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Abstract

Binary regression models for spatial data are commonly used in disciplines such as epi-

demiology and ecology. Many spatially-referenced binary data sets suffer from location

error, which occurs when the recorded location of an observation differs from its true loca-

tion. When location error occurs, values of the covariates associated with the true spatial

locations of the observations cannot be obtained. We show how a change of support (COS)

can be applied to regression models for binary data to provide bias-corrected coefficient es-

timates when the true values of the covariates are unavailable, but the unknown location

of the observations are contained within non-overlapping polygons of any geometry. The

COS accommodates spatial and non-spatial covariates and preserves the convenient inter-

pretation of methods such as logistic and probit regression. Using a simulation experiment,

we compare binary regression models with a COS to naive approaches that ignore location

error. We illustrate the flexibility of the COS by modeling individual-level disease risk in a

population using a binary data set where the location of the observations are unknown, but

contained within administrative units. Our simulation experiment and data illustration cor-

roborate that conventional regression models for binary data which ignore location error are

unreliable, but that the COS can be used to eliminate bias while preserving model choice.
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Bias Correction of Bounded Location

Errors in Binary Data

1 Introduction

Location error, at some scale, is ubiquitous in all spatial data sets. Whenever the recorded

location of an observation is different from the true location, location error occurs. For

example, to protect the identity of human subjects in epidemiological studies the location

of an observation is often reported as the centroid of a geopolitical unit (Goldberg and

Cockburn, 2012). Correcting for location error is important in regression models because the

covariates influencing the expected value of the response at the true location may be different

than the value of the covariates at the recorded location, thus causing covariate measurement

error (see Figure 1 for an example). Both location error and covariate measurement error

cause bias in regression coefficient estimates, which can result in incorrect inference (Carroll

et al., 2006). In some cases, the bias in regression coefficient estimates caused by covariate

measurement error can reverse the sign of regression coefficient estimates, thereby reversing

the interpretation of the coefficient estimates (Carroll et al., 2006; Hefley et al., 2017a).

Correction of bias caused by location error is, therefore, required to draw reliable statistical

inference from regression models.

Spatially-referenced binary data are commonly used in epidemiology, public health, ecol-

ogy, and the environmental sciences, and at least some of these data sets will include ob-

servations with location error. Aside from privacy concerns, many public health data sets

aggregate and report the number of cases for a disease within administrative units. Location

error generated by aggregation is bounded because the exact locations are contained within

discrete spatial boundaries, such as a county, district, province, or other administrative
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Figure 1: (A) The motivating dataset shows an observation with location error on a map
of a 2.59 km2 section of land in Wisconsin, USA. The recorded location of the observation is
given as the centroid and the true location is shown near the right edge of the land section.
The covariate distance to nearest development (B; roads, buildings, etc.), and distance to
nearest forest (C) is overlaid on the same area. Binary regression using covariate values at
the centroid, rather than the true location, would cause bias in the regression coefficient
estimates.

unit. When modeling disease risk, researchers commonly incorporate observation-specific

and location-specific covariates. For our purposes, we define observation-specific covariates

as those which carry an attribute inherent to the observation or subject itself, such as sex,

age, species, etc. We define location-specific covariates as those which are spatially-referenced

or anchored to a spatial location, inherent to the location of the observation or subject, such

as temperature, radon concentration, etc.

Research has focused primarily on reducing bias caused by location error in models for

kriging (Cressie and Kornak, 2003; Fanshawe and Diggle, 2011; Orton et al., 2017; Wang

et al., 2017) and point processes (Bradley et al., 2016; Chakraborty and Gelfand, 2010;

Collins et al., 2017; Hefley et al., 2014, 2017a; Lund and Rudemo, 2000; Park and Davis,

2017; Sadahiro, 2003). Most established methods that correct for location error require some

form of auxiliary data, truthing data, or a calibration data set, in the form of exact locations

for a subset of observations. However, comparatively few methods exist for binary data.

