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Abstract

The method for communicating within an interconnection network, or fabric of connec-

tions between nodes, can be as diverse as are the applications which utilize them. Because of

dynamic traffic loads on these interconnection networks, fully-adaptive routing algorithms

have been shown to exploit locality while balancing loads and softening the effects of hot-

spots. One issue which has been overlooked is the impact of data traveling along the

periphery of a selected minimal routable quadrant (MRQ) within these fully-adaptive algo-

rithms. As data aligns with the destination in the x, y, and z dimensions for instance, the

data then traverses the periphery of an MRQ. For each dimension that this occurs, the data

is given one less choice for routing around hotspots which could appear later along the path.

By weighting the decision of selecting a next-hop by avoiding the periphery of the selected

MRQ, the data then has more options for avoiding hotspots. One hybridized routing algo-

rithm which borrows heavily from CQR (an efficient and stable fully-adaptive algorithm),

is introduced within this work. Enhanced CQR with Periphery Avoidance, attempts to

weight the routing decision for a next hop using both output queues and the proximity to

the periphery of the MRQ. This fully-adaptive algorithm is tested using simulations and

a laboratory research cluster using a USB interconnect in the hypercube topology. It is

also compared against other static, oblivious, and adaptive algorithms. Thor’s Tack Ham-

mer, the Kansas State University research cluster, is also benchmarked and discussed as an

inexpensive and dependable parallel system.
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Chapter 1

Introduction

Computational systems in the world today are being limited by a different factor than they

once were. In the past, things such as gate switching speed, memory size, and thermal

properties have been (and will always be) issues when aiming towards faster and more effi-

cient computers. But, aside from those things, communication (both between systems and

within them) has become a tremendous issue. The study of interconnection networks, or the

fabric that connects various nodes within a system, aims at finding answers to these com-

plex communication questions [8]. Then within these interconnection networks, one must

examine the efficiency behind the actual data exchange, or routing. Once the routing has

been covered, flow control must then be integrated to work well with the routing algorithms

on a particular interconnection network [16].

The rest of the chapter will outline the specifics of interconnection networks, and will dive

into a specific use of these networks within high performance computing clusters. Further

more, the routing (which is a core discussion of this research work) is briefly introduced as

are some of the initial results stemming from the evaluation of the routing algorithms.

1.1 Interconnection Networks

The realm of interconnection networks ranges tremendously, as do their applications. These

interconnection networks can be viewed both macroscopically and microscopically. For

instance, by zooming out and looking at the macro-level, the entire Internet can be viewed
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as an interconnection network with end-users and servers as the nodes, and the links, routers,

and switches as the fabric connecting them. Different graphs or topologies of interconnection

networks serve different purposes, and are very closely tied to their specific application. But

within the different topologies there remains one quality which is central to all: balance the

load as efficiently as possible, thus taking advantage of the diverse number of links, and

increasing the overall ability for nodes to communicate.

At a more microscopic level, one can see that communication fabrics play a very large

role in the efficiency of other parallel systems. For instance, the latest-and-greatest proces-

sors available through the popular manufacturers are called multi-core processors. These

processors have multiple processing ”cores” which attempt to compute or process data in

parallel using a common communication fabric or interconnection network.

Though these two examples vary greatly in both the size of the communication fabric

and the number of nodes within the network, both are solid examples of current applications

of interconnection networks.

1.2 High Performance Computing Clusters

High Performance Computers (HPC), commonly referred to as ”supercomputers” are gener-

ally used to process large simulations or tackle problems that were once considered impossi-

ble or improbable to solve in a non-parallel environment. HPCs are traditionally only found

within companies or laboratories with large budgets because of their tremendous building

and maintenance costs. The smaller clusters traditionally are thought of as computing clus-

ters, as the HPC term tends to refer to the largest of these parallel systems. The largest

(and fastest) 500 HPCs are tracked and cataloged within the Top500.Org website.

The applications on HPCs can and do vary widely. For example, corporations who man-

ufacture automobiles could use an HPC or smaller cluster to effectively simulate prototype

crash tests without having to physically build a prototype (which could only be good for one

crash test). Instead, with a similar initial investment, these automotive corporations can
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crash these simulated prototypes as many times as they desire. They can also collect mas-

sive amounts of data from these simulations, helping the company’s efficiency and vehicle

safety.

Within HPCs, and more specifically, massively parallel processing computers (MPP),

there exist many different ways to connect the nodes: butterfly networks, torus networks,

non-blocking and blocking networks, among others. As intuition would state, the diverse

number of interconnection possibilities matches the diverse applications for these HPCs.

The work focused here centers on the network topology and interconnection fabric that is

most popular within the HPC systems currently used by the US Department of Energy (US

DOE) [4] [10]. This is a torus-mesh configuration.

Figure 1.1: Here is a torus shape, showing lines where the individual slices may reside.
(Graphic public domain, http://en.wikipedia.org/wiki/Image:Torus.png.)

The best way to explain this particular topology is to first consider a torus. A graphic

of this shape is shown in Figure 1.1, but in layman’s terms, it is shape often described as a

product of two circles. Those familiar with tasty pastries like to compare it to a doughnut.

This network is composed of slices, connected in what one would consider in an X-Y

plane. For the example in Figure 1.2, there are four nodes both in the X and Y directions.
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Figure 1.2: This figure shows a 4-ary 2-cube slice of a tori-mesh network. These slices
connect to other slices in an up/down (or +/- Z) direction to complete the torus shape.

These nodes are also connected to other nodes in a Z direction. These slices continue to

connect to other slices in the positive and negative Z directions and finally loop back around

to the first, creating the torus shape. The defining characteristic that separates Tori-Mesh

networks from that of hypercube networks is the irregular ratio between the number of slices

in the Z direction and the number of nodes in the X and Y directions. If all three values

are equal then that topology is a hypercube.

The Torus-Mesh interconnection network has many characteristics that make it attrac-

tive to the HPC community, and US DOE in general. One such characteristic is the high

path diversity. Because of its configuration, there are generally many equivalent shortest

paths between a single source and destination [8]. This improves a particular job or simu-

lation’s resiliency in being completed even when failures or hotspots occur. Resiliency is a

quality which is of high importance within the US DOE on these large HPC systems [6].

Another quality that makes this particular network appealing to HPCs is the individual

node’s ability to quickly communicate with its neighbors with very little delay [8]. Most

of the time when running simulations, nodes need only to communicate with their direct

neighbors.

Lastly, and quite possibly most important, because of the tremendous investment in
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creating these systems, tori-mesh networks are generally easy to expand.

A very critical part of creating an efficient HPC is assigning efficient routing policies.

This next section discusses just that.

1.3 Routing within Interconnection Networks

There are quite a few categories that routing algorithms in general fit into. Routing algo-

rithms can be source or hop-based in that the decisions that data traverses can be determined

at the source or intermittently through the network. Routing algorithms may also be dy-

namic or static in that the paths do or don’t change throughout time. All routing algorithms

within this research are hop-based and includes both static and dynamic implementations.

Routing within a Torus-Mesh network can be viewed within three separate categories.

The first two are the dynamic algorithms, which causes the individual nodes (which tradi-

tionally also do the routing for other nodes’ data in transit) to make decisions on-the-fly

as to a packet’s next hop. These decisions can be done obliviously (oblivious routing), or

adaptively by examining various indicators of network availability (adaptive routing).

The last option for routing is referred to as a static approach. In this particular option,

the data from source to destination travels a single path and usually cannot deviate from

that path.

There are a couple of reasons why routing on this network (or any network for that

matter) is so critical. While a network’s topology is an important factor in the efficiency

of communications, the routing mechanism is the limiting reagent in this mix: an efficient

routing policy can make for a very efficient HPC, while a poor policy can make it very

inefficient. Alongside with efficient communications, there is a need to evenly balance load

between links and nodes within a network [1]. Again, a good routing policy will achieve

this.

There are two large HPCs that will be frequently referenced within this work. The

first, Sandia National Laboratory’s Red Storm/Thor’s Hammer MPP currently has 26,569
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processing nodes, each with a 2.4 GHz dual-core processor and all nodes connected in a tori-

mesh interconnect network. This HPC is ranked as the 6th highest performance computer

in the world based upon the Linpack Benchmark (as of Nov 2007). This benchmark is a

globally recognized standard for cataloging HPCs and is discussed later in this thesis.

Another well-known parallel computer within the HPC community is Lawrence Liver-

more National Laboratory’s BlueGene/L MPP. This parallel system currently has 212,992

nodes, each with a PowerPC 440 700MHz processor. This system was ranked as the highest

performing parallel computer in the world (as of Nov 2007).

Both rankings were taken from the independent group called Top500.org, which catalogs

and tests the high-performance computers who wish to be ranked.

The Red Storm supercomputer at Sandia National Laboratories, as well as Blue Gene/L

at Lawrence Livermore National Laboratories can implement any routing algorithm appro-

priate for their topologies, but research has pointed towards the stability of static routing,

specifically an algorithm called Dimension Ordered Routing (DOR) [1] [2] [4]. Because of

the complexity of these systems, along with the laboratories’ experience with dynamic rout-

ing algorithms, stability tends to be one of the deciding factors when considering which

algorithms to use.

Flow-control is one of the last pieces of the puzzle in terms of creating an overall efficient

HPC. Unfortunately, the scope of this research work does not extend into that area.

1.4 Contributions

The work contained within this section briefly discusses and introduces the specific work of

this research thesis and the contributions that accompany them.

Adaptive routing algorithms give a large amount of flexibility in two key areas of efficient

HPC usage: proper load balancing, and the effective usage of a network’s interconnect

(thusly exploiting locality). These routing algorithms, which are introduced and discussed

later in this thesis, have shown excellent characteristics for effective operation on hypercube
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and torus-mesh networks (among others).

An HPC system’s overall reliability and availability is paramount in the efficient oper-

ation of large HPC systems [6]. Hotspots, which are naturally-occurring and unavoidable

issues, occur when higher-than-average traffic demands are aimed at a single node. Multiple

hotspots can occur within a network at any given time, and adaptive algorithms are the

only algorithms which can adapt and respond to those traffic problems [5]. Therefore, this

work aimed at increasing a routing algorithm’s ability to make better decisions and to more

effectively route around hotspots.

Along with introducing an enhanced decision function within these routing algorithms,

a research cluster and simulation environment were created to verify those ideas. Each are

introduced and explained in depth within this work.

An itemized list of contributions for this work include:

• Implement a simulation-based environment within Matlab to compare traffic and delay

results for each algorithm given various hypercube topologies;

• Build a research cluster: a scaled version of the Red Storm/Thor’s Hammer HPC;

• Implement a torus-mesh network on this research cluster using a USB interconnect;

• Implement various static, oblivious, and adaptive algorithms using a set of socket-layer

C programs, validating and verifying previous work, and demonstrating this work’s

implementation differences;

• Introduce Enhanced CQR with Periphery Avoidance, which makes intermediate rout-

ing decisions by routing productively but avoiding the perimeter when possible;

• Discuss the impact of this new enhancement and demonstrate evidence of its potential.
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Chapter 2

Previous Work

This chapter will attempt to provide a well-rounded literature review of the focused area

of this thesis. Next is a discussion on undeliverable data – a critical issue with routing

algorithms. Finally there is a discussion of both static and dynamic routing algorithms as

well as evidence of their reported performance.

2.1 Undeliverable Data

With the high path diversity and the large number of routing decisions within tori-mesh

networks, these issues of livelock and deadlock are of great concern and must be considered

within each specific routing algorithm. These next two sections briefly introduce the problem

of undeliverable data.

2.1.1 Deadlock

Deadlock, as it is defined by [8], occurs when a set of agents holding resources are waiting

on another set of resources such that a cycle of waiting agents is formed. Most networks

are designed to avoid deadlock, but it is also possible to recover from deadlock by detecting

and breaking cyclic wait-for relationships.

Deadlock is more of an issue on routing algorithms that do not allow for misrouting

of data. When this data reaches a node or link it cannot traverse through, it stops its

progress, and is usually dropped [9]. Because of finite buffers, and random failures, deadlock
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is usually an issue to be considered within routing algorithms. This particular issue can also

be subdued by implementing a few policies. As outlined within [9], deadlock prevention,

avoidance, and recovery techniques can all reduce the problem of deadlock.

Figure 2.1 shows a deadlock example.

Figure 2.1: This example shows how deadlock occurs, using the same traffic demand as
before but this data is unable to reach the destination because of its inability to misroute.
This data will end up being dropped at node 4 or node 2 after being unable to reach the
destination.

2.1.2 Livelock

Livelock, as it is defined within [8], occurs when a packet is not able to make progress in

the network and is never delivered to its destination. Unlike Deadlock, though, a livelock

packet continues to move through the network.

Livelock tends to occur most frequently when data is allowed to be misrouted, or routed

non-minimally [9]. More specifically, livelock becomes a reality when data is forever in
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transit towards its destination, and continues to move within the network, but does not

reach the destination within finite time. Usually this issue comes about because of over-

utilized channels or link failures. There are two schemes towards tackling the issue of livelock

within routing algorithms. By using only minimal paths, and having great restrictions on

non-minimal paths, livelock can be less of an issue [9].

Figure 2.2 shows a livelock example.

Figure 2.2: A simple livelock example showing a traffic demand from node 1 to node 5.
The traffic is unable to reach the destination, regardless of its ability to misroute up to node
8, or node 6. This data will end up being misrouted indefinitely around the destination.

2.1.3 More on Undeliverable Data

Deadlock and livelock are two issues playing tug-of-war with one another. By reducing an

algorithm’s likelihood of falling into deadlock, it increases its likelihood of being vulnerable

to livelock, and vice versa. These inversely-related issues are of great importance and will
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be part of the discussion of each algorithm listed within this chapter.

2.2 Static Routing Algorithms

As it was stated before there is some appeal to static routing algorithms within these large

parallel systems. Because of their simplicity, these algorithms tend to be very easy to

implement within hardware [8]. As the name would imply, the path that data takes from a

source to destination will not change through time. The difference between the algorithms

depends on how these static routes are chosen. But once chosen, the path from source to

destination cannot change.

While static, or source-based routing may sound simple, it is really only efficient when

the administrator or operator knows a general idea of traffic patterns prior to any opera-

tions. Under those ideal conditions, source-based routing can very effectively balance traffic

throughout the network. In terms of simulations, it would not be too terribly difficult

to determine these traffic patterns prior to starting the simulations - thus, these routing

techniques seem to be a pretty good choice on these HPCs.

As always, there are never any free lunches. Assuming that the operator has correctly

predicted a traffic pattern and has generated all routing tables for a given set of nodes which

will be used for a simulation, all notion of stability goes out the window when one of two

things occur: (1) a node loses its ability to communicate with a set of nodes, or (2) a link

becomes over- utilized, rendering it unusable. These two topics form the foundation of this

research which are referred to as nodal failures and hot-spots, respectively.

Both of the following static approaches were initially developed because of their ease and

simplicity in terms of hardware implementation [9]. It’s no wonder why they were initially

attractive to large HPC systems.
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2.2.1 Dimension Ordered Routing, DOR

The most published application of static or source-based routing algorithms within these

DOE HPC systems is what is called Dimension Ordered Routing (DOR) [1] [8] [9]. At the

source, the node pre-computes a set of preferred directions to route the packet within. For

instance, if a source and destination pair exist within the same Z dimension, only differing

within the X and Y dimensions, it would be preferred not to change coordinates within the

Z dimension [8] [9].

Once the preferred directions have been calculated, this information is placed within the

header of the data and it is directed into the corresponding X direction first. Once the

packet has successfully reached the same X coordinate as the destination, it then routes in

the Y direction (if it needs to). Following the Y direction, intermediate nodes then continue

to route in the Z direction (again, if necessary) until it finally reaches the destination.

So, in the case above, if the pre-computed preferred directions were [+X,−Y, 0], this

packet would fully route in the positive X direction and then the negative Y direction last.

In terms of all possible directions, this is the order that data is routed within the network:

[+X,−X, +Y,−Y, +Z,−Z].

Dimension Ordered Routing is proven to be free from deadlocks [7] by balancing the load

on virtual channels. The issue shown in [7] demonstrates that by making this modification

the structure of the network and the diversity of usable channels changes. This has shown

to create non-uniform patterns. These virtual channels are only necessary on torus or wrap-

around networks, so with regular mesh-type networks, the full benefits of DOR can be

witnessed.

2.2.2 Direction Ordered Routing, DIR

Direction Ordered Routing (DIR) is very similar to that of Dimension Ordered Routing. The

difference in these two resides in the order in which the routing occurs once the preferred

directions have been calculated. These calculations are done just as they are with DOR,
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but instead of fully routing within the X direction before progressing to the Y direction

and so on, DIR routes positively within all directions first, then routes negatively within

the directions last [8] [9]. The order that data is routed within the network is as follows:

[+X, +Y, +Z,−X,−Y,−Z]

The same issues with regard to deadlock apply to that of DIR as they do with DOR.

2.3 Adaptive Routing Algorithms

Adaptive routing algorithms seem to be where the most recent research has been heading

in terms of these HPC systems. Though there is some stigma with regard to their overall

stability within complex networks, it is the work of this research to try to show highlights

of using these routing algorithms. The balance between intuition of network conditions

and making routing decisions based on that intuition is definitely taken at the expense of

simplicity.

2.3.1 Chaotic

Chaotic routing uses what is called deflection routing [8], randomly granting contending

data access to channels and deflecting (or misrouting) the data that is denied access to the

requested channel. These particular deflections may or may not be productive (meaning an

extra hop may be incurred by deflection).

Deadlock is not as much of an issue for this algorithm, as the data can be easily misrouted

[5] [8]. Livelock can be handled within this routing scheme by introducing time stamps and

battle scars [5]. Time stamps indicate when the packets were introduced into the network,

and when contending packets request the same channel, the router can grant the packet

with the oldest packet. Battle scar implementations require packets to contain information

as to how many times they have been misrouted. Again, the router can grant packets with

larger battle scars access to channels over those with smaller or zero battle scars [5].
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2.3.2 Minimally Adaptive

The minimal adaptive routing algorithm first starts the data progression by designating the

minimal quadrant, which contains all possible shortest paths from source to destination.

This quadrant is of size
k∏

∆k, where k is the number of dimensions which source and

destination differ by greater than zero. Any node within this quadrant is considered to be

a possible intermediate node along some of many possible shortest paths.

Figure 2.3.2 shows the an example on a n = 2 torus network. Quadrant I is the most min-

imal because it contains all minimal paths. Once this minimal quadrant has been properly

identified, all routing occurs progressively within it.

For instance, if s = (2, 3) and d = (5, 6), a packet must route minimally within Quadrant

I by either routing positively in the X direction or positively in the Y direction. The decision

as to whether to pick the X or Y direction depends on local characteristics such as output

queue length. Once a next hop has been determined, the data is then routed to the next

hop, and the process repeats until it reaches the destination.

Figure 2.3: This figure shows the possible quadrants and the distances data must traverse
while within them. Quadrant I is the most minimal, if ∆x and ∆y are equal, then quadrants
II and IV are the same. Quadrant III is the least minimal in this example. (Figure adapted
from [12].)
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Once this quadrant has been determined, routing is done within it by choosing the next

progressive hop by analyzing some local measurements or congestion indicators - typically

output queue length [8].

Typically this particular algorithm fares well towards local load balancing, but has no

insight of congestion further down the path, limiting its ability to achieve global load bal-

ancing. By using virtual-channels, deadlock can be avoided [3].

2.3.3 Fully Adaptive: GOAL, GAL, CQR

The essence of the best algorithms is epitomized within the characteristics of fully adap-

tive routing algorithms for these networks [13]. By exploiting locality and the network’s

wrap-around feature, an efficient routing algorithm should be able to have the flexibility to

misroute data to balance the traffic load. Fully adaptive algorithms do just this.

The work that was done by Singh, et. al, [12] [13] [14], has collectively progressed into

what seems like a solid attempt at finding a stable, reliable, and fully adaptive routing

algorithm on tori-mesh networks for a diverse set of traffic patterns.

The first of the three algorithms, Globally Oblivious Adaptive Locally (GOAL), works

very similarly to that of Minimal Adaptive with a few changes. First, it finds all possible

routable quadrants and scales the probability of selecting a particular quadrant based on how

minimum it is with respect to a particular source/destination pair. Once those probabilities

are assigned and a particular quadrant has been selected, routing is done minimally within

it [12]. This algorithm uses a virtual-channels implementation (called *-channels) to ensure

deadlock and cycle-free operation [12].

One problem with this algorithm, which was a similar problem with Minimal Adaptive,

was its inability to recognize global congestion. The answer to this comes through in the

next algorithm that was developed by this same group, Globally Adaptive Load-Balanced

(GAL).

This algorithm is implemented by keeping a globally visible set of input queues for each
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node, called injection queues. Each node has as many injection queues as it has inputs, and

when a packet begins its commute from source to destination, the injection queue on the

destination node relative to the link the packet will be received on is increased. As with

GOAL, GAL first determines the routable quadrant, then selects this quadrant based on

distance (as did GOAL), but it also considers the injection queues. This way, nodes can

keep a general idea of how much total traffic is being sent in any particular direction, and

can attempt to balance that out globally [14].

Figure 2.4: A graphical representation of how GAL Injection queues appear globally. The
value increments as packets are sent toward a particular interface, and they decrease as
packets reach a destination through a particular interface.

Figure 2.4 shows graphically how these injection queues may look.

Another versatile option for this algorithm to reduce its complexity is by subnetting

the injection queues. By grouping multiple interfaces together with a single queue, thus

reducing the number of queues to store globally, the authors showed that this technique had

little impact on the overall performance of this algorithm [14]. This algorithm is also said

to be deadlock and cycle-free [14].

Finally, a better meld of the global and local qualities that GAL and GOAL provided was

integrated into a simple-to-implement and efficient protocol called Adaptive Channel Queue
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Routing (CQR) [13]. This routing algorithm uses local information in the form of output

queues (as opposed to the GAL algorithm which implemented input injection queues which

were globally accessible). CQR uses these output queues as estimators for global congestion,

which was proven within the work of [13]. The work showed that even in the absence of

global information, local information can provide good estimations of global congestion.

Also, relieving the algorithm from accessing and changing global information made it

much simpler to implement (not to mention lower its overhead). It was also shown to quickly

adjust to changing traffic patterns and the changeover from minimal routing to non-minimal

routing[13]. CQR was also shown to be deadlock and cycle-free [13].

2.4 Oblivious Routing Algorithms

This final section of routing algorithms within these HPC networks is referred to as Oblivi-

ous Routing. These routing algorithms tend to hybridize aspects of the adaptive and static

algorithms. For instance, oblivious routing techniques tend to keep hardware implementa-

tions simpler than adaptive algorithms (a static characteristic), while the paths that data

takes within the network can change throughout time (which is an adaptive characteristic).

The next subsections introduce two popular oblivious algorithms, Valliant’s Algorithm

and Minimal Oblivious.

2.4.1 Valiant’s Algorithm

Valiant’s Algorithm came about in an attempt to balance loads within any particular topol-

ogy [8]. The algorithm works by first selecting at random an intermediate node, x, and

once successfully routing to that intermediate node, then routing from x to the destination.

As it’s stated, any arbitrary routing algorithm can be used to get data from source to the

intermediate node and then from the intermediate node to the destination [8].

But with the addition of better network load balance, locality is clearly taken out of the

picture [12]. And as it was stated before, the DOE HPCs have a desire to maintain locality
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Name Description
Nearest Neighbor (NN) Nodes send data to only their neighbors with equal probability.
Uniform Random (UR) Nodes send data to random destinations.
Bit Compliment (BC) (x, y, z) sends data to (k − x− 1, k − y − 1, k − z − 1).
Transpose (TP) (x, y, z) sends to all possible permutations of x,y, and z.
Tornado (TOR) (x, y, z) sends to (x + k

2
− 1, y, z).

Flood (FL) (x, y, z) sends to all other nodes within the network.
HotSpot (HS) n number of nodes have k times more traffic demand than others.

Table 2.1: These are the traffic patterns outlined in [12] [13] [14], which have been used to
validate and verify routing algorithms on hypercube and torus mesh networks.

because of the nature of the applications. This makes Valiant’s Algorithm a possibly good

application in other networks, but not within Redstorm, BlueGene/L, or the like.

Deadlock is said to be avoided using two subnetworks for the two steps, and using two

virtual channels within each step [15].

2.4.2 Minimal Oblivious

The Minimal Oblivious algorithm works very closely to that of the Minimal Adaptive algo-

rithm listed above, in that the traffic will traverse one of many possible minimum shortest

paths. The algorithm first calculates its minimal quadrant, and then selects a random in-

termediate node somewhere within the minimum quadrant. Once that intermediate node is

selected, the data is routed first to the intermediate node and secondly from the interme-

diate node to the destination, all done randomly, minimally, and oblivious to any network

indicators or local conditions [8].

2.5 Traffic Patterns

In order to analyze these above algorithms, there are a few traffic patterns that are used to

test and validate an algorithm’s ability to route packets across a given topology effectively.

These traffic patterns usually serve as a worst-case scenario for traffic demands, but they

are real-world possibilities for demands none-the-less.
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Traffic Pattern Minimal Oblivious Chaos Routing
UR 0.6 1.0
BC 0.3 0.5
TP 0.5 0.5
HS 0.6 0.9

Table 2.2: This table shows results obtained from [5], comparing the Chaos and Minimal
Adaptive routing algorithms with a 100% load applied the simulated hypercube network. The
results show the fraction of data successfully transmitted given the traffic pattern at 100%
load.

Traffic Pattern Minimal Oblivious Chaos Routing
UR 600 (cycles) 550 (cycles)
BC 2200 1000
TP 690 900
HS 600 500

Table 2.3: This table shows the results obtained from the same conditions as in Table 2.2.
This table shows the latency (in terms of extra cycles) seen when observing the throughput
in the previous table.

2.6 Latency and Throughput Analyses

This section attempts to show previous work, comparing the algorithms of interest in terms

of throughput and latency. All algorithms were compared using similar approaches, by

analyzing how well the algorithms reacted given specified traffic demands.

Tables 2.2 and 2.3 show useful data taken from [5], comparing the latency and throughput

Traffic Pattern Minimal Adaptive GOAL GAL CQR
NN/UR 1.0 0.75 1.0 1.0

TR/BC/TOR 0.33 0.53 0.53 0.53
Average 0.63 0.67 0.73 0.7

HS 0.46 0.48 0.49 0.49
Low Load Latency 4.45 6.17 4.45 4.45

Table 2.4: This table compares the adaptive routing algorithms in terms of throughput
(shown in fractions given 100% loads), as well as latency during low loads. This information
was obtained from [13] [14] [12].

19



of Minimal Oblivious and Chaos routing algorithms. The results show Chaotic routing

meeting or exceeding the performance of Minimal Oblivious.

Table 2.4 compares the adaptive algorithms in terms of throughput. All three of the

Stanford group’s algorithms show consistent progression over that of Minimal Adaptive.

CQR ends up being the most resilient algorithm in terms of these chosen traffic demands

when concerning throughput and latency.
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Chapter 3

Enhancing Current Adaptive Routing
Algorithms

Because adaptive algorithms are able to exploit locality as well as misrouting data to balance

the load, they are very attractive algorithms for implementation. Their stability is necessary

for traffic changes and CQR, Minimal Adaptive, and other fully adaptive algorithms alike

are able to transition between those traffic differences well [13].

3.1 Issues with Previous Algorithms

As it was stated before, adaptive algorithms have two qualities which make them attractive.

They have the ability to take advantage of locality while capitalizing on path diversity by

balancing load. As for CQR, once a quadrant has been selected at the source, the data in

transit is not allowed to deviate outside of that quadrant and must make productive moves

towards the destination [13].

A productive move is defined as intermediately choosing a next hop so that the distance

between the data in transit and the intended destination decreases [13]. If the distance stays

the same or increases, it cannot be considered a productive hop.

Adaptive algorithms such as CQR could more effectively route around hotspots or nodal

failures if they encountered these network abnormalities away from the edges of the selected

quadrants. In fact for every ”edge” of the quadrant the data hits, it reduces the possible
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decisions it can make further down the path.

Take for instance a simple example where a selected quadrant has ∆x = 4 and ∆y = 2.

If the first two hops within that quadrant are in the y-direction, then the final four hops

must be in the x-direction. If the data encounters a hotspot along the x-direction, it has

no choice but to continue routing through the congestion. The next section introduces the

concept further, called Periphery Avoidance.

3.2 Introducing Enhanced CQR with Periphery Avoid-

ance

Along with the flexibility that adaptive routing algorithms offer, there are some drawbacks.

Minimal Adaptive, for instance, offers great flexibility in routing decisions near the center

of the selected quadrant, while offering less flexibility near the periphery of the quadrants.

This is because once data has reached the periphery of its intended routing quadrant (it

can also be thought of as aligning in a similar dimension with the destination), it reduces

the ability to route around congestion and hotspots. By offering the traffic a path away

from the periphery of the selected quadrant, we increase data’s ability to adaptively route

around hot-spots.

Analytically speaking, a majority of the paths within a quadrant fall along the periphery

of the network, but many choices do exist within the interior of a quadrant. The next

section discusses path diversity as it relates to this overall concept of periphery avoidance

and introduces a decision function in which queue sizes are weighted with the distance from

the periphery of a quadrant to choose a next-hop.

3.2.1 Path Diversity and Periphery Avoidance

The work from [8] outlines mathematical expressions for calculating the number of possible

distinct routes within a torus-mesh or hypercube network. Below is the expression from [8]

for a 2-Dimensional network:
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|Rsd| =
(

∆x + ∆y

∆x

)
(3.1)

And for a 3-Dimensional network, the expression for finding the number of possible distinct

routes between source and destination is:

|Rsd| =
(

∆x + ∆y + ∆z

∆x

)
·
(

∆y + ∆z

∆y

)
(3.2)

Given the possible routes that exist between source and destination within a quadrant for

the values for ∆x, ∆y, and ∆z, a subset of these routes use the interior of the network

while another disjoint subset use one or more parts of the periphery. The next equation was

created to demonstrate that relationship:

|Rsd| = |Rsdp̄|+ |Rsdp| (3.3)

The expression for |Rsdp| describes the routes which use the periphery during one or more

hops, while |Rsdp̄| describes the routes which route only within the interior of the quadrant.

It was easier to think in terms of counting the paths which use the interior of the quadrant

than developing an expression for counting the number of paths which use the periphery of

the quadrant. For a 2-Dimensional network, that expression is:

|Rsdp̄| =
(

(∆x− 1) + (∆y − 1)

(∆x− 1)

)
+ 2 · n (3.4)

And for a 3-Dimensional network the expression is:

|Rsdp̄| =
(

(∆x− 1) + (∆y − 1) + (∆z − 1)

(∆x− 1)

)
·
(

(∆y − 1) + (∆z − 1)

(∆y − 1)

)
+ 2 · n (3.5)
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An example 2-D network with a quadrant of size ∆x = 4 and ∆y = 3 demonstrates the

relationship between these values. Therefore, given those values and using Equations 3.3

and 3.4, the counts for the various routes are:

|Rsd| =
(

4+3
4

)
= 35

|Rsdp̄| =
(

3+2
3

)
+ 2 · 2 = 14

∴

|Rsdp| = 21

This example depicts the general trend of the relationship between |Rsd|, |Rsdp̄|, and |Rsdp|.

Because of the high number of links which utilize areas of the periphery, and given that

hot-spots are common occurrences avoiding these links whenever possible should definitely

improve the data’s ability to route around localized hotspots when encountering them.

Figure 3.1 shows the relationship between the number of links which utilize the periphery

and the number of links that do not.

3.2.2 Periphery Avoidance Decision Function

Traditional CQR uses two decision phases when sending data through the network. The

first phase is done at the source, when the quadrant to route within is selected. Once this

decision has been made, the data carries with it a vector of size n (e.g. v = {x1, x2, ...xn}),

referred to as the minimal direction vector. The values within this vector indicate whether

routing is allowed within a given dimension. If a particular dimension carries a value of +1,

then the data may route in the positive direction in that dimension. Similarly, if the value

is −1, the data may route in the negative direction of that dimension. Finally, if the value

is 0, routing is not allowed in that dimension.

For this discussion, the minimal direction vector must not only contain the allowed

directions to route within that dimension, but must also contain the ∆ values for that

dimension. This enables the decision function, which is explained below, to weight the links

near the center of the quadrant higher than those which reside on the periphery. As the
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Figure 3.1: This figure demonstrates the ratio between the links which utilize the periphery
of a selected quadrant to that of the links which utilize the interior of the quadrant. As the
quadrant size increases, the ratio converges to 4:1.

data progresses through the network and decides a next hop, this vector must be modified

to reflect the actual ∆’s at each intermediate hop. This enables the decision function to

constantly evaluate and aim towards keeping the data in transit away from the periphery

of the network.

The Enhanced CQR decision function as it relates to the concept of Periphery Avoidance

uses the same first phase as traditional CQR, but uses a slightly different method for choosing

intermediate nodes within a network on the second phase. Before considering this enhanced

version, first consider the old decision function for CQR:

Next Hop = min(Q(x1), Q(x2), ...Q(xn))∀xi ∈ n (3.6)
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Where Q(xi) is:

Q(xi) := k s.t.

