ. line, marker, text | S -
primitives
T
% gks tables
Ny
WS tables [distributer

Y

VDI primitive
I “
1]
chromatics ¢ other |
driver idrivers
i ——y

F gure b

KSU-GKS DATA FLOW

Scanner

Draaw) X _

DATA
FLOW

WITH SEGMENTS

WIS
xform

Seq Clip_ale
N

Insert

Seqstoce

Seﬁm enct

yform -

RS T bFors

v

y

LIS

Draoay S;e.jmex\'t'
| ey store

)

LS eLip Seale

oud put
LS Driver | = device

F:ju.fe- ’]

Page 23

The "Draw” routines (DRAWLINE and DRAWMARKER) perform the
normalization transformation from world coordinates to
normalized device coordinates. Initially, the window clipping
is also done here. This will be moved to the DISTRIBUTOR and
applied against the primitives as they are processed for

display.

When an output primitive is generated, the normalization
transformation is applied to it, the current attribute table
index is bound with it, and the WIS record is built. The
attribute index cannot be changed, but the values in the bundle
tables can be dynamically modified. This implementation is less
rigid and allows the user more flexibility in generating
pictures. It especially made sense when segmentation was added.
When a picture is displayed, ¢the individual segments will
reflect the current attribute values in effect as they become a

part of the picture.

At the point at which the primitive record would be put
into the WIS structure, if a segment is open, the data flow is
intercepted, and instead the record is put into the SEGSTORE.
Refer to TFigure 7, Data Flow with Segments. The "WI" routines
(WILINE, and WIMARKER) accept primitives expressed in
normalized device coordinates from the "DRAW" routines, refer to
Appendix A. "WI" builds the appropriate primitive record. At

this point the record would be put into the WIS (WDSS) if there

Seﬁsfore,

_—
T

Faawfb %

WIsS Data Structure

Page 24

is not an open segment. Otherwise, the record is put into the

SEGSTORE (WISS).

The WIS and SEGSTORE are processed by the DISTRIBUTOR,
refer to Appendix B. All non-segment primitives for a given
workstation and all of its associated segments are processed for
display. The DISTRIBUTOR binds each primitive with the
attribute values currently in effect based on the stored
attribute index. TIn addition, each segment’'s dynamic attributes
are applied against the primitives of that segment. After the
attributes are bound the primitive is translated into the
Virtual Device Iﬁterface (VDI) format and sent onto the

workstation device driver.
5.2 Data Structures

The WIS and the SEGSTORE are identical data structures.
Refer to Appendix C for the data declarationms. Both are
implemented as simple non-partitioned arrays. SEGSTORE and WIS
are declared as one dimensional arrays of primitive records.
The GKS State List saves a pointer to the top of each array for
easy access. This simplistic approach has the advantage of
allowing variable sized segments composed of variable primitive
records with no storage penalty. It was also advantageous to

duplicate the WIS data structure for the SEGSTORE. Segment

Page 25

primitive records and non-segment oprimitive records are
~ddentical. Segmentation is transparent to the routines that

build them and to those that process them.

In addition to the SEGSTORE structure, a SFGTBL structure
was declared as an array of fixed sized segment header records.
The WISS actually consists of the SEGSTORE together with the
SEGTBL. A segment header contains the segment state list which
includes the segment's name, the current values of the segment's
dynamic attributes, and a beginning and ending pointer (array

. index) to the primitive records for that segment in SEGSTORE.
Figure' 8, ' WISS Data Structure, shows - the relationship between

the components of the WISS, i.e., SEGSTORE and SEGTBL.

The management of both data structures is quite straight
forward. New records are always appended to the top of the array
using the index in the GKS State IList. When a record is
deleted, the hol'e is immediately compressed. There is no storage

fragmentation or garbage collection.
5.3 Segment Manipulation Functions

It was not always feasidle to implement the segment
manipulation functions as defined in the GKS document. Those
functions whose implementation deviated from the specification

are discussed below. Refer to Appendix D for the various

Page 26

segment functions

The CILOSE function did not specify a trap for null
segments. A check was added to ensure that the segment had at
least one primitive. If not, then the function backtracked and
it was as if the segment had never been opened. Because

segments cannot be edited, a null segment would have no purpose.