The literature developing methods that obviate location error for binary data is sparse in

describing how regression models could incorporate both observation-specific and location-
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covariates. For instance, Zimmerman and Fang (2012) developed location error bias cor-

rection for a non-parametric kernel smoothing approach that uses binary data to model

and map disease risk. However, no attempt was made to illustrate how location-specific

covariates could be used, and it was not readily apparent how observation-specific covariates

could be incorporated in the approach. Huque et al. (2016) developed a penalized least

squares regression method by assuming smoothness in location-specific covariates that are

measured with error. However, extensions for binary regression models, non-smooth spatial

covariates, and location error in observations were not presented. Wang et al. (2017) pre-

sented a Bayesian hierarchical modeling approach for correcting bias due to bounded location

error in binary data, by integrating a spatially-referenced incidence function over discrete

sub-regions. Wang et al. (2017) however did not propose extensions that could incorporate

observation-specific covariates, which is needed to preserve the interpretability of commonly

used models like logistic or probit regression.

Many of the references to bias correction for location error are focused on developments

for point process models, including the Poisson inhomogeneous point process (Poisson IPP).

Point process models, like the Poisson IPP, describe the random locations of points in a

study area based on location-specific covariates. A connection exists between the univari-

ate Poisson point process and the Poisson distribution via a transformation of the Poisson

IPP called a change of support (COS; Cressie and Wikle, 2011). If the study area is parti-

tioned into disjoint polygons of arbitrary geometries, the number of points found within each

polygon may be modeled as a Poisson random variable. Applying the COS requires that

the locations of the points be contained within non-overlapping polygons of any geometry,

which is equivalent to the assumption of bounded location error. Previous research shows

that bias caused by location error can be corrected using the COS for a point pattern if the

data arises from a point process. For example, Bradley et al. (2016) used a COS to make

correct for bias due to aggregation over administrative units and Hefley et al. (2017a) used

a COS to correct bias due to bounded location error.

Diggle and Rowlingson (1994) presented a model for spatial binary data by representing

two Poisson point patterns as a bivariate Poisson IPP. The two point patterns can be linked
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using a binary regression model, which accounts for the probability of each point taking a

binary mark of zero or one. Linking the two point patterns with a binary regression model is

useful because incorporating, for example, a logit or probit link preserves the interpretations

of models commonly used by practitioners. Just as the COS may be used to correct bias

caused by location error for the univariate Poisson IPP, we show that a COS may be used

to correct bias with the bivariate Poisson IPP.

The remainder of this report proceeds as follows: In section 2, we review the Poisson

IPP and the COS technique which can be used to correct bias caused by location error.

In section 3, we explain the relationship between spatially-referenced binary data and the

bivariate IPP. Next, in section 4, we present the COS for the bivariate IPP and, in section

5, we introduce a partial COS that can be used when only a portion of the observations

are affected by location error. In section 6, we show how the partial COS can incorporate

location-specific covariates and observation-specific covariates, thereby enjoying the same

flexibility and convenient interpretation as binary regression with an arbitrary link. In

section 7, we evaluate and compare the bivariate IPP with COS to naive logistic regression

using a simulation study. Finally, we illustrate our technique by correcting location error in

a disease risk factor analysis that demonstrates the partial COS in section 8, interpret the

results of both the simulation study and the risk factor analysis in section 9, and discuss our

results from the simulation study and risk factor analysis in section 10.

2 The Poisson IPP and Change of Support

2.1 Poisson IPP

The true locations of a random number of observations, n, in a study area S ⊂ R2 can be

modeled using a Poisson IPP. The Poisson IPP is defined by λ(s), which is a spatially varying

intensity function where s ≡ (s1, s2) and s ⊆ S. The intensity function is often modeled as

log(λ(s)) = β0 + x(s)′β , (1)
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where β0 is the intercept, β ≡ (β1, ..., βp)
′ is a vector of regression coefficients, and x(s) is a

p×1 vector that contains location-specific covariates at the point s. The probability density

function (PDF) of the Poisson IPP is constructed from a Poisson probability mass function

(PMF) and a multivariate location density, as follows:

f(U|λ) =
e−λ̄λ̄n

n!

n∏
i=1

λ(ui)∫
S λ(s)ds

, (2)

where U is an n× 2 matrix with rows that contain the coordinates of the n points, ui is the

ith row of U, and λ̄=
∫
S λ(s)ds is the integrated intensity function. The log likelihood is:

`(λ|U) =
n∑
i=1

log(λ(ui))−
∫
S
λ(s)ds− log(n!) . (3)

2.2 Change of Support

When a study area is divided into non-overlapping sub-regions, a property of the Poisson IPP

is the number of points in each sub-region is a Poisson random variable. The relationship

between location-specific covariates and the expected value of Poisson random variables may

be estimated using Poisson regression, where the rate parameter is the intensity function

integrated over each sub-region. This change, from modeling observations using an IPP

with a continuous spatial support, to modeling observations as a Poisson random variable

with discrete spatial support, is known as a change of support (COS; Cressie and Wikle,

2011).