{
k = Output queue value at direction xi for ∆xi > 0

k = +∞ for ∆xi = 0
(3.7)

The function Q(xi) returns +∞ when xi is not a productive direction, otherwise, it returns

the value of the output queue in the dimension xi. Therefore, a selection is made to ensure

the next hop is productive, and relative to the shortest output queues.

To create a decision function which incorporates both output queue length and periphery

avoidance, the following equation was developed:

Next Hop = min(Qp(x1), Qp(x2), ...Qp(xn))∀xi ∈ n (3.8)

Where Qp(xi) is:

Qp(xi) := k s.t.

{
k = (Q(xi) + 1) · (1− ∆i

∆total
) for ∆xi > 0

k = +∞ for ∆xi = 0
(3.9)

The value for ∆total is the sum of all the absolute values in each dimension. One is added

to the queue lengths to ensure that zero-length queues do not compromise the function’s

ability to avoid the periphery.

First, consider a selected quadrant with direction vector v = {∆x = 4, ∆y = 10, ∆z = 0}.

This quadrant yields a total of 1001 unique minimum paths from source to destination as

per Equation 3.1. When considering the number of paths which avoids the periphery, that

value is found to be 220 as per Equation 3.4. Analyzing the decision of the next hop in

terms of traditional CQR, the x and y are then selected based on the smallest output queue

length.

But, this is where Periphery Avoidance can take advantage of having such a difference

in the ∆’s. Of course, output queues need to be considered, as they are an indicator of
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network congestion, but routing in the y direction should be preferred as it avoids the

periphery better than choosing the x direction for this example.

Therefore, for the enhanced CQR the values obtained from the decision function are:

Qp(x) = (Q(x) + 1) · 0.714

Qp(y) = (Q(y) + 1) · 0.285

Here, it’s demonstrated that if queue sizes are equivalent, the y direction will be selected as

the minimum value, and the next hop.

Considering another example which depicts how the decision function factors on deciding

a next hop based on a quadrant with v = {∆x = 4, ∆y = 4, ∆z = 0}, with equivalent output

queues (as with the previous example), the number of paths between source and destination

are 70, with 20 paths within the interior of the quadrant.

Therefore the decision function yields:

Qp(x) = (Q(x) + 1) · 0.500

Qp(y) = (Q(y) + 1) · 0.500

This causes the output queue values to be the sole deciding factor in this scenario.

These examples demonstrate the basic functionality of this decision function and its

ability to weight both output queue lengths and routing towards the interior of the quadrant

– both of which are important in load balancing and avoiding hotspots within the network.
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Chapter 4

The Research Cluster: Thor’s Tack
Hammer

4.1 Topology

This section describes the topology of the KSU research cluster, Thor’s Tack Hammer. The

topology of this cluster is one of the characteristics of this parallel system that helps explain

its overall performance, and operability.

In an attempt to keep the individual nodes diskless (or operate without the use of

individual hard drives), it was necessary to have a single central server connected to each

node, providing PXE-booting and NFS file sharing. This server, named Sandlab, provided

those services to the nodes of Thor’s Tack Hammer, as well as providing the cluster with a

firewall from the Internet.

Along with this management network exists the USB interconnection network. This net-

work uses USB patch cables to connect the nodes in the hypercube or torus-mesh topology.

During execution of code, the particular traffic demands and routing decisions are done by

routing packets within the USB interconnect network, and cannot use the management net-

work. Both networks use separate subnets, the management network using 192.168.0.0/24

and the USB interconnect using 10.0.0.0/16.

Figure 4.1.1 shows a graphical representation of the network topology of Thor’s Tack

Hammer.
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Figure 4.1: This figure shows the connectivity between nodes in Thor’s Tack Hammer.
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4.1.1 Subnetting and Addressing Scheme

Because of the version of Linux that was used, as well as the hardware chosen for the

interconnection, each USB interface was able to be used like a traditional ethernet interface.

Once the Linux kernel was brought up, the USB interfaces could communicate through the

USB patch cables by IP.

This was one of the reasons for choosing these particular patch cables for the interconnect.

They were fairly inexpensive (approx. $5-10US per cable), and Linux had drivers for easily

transmitting data across the cables.

Subnetting between the nodes was implemented to make communication between a node

and its neighbors easy. A subnetting scheme was initially developed by a colleague at Sandia

National Laboratories, and is explained below. By creating exclusive subnets for each USB

link, it could be asserted that data would be transmitted along the USB interconnect and

not the management network. This same scheme was used throughout the research as the

standard for connectivity between nodes.

There are first two things to consider when understanding this subnetting scheme. There

are slightly different algorithms for calculating a node’s local interface addresses and the

neighbors’ interface addresses. The first part of this discussion explains the calculation of a

node’s local address (given in x,y,z form - see Figure 4.1).

The first two octets of the addresses can be arbitrarily chosen (x.x.C.D). For Thor’s

Tack Hammer, ’10’ and ’0’ were chosen as the first and second octets respectively. The last

two octets are partitioned into 4-bit values, the x-value, the y-value, the z-value, and the

direction. Therefore, the third octet contains the x-value and y-value (4 bits + 4 bits), and

the fourth octet contains the z-value and the direction (again, 4 bits + 4 bits). Appendix A

gives the BASH Linux scripts that were developed, and the code for generating these values

is available for reference there. The pseudo-code for calculating a node’s the third octet for

a positive-x interface is as follows:
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C = (x-value << 4) + y-value;
(alternatively)

C = (x-value * 16) + y-value;

Whereas, calculating an address for the third octet in a negative-x direction is as follows:

C = ((x-value−1) << 4) + y-value;
(alternatively)

C = ((x-value−1) * 16) + y-value;

And calculating the third octet for a negative-y interface:

C = (x-value << 4) + (y-value−1);
(alternatively)

C = (x-value * 16) + (y-value−1);

Finally for the third octet, the wrap-around must be accounted for since the interconnect is

that of a hypercube/torus-mesh. Therefore, a test is done to see if the x-value or y-value is

0. If that is the case, and it is a negative move, the following calculations are done for the

negative-x interface:

C = ((k − 1) << 4) + y-value;
(alternatively)

C = ((k − 1) * 16) + y-value;

And similarly for the negative-y interface:

C = (x-value << 4) + (k − 1);
(alternatively)

C = (x-value * 16) + (k − 1);

The calculations for the fourth octet is similar, but static values for the direction must

first be considered. They are as follows:
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Positive X: dir=1 (0x0001)
Negative X: dir=2 (0x0010)
Positive Y: dir=5 (0x0101)
Negative Y: dir=6 (0x0110)
Positive Z: dir=9 (0x1001)
Negative Z: dir=10 (0x1010)

These values were chosen to allow for 4 IP addresses per subnet. The values not shown

0 (0x0000), 3 (0x0011), etc., represent the network and broadcast addresses per subnet,

which are illegal addresses for the USB interfaces.

Having the appropriate direction values allows for the calculation of the fourth octet.

Again, positive and negative directions will alter the way the addresses are calculated (this

time with z-value as they were before with x-value and y-value). For positive-z interface the

following calculation finds the appropriate octet:

D = (z-value << 4) + dir;

And now for the negative-z interface:

D = ((z-value−1) << 4) + dir;

Finally, when the z-value is equal to 0 and a negative-z direction is necessary the calcu-

lation must account for the network’s wrap-around:

D = ((k − 1) << 4) + dir;

In order to allow 4 addresses per subnet as explained above, the interfaces were assigned

their 10.0.C.D/30 address and subnet. Calculating the neighbors is done similarly, except

the direction values are toggled. Therefore the direction table shown above would change to:
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Positive X: dir=2 (0x0010)
Negative X: dir=1 (0x0001)
Positive Y: dir=6 (0x0110)
Negative Y: dir=5 (0x0101)
Positive Z: dir=10 (0x1010)
Negative Z: dir=9 (0x1001)

All other calculations for C and D are done exactly the same as outlined before.

A figure has also been provided giving an example of the results of these calculations.

See Figure 4.1.1. This figure shows an entire Z-plane of assigned address, but only for

the X and Y interfaces. The Z interfaces were not shown, though they are calculated just

as described previously. This example should demonstrate the subnetting and addressing

scheme implemented on Thor’s Tack Hammer.
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Figure 4.2: This figure demonstrates the addressing and subnetting scheme used on Thor’s
Tack Hammer’s USB interconnect network. Though the Z interfaces are not shown, they
are calculated just as described previously.
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Figure 4.3: This figure shows the network topology of Thor’s Tack Hammer. The manage-
ment network (shown in blue) is in a star-type topology and the USB interconnect network
(shown in orange) is in a hypercube-type topology.

4.2 Node and Cluster Specifications

Thor’s Tack Hammer is composed of 27 nodes, each node being diskless and headless (with-

out individual hard drives and monitors). Each node is a VIA-VT310-DP Mini-ITX (17 cm

x 17 cm) Motherboard, complete with the following features:
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� Dual 1GHz Via EdenTM -N Nano BGA processors
� 1GB Kingston KVR400X64C3AK2 DDR RAM
� 133 MHz front side bus
� Onboard Intel i82551QM 10/100Mbs Ethernet Adapter (used as Management Interface)
� Onboard VIA VT6103L 10/100Mbs Ethernet Adapter (unused)
� Onboard VIA VT6122 10/100/1000Mbs Ethernet Adapter (unused)
� VIA CN400 North Bridge
� VT8237R South Bridge
� Two onboard USB ports (2.0)
� NEC PCI USB card (2.0)
� Custom Award BIOS
� 27.7 Watts Total Power Consumption

Figure 4.4: This figure shows the VIA VT310-DP, the motherboard used for each node of
Thor’s Tack Hammer. (Image borrowed from VIA’s site: http://tinyurl.com/2t3lkg.)

Each node resides with two other nodes (three total) per shelf within the rack, and all

three nodes share a common power supply. To enable all nodes to come up simultaneously,

wake-on-lan (WOL) was used to switch on the nodes from their off state. Simply turning off

the power supply once the nodes have halted was the process for powering down the nodes.

A customized BIOS was needed to allow nodes to PXE-Boot and wake-on-lan on the

same interface. This interface ended up being the Intel i82551QM, as opposed to the VIA
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Figure 4.5: This image is a photograph of the Adaptec USB 2.0 AUA-5100 PCI card used
to increase the number of USB interfaces on each node. This card used an NEC D720101GJ
Chipset. (Image borrowed from http://tinyurl.com/37m8js.)

VT6122 (Gigabit Ethernet) or the VIA VT6103L interfaces. The engineers at VIA helped

develop this customized BIOS for the particular needs of this project.

Coupled with the VIA VT310-DP motherboard was a USB 2.0 PCI card to expand

the number of USB slots for the cluster’s interconnect network. Using throughput tests, it

was found that the NEC USB PCI controller worked better than the others tested. This

controller did a good job of balancing the USB bandwidth equally between the connected

USB patch cables.

Finally, there were many preliminary operating systems which have been used. Back

when this project started in August of 2005, OpenBSD 3.8 and 3.9 were used both on

Sandlab (as the PXE-server and NFS server), as well as the diskless nodes. A tutorial for

OpenBSD diskless compilation can be found at:

http://www.openbsdsupport.org/diskless.pdf

Soon after, discussion started with the OpenBSD developers towards developing a stable

EHCI Ethernet interface via the USB patch cables, as the current version at that date caused

kernel panics when attempting to send the maximum amount of data over the USB patch
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Figure 4.6: This image is a photograph of the USB 2.0 NetLink cables used as the inter-
connect on Thor’s Tack Hammer. The links used an ALi M5632 Chipset. (Image borrowed
from http://tinyurl.com/37zk7w.)

cable.

Other operating systems which were considered were PelicanHPC, and CentOS (using

OSCAR), but both were discarded after issues with the USB Ethernet drivers and the

diskless architecture of Thor’s Tack Hammer. Finally, a slightly remastered version of

ParallelKnoppix (PK) 2.7.1 was used on the cluster.

The additional packages and tools needed for this particular research was:

1. NTP v.4.2.4p4 (to ensure all nodes have nearly similar clocks)

2. SchedUtils v.1.5.0-1 (CPU affinity)

3. BASH scripts (to automate the cluster’s initialization - see Appendix 1)

4. C programs (to generate/route/account for traffic over the interconnect)

The management interface of each network (which was used to PXE-Boot, WOL, and

maintain NFS mounts for Linux on each node) was implemented over standard Category-5

Twisted-Pair Ethernet cables. Each cluster node connected to a Cisco Catalyst 3500 series

XL switch. The head node also connected to this switch.
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4.3 Node and Cluster Performance

There are many possible ways of measuring performance on computational systems and

networks. This section is dedicated towards outlining various ways in which Thor’s Tack

Hammer was benchmarked and ranks against other parallel systems and sequential systems.

Before delving into how Thor’s Tack Hammer (or any parallel system) compares to

sequential systems, it is important to first consider Amdahl’s Law and its application towards

understanding parallelization. Amdahl’s Law has been used to find the overall expected

improvement (or speedup) that can be realized through multiple processors as opposed to a

single processor. This law depends greatly on the ratio of which instructions can actually be

partitioned onto other processors (with zero communication between them) and computed

independently.

Amdahl’s Law: STotal = 1
rs+(

rp
n

)

rs: The fraction of instructions that must be run sequentially.
rp: The fraction of instructions that can be run in parallel.
n: The number of processors running the parallel instructions.

STotal: Total resulting speed-up.

For instance, if one particular task can have 18% of the instructions run in parallel,

leaving 82% needing to run concurrently, by executing them across multiple processors, the

maximum speedup possible for one processor makes the equation become:

1 = 1
0.82+( 0.18

1
)

Whereas running the same code on a parallel system with 27 processors, such as Thor’s

Tack Hammer, we see a maximum possible speedup of:

1.209 = 1
0.82+( 0.18

27
)

And finally, running that code on BlueGene/L with 212,922 processors, we see a maxi-

mum speedup of:

1.219 = 1
0.82+( 0.18

212,922
)
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These results clearly depict the necessity of having a good ratio of parallel and sequential

instructions in order to truly capitalize on the number of processors in an HPC. With this

low ratio of parallel instructions to the sequential instructions, the difference in maximum

speedup between Thor’s Tack Hammer and BlueGene/L is marginal.

Along with Amdahl’s Law, and its impact on the performance of Thor’s Tack Hammer,

there are other benchmarks available to demonstrate overall performance. These next two

sections outline two other benchmarks, throughput between nodes on the USB interconnect,

and the Linpack benchmark.

4.3.1 USB Interconnect Throughput

Network throughput between systems can be easily measured by using tools such as Netperf

and Iperf. These tools attempt to measure maximum throughput by sending as much data

as possible from a source to a destination, given a static amount of time.

In order to measure the throughput between nodes using the USB interconnect, Iperf

version 2.0.3 was used. There were two different tests used, first measuring how much data

was able to be sent over a single USB link, and the second measuring how much data was

able to be sent from a single node to all of its 6 neighbors simultaneously.

The first test attempted to measure the maximum throughput on a single USB link.

That maximum throughput was found to be around 76Mbits/sec. The second test disclosed

evidence that each node uses two separate USB EHCI (USB 2.0) controllers. The two

controllers, a NEC USB controller (via the PCI card, 4 USB ports used), and the VIA USB

controller (via the onboard USB ports, 2 USB ports used). Because of the two separate

controllers, sending data over all six interfaces totalled at 230Mbits/sec to 265Mbits/sec.

This also indicates that the patch cable runs slower than the controller.

4.3.2 Linpack Benchmark

The Linpack benchmark, widely used and accepted as a standard measure of compute power,

operates by solving a random dense system of linear equations. The benchmark is the same
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System Number of Processors Peak GFlops/sec Top500 Rank HPL
LLNL-BlueGene/L (US) 212,922 596,378 1st Y
SNL-Red Storm (US) 26,569 127,531 6th Y
Thor’s Tack Hammer 27 2.299 — Y
Thor’s Tack Hammer 1 0.190 — N
iBook 1.42Ghz PPC G4 1 0.051 — N

Table 4.1: Linpack test results of various machines. These results were obtained from the
November 2007 Top500.org website. The left most column indicates whether the Linpack or
the Linpack/HPL version was used.

benchmark used by the Top500.org site to rank the top 500 fastest computers in the world.

It uses the BLAS library (Basic Linear Algebra Subprograms) to solve the equations using

Gaussian elimination with partial pivoting. The benchmark measures how many millions of

floating point operations per second were observed during the computation.

In order to facilitate a proper parallel Linpack benchmark, the Linpack/HPL version of

the test tool was downloaded and executed run over MPI (Message Passing Interface).

Various parameters are used to ”tune” the benchmark. These parameters vary the ways

in which the problem set is partitioned among the nodes within a cluster or larger HPC.

The three parameters used to benchmark this cluster are N , which specifies the number of

problems to be run; NB, which specifies the block size of the problem set; and finally the P

and Q parameters, which partition the entire problem set between the nodes. P and Q are

multiplied together, and must be less than or equal to the number of nodes in the cluster.

Documentation that came with the downloaded Linpack/HPC tool explained that by

trying all possible combinations of P and Q, the user should find one value that is the best

result.

Table 4.1 shows the Linpack test results for various well-known computer systems and

HPC systems. Table 4.2 show the varied Linpack/HPL test results for Thor’s Tack Hammer

during tuning.
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Number of Processors N NB P Q Time(sec) Peak GFlops/sec
1 500 100 1 1 438.44 0.190
3 5000 100 1 3 179.95 0.463

27 5000 100 1 27 53.95 1.533
27 5000 100 27 1 76.89 1.099
27 5000 100 9 3 41.10 2.058
27 500 100 3 9 35.78 2.299

Table 4.2: Varied Linpack/HPL tests for Thor’s Tack Hammer after adjusting the tuning
parameters.

Watts Context During Observation
12 All nodes off; one power supply on; Cisco switch off.
68 All nodes off; all power supplies off; Cisco switch on.

187 All nodes off; all power supplies on; Cisco switch on.
270 3/27 nodes on/idle; all power supplies on; Cisco switch on.
365 6/27 nodes on/idle; all power supplies on; Cisco switch on.
930 27/27 nodes on/idle; all power supplies on; Cisco switch on.

1060 27/27 nodes on/HPL; all power supplies on; Cisco switch on.

Table 4.3: This table shows the results of power consumption on Thor’s Tack Hammer.
These results were observed using a Kill-A-Watt P4400 device.

4.3.3 Power Consumption

This last section demonstrates the power consumption of Thor’s Tack Hammer in terms of

electricity used. These results were obtained by observing the amount of watts that were

being used at various points during the startup and execution of the cluster. The tool used

to analyze the watts used was a P3 Kill-A-Watt P4400. The following table shows the

various levels of power used and the context in which that observation took place.

Table 4.3 makes a few things clear about the consumption of power for this particular

cluster. First, it is interesting to see that because of the low consumption of power per node,

this entire cluster uses less electricity than that of a typical hair drier or microwave oven.

It’s also worth analyzing further the power consumption per node both with idle and

at high utilization, considering all factors included within the network. These factors in-

clude power consumption by the switch for the management network and residual power
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consumption by the power supplies.

Therefore we get values of 34.44 watts per node for idle processing, and 39.26 watts per

node for high processor utilization for this particular cluster network. These results should

indicate that operating a cluster such as this can be very energy efficient. Also, because of

these results, it’s also clear that not all parallel systems require complex cooling mechanisms.

This cluster maintains a steady temperature only by the fans which circulate air over the

processors’ heat sinks.
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Chapter 5

Laboratory Results

This next chapter explains in depth the methodology for obtaining the results comparing

the various algorithms on Thor’s Tack Hammer as well as presenting and interpreting those

results.

5.1 Methodology for Tests

The method for testing these algorithms within Thor’s Tack Hammer was implemented using

C code and BASH scripts. The code and scripts that were written were fully commented

and are outlined in the appendices.

It was first considered to use routing tables to enable inter-node routing, but upon further

consideration, would be difficult if not unreasonable to implement. This is because dynamic

implementations would require constant and costly calculations and changes to the routing

tables for every packet received.

Along with dynamically changing the routing tables, current transport-layer network

daemons which were compatible with dynamic routing algorithms were considered. These

included GNU Zebra (www.zebra.org) and Quagga (www.quagga.net). These applications

have been under active development for dynamic routing algorithms such as BGP, OSPF,

and RIP. This was an option that was considered, but was not implemented.

Therefore, an application-layer socket program was developed to appropriately receive

data, calculate the next hop, and forward the data accordingly. A few assumptions were
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made to verify that this application would in fact be suitable for testing and evaluating the

algorithms in question:

Assumption 1: The use of TCP was necessary to guarantee correct delivery of data

between nodes. This was an assumption made after preliminary evidence that without the

flow-control of TCP, UDP could not guarantee correct data delivery. It was also assumed

that a layer-4 protocol such as UDP would not be a good implementation choice on a larger

supercomputer for this same reason.

Assumption 2: Time stamps were necessary to compare both the algorithms and the

C routing programs. The time stamps provided crucial information about any particular

data’s experience traversing through the network. This included actual time spent during

the calculations for a data segment’s next hop, as well as time spent in transit between

nodes. NTP was used to allow a fine resolution of time, and to ensure all nodes had a value

nearly exact to that of the other nodes. Because of drifting the estimated error between

nodes ranged from 10s to 100s of micro seconds. This is supported in [11].

Assumption 3: By comparing each routing algorithm’s time stamps of service delay,

it is possible to compare their complexities. By using the best-performing algorithm as

the baseline, the other algorithms can be compared accordingly. This of course represents

a software-based calculation and should not be considered an accurate assessment of a

hardware-based implementation.

Assumption 4: A fork subroutine was necessary to lower the impact of blocking calls

onto the processing of other data. This enabled nodes to continue to process data in parallel

over all six USB interfaces simultaneously, and limited the blocking calls to only affect the

data associated with that child process.

Assumption 5: Because access to a node’s actual interface output queues was not avail-

able at the application level, a shared memory implementation using semaphores would be

sufficient. Output queues were implemented using semaphores and shared memory between

the child processes. This was necessary for the fully adaptive algorithms.
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Assumption 6: This C-program implementation aligns with the queueing models of the

previous work. Even though the C-programs implement a queue using forks, and a common

area of shared memory protected with semaphores, each interface has a single processor.

Also, a constant value was used to decrease the queues when necessary. Therefore this C-

program implementation is equivalent to the model proposed in the previous work, which

modeled the queues as M/D/1 queues.

These assumptions help justify the way in which validation of the algorithms was per-

formed. They also help explain the reasoning behind the programs’ implementations.

5.1.1 A Packet’s Progression through the Interconnection Net-
work

It is important to consider how data is not only created, but transmitted, routed, and cata-

loged throughout the interconnection network using the C programs. This section explains

just that.

Step 1: Data Injection. Data is created in chunks of variable size, all ”dummy” random

data. This data includes a header of fixed size used to contain source, destination, time

stamps, and other vital information for proper routing. This all occurs through a program

run on the head-node (which is not part of the USB interconnect network) using inject.c, the

Injector program. This Injector program reads a file which lists all source/destination traffic

demands and paired with the specific routing algorithm, creates the data and sends the data

via TCP through the management network directly to the source node. The assumption that

all data is injected into the network at nearly the same time can be validated by examining

time stamps.

Step 2: Preliminary Routing. The source node then receives the data from the manage-

ment network and processes the header. This file is the Server file, or server.c. It calculates

the next appropriate hop (given the routing algorithm and the destination), and routes

accordingly through the USB interconnect network. A time stamp is added at the source

node to setup an initial time.
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Step 3: Intermediate Routing. The data continues to be received through the USB

network and intermediate hops process the data’s header and send it onto the next hop

using the server.c program. The time that the data spends while being processed (time

between receipt of data and transmission to next hop) at each hop is added to the previous

service value(s), and the number of hops the packet has traversed is incremented. If this

hop count exceeds a predetermined value, it is removed from the interconnect network and

processed like it had reached the destination successfully, but flagged as a dropped packet.

Step 4: Destination Routing. Once the data has been received at the destination node,

it forwards the header information to another program listening on the loopback interface,

loserver.c. This program parses the header once more, and writes valid information to a file

which will be parsed by the BASH scripts. A final time stamp is generated at the destination

node. CPU affinity allows for this process to run on a completely separate processor than

the server.c program.

The server.c program is set to listen on any interface given a specified port, and can only

transmit data onto an outbound USB interconnect interface. This enables it to receive data

from the management port (during Data Injection), and guarantees it will only transmit the

data from that node onto the USB interconnect network. This program runs on all nodes

within the interconnect network.

The loserver.c program is set to listen only to the loopback interface on a different port,

and receives the header and writes data to files. Some of the data obtained from the header

includes average queue times, number of hops the data traversed, and actual time when

data was created and removed from the interconnect network. This program runs on all

nodes within the interconnect network.

The injector.c program is used to inject data into Thor’s Tack Hammer. It is run on only

the head-node (Sandlab). It accepts arguments of an input file and the algorithm to route

on the USB interconnect network. The input file designates in a matrix form the demand

(or number of data segments) to send given every source/destination pair.
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5.2 Laboratory Results

This section presents both validation of previous routing algorithms as well as the data

gathered from the execution of Enhanced CQR with Periphery Avoidance on Thor’s Tack

Hammer. All of the assumptions and implementations described in the previous section

apply to this data.

The result from the laboratory analysis are presented below by graphically showing

their link-load and a histogram of all links normalized. In order to normalize these links,

the maximum amount of data transmitted across a single bi-directional link was found and

then all others were normalized to that value. Therefore, the highest-utilized link is given a

value of 1.0 and all subsequent lower-utilized links have lower values. Those links with zero

utilization then have a value of 0 within the histogram.

All algorithms were tested using the Table 2.1 before, and by using the BASH scripts

in Appendix A to parse the results. These results were then placed through Matlab scripts

listed in Appendix C to graphically view loads and link-utilization distributions.

Static and oblivious algorithms were not tested against the presence of hotspots, as they

are unable to make decisions because of them [5]. The adaptive algorithms, however, were

compared both with and without the presence of hotspots. See Table 2.1 for an explanation

of traffic patterns, and sections (missing ref) for in-depth explanations of each algorithm.

There are some basic indicators of whether or not an algorithm outperforms another.

First, a tightly distributed and highly utilized network indicates good load balancing. This

may seem counter-intuitive but because the links are all normalized, it is desired. By having

all links (or most links) at 100% utilization, that indicates that each link experienced the

same traffic load as every other link. This means that for the histograms presented in

Appendix E (which demonstrate the distribution of link utilizations), a large grouping near

1.0 or at 1.0 is highly desired. The tight distribution indicates a hight number of links at

or near the same value.

Another indicator which proves helpful in comparing the algorithms is the standard
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Figure 5.1: This figure illustrates what are considered excellent laboratory results. Because
all links experienced 1.0 utilization after being normalized, they all experienced the exact
same traffic load - indicating very efficient load-balancing.

deviations of the link distributions. Those values are presented in the next few tables. The

reason for including these values is to demonstrate how ”tight” the link distributions were.

The optimum value we search for with standard deviations would be 0.0, indicating all

links were at a singular spot. Because of the normalization techniques used, if the standard

deviation was 0.0, the utilizations would all be 1.0. This situation is shown in Figure 5.2.

Lastly, by comparing the service times for each algorithm, certain assumptions can be

made. In order to demonstrate these scenarios and give examples which indicate good, aver-

age, and poor results, Figures 5.2 5.2 and ?? are included below. The first, Figure 5.2 demon-

strates a highly utilized network, a zero standard deviation, and illustrates the scenario for

absolute optimum load-balancing. Figure 5.2 illustrates an example which is considered

good, because of the assumed normal distribution with a fairly low standard deviation. Fi-

nally, Figure ?? illustrates bad results, in that many links were at 0.0 utilization (indicating

many links were unused during that execution).

On another note, bi-modal distributions could indicate various things, but most certainly,
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Figure 5.2: This figure illustrates what are considered OK laboratory results. Because all
links experienced traffic loads (none were at 0.0 utilization) and the standard deviation of
the link distribution was fairly low, these results were better than poor, but worse than good
or excellent.

indicate faulty decisions given a traffic demand. In certain cases, this bi-modal characteristic

is unavoidable (as it is with minimal adaptive given a tornado traffic pattern, for instance).

As it was stated in the assumptions above, this service time can be an indication as to the

computational complexity and overhead associated with the implementation of a particular

algorithm - both through software and more or less through hardware.

When considering the graph on the left of each result figure (both laboratory and sim-

ulation), green lines represent lowly utilized links (which range from 0 : (1− std dev), in a

normal distribution that is 0-66% utilization), yellow lines represent medium utilized links

(which range from (1 − std dev) : (1 − (std dev
2

), in a normal distribution, ranges from 66-

83%), and red lines representing highly utilized links (which range from (1− std dev
2

) : 1, in

a normal distribution, ranges from 84-100%).

The exact same traffic demands were implemented for these tests as were implemented

for the 3-ary 3-cube simulation presented in the previous chapter. Each individual traffic
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Figure 5.3: This figure illustrates what are considered poor laboratory results. There
were a large number of links which experienced zero traffic (indicating poor load-balancing
techniques).

demand consists of 800KB of data and any TCP overhead associated with its transmission

from source to destination. Because of 1500 Byte MTUs on the interconnect, fragmentation

and reassembly procedures were necessary. The application layer header was included within

the 800KB data. All results presented were the average values after executing the algorithm

and traffic demand twice.

5.2.1 Dimension Ordered Routing (DOR) Results

Appendix D.2.1 shows the graphs associated with Dimension Ordered Routing when varying

the traffic demands. The benefits of using DOR are visible in what are deemed easy or benign

traffic patterns such as NN, UR, and FLOOD. The hard traffic patterns, such as TOR, BC,

and TP, did not yield good load-balancing results.

Table 5.1 shows more results obtained during these tests.
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Traffic Pattern NN UR BC TP TOR FL
Avg Service Time per Node (ms): 16.6 13.5 14.9 15.0 16.4 13.9
Avg Utilization per Link (%): 64.6 30.6 22.9 26.1 13.5 64.1
Link Utilization Std Dev: 13.8 19.2 33.0 26.9 29.7 7.5

Table 5.1: This table shows the results obtained from the execution of the various traffic
patterns while using Dimension Ordered Routing on Thor’s Tack Hammer

Traffic Pattern NN UR BC TP TOR FL
Avg Service Time per Node (ms): 18.2 13.4 14.6 13.9 15.6 13.8
Avg Utilization per Link (%): 65.5 37.6 8.8 25.6 10.6 73.0
Link Utilization Std Dev: 14.6 23.7 18.2 25.6 23.7 8.6

Table 5.2: This table shows the results obtained from the execution of the various traffic
patterns while using Direction Ordered Routing on Thor’s Tack Hammer

5.2.2 Direction Ordered Routing (DIR) Results

Appendix D.2.2 shows the graphs associated with Direction Ordered Routing when varying

the traffic demands. The results of DIR are nearly identical to DOR, and use the same

benign and hard traffic patterns as the previous section discusses.

Table 5.2 shows more results obtained during these tests. As the results show, the service

times are lower than that of the adaptive and oblivious algorithms, but the utilizations are

lower than the others.

5.2.3 Minimal Oblivious Routing Results

See Appendix D.3.1 for the graphs associated with Minimal Oblivious Routing when varying

the traffic demands.

Table 5.3 shows more results obtained during these tests.
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Traffic Pattern NN UR BC TP TOR FL
Avg Service Time per Node (ms): 19.0 14.0 13.7 14.5 11.6 15.4
Avg Utilization per Link (%): 70.6 43.5 18.3 26.3 11.6 63.3
Link Utilization Std Dev: 18.3 23.9 26.8 27.4 26.0 12.9

Table 5.3: This table shows the results obtained from the execution of the various traffic
patterns while using Minimal Oblivious Routing on Thor’s Tack Hammer.

Traffic Pattern NN UR BC TP TOR FL FL-HS
Avg Service Time per Node (ms): 21.8 20.6 30.0 28.6 31.3 19.6 23.7
Avg Utilization per Link (%): 60.4 38.9 11.9 23.6 12.4 53.7 33.5
Link Utilization Std Dev: 15.1 20.5 23.5 24.5 27.3 12.6 13.3

Table 5.4: This table shows the results obtained from the execution of the various traffic
patterns while using Minimal Adaptive Routing on Thor’s Tack Hammer.

5.2.4 Minimal Adaptive Routing Results

See Appendix D.4.1 for the graphs associated with Minimal Adaptive Routing when varying

the traffic demands. Because hotspots can affect the outcome of the results, the addition of

hotspots were included with the FLOOD traffic pattern

Table 5.4 shows more results obtained during these tests. The results shown here indicate

that the implementation of an adaptive algorithm increases the service time, but they also

show that the utilization increased because of the ability to make better routing decisions

and distribute the load better. This data aligns with that of the previous work in [13].