The DELETE FROM WS function that was implemented allows
segments to exist in the SEGSTORE even when there is no explicit
association with a workstation. This approach lends itself to

the idea of a library of stored segments.

The COPY_TO WS function was not implemented as such. It
was felt that this approach resulted in duplicate object
definitions and thus wasted valuable storage. Instead, a DRAW
function was implemented. It is similar to a CALL_ SEGMENT
function. The DRAW request is treated as a primitive and stored
in the WIS (or in the SEGSTORE as part of another segment) as
another primitive record. DRAW segment calls are allowed to
appear as a part of other segments, but a segment cannot call
itself with DRAW. The DRAW is resolved by the DISTRIBUTOR at
display time. When the call appears in either the WIS or
SEGSTORE, the DISTRIBUTOR recursively calls itself and continues

processing the primitives of the named segment.

Page 27

5.4 Project Status

The GKS implementation at XS was studied in its entirety
before integrating segmentation capabilities into the existing
gystem. The basic segment functions and the supporting data

structures were implemented as described in preceding sections.

All of the segment capabilities in the GKS document were
implemented and tested as an aggregate system. Due to the
limited amount of time, the segmentation features were not
tested in a fully integrated configuration. That is, segment
capabilities were not tested in conjunction with output device

drivers, text capabilities, or metafile capabilities.

Appendix A

sprocedure wiline (lineindex:index; nolines:linerange
} var araypoints:upoints);

var
i: integer;

npoints : pointarange;

begin
npoints := nolines +

13

if gksstate.openseg = O then

begin

if wistop < maxwielements then

begin

wistop := wisto

+1;

with wis{wistop] do begin
opcode := lline;
inx := lineindex;
n := nolines;
pO.ix := araypointsr11.ix:
p0.1iy := araypointsriT.iy:
pl.ix := araypointsr21.ix;
pl.iy := ar:ypointale.iy
end; (* with wis[wistopl *)
if ((npoints - 2) mod 3) <> O

then while (npoints + t ¢ marpoints) and

({npoints - 2) mod 3 <> 0)

do begin (* £ill araypoint to totally fill lcont records *#)
npoints := succ(npoints)

: nruypointarnpointa .ix = 0O

& nraypaints[npoints Jdy =0

end; (* £ill araypoint to totally fill lcomt records *)

npoints := npoints - 2;

i =3

while ((wistop< marwielements) and (npoints>0) and
(i< (maxpoints-3))) do

begin

wistop := tiatog +13;
with wis[wistop]

do begin
opcode
cpl.ix
epl.iy
ep2.ix
ep2.iy
cpi.ix
ep3.iy

we we wE ws we ws we ws

1:= 1+3

o=
=
=
=
o=
1=

lcont;
lraypointsril.ix
araypoints! i|.iy
araypoints 1+1].ix
nraypointar1+11.iy
araypointsli+2].ix
araypointsli+2].iy

npoints := npoints -3

end (* with wis[wistop] *)
end; (* while ¥)
if wistop = maxwielements then begin end;
if i = maxpointa then begin end
end (® if wistop < maxwielements *)

else begin emd

end (* gkastate.openseg *)

A2

else
begin
if aagtablergksatata.open3331.segend <{ maxwielements then
begin

segtablefgtsstlta.openaeg1.aegend 1= ge tahlergksatate.openseg].aagend +1;

with logstore_aogtablergksstate.openaeg .segend] do begin
opcode := lline;
inx := lineindex;

n := nolines;

pO.ix 1= lraypointaF1 .ix;
pO.iy := araypointsii [.iy;
pl.ix := araypoints|2j.ix;
pl.iy := araypointsi2].iy

end; (* with segatore[segtahle[gkastata.opansag].segend] *)