To implement a COS, the study area S is partitioned into m non-overlapping sub-regions

(A1,A2, ...,Am), dictated by how the data were reported, such that S =
∑m

j=1 ∪Aj. We

define the vector a ≡ (a1, a2, ..., am)′, where aj is the number of points contained within

the jth sub-region Aj. The expected number of points in the jth sub-region is given by the

integrated intensity function for the jth sub-region, λ̄Aj=
∫
Aj λ(s)ds. The distribution of the

random vector a is

a ∼ Pois(λ̄A) , (4)
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where λ̄A ≡ (λ̄A1 , λ̄A2 , ..., λ̄Am)′ is anm×1 vector of integrated intensity functions, dependent

upon β0 and β in (1). Because of the relationship in (4), β0 and β, from (1) can be estimated

when the true locations of observations are unknown, but are contained within known sub-

regions.

3 Binary Data and Bivariate Point Process

Regression models for binary data, such as logistic and probit regression, are often used to

model spatial binary data because of their convenient interpretation (Cox and Snell, 1989;

Cressie, 1993). Here, we use a connection between binary regression and the bivariate point

process identified by Diggle and Rowlingson (1994). With this connection, the bivariate point

process model maintains the interpretability of binary regression models with an arbitrary

link, such as the logit or probit. However, in the presence of location error, using a bivariate

point process for binary data can lead to unreliable inference. In section 4 we discuss the

COS technique for bivariate point processes that corrects bias caused by bounded location

error.

A bivariate Poisson IPP is a PDF which combines two Poisson IPPs, for n1 observations

with a mark of one, and for n0 observations with a mark of zero. The PDF of the bivariate

Poisson IPP may be thought of as simply multiplying (2) by a binomial coefficient that

accounts for all possible orders of the marks, and a Bernoulli PMF for each point:

f(U,y|λ, p)) =
(
n1+n0

n1

)
e−λ̄λ̄n1+n0

(n1+n0)!

n1+n0∏
i=1

λ(ui)∫
S λ(s)ds

p(ui)
yi(1− p(ui))1−yi , (5)

where U is now an ordered (n1 +n0)×2 matrix, and p(ui) is the probability of a point having

a mark of one or zero at location ui. We define y as the (n1 + n0) length vector containing

the mark of one or zero for each point. For convenience, the first n1 entries in both U and y

correspond to points with a mark of one. Thus the PDF for the bivariate Poisson IPP can

be expressed as
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f(U,y|λ, p) =
e−λ̄1 λ̄

n1
1

n1!

n1∏
i=1

λ(ui)p(ui)∫
S λ(s)p(s)ds

× e−λ̄0 λ̄
n0
0

n0!

n1+n0∏
i=n1+1

λ(ui)(1−p(ui))∫
S λ(s)(1−p(s))ds . (6)

Here, p(s) is a constrained (thinning) function such that 0 < p(s) < 1. Thus, p(s) represents

the probability of an observation having a mark of one, and (1− p(s)) represents the proba-

bility of an observation having a mark of zero at location s. Additionally, λ̄1=
∫
S λ(s)p(s)ds

is the integrated intensity that gives the expected number of observations with a mark of

one. Likewise, λ̄0=
∫
S λ(s)(1− p(s))ds is the integrated intensity that gives the expected

number of observations with a mark of zero. Just as with p(ui) in (5), p(s) can be linked to

covariates using an arbitrary link function. As an example, we use a logit function:

logit(p(s)) = α0 + z(s)′α , (7)

where α0 is an intercept, α ≡ (α1, ..., αq)
′ is a q× 1 vector of regression coefficients, and z(s)

is a q × 1 vector that contains covariates. The log-likelihood of the bivariate IPP is:

`(λ, p|U) =

n1∑
i=1

log(λ(ui)p(ui))−
∫
S
λ(s)p(s)ds− log(n1!) +

n1+n0∑
i=n1+1

log(λ(ui)(1− p(ui))))−
∫
S
λ(s)(1− p(s))ds− log(n0!).