5.2.5 CQR Routing Results

See Appendix D.4.2 for the graphs associated with CQR Routing when varying the traffic

demands. Because hotspots can affect the outcome of the results, the addition of hotspots

were included with the FLOOD traffic pattern

Table 5.5 shows more results obtained during these tests. This algorithm showed a

slight improvement over the utilizations from Minimal Adaptive. CQR also had similar

service times, as should be expected. This data also aligned with the previous work of [13].
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Traffic Pattern NN UR BC TP TOR FL FL-HS
Avg Service Time per Node (ms): 24.3 20.5 26.5 22.4 32.4 23.0 22.5
Avg Utilization per Link (%): 46.8 38.8 12.1 29.9 14.3 45.4 33.1
Link Utilization Std Dev: 25.7 17.9 17.1 22.5 26.0 17.9 16.2

Table 5.5: This table shows the results obtained from the execution of the various traffic
patterns while using CQR Routing on Thor’s Tack Hammer.
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Figure 5.4: Results of CQR Routing using a flood traffic pattern (FL). Two individual
traffic demands were assigned to each node from each node.

Also, it is worth noting that both algorithms, Minimal Adaptive and CQR, showed a heavy

decrease in the average utilization when encountering hotspots. Both responded similarly

to the hotspot traffic, dropping the average nearly 20%.

5.2.6 Enhanced CQR Routing Results

See Appendix D.4.3 for the graphs associated with Enhanced CQR Routing when varying

the traffic demands. Because hotspots can affect the outcome of the results, the addition of

hotspots were included with the FLOOD traffic pattern
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Figure 5.5: Results of CQR Routing using a flood traffic pattern (FL) with Hot-spots. Two
individual traffic demands were assigned to each node from each node. Five percent of the
nodes were made hot-spots, and they are marked as red in the figure.

Traffic Pattern NN UR BC TP TOR FL FL-HS
Avg Service Time per Node (ms): 23.7 22.6 27.7 21.1 35.1 21.7 16.5
Avg Utilization per Link (%): 45.1 43.4 14.4 32.6 16.4 49.2 41.4
Link Utilization Std Dev: 23.2 19.0 21.3 22.6 27.4 19.8 20.0

Table 5.6: This table shows the results obtained from the execution of the various traffic
patterns while using Enhanced CQR Routing on Thor’s Tack Hammer.

Table ?? shows more results obtained during these tests. These results indicate that

this enhanced version of CQR responds very similarly to that of traditional CQR in each

tested traffic pattern. As for the FLOOD traffic pattern with hotspots, Enhanced CQR with

Periphery Avoidance shows great potential, as it exceeds traditional CQR’s results with a

10% higher average utilization. These results do show that in the presence of hotspots,

Enhanced CQR with its modified decision function, gives better results when encountering

hotspots within a network.
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Figure 5.6: Results of Enhanced CQR Routing using a flood traffic pattern (FL). Two
individual traffic demands were assigned to each node from each node.
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Figure 5.7: Results of Enhanced CQR Routing using a flood traffic pattern (FL) with Hot-
spots. Two individual traffic demands were assigned to each node from each node. Five
percent of the nodes were made hot-spots, and they are marked as red in the figure.
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5.2.7 Comparison of All Results

In order to easily compare all of the results presented above, an elementary metric was

developed. Two of the values obtained from results have an inverse relationship based on

the following:

1. Good simulation results have high average utilizations. Because these values are all

normalized, high utilizations indicate good load-balancing occurred. On the other

hand, low utilizations indicate heavy-tails on the link utilization distribution, meaning

a few links were very highly utilized compared to the links with average utilizations.

2. Good simulation results have low service times. As algorithms become more complex,

their service times will increase. This is because it becomes more complex to calculate

a next hop along the path. Therefore as the service times increase, the algorithm

becomes more costly to implement.

The metric that was developed to compare the results uses this inverted relationship between

link utilizations and service times to give a very elementary indication of overall performance.

This metric does not weight the utilizations and service times, but that would not be difficult

to include in future work.

m =
Utilization

Service T ime
(5.1)

Where

Utilization is the normalized utilization between 0.0 and 1.0,

Service T ime is the service time measured in milliseconds.

As Table 5.7 shows, DOR and DIR algorithms performed very similarly, which was expected.

For all algorithms, the hard traffic patterns gave much lower values, while the benign pat-
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Routing Algorithm NN UR BC TP TOR FL FL-HS
DOR 3.89 2.27 1.54 1.74 0.82 4.61 –
DIR 3.59 2.80 0.60 1.84 0.68 5.29 –
MO 3.72 3.11 1.34 1.81 0.10 4.11 –
MA 2.77 1.88 0.84 0.82 0.40 2.74 1.41

CQR 1.93 1.89 0.46 1.33 0.44 1.97 1.47
ECQR 1.90 1.92 0.52 1.54 0.47 2.27 2.50

Table 5.7: By using the metric explained within Equation 5.1, it was possible to do an
elementary comparison between all laboratory results. These results should only be used to
demonstrate some level of increased performance when the routing algorithms gave higher
values.

terns gave higher values. CQR and ECQR also performed very similarly, except in the

presence of hotspots, which ECQR showed increased performance over CQR.
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Chapter 6

Simulation Results

This next chapter explains in depth the methodology for obtaining the results comparing

the various algorithms by using Matlab scripts.

6.1 Methodology for Tests

The method for creating and testing the various routing algorithms on different topologies

was made possible by creating a simulation environment within Matlab. The beginnings of

this environment was initially developed by Dr. Don Gruenbacher, but was heavily modified

to meet the needs of this research work.

By utilizing the Matlab functionality of matrices, it was possible to easily implement

a simulation which would test an algorithm’s ability to balance load, and minimize delay

between source and destination given a specific topology.

The process by which this simulation environment operates is outlined in a numerical

form below:

1. The user inputs simulation parameters such as the specific traffic demand to simulate,

the routing algorithm to implement, k and n values for the topology, and probabilities

for hotspots and/or nodal failures.

2. Given those values, the script first generates a traffic-demand matrix, which is knxkn

in size, using rows as sources and columns as destinations. Hotspots are included
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within the calculation of this matrix.

3. Depending on the routing algorithm that was selected, the traffic matrix is then passed

to its corresponding function, which returns a load matrix and delay matrix. The

load matrix is also of size knxkn, but only has values within (i, j) where i and j are

neighbors and sent or received data during the simulation. The delay matrix is of size

1xkn, and includes the value for each node regarding how many packets it had to route

non-minimally, enqueue beyond another time step, or drop (depending on the routing

algorithm) – each of these possibilities represent some form of delay.

4. For the static algorithms, paths are calculated and simply added to the global traf-

fic matrix. That matrix is then normalized by finding the highest utilized link and

dividing the rest by that value. The same is done for oblivious algorithms. For adap-

tive algorithms, a different approach was necessary. Each simulation for the adaptive

algorithms included individual time-steps, progressing every data segment one single

hop, and then doing so until each segment successfully reaches its destination. This

particular methodology gives way for the data to make adaptive routing decisions as

it progresses through the network. Simply calculating a full path and adding it to the

resulting traffic matrix would not provide an accurate model for this type of algorithm.

The traffic matrix for adaptive algorithms are also normalized as they were for static

algorithms.

5. Once the traffic matrix for a simulation has been calculated, it is then processed

through another script which displays the link utilizations in a graphical form, and

specific to the topology. Coupled with that display is a histogram depicting the dis-

tribution of the link utilizations.

Given the simulation environment described above and the code given in Appendix C,

three topologies were fully examined. First, a 3-ary 3-cube was examined, which would

coincide with the results from Thor’s Tack Hammer (also a 3-ary 3-cube topology). Sec-
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Routing Algorithm NN UR BC TP TOR FL FL-HS
DOR 100% 34.1 33.0 26.7 16.7 100 –
DIR 100% 33.2 8.3 33.3 16.7 100 –
MO 100% 31.7 11.1 26.7 16.7 60.0 –
MA 100% 49.9 16.7 44.4 16.7 75.0 45.8

CQR 39.4% 46.8 19.4 41.8 16.7 65.9 35.2
ECQR 39.4% 52.6 18.4 46.6 16.7 66.2 43.6

Table 6.1: This table demonstrates the average utilizations for each routing algorithm given
the 3-ary 3-cube topology of the simulation environment.

Routing Algorithm NN UR BC TP TOR FL FL-HS
DOR 0.0 21.2 47.0 27.8 37.7 0.0 –
DIR 0.0 20.2 16.7 32.0 37.8 0.0 –
MO 0.0 22.9 20.4 27.7 37.4 14.8 –
MA 0.0 17.6 25.4 26.5 37.3 9.11 13.8

CQR 30.4 17.7 23.8 16.5 37.4 12.5 12.0
ECQR 30.3 17.2 20.1 20.4 37.4 13.8 13.5

Table 6.2: This table demonstrates the standard deviations for each routing algorithm given
the 3-ary 3-cube topology of the simulation environment.

ondly, a larger network of 4-ary 3-cube was simulated, while lastly a 5-ary 3-cube was also

simulated. Those results are provided in the next few sections.

6.2 Results from the 3-ary 3-cube Simulations

Tables 6.1 and 6.2 show all results obtained from the simulations in a 3-ary 3-cube hypercube

topology. All tests used the exact traffic demands that were used within the 3-ary 3-cube

laboratory results of the previous chapter, also shown in Appendix D.

The first table shows the average utilizations, and the second table shows the stan-

dard deviation for that specific simulation. The graphs of these results are available in

Appendix E.1.
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Figure 6.1: Results of CQR Routing using the flood traffic demand (FL). Two individual
traffic demands were assigned to each node from each node.
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Figure 6.2: Results of CQR Routing using the flood traffic demand (FL) with Hot-spots.
Two individual traffic demands were assigned to each node from each node. Five percent of
the nodes were made hot-spots, and they are marked as red in the figure.
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Figure 6.3: Results of Enhanced CQR Routing using the flood traffic demand (FL). Two
individual traffic demands were assigned to each node from each node.
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Figure 6.4: Results of Enhanced CQR Routing using the flood traffic demand (FL) with
Hot-spots. Two individual traffic demands were assigned to each node from each node. Five
percent of the nodes were made hot-spots, and they are marked as red in the figure.
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Routing Algorithm NN UR BC TP TOR FL FL-HS
DOR 100% 30.1 50.0 25.0 16.7 80.0 –
DIR 100% 32.8 12.5 25.0 16.7 80.0 –
MO 100% 31.0 16.7 22.2 16.7 59.0 –
MA 100% 58.4 25.0 44.4 16.7 85.3 50.3

CQR 34.2% 56.6 25.0 47.6 16.7 75.6 45.9
ECQR 34.4% 51.2 35.0 46.0 16.7 69.5 41.1

Table 6.3: This table demonstrates the average utilizations for each routing algorithm given
the 4-ary 3-cube topology of the simulation environment.

Routing Algorithm NN UR BC TP TOR FL FL-HS
DOR 0.0 17.5 50.0 25.4 37.3 6.4 –
DIR 0.0 16.9 23.4 21.2 37.3 7.8 –
MO 0.0 18.5 26.7 18.5 37.3 16.9 –
MA 0.0 13.4 29.5 18.3 37.3 5.4 10.4

CQR 21.5 12.8 23.5 16.5 37.3 8.01 10.2
ECQR 31.5 14.8 23.5 17.8 37.3 15.1 12.2

Table 6.4: This table demonstrates the standard deviations for each routing algorithm given
the 4-ary 3-cube topology of the simulation environment.

6.3 Results from the 4-ary 3-cube Simulations

Tables 6.3 and 6.4 show all results obtained from the simulations in a 4-ary 3-cube hypercube

topology. The first table shows the average utilizations, and the second table shows the

standard deviation for that specific simulation. The graphs of these results are available in

Appendix E.2.
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Figure 6.5: Results of CQR Routing using the flood traffic demand (FL). Two individual
traffic demands were assigned to each node from each node.
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Figure 6.6: Results of CQR Routing using the flood traffic demand (FL) with Hot-spots.
Two individual traffic demands were assigned to each node from each node. Five percent of
the nodes were made hot-spots, and they are marked as red in the figure.
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Figure 6.7: Results of Enhanced CQR Routing using the flood traffic demand (FL). Two
individual traffic demands were assigned to each node from each node.
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Figure 6.8: Results of Enhanced CQR Routing using the flood traffic demand (FL) with
Hot-spots. Two individual traffic demands were assigned to each node from each node. Five
percent of the nodes were made hot-spots, and they are marked as red in the figure.

66



Routing Algorithm FL FL-HS
MA 87.2% 53.7

CQR 86.0% 51.0
ECQR 81.8% 49.1

Table 6.5: This table demonstrates the average utilizations for each routing algorithm given
the 5-ary 3-cube topology of the simulation environment.

Routing Algorithm FL FL-HS
MA 4.5 9.0

CQR 4.6 9.3
ECQR 5.2 9.3

Table 6.6: This table demonstrates the standard deviations for each routing algorithm given
the 5-ary 3-cube topology of the simulation environment.

6.4 Results from the 5-ary 3-cube Simulations

Tables 6.5 and 6.6 show all results obtained from the simulations in a 5-ary 3-cube hypercube

topology. The first table shows the average utilizations, and the second table shows the

standard deviation for that specific simulation. The graphs of these results are available in

Appendix E.3.

These tables are much smaller than the previous two topologies, solely because of the

large execution times involved in the simulations of this network size. Because of this, only

the adaptive algorithms are shown, along with the FL and FL-HS traffic patterns. All others

have been excluded.
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Figure 6.9: Results of CQR Routing using the flood traffic demand (FL). Two individual
traffic demands were assigned to each node from each node.
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Figure 6.10: Results of CQR Routing using the flood traffic demand (FL) with Hot-spots.
Two individual traffic demands were assigned to each node from each node. Five percent of
the nodes were made hot-spots, and they are marked as red in the figure.
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Figure 6.11: Results of Enhanced CQR Routing using the flood traffic demand (FL). Two
individual traffic demands were assigned to each node from each node.
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Figure 6.12: Results of Enhanced CQR Routing using the flood traffic demand (FL) with
Hot-spots. Two individual traffic demands were assigned to each node from each node. Five
percent of the nodes were made hot-spots, and they are marked as red in the figure.
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6.4.1 Comparison of All Results

Taking into consideration the laboratory results obtained within Chapter 5, the results

obtained from these simulations should indicate a more-or-less best-case representation of

the algorithms. Within the simulation environment the various OSI layers have been ignored,

while they definitely had impact on the laboratory experiments. For instance, the layer 3

functionality such as window-sizing and segmentation were not considered within these

simulations.

It is visible in the results that there is balancing game that occurs between ensuring local-

ity and efficient load-balancing between the fully-adaptive algorithms. Because of Minimal

Adaptive’s inability to route non-minimally, its Nearest Neighbor (NN) results showed 100%

utilization, while CQR and ECQR have to make decisions as to when to route non-minimally

in order to balance the load more efficiently. The values which cause the change-over between

minimal/non-minimal between CQR/ECQR should be further analyzed, as the efficiency

could possibly increase (thus, increasing the average utilization).

It’s also worth pointing out some scaling issues which may be occurring. The results have

indicated that with the 3-ary 3-cube topology, ECQR increased performance exceeded that

of CQR. As the network became larger with the 4-ary 3-cube and 5-ary 3-cube topologies,

this difference shifted. This could indicate that the enhancements made within this work do

not scale (or aren’t shown to scale here), or that there exists a certain scenario or specific

ratio of hotspots to non-hotspots, which depict this increased performance.

The bit complement (BC) traffic pattern has an interesting affect on the Direction Rout-

ing Algorithm (DIR), in that its level of performance is lower than that of Dimension Ordered

Routing (DOR). These oddities are confirmed on the various topologies, as well as through

the laboratory experiments.

Finally, the tornado (TOR) traffic pattern has been shown (both here, and in previous

work) to be considerably difficult to respond to. Neither of these algorithms outperformed

another when implementing this traffic pattern, as was expected.

70



Chapter 7

Conclusions

As interconnect networks become more prevalent within electrical and computer engineering,

research such as this will continue to help drive towards more efficient routing implementa-

tions. Routing decisions, which is the main topic of discussion here, is only one contribution

towards higher efficient and more productive data transfer between systems. Whether these

systems are cores of a multi-core processor, or nodes within a HPC system, the method for

data exchange between the individual systems is essential to increasing performance.

This research thesis contributed to this efficiency by:

• Implementing a simulation-based environment within Matlab to compare the various

algorithms’ implementations within hypercube topologies;

• Building a research cluster: a scaled version of the Red Storm/Thor’s Hammer HPC;

• Implementing a torus-mesh network on this research cluster using a USB interconnect

network;

• Implementing various static, oblivious, and adaptive routing algorithms using a set of

socket-layer C programs, validating and verifying previous work, and demonstrating

this work’s implementation differences;

• Introducing Enhanced CQR with Periphery Avoidance, which makes intermediate

routing decisions by routing productively but avoiding the perimeter when possible;
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• Discussing the impact of this new enhancement and demonstrate evidence of its po-

tential.

The Matlab simulation environment which was developed for this research work, and

came from a basic implementation courtesy of Dr. Don Gruenbacher, was thoroughly ex-

tended from that early state to fully implement a broad set of routing algorithms and

network traffic demands. All extensions which were necessary to this work include:

• Adding a user-friendly GUI, enabling user-input values to quickly expedite the simu-

lation;

• Extending the routing capabilities from only static and oblivious routing to adaptive

and fully-adaptive routing simulation capabilities;

• Adding capabilities for generating hotspots and nodal failures during simulations; and

• Adding analysis metrics such as usage, and delay for further analysis.

Singularly using only the Matlab scripts or the laboratory results from Thor’s Tack

Hammer may not have been sufficient for a high level of confidence in reporting the results

of this thesis. Therefore both were invaluable in the analysis of both previous and new

routing algorithms.

The research cluster was built from scratch, all commercially available components, and

was shown to be an efficient way to implement a small parallel system. The power consumed

during execution also suggested that this particular cluster could be very attractive to those

who wish to dip their toes into the pool of high performance computing clusters, while

not spending too much in implementation and maintenance. Also because of its low power

consumption, no extra means for temperature control were necessary (as they would be in

most cases).

The results which came from the Matlab simulations and the laboratory results indicated

that the concept of periphery avoidance within routable quadrants was one which enabled
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better hotspot avoidance. This was clear for the 3-ary 3-cube topology, but was unclear on

larger topologies within the simulation environment. The advantages may not be as neces-

sary for larger quadrants, as the number of minimal paths between source and destination

increase as the quadrant sizes increase – therefore, for larger networks, Periphery Avoidance

did not have a positive impact on CQR routing.

Further work should be done to analyze the complete impact of including these new

enhancements for intermediate routing decisions while data progresses through a routable

quadrant. This work has shown that enhancing CQR to include a function of periphery

avoidance helped to avoid hotspots within the network.

7.1 Future Work

There are many possible recommendations for future work as it relates to this particular

work, but some very interesting ideas include:

• Analyzing the effects of layer-4 implementations. Though this work used TCP ex-

clusively within the laboratory tests, it would be worth analyzing the true impact of

another layer-4 implementation.

• Implementing a readily-available dynamic routing implementation such as Zebra and

Quagga. By analyzing the routing algorithms on another routing daemon, further

validation could be achieved.

• Implementing the dynamic algorithm by using Linux IP Routing Tables. Though as-

sumptions were made indicating that such an implementation would be computation-

ally taxing, it would be worth analyzing further and seeing the direct impact of such

an implementation.

• Apply minimization or optimal control techniques. By doing this, and applying weights

towards the variables of periphery avoidance and output queues, an optimum decision
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function could be found to help further increase Enhanced CQR’s ability to route

around hotspots while effectively balancing the network load.

• Analyzing other interconnect implementations such as ethernet, firewire, or SATA.

All had been discussed as possibilities, but the implementation of either could make

a research cluster such as Thor’s Tack Hammer more appealing to a variety of users.

• Hybridizing this research with that of overlay networks. By using these new fully-

adaptive routing decisions, routing within overlay networks could benefit from this

research.

• Including the evaluation of flow control operations in the presence of hotspots and diffi-

cult traffic patterns. Though this research direction was not included within this work,

the implementation of good flow control mechanisms can definitely improve the effi-

ciency of a parallel computing cluster. Further analysis combining the enhancements

to CQR with good flow-control practices could further demonstrate the benefits of

implementing adaptive routing algorithms.

• Analyzing the effects of neighboring hotspots verses non-neighboring hotspots. Though

this was not analyzed within this work, analysis of hotspots of neighboring nodes could

impact the results of any hotspot analysis.

• Further analyze the scalability of Enhanced CQR with Periphery Avoidance. As it was

indicated within the previous chapter, larger networks did not indicate the benefits

of using ECQR as they did with the 3-ary 3-cube network (both simulation and lab-

oratory results). Also, including more emphasis in analytically determining at what

percentage of hot-spots ECQR’s benefits were clearly seen has yet to be found. This

could also turn into another minimization or optimal control problem.
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Appendix A

Appendix A: Linux BASH Scripts

A.1 USB Interconnect Scripts

This first section lists the BASH scripts used to correctly initialize the USB interconnection
network on Thor’s Tack Hammer. At the head of each script contains its functionality.

The file triplets.txt, which was used within these scripts but was not included, simply
listed the hardware address for each node, and the corresponding x, y, and z values. It also
included the order for which each interface was brought up within Linux. It was found that
this was the same order for each node.

A.1.1 file: interconnectUp
#!/bin/bash1

2

# +++++++++++++++++++++++++++++++++++++++++++++++++++++++ #3

# File: interconnectUp4

# Author: Chris Lydick5

# Date: Feb 18, 20086

#7

# This script is run on the head-node and brings up8

# all nodes’ usb interfaces and then pings them. All9

# information is routed to a log.txt file for analysis.10

#11

# +++++++++++++++++++++++++++++++++++++++++++++++++++++++ #12

13

14

# These variables allow the script to color-code the success/failures.15

NORMAL="^[[0;39m"16

RED="^[[1;31m"17

GREEN="^[[1;32m"18

19

# Print the date at the top of the log.txt file.20

echo ‘date‘ >> log.txt21

22

# Copy the triplets.txt file if it is not in the default location.23

if [ -e /pkhome/pkhome/triplets.txt ]; then24

echo "/pkhome/pkhome/triplets.txt was found."25

else26

cp -f triplets.txt /pkhome/pkhome/triplets.txt27

echo "/pkhome/pkhome/triplets.txt was not found."28

echo "Copied successfully."29
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fi30

31

# For all nodes in the LAM, bring up the interfaces. If32

# an ’.oops.usbup’ file was touched, we see that as a flag indicating an error.33

for i in ‘cat /pkhome/pkhome/tmp/bhosts|head -n 27‘34

do35

echo -n "Bringing up USB interfaces for $i..."36

echo "Bringing up USB interfaces for $i..." >> log.txt37

ssh knoppix@$i "sudo /pkhome/pkhome/usbUp" >> log.txt38

if [ -e /pkhome/pkhome/tmp/.oops.usbup ]; then39

echo "$RED failed. $NORMAL"40

echo "failed." >> log.txt41

rm -f /pkhome/pkhome/tmp/.oops.usbup42

else43

echo "$GREEN success. $NORMAL";44

echo "success." >> log.txt45

fi46

done47

48

# Wait 10 seconds for the routing tables to fully initialize before pinging49

# the neighbors.50

sleep 1051

52

# Now, ping the nodes... output all information to the logs.53

for i in ‘cat /pkhome/pkhome/tmp/bhosts|head -n 27‘54

do55

echo "Pinging hosts from $i."56

echo "Pinging hosts from $i." >> log.txt57

ssh knoppix@$i "sudo /pkhome/pkhome/usbPing" >> log.txt58

done59

60

# User interface.61

echo ""62

echo "You may want to verify all interfaces were brought up without"63

echo "error by viewing the file log.txt."64

65

# This makes partitioning the logs simple.66

echo "==========================================================" >> log.txt67

echo "" >> log.txt68

echo "" >> log.txt69
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A.1.2 file: usbUp
#/bin/bash1

2

# +++++++++++++++++++++++++++++++++++++++++++++++++++++++ #3

# File: usbUp4

# Author: Chris Lydick5

# Date: Feb 18, 20086

#7

# This script brings up the USB Ethernet Interfaces and8

# automatically assigns the addresses/subnets.9

#10

# +++++++++++++++++++++++++++++++++++++++++++++++++++++++ #11

12

k=313

n=314

PRIMARYOCTET="10.0"15

USBSUBNET="255.255.255.252"16

17

getTriplet()18

{19

20

# First find our management hardware address21

for i in ‘ifconfig eth2 |grep HWaddr‘22

do23

if [ ‘echo $i |head -c 5‘ == "00:E0" ]; then24

hwaddr=$i;25

fi26

done27

28

# Given the hardware address, lookup our triplet information in a29

# global file, "triplets.txt"30

triplet=‘cat /home/knoppix/triplets.txt |grep $hwaddr |tail -c 6‘31

32

# get x,y,z33

z=‘echo $triplet |head -c 1‘34

x=‘echo $triplet |tail -c 2‘35

y=‘echo $triplet |tail -c 4 |head -c 1‘36

echo "triplet: $x,$y,$z"37

38

# This next area allows for the triplets.txt file to contain39

# information as to the specific order for usb0-5 as they’re40

# brought up. If all nodes are correctly booted, they should41

# have a consistent order.42

order=‘cat /home/knoppix/triplets.txt |grep $hwaddr |head -c 11 |tr ’.’ ’ ’‘43

first=‘echo ${order:0:1}‘;44

second=‘echo ${order:2:1}‘;45

third=‘echo ${order:4:1}‘;46

fourth=‘echo ${order:6:1}‘;47

fifth=‘echo ${order:8:1}‘;48

sixth=‘echo ${order:10:1}‘;49

}50

51

# This function calculates both local and neighbor addresses52

# for the x-directions (+/-).53

getXs()54

{55

dir_mod_pos=1;56

dir_mod_neg=2;57

POSCOCTET=$[($x<<4)+$y];58

if [ $x -eq 0 ]; then59

NEGCOCTET=$[(($k-1)<<4)+$y];60

else61

NEGCOCTET=$[(($x-1)<<4)+$y];62

fi63
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POSDOCTET=$[($z<<4)+$dir_mod_pos];64

NEGDOCTET=$[($z<<4)+$dir_mod_neg];65

POSXIP="$PRIMARYOCTET.$POSCOCTET.$POSDOCTET";66

NEGXIP="$PRIMARYOCTET.$NEGCOCTET.$NEGDOCTET";67

NEXTPOSX="$PRIMARYOCTET.$POSCOCTET.$[$POSDOCTET+1]";68

NEXTNEGX="$PRIMARYOCTET.$NEGCOCTET.$[$NEGDOCTET-1]";69

echo "The Positive X interface is: $POSXIP";70

echo "The Negative X interface is: $NEGXIP";71

}72

73

# This function calculates both local and neighbor addresses74

# for the y-directions (+/-).75

getYs()76

{77

dir_mod_pos=5;78

dir_mod_neg=6;79

POSCOCTET=$[($x<<4)+$y];80

if [ $y -eq 0 ]; then81

NEGCOCTET=$[($x<<4)+($k-1)];82

else83

NEGCOCTET=$[($x<<4)+($y-1)];84

fi85

POSDOCTET=$[($z<<4)+$dir_mod_pos];86

NEGDOCTET=$[($z<<4)+$dir_mod_neg];87

POSYIP="$PRIMARYOCTET.$POSCOCTET.$POSDOCTET";88

NEGYIP="$PRIMARYOCTET.$NEGCOCTET.$NEGDOCTET";89

NEXTPOSY="$PRIMARYOCTET.$POSCOCTET.$[$POSDOCTET+1]";90

NEXTNEGY="$PRIMARYOCTET.$NEGCOCTET.$[$NEGDOCTET-1]";91

echo "The Positive Y interface is: $POSYIP";92

echo "The Negative Y interface is: $NEGYIP";93

}94

95

# This function calculates both local and neighbor addresses96

# for the z-directions (+/-).97

getZs()98

{99

dir_mod_pos=9;100

dir_mod_neg=10;101

COCTET=$[($x<<4)+$y];102

POSDOCTET=$[($z<<4)+$dir_mod_pos];103

if [ $z -eq 0 ]; then104

NEGDOCTET=$[(($k-1)<<4)+$dir_mod_neg];105

else106

NEGDOCTET=$[(($z-1)<<4)+$dir_mod_neg];107

fi108

POSZIP="$PRIMARYOCTET.$COCTET.$POSDOCTET";109

NEGZIP="$PRIMARYOCTET.$COCTET.$NEGDOCTET";110

NEXTPOSZ="$PRIMARYOCTET.$COCTET.$[$POSDOCTET+1]";111

NEXTNEGZ="$PRIMARYOCTET.$COCTET.$[$NEGDOCTET-1]";112

echo "The Positive Z interface is: $POSZIP";113

echo "The Negative Z interface is; $NEGZIP";114

}115

116

getTriplet;117

getXs;118

getYs;119

getZs;120

121

# List all usb interfaces in $usbs, and count122

for i in ‘ifconfig -a |grep usb‘123

do124

if [ ‘echo $i |head -c 3‘ == "usb" ]; then125

count=‘echo $[count+1]‘;126

usbs="$usbs $i";127

fi128

80



done129

130

# Bring up usb interfaces131

count_x=0;132

if [ $count == 6 ]; then133

#echo $usbs134

for j in $usbs135

do136

echo -n "Bringing up interface $j...";137

sudo ifconfig $j up;138

case "$count_x" in139

"$first" ) sudo ifconfig $j inet $POSYIP netmask $USBSUBNET;;140

"$second" ) sudo ifconfig $j inet $NEGYIP netmask $USBSUBNET;;141

"$third" ) sudo ifconfig $j inet $POSXIP netmask $USBSUBNET;;142

"$fourth" ) sudo ifconfig $j inet $NEGXIP netmask $USBSUBNET;;143

"$fifth" ) sudo ifconfig $j inet $NEGZIP netmask $USBSUBNET;;144

"$sixth" ) sudo ifconfig $j inet $POSZIP netmask $USBSUBNET;;145

* ) echo "Found an extra case in the loop.";;146

esac147

[ $? -eq 0 ] && echo "success." || touch /home/knoppix/tmp/.oops.usbup148

count_x=‘echo $[count_x+1]‘;149

done150

# This occurs when there aren’t exactly 6 usb interfaces. Consider rebooting node.151

# A file is touched which can be seen by the head-node, indicating an error.152

else153

echo "A problem occurred. Not all interfaces appear to be working."154

echo "Only $count interfaces were found."155

echo "Exiting..."156

touch /home/knoppix/tmp/.oops.usbup157

fi158
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A.1.3 file: usbPing
#/bin/bash1

2

# +++++++++++++++++++++++++++++++++++++++++++++++++++++++ #3

# File: usbPing4

# Author: Chris Lydick5

# Date: Feb 18, 20086

#7

# This script allows a node to ping all of its closest8

# neighbors (within 1 hop).9

#10

# +++++++++++++++++++++++++++++++++++++++++++++++++++++++ #11

12

k=313

n=314

15

PRIMARYOCTET="10.0"16

USBSUBNET="255.255.255.252"17

18

getTriplet()19

{20

# First find our management hardware address21

for i in ‘ifconfig eth2 |grep HWaddr‘22

do23

if [ ‘echo $i |head -c 5‘ == "00:E0" ]; then24

hwaddr=$i;25

fi26

done27

28

# Given the hardware address, lookup our triplet information in a29

# global file, "triplets.txt"30

triplet=‘cat /home/knoppix/triplets.txt |grep $hwaddr |tail -c 6‘31

32

# get x,y,z33

z=‘echo $triplet |head -c 1‘34

x=‘echo $triplet |tail -c 2‘35

y=‘echo $triplet |tail -c 4 |head -c 1‘36

echo "triplet: $x,$y,$z"37

}38

39

# This function calculates both local and neighbor addresses40

# for the x-directions (+/-).41

getXs()42

{43

dir_mod_pos=1;44

dir_mod_neg=2;45

POSCOCTET=$[($x<<4)+$y];46

if [ $x -eq 0 ]; then47

NEGCOCTET=$[(($k-1)<<4)+$y];48

else49

NEGCOCTET=$[(($x-1)<<4)+$y];50

fi51

POSDOCTET=$[($z<<4)+$dir_mod_pos];52

NEGDOCTET=$[($z<<4)+$dir_mod_neg];53

POSXIP="$PRIMARYOCTET.$POSCOCTET.$POSDOCTET";54

NEGXIP="$PRIMARYOCTET.$NEGCOCTET.$NEGDOCTET";55

NEXTPOSX="$PRIMARYOCTET.$POSCOCTET.$[$POSDOCTET+1]";56

NEXTNEGX="$PRIMARYOCTET.$NEGCOCTET.$[$NEGDOCTET-1]";57

}58

59

# This function calculates both local and neighbor addresses60

# for the y-directions (+/-).61

getYs()62

{63
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dir_mod_pos=5;64

dir_mod_neg=6;65

POSCOCTET=$[($x<<4)+$y];66

if [ $y -eq 0 ]; then67

NEGCOCTET=$[($x<<4)+($k-1)];68

else69

NEGCOCTET=$[($x<<4)+($y-1)];70

fi71

POSDOCTET=$[($z<<4)+$dir_mod_pos];72

NEGDOCTET=$[($z<<4)+$dir_mod_neg];73

POSYIP="$PRIMARYOCTET.$POSCOCTET.$POSDOCTET";74

NEGYIP="$PRIMARYOCTET.$NEGCOCTET.$NEGDOCTET";75

NEXTPOSY="$PRIMARYOCTET.$POSCOCTET.$[$POSDOCTET+1]";76

NEXTNEGY="$PRIMARYOCTET.$NEGCOCTET.$[$NEGDOCTET-1]";77

}78

79

# This function calculates both local and neighbor addresses80

# for the z-directions (+/-).81

getZs()82

{83

dir_mod_pos=9;84

dir_mod_neg=10;85

COCTET=$[($x<<4)+$y];86

POSDOCTET=$[($z<<4)+$dir_mod_pos];87

if [ $z -eq 0 ]; then88

NEGDOCTET=$[(($k-1)<<4)+$dir_mod_neg];89

else90

NEGDOCTET=$[(($z-1)<<4)+$dir_mod_neg];91

fi92

POSZIP="$PRIMARYOCTET.$COCTET.$POSDOCTET";93

NEGZIP="$PRIMARYOCTET.$COCTET.$NEGDOCTET";94

NEXTPOSZ="$PRIMARYOCTET.$COCTET.$[$POSDOCTET+1]";95

NEXTNEGZ="$PRIMARYOCTET.$COCTET.$[$NEGDOCTET-1]";96

}97

98

getTriplet;99

getXs;100

getYs;101

getZs;102

103

# Ping all neighbors - we filter out all lines except where we successfully104

# or unsuccessfully transmitted one ICMP packet.105

echo -n "+x $NEXTPOSX: "106

ping -q -c 1 $NEXTPOSX |grep transmitted107

echo -n "-x $NEXTNEGX: "108

ping -q -c 1 $NEXTNEGX |grep transmitted109

echo -n "+y $NEXTPOSY: "110

ping -q -c 1 $NEXTPOSY |grep transmitted111

echo -n "-y $NEXTNEGY: "112

ping -q -c 1 $NEXTNEGY |grep transmitted113

echo -n "+z $NEXTPOSZ: "114

ping -q -c 1 $NEXTPOSZ |grep transmitted115

echo -n "-z $NEXTNEGZ: "116

ping -q -c 1 $NEXTNEGZ |grep transmitted117
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A.2 Data Analysis Scripts

The following scripts enabled efficient analysis of the data that was to be sent or had
been sent across the USB Interconnect. As with before, the head of each script contains
information describing its functionality.