if ((npoints - 2) mod 3) < O
then while (npoints + 1 < maxpoints) and ((npoints - 2) mod 3 <> 0)
do begin (* fill araypoint to totally fill lcont records *)
npoints := succ(npoints)
H lraypointurnpoints .ix = 0O
+ araypoints|npoints!.iy := 0
end; (¥ £ill araypoint to totally fill lcont records *)

npoints := npoints - 2;
i=73

while { (segtablel gksstate.opensegl.segend< marwielements) and (npoints>0) and
(1< (maxpoints-3))) do
begin
nagtablergkaatate.openuegT.sagend 1= aeﬁt&blergksatate.openue51.segend +1;
with segstore| segtablel gksstate.opensegl.segend]
do begin
i opcode := lcont;
cpi.ix := lraypointari1.ix
cpl.iy := lraypointari].iy
ep2.ix 1= nrsypnintari*1 .ix

-

cp2.iy := lraypointsri+1 dy
ep3.ix := araypoints!i+2].ix
epl.iy = lraypointuti+2 Ay
npoints := npoints -3
i:= i+3
end (* with aegstora[uegtable[gknatate.openaeg].uegend])
end; (* while ®)
if lcgtabls[gknatata.npenseg].segand = maxwielements then begin end;
if 1 = maxpoints then begin end
end (® if logtnble[gkastato.apen:eg].segend ¢ maxwielemenis *)
else begin end
end (* else segment open %)
end (® wiline ®)

we we ws we wi WE we

Appendix B

;s procedure distributor (mame : drivers

(* Purpose:

)

.

. end

di

; update : updateset)

This routine calls drawprims to output primitives to the
atdriver. It calls drawprims for the prims in the Wis and

for each segment that is associated with a particular work

var

-t we wd we we

station.
wsnum : sindex (* number of workstation ¥)
wisindex : integer
distvdirec : drvelement (® record for distributor #)
distnum : integer
sidx :+ 0..maxseg
segnum + 1..naxseg
begin (™ procedure distributor **) ;
for wepum := i1 to minindex do (* for all workstations *)
if (wstablelwsnum!.state = active) and (* check ws %)
{(ord(name) = wesnum) or (name =.a11))
then begin

-t

g~

if update = redraw (* redraw completely or mdd to existing %)
then begin (* lclear, start at top *)
distdriver{wsnum,vdiclear,distnum,distvdirec)
; wisindex := 1
and
else (* concat *)
wisindex := watablelwsnuml.wisptr (® start at last position *®)

drawprims {wis,wisindex,wistop,wsnum,idmatrix)

for

gidx := | to uatable{vsnun].segsetidx do

begin
segnum := wstablelwsnum].wssetofstoredsegslsidx]

i 1

end

¢ segtable[segnum].visible = vis then
drawprims (segstore,saFtablerseguum].segbe;in,segtablef!egnun].segend,

wsnum, segtablel segnum]. transmatrix

distdriver (wsnun.vdisegend.diatnum.distvdirec)
wstable[wsnum].wisptr := wistop + 1

(® for each workstation *
(* procedure distributor *)

B2

3 procedure drawprims (prims : wisegment
; start, stop : srange
3 wsnum : sindex
; transmatr : matrixtype)

(* purpose: this routine extracts primitives from the input visegement
(either wis or segstore) and information from wslinetable,
wsmarkertable, watesttable and gkstesttable.
it then converts or packs the information if necessary and

sends this information to the wsdriver. The format

of the call to the wsdriver is the workstation

number, vdi command to respective workstation driver,
an integer to contain the possible number of occurances
(i.e pumber of lines) or the type of something (i.e
colortype), and a record to contain the coordinates

of a line or the coordinates of a textstring and

the textstring. ®)
3 var =
wisindex : integer
3 vdirecindx : pointsrange
3 vditrecindx : textcharrange
;5 distloc : integer
3 contwhat : vdicmdtype
; distvdirec : drvelement (®* record for distributor *)
3 diatnum : integer
; segidx : O..maxseg
’ ; trprim : wielement

begin (** procedure drawprims **)
for wisindex := start to stop do begin (* wisindex loop *)

trprim := priua[wiaindexj
: transprim(trprim, trapsmatr)
; case trprim.opcode (® send prim info by opcode type *)

sesmsse esemen

: leall
: begin (* calling a segment *)
segtblidx (trprim.segment, megidx)
3 if megidx = O then
errorhandler (error, 122, 'drawprims)
else
drawprims (segstore aegtablersegidx1.segbegin.
uogtahlafuegidx1.aegend, wsnum,
trprim.transmatrix)
end (* lcall case #)
end (* case of prim interpretation and sending to distdriver)

end (* for loop of wisindex through the prim records *)
end (*® procedure drawprims *)