(8)

The thinning function p(s) arises naturally from the joint distribution, composed of the

bivariate Poisson IPP and the product of Bernoulli PMFs. Thus binary outcomes may

be modeled jointly as two point patterns while preserving the interpretation of the binary

regression model’s arbitrary link. As inference obtained from modeling data as a bivariate

Poisson IPP is subject to bias caused by location error, we next present an application of

the COS to correct for this issue.

4 Bivariate Change of Support

The COS technique is straight-forward to apply to the bivariate Poisson IPP. As before, the

study area S is partitioned into m non-overlapping sub-regions Aj, such that S =
∑m

j=1 ∪Aj.
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We define the vectors a ≡ (a1, a2, ..., am)′ and b ≡ (b1, b2, ..., bm)′ where aj and bj are the

number of points in the jth sub-region Aj, with a mark of one or zero respectively. We define

λ̄1Aj as the expected count of observations with a mark of one in the jth sub-region, and

λ̄0Aj as the expected count of observations with a mark of zero in the same jth sub-region.

The distributions of a and b are

a ∼ Pois(λ̄1A)

b ∼ Pois(λ̄0A),
(9)

where λ̄1A ≡ (λ̄1A1 , λ̄1A2 , ..., λ̄1Am)′ is a m × 1 vector with the jth element corresponding

to the integrated intensity function λ̄1Aj=
∫
Aj λ(s)p(s)ds, for the jth sub-region. Similarly,

λ̄0A ≡ (λ̄0A1 , λ̄0A2 , ..., λ̄0Am)′ is a m × 1 vector, with the jth element corresponding to the

integrated intensity function λ̄0Aj=
∫
Aj λ(s)(1− p(s))ds.

5 Partial Change of Support

We have described how the COS is applied to the bivariate Poisson IPP. In this section, we

introduce a partial COS technique, which may be used when the true locations are known

for just one of the two point patterns in the bivariate Poisson IPP. Consider an example

where, in a case-control study, the locations of cases are only known to be within a specific

sub-region of the study area. For the individuals who were selected as controls, the privacy

constraints are more relaxed, so we know their exact locations. Since location error is only

an issue with one of the two point patterns, we can apply a partial COS when estimating

regression coefficients associated with the thinning function (7). A partial COS can use both

the exact location information from the control observations and bounded location error

from case observations to estimate the effect due to the covariates.

To construct the component of the partial COS log-likelihood which corresponds to the

cases (observations with a mark of one), we use the log of the Poisson PMF from the

bivariate COS in (9). To construct the component of the log-likelihood corresponding to the

controls (observations with a mark of zero), we use the portion of (8) associated with the n0
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observations and thinning function (1− p(s)). The complete log-likelihood is:

`(λ, p|a,U) =

m∑
j=1

(−λ̄1Aj + ajlog(λ̄1Aj)− log(aj!)) +

n1+n0∑
i=n1+1

log(λ(ui)(1− p(ui)))−
∫
S
λ(s)(1− p(s))ds− log(n0!).

(10)

By extension, this technique could be used when true locations are known for only some of

the observations in one of the two point patterns. If we assume that some cases in the study

area have exact locations, we assign ng as the number of these cases. Further, if we assume

the ng exact locations are found in different sub-regions from the cases that have inexact

locations, our log-likelihood is:

`(λ, p|U) =

m−l∑
j=1

(−λ̄1Aj + ajlog(λ̄1Aj)− log(aj!)) +

n1∑
i=n1−ng

log(λ(ui)p(ui)) −
∫
S
λ(s)p (s)ds− log((n1 − ng)!)+

n1+n0∑
i=n1+1

log(λ(ui)(1− p(ui)))−
∫
S
λ(s)(1− p(s))ds− log(n0!).

(11)

Here, the vector a ≡ (a1, a2, ..., am−l)
′ is the counts of observations (cases) contained in m− l

sub-regions. We give l as the number of sub-regions that contain exact locations for all cases.

This demonstrates that the COS technique is capable of accommodating binary data with

varying levels of location accuracy.

6 A Spatial-only Change of Support with Observation-

Specific Covariates

Analyses of binary data often require using location-specific and observation-specific covari-

ates. We now present a modification, which allows estimation of regression coefficients for

both location-specific covariates in the presence of location error and observation-specific

covariates known without measurement error. The ability to include observation-specific
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covariates in the model, such as sex and age, is an important development because it pre-

serves the choice of model by allowing both types of covariates to be included. The bivariate

IPP with COS therefore preserves the utility of other standard binary regression models.