A.2.1 file: interconnectTime
#!/bin/bash1

2

# +++++++++++++++++++++++++++++++++++++++++++++++++++++++ #3

# File: interconnectTime4

# Author: Chris Lydick5

# Date: Mar 3, 20086

#7

# This script reports the estimated and maximum error8

# of time from the headnode (using NTP).9

#10

# +++++++++++++++++++++++++++++++++++++++++++++++++++++++ #11

12

13

for i in ‘cat /pkhome/pkhome/tmp/bhosts | head -n 27‘14

do15

echo $i16

ssh $i "ntptime | grep error"17

done18
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A.2.2 file: interconnectRouters
#!/bin/bash1

2

# +++++++++++++++++++++++++++++++++++++++++++++++++++++++ #3

# File: interconnectRouters4

# Author: Chris Lydick5

# Date: Mar 3, 20086

#7

# This script compiles the most recent version of server.c,8

# loserver.c, and injector.c, and executes the script nodeSetup9

# locally. It also grabs usb byte counts (line 27).10

#11

# +++++++++++++++++++++++++++++++++++++++++++++++++++++++ #12

13

# This script first kills all loserver and server processes14

# and then restarts the server, sending output to /dev/null.15

cd /mnt/sda2/usb/InterconnectScripts/16

17

gcc -o /pkhome/pkhome/loserver server/loserver.c18

gcc -o /pkhome/pkhome/server server/server.c -lm19

gcc -o server/injector server/injector.c20

21

j=26;22

for i in ‘cat /pkhome/pkhome/tmp/bhosts |head -n 27‘23

do24

echo "$i, addr:$j"25

ssh $i "/pkhome/pkhome/nodeSetup $j"26

ssh $i "cat /proc/net/dev |grep usb" > server/logs/$i-before27

j=$[$j-1];28

done29

30
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A.2.3 file: nodeSetup
#!/bin/bash1

2

# +++++++++++++++++++++++++++++++++++++++++++++++++++++++ #3

# File: nodeSetup4

# Author: Chris Lydick5

# Date: Mar 3, 20086

#7

# This script first kills all previous server/loserver8

# processes and then re-initializes them with the newly9

# compiled versions. It then sets the CPU affinity for10

# "server" exclusively to the first CPU and "loserver"11

# exclusively to the second CPU. All output is redirected12

# to /dev/null, and servers are placed in background.13

#14

# +++++++++++++++++++++++++++++++++++++++++++++++++++++++ #15

16

sudo pkill server17

/pkhome/pkhome/loserver $1 1>/dev/null &18

/pkhome/pkhome/server $1 1>/dev/null &19

taskset -p 01 ‘pgrep -x server‘ 1>/dev/null20

taskset -p 02 ‘pgrep -x loserver‘ 1>/dev/null21

22

exit23

24
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A.2.4 file: interconnectThroughput
#!/bin/bash1

2

# +++++++++++++++++++++++++++++++++++++++++++++++++++++++ #3

# File: interconnectThroughput4

# Author: Chris Lydick5

# Date: Mar 3, 20086

#7

# This script parses all data that was sent during a run8

# and returns statistics given their timestamps.9

#10

# +++++++++++++++++++++++++++++++++++++++++++++++++++++++ #11

12

# This check verifies we’ve not run it since resetting the13

# USB byte counts.14

if [ -e server/logs/192.168.0.200-before ]; then15

echo -n ""16

else17

echo "No before files found. You must re-run interconnectRouters to regenerate these files."18

exit;19

fi20

21

echo -n "Getting latest USB byte counts..."22

23

# For each node, get the latest USB byte counts.24

for i in ‘cat /pkhome/pkhome/tmp/bhosts |head -n 27‘25

do26

ssh $i "cat /proc/net/dev |grep usb" > server/logs/$i-after27

done28

echo "done."29

30

allnums="0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26"31

nums="1 2 3 4 5 6"32

diffs=""33

34

# For each node...35

for i in ‘cat /pkhome/pkhome/tmp/bhosts |head -n 27‘36

do37

# And for each of the 6 interfaces...38

for j in $nums39

do40

# Get the jth byte count at the start.41

var1=‘cat server/logs/$i-before |head -n $j |tail -n 1|tr ":" " "‘42

set -- $var143

shift; shift; shift; shift; shift; shift; shift; shift; shift;44

trans_before=$1;45

46

# Get the jth byte count at the end of run.47

var2=‘cat server/logs/$i-after |head -n $j |tail -n 1|tr ":" " "‘48

set -- $var249

shift; shift; shift; shift; shift; shift; shift; shift; shift;50

trans_after=$1;51

52

# Only analyze the transmitted data. To do both would be redundant.53

trans=$[$trans_after-$trans_before];54

diffs="$diffs $trans"55

done56

57

done58

59

# For ease, the differences between before-bytes and after-bytes can be copied/pasted60

# to Matlab.61

echo "The following can be pasted to MatLab for a histogram of the link utilizations."62

echo ""63
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echo ""64

#diffs=‘echo $diffs |tr " " "\n"‘65

echo "x = [$diffs]"66

echo "x = x./(max(x))"67

echo "x = [x 0]"68

echo "hist(x,100)";69

echo ""70

echo ""71

72

# Remove these logs, force the user to re-run interconnectRouters script.73

rm -fr server/logs/*74

75

# This loop was necessary for large numbers of packets. ‘cat‘ has a finite space76

# when it comes to data that is passed to it.77

cd /pkhome/pkhome/router/routerlogs/78

for i in $allnums79

do80

hop_1="$hop_1 ‘echo "" |cat \‘grep -d recurse -l "hops: 1" $i/ \‘ |grep trans‘"81

hop_2="$hop_2 ‘echo "" |cat \‘grep -d recurse -l "hops: 2" $i/ \‘ |grep trans‘"82

hop_3="$hop_3 ‘echo "" |cat \‘grep -d recurse -l "hops: 3" $i/ \‘ |grep trans‘"83

avg_queue="$avg_queue ‘echo "" |cat \‘ find $i/ |grep SUCCESS\‘ |grep avg_queue‘"84

done85

86

# First find all data dropped by the C programs.87

alldrops=‘find . |grep DROP‘88

set -- $alldrops89

echo "actual drops: $#";90

rm -f ‘find . |grep DROP‘ || echo -n "";91

92

# Find all unknown data dropped by the C programs.93

allunknown=‘find . |grep UNKNOWN‘94

set -- $allunknown95

echo "actual unknown: $#"96

rm -f ‘find . |grep UNKNOWN‘ || echo -n "";97

98

# Parse the average queueing times.99

set -- $avg_queue100

total_drops=0;101

queue=0;102

total_packets=0;103

i=0;104

j=0;105

106

while [ $# -gt 0 ]107

do108

shift109

i=$[$i+1];110

queue=$[$queue+$1];111

shift112

done113

if [ $i -gt 0 ]; then114

queue=$[$queue/$i];115

echo "avg queue time: $queue"116

fi117

118

# Parse the headers from data which traversed one hop.119

set -- $hop_1120

hops=0;121

i=0;122

j=0;123

while [ $# -gt 0 ]124

do125

shift126

# If the time was greater than 1.5 seconds, we127

# assume there was some kind of timeout. This128

88



# data will be discarded, counted as a drop.129

if [ $1 -lt 1500000 ]; then130

i=$[$i+1];131

hops=$[$hops+$1];132

else133

j=$[$j+1];134

fi135

shift136

done137

total_packets=$[$total_packets+$j+$i];138

if [ $i -gt 0 ]; then139

hops=$[$hops/$i];140

echo "avg 1-hop time: $hops"141

fi142

total_drops=$[$total_drops+$j];143

all_avg=$[$i*$hops];144

145

# Parse the headers from data which traversed two hops.146

set -- $hop_2147

hops=0;148

i=0;149

j=0;150

while [ $# -gt 0 ]151

do152

shift153

if [ $1 -lt 1500000 ]; then154

i=$[$i+1];155

hops=$[$hops+$1];156

else157

j=$[$j+1];158

fi159

shift160

done161

total_packets=$[$total_packets+$j+$i];162

if [ $i -gt 0 ]; then163

hops=$[$hops/$i];164

echo "avg 2-hop time: $hops"165

fi166

total_drops=$[$total_drops+$j];167

all_avg=$[$all_avg + ($hops*$i)];168

169

# And finally, for three hops.170

set -- $hop_3171

hops=0;172

i=0;173

j=0;174

while [ $# -gt 0 ]175

do176

shift177

if [ $1 -lt 1500000 ]; then178

i=$[$i+1];179

hops=$[$hops+$1];180

else181

j=$[$j+1];182

fi183

shift184

done185

total_packets=$[$total_packets+$j+$i];186

if [ $i -gt 0 ]; then187

hops=$[$hops/$i];188

echo "avg 3-hop time: $hops"189

fi190

total_drops=$[$total_drops+$j];191

all_avg=$[($all_avg + ($hops*$i))/($total_packets-$total_drops)];192

193
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# Echo all global information194

echo "avg trans time: $all_avg";195

echo "total drops: $total_drops"196

echo "total packets: $[$total_packets/2]"197

198

# Remove all data packets, we’re done.199

cd /pkhome/pkhome/router/routerlogs/200

rm -f ‘find . |grep SUCCESS‘201

202
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Appendix B

Appendix B: C Programs

B.1 file: server.c
/* ############################################################ *1

* Filename: router.c *2

* Author: Chris Lydick *3

* Date: Mar 1, 2008 *4

* Usage: ./server [address] *5

* Notes: Portions borrowed from http://tinyurl.com/2w36o4 *6

* and http://tinyurl.com/6bu7s *7

* This is a program which was created to route data over *8

* a torus-mesh/hypercube network using: *9

* 1. Dimension Ordered Routing *10

* 2. Direction Ordered Routing *11

* 3. Minimal Adaptive Routing *12

* 4. Minimal Oblivious Routing *13

* 5. CQR Routing *14

* 6. Enhanced CQR *15

* ############################################################ */16

17

#include "router.h"18

19

/* ======================================== */20

/* ========= FUNCT DECLARATION ========= */21

/* ======================================== */22

void initNeighborhood(void);23

void child_handler(int s);24

void myperror(char *x);25

int makeDecision(char *hdr, char *ra, char *dst);26

void send_packet(char* packet, char* host, unsigned long long timestamp);27

int dimord(int s, int d);28

void sem_lock(int id);29

void sem_unlock(int id);30

int get_outputQueue(int sem_id, struct queue *q);31

int inc_outputQueue(int sem_id, struct queue *q);32

int dec_outputQueue(int sem_id, struct queue *q);33

void adjust_queues(int sem_id, struct queue *q);34

int min_choose(int x, int y, int z);35

int adaptive_choose(int x, int y, int z);36

int adaptive_periphery_choose(int x, int y, int z);37

void make_vector(char v[], char dir[], int x_val, int y_val, int z_val);38

int min(int x, int y);39

double min_d(double x, double y);40

41

/* ======================================== */42

91



/* ========= GLOBAL VARIABLES ========= */43

/* ======================================== */44

int myx, myy, myz, k, n;45

char *addr, next_posx[12], next_posy[12], next_posz[12], next_negx[12], next_negy[12], next_negz[12];46

struct queue *q_posx, *q_posy, *q_posz, *q_negx, *q_negy, *q_negz;47

int sem_posx, sem_posy, sem_posz, sem_negx, sem_negy, sem_negz;48

49

/* ======================================== */50

/* ========= Main Function ========= */51

/* ======================================== */52

// This is the main fuction which is executed.53

// It’s purpose is to:54

// (1): Accept TCP Packets of fixed size on port 3490.55

// (2): Analyzes the packet...56

// (a): if: Hop Count is higher than MAXHOP: drop, route to localhost.57

// (b): else if: packet is destined for this host: route to localhost58

// (c): else: make routing decision, and send packet onto next hop.59

int main(int argc, char* argv[])60

{61

int sockfd, new_fd, numbytes, hop_nu, remSocket, yes;62

int shmid;63

struct sockaddr_in my_addr, their_addr, next_addr;64

union semun sem1, sem2, sem3, sem4, sem5, sem6;65

struct hostent *remHost;66

struct timeval t;67

struct sigaction sa;68

char* shmem;69

char newbuf[MAXDATASIZE], buf[MAXDATASIZE], header[HEADERSIZE+1];70

char h_src[3], h_dest[3], h_ra[2], h_hops[3], h_queue[7];71

char h_queue_t[7], d_time[7], time_ms_t[17], time_ms[10];72

unsigned long long t1, t2;73

socklen_t sin_size;74

75

76

k=3; n=3; yes=1;77

if (argc > 1)78

addr = argv[1];79

else myperror("usage: ./server [node number]");80

81

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1)82

myperror("socket");83

if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int)) == -1)84

perror("setsockopt");85

86

// Create 6 semaphores, all with one semaphore each, readable by the owner.87

// these correspond to the semaphores for each output queue on each USB interface88

sem_posx = semget(SID_POSX, 1, IPC_CREAT | 0600);89

sem_posy = semget(SID_POSY, 1, IPC_CREAT | 0600);90

sem_posz = semget(SID_POSZ, 1, IPC_CREAT | 0600);91

sem_negx = semget(SID_NEGX, 1, IPC_CREAT | 0600);92

sem_negy = semget(SID_NEGY, 1, IPC_CREAT | 0600);93

sem_negz = semget(SID_NEGZ, 1, IPC_CREAT | 0600);94

95

// Now, initialize the semaphores to 1.96

sem1.val = 1;97

if (semctl(sem_posx, 0, SETVAL, sem1) == -1)98

myperror("sem1");99

sem2.val = 1;100

if (semctl(sem_posy, 0, SETVAL, sem2) == -1)101

myperror("sem2");102

sem3.val = 1;103

if (semctl(sem_posz, 0, SETVAL, sem3) == -1)104

myperror("sem3");105

sem4.val = 1;106

if (semctl(sem_negx, 0, SETVAL, sem4) == -1)107
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myperror("sem4");108

sem5.val = 1;109

if (semctl(sem_negy, 0, SETVAL, sem5) == -1)110

myperror("sem5");111

sem6.val = 1;112

if (semctl(sem_negz, 0, SETVAL, sem6) == -1)113

myperror("sem6");114

115

// Create a shared memory block of appropriate size.116

shmid = shmget(IPC_PRIVATE, sizeof(struct queue)*6, IPC_CREAT | IPC_EXCL | 0600);117

// Grab the address where it exists.118

shmem = shmat(shmid, NULL, 0);119

120

// Adjust the queue pointers to the appropriate positions within121

// the shared memory.122

q_posx = (struct queue*) shmem;123

q_posy = (struct queue*) shmem+(sizeof(struct queue)*1);124

q_posz = (struct queue*) shmem+(sizeof(struct queue)*2);125

q_negx = (struct queue*) shmem+(sizeof(struct queue)*3);126

q_negy = (struct queue*) shmem+(sizeof(struct queue)*4);127

q_negz = (struct queue*) shmem+(sizeof(struct queue)*5);128

129

// Set all the values of each queue to 0.130

q_posx[0].val = 0;131

q_negx[0].val = 0;132

q_posy[0].val = 0;133

q_negy[0].val = 0;134

q_posz[0].val = 0;135

q_negz[0].val = 0;136

137

// Grab the time, and set all lastUpdated to the value of time now.138

gettimeofday(&t, NULL);139

t1 = (unsigned long long)t.tv_sec * 1000000 + (unsigned long long)t.tv_usec;140

q_posx[0].lastUpdated = t1;141

q_posy[0].lastUpdated = t1;142

q_posz[0].lastUpdated = t1;143

q_negx[0].lastUpdated = t1;144

q_negy[0].lastUpdated = t1;145

q_negz[0].lastUpdated = t1;146

147

// Setup my server listen port.148

my_addr.sin_family = AF_INET;149

my_addr.sin_port = htons(ROUTEPORT);150

my_addr.sin_addr.s_addr = INADDR_ANY;151

memset(my_addr.sin_zero, ’\0’, sizeof my_addr.sin_zero);152

153

// Bind a socket to my listen port.154

if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof my_addr) == -1)155

myperror("bind");156

// Allow a backlog of connections to BACKLOG157

if (listen(sockfd, BACKLOG) == -1)158

myperror("listen");159

// Enable child_handler to reap all dead children lingering.160

sa.sa_handler = child_handler;161

sigemptyset(&sa.sa_mask);162

sa.sa_flags = SA_RESTART;163

if (sigaction(SIGCHLD, &sa, NULL) == -1)164

myperror("sigaction");165

// Initialize our neighborhood - calculate all IP addresses of interfaces and neighbors166

initNeighborhood();167

// main while loop.168

while(1) {169

sin_size = sizeof their_addr;170

// Accept a new connection, immediately fork, and let child do work.171

if ((new_fd = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size)) == -1) {172
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perror("accept");173

continue; }174

if (!fork()) {175

// child doesn’t need the listener socket.176

close(sockfd);177

// receive the packet from the sender.178

if ((numbytes=recv(new_fd, buf, MAXDATASIZE-1, 0)) == -1)179

perror("recv");180

// get time the packet was received181

gettimeofday(&t, NULL);182

t1 = (unsigned long long)t.tv_sec * 1000000 + (unsigned long long)t.tv_usec;183

memcpy(newbuf,buf,MAXDATASIZE);184

strncpy(&header[0],&newbuf[0],HEADERSIZE); header[HEADERSIZE+1] = ’\0’;185

strncpy(&h_dest[0],&newbuf[2],2); h_dest[2] = ’\0’;186

strncpy(&h_ra[0],&newbuf[4],1); h_ra[1] = ’\0’;187

strncpy(&h_hops[0],&newbuf[5],2); h_hops[2] = ’\0’;188

strncpy(&h_queue[0],&newbuf[16],6); h_queue[6] = ’\0’;189

strncpy(&time_ms[0],&newbuf[7],9); time_ms[9] = ’\0’;190

// if the header does not contain a time value for beginning,191

// insert the timestamp now.192

if(atoi(time_ms) == 0){193

sprintf(time_ms_t, "%llu", t1);194

strncpy(&time_ms[0],&time_ms_t[7],9); time_ms[9] = ’\0’;195

strncpy(&newbuf[7],&time_ms[0],9);196

}197

// if this packet is destined for itself, or has exceeded the max198

// number of hops, route the header to localhost & remove from network.199

if ((atoi(h_dest) == atoi(addr))||(atoi(h_hops) >= MAXHOPS)) {200

remHost=gethostbyname("127.0.0.1");201

remSocket=socket(AF_INET, SOCK_STREAM, 0);202

next_addr.sin_family = AF_INET;203

next_addr.sin_port = htons(LOPORT);204

next_addr.sin_addr = *((struct in_addr *)remHost->h_addr);205

gettimeofday(&t, NULL);206

t2 = (unsigned long long)t.tv_sec * 1000000 + (unsigned long long)t.tv_usec;207

if ((t2-t1) >= 10000)208

sprintf(d_time, "%llu", t2-t1);209

else210

sprintf(d_time,"0%llu", t2-t1);211

sprintf(h_queue_t, "%d", atoi(d_time) + atoi(h_queue));212

strncpy (&header[16],&h_queue_t[0], 6);213

if (connect(remSocket,(struct sockaddr *)&next_addr, sizeof(next_addr)) < 0)214

perror("connecting to localhost");215

if (send(remSocket,header,HEADERSIZE-1,0) < 0)216

perror("sending to localhost");217

close(remSocket);218

219

}220

else {221

// Fork off children to run the adjust_queues in parallel. That way if one queue222

// is slow to return the semaphore, others aren’t blocked.223

if (atoi(h_ra) > 4) {224

if (!fork()){225

if (!fork()){226

if (!fork()){227

if (!fork()){228

if (!fork()){229

if (!fork()){230

adjust_queues(sem_posx, q_posx);231

exit(0);}232

adjust_queues(sem_negx, q_negx);233

exit(0);}234

adjust_queues(sem_posy, q_posy);235

exit(0);}236

adjust_queues(sem_negy, q_negy);237
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exit(0);}238

adjust_queues(sem_posz, q_posz);239

exit(0);}240

adjust_queues(sem_negz, q_negz);241

exit(0);}242

}243

// add one to the hop.244

newbuf[6] = newbuf[6]+1;245

switch(makeDecision(newbuf,h_ra,h_dest)){246

case GO_POSX:247

// send the packet to the next hop in the +x direction248

send_packet(newbuf, next_posx, t1);249

// If a dynamic algorithm is being used, increment queue.250

if (atoi(h_ra) > 3) {251

inc_outputQueue(sem_posx, q_posx);252

printf("incrementing posx\n");}253

break;254

case GO_NEGX:255

send_packet(newbuf, next_negx, t1);256

if (atoi(h_ra) > 3) {257

inc_outputQueue(sem_negx, q_negx);258

printf("incrementing negx\n");}259

break;260

case GO_POSY:261

send_packet(newbuf, next_posy, t1);262

if (atoi(h_ra) > 3) {263

inc_outputQueue(sem_posy, q_posy);264

printf("incrementing posy\n");}265

break;266

case GO_NEGY:267

send_packet(newbuf, next_negy, t1);268

if (atoi(h_ra) > 3) {269

inc_outputQueue(sem_negy, q_negy);270

printf("incrementing negy\n");}271

break;272

case GO_POSZ:273

send_packet(newbuf, next_posz, t1);274

if (atoi(h_ra) > 3) {275

inc_outputQueue(sem_posz, q_posz);276

printf("incrementing posz\n");}277

break;278

case GO_NEGZ:279

send_packet(newbuf, next_negz, t1);280

if (atoi(h_ra) > 3) {281

inc_outputQueue(sem_negz, q_negz);282

printf("incrementing negz\n");}283

break;284

default:285

printf("Chose the default area...\n");286

remHost=gethostbyname("127.0.0.1");287

remSocket=socket(AF_INET, SOCK_STREAM, 0);288

next_addr.sin_family = AF_INET;289

next_addr.sin_port = htons(LOPORT);290

next_addr.sin_addr = *((struct in_addr *)remHost->h_addr);291

gettimeofday(&t, NULL);292

t2 = (unsigned long long)t.tv_sec * 1000000 + (unsigned long long)t.tv_usec;293

if ((t2-t1) >= 10000)294

sprintf(d_time, "%llu", t2-t1);295

else296

sprintf(d_time,"0%llu", t2-t1);297

sprintf(h_queue_t, "%d", atoi(d_time) + atoi(h_queue));298

strncpy (&header[16],&h_queue_t[0], 6);299

if (connect(remSocket,(struct sockaddr *)&next_addr, sizeof(next_addr)) < 0)300

perror("connecting to localhost");301

if (send(remSocket,header,HEADERSIZE-1,0) < 0)302
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perror("sending to localhost");303

close(remSocket);304

break;305

306

307

}308

309

}310

// Child is now done, close socket and exit.311

close(new_fd);312

exit(0);313

}314

// Parent doesn’t need this.315

close(new_fd);316

}317

return 0;318

}319

320

/* ======================================== */321

/* ======== funct: makeDecision() ========= */322

/* ======================================== */323

// This function given the header, routing algorithm324

// and the destination, calculates the next hop.325

// It also takes into account any output queues if326

// a dynamic algorithm is used.327

int makeDecision(char *hdr, char *ra, char *dest)328

{329

int x,y,z;330

int db_addr;331

int dir_x, dir_y, dir_z, algorithm;332

int ret_val = -1;333

char h_dir[4], h_v[4], h_int[4], h_x[2], h_y[2], h_z[2];334

int sign_x, sign_y, sign_z;335

336

algorithm = atoi(ra);337

db_addr = (int)atoi(dest);338

z = (int) floor(db_addr / (k*k));339

y = (int) floor(db_addr / k) % k;340

x = (int) db_addr % k;341

342

switch (algorithm) {343

344

case 0: // Not Used.345

break;346

case 1: // Dimension Ordered Routing347

dir_x = dimord(myx,x);348

dir_y = dimord(myy,y);349

dir_z = dimord(myz,z);350

if ((dir_x=dimord(myx,x))!=0)351

if (dir_x == -1)352

ret_val = GO_NEGX;353

else354

ret_val = GO_POSX;355

else if ((dir_y=dimord(myy,y))!=0)356

if (dir_y == -1)357

ret_val = GO_NEGY;358

else359

ret_val = GO_POSY;360

else if ((dir_z=dimord(myz,z))!=0)361

if (dir_z == -1)362

ret_val = GO_NEGZ;363

else364

ret_val = GO_POSZ;365

366

break;367
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case 2: // Direction Ordered Routing368

dir_x = dimord(myx,x);369

dir_y = dimord(myy,y);370

dir_z = dimord(myz,z);371

if (dir_x == 1)372

ret_val = GO_POSX;373

else if (dir_y == 1)374

ret_val = GO_POSY;375

else if (dir_z == 1)376

ret_val = GO_POSZ;377

else if (dir_x == -1)378

ret_val = GO_NEGX;379

else if (dir_y == -1)380

ret_val = GO_NEGY;381

else if (dir_z == -1)382

ret_val = GO_NEGZ;383

384

break;385

case 3: // Minimal Oblivious386

dir_x = dimord(myx,x);387

dir_y = dimord(myy,y);388

dir_z = dimord(myz,z);389

ret_val = min_choose(dir_x, dir_y, dir_z);390

break;391

case 4: // Minimal Adaptive392

dir_x = dimord(myx,x);393

dir_y = dimord(myy,y);394

dir_z = dimord(myz,z);395

ret_val = adaptive_choose(dir_x, dir_y, dir_z);396

break;397

case 5: // CQR398

dir_x = dimord(myx,x);399

dir_y = dimord(myy,y);400

dir_z = dimord(myz,z);401

strncpy(&h_v[0],&hdr[22],3); h_v[3]=’\0’;402

strncpy(&h_dir[0],&hdr[25],3); h_dir[3]=’\0’;403

if (atoi(h_v) == 0) { // First hop, find v.404

make_vector(h_v, h_dir, dir_x, dir_y, dir_z);405

strncpy(&hdr[25],&h_dir[0],3);406

strncpy(&hdr[22],&h_v[0],3);407

}408

h_x[0] = h_v[0]; h_x[1] = ’\0’;409

h_y[0] = h_v[1]; h_y[1] = ’\0’;410

h_z[0] = h_v[2]; h_z[1] = ’\0’;411

if (h_dir[0] == ’0’) sign_x = 1;412

else sign_x = -1;413

if (h_dir[1] == ’0’) sign_y = 1;414

else sign_y = -1;415

if (h_dir[2] == ’0’) sign_z = 1;416

else sign_z = -1;417

ret_val = adaptive_choose(sign_x*atoi(h_x), sign_y*atoi(h_y), sign_z*atoi(h_z));418

switch (ret_val) {419

case GO_POSX: h_v[0] = h_v[0] - 1; break;420

case GO_NEGX: h_v[0] = h_v[0] - 1; break;421

case GO_POSY: h_v[1] = h_v[1] - 1; break;422

case GO_NEGY: h_v[1] = h_v[1] - 1; break;423

case GO_POSZ: h_v[2] = h_v[2] - 1; break;424

case GO_NEGZ: h_v[2] = h_v[2] - 1; break;425

}426

strncpy(&hdr[22],&h_v[0],3);427

break;428

case 6: // CQR - Periphery Avoidance429

dir_x = dimord(myx,x);430

dir_y = dimord(myy,y);431

dir_z = dimord(myz,z);432
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strncpy(&h_v[0],&hdr[22],3); h_v[3]=’\0’;433

strncpy(&h_dir[0],&hdr[25],3); h_dir[3]=’\0’;434

if (atoi(h_v) == 0) { // First hop, find v.435

make_vector(h_v, h_dir, dir_x, dir_y, dir_z);436

strncpy(&hdr[25],&h_dir[0],3);437

strncpy(&hdr[22],&h_v[0],3);438

}439

h_x[0] = h_v[0]; h_x[1] = ’\0’;440

h_y[0] = h_v[1]; h_y[1] = ’\0’;441

h_z[0] = h_v[2]; h_z[1] = ’\0’;442

if (h_dir[0] == ’0’) sign_x = 1;443

else sign_x = -1;444

if (h_dir[1] == ’0’) sign_y = 1;445

else sign_y = -1;446

if (h_dir[2] == ’0’) sign_z = 1;447

else sign_z = -1;448

ret_val = adaptive_periphery_choose(sign_x*atoi(h_x), sign_y*atoi(h_y), sign_z*atoi(h_z));449

switch (ret_val) {450

case GO_POSX: h_v[0] = h_v[0] - 1; break;451

case GO_NEGX: h_v[0] = h_v[0] - 1; break;452

case GO_POSY: h_v[1] = h_v[1] - 1; break;453

case GO_NEGY: h_v[1] = h_v[1] - 1; break;454

case GO_POSZ: h_v[2] = h_v[2] - 1; break;455

case GO_NEGZ: h_v[2] = h_v[2] - 1; break;456

}457

strncpy(&hdr[22],&h_v[0],3);458

break;459

case 7: // VGD-CQR460

break;461

default:462

break;463

}464

return ret_val;465

}466

467

/* ======================================== */468

/* ======= funct: initNeighborhood() ====== */469

/* ======================================== */470

// This function initializes the IP addresses of471

// all the USB interfaces on this node, as well as472

// calculating the IP addresses of each neighbor.473

void initNeighborhood(void)474

{475

476

char c_octet_pos[3], c_octet_neg[3];477

char d_octet_pos[3], d_octet_neg[3];478

int x,y,z;479

double db_addr, res;480

int dir_mod_x = 1;481

int dir_mod_y = 5;482

int dir_mod_z = 9;483

484

db_addr = (double)atoi(addr);485

z = (int) floor(db_addr / (k*k));486

y = (int) floor(db_addr / k) % k;487

x = (int) db_addr % k;488

myx = x;489

myy = y;490

myz = z;491

492

//Xs.493

sprintf(c_octet_pos,"%d",((x*16)+y));494

sprintf(d_octet_pos,"%d",((z*16)+dir_mod_x)+1);495

sprintf(d_octet_neg,"%d",((z*16)+dir_mod_x));496

if (!x)497
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sprintf(c_octet_neg,"%d",(((k-1)*16)+y));498

else499

sprintf(c_octet_neg,"%d",(((x-1)*16)+y));500

sprintf(next_posx,"10.0.%s.%s",c_octet_pos,d_octet_pos);501

sprintf(next_negx,"10.0.%s.%s",c_octet_neg,d_octet_neg);502

503

//Ys.504

sprintf(c_octet_pos,"%d",((x*16)+y));505

sprintf(d_octet_pos,"%d",((z*16)+dir_mod_y)+1);506

sprintf(d_octet_neg,"%d",((z*16)+dir_mod_y));507

if (!y)508

sprintf(c_octet_neg,"%d",((x*16)+(k-1)));509

else510

sprintf(c_octet_neg,"%d",((x*16)+(y-1)));511

sprintf(next_posy,"10.0.%s.%s",c_octet_pos,d_octet_pos);512

sprintf(next_negy,"10.0.%s.%s",c_octet_neg,d_octet_neg);513

514

//Zs.515

sprintf(c_octet_pos,"%d",((x*16)+y));516

sprintf(c_octet_neg,"%d",((x*16)+y));517

sprintf(d_octet_pos,"%d",((z*16)+dir_mod_z)+1);518

if (!z)519

sprintf(d_octet_neg,"%d",((k-1)*16)+dir_mod_z);520

else521

sprintf(d_octet_neg,"%d",((z-1)*16)+dir_mod_z);522

sprintf(next_posz,"10.0.%s.%s",c_octet_pos,d_octet_pos);523

sprintf(next_negz,"10.0.%s.%s",c_octet_neg,d_octet_neg);524

}525

526

/* ======================================== */527

/* ========= funct: send_packet() ========= */528

/* ======================================== */529

// This function sends a packet to the correct destination.530

// Much of this code was originally repeated throughout this531

// file, all converged here.532

void send_packet(char* packet, char* host, unsigned long long timestamp)533

{534

int remSocket;535

struct timeval t;536

struct hostent *remHost;537

struct sockaddr_in next_addr;538

unsigned long long t2;539

char d_time[7], h_queue_t[7], h_queue[7];540

541

// copy the previous queue value from the packet542

strncpy(&h_queue[0],&packet[16],6); h_queue[6] = ’\0’;543

remHost=gethostbyname(host);544

// setup the outgoing socket545

remSocket=socket(AF_INET, SOCK_STREAM, 0);546

next_addr.sin_family = AF_INET;547

next_addr.sin_port = htons(ROUTEPORT);548

next_addr.sin_addr = *((struct in_addr *)remHost->h_addr);549

// connect to the next hop, TCP handshake occurs550

if(connect(remSocket,(struct sockaddr *)&next_addr,551

sizeof(next_addr)) < 0)552

myperror("connecting to next host");553

// grab time & calculate difference, add to previous queue times554

gettimeofday(&t, NULL);555

t2 = ((unsigned long long)t.tv_sec * 1000000 +556

(unsigned long long)t.tv_usec) - timestamp;557

if (t2 >= 10000)558

sprintf(d_time, "%llu", t2);559

else560

sprintf(d_time,"0%llu", t2);561

sprintf(h_queue_t, "%d", atoi(d_time) + atoi(h_queue));562
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strncpy (&packet[16],&h_queue_t[0], 6);563