(Ii

beginning of graphics kernel const declarations

)

e w8 wE Wy B we ws Wy WS W

(l-

maxindex = 10

maxpoints = 50

maxlines = 51 (® one less than maxpoints®)
marwielements = 200

mexstring = 41

maxunits = 32000

minindex = 5

namelen = 12 (¥ length of character name #)
paxseg = 10 (* maximum number of segments *)
emptystring = ' !

end

of graphics kermel const declaratioms

*)

Appendix C

c2

(®
graphica kernmel type declarations
%)

ipdex = 1..maxindex

gindex = 1..minindex

metrixtype = array [1..2, 1..3] of real (* transformstion matrix)
arange = 1 ,. maxrwielements

linerange = {..maxlines

nemerng = 1..namelen

unit = O..maxunits

regenset = { suppressed, allowed)

frameset = (no, yes)

visset = (vis, invis)

highset = { high, norm)

detectset = (detect, undetect)

gkslevset = { gkcl, gkop, wsop, wsac, sgop)
name = array |namerng! of char

e wa WE ME WS WE WY WE W ws s wE WE WS WE

werec =
record
defined : boolean
; 8tate : wastateset
;- wisptr : integer
3 kind :+ wakindset
;s devices : array tsindex] of devrec
31 devmode : wsdefset

(* met of seegments mssociated with WS *)
wssetofstoredsegs : array [1..uaxseg] of 1..maxseg
segsetidx : O..maxseg (* index to above array %)
regenmode : regenset

end (* wsrec ¥)

-t we wa

:+ teatring = array [1..mazatr1ng] of char

3 vielememt = record

case opcode: optype of
ltop : (a: integer)

slend : (b: integer)
(®* drawseg *)
:lcall: (segment : name
stransmatrix : matrixtype)
s1line: {inx : index
;n : linerange
ip0,

pl : ipoint)
slmarker: (minx : index

smn : markerrange

smp0 : ipoint)
;ltext: (tinx : integer

sten : textcharrange

stp0 @ ipoint

statr : tstring)
;lclear:. (g : integer)

tlcont: (cpt,
cp2,
ep3 : ipoint)
end (% wielement *)

; wisegment = array [1..nmie1ements} of wielement

(* segment state list *)
; Begrec =

record
segname : name
3 assocws : array rsindeﬂ of sindex
3 wssetidx : O..minindex
; transmatrix : matrixtype
3+ visible : visset
s highlight : highset
; segpriority : real
;3 detectable : detectset
;3 segbegin : srange
;s segend : O..maxwielements

end (* pegrec *)

(* GKS state list ®)
;s gksrec =

record

openvws : array Paindez] of drivers
; activews : array [sindex| of drivers
; Openseg : 0..maxseg
3 levelgks : gkslevset
end (* gkarec ¥)

(=

end of graphics kernel type declarations

*)

(.

c4

graphics kernel var

declarations
—au®)

curlineindex
curmarkerindex
curtextindex
curwinindex
gkatexttable
gkswintable
clipind :
wis
wistop
disttop
wisindex
wslinetable
wsmarkertable
wstexttable
weviewtable
wstable
textastring
gksstate
segtable
aegstore
idmatrix

gks

:

0 MR WE WE WE wE we e WT W A8 MR WA W W we W4 ME W W we

(Q

s s ss es

tstring
rec
array T1..maxseg] of segrec (* segment state lists)
wisegment (* segment storage *)

matrixtype (* identity matrix for transformations *)

index

index
index
index
tgkstexttable
tgkawintable

as as we

cliptype

wisegment (* non-segment, WS-dependent storage)
integer
integer
integer

(* pointer to last entry in WIS *)

twslinetable
twsmarkertable
twstexttable
twsviewtable
twstable

(* GKS state list *)

end of graphics kernmel var declarstions

)

(* segtblidx - translates the segment name into the
corresponding index into segtable.
" if no such named segment exists segtdblidx returns O.
sprocedure segtblidx (sname : name; var segidx : integer)
sjvar count! : integer
H ofile : text
;begin
pegidx := O
sfor count! := 1 to maxseg do
begin with segtable fcountt] do
if segname = sname then segidx := count!
end
end

(* settrans - stores the given transformation matrix
) in the segment record for the named segment.
-

sprocedure settrans (sname:nnne:matr:natrixtype)

svar sidx : integer

3 ofile : text

sbegin

segtblidx{sname, sidx)

4if sidz =0 then errorhandler{ofile, 122, 'settrans’)
alse aegtahle(sidx1.tranamatriz 1= matr

end

(®* setseghgh - met the segment highlight attribute.

*)

sprocedure aataaghgh(aname:nana;hattr:highaet)

svar sidx : integer

H ofile : text

sbegin

segtblidx(sname, sidx)

;if sidx = O then errorhandler(ofile, 122,'setseghgh’)
else segtable[sidx].highlight := hattr

end

Appendix D

D2

(; setsegd - set segment detectable attribute.

™

;procedure setsegd (sname : name; dattr : detectset)

svar sidx : integer

H ofile : text

jbegin

segtblidx(sname, sidx)

;if sidx = O then errorhandler(ofile, 122, 'setsegd’)
else uugtnble[aidx].detectable 1= dattr

end

(* closeseg - close the currently open segment.
) discard if segment is null.
L

;procedure closeseg
jvar count! : integer.
H ofile : text

;begin
if gksstate.levelgks = sgop
then begin -
if aagtahlergkaatata.npenseg?.segend < uegtablergkaatate.opeuseg’.segbegin
then begin
for countl := 1 to 10 do
logtnble[5ksatate.openseg].aegnama[count1]:-' '
end
sgkastate.levelgks := wsac
sgkastate.openseg := 0
end
else begin
errorhandler(ofile, 4,'closeseg')
end

end

D3

(* dravseg - put display segment request in wis.
segment is tranaformed just before display.
a request for an undefined segment is allowed at this point.
) segment muat be defined before displaying.
sprocedure drawseg (sname : name; matr
;jvar sidx : integer
H ofile : text
;begin
1f not (wistop ¢ marwielements)
then errorhandler(ofile, 302, 'drawseg')
elese begin
wistop := wistop+!
;with ~wis[wistop
do begin)
opcode := lcall.
jsegment := sname
;transmatrix := matr
end
;segtblidx(sname, sidx)

;:if sidxr = O then errorhandler(ofile, 124,
end

: matrixtype)

‘dravseg')
end

(® copyseg - copy named segment to wis.
-

iprocedure copyseg (sstart, satop, tto : integer ; var arr : riaegnent)
svar i, top : integer

H ofile : text
sbegin
top = tto
;for i := sstart to sstop
do begin

top := top + 1
urr[top] i= ugstore[i]
end

end

(* wsdeleteseg - disassociate named segment from specified ws.
remove segment name from wesetof storedsegs.
) remove ws id from asaocws.
-
jprocedure wadeleteseg (wsid : drivers; sname : name)
;jvar here, i, sidx : integer
ofile : text
wsnum : sindex
jbegin
wsnum :=3
1segtblidx (sname, sidx)
:if sidx = O then errorhandler (ofile, 122,’wsdeleteseg’)
else begin
here := 0
swith watablelwsnum]
do begin
for 1 := 1 to megsetidx do
if wasetofstoredsegs rﬂ = sidx then here := 1
} if not (here = 0)
then begin
if not (here = megsetidx)
then
for i := here to segsetidx -1
do wssetofstoredsegs