Additionally, the bivariate IPP model with COS could easily be modified to accommodate

observation-specific covariates suffering from traditional measurement error (e.g. Buonac-

corsi et al., 2018).

Consider the bivariate Poisson IPP. We have a PDF that describes the locations of a

random number of points with a mark of one (n1), and PDF that does the same for a random

number of points with a mark of zero (n0). The PDFs incorporate a thinning function, p(s),

to describe the probability of having a mark of one or zero, dependent upon location-specific

covariates. If we include observation-specific covariates in the thinning functions, the joint

PDF of the bivariate Poisson IPP depends on the intensity function λ(s), and the thinning

functions p(s,w) and 1−p(s,w). Here, p(s,w) depends on a q×1 vector of location-specific

covariates z(s), an r × 1 vector of observation-specific covariates (w; e.g. sex or age), and

an r × 1 vector of regression coefficients γ ≡ (γ1, γ2, ..., γr)
′. Similar to (7), we use a logit

link for p(s,w),

logit(p(s,w)) = α0 + z(s)′α + w′γ. (12)

The PDF of this particular bivariate Poisson IPP is:

f(U|λ, p) =

e−λ̄1 λ̄
n1
1

n1!

n1∏
i=1

λ(ui)p(ui,wi)∫
S
∫
W λ(s)p(s,w)dwds

×

e−λ̄0 λ̄
n0
0

n0!

n1+n0∏
i=n1+1

λ(ui)(1−p(ui,wi))∫
S
∫
W λ(s)(1−p(s,w)dwds

,
(13)

where λ̄1 =
∫
S

∫
W λ(s)p(s,w)dwds is the integrated intensity for observations with mark

of one, λ̄0 =
∫
S

∫
W λ(s)(1− p(s,w))dwds is the integrated intensity for observations with

a mark of zero, S is the two-dimensional study area, and W is the support of observation-

specific covariates.

Additionally, wi is the vector of observation-specific covariates for the ith observation

in U. The location PDF of an IPP for any given observation with a mark of one, ui

10



(where ui is in the first n1 rows of U), can be constructed by normalizing λ(ui)p(ui,wi)

with the integrated intensity function
∫
S

∫
W λ(s)p(s,w)dwds. This allows the location PDF

to integrate to one over both the study area S and the sample space of the individual-

level covariates W . For our purposes, the support of W may be approximated empirically

by Monte Carlo sampling of the observations. The log-likelihood for this bivariate IPP

distribution is:

`(λ, p|U) =

n1∑
i=1

log(λ(ui)p(ui,wi)) −
∫
S

∫
W λ(s)p(s,w)dwds− log(n1!) +

n1+n0∑
i=n1+1

log(λ(ui)p(ui,wi)) −
∫
S

∫
W λ(s)(1− p(s,w))dwds− log(n0!) .

(14)

If we assume that, for the n1 + n0 observations, each location was only known to be contained

within the respective sub-region Aj, we can apply a spatial-only COS (or partial COS) to

the bivariate IPP PDF. To do this, we integrate the intensity function for each observation

over the spatial domain of the observation’s assigned sub-region. The resulting log-likelihood

is:

`(λ, p|U) =

n1∑
i=1

log(
∫
Ai λ(s)p(s,wi)ds)−

∫
S

∫
W λ(s)p(s,w)dwds +

n1+n0∑
i=n1+1

log(
∫
Ai λ(s)(1− p(s,wi))ds)−

∫
S

∫
W λ(s)(1− p(s,w))dwds.

(15)

7 Simulation Experiment

We conduct a simulation experiment to compare the COS technique with binary regression

in three scenarios that may be commonly encountered in practice:

1. Bivariate Poisson IPP with a logistic link function and COS, where the true location

is not known;

2. Ordinary logistic regression, where the true location is not known and the model uses

the covariate value at the center of each sub-region;
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3. Ordinary logistic regression where the true location is known.

Our purpose is to compare estimates of a slope parameter, α1, among the three scenarios.