// send data, close socket.564

if(send(remSocket,packet,MAXDATASIZE-1,0) < 0)565

myperror("sending to next host");566

close(remSocket);567

}568

569

/* ======================================== */570

/* ======= funct: child_handler() ======== */571

/* ======================================== */572

// This function reaps all dead child processes.573

void child_handler(int s)574

{575

while(waitpid(-1, NULL, WNOHANG) > 0);576

}577

578

/* ======================================== */579

/* ========= funct: myperror() =========== */580

/* ======================================== */581

// This function was created because these two582

// lines were used frequently.583

void myperror(char *x)584

{585

perror(x);586

exit(1);587

}588

589

/* ======================================== */590

/* ========== funct: dimord() ============ */591

/* ======================================== */592

// This function returns the difference between593

// si and di in a particular dimension.594

int dimord(int s, int d)595

{596

int temp;597

int ret_val;598

599

temp = (d-s) % k;600

if (temp < -1)601

temp = temp + k;602

else if (temp > 1)603

temp = temp - k;604

605

if (temp < 0)606

ret_val = -1;607

else if (temp > 0)608

ret_val = 1;609

if (s == d)610

ret_val = 0;611

612

return ret_val;613

}614

615

/* ======================================== */616

/* ====== funct: get_outputQueue() ======= */617

/* ======================================== */618

// This function returns the value of the output619

// queue after obtaining the semaphore.620

int get_outputQueue(int sem_id, struct queue *q)621

{622

int ret_val = -1;623

// Receive the semaphore624

sem_lock(sem_id);625

// Enter the critical section626

ret_val = q[0].val;627
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printf("queue val: %d\n", ret_val);628

// Return the semaphore629

sem_unlock(sem_id);630

631

return ret_val;632

}633

634

/* ======================================== */635

/* ====== funct: inc_outputQueue() ======= */636

/* ======================================== */637

// This function increments an output queue once638

// it successfully receives the semaphore for that639

// queue. It returns -1 if the queue is full.640

int inc_outputQueue(int sem_id, struct queue *q)641

{642

int ret_val = -1;643

// Receive the semaphore644

sem_lock(sem_id);645

// Enter the critical section646

if (q[0].val < MAX_QUEUE)647

{648

q[0].val = q[0].val + 1;649

ret_val = 1;650

}651

else printf("queue exceeded MAX\n");652

// Return the semaphore653

sem_unlock(sem_id);654

655

return ret_val;656

}657

658

/* ======================================== */659

/* =========funct: adjust_queues()========= */660

/* ======================================== */661

// This function adjusts the output queues by decrementing662

// the queues based on their last updated time value. If663

// it is greater than ADJUSTMENT, it is decreased that664

// number of times. It is assumed that packets depart665

// from the queues at a rate of one per ADJUSTMENT microseconds.666

void adjust_queues(int sem_id, struct queue *q)667

{668

struct timeval t;669

unsigned long long time;670

671

gettimeofday(&t, NULL);672

// Receive the semaphore673

sem_lock(sem_id);674

// Enter the critical section675

time = (unsigned long long)t.tv_sec * 1000000 + (unsigned long long)t.tv_usec;676

// remove as many packets from the output queues as we’re expecting packets to leave.677

while ((q[0].lastUpdated + ((unsigned long long)ADJUSTMENT)) <= time)678

{679

if (q[0].val > 0) q[0].val = q[0].val - 1;680

q[0].lastUpdated = q[0].lastUpdated + ((unsigned long long)ADJUSTMENT);681

}682

// Return semaphore683

sem_unlock(sem_id);684

685

}686

687

/* ======================================== */688

/* ========= funct: sem_lock() ========= */689

/* ======================================== */690

// This function locks a given semaphore. It blocks691

// until successfully obtained.692
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void sem_lock(int sem_set_id)693

{694

struct sembuf sem_op;695

sem_op.sem_num = 0;696

sem_op.sem_op = -1;697

sem_op.sem_flg = 0;698

semop(sem_set_id, &sem_op, 1);699

}700

701

/* ======================================== */702

/* ========= funct: sem_unlock() ========= */703

/* ======================================== */704

// This function returns a semaphore for use by705

// another process.706

void sem_unlock(int sem_set_id)707

{708

struct sembuf sem_op;709

sem_op.sem_num = 0;710

sem_op.sem_op = 1;711

sem_op.sem_flg = 0;712

semop(sem_set_id, &sem_op, 1);713

}714

715

/* ======================================== */716

/* ========= funct: min_choose() ========= */717

/* ======================================== */718

// This function randomly chooses an order based on719

// all permutations of k and then returns which720

// direction to randomly route within given the721

// possible values passed. Eg. if a packet can722

// minimally route +x or -y, this function picks723

// between the two choices.724

int min_choose(int x, int y, int z)725

{726

int t1;727

int ret_val = 0;728

729

if ((t1=rand())<0.166)730

{731

if (x != 0)732

if (x > 0) ret_val = GO_POSX;733

else ret_val = GO_NEGX;734

else if (y != 0)735

if (y > 0) ret_val = GO_POSY;736

else ret_val = GO_NEGY;737

else if (z != 0)738

if (z > 0) ret_val = GO_POSZ;739

else ret_val = GO_NEGZ;740

}741

else if (t1 < 0.333)742

{743

744

if (y != 0)745

if (y > 0) ret_val = GO_POSY;746

else ret_val = GO_NEGY;747

else if (z != 0)748

if (z > 0) ret_val = GO_POSZ;749

else ret_val = GO_NEGZ;750

else if (x != 0)751

if (x > 0) ret_val = GO_POSX;752

else ret_val = GO_NEGX;753

}754

else if (t1 < 0.5 )755

{756

if (z != 0)757
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if (z > 0) ret_val = GO_POSZ;758

else ret_val = GO_NEGZ;759

else if (x != 0)760

if (x > 0) ret_val = GO_POSX;761

else ret_val = GO_NEGX;762

else if (y != 0)763

if (y > 0) ret_val = GO_POSY;764

else ret_val = GO_NEGY;765

}766

else if (t1 < 0.666)767

{768

if (x != 0)769

if (x > 0) ret_val = GO_POSX;770

else ret_val = GO_NEGX;771

else if (z != 0)772

if (z > 0) ret_val = GO_POSZ;773

else ret_val = GO_NEGZ;774

else if (y != 0)775

if (y > 0) ret_val = GO_POSY;776

else ret_val = GO_NEGY;777

}778

else if (t1 < 0.866)779

{780

781

if (y != 0)782

if (y > 0) ret_val = GO_POSY;783

else ret_val = GO_NEGY;784

else if (x != 0)785

if (x > 0) ret_val = GO_POSX;786

else ret_val = GO_NEGX;787

else if (z != 0)788

if (z > 0) ret_val = GO_POSZ;789

else ret_val = GO_NEGZ;790

791

}792

else793

{794

if (z != 0)795

if (z > 0) ret_val = GO_POSZ;796

else ret_val = GO_NEGZ;797

else if (y != 0)798

if (y > 0) ret_val = GO_POSY;799

else ret_val = GO_NEGY;800

else if (x != 0)801

if (x > 0) ret_val = GO_POSX;802

else ret_val = GO_NEGX;803

804

}805

return ret_val;806

807

}808

809

810

811

/* ======================================== */812

/* ======= funct: adaptive_choose() ======= */813

/* ======================================== */814

// This is the function which calculates the next815

// adaptive decision based on the possible directions816

// and the output queues.817

int adaptive_choose(int x, int y, int z)818

{819

int t, ret_val;820

int x_queue = LARGENU;821

int y_queue = LARGENU;822
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int z_queue = LARGENU;823

824

ret_val = -1;825

if (x != 0)826

if (x > 0)827

x_queue = get_outputQueue(sem_posx, q_posx);828

else829

x_queue = get_outputQueue(sem_negx, q_negx);830

if (y != 0)831

if (y > 0)832

y_queue = get_outputQueue(sem_posy, q_posy);833

else834

y_queue = get_outputQueue(sem_negy, q_negy);835

if (z != 0)836

if (z > 0)837

z_queue = get_outputQueue(sem_posz, q_posz);838

else839

z_queue = get_outputQueue(sem_negz, q_negz);840

841

842

t = min(min(x_queue, y_queue), z_queue);843

844

if (t == x_queue)845

if (x > 0) ret_val = GO_POSX;846

else ret_val = GO_NEGX;847

else if (t == y_queue)848

if (y > 0) ret_val = GO_POSY;849

else ret_val = GO_NEGY;850

else if (t == z_queue)851

if (z > 0) ret_val = GO_POSZ;852

else ret_val = GO_NEGZ;853

854

return ret_val;855

}856

857

/* ================================================= */858

/* ====== funct: adaptive_periphery_choose() ======= */859

/* ================================================= */860

// This function does the same as adaptive_choose, but861

// includes the periphery calculation in the determination862

// of the next hop.863

int adaptive_periphery_choose(int x, int y, int z)864

{865

866

int ret_val;867

double t, delta_total;868

double x_queue = (double)LARGENU;869

double y_queue = (double)LARGENU;870

double z_queue = (double)LARGENU;871

872

873

delta_total = (double)(abs(x) + abs(y) + abs(z));874

ret_val = -1;875

if (x != 0)876

if (x > 0)877

x_queue = (double)(1 + get_outputQueue(sem_posx, q_posx));878

else879

x_queue = (double)(1 + get_outputQueue(sem_negx, q_negx));880

if (y != 0)881

if (y > 0)882

y_queue = (double)(1 + get_outputQueue(sem_posy, q_posy));883

else884

y_queue = (double)(1 + get_outputQueue(sem_negy, q_negy));885

if (z != 0)886

if (z > 0)887

104



z_queue = (double)(1 + get_outputQueue(sem_posz, q_posz));888

else889

z_queue = (double)(1 + get_outputQueue(sem_negz, q_negz));890

891

x_queue = x_queue * (1.0 - ((double)abs(x)/delta_total));892

y_queue = y_queue * (1.0 - ((double)abs(y)/delta_total));893

z_queue = z_queue * (1.0 - ((double)abs(z)/delta_total));894

895

t = min_d(min_d(x_queue, y_queue), z_queue);896

897

if (t == x_queue)898

if (x > 0) ret_val = GO_POSX;899

else ret_val = GO_NEGX;900

else if (t == y_queue)901

if (y > 0) ret_val = GO_POSY;902

else ret_val = GO_NEGY;903

else if (t == z_queue)904

if (z > 0) ret_val = GO_POSZ;905

else ret_val = GO_NEGZ;906

907

return ret_val;908

909

}910

911

912

/* ======================================== */913

/* ========= funct: make_vector() ========= */914

/* ======================================== */915

// This function creates the v and dir vectors for CQR and ECQR.916

void make_vector(char v[], char dir[], int x_val, int y_val, int z_val){917

918

int t_q, x_val_t, y_val_t, z_val_t;919

double temp_min_val, min_val;920

char v_1[4];921

int nu_queues = 3;922

923

// for +++924

x_val_t = x_val;925

y_val_t = y_val;926

z_val_t = z_val;927

t_q = 0;928

if (x_val_t > 0)929

t_q = get_outputQueue(sem_posx, q_posx);930

else if (x_val_t < 0)931

t_q = get_outputQueue(sem_negx, q_negx);932

else933

nu_queues = nu_queues - 1;934

if (y_val_t > 0)935

t_q = t_q + get_outputQueue(sem_posy, q_posy);936

else if (y_val_t < 0)937

t_q = t_q + get_outputQueue(sem_negy, q_negy);938

else939

nu_queues = nu_queues - 1;940

if (z_val_t > 0)941

t_q = t_q + get_outputQueue(sem_posz, q_posz);942

else if (z_val_t < 0)943

t_q = t_q + get_outputQueue(sem_negz, q_negz);944

else945

nu_queues = nu_queues - 1;946

min_val=((double)abs(x_val_t)+(double)abs(y_val_t)+(double)abs(z_val_t))*((double)t_q/(double)nu_queues);947

sprintf(v_1, "%d%d%d", abs(x_val_t), abs(y_val_t), abs(z_val_t));948

sprintf(dir, "000");949

950

// for ++-951

x_val_t = x_val;952
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y_val_t = y_val;953

if (z_val > 0) z_val_t = z_val-k;954

else if (z_val < 0) z_val_t = z_val+k;955

else z_val_t = 0;956

nu_queues = 3;957

t_q = 0;958

if (x_val_t > 0)959

t_q = get_outputQueue(sem_posx, q_posx);960

else if (x_val_t < 0)961

t_q = get_outputQueue(sem_negx, q_negx);962

else963

nu_queues = nu_queues - 1;964

if (y_val_t > 0)965

t_q = t_q + get_outputQueue(sem_posy, q_posy);966

else if (y_val_t < 0)967

t_q = t_q + get_outputQueue(sem_negy, q_negy);968

else969

nu_queues = nu_queues - 1;970

if (z_val_t > 0)971

t_q = t_q + get_outputQueue(sem_posz, q_posz);972

else if (z_val_t < 0)973

t_q = t_q + get_outputQueue(sem_negz, q_negz);974

else975

nu_queues = nu_queues - 1;976

temp_min_val = ((double)abs(x_val_t)+(double)abs(y_val_t)+(double)abs(z_val_t))*((double)t_q/(double)nu_queues);977

if (temp_min_val < min_val){978

min_val = temp_min_val;979

sprintf(v_1, "%d%d%d", abs(x_val_t), abs(y_val_t), abs(z_val_t));980

if (x_val_t >= 0) dir[0] = ’0’; else dir[0] = ’1’;981

if (y_val_t >= 0) dir[1] = ’0’; else dir[1] = ’1’;982

if (z_val_t >= 0) dir[2] = ’0’; else dir[2] = ’1’;983

}984

985

// +-+986

x_val_t = x_val;987

if (y_val > 0) y_val_t = y_val-k;988

else if (y_val < 0) y_val_t = y_val+k;989

else y_val_t = 0;990

z_val_t = z_val;991

nu_queues = 3;992

t_q = 0;993

if (x_val_t > 0)994

t_q = get_outputQueue(sem_posx, q_posx);995

else if (x_val_t < 0)996

t_q = get_outputQueue(sem_negx, q_negx);997

else998

nu_queues = nu_queues - 1;999

if (y_val_t > 0)1000

t_q = t_q + get_outputQueue(sem_posy, q_posy);1001

else if (y_val_t < 0)1002

t_q = t_q + get_outputQueue(sem_negy, q_negy);1003

else1004

nu_queues = nu_queues - 1;1005

if (z_val_t > 0)1006

t_q = t_q + get_outputQueue(sem_posz, q_posz);1007

else if (z_val_t < 0)1008

t_q = t_q + get_outputQueue(sem_negz, q_negz);1009

else1010

nu_queues = nu_queues - 1;1011

temp_min_val = ((double)abs(x_val_t)+(double)abs(y_val_t)+(double)abs(z_val_t))*((double)t_q/(double)nu_queues);1012

if (temp_min_val < min_val){1013

min_val = temp_min_val;1014

sprintf(v_1, "%d%d%d", abs(x_val_t), abs(y_val_t), abs(z_val_t));1015

if (x_val_t >= 0) dir[0] = ’0’; else dir[0] = ’1’;1016

if (y_val_t >= 0) dir[1] = ’0’; else dir[1] = ’1’;1017
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if (z_val_t >= 0) dir[2] = ’0’; else dir[2] = ’1’;1018

}1019

1020

1021

// +--1022

x_val_t = x_val;1023

if (y_val > 0) y_val_t = y_val-k;1024

else if (y_val < 0) y_val_t = y_val+k;1025

else y_val_t = 0;1026

if (z_val > 0) z_val_t = z_val-k;1027

else if (z_val < 0) z_val_t = z_val+k;1028

else z_val_t = 0;1029

nu_queues = 3;1030

t_q = 0;1031

if (x_val_t > 0)1032

t_q = get_outputQueue(sem_posx, q_posx);1033

else if (x_val_t < 0)1034

t_q = get_outputQueue(sem_negx, q_negx);1035

else1036

nu_queues = nu_queues - 1;1037

if (y_val_t > 0)1038

t_q = t_q + get_outputQueue(sem_posy, q_posy);1039

else if (y_val_t < 0)1040

t_q = t_q + get_outputQueue(sem_negy, q_negy);1041

else1042

nu_queues = nu_queues - 1;1043

if (z_val_t > 0)1044

t_q = t_q + get_outputQueue(sem_posz, q_posz);1045

else if (z_val_t < 0)1046

t_q = t_q + get_outputQueue(sem_negz, q_negz);1047

else1048

nu_queues = nu_queues - 1;1049

temp_min_val = ((double)abs(x_val_t)+(double)abs(y_val_t)+(double)abs(z_val_t))*((double)t_q/(double)nu_queues);1050

if (temp_min_val < min_val){1051

min_val = temp_min_val;1052

sprintf(v_1, "%d%d%d", abs(x_val_t), abs(y_val_t), abs(z_val_t));1053

if (x_val_t >= 0) dir[0] = ’0’; else dir[0] = ’1’;1054

if (y_val_t >= 0) dir[1] = ’0’; else dir[1] = ’1’;1055

if (z_val_t >= 0) dir[2] = ’0’; else dir[2] = ’1’;1056

}1057

1058

1059

// -++1060

if (x_val > 0) x_val_t = x_val-k;1061

else if (x_val < 0) x_val_t = x_val+k;1062

else x_val_t = 0;1063

y_val_t = y_val;1064

z_val_t = z_val;1065

nu_queues = 3;1066

t_q = 0;1067

if (x_val_t > 0)1068

t_q = get_outputQueue(sem_posx, q_posx);1069

else if (x_val_t < 0)1070

t_q = get_outputQueue(sem_negx, q_negx);1071

else1072

nu_queues = nu_queues - 1;1073

if (y_val_t > 0)1074

t_q = t_q + get_outputQueue(sem_posy, q_posy);1075

else if (y_val_t < 0)1076

t_q = t_q + get_outputQueue(sem_negy, q_negy);1077

else1078

nu_queues = nu_queues - 1;1079

if (z_val_t > 0)1080

t_q = t_q + get_outputQueue(sem_posz, q_posz);1081

else if (z_val_t < 0)1082
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t_q = t_q + get_outputQueue(sem_negz, q_negz);1083

else1084

nu_queues = nu_queues - 1;1085

temp_min_val = ((double)abs(x_val_t)+(double)abs(y_val_t)+(double)abs(z_val_t))*((double)t_q/(double)nu_queues);1086

if (temp_min_val < min_val){1087

min_val = temp_min_val;1088

sprintf(v_1, "%d%d%d", abs(x_val_t), abs(y_val_t), abs(z_val_t));1089

if (x_val_t >= 0) dir[0] = ’0’; else dir[0] = ’1’;1090

if (y_val_t >= 0) dir[1] = ’0’; else dir[1] = ’1’;1091

if (z_val_t >= 0) dir[2] = ’0’; else dir[2] = ’1’;1092

}1093

1094

1095

// -+-1096

if (x_val > 0) x_val_t = x_val-k;1097

else if (x_val < 0) x_val_t = x_val+k;1098

else x_val_t = 0;1099

y_val_t = y_val;1100

if (z_val > 0) z_val_t = z_val-k;1101

else if (z_val < 0) z_val_t = z_val+k;1102

else z_val_t = 0;1103

nu_queues = 3;1104

t_q = 0;1105

if (x_val_t > 0)1106

t_q = get_outputQueue(sem_posx, q_posx);1107

else if (x_val_t < 0)1108

t_q = get_outputQueue(sem_negx, q_negx);1109

else1110

nu_queues = nu_queues - 1;1111

if (y_val_t > 0)1112

t_q = t_q + get_outputQueue(sem_posy, q_posy);1113

else if (y_val_t < 0)1114

t_q = t_q + get_outputQueue(sem_negy, q_negy);1115

else1116

nu_queues = nu_queues - 1;1117

if (z_val_t > 0)1118

t_q = t_q + get_outputQueue(sem_posz, q_posz);1119

else if (z_val_t < 0)1120

t_q = t_q + get_outputQueue(sem_negz, q_negz);1121

else1122

nu_queues = nu_queues - 1;1123

temp_min_val = ((double)abs(x_val_t)+(double)abs(y_val_t)+(double)abs(z_val_t))*((double)t_q/(double)nu_queues);1124

if (temp_min_val < min_val){1125

min_val = temp_min_val;1126

sprintf(v_1, "%d%d%d", abs(x_val_t), abs(y_val_t), abs(z_val_t));1127

if (x_val_t >= 0) dir[0] = ’0’; else dir[0] = ’1’;1128

if (y_val_t >= 0) dir[1] = ’0’; else dir[1] = ’1’;1129

if (z_val_t >= 0) dir[2] = ’0’; else dir[2] = ’1’;1130

}1131

1132

1133

//--+1134

if (x_val > 0) x_val_t = x_val-k;1135

else if (x_val < 0) x_val_t = x_val+k;1136

else x_val_t = 0;1137

if (y_val > 0) y_val_t = y_val-k;1138

else if (y_val < 0) y_val_t = y_val+k;1139

else y_val_t = 0;1140

z_val_t = z_val;1141

nu_queues = 3;1142

t_q = 0;1143

if (x_val_t > 0)1144

t_q = get_outputQueue(sem_posx, q_posx);1145

else if (x_val_t < 0)1146

t_q = get_outputQueue(sem_negx, q_negx);1147
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else1148

nu_queues = nu_queues - 1;1149

if (y_val_t > 0)1150

t_q = t_q + get_outputQueue(sem_posy, q_posy);1151

else if (y_val_t < 0)1152

t_q = t_q + get_outputQueue(sem_negy, q_negy);1153

else1154

nu_queues = nu_queues - 1;1155

if (z_val_t > 0)1156

t_q = t_q + get_outputQueue(sem_posz, q_posz);1157

else if (z_val_t < 0)1158

t_q = t_q + get_outputQueue(sem_negz, q_negz);1159

else1160

nu_queues = nu_queues - 1;1161

temp_min_val = ((double)abs(x_val_t)+(double)abs(y_val_t)+(double)abs(z_val_t))*((double)t_q/(double)nu_queues);1162

if (temp_min_val < min_val){1163

min_val = temp_min_val;1164

sprintf(v_1, "%d%d%d", abs(x_val_t), abs(y_val_t), abs(z_val_t));1165

if (x_val_t >= 0) dir[0] = ’0’; else dir[0] = ’1’;1166

if (y_val_t >= 0) dir[1] = ’0’; else dir[1] = ’1’;1167

if (z_val_t >= 0) dir[2] = ’0’; else dir[2] = ’1’;1168

}1169

1170

1171

// ---1172

if (x_val > 0) x_val_t = x_val-k;1173

else if (x_val < 0) x_val_t = x_val+k;1174

else x_val_t = 0;1175

if (y_val > 0) y_val_t = y_val-k;1176

else if (y_val < 0) y_val_t = y_val+k;1177

else y_val_t = 0;1178

if (z_val > 0) z_val_t = z_val-k;1179

else if (z_val < 0) z_val_t = z_val+k;1180

else z_val_t = 0;1181

nu_queues = 3;1182

t_q = 0;1183

if (x_val_t > 0)1184

t_q = get_outputQueue(sem_posx, q_posx);1185

else if (x_val_t < 0)1186

t_q = get_outputQueue(sem_negx, q_negx);1187

else1188

nu_queues = nu_queues - 1;1189

if (y_val_t > 0)1190

t_q = t_q + get_outputQueue(sem_posy, q_posy);1191

else if (y_val_t < 0)1192

t_q = t_q + get_outputQueue(sem_negy, q_negy);1193

else1194

nu_queues = nu_queues - 1;1195

if (z_val_t > 0)1196

t_q = t_q + get_outputQueue(sem_posz, q_posz);1197

else if (z_val_t < 0)1198

t_q = t_q + get_outputQueue(sem_negz, q_negz);1199

else1200

nu_queues = nu_queues - 1;1201

temp_min_val = ((double)abs(x_val_t)+(double)abs(y_val_t)+(double)abs(z_val_t))*((double)t_q/(double)nu_queues);1202

if (temp_min_val < min_val){1203

min_val = temp_min_val;1204

sprintf(v_1, "%d%d%d", abs(x_val_t), abs(y_val_t), abs(z_val_t));1205

if (x_val_t >= 0) dir[0] = ’0’; else dir[0] = ’1’;1206

if (y_val_t >= 0) dir[1] = ’0’; else dir[1] = ’1’;1207

if (z_val_t >= 0) dir[2] = ’0’; else dir[2] = ’1’;1208

}1209

v[0] = v_1[0];1210

v[1] = v_1[1];1211

v[2] = v_1[2];1212
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1213

}1214

1215

/* ======================================== */1216

/* ======== funct: min_d() ========= */1217

/* ======================================== */1218

// This function returns the minimum of the two values passed1219

double min_d(double x, double y)1220

{1221

return (double)((x*(x<y)) + (y*(x>=y)));1222

}1223

1224

/* ======================================== */1225

/* ======== funct: min() ========= */1226

/* ======================================== */1227

// This function returns the minimum of the two values passed1228

int min(int x, int y)1229

{1230

return ((x*(x<y)) + (y*(x>=y)));1231

}1232

1233

1234

1235

110



B.2 file: loserver.c
1

/* ############################################################ *2

* Filename: loserver.c *3

* Author: Chris Lydick *4

* Date: Mar 1, 2008 *5

* Usage: ./loserver [address] *6

* Notes: Portions borrowed from http://tinyurl.com/2w36o4 *7

* *8

* ############################################################ */9

10

#include "router.h"11

12

/* ======================================== */13

/* ========= FUNCT DECLARATION ========= */14

/* ======================================== */15

void child_handler(int s);16

void myperror(char *x);17

18

19

/* ======================================== */20

/* ========= Main Function ========= */21

/* ======================================== */22

int main(int argc, char* argv[])23

{24

int sockfd, new_fd, numbytes, hop_nu, remSocket, yes;25

struct sockaddr_in my_addr, their_addr, next_addr;26

struct hostent *localhost;27

socklen_t sin_size;28

struct sigaction sa;29

char newheader[HEADERSIZE+1], header[HEADERSIZE+1], h_src[3], h_dest[3], h_ra[2], h_hops[3], *addr, fullpath[80];30

char time_ms[10], time_ms_t[17], h_queue[7];31

char h_time[10];32

FILE *fp;33

struct timeval tv;34

time_t curtime;35

int p_time, f_time, delta;36

unsigned long long time;37

38

yes=1;39

if (argc > 1)40

addr = argv[1];41

else myperror("usage: ./loserver [node number]");42

43

// Create server listen socket44

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1)45

myperror("socket");46

// Set option on socket to reuse the address.47

if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int)) == -1)48

perror("setsockopt");49

50

// Set parameters for binding the socket to an address.51

my_addr.sin_family = AF_INET;52

my_addr.sin_port = htons(LOPORT);53

my_addr.sin_addr.s_addr = inet_addr("127.0.0.1");54

memset(my_addr.sin_zero, ’\0’, sizeof my_addr.sin_zero);55

56

// Bind the socket and address.57

if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof my_addr) == -1)58

myperror("bind");59

60

// Set the socket to listen for incoming connections.61

if (listen(sockfd, BACKLOG) == -1)62

myperror("listen");63
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64

// This reaps all dead child processes.65

sa.sa_handler = child_handler;66

sigemptyset(&sa.sa_mask);67

sa.sa_flags = SA_RESTART;68

if (sigaction(SIGCHLD, &sa, NULL) == -1)69

myperror("sigaction");70

71

// Main accept() loop72

while(1) {73

sin_size = sizeof their_addr;74

if ((new_fd = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size)) == -1) {75

perror("accept");76

continue; }77

printf("server: got connection from %s\n",inet_ntoa(their_addr.sin_addr));78

// Fork off a child to do the work, only child will continue here.79

if (!fork()) {80

// Child process doesn’t need the listener81

close(sockfd);82

if ((numbytes=recv(new_fd, header, HEADERSIZE-1, 0)) == -1)83

perror("recv");84

close(new_fd);85

memcpy(newheader, header, HEADERSIZE); newheader[HEADERSIZE-1] = ’\0’;86

strncpy(&h_src[0], &newheader[0],2); h_src[2] = ’\0’;87

strncpy(&h_dest[0],&newheader[2],2); h_dest[2] = ’\0’;88

strncpy(&h_ra[0],&newheader[4],1); h_ra[1] = ’\0’;89

strncpy(&h_hops[0],&newheader[5],2); h_hops[2] = ’\0’;90

strncpy(&h_time[0],&newheader[7],9); h_time[9] = ’\0’;91

strncpy(&h_queue[0],&newheader[16],6); h_queue[6] = ’\0’;92

gettimeofday(&tv, NULL);93

time = (unsigned long long)tv.tv_sec * 1000000 + (unsigned long long)tv.tv_usec;94

sprintf(time_ms_t,"%llu", time);95

//sprintf(time_ms_t, "%ld.%ld", tv.tv_sec, tv.tv_usec);96

strncpy(&time_ms[0],&time_ms_t[7],9); time_ms[9] = ’\0’;97

//printf("time: %s\n", time_ms);98

f_time = atoi(time_ms);99

p_time = atoi(h_time);100

delta = f_time - p_time;101

//printf("f_time: %4.4f\n", f_time);102

//printf("p_time: %4.4f\n", p_time);103

//printf("time difference: %4.4f\n", f_time-p_time);104

if (atoi(h_dest) == atoi(addr)){105

sprintf(fullpath, "%s%s/SUCCESS_%s",FILE_PATH,addr,time_ms);106

fp = fopen(fullpath, "w");107

fprintf(fp,"from: %d\n", atoi(h_src));108

fprintf(fp,"to: %d\n", atoi(h_dest));109

fprintf(fp,"algorithm: %d\n", atoi(h_ra));110

fprintf(fp,"hops: %d\n",atoi(h_hops));111

fprintf(fp,"total_time: %d\n", delta);112

fprintf(fp,"queue_time: %d\n", atoi(h_queue));113

fprintf(fp,"trans_time: %d\n", delta-atoi(h_queue));114

fprintf(fp,"avg_trans/hop: %d\n", (delta-atoi(h_queue))/atoi(h_hops));115

fprintf(fp,"avg_queue/hop: %d\n", atoi(h_queue)/atoi(h_hops));116

fprintf(fp,"start: %d\n", p_time);117

fprintf(fp,"end: %d\n", f_time);118

fprintf(fp,"header: %s\n", newheader);119

fclose(fp);120

}121

else if (atoi(h_hops) >= MAXHOPS){122

sprintf(fullpath, "%s%s/DROP_%s",FILE_PATH,addr,time_ms);123

fp = fopen(fullpath, "w");124

fprintf(fp,"from: %d\n", atoi(h_src));125

fprintf(fp,"to: %d\n", atoi(h_dest));126

fprintf(fp,"algorithm: %d\n", atoi(h_ra));127

fprintf(fp,"hops: %d\n",atoi(h_hops));128
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fprintf(fp,"total_time: %d\n", delta);129

fprintf(fp,"queue_time: %d\n", atoi(h_queue));130

fprintf(fp,"trans_time: %d\n", delta-atoi(h_queue));131

fprintf(fp,"start: %d\n", p_time);132

fprintf(fp,"end: %d\n", f_time);133

fprintf(fp,"header: %s\n", newheader);134

fclose(fp);135

136

}137

else {138

//perror("unrecognized packet");139

sprintf(fullpath, "%s%s/UNKNOWN_%s",FILE_PATH,addr,time_ms);140

fp = fopen(fullpath, "w");141

fprintf(fp,"from: %d\n", atoi(h_src));142

fprintf(fp,"to: %d\n", atoi(h_dest));143

fprintf(fp,"algorithm: %d\n", atoi(h_ra));144

fprintf(fp,"hops: %d\n",atoi(h_hops));145

fprintf(fp,"total_time: %d\n", delta);146

fprintf(fp,"queue_time: %d\n", atoi(h_queue));147

fprintf(fp,"trans_time: %d\n", delta-atoi(h_queue));148

fprintf(fp,"start: %d\n", p_time);149

fprintf(fp,"end: %d\n", f_time);150

fprintf(fp,"header: %s\n", newheader);151

fclose(fp);152

}153

//printf("Closing this connection.");154

exit(0);155

}156

close(new_fd); // parent doesn’t need this157

}158

159

return 0;160

}161

162

163

void child_handler(int s)164

{165

while(waitpid(-1, NULL, WNOHANG) > 0);166

}167

168

void myperror(char *x)169

{170

perror(x);171

exit(1);172

}173

174

175
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B.3 file: injector.c
/* ############################################################ *1