This parameter, (α1), is associated with a location-specific covariate z(s) when defining our

ordinary logistic regression model as logit(p(s)) = α0 + z(s)α1. Similarly, we are interested

in α1 in the bivariate IPP with COS because it influences the probability of an observation

having a mark of one. For this simulation experiment, we compare estimates of α1 between

models by evaluating empirical bias, coverage probabilities, and efficiency. Thus, we test the

ability of the COS technique to match the interpretability of logistic regression coefficient

estimates, while correcting bias due to location error.

For our simulation, we use a unit square study area, S = [0, 1] × [0, 1], that is divided

into twenty-five grid cells (sub-regions) such that S = ∪25
j=1Aj and |Aj| = 1

25
. We define one

location-specific spatially correlated covariate for the study area S, z(s), which is a mixture

of a Gaussian process that results from a convolution of an exponential kernel with white

noise and near-minimal values at the sub-region centers (Higdon, 2002). We then use z(s)

to generate simulated data from a bivariate Poisson IPP model, where x(s) ≡ z(s). We thus

employ the log link function (1) to determine the intensity and location of observations and

a Bernoulli PMF to assign marks of one or zero. Under this data model, β0 and β1 influence

the location of points. Our choice of parameters is β0 = 5.5 or 8.0 (small and large sample

size), β1 = 0, α0 = 0, and α1 = 1. Our choice of α0 and α1 yields a relatively equal number

of points with each mark.

We simulate 1000 data sets from four different settings using a combination of two factors,

each with two levels: sample size (small, large); partial presence of bounded location error

(location error present in only the point pattern with marks of one, location error present in

both point patterns). For each data set, we estimate the parameter of interest, α1, among

the three scenarios using maximum likelihood estimation. Particularly, under scenario one

we use the Nelder-Mead algorithm (Nelder and Mead, 1965) with the likelihood from 10

and 14 in the program R. We use the glm function, also in the program R, for estimating

α1 in scenarios two and three (R Core Team, 2016). For each setting, we calculate and
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compare 95% coverage probabilities for α1 for Wald-type confidence intervals and construct

plots comparing the empirical distribution of α̂1 among the methods obtained from the 1000

data sets. We also calculate the mean sample size of points with a mark of one and zero

for each setting, and the efficiency of the estimates of α1 obtained using the COS technique.

We assess efficiency by dividing the standard error of the estimates for α1 obtained using

the COS (i.e. scenario one), by the standard error of the estimates for α1 obtained using

ordinary logistic regression, using data without location error (i.e. scenario three). We report

the mean of these ratios as our measure of efficiency for each setting.

Under scenario one, we expect the COS technique to yield unbiased estimates for α1 when

data is generated according to a bivariate Poisson IPP model. We expect the 95% confidence

intervals obtained from the COS to have an approximately 95% coverage probability. Under

scenario two, when location error is present and ignored, we expect estimates of α1 will

be biased when using ordinary logistic regression. We expect the coverage probability for

estimates obtained using ordinary logistic regression to be less than 0.95 in the presence of

location error. When location error occurs, we expect the 95% confidence intervals obtained

using the COS technique (scenario one) to be wider than those produced using ordinary

logistic regression (scenario two), due to a bias-variance trade-off.

8 Disease Risk Factor Analysis

The partial, spatial-only COS technique outlined in section 6 is useful for disease risk factor

analyses when both location-specific and observation-specific covariates are considered. We

give an example from wildlife ecology to demonstrate the impact of location error on disease

risk factor analysis for Chronic Wasting Disease (CWD) in Wisconsin, USA. Chronic wasting

disease is an invariably fatal transmissible spongiform encephalopathy of cervids. CWD is

known to affect wild populations of white-tailed deer (Odocoileus virginianus), mule deer

(Odocoileus hemionus), elk (Cervus canadensis), moose (Alces alces), and reindeer (Rangifer

tarandus ; Williams and Young, 1980). First discovered in a captive facility in Colorado in

1967, the geographic extent of CWD has expanded such that it has now been documented
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in 24 states, as well as Canada, South Korea, and Norway (Carlson et al., 2018).

The CWD endemic region used in our analysis is located in southwestern Wisconsin, and

covers approximately 5,970 km2. The area is comprised largely of agricultural areas inter-

spersed with woodlands, and white-tailed deer are abundant throughout the region. Chronic

wasting disease was first discovered in three adult male white-tailed deer in our study area

in 2001, and since that time prevalence in harvested deer has been increasing throughout the

region based on estimates from surveillance of hunter-harvested deer conducted by the Wis-

consin Department of Natural Resources (Hefley et al., 2017b; Heisey et al., 2010). Currently,

for some locales within our study area, CWD prevalence rates are reported as exceeding 50%

in adult males and 35% in adult females (WIDNAR, 2017). We focus our analysis on data

collected in 2012 from hunter-harvested white-tailed deer in the study region. For demon-

stration purposes we limit our analysis to observations where the recorded location for each

harvested deer was reported as the center of a section of land (an approximately 2.59 km2

square area defined by the public land survey system), thus exhibiting bounded location

error (shown in Figure 1). The result is a sample size of 2,497 deer tested for CWD, with

284 positive cases.

We estimate parameters of the bivariate IPP with and without a partial COS using the

2012 CWD data set with the location-specific covariate distance to nearest development

included in the intensity function. We used a logit link as the thinning function with the

location-specific covariate distance to nearest forest. We made this latter determination

because nearness to forest may be an ecologically relevant predictor in the spread of CWD.

Additionally, age and sex of deer are known to be important observation-specific covariates

when determining the probability of CWD infection, as older male deer have the highest

prevalence among demographic groups of harvested deer (Hefley et al., 2017b; Heisey et al.,

2010; Walsh and Miller, 2010). As such, we used both age and sex of deer in the thinning

function of the bivariate IPP model with a partial COS. We obtain coefficient estimates using

maximum likelihood estimation applied to the likelihood from 15, with the Nelder-Mead

algorithm (Nelder and Mead, 1965) in the program R. We compare coefficient estimates and

Wald-type confidence intervals from the bivariate Poisson IPP with partial COS to coefficient
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estimates and Wald-type confidence intervals obtained using a naive logistic regression model,

all in the program R (R Core Team, 2016). This logistic regression model incorporates the

covariates distance to nearest forest, sex, and age, and is considered naive because it uses

values of the location-specific variable at the recorded locations.

9 Results

9.1 Simulation Experiment

For our simulation experiment, we crossed two factors (sample size and partial presence of

location error), with two levels each. With our choice of β0 as 5.5 or 8.0, we obtained a mean

total sample size of 245.1 for our small sample settings, and 2979.2 for our large sample

settings. Sample sizes for points with a mark of one or zero under each setting may be found

in Table 1.

Under scenario one, biases in MLEs for α1 were corrected successfully by the bivariate

COS technique under both settings of location error. The 95% coverage probabilities for

α̂1, using the COS technique, were between 94% and 96% in all settings. Additionally, the

efficiency of α̂1, obtained from the COS, ranged from 1.76 (large sample with partial change

of support) to 3.9 (small sample with full change of support).

Under scenario two, the MLEs for α1 were biased when values for covariates were used

from the center of each sub-region, regardless of which level of location error was present.

For settings involving location error only in the point pattern with marks of one, the sign of

the estimates for α1 was reversed for all data sets. Additionally, the empirical distributions

of α̂1 obtained through ordinary logistic regression for these settings were dramatically wider

than the settings where bounded location error was present in both point patterns. Coverage

probabilities for estimates of α1 using covariates from cell centers were less than 1% for all

settings covered by the experiment.

Under scenario three, the MLEs for α1 performed as expected without location error.

Coverage probabilities for estimates of α1 using covariates from the true locations were
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Figure 2: Violin plots showing the empirical distribution of MLEs for the regression coef-
ficient, α1, from three different scenarios using 1,000 simulated data sets. Each panel shows
the true value of α1 = 1 (dotted line). For panels (A) and (C), we use a full COS, and use a
partial COS in (B) and (D) because location error is present only in the point pattern with
marks of one. We show estimates obtained using logistic regression with the exact point
locations (Exact) and using logistic regression with the locations reported as (Cell Center)
or (Ones Only, Cell Center) depending on the level of location error. We excluded estimates
from (A) when | α̂1 |> 3 or α̂1 had infinite variance with the COS due to complete separation,
which eliminated only 5% of the parameter estimates.
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between 94.6% and 94.9% for all settings.

Table 1: Results from the simulation experiment obtained using two sample sizes and two
levels of bounded location error (error in both point patterns regardless of mark, error in
point pattern with marks of one only). We report the average sample size of points with
a mark of one (n̄1) and points with a mark of zero (n̄0) from 1,000 simulated data sets for
each setting. We give the relative efficiency of the COS technique in estimating α1 and the
estimated 95% CI coverage probability (CP) for the the COS correction. We also report the
estimated 95% CI coverage probabilities for logistic regression using the exact locations of
points (exact) and locations reported as the center (cell center).