* Filename: injector.c *2

* Author: Chris Lydick *3

* Date: Mar 1, 2008 *4

* Usage: ./injector [traffic demand file] [routing algorithm]*5

* Notes: Portions borrowed from http://tinyurl.com/2w36o4 *6

* *7

* ############################################################ */8

#include "router.h"9

10

/* ======================================== */11

/* ========= Main Function ========= */12

/* ======================================== */13

int main(int argc, char *argv[])14

{15

int i, j, k, i_i, suffix, sockfd, numbytes;16

char ra[2];17

char buf[MAXDATASIZE], addr[14], line[81], time_ms_t[17], time_ms[10], src[3], dest[3];18

char no_pkts[3];19

struct hostent *he;20

struct sockaddr_in their_addr;21

time_t curtime;22

struct timeval tv;23

unsigned long long time;24

FILE *fp;25

26

27

if (argc != 3) {28

fprintf(stderr,"usage: injector [traf demand file] [routing algorithm]\n");29

exit(1);30

}31

32

sprintf(ra, argv[2], 1);33

34

if ((fp=fopen(argv[1], "r")) == NULL)35

fprintf(stderr,"file not found.\n");36

37

// For each row in the text file, send packets with 0s in header.38

// Fork off children to do this.39

for (i=0; i<27; i++)40

{41

suffix = 200 - i;42

fgets(line, 82, fp); line[80] = ’\0’;43

if (!fork()){44

i_i = i;45

// Clear the header - but src is same for entire row.46

strncpy(&buf[0],"0000000000000000000000000000000000000000", 40);47

if (i_i < 10)48

sprintf(src,"0%d",i_i);49

else50

sprintf(src,"%d",i_i);51

strncpy(&buf[0],&src[0],2);52

buf[4] = ra[0];53

for (j=0; j<27; j++)54

{55

if (i == j) j++;56

if (j == 27) break;57

if (j < 10)58

sprintf(dest,"0%d",j);59

else60

sprintf(dest,"%d",j);61

strncpy(&buf[2],&dest[0],2);62

strncpy(&no_pkts[0],&line[j*3],2); no_pkts[2] = ’\0’;63

114



for (k=0; k<atoi(no_pkts); k++)64

{65

sprintf(addr,"192.168.0.%d", suffix); addr[13] = ’\0’;66

if ((he=gethostbyname(addr)) == NULL)67

perror("gethostbyname");68

if ((sockfd=socket(AF_INET, SOCK_STREAM, 0)) == -1)69

perror("socket");70

their_addr.sin_family = AF_INET;71

their_addr.sin_port = htons(ROUTEPORT);72

their_addr.sin_addr = *((struct in_addr *)he->h_addr);73

memset(their_addr.sin_zero, ’\0’, sizeof their_addr.sin_zero);74

if (connect(sockfd, (struct sockaddr *)&their_addr, sizeof their_addr) == -1) {75

perror("connect"); exit(1);}76

if (send(sockfd, buf, MAXDATASIZE-1, 0) == -1)77

perror("send");78

close(sockfd);79

printf("sending a packet: %s -> %s\n", src, dest);80

81

}82

83

}84

exit(0);85

}86

else {87

}88

}89

return 0;90

}91
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B.4 file: router.h
1

#include <stdio.h>2

#include <math.h>3

#include <stdlib.h>4

#include <unistd.h>5

#include <errno.h>6

#include <string.h>7

#include <sys/types.h>8

#include <sys/socket.h>9

#include <netinet/in.h>10

#include <arpa/inet.h>11

#include <sys/wait.h>12

#include <signal.h>13

#include <netdb.h>14

#include <sys/time.h>15

#include <time.h>16

#include <sys/shm.h>17

#include <sys/sem.h>18

#include <sys/ipc.h>19

20

#define ROUTEPORT 349021

#define LOPORT 349122

#define MAXDATASIZE 80000023

#define HEADERSIZE 5024

#define MAXHOPS 725

#define BACKLOG 1026

#define GO_POSX 127

#define GO_POSY 228

#define GO_POSZ 329

#define GO_NEGX 430

#define GO_NEGY 531

#define GO_NEGZ 632

#define FILE_PATH "/pkhome/pkhome/router/routerlogs/"33

#define SID_POSX 4534

#define SID_POSY 4635

#define SID_POSZ 4736

#define SID_NEGX 4837

#define SID_NEGY 4938

#define SID_NEGZ 5039

#define MAX_QUEUE 20040

#define ADJUSTMENT 200000041

#define LARGENU 100000042

struct queue43

{44

int val;45

unsigned long long lastUpdated;46

};47

union semun48

{49

int val;50

struct semid_ds *buf;51

unsigned short *array;52

struct seminfo *__buf;53

};54

116



Appendix C

Appendix C: Matlab Simulation
Scripts

C.1 User Interface Scripts

C.1.1 file: do load.m
function do_load();1

2

pattern = input(’\n\nEnter a traffic pattern to use... \n0:Flood Traffic (all src/dest pairs)\n1:Tornado Traffic\n3

2:Transpose Traffic\n3:Nearest Neighbor\n4:Uniform Random Traffic\n5:Bit-Compliment Traffic\n: ’);4

option = input(’\n\nEnter which routing algorithm to use... \n1:Dimension Ordered\n2:Direction Ordered\n3:Minimal5

Oblivious\n4:Minimal Adaptive\n5:Chaos\n6:CQR\n7:Enhanced CQR - Periphery Avoidance\n: ’);6

k = input(’\n\nEnter k...\n: ’);7

n = input(’\n\nEnter n...\n: ’);8

runs = input(’\n\nEnter the number of runs to simulate...\n: ’);9

output_text_file = 1;10

if (option > 3)11

failure = input(’\n\nEnter the probability of nodal failures in decimal form...\n: ’);12

hs = input(’\n\nEnter the percent of nodes which should be hotspots in decimal form...\n: ’);13

else14

failure = 0.00;15

hs = 0;16

end17

18

if (k^n > 50)19

plot = input(’\n\nThis seems to be a large set. Would you like to plot these? \n20

**This operation could take a while to process!**\n0:No\n1:Yes\n: ’);21

else22

plot = 1;23

end24

25

failed_nodes_queue = 0;26

len = k^n;27

ch_load = zeros(len, len);28

traffic = zeros(len, len);29

if(rem(k,2) == 1)30

scale = 3*n*(k/4 - 1/(4*k)); % k even31

else32

scale = 6*k*n/4; % k odd33

end34

35

x = traffic/(scale);36

traffic = x - diag(diag(x));37
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38

% All src/dest pairs39

if(pattern == 0)40

for i=1:k^n41

for j=1:k^n42

traffic(i,j) = runs;43

end44

end45

46

% Tornado Traffic47

elseif(pattern == 1)48

for j=1:runs49

for src=1:len50

[x,y,z] = i2dim(src-1, k, n);51

52

dx = rem(ceil(k/2)-1,k) + x;53

if dx >= k54

dx = dx - k;55

end56

dy = y;57

dz = z;58

dest = dim2i(dx, dy, dz, k, n)+1;59

traffic(src, dest) = traffic(src, dest) + 1;60

end61

end62

63

% Transpose Traffic64

elseif(pattern == 2)65

for j=1:runs66

for src=1:len67

[x,y,z] = i2dim(src-1, k, n);68

if(n > 2)69

dest = dim2i(z, x, y, k, n)+1;70

traffic(src, dest) = traffic(src,dest) + 1;71

dest = dim2i(z,y,x,k,n)+1;72

traffic(src, dest) = traffic(src,dest) + 1;73

dest = dim2i(x,z,y,k,n)+1;74

traffic(src, dest) = traffic(src,dest) + 1;75

dest = dim2i(y,x,z,k,n)+1;76

traffic(src, dest) = traffic(src,dest) + 1;77

dest = dim2i(y,z,x,k,n)+1;78

traffic(src, dest) = traffic(src,dest) + 1;79

else80

z = 0;81

dest = dim2i(y, x, z, k, n)+1;82

traffic(src, dest) = traffic(src,dest) + 1;83

end84

85

end86

end87

88

% Nearest Neighbor Traffic89

elseif(pattern == 3)90

for j=1:runs91

for src=1:len92

[x,y,z] = i2dim(src-1, k, n);93

if(n > 2)94

dest = dim2i(mod(x+1, k), y, z, k, n)+1;95

traffic(src,dest) = traffic(src,dest) + 1;96

dest = dim2i(mod(x-1, k), y, z, k, n)+1;97

traffic(src,dest) = traffic(src,dest) + 1;98

dest = dim2i(x, mod(y+1, k), z, k, n)+1;99

traffic(src,dest) = traffic(src,dest) + 1;100

dest = dim2i(x, mod(y-1, k), z, k, n)+1;101

traffic(src,dest) = traffic(src,dest) + 1;102
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dest = dim2i(x, y, mod(z+1, k), k, n)+1;103

traffic(src,dest) = traffic(src,dest) + 1;104

dest = dim2i(x, y, mod(z-1, k), k, n)+1;105

traffic(src,dest) = traffic(src,dest) + 1;106

107

else108

dest = dim2i(mod(x+1, k), y, z, k, n)+1;109

traffic(src,dest) = traffic(src,dest) + 1;110

dest = dim2i(mod(x-1, k), y, z, k, n)+1;111

traffic(src,dest) = traffic(src,dest) + 1;112

dest = dim2i(x, mod(y+1, k), z, k, n)+1;113

traffic(src,dest) = traffic(src,dest) + 1;114

dest = dim2i(x, mod(y-1, k), z, k, n)+1;115

traffic(src,dest) = traffic(src,dest) + 1;116

end117

118

end119

end120

121

% Uniform Random Traffic122

elseif(pattern == 4)123

for j=1:runs124

for src=1:len125

dest = ceil(rand*len);126

traffic(src,dest) = traffic(src,dest) + ceil(rand()*runs);127

end128

end129

130

% Bit Compliment Traffic131

elseif(pattern == 5)132

for j=1:runs133

for src=1:len134

[x,y,z] = i2dim(src-1, k, n);135

if n < 3136

dest = dim2i((k-x-1), (k-y-1), z, k, n)+1;137

else138

dest = dim2i((k-x-1), (k-y-1), (k-z-1), k, n)+1;139

end140

traffic(src,dest) = traffic(src,dest) + 1;141

end142

end143

end144

145

if (hs > 0)146

nums=(1:1:(k^n));147

for (j=1:ceil(((k^n)*hs)))148

rand_value = ceil(rand()*length(find(nums>=1)));149

[rows,cols,vals] = find(nums>=1);150

x_ = rows(rand_value);151

y_ = cols(rand_value);152

h_s(j) = nums(x_,y_);153

nums(x_,y_) = 0;154

traffic(:,h_s(j)) = traffic(:,h_s(j))*4;155

[strng] = sprintf(’Hotspot Generated at node %d’,h_s(j));156

disp(strng);157

end158

end159

160

if (output_text_file == 1)161

file_1 = fopen(’/Users/lydick/Desktop/file.txt’,’w’);162

for (i=1:k^n)163

fprintf(file_1,’0%d’,traffic(i,1));164

for (j=2:k^n)165

if (j == i)166

fprintf(file_1,’ 00’);167
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else168

fprintf(file_1,’ 0%d’,traffic(i,j));169

end170

end171

fprintf(file_1,’\n’);172

end173

fclose(file_1);174

%traffic175

end176

177

% For each traffic dest/source pair178

% These are delay independent/load independent visualizations.179

% Mostly this is the visual demand... not the traffic.180

181

if (option <= 3)182

for src=1:len183

for dest=1:len184

if(traffic(src,dest) > 0)185

if (option == 1)186

ch_load = ch_load + traffic(src,dest)*dimord_route(src-1, dest-1, k, n);187

188

elseif (option == 2)189

ch_load = ch_load + traffic(src,dest)*dirord_route(src-1, dest-1, k, n);190

191

elseif (option == 3)192

ch_load = ch_load + traffic(src,dest)*minobliv_route(src-1, dest-1, k, n);193

194

end195

end196

end197

end198

end199

200

201

elseif (option == 7)202

[ch_load,delay] = do_cqr2(traffic,k,n,failure);203

avg_delay = mean(delay);204

max_delay = max(delay);205

min_delay = min(delay);206

[strng] = sprintf(’Mean Delay: \t%0.3g\nMax Delay: \t%d\nMin Delay: \t%d’,avg_delay,max_delay,min_delay);207

disp(strng);208

209

elseif (option == 6)210

[ch_load,delay] = do_cqr1(traffic,k,n,failure);211

avg_delay = mean(delay);212

max_delay = max(delay);213

min_delay = min(delay);214

[strng] = sprintf(’Mean Delay: \t%0.3g\nMax Delay: \t%d\nMin Delay: \t%d’,avg_delay,max_delay,min_delay);215

disp(strng);216

217

elseif (option == 5)218

[ch_load,delay] = do_chaos(traffic,k,n,failure);219

avg_delay = mean(delay);220

max_delay = max(delay);221

min_delay = min(delay);222

[strng] = sprintf(’Mean Delay: \t%0.3g\nMax Delay: \t%d\nMin Delay: \t%d’,avg_delay,max_delay,min_delay);223

disp(strng);224

225

elseif (option == 4)226

[ch_load,delay,failed_nodes_queue] = do_minadaptive(traffic,k,n,failure);227

avg_delay = mean(delay);228

max_delay = max(delay);229

min_delay = min(delay);230

[strng] = sprintf(’Mean Delay: \t%0.3g\nMax Delay: \t%d\nMin Delay: \t%d’,avg_delay,max_delay,min_delay);231

disp(strng);232
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233

end234

235

subplot(1,2,1);236

max_ch_load = max(max(ch_load));237

ch_load = ch_load / max_ch_load;238

std_dev = mean(std(ch_load));239

if (plot == 1)240

view_load(ch_load, k, n, 1.0-(std_dev), 1.0-(std_dev*0.5));241

end242

243

244

count = 1;245

while (count <= (k^n) && plot == 1 && n > 2)246

[val_x,val_y,val_z] = i2dim(count,k,n);247

if (find(failed_nodes_queue == count) >= 1)248

[val1_x,val1_y,val1_z] = sphere(30);249

val1_x = val1_x.*0.05; val1_y = val1_y.*0.05; val1_z = val1_z.*0.05;250

val1_x = val1_x + val_x; val1_y = val1_y + val_y; val1_z = val1_z + val_z;251

plot3(val1_x,val1_y,val1_z,’k’);252

253

elseif ((hs > 0) && (nums(count) == 0))254

[val1_x,val1_y,val1_z] = sphere(30);255

val1_x = val1_x.*0.05; val1_y = val1_y.*0.05; val1_z = val1_z.*0.05;256

val1_x = val1_x + val_x; val1_y = val1_y + val_y; val1_z = val1_z + val_z;257

plot3(val1_x,val1_y,val1_z,’r’);258

259

else260

[val1_x,val1_y,val1_z] = sphere(30);261

val1_x = val1_x.*0.05; val1_y = val1_y.*0.05; val1_z = val1_z.*0.05;262

val1_x = val1_x + val_x; val1_y = val1_y + val_y; val1_z = val1_z + val_z;263

plot3(val1_x,val1_y,val1_z,’b’);264

end265

count = count + 1;266

end267

268

link_load = zeros(k^n*6,1);269

if (n == 3)270

for i=1:k^n271

[x,y,z] = i2dim(i-1,k,n);272

link_load(6*(i-1)+1) = ch_load(i,dim2i(mod(x+1,k),y,z,k,n)+1);273

link_load(6*(i-1)+2) = ch_load(i,dim2i(mod(x-1,k),y,z,k,n)+1);274

link_load(6*(i-1)+3) = ch_load(i,dim2i(x,mod(y+1,k),z,k,n)+1);275

link_load(6*(i-1)+4) = ch_load(i,dim2i(x,mod(y-1,k),z,k,n)+1);276

link_load(6*(i-1)+5) = ch_load(i,dim2i(x,y,mod(z+1,k),k,n)+1);277

link_load(6*(i-1)+6) = ch_load(i,dim2i(x,y,mod(z-1,k),k,n)+1);278

end279

else280

[r,c,v] = find(ch_load);281

link_load = v;282

end283

284

hold off;285

t = [0:1/50:1];286

subplot(1,2,2);287

[t1,t2] = hist(link_load,t);288

hist(link_load,t);289

axis([-0.1 1.1 0 max(t1)])290

ylabel(’Number of Links’);291

xlabel(’Normalized Load per Bi-Directional Link’);292

title(’Link Load Histogram’);293

legend(’Load Distribution’);294

avg_thpt = mean(link_load);295

std_thpt = std(link_load);296

[strng] = sprintf(’Avg Link Load: \t%2.2f%%\nStd Dev: \t%2.2f’, avg_thpt*100,std_thpt*100);297
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disp(strng);298

error_status = 0;299

set(gcf,’Position’, [50,500,650,300]);300
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C.1.2 file: view load.m
function view_load(route, k, n, mid, high)1

%2

% Use: view_load(route, k, n, mid, high)3

% load = 2-D matrix containing load info between each pair of4

% nodes5

% k , n = size of torus6

% mid = threshold for coloring loads < mid to green color7

% high = thrshold for coloring loads > high to red color8

% all other loads will be colored yellow9

%10

11

len = k^n;12

i = 1;13

for r=1:len14

for c = 1:len15

if(route(r,c) > 0)16

[sx,sy,sz] = i2dim(r-1, k, n);17

[dx,dy,dz] = i2dim(c-1, k, n);18

if(abs(sx-dx) <= 1)19

x(i,:) = [sx dx];20

else21

x(i,:) = [k-1, k];22

end23

24

if(abs(sy-dy) <= 1)25

y(i,:) = [sy dy];26

else27

y(i,:) = [k-1, k];28

end29

30

if(n > 2)31

if(abs(sz-dz) <= 1)32

z(i,:) = [sz dz];33

else34

z(i,:) = [k-1, k];35

end36

else37

z(i,:) = [0 0];38

end39

if(route(r,c) < mid)40

color = ’g’;41

elseif(route(r,c) > high)42

color = ’r’;43

else44

color = ’y’;45

end46

47

if (n > 2)48

plot3(x’, y’, z’, color);49

50

else51

plot(x’,y’, color);52

end53

54

hold on;55

%i = i + 1;56

end57

end58

end59

60

grid on;61

if (n > 2)62

axis ([0 k 0 k 0 k], ’square’);63
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zlabel(’z’);64

else65

axis ([0 k 0 k], ’square’);66

end67

68

xlabel(’x’);69

ylabel(’y’);70

title(’Visualization of Link Utilizations’);71

72
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C.2 Routing Scripts

C.2.1 file: dim2i.m
function i = dim2i(x,y,z,k,n)1

%2

%3

% Use: function i = dim2i(x, y, z, k, n)4

% i = index position5

% k = size of k for k-ary n-cube6

% n = size of n for k-ary n-cube7

%8

9

if(n > 2)10

i = x + k*y + k*k*z;11

else12

i = x + k*y;13

end14
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C.2.2 file: i2dim.m
function [x,varargout] = i2dim(i, k, n)1

%2

%3

% Use: function [x,y,z] = index2dim(i, k, n)4

% i = index position5

% k = size of k for k-ary n-cube6

% n = size of n for k-ary n-cube7

%8

nout = max(nargout,1)-1;9

varargout = cell(nout, 1);10

x = rem(i,k);11

if(n > 1)12

varargout(1) = num2cell(rem(floor(i/k),k));13

end14

15

if(n > 2)16

varargout(2) = num2cell(floor(i/(k*k)));17

end18
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C.2.3 file: dimord route.m
function route = dimord_route(src, dest, k, n)1

%2

% Use: route = dimord_route(src, dest, k, n)3

%4

5

[sx, sy, sz] = i2dim(src, k, n);6

[dx, dy, dz] = i2dim(dest, k, n);7

8

9

len = k^n;10

route = zeros(len);11

12

previ = src;13

14

% Route in the x-dimension15

16

currentx = sx;17

dirx = dimord(sx, dx, k);18

if dirx == -219

dirx = sign(rand(1)-.5);20

end21

22

while currentx ~= dx23

currentx = currentx + dirx;24

25

if(currentx < 0)26

currentx = currentx + k;27

end28

if(currentx >= k)29

currentx = currentx - k;30

end31

32

currenti = dim2i(currentx,sy,sz,k,n);33

route(previ+1, currenti+1) = 1;34

previ = currenti;35

end36

37

% Route in the y-dimension38

if (n > 1)39

currenty = sy;40

diry = dimord(sy, dy, k);41

if diry == -242

diry = sign(rand(1)-.5);43

end44

45

while currenty ~= dy46

currenty = currenty + diry;47

if(currenty < 0)48

currenty = currenty + k;49

end50

51

if(currenty >= k)52

currenty = currenty - k;53

end54

55

currenti = dim2i(dx,currenty,sz,k,n);56

route(previ+1, currenti+1) = 1;57

previ = currenti;58

end59

60

end % y-dimension61

62

% Route in the z-dimension63
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if (n > 2)64

currentz = sz;65

dirz = dimord(sz, dz, k);66

if dirz == -267

dirz = sign(rand(1)-.5);68

end69

70

while currentz ~= dz71

currentz = currentz + dirz;72

if(currentz < 0)73

currentz = currentz + k;74

end75

if(currentz >= k)76

currentz = currentz - k;77

end78

79

currenti = dim2i(dx, dy, currentz,k,n);80

route(previ+1, currenti+1) = 1;81

previ = currenti;82

end83

84

end85
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C.2.4 file: dirord route.m
function route = dirord_route(src, dest, k, n)1

%2

% Use: route = dirord_route(src, dest, k, n)3

% performs direction order routing4

% (+x, +y, +z, -x, -y, -z)5

%6

7

[sx, sy, sz] = i2dim(src, k, n);8

[dx, dy, dz] = i2dim(dest, k, n);9

10

len = k^n;11

route = zeros(len);12

13

previ = src;14

15

% Get directions in each dimension16

currentx = sx;17

dirx = dimord(sx, dx, k);18

if dirx == -219

dirx = sign(rand(1)-.5);20

end21

22

if (n > 1)23

currenty = sy;24

diry = dimord(sy, dy, k);25

if diry == -226

diry = sign(rand(1)-.5);27

end28

end29

30

if (n > 2)31

currentz = sz;32

dirz = dimord(sz, dz, k);33

if dirz == -234

dirz = sign(rand(1)-.5);35

end36

end37

38

39

% Route in the +x-dimension40

if(dirx > 0)41

while currentx ~= dx42

currentx = currentx + dirx;43

44

if(currentx < 0)45

currentx = currentx + k;46

end47

if(currentx >= k)48

currentx = currentx - k;49

end50

51

currenti = dim2i(currentx,sy,sz,k,n);52

route(previ+1, currenti+1) = 1;53

previ = currenti;54

end55

end56

57

% Route in the +y-dimension58

if(n > 1)59

if(diry > 0)60

while currenty ~= dy61

currenty = currenty + diry;62

if(currenty < 0)63
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currenty = currenty + k;64

end65

66

if(currenty >= k)67

currenty = currenty - k;68

end69

70

currenti = dim2i(currentx,currenty,sz,k,n);71

route(previ+1, currenti+1) = 1;72

previ = currenti;73

end74

end75

end76

77

78

% Route in the +z-dimension79

if(n > 2)80

if(dirz > 0)81

while currentz ~= dz82

currentz = currentz + dirz;83

if(currentz < 0)84

currentz = currentz + k;85

end86

if(currentz >= k)87

currentz = currentz - k;88

end89

90

currenti = dim2i(currentx, currenty, currentz,k,n);91

route(previ+1, currenti+1) = 1;92

previ = currenti;93

end94

end95

end96

97

% Route in the -x-dimension98

if(dirx < 0)99

while currentx ~= dx100

currentx = currentx + dirx;101

102

if(currentx < 0)103

currentx = currentx + k;104

end105

if(currentx >= k)106

currentx = currentx - k;107

end108

109

currenti = dim2i(currentx, currenty, currentz,k,n);110

route(previ+1, currenti+1) = 1;111

previ = currenti;112

end113

end114

115

% Route in the -y-dimension116

if(n > 1)117

if(diry < 0)118

while currenty ~= dy119

currenty = currenty + diry;120

if(currenty < 0)121

currenty = currenty + k;122

end123

124

if(currenty >= k)125

currenty = currenty - k;126

end127

128
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currenti = dim2i(currentx, currenty, currentz,k,n);129

route(previ+1, currenti+1) = 1;130

previ = currenti;131

end132

end133

end134

135

% Route in the -z-dimension136

if(n > 2)137

if(dirz < 0)138

while currentz ~= dz139

currentz = currentz + dirz;140

if(currentz < 0)141

currentz = currentz + k;142

end143

if(currentz >= k)144

currentz = currentz - k;145

end146

147

currenti = dim2i(currentx, currenty, currentz,k,n);148

route(previ+1, currenti+1) = 1;149

previ = currenti;150

end151

end152

end153
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C.2.5 file: minobliv route.m
function route = minobliv_route(src, dest, k, n)1

%2

% Use: route = minobliv_route(src, dest, k, n)3

% performs minimum oblivious routing4

%5

%6

7

len = k^n;8

route = zeros(len);9

10

previ = src;11

12

% Get coordinates of source & destination13

[sx, sy, sz] = i2dim(src, k, n);14

[dx, dy, dz] = i2dim(dest, k, n);15

16

[dirx, deltax] = dimord(sx, dx, k);17

18

if(n > 1)19

[diry, deltay] = dimord(sy, dy, k);20

end21

if(n > 2)22

[dirz, deltaz] = dimord(sz, dz, k);23

end24

25

% Calculate an intermediate node26

% First find the bounding box27

ix = round(deltax*rand(1) + sx);28

29

if(ix < 0)30

ix = ix + k;31

end32

if(ix >= k)33

ix = ix - k;34

end35

36

if(n > 1)37

iy = round(deltay*rand(1) + sy);38

if(iy < 0)39

iy = iy + k;40

end41

if(iy >= k)42

iy = iy - k;43

end44

45

end46

47

if(n > 2)48

iz = round(deltaz*rand(1) + sz);49

if(iz < 0)50

iz = iz + k;51

end52

if(iz >= k)53

iz = iz - k;54

end55

end56

57

inter_node = dim2i(ix,iy,iz,k,n);58

route = dimord_rand_route(src, inter_node, k, n);59

route = route + dimord_rand_route(inter_node, dest, k, n);60

61
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C.2.6 file: do minadaptive.m
function [ch_load, delay, failed_nodes_queue] = do_minadaptive(traffic, k, n, loss);1

2

% Use: [ch_load, delay, failed_nodes_queue] = do_chaos(traffic, k, n, loss);3

4

size = k^n;5

6

threshold = 1;7

flit_size = 0.1;8

total_deflections = 0;9

dropped = 0;10

11

% start the queue with a value which should never occur. Pi.12

failed_nodes_queue = pi;13

14

total_original_traffic = 0;15

16

ch_load = zeros(size,size);17

delay = [1:size];18

for (i=0:size-1)19

delay(i+1) = 0;20

end21

22

failure = delay;23

24

total_original_traffic = sum(sum(traffic>0));25

26

for (i=0:size-1)27

if (rand() <= loss)28

failure(i+1) = 1;29

[str,err] = sprintf(’Nodal Failure Simulated at node: %d’,i);30

disp(str);31

failed_nodes_queue = push(failed_nodes_queue, i);32

dropped = dropped + sum(traffic(i+1,:)>0);33

for (j=1:size)34

traffic(i+1,j) = 0;35

end36

dropped = dropped + sum(traffic(:,i+1)>0);37

for (j=1:size)38

traffic(j,i+1) = 0;39

end40

41

end42

end43

44

total_traffic = 0;45

46

for (i=1:size)47

for (j=1:size)48

total_traffic = total_traffic + traffic(i,j);49

end50

end51

52

53

% While there is traffic within the temp_traffic matrix....54

55

while (length(find(traffic>=1))~=0)56

57

temp_ch_load = zeros(size,size);58

temp_traffic = traffic;59

[strng,err] = sprintf(’...traffic demand of %d packets’, length(find(traffic)));60

disp(strng);61

62

while (length(find(temp_traffic>=1))~=0)63
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64

% for one node/src pair, randomly select src/dest pair65

rand_value = ceil(rand()*length(find(temp_traffic>=1)));66

[rows,cols,vals] = find(temp_traffic>=1);67

src = rows(rand_value);68

dest = cols(rand_value);69

70

71

% Get coordinates for those values72

[sx, sy, sz] = i2dim(src-1, k, n);73

[dx, dy, dz] = i2dim(dest-1, k, n);74

75

[dirx, deltax] = dimord(sx, dx, k);76

77

if(n > 1)78

[diry, deltay] = dimord(sy, dy, k);79

dirz = 0;80

81

end82

if(n > 2)83

[dirz, deltaz] = dimord(sz, dz, k);84

85

end86

87

% these print the directions, but before selecting which direction88

% to take, we need to consider that that path may be not as89

% described... I don’t think I’m doing this correctly... arg!!90

91

% Next hop coordinates first equal the source location.92

nx = sx;93

ny = sy;94

nz = sz;95

test_x = -1;96

test_y = -1;97

test_z = -1;98

val_test_x = Inf;99

val_test_y = Inf;100

val_test_z = Inf;101

flag_misroute = 0;102

route_direction = ’x’;103

104

% Test locations, needing to see which temp_traffic values are105

% smallest106

107

if (dirx ~= 0)108

test_x = dim2i(mod(nx+dirx,k),ny,nz,k,n)+1;109

val_test_x = temp_ch_load(src,test_x);110

if (failure(test_x) == 1)111

val_test_x = Inf;112

end113

end114

115

if (diry ~= 0)116

test_y = dim2i(nx,mod(ny+diry,k),nz,k,n)+1;117

val_test_y = temp_ch_load(src,test_y);118

if (failure(test_y) == 1)119

val_test_y = Inf;120

end121

end122

123

if (dirz ~= 0)124

test_z = dim2i(nx,ny,mod(nz+dirz,k),k,n)+1;125

val_test_z = temp_ch_load(src,test_z);126

if (failure(test_z) == 1)127

val_test_z = Inf;128
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end129

end130

131

flag_no_progress = 0;132

min_val = min(val_test_y, min(val_test_z, val_test_x));133

if (val_test_z == Inf && val_test_y == Inf && val_test_x == Inf && src ~= dest)134

flag_no_progress = 1;135

end136

137

% If the min val will go over the threshold, we must misroute.138

% First recalculate the minimum of the opposite direction.139

if (min_val + flit_size > threshold && flag_no_progress == 0)140

flag_misroute = 1;141

total_deflections = total_deflections + 1;142

traffic(src,dest) = traffic(src,dest) + 1;143

elseif (flag_no_progress == 1)144

dropped = dropped + 1;145

else146

147

% If all are the same, this randomizes the direction to route.148

switch(ceil(rand()*3))149

case (1)150

switch(min_val)151

case (val_test_x)152

route_direction = ’x’;153

next_hop = test_x;154

case (val_test_y)155

route_direction = ’y’;156

next_hop = test_y;157

case (val_test_z)158

route_direction = ’z’;159

next_hop = test_z;160

end161

case (2)162

switch(min_val)163

case (val_test_z)164

route_direction = ’z’;165

next_hop = test_z;166

case (val_test_x)167

route_direction = ’x’;168

next_hop = test_x;169

case (val_test_y)170

route_direction = ’y’;171

next_hop = test_y;172

end173

case (3)174

switch(min_val)175

case (val_test_y)176

route_direction = ’y’;177

next_hop = test_y;178

case (val_test_z)179

route_direction = ’z’;180

next_hop = test_z;181

case (val_test_x)182

route_direction = ’x’;183

next_hop = test_x;184

end185

186

end187

188

end189

190

if (flag_misroute == 1)191

delay(src) = delay(src) + 1;192

end193
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194

195

temp_traffic(src,dest) = temp_traffic(src,dest) - 1;196

traffic(src,dest) = traffic(src,dest) - 1;197

if (src ~= next_hop && flag_misroute == 0 && flag_no_progress == 0)198

traffic(next_hop,dest) = traffic(next_hop,dest) + 1;199

temp_ch_load(src,next_hop) = temp_ch_load(src,next_hop) + flit_size;200

end201

202

203

204

end205

206

% This gets us to every src/dest going one hop.207

ch_load = ch_load + temp_ch_load;208

for (i=1:size)209

traffic(i,i) = 0;210

end211

212

end213

214

[strng, err] = sprintf(’Total deflections: %d’, total_deflections);215

disp(strng);216

[strng, err] = sprintf(’Total number of dropped packets from failed nodes: %d’, dropped);217

disp(strng);218

[strng, err] = sprintf(’Total traffic demand: %d’, total_original_traffic);219

disp(strng);220

[strng, err] = sprintf(’Percent of dropped traffic: %0.03g’, dropped/total_original_traffic*100);221

disp(strng);222

223

224

225

226
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C.2.7 file: do cqr1.m
function [ch_load, delay] = do_cqr1(traffic, k, n, loss)1