CP CP CP
Presence of Bivariate Logit Logit
Location Error n̄1 n̄0 Efficiency COS (cell center) (exact)

Both 123.5 121.6 3.882 0.948 0.002 0.941
Positives only 123.5 121.6 1.800 0.952 0.000 0.941
Both 1502.2 1477.2 3.430 0.946 0.000 0.944
Positives only 1502.1 1476.9 1.758 0.956 0.000 0.944

9.2 Disease Risk Factor Analysis

We are most interested in the effects of the three models (i.e. the bivariate IPP, ordinary

logistic regression, and the bivariate IPP with partial COS) on the ability to detect a differ-

ence in the parameters for the distance to nearest forest covariate. A table summarizing the

results is found below:

Table 2: Regression coefficient estimates and 95% CIs for effect of distance to nearest forest,
sex, and age on the probability of chronic wasting disease infection for deer in the study
area. For each covariate and model, we give the coefficient estimate followed by the 95% CI,
shown in parentheses.

Method α̂forest α̂age α̂sex

Bivariate IPP -0.97 (-2.20, 0.26) 0.44 (0.31, 0.57) 0.65 (0.38, 0.94)
Logistic Regression -0.97 (-2.20, 0.26) 0.44 (0.31, 0.57) 0.65 (0.37, 0.93)
Bivariate Partial COS -3.66 (-6.21, -1.12) 0.44 (0.31, 0.57) 0.65 (0.37, 0.93)
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Our results show that the bivariate Poisson IPP and logistic regression models obtain

identical point estimates, to the second decimal place, for the effects of distance to nearest

forest, age, and sex on the probability of CWD infection. These two methods give nearly

identical 95% confidence intervals for the same three covariates. We see from the 95%

confidence intervals for these two methods that distance to nearest forest (forest) is not a

significant predictor for the probability of a deer being infected with CWD, while age and

sex are significant predictors. The partial COS technique obtains different inference, giving

a confidence interval for distance to nearest forest that does not contain zero. This suggests

that location error in the data caused attenuation in the estimate of αforest, and an attempt

to draw conclusions based on the bivariate IPP or logistic regression results would have been

in erroneous.

10 Discussion

Our results suggest the COS technique successfully corrected bias due to location error

in the simulation experiment and made an appreciable impact on the inference obtained

when modeling probability of CWD infection in individual deer. Our results for the disease

risk factor analysis highlight differences in conclusions that would be drawn from the same

data using the bivariate Poisson IPP, ordinary logistic regression, and the COS correction

technique.

When location-specific covariates are of interest for modeling spatially-referenced binary

data, location error in the data amounts to measurement error in the covariates. In turn,

measurement error can cause unpredictable changes to conclusions when drawing inference

(Carroll et al., 2006). Our simulation experiment highlighted two possible hazards of location

error (attenuation and sign reversal), demonstrated the susceptibility of a common method

(i.e. logistic regression) to these hazards, and demonstrated the ability of the COS technique

to protect against these hazards. We recommend the COS as the technique of choice when the

end goal is inference from spatial binary regression in the presence of bounded location error.

The COS may be widely applicable because the correction requires no assumptions about
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how the location error was generated, apart from being bounded, whereas other methods

require truthing data or error distribution assumptions (Chakraborty and Gelfand, 2010;

Hefley et al., 2014; Lund and Rudemo, 2000; Sadahiro, 2003). Some situations may render

this bounded location error assumption unreasonable. Therefore, future work will address

an extension of the COS which allows for unbounded location error correction.

Our simulation study and data example make specific use of a logit link for the binary

regression model. The COS technique is easily modified to incorporate other link functions

(probit, for example). A spatial random effect may also easily be added to the thinning

function to model residual spatial structure in the data (Diggle et al., 1998; Gotway and

Stroup, 1997). Additionally, one need not assume a linear relationship in the intensity

function as shown in (1); a smooth function such as a semi-parametric or kernel density

estimator may be used for the intensity function in the bivariate IPP COS (Diggle, 2013).

We refer to these options as modifications rather than extensions because these changes may

be made without extending the basic framework given in this paper.
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