2

% Use: [ch_load, delay] = do_cqr1(traffic, k, n, loss);3

size = k^n;4

threshold = 100;5

flit_size = 0.1;6

total_deflections = 0;7

dropped = 0;8

time = 0;9

ch_load = zeros(size,size);10

delay = zeros(size,1);11

failure = zeros(size,1);12

13

% Calculate and simulate nodal failures.14

for i=0:size-115

if (rand() <= loss)16

failure(i+1) = 1;17

[str,err] = sprintf(’Nodal Failure Simulated at node: %d’,i);18

disp(str);19

disp(err);20

for j=1:size21

traffic(i+1,j) = 0;22

traffic(j,i+1) = 0;23

end24

end25

end26

27

% get rid of any traffic src=dest28

for i=1:k^n29

traffic(i,i) = 0;30

end31

32

% Find total traffic demand33

total_traffic = sum(sum(traffic));34

35

temp_traffic = traffic; % preserve the original traffic matrix.36

packet_matrix = cqr_transformTrafficMatrix(temp_traffic); % convert to the packet matrix37

extra_temp_traffic = temp_traffic;38

packet_queues = zeros(k^n,6);39

40

while(length(find(temp_traffic>=1))~=0)41

42

%Find a random packet, remove it, change the parameters, and put it43

%back into the matrix.44

[src,dest] = cqr_getRandomValue(temp_traffic);45

[xdir,ydir,zdir,packet_queues] = cqr_chooseQuadrant(src,dest,n,k,packet_queues);46

[dx,dy,dz] = i2dim(dest-1,k,n);47

[sx,sy,sz] = i2dim(src-1,k,n);48

[d_x,deltax] = dimord(sx,dx,k);49

[d_y,deltay] = dimord(sy,dy,k);50

[d_z,deltaz] = dimord(sz,dz,k);51

time = time + abs(deltax) + abs(deltay) + abs(deltaz);52

if (sign(d_x) ~= sign(xdir)) delay(src) = delay(src) + (k-(abs(deltax)+abs(deltax))); end53

if (sign(d_y) ~= sign(ydir)) delay(src) = delay(src) + (k-(abs(deltay)+abs(deltay))); end54

if (sign(d_z) ~= sign(zdir)) delay(src) = delay(src) + (k-(abs(deltaz)+abs(deltaz))); end55

[pk1,packet_matrix,extra_temp_traffic] = cqr_removePacket(packet_matrix,src,dest,extra_temp_traffic);56

pk1.initialized = 1;57

pk1.x_dir = xdir;58

pk1.y_dir = ydir;59

pk1.z_dir = zdir;60

[packet_matrix,extra_temp_traffic] = cqr_addPacket(pk1,packet_matrix,src,dest,extra_temp_traffic);61

temp_traffic(src,dest) = temp_traffic(src,dest) - 1;62

end63
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64

% we should now have fully transformed and calculated packet/traffic65

% matrices .66

67

while (length(find(traffic>=1))~=0)68

69

temp_ch_load = zeros(size,size);70

temp_traffic = traffic;71

temp_packet_matrix = packet_matrix;72

73

while (length(find(temp_traffic>=1))~=0)74

75

% for one node/src pair, randomly select src/dest pair76

[src,dest] = cqr_getRandomValue(temp_traffic);77

78

% Get coordinates for those values79

[pkt,temp_packet_matrix,temp_traffic] = cqr_removePacket(temp_packet_matrix,src,dest,temp_traffic);80

[pkt_global,packet_matrix,traffic] = cqr_removePacket(packet_matrix,src,dest,traffic);81

82

dirx = pkt.x_dir;83

diry = pkt.y_dir;84

dirz = pkt.z_dir;85

86

[sx, sy, sz] = i2dim(src-1, k, n);87

88

% Next hop coordinates first equal the source location.89

nx = sx;90

ny = sy;91

nz = sz;92

test_x = -1;93

test_y = -1;94

test_z = -1;95

val_test_x = Inf;96

val_test_y = Inf;97

val_test_z = Inf;98

flag_misroute = 0;99

flag_no_progress = 0;100

101

% Test locations, needing to see which temp_traffic values are102

% smallest103

if (dirx ~= 0)104

test_x = dim2i(mod(nx+dirx,k),ny,nz,k,n)+1;105

val_test_x = temp_ch_load(src,test_x);106

if (failure(test_x) == 1)107

val_test_x = Inf;108

end109

end110

111

if (diry ~= 0)112

test_y = dim2i(nx,mod(ny+diry,k),nz,k,n)+1;113

val_test_y = temp_ch_load(src,test_y);114

if (failure(test_y) == 1)115

val_test_y = Inf;116

end117

end118

119

if (dirz ~= 0)120

test_z = dim2i(nx,ny,mod(nz+dirz,k),k,n)+1;121

val_test_z = temp_ch_load(src,test_z);122

if (failure(test_z) == 1)123

val_test_z = Inf;124

end125

end126

127

min_val = min(val_test_y, min(val_test_z, val_test_x));128
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129

if (val_test_z == Inf && val_test_y == Inf && val_test_x == Inf)130

if (src ~= dest)131

flag_no_progress = 1;132

[strng] = sprintf(’%d-->%d :: xdir:%d ydir:%d zdir:%d TIME:%d’,src,dest,dirx,diry,dirz,time);133

disp(strng);134

else135

%packet reached its destination... DROP IT!136

end137

end138

139

% If the min val will go over the threshold, we must misroute.140

% First recalculate the minimum of the opposite direction.141

if (min_val + flit_size > threshold && flag_no_progress == 0)142

flag_misroute = 1;143

total_deflections = total_deflections + 1;144

delay(src) = delay(src) + 1;145

% we queue back only globally - not locally. There is nothing146

% we can do until the next iteration with the threshold being147

% surpassed.148

[packet_matrix,traffic] = cqr_addPacket(pkt_global,packet_matrix,src,dest,traffic);149

150

elseif (flag_no_progress == 1 && src ~= dest)151

dropped = dropped + 1;152

elseif (src == dest)153

disp(’packet reached destination’);154

else155

156

% If all are the same, this randomizes the direction to route.157

switch(ceil(rand()*3))158

case (1)159

switch(min_val)160

case (val_test_x)161

next_hop = test_x;162

case (val_test_y)163

next_hop = test_y;164

case (val_test_z)165

next_hop = test_z;166

end167

case (2)168

switch(min_val)169

case (val_test_z)170

next_hop = test_z;171

case (val_test_x)172

next_hop = test_x;173

case (val_test_y)174

next_hop = test_y;175

end176

case (3)177

switch(min_val)178

case (val_test_y)179

next_hop = test_y;180

case (val_test_z)181

next_hop = test_z;182

case (val_test_x)183

next_hop = test_x;184

end185

186

end187

188

% we now have our next_hop189

[nx, ny, nz] = i2dim(next_hop-1, k, n);190

[dx, dy, dz] = i2dim(dest-1, k, n);191

d_x = dimord(nx,dx,k);192

d_y = dimord(ny,dy,k);193
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d_z = dimord(nz,dz,k);194

pkt_global.x_dir = abs(pkt_global.x_dir) * d_x;195

pkt_global.y_dir = abs(pkt_global.y_dir) * d_y;196

pkt_global.z_dir = abs(pkt_global.z_dir) * d_z;197

198

z_dir_temp = pkt_global.z_dir;199

if (n < 3)200

z_dir_temp = 0;201

end202

203

if (pkt_global.x_dir == 0 && pkt_global.y_dir == 0 && z_dir_temp == 0)204

else205

[packet_matrix, traffic] = cqr_addPacket(pkt_global,packet_matrix,next_hop,dest,traffic);206

end207

temp_ch_load(src,next_hop) = temp_ch_load(src,next_hop) + flit_size;208

end209

end210

211

% This gets us to every src/dest going one hop.212

ch_load = ch_load + temp_ch_load;213

for i=1:size214

traffic(i,i) = 0;215

end216

217

end218

219

[strng, err] = sprintf(’Total deflections: %d’, total_deflections);220

disp(strng);221

[strng, err] = sprintf(’Total number of dropped packets from failed nodes: %d’, dropped);222

disp(strng);223

[strng, err] = sprintf(’Total traffic demand: %d’, total_traffic);224

disp(strng);225

[strng, err] = sprintf(’Percent of dropped traffic: %0.03g’, dropped/total_traffic*100);226

disp(strng);227

[strng, err] = sprintf(’Total number of hops: %d’, time);228

disp(strng);229

230

140



C.2.8 file: do cqr2.m
function [ch_load, delay] = do_cqr2(traffic, k, n, loss)1

% Use: [ch_load, delay] = do_cqr2(traffic, k, n, loss);2

3

size = k^n;4

threshold = 100;5

flit_size = 0.1;6

total_deflections = 0;7

dropped = 0;8

time = 0;9

ch_load = zeros(size,size);10

delay = zeros(size,1);11

failure = zeros(size,1);12

13

% Calculate and simulate nodal failures.14

for i=0:size-115

if (rand() <= loss)16

failure(i+1) = 1;17

[str,err] = sprintf(’Nodal Failure Simulated at node: %d’,i);18

disp(str);19

disp(err);20

for j=1:size21

traffic(i+1,j) = 0;22

traffic(j,i+1) = 0;23

end24

end25

end26

27

% get rid of any traffic src=dest28

for i=1:k^n29

traffic(i,i) = 0;30

end31

32

% Find total traffic demand33

total_traffic = sum(sum(traffic));34

35

temp_traffic = traffic; % preserve the original traffic matrix.36

packet_matrix = cqr_transformTrafficMatrix(temp_traffic); % convert to the packet matrix37

extra_temp_traffic = temp_traffic;38

packet_queues = zeros(k^n,6);39

40

while(length(find(temp_traffic>=1))~=0)41

42

%Find a random packet, remove it, change the parameters, and put it43

%back into the matrix.44

[src,dest] = cqr_getRandomValue(temp_traffic);45

[xdir,ydir,zdir,packet_queues] = cqr_chooseQuadrant_v(src,dest,n,k,packet_queues);46

[pk1,packet_matrix,extra_temp_traffic] = cqr_removePacket(packet_matrix,src,dest,extra_temp_traffic);47

[dx,dy,dz] = i2dim(dest-1,k,n);48

[sx,sy,sz] = i2dim(src-1,k,n);49

[d_x,deltax] = dimord(sx,dx,k);50

[d_y,deltay] = dimord(sy,dy,k);51

[d_z,deltaz] = dimord(sz,dz,k);52

if (sign(d_x) ~= sign(xdir)) delay(src) = delay(src) + (k-(abs(deltax)+abs(deltax))); end53

if (sign(d_y) ~= sign(ydir)) delay(src) = delay(src) + (k-(abs(deltay)+abs(deltay))); end54

if (sign(d_z) ~= sign(zdir)) delay(src) = delay(src) + (k-(abs(deltaz)+abs(deltaz))); end55

pk1.initialized = 1;56

pk1.x_dir = xdir;57

pk1.y_dir = ydir;58

pk1.z_dir = zdir;59

[packet_matrix,extra_temp_traffic] = cqr_addPacket(pk1,packet_matrix,src,dest,extra_temp_traffic);60

temp_traffic(src,dest) = temp_traffic(src,dest) - 1;61

end62

63
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% we should now have fully transformed and calculated packet/traffic64

% matrices .65

66

67

while (length(find(traffic>=1))~=0)68

69

temp_ch_load = zeros(size,size);70

temp_traffic = traffic;71

temp_packet_matrix = packet_matrix;72

73

while (length(find(temp_traffic>=1))~=0)74

time = time + 1;75

% for one node/src pair, randomly select src/dest pair76

[src,dest] = cqr_getRandomValue(temp_traffic);77

78

% Get coordinates for those values79

[pkt,temp_packet_matrix,temp_traffic] = cqr_removePacket(temp_packet_matrix,src,dest,temp_traffic);80

[pkt_global,packet_matrix,traffic] = cqr_removePacket(packet_matrix,src,dest,traffic);81

82

dirx = pkt.x_dir;83

diry = pkt.y_dir;84

dirz = pkt.z_dir;85

86

[sx, sy, sz] = i2dim(src-1, k, n);87

88

% Next hop coordinates first equal the source location.89

nx = sx;90

ny = sy;91

nz = sz;92

test_x = -1;93

test_y = -1;94

test_z = -1;95

val_test_x = Inf;96

val_test_y = Inf;97

val_test_z = Inf;98

flag_misroute = 0;99

flag_no_progress = 0;100

101

102

% Test locations, needing to see which temp_traffic values are103

% smallest104

delta_total = abs(dirx) + abs(diry) + abs(dirz);105

106

if (dirx ~= 0)107

test_x = dim2i(mod(nx+sign(dirx),k),ny,nz,k,n)+1;108

val_test_x = (1 + temp_ch_load(src,test_x)) * (1 - (abs(dirx) / delta_total));109

if (failure(test_x) == 1)110

val_test_x = Inf;111

end112

end113

114

if (diry ~= 0)115

test_y = dim2i(nx,mod(ny+sign(diry),k),nz,k,n)+1;116

val_test_y = (1 + temp_ch_load(src,test_y)) * (1 - (abs(diry) / delta_total));117

if (failure(test_y) == 1)118

val_test_y = Inf;119

end120

end121

122

if (dirz ~= 0)123

test_z = dim2i(nx,ny,mod(nz+sign(dirz),k),k,n)+1;124

val_test_z = (1 + temp_ch_load(src,test_z)) * (1 - (abs(dirz) / delta_total));125

if (failure(test_z) == 1)126

val_test_z = Inf;127

end128
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end129

130

min_val = min(val_test_y, min(val_test_z, val_test_x));131

132

if (val_test_z == Inf && val_test_y == Inf && val_test_x == Inf)133

if (src ~= dest)134

flag_no_progress = 1;135

[strng] = sprintf(’packet cannot move(?!) %d-->%d :: xdir:%d ydir:%d zdir:%d TIME:%d’,src,dest,dirx,diry,dirz,time);136

disp(strng);137

else138

%packet reached its destination... DROP IT!139

end140

end141

142

% If the min val will go over the threshold, we must misroute.143

% First recalculate the minimum of the opposite direction.144

if (min_val + flit_size > threshold && flag_no_progress == 0)145

flag_misroute = 1;146

total_deflections = total_deflections + 1;147

delay(src) = delay(src) + 1;148

% we queue back only globally - not locally. There is nothing149

% we can do until the next iteration with the threshold being150

% surpassed.151

[packet_matrix,traffic] = cqr_addPacket(pkt_global,packet_matrix,src,dest,traffic);152

153

elseif (flag_no_progress == 1 && src ~= dest)154

dropped = dropped + 1;155

elseif (src == dest)156

disp(’packet reached destination’);157

else158

159

d_x1 = pkt_global.x_dir;160

d_y1 = pkt_global.y_dir;161

d_z1 = pkt_global.z_dir;162

% If all are the same, this randomizes the direction to route.163

switch(ceil(rand()*3))164

case (1)165

switch(min_val)166

case (val_test_x)167

next_hop = test_x;168

d_x1 = (sign(pkt_global.x_dir) * -1) + pkt_global.x_dir;169

case (val_test_y)170

next_hop = test_y;171

d_y1 = (sign(pkt_global.y_dir) * -1) + pkt_global.y_dir;172

case (val_test_z)173

next_hop = test_z;174

d_z1 = (sign(pkt_global.z_dir) * -1) + pkt_global.z_dir;175

end176

case (2)177

switch(min_val)178

case (val_test_z)179

next_hop = test_z;180

d_z1 = (sign(pkt_global.z_dir) * -1) + pkt_global.z_dir;181

case (val_test_x)182

next_hop = test_x;183

d_x1 = (sign(pkt_global.x_dir) * -1) + pkt_global.x_dir;184

case (val_test_y)185

next_hop = test_y;186

d_y1 = (sign(pkt_global.y_dir) * -1) + pkt_global.y_dir;187

end188

case (3)189

switch(min_val)190

case (val_test_y)191

next_hop = test_y;192

d_y1 = (sign(pkt_global.y_dir) * -1) + pkt_global.y_dir;193
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case (val_test_z)194

next_hop = test_z;195

d_z1 = (sign(pkt_global.z_dir) * -1) + pkt_global.z_dir;196

case (val_test_x)197

next_hop = test_x;198

d_x1 = (sign(pkt_global.x_dir) * -1) + pkt_global.x_dir;199

end200

201

end202

203

% we now have our next_hop204

[nx, ny, nz] = i2dim(next_hop-1, k, n);205

[dx, dy, dz] = i2dim(dest-1, k, n);206

pkt_global.x_dir = d_x1;207

pkt_global.y_dir = d_y1;208

pkt_global.z_dir = d_z1;209

z_dir_temp = pkt_global.z_dir;210

if (n < 3)211

z_dir_temp = 0;212

end213

214

if (pkt_global.x_dir == 0 && pkt_global.y_dir == 0 && z_dir_temp == 0)215

%do nothing, drop it, it’s successfully reached the dest.216

else217

[packet_matrix, traffic] = cqr_addPacket(pkt_global,packet_matrix,next_hop,dest,traffic);218

end219

temp_ch_load(src,next_hop) = temp_ch_load(src,next_hop) + flit_size;220

221

end222

end223

224

% This gets us to every src/dest going one hop.225

ch_load = ch_load + temp_ch_load;226

for i=1:size227

traffic(i,i) = 0;228

end229

230

end231

232

[strng, err] = sprintf(’Total deflections: %d’, total_deflections);233

disp(strng);234

[strng, err] = sprintf(’Total number of dropped packets from failed nodes: %d’, dropped);235

disp(strng);236

[strng, err] = sprintf(’Total traffic demand: %d’, total_traffic);237

disp(strng);238

[strng, err] = sprintf(’Percent of dropped traffic: %0.03g’, dropped/total_traffic*100);239

disp(strng);240

241
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C.2.9 file: cqr addPacket.m
function [packet_matrix, traffic_matrix] = cqr_addPacket(packet, packet_matrix_in, src, dest, traffic_matrix_in)1

2

traffic_matrix_in(src,dest) = traffic_matrix_in(src,dest) + 1;3

val = traffic_matrix_in(src,dest);4

5

packet_matrix_in(src,dest,val).valid = packet.valid;6

packet_matrix_in(src,dest,val).initialized = packet.initialized;7

packet_matrix_in(src,dest,val).x_dir = packet.x_dir;8

packet_matrix_in(src,dest,val).y_dir = packet.y_dir;9

packet_matrix_in(src,dest,val).z_dir = packet.z_dir;10

11

packet_matrix = packet_matrix_in;12

traffic_matrix = traffic_matrix_in;13
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C.2.10 file: cqr chooseQuadrant.m
function [dir_x,dir_y,dir_z,newqueues] = cqr_chooseQuadrant(src,dest,n,k,queues)1

% Use: [x_dir,y_dir,z_dir,newqueues] = cqr_chooseQuadrant(src,dest,n,k,queues)2

3

queue_x_pos = queues(src,1);4

queue_x_neg = queues(src,2);5

queue_y_pos = queues(src,3);6

queue_y_neg = queues(src,4);7

queue_z_pos = queues(src,5);8

queue_z_neg = queues(src,6);9

10

[sx, sy, sz] = i2dim(src-1, k, n);11

[dx, dy, dz] = i2dim(dest-1, k, n);12

13

14

15

16

if (n == 3)17

% for quadrant I: (+,+,+)18

[dir_q1x,q1_deltax] = dimord(sx, dx, k);19

[dir_q1y,q1_deltay] = dimord(sy, dy, k);20

[dir_q1z,q1_deltaz] = dimord(sz, dz, k);21

nu_of_queues = 3;22

if (sign(dir_q1x) < 0)23

t_q = queue_x_neg;24

elseif (sign(dir_q1x) > 0)25

t_q = queue_x_pos;26

else27

t_q = 0;28

nu_of_queues = nu_of_queues - 1;29

end30

31

if (sign(dir_q1y) < 0)32

t_q = t_q + queue_y_neg;33

elseif (sign(dir_q1y) > 0)34

t_q = t_q + queue_y_pos;35

else36

nu_of_queues = nu_of_queues - 1;37

end38

39

if (sign(dir_q1z) < 0)40

t_q = t_q + queue_z_neg;41

elseif (sign(dir_q1x) > 0)42

t_q = t_q + queue_z_pos;43

else44

nu_of_queues = nu_of_queues - 1;45

end46

t_q = t_q + 1;47

if (nu_of_queues ~= 0) q1_val = (abs(q1_deltax) + abs(q1_deltay) + abs(q1_deltaz)) * (t_q/nu_of_queues);48

else q1_val = Inf;49

end50

51

min_val = q1_val;52

dir_x = sign(q1_deltax);53

dir_y = sign(q1_deltay);54

dir_z = sign(q1_deltaz);55

56

57

% for quadrant II: (+ + -)58

[dir_q2x,q2_deltax] = dimord(sx, dx, k);59

[dir_q2y,q2_deltay] = dimord(sy, dy, k);60

[dir_q2z,q2_deltaz] = dimord(sz, dz, k);61

if (q2_deltaz > 0) q2_deltaz = q2_deltaz-k;62

elseif (q2_deltaz < 0) q2_deltaz = q2_deltaz+k;63
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else q2_deltaz = 0;64

end65

nu_of_queues = 3;66

if (sign(dir_q2x) < 0)67

t_q = queue_x_neg;68

elseif (sign(dir_q2x) > 0)69

t_q = queue_x_pos;70

else71

t_q = 0;72

nu_of_queues = nu_of_queues - 1;73

end74

75

if (sign(dir_q2y) < 0)76

t_q = t_q + queue_y_neg;77

elseif (sign(dir_q2y) > 0)78

t_q = t_q + queue_y_pos;79

else80

nu_of_queues = nu_of_queues - 1;81

end82

83

if (sign(dir_q2z) < 0)84

t_q = t_q + queue_z_neg;85

elseif (sign(dir_q2x) > 0)86

t_q = t_q + queue_z_pos;87

else88

nu_of_queues = nu_of_queues - 1;89

end90

t_q = t_q + 1;91

if (nu_of_queues ~= 0) q2_val = (abs(q2_deltax) + abs(q2_deltay) + abs(q2_deltaz)) * (t_q/nu_of_queues);92

else q2_val = Inf;93

end94

95

if (q2_val < min_val)96

min_val = q2_val;97

dir_x = sign(q2_deltax);98

dir_y = sign(q2_deltay);99

dir_z = sign(q2_deltaz);100

end101

102

103

% for quadrant III: (+ - +)104

[dir_q3x,q3_deltax] = dimord(sx, dx, k);105

[dir_q3y,q3_deltay] = dimord(sy, dy, k);106

[dir_q3z,q3_deltaz] = dimord(sz, dz, k);107

if (q3_deltay > 0) q3_deltay = q3_deltay-k;108

elseif (q3_deltay < 0) q3_deltay = q3_deltay+k;109

else q3_deltay = 0;110

end111

nu_of_queues = 3;112

if (sign(dir_q3x) < 0)113

t_q = queue_x_neg;114

elseif (sign(dir_q3x) > 0)115

t_q = queue_x_pos;116

else117

t_q = 0;118

nu_of_queues = nu_of_queues - 1;119

end120

121

if (sign(dir_q3y) < 0)122

t_q = t_q + queue_y_neg;123

elseif (sign(dir_q3y) > 0)124

t_q = t_q + queue_y_pos;125

else126

nu_of_queues = nu_of_queues - 1;127

end128
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129

if (sign(dir_q3z) < 0)130

t_q = t_q + queue_z_neg;131

elseif (sign(dir_q3x) > 0)132

t_q = t_q + queue_z_pos;133

else134

nu_of_queues = nu_of_queues - 1;135

end136

t_q = t_q + 1;137

if (nu_of_queues ~= 0) q3_val = (abs(q3_deltax) + abs(q3_deltay) + abs(q3_deltaz)) * (t_q/nu_of_queues);138

else q3_val = Inf;139

end140

141

if (q3_val < min_val)142

min_val = q3_val;143

dir_x = sign(q3_deltax);144

dir_y = sign(q3_deltay);145

dir_z = sign(q3_deltaz);146

end147

148

149

% for quadrant IV: (+ - -)150

[dir_q4x,q4_deltax] = dimord(sx, dx, k);151

[dir_q4y,q4_deltay] = dimord(sy, dy, k);152

[dir_q4z,q4_deltaz] = dimord(sz, dz, k);153

if (q4_deltay > 0) q4_deltay = q4_deltay-k;154

elseif (q4_deltay < 0) q4_deltay = q4_deltay+k;155

else q4_deltay = 0;156

end157

if (q4_deltaz > 0) q4_deltaz = q4_deltaz-k;158

elseif (q4_deltaz < 0) q4_deltaz = q4_deltaz+k;159

else q4_deltaz = 0;160

end161

nu_of_queues = 3;162

if (sign(dir_q4x) < 0)163

t_q = queue_x_neg;164

elseif (sign(dir_q4x) > 0)165

t_q = queue_x_pos;166

else167

t_q = 0;168

nu_of_queues = nu_of_queues - 1;169

end170

171

if (sign(dir_q4y) < 0)172

t_q = t_q + queue_y_neg;173

elseif (sign(dir_q4y) > 0)174

t_q = t_q + queue_y_pos;175

else176

nu_of_queues = nu_of_queues - 1;177

end178

179

if (sign(dir_q4z) < 0)180

t_q = t_q + queue_z_neg;181

elseif (sign(dir_q4x) > 0)182

t_q = t_q + queue_z_pos;183

else184

nu_of_queues = nu_of_queues - 1;185

end186

t_q = t_q + 1;187

if (nu_of_queues ~= 0) q4_val = (abs(q4_deltax) + abs(q4_deltay) + abs(q4_deltaz)) * (t_q/nu_of_queues);188

else q4_val = Inf;189

end190

191

if (q4_val < min_val)192

min_val = q4_val;193
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dir_x = sign(q4_deltax);194

dir_y = sign(q4_deltay);195

dir_z = sign(q4_deltaz);196

end197

198

199

% for quadrant V: (- + +)200

[dir_q5x,q5_deltax] = dimord(sx, dx, k);201

[dir_q5y,q5_deltay] = dimord(sy, dy, k);202

[dir_q5z,q5_deltaz] = dimord(sz, dz, k);203

if (q5_deltax > 0) q5_deltax = q5_deltax-k;204

elseif (q5_deltax < 0) q5_deltax = q5_deltax+k;205

else q5_deltax = 0;206

end207

nu_of_queues = 3;208

if (sign(dir_q5x) < 0)209

t_q = queue_x_neg;210

elseif (sign(dir_q5x) > 0)211

t_q = queue_x_pos;212

else213

t_q = 0;214

nu_of_queues = nu_of_queues - 1;215

end216

217

if (sign(dir_q5y) < 0)218

t_q = t_q + queue_y_neg;219

elseif (sign(dir_q5y) > 0)220

t_q = t_q + queue_y_pos;221

else222

nu_of_queues = nu_of_queues - 1;223

end224

225

if (sign(dir_q5z) < 0)226

t_q = t_q + queue_z_neg;227

elseif (sign(dir_q5x) > 0)228

t_q = t_q + queue_z_pos;229

else230

nu_of_queues = nu_of_queues - 1;231

end232

t_q = t_q + 1;233

if (nu_of_queues ~= 0) q5_val = (abs(q5_deltax) + abs(q5_deltay) + abs(q5_deltaz)) * (t_q/nu_of_queues);234

else q5_val = Inf;235

end236

237

if (q5_val < min_val)238

min_val = q5_val;239

dir_x = sign(q5_deltax);240

dir_y = sign(q5_deltay);241

dir_z = sign(q5_deltaz);242

end243

244

245

% for quadrant VI: (- + -)246

[dir_q6x,q6_deltax] = dimord(sx, dx, k);247

[dir_q6y,q6_deltay] = dimord(sy, dy, k);248

[dir_q6z,q6_deltaz] = dimord(sz, dz, k);249

if (q6_deltax > 0) q6_deltax = q6_deltax-k;250

elseif (q6_deltax < 0) q6_deltax = q6_deltax+k;251

else q6_deltax = 0;252

end253

if (q6_deltaz > 0) q6_deltaz = q6_deltaz-k;254

elseif (q6_deltaz < 0) q6_deltaz = q6_deltaz+k;255

else q6_deltaz = 0;256

end257

nu_of_queues = 3;258
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if (sign(dir_q6x) < 0)259

t_q = queue_x_neg;260

elseif (sign(dir_q6x) > 0)261

t_q = queue_x_pos;262

else263

t_q = 0;264

nu_of_queues = nu_of_queues - 1;265

end266

267

if (sign(dir_q6y) < 0)268

t_q = t_q + queue_y_neg;269

elseif (sign(dir_q6y) > 0)270

t_q = t_q + queue_y_pos;271

else272

nu_of_queues = nu_of_queues - 1;273

end274

275

if (sign(dir_q6z) < 0)276

t_q = t_q + queue_z_neg;277

elseif (sign(dir_q6x) > 0)278

t_q = t_q + queue_z_pos;279

else280

nu_of_queues = nu_of_queues - 1;281

end282

t_q = t_q + 1;283

if (nu_of_queues ~= 0) q6_val = (abs(q6_deltax) + abs(q6_deltay) + abs(q6_deltaz)) * (t_q/nu_of_queues);284

else q6_val = Inf;285

end286

287

if (q6_val < min_val)288

min_val = q6_val;289

dir_x = sign(q6_deltax);290

dir_y = sign(q6_deltay);291

dir_z = sign(q6_deltaz);292

end293

294

295

% for quadrant VII: (- - +)296

[dir_q7x,q7_deltax] = dimord(sx, dx, k);297

[dir_q7y,q7_deltay] = dimord(sy, dy, k);298

[dir_q7z,q7_deltaz] = dimord(sz, dz, k);299

if (q7_deltax > 0) q7_deltax = q7_deltax-k;300

elseif (q7_deltax < 0) q7_deltax = q7_deltax+k;301

else q7_deltax = 0;302

end303

if (q7_deltay > 0) q7_deltay = q7_deltay-k;304

elseif (q7_deltay < 0) q7_deltay = q7_deltay+k;305

else q7_deltay = 0;306

end307

nu_of_queues = 3;308

if (sign(dir_q7x) < 0)309

t_q = queue_x_neg;310

elseif (sign(dir_q7x) > 0)311

t_q = queue_x_pos;312

else313

t_q = 0;314

nu_of_queues = nu_of_queues - 1;315

end316

317

if (sign(dir_q7y) < 0)318

t_q = t_q + queue_y_neg;319

elseif (sign(dir_q7y) > 0)320

t_q = t_q + queue_y_pos;321

else322

nu_of_queues = nu_of_queues - 1;323
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end324

325

if (sign(dir_q7z) < 0)326

t_q = t_q + queue_z_neg;327

elseif (sign(dir_q7x) > 0)328

t_q = t_q + queue_z_pos;329

else330

nu_of_queues = nu_of_queues - 1;331

end332

t_q = t_q + 1;333

if (nu_of_queues ~= 0) q7_val = (abs(q7_deltax) + abs(q7_deltay) + abs(q7_deltaz)) * (t_q/nu_of_queues);334

else q7_val = Inf;335

end336

337

if (q7_val < min_val)338

min_val = q7_val;339

dir_x = sign(q7_deltax);340

dir_y = sign(q7_deltay);341

dir_z = sign(q7_deltaz);342

end343

344

345

% for quadrant VIII: (- - -)346

[dir_q8x,q8_deltax] = dimord(sx, dx, k);347

[dir_q8y,q8_deltay] = dimord(sy, dy, k);348

[dir_q8z,q8_deltaz] = dimord(sz, dz, k);349

if (q8_deltax > 0) q8_deltax = q8_deltax-k;350

elseif (q8_deltax < 0) q8_deltax = q8_deltax+k;351

else q8_deltax = 0;352

end353

if (q8_deltay > 0) q8_deltay = q8_deltay-k;354

elseif (q8_deltay < 0) q8_deltay = q8_deltay+k;355

else q8_deltay = 0;356

end357

if (q8_deltaz > 0) q8_deltaz = q8_deltaz-k;358

elseif (q8_deltaz < 0) q8_deltaz = q8_deltaz+k;359

else q8_deltaz = 0;360

end361

nu_of_queues = 3;362

if (sign(dir_q8x) > 0)363

t_q = queue_x_neg;364

elseif (sign(dir_q8x) < 0)365

t_q = queue_x_pos;366

else367

t_q = 0;368

nu_of_queues = nu_of_queues - 1;369

end370

371

if (sign(dir_q8y) > 0)372

t_q = t_q + queue_y_neg;373

elseif (sign(dir_q8y) < 0)374

t_q = t_q + queue_y_pos;375

else376

nu_of_queues = nu_of_queues - 1;377

end378

379

if (sign(dir_q8z) > 0)380

t_q = t_q + queue_z_neg;381

elseif (sign(dir_q8x) < 0)382

t_q = t_q + queue_z_pos;383

else384

nu_of_queues = nu_of_queues - 1;385

end386

t_q = t_q + 1;387

if (nu_of_queues ~= 0) q8_val = (abs(q8_deltax) + abs(q8_deltay) + abs(q8_deltaz)) * (t_q/nu_of_queues);388
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else q8_val = Inf;389

end390

391

if (q8_val < min_val)392

min_val = q8_val;393

dir_x = sign(q8_deltax);394

dir_y = sign(q8_deltay);395

dir_z = sign(q8_deltaz);396

end397

398

399

else400

401

% for quadrant I: (+ +)402

[dir_q1x,q1_deltax] = dimord(sx, dx, k);403

[dir_q1y,q1_deltay] = dimord(sy, dy, k);404

nu_of_queues = 2;405

if (sign(dir_q1x) < 0)406

t_q = queue_x_neg;407

elseif (sign(dir_q1x) > 0)408

t_q = queue_x_pos;409

else410

t_q = 0;411

nu_of_queues = nu_of_queues - 1;412

end413

414

if (sign(dir_q1y) < 0)415

t_q = t_q + queue_y_neg;416

elseif (sign(dir_q1y) > 0)417

t_q = t_q + queue_y_pos;418

else419

nu_of_queues = nu_of_queues - 1;420

end421

422

t_q = t_q + 1;423

if (nu_of_queues ~= 0) q1_val = (q1_deltax + q1_deltay) * (t_q/nu_of_queues);424

else q1_val = Inf;425

end426

427

min_val = q1_val;428

dir_x = sign(q1_deltax);429

dir_y = sign(q1_deltay);430

431

432

433

% for quadrant II: (+ -)434

[dir_q2x,q2_deltax] = dimord(sx, dx, k);435

[dir_q2y,q2_deltay] = dimord(sy, dy, k);436

if (q2_deltay > 0) q2_deltay = q2_deltay - k;437

elseif (q2_deltay < 0) q2_deltay = q2_deltay + k;438

else q2_deltay = 0;439

end440

nu_of_queues = 2;441

if (sign(dir_q2x) < 0)442

t_q = queue_x_neg;443

elseif (sign(dir_q2x) > 0)444

t_q = queue_x_pos;445

else446

t_q = 0;447

nu_of_queues = nu_of_queues - 1;448

end449

450

if (sign(dir_q2y) > 0)451

t_q = t_q + queue_y_neg;452

elseif (sign(dir_q2y) < 0)453
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t_q = t_q + queue_y_pos;454

else455

nu_of_queues = nu_of_queues - 1;456

end457

458

t_q = t_q + 1;459

if (nu_of_queues ~= 0) q2_val = (abs(q2_deltax) + abs(q2_deltay)) * (t_q/nu_of_queues);460

else q2_val = Inf;461

end462

463

if (q2_val < min_val)464

min_val = q2_val;465

dir_x = sign(q2_deltax);466

dir_y = sign(q2_deltay);467

end468

469

470

% for quadrant III: (- +)471

[dir_q3x,q3_deltax] = dimord(sx, dx, k);472

[dir_q3y,q3_deltay] = dimord(sy, dy, k);473

if (q3_deltax > 0) q3_deltax = q3_deltax - k;474

elseif (q3_deltax < 0) q3_deltax = q3_deltax + k;475

else q3_deltax = 0;476

end477

nu_of_queues = 2;478

if (sign(dir_q3x) > 0)479

t_q = queue_x_neg;480

elseif (sign(dir_q3x) < 0)481

t_q = queue_x_pos;482

else483

t_q = 0;484

nu_of_queues = nu_of_queues - 1;485

end486

487

if (sign(dir_q3y) < 0)488

t_q = t_q + queue_y_neg;489

elseif (sign(dir_q3y) > 0)490

t_q = t_q + queue_y_pos;491

else492

nu_of_queues = nu_of_queues - 1;493

end494

495

t_q = t_q + 1;496

if (nu_of_queues ~= 0) q3_val = (abs(q3_deltax) + abs(q3_deltay)) * (t_q/nu_of_queues);497

else q3_val = Inf;498

end499

500

if (q3_val < min_val)501

min_val = q3_val;502

dir_x = sign(q3_deltax);503

dir_y = sign(q3_deltay);504

end505

506

507

% for quadrant IV: (- -)508

[dir_q4x,q4_deltax] = dimord(sx, dx, k);509

[dir_q4y,q4_deltay] = dimord(sy, dy, k);510

if (q4_deltay > 0) q4_deltay = q4_deltay - k;511

elseif (q4_deltay < 0) q4_deltay = q4_deltay + k;512

else q4_deltay = 0;513

end514

if (q4_deltax > 0) q4_deltax = q4_deltax - k;515

elseif (q4_deltax < 0) q4_deltax = q4_deltax + k;516

else q4_deltax = 0;517

end518
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nu_of_queues = 2;519

if (sign(dir_q4x) > 0)520

t_q = queue_x_neg;521

elseif (sign(dir_q4x) < 0)522

t_q = queue_x_pos;523

else524

t_q = 0;525

nu_of_queues = nu_of_queues - 1;526

end527

528

if (sign(dir_q4y) > 0)529

t_q = t_q + queue_y_neg;530

elseif (sign(dir_q4y) < 0)531

t_q = t_q + queue_y_pos;532

else533

nu_of_queues = nu_of_queues - 1;534

end535

536

t_q = t_q + 1;537

if (nu_of_queues ~= 0) q4_val = (abs(q4_deltax) + abs(q4_deltay)) * (t_q/nu_of_queues);538

else q4_val = Inf;539

end540

541

if (q4_val < min_val)542

min_val = q4_val;543

dir_x = sign(q4_deltax);544

dir_y = sign(q4_deltay);545

end546

547

dir_z = 0;548

549

end550

551

newqueues = queues;552

553

if (sign(dir_x) > 0)554

newqueues(src,1) = queue_x_pos + 1;555

elseif (sign(dir_x) < 0)556

newqueues(src,2) = queue_x_neg + 1;557

end558

559

if (sign(dir_y) > 0)560

newqueues(src,3) = queue_y_pos + 1;561

elseif (sign(dir_y) < 0)562

newqueues(src,4) = queue_y_neg + 1;563

end564

565

if (sign(dir_z) > 0)566

newqueues(src,5) = queue_z_pos + 1;567

elseif (sign(dir_z) < 0)568

newqueues(src,6) = queue_z_neg + 1;569

end570

571
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C.2.11 file: cqr getRandomValue.m
function [src_,dest_,v] = cqr_getRandomValue(traff)1

% use: [src,dest,v] = cqr_getRandomValue(traffic_matrix);2

3

rand_value = ceil(rand()*length(find(traff>=1)));4

[rows,cols,vals] = find(traff>=1);5

src_ = rows(rand_value);6

dest_ = cols(rand_value);7

v = ceil(vals(rand_value)*rand());8
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C.2.12 file: cqr transformTrafficMatrix.m
function [packet_matrix_] = cqr_transformTrafficMatrix (traf_initial)1

%use: [packet_matrix] = cqr_transformTrafficMatrix (traffic_matrix);2

3

traf = traf_initial;4

size = length(traf);5

for i=1:size6

for j=1:size7

for k = 1:max(max(traf))8

packet_matrix_(i,j,k).initialized = 0;9

packet_matrix_(i,j,k).valid = 0;10

packet_matrix_(i,j,k).x_dir = 0;11

packet_matrix_(i,j,k).y_dir = 0;12

packet_matrix_(i,j,k).z_dir = 0;13

end14

end15

end16

17

while (length(find(traf>=1))~=0)18

[src,dest,v] = cqr_getRandomValue(traf);19

for i=1:size20

if (packet_matrix_(src,dest,i).valid == 0)21

value = i;22

break;23

end24

end25

packet_matrix_(src,dest,i).valid = 1;26

traf(src,dest) = traf(src,dest) - 1;27

end28
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Appendix D

Appendix D: Full Laboratory Results

D.1 Matlab Plot Scripts

D.1.1 file: convertLoad.m
function convertLoad(k,n,matrix);1

% usage: convertLoad(k,n,load_matrix)2

% where, load_matrix is the load distribution taken directly3

% from the ’interconnectThroughput’ script.4

5

load_matrix = zeros(k^n);6

7

for (i=1:(k^n))8

node = 28-i;9

negy = matrix(node,1);10

posy = matrix(node,2);11

posx = matrix(node,3);12

negx = matrix(node,4);13

negz = matrix(node,5);14

posz = matrix(node,6);15

[x,y,z] = i2dim((i-1),k,n);16

node_posx = dim2i(mod(x+1,k),y,z,k,n) + 1;17

node_negx = dim2i(mod(x-1,k),y,z,k,n) + 1;18

node_posy = dim2i(x,mod(y+1,k),z,k,n) + 1;19

node_negy = dim2i(x,mod(y-1,k),z,k,n) + 1;20

node_posz = dim2i(x,y,mod(z+1,k),k,n) + 1;21

node_negz = dim2i(x,y,mod(z-1,k),k,n) + 1;22

load_matrix(i,node_posx) = posx;23

load_matrix(i,node_negx) = negx;24

load_matrix(i,node_posy) = posy;25

load_matrix(i,node_negy) = negy;26

load_matrix(i,node_posz) = posz;27

load_matrix(i,node_negz) = negz;28

end29

30

max_ch_load = max(max(load_matrix));31

load_matrix = load_matrix / max_ch_load;32

std_dev = mean(std(load_matrix));33

subplot(1,2,1);34

view_load(load_matrix, k, n, 1.0-(std_dev), 1.0-(std_dev*0.5));35

36

count = 0;37

38

while (count < (k^n))39

[val_x,val_y,val_z] = i2dim(count,k,n);40
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[val1_x,val1_y,val1_z] = sphere(30);41

val1_x = val1_x.*0.05; val1_y = val1_y.*0.05; val1_z = val1_z.*0.05;42

val1_x = val1_x + val_x; val1_y = val1_y + val_y; val1_z = val1_z + val_z;43

plot3(val1_x,val1_y,val1_z,’b’);44

count = count + 1;45

end46

set(gcf,’Position’, [50,500,650,300])47
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Figure D.1: Results of Dimension Ordered Routing (DOR) using the nearest neighbor traf-
fic demand (NN). Each node had two individual traffic demands to each of its six neighbors.

D.1.2 file: view load.m

See Appendix C.1.2.

D.1.3 file: i2dim.m

See Appendix C.2.2.

D.1.4 file: dim2i.m

See Appendix C.2.1.

D.2 Static Algorithms

D.2.1 Dimension Ordered Routing Results
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Figure D.2: Results of Dimension Ordered Routing (DOR) using a uniform random traffic
pattern (UR). For each node, a value of 0-9 nodes was assigned as having 0-9 individual
traffic demands.
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Figure D.3: Results of Dimension Ordered Routing (DOR) using a bit complement traffic
pattern (BC). Two individual traffic demands were assigned for possible values described in
Table 2.1.
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Figure D.4: Results of Dimension Ordered Routing (DOR) using a transpose traffic pattern
(TP). Two individual traffic demands were assigned for each permutation of all x,y,z values.
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Figure D.5: Results of Dimension Ordered Routing (DOR) using a tornado traffic pattern
(TOR). Three individual traffic demands were assigned according to Table 2.1.
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Figure D.6: Results of Dimension Ordered Routing (DOR) using a flood traffic pattern
(FL). Two individual traffic demands were assigned to each node from each node.
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Figure D.7: Results of Direction Ordered Routing (DIR) using the nearest neighbor traffic
demand (NN). Each node had two individual traffic demands to each of its six neighbors.

D.2.2 Direction Ordered Routing Results
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Figure D.8: Results of Direction Ordered Routing (DIR) using a uniform random traffic
pattern (UR). For each node, a value of 0-9 nodes was assigned as having 0-9 individual
traffic demands.
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Figure D.9: Results of Direction Ordered Routing (DIR) using a bit complement traffic
pattern (BC). Two individual traffic demands were assigned for possible values described in
Table 2.1.
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Figure D.10: Results of Direction Ordered Routing (DIR) using a transpose traffic pattern
(TP). Two individual traffic demands were assigned for each permutation of all x,y,z values.
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Figure D.11: Results of Direction Ordered Routing (DIR) using a tornado traffic pattern
(TOR). Three individual traffic demands were assigned according to Table 2.1.
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Figure D.12: Results of Direction Ordered Routing (DIR) using a flood traffic pattern
(FL). Two individual traffic demands were assigned to each node from each node.
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Figure D.13: Results of Minimal Oblivious Routing using the nearest neighbor traffic de-
mand (NN). Each node had two individual traffic demands to each of its six neighbors.

D.3 Oblivious Algorithms

D.3.1 Minimal Oblivious Routing Results
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Figure D.14: Results of Minimal Oblivious Routing using a uniform random traffic pattern
(UR). For each node, a value of 0-9 nodes was assigned as having 0-9 individual traffic
demands.
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Figure D.15: Results of Minimal Oblivious Routing using a bit complement traffic pattern
(BC). Two individual traffic demands were assigned for possible values described in Table 2.1.
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Figure D.16: Results of Minimal Oblivious Routing using a transpose traffic pattern (TP).
Two individual traffic demands were assigned for each permutation of all x,y,z values.
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Figure D.17: Results of Minimal Oblivious Routing using a tornado traffic pattern (TOR).
Three individual traffic demands were assigned according to Table 2.1.
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Figure D.18: Results of Minimal Oblivious Routing using a flood traffic pattern (FL). Two
individual traffic demands were assigned to each node from each node.
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Figure D.19: Results of Minimal Adaptive Routing using the nearest neighbor traffic de-
mand (NN). Each node had two individual traffic demands to each of its six neighbors.

D.4 Adaptive Algorithms

D.4.1 Minimal Adaptive Routing Results
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Figure D.20: Results of Minimal Adaptive Routing using a uniform random traffic pattern
(UR). For each node, a value of 0-9 nodes was assigned as having 0-9 individual traffic
demands.

! !"# !"$ !"% !"& '
!

#!

$!

%!

&!

'!!

(
)
*
+
,
-.
/
0.
1
23
4
5

(/-*6728,9.1/69.:,-.;2!<2-,=>2/367.1234

1234.1/69.?25>/@-6*

.

.

1/69.<25>-2+)>2/3

!

'

#

A

!

'

#

A
!

!"B

'

'"B

#

#"B

A

C

D25)67286>2/3./0.1234.E>27286>2/35

F

8

Figure D.21: Results of Minimal Adaptive Routing using a bit complement traffic pattern
(BC). Two individual traffic demands were assigned for possible values described in Table 2.1.
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Figure D.22: Results of Minimal Adaptive Routing using a transpose traffic pattern (TP).
Two individual traffic demands were assigned for each permutation of all x,y,z values.
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Figure D.23: Results of Minimal Adaptive Routing using a tornado traffic pattern (TOR).
Three individual traffic demands were assigned according to Table 2.1.
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Figure D.24: Results of Minimal Adaptive Routing using a flood traffic pattern (FL). Two
individual traffic demands were assigned to each node from each node.
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Figure D.25: Results of Minimal Adaptive Routing using a flood traffic pattern (FL) with
Hot-spots. Two individual traffic demands were assigned to each node from each node. Five
percent of the nodes were made hot-spots, and they are marked as red in the figure.
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Figure D.26: Results of CQR Routing using the nearest neighbor traffic demand (NN).
Each node had two individual traffic demands to each of its six neighbors.

D.4.2 CQR Routing Results
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Figure D.27: Results of CQR Routing using a uniform random traffic pattern (UR). For
each node, a value of 0-9 nodes was assigned as having 0-9 individual traffic demands.
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Figure D.28: Results of CQR Routing using a bit complement traffic pattern (BC). Two
individual traffic demands were assigned for possible values described in Table 2.1.
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Figure D.29: Results of CQR Routing using a transpose traffic pattern (TP). Two indi-
vidual traffic demands were assigned for each permutation of all x,y,z values.
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Figure D.30: Results of CQR Routing using a tornado traffic pattern (TOR). Three indi-
vidual traffic demands were assigned according to Table 2.1.
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Figure D.31: Results of CQR Routing using a flood traffic pattern (FL). Two individual
traffic demands were assigned to each node from each node.
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Figure D.32: Results of CQR Routing using a flood traffic pattern (FL) with Hot-spots.
Two individual traffic demands were assigned to each node from each node. Five percent of
the nodes were made hot-spots, and they are marked as red in the figure.
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Figure D.33: Results of Enhanced CQR Routing using the nearest neighbor traffic demand
(NN). Each node had two individual traffic demands to each of its six neighbors.

D.4.3 Enhanced CQR Routing Results
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Figure D.34: Results of Enhanced CQR Routing using a uniform random traffic pattern
(UR). For each node, a value of 0-9 nodes was assigned as having 0-9 individual traffic
demands.
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Figure D.35: Results of Enhanced CQR Routing using a bit complement traffic pattern
(BC). Two individual traffic demands were assigned for possible values described in Table 2.1.

180



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

11

N
um

be
r o

f L
in

ks

Normalized Load per Bi!Directional Link

Link Load Histogram

 

 
Load Distribution

0
1

2
3

0

1

2

3
0

0.5

1

1.5

2

2.5

3

x

Visualization of Link Utilizations

y

z

Figure D.36: Results of Enhanced CQR Routing using a transpose traffic pattern (TP).
Two individual traffic demands were assigned for each permutation of all x,y,z values.
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Figure D.37: Results of Enhanced CQR Routing using a tornado traffic pattern (TOR).
Three individual traffic demands were assigned according to Table 2.1.
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Figure D.38: Results of Enhanced CQR Routing using a flood traffic pattern (FL). Two
individual traffic demands were assigned to each node from each node.
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Figure D.39: Results of Enhanced CQR Routing using a flood traffic pattern (FL) with
Hot-spots. Two individual traffic demands were assigned to each node from each node. Five
percent of the nodes were made hot-spots, and they are marked as red in the figure.
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Appendix E

Appendix E: Full Matlab Simulation
Results

E.1 Results from the 3-ary 3-cube Topology

E.1.1 Static Algorithms
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Figure E.1: Results of Dimension Ordered Routing (DOR) using the nearest neighbor traf-
fic demand (NN). Each node had two individual traffic demands to each of its six neighbors.
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Figure E.2: Results of Dimension Ordered Routing (DOR) using the uniform random
traffic demand (UR). For each node, a value of 0-9 was assigned as having 0-9 individual
traffic demands.
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Figure E.3: Results of Dimension Ordered Routing (DOR) using the bit complement traffic
demand (BC). Two individual traffic demands were assigned for possible values described in
Table 2.1.
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Figure E.4: Results of Dimension Ordered Routing (DOR) using the transpose traffic
demand (TP). Two individual traffic demands were assigned for each permutation of all
x,y,z values.
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Figure E.5: Results of Dimension Ordered Routing (DOR) using the tornado traffic de-
mand (TOR). Three individual traffic demands were assigned for possible values described
in Table 2.1.
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Figure E.6: Results of Dimension Ordered Routing (DOR) using the flood traffic demand
(FL). Two individual traffic demands were assigned to each node from each node.
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Figure E.7: Results of Direction Ordered Routing (DIR) using the nearest neighbor traffic
demand (NN). Each node had two individual traffic demands to each of its six neighbors.
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Figure E.8: Results of Direction Ordered Routing (DIR) using the uniform random traffic
demand (UR). For each node, a value of 0-9 was assigned as having 0-9 individual traffic
demands.
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Figure E.9: Results of Direction Ordered Routing (DIR) using the bit complement traffic
demand (BC). Two individual traffic demands were assigned for possible values described in
Table 2.1.
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Figure E.10: Results of Direction Ordered Routing (DIR) using the transpose traffic de-
mand (TP). Two individual traffic demands were assigned for each permutation of all x,y,z
values.
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Figure E.11: Results of Direction Ordered Routing (DIR) using the tornado traffic de-
mand (TOR). Three individual traffic demands were assigned for possible values described
in Table 2.1.
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Figure E.12: Results of Direction Ordered Routing (DIR) using the flood traffic demand
(FL). Two individual traffic demands were assigned to each node from each node.
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Figure E.13: Results of Minimal Oblivious Routing (MO) using the nearest neighbor traffic
demand (NN). Each node had two individual traffic demands to each of its six neighbors.

E.1.2 Oblivious Algorithms
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Figure E.14: Results of Minimal Oblivious Routing (MO) using the uniform random traffic
demand (UR). For each node, a value of 0-9 was assigned as having 0-9 individual traffic
demands.
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Figure E.15: Results of Minimal Oblivious Routing (MO) using the bit complement traffic
demand (BC). Two individual traffic demands were assigned for possible values described in
Table 2.1.

191



0
1

2
3

0

1

2

3
0

0.5

1

1.5

2

2.5

3

x

Visualization of Link Utilizations

y

z

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

N
um

be
r o

f L
in

ks

Normalized Load per Bi!Directional Link

Link Load Histogram

 

 
Load Distribution

Figure E.16: Results of Minimal Oblivious Routing (MO) using the transpose traffic
demand (TP). Two individual traffic demands were assigned for each permutation of all
x,y,z values.
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Figure E.17: Results of Minimal Oblivious Routing (MO) using the tornado traffic de-
mand (TOR). Three individual traffic demands were assigned for possible values described
in Table 2.1.
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Figure E.18: Results of Minimal Oblivious Routing (MO) using the flood traffic demand
(FL). Two individual traffic demands were assigned to each node from each node.
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Figure E.19: Results of Minimal Adaptive Routing (MA) using the nearest neighbor traffic
demand (NN). Each node had two individual traffic demands to each of its six neighbors.

E.1.3 Adaptive Algorithms
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Figure E.20: Results of Minimal Adaptive Routing (MA) using the uniform random traffic
demand (UR). For each node, a value of 0-9 was assigned as having 0-9 individual traffic
demands.
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Figure E.21: Results of Minimal Adaptive Routing (MA) using the bit complement traffic
demand (BC). Two individual traffic demands were assigned for possible values described in
Table 2.1.
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Figure E.22: Results of Minimal Adaptive Routing (MA) using the transpose traffic de-
mand (TP). Two individual traffic demands were assigned for each permutation of all x,y,z
values.
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Figure E.23: Results of Minimal Adaptive Routing (MA) using the tornado traffic de-
mand (TOR). Three individual traffic demands were assigned for possible values described
in Table 2.1.

196



0
1

2
3

0

1

2

3
0

0.5

1

1.5

2

2.5

3

x

Visualization of Link Utilizations

y

z

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

N
um

be
r o

f L
in

ks

Normalized Load per Bi!Directional Link

Link Load Histogram

 

 
Load Distribution

Figure E.24: Results of Minimal Adaptive Routing (MA) using the flood traffic demand
(FL). Two individual traffic demands were assigned to each node from each node.
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Figure E.25: Results of Minimal Adaptive Routing (MA) using the flood traffic demand
(FL) with Hot-spots. Two individual traffic demands were assigned to each node from each
node. Five percent of the nodes were made hot-spots, and they are marked as red in the
figure.
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Figure E.26: Results of CQR Routing using the nearest neighbor traffic demand (NN).
Each node had two individual traffic demands to each of its six neighbors.
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Figure E.27: Results of CQR Routing using the uniform random traffic demand (UR).
For each node, a value of 0-9 was assigned as having 0-9 individual traffic demands.
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Figure E.28: Results of CQR Routing using the bit complement traffic demand (BC). Two
individual traffic demands were assigned for possible values described in Table 2.1.
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Figure E.29: Results of CQR Routing using the transpose traffic demand (TP). Two
individual traffic demands were assigned for each permutation of all x,y,z values.
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Figure E.30: Results of CQR Routing using the tornado traffic demand (TOR). Three
individual traffic demands were assigned for possible values described in Table 2.1.
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Figure E.31: Results of CQR Routing using the flood traffic demand (FL). Two individual
traffic demands were assigned to each node from each node.
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Figure E.32: Results of CQR Routing using the flood traffic demand (FL) with Hot-spots.
Two individual traffic demands were assigned to each node from each node. Five percent of
the nodes were made hot-spots, and they are marked as red in the figure.
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Figure E.33: Results of Enhanced CQR Routing using the nearest neighbor traffic demand
(NN). Each node had two individual traffic demands to each of its six neighbors.
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Figure E.34: Results of Enhanced CQR Routing using the uniform random traffic demand
(UR). For each node, a value of 0-9 was assigned as having 0-9 individual traffic demands.
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Figure E.35: Results of CQR Routing using the bit complement traffic demand (BC). Two
individual traffic demands were assigned for possible values described in Table 2.1.
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Figure E.36: Results of Enhanced CQR Routing using the transpose traffic demand (TP).
Two individual traffic demands were assigned for each permutation of all x,y,z values.
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Figure E.37: Results of Enhanced CQR Routing using the tornado traffic demand (TOR).
Three individual traffic demands were assigned for possible values described in Table 2.1.
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Figure E.38: Results of Enhanced CQR Routing using the flood traffic demand (FL). Two
individual traffic demands were assigned to each node from each node.
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Figure E.39: Results of Enhanced CQR Routing using the flood traffic demand (FL) with
Hot-spots. Two individual traffic demands were assigned to each node from each node. Five
percent of the nodes were made hot-spots, and they are marked as red in the figure.
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Figure E.40: Results of Dimension Ordered Routing (DOR) using the nearest neighbor
traffic demand (NN). Each node had two individual traffic demands to each of its six neigh-
bors.

E.2 Results from the 4-ary 3-cube Topology

E.2.1 Static Algorithms
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Figure E.41: Results of Dimension Ordered Routing (DOR) using the uniform random
traffic demand (UR). For each node, a value of 0-9 was assigned as having 0-9 individual
traffic demands.
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Figure E.42: Results of Dimension Ordered Routing (DOR) using the bit complement traf-
fic demand (BC). Two individual traffic demands were assigned for possible values described
in Table 2.1.
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Figure E.43: Results of Dimension Ordered Routing (DOR) using the transpose traffic
demand (TP). Two individual traffic demands were assigned for each permutation of all
x,y,z values.
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Figure E.44: Results of Dimension Ordered Routing (DOR) using the tornado traffic
demand (TOR). Three individual traffic demands were assigned for possible values described
in Table 2.1.
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Figure E.45: Results of Dimension Ordered Routing (DOR) using the flood traffic demand
(FL). Two individual traffic demands were assigned to each node from each node.
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Figure E.46: Results of Direction Ordered Routing (DIR) using the nearest neighbor traffic
demand (NN). Each node had two individual traffic demands to each of its six neighbors.
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Figure E.47: Results of Direction Ordered Routing (DIR) using the uniform random traffic
demand (UR). For each node, a value of 0-9 was assigned as having 0-9 individual traffic
demands.
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Figure E.48: Results of Direction Ordered Routing (DIR) using the bit complement traffic
demand (BC). Two individual traffic demands were assigned for possible values described in
Table 2.1.
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Figure E.49: Results of Direction Ordered Routing (DIR) using the transpose traffic de-
mand (TP). Two individual traffic demands were assigned for each permutation of all x,y,z
values.
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Figure E.50: Results of Direction Ordered Routing (DIR) using the tornado traffic de-
mand (TOR). Three individual traffic demands were assigned for possible values described
in Table 2.1.
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Figure E.51: Results of Direction Ordered Routing (DIR) using the flood traffic demand
(FL). Two individual traffic demands were assigned to each node from each node.
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Figure E.52: Results of Minimal Oblivious Routing (MO) using the nearest neighbor traffic
demand (NN). Each node had two individual traffic demands to each of its six neighbors.

E.2.2 Oblivious Algorithms

213



0

2

4

0
1

2
3

4
0

1

2

3

4

x

Visualization of Link Utilizations

y

z

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

N
um

be
r o

f L
in

ks

Normalized Load per Bi!Directional Link

Link Load Histogram

 

 
Load Distribution

Figure E.53: Results of Minimal Oblivious Routing (MO) using the uniform random traffic
demand (UR). For each node, a value of 0-9 was assigned as having 0-9 individual traffic
demands.
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Figure E.54: Results of Minimal Oblivious Routing (MO) using the bit complement traffic
demand (BC). Two individual traffic demands were assigned for possible values described in
Table 2.1.
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Figure E.55: Results of Minimal Oblivious Routing (MO) using the transpose traffic
demand (TP). Two individual traffic demands were assigned for each permutation of all
x,y,z values.
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Figure E.56: Results of Minimal Oblivious Routing (MO) using the tornado traffic de-
mand (TOR). Three individual traffic demands were assigned for possible values described
in Table 2.1.
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Figure E.57: Results of Minimal Oblivious Routing (MO) using the flood traffic demand
(FL). Two individual traffic demands were assigned to each node from each node.
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Figure E.58: Results of Minimal Adaptive Routing (MA) using the nearest neighbor traffic
demand (NN). Each node had two individual traffic demands to each of its six neighbors.

E.2.3 Adaptive Algorithms
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Figure E.59: Results of Minimal Adaptive Routing (MA) using the uniform random traffic
demand (UR). For each node, a value of 0-9 was assigned as having 0-9 individual traffic
demands.
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Figure E.60: Results of Minimal Adaptive Routing (MA) using the bit complement traffic
demand (BC). Two individual traffic demands were assigned for possible values described in
Table 2.1.
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Figure E.61: Results of Minimal Adaptive Routing (MA) using the transpose traffic de-
mand (TP). Two individual traffic demands were assigned for each permutation of all x,y,z
values.
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Figure E.62: Results of Minimal Adaptive Routing (MA) using the tornado traffic de-
mand (TOR). Three individual traffic demands were assigned for possible values described
in Table 2.1.
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Figure E.63: Results of Minimal Adaptive Routing (MA) using the flood traffic demand
(FL). Two individual traffic demands were assigned to each node from each node.
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Figure E.64: Results of Minimal Adaptive Routing (MA) using the flood traffic demand
(FL) with Hot-spots. Two individual traffic demands were assigned to each node from each
node. Five percent of the nodes were made hot-spots, and they are marked as red in the
figure.
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Figure E.65: Results of CQR Routing using the nearest neighbor traffic demand (NN).
Each node had two individual traffic demands to each of its six neighbors.
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Figure E.66: Results of CQR Routing using the uniform random traffic demand (UR).
For each node, a value of 0-9 was assigned as having 0-9 individual traffic demands.
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Figure E.67: Results of CQR Routing using the bit complement traffic demand (BC). Two
individual traffic demands were assigned for possible values described in Table 2.1.
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Figure E.68: Results of CQR Routing using the transpose traffic demand (TP). Two
individual traffic demands were assigned for each permutation of all x,y,z values.

222



0

2

4

0
1

2
3

4
0

1

2

3

4

x

Visualization of Link Utilizations

y

z

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

N
um

be
r o

f L
in

ks

Normalized Load per Bi!Directional Link

Link Load Histogram

 

 
Load Distribution

Figure E.69: Results of CQR Routing using the tornado traffic demand (TOR). Three
individual traffic demands were assigned for possible values described in Table 2.1.
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Figure E.70: Results of CQR Routing using the flood traffic demand (FL). Two individual
traffic demands were assigned to each node from each node.
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Figure E.71: Results of CQR Routing using the flood traffic demand (FL) with Hot-spots.
Two individual traffic demands were assigned to each node from each node. Five percent of
the nodes were made hot-spots, and they are marked as red in the figure.
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Figure E.72: Results of Enhanced CQR Routing using the nearest neighbor traffic demand
(NN). Each node had two individual traffic demands to each of its six neighbors.
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Figure E.73: Results of Enhanced CQR Routing using the uniform random traffic demand
(UR). For each node, a value of 0-9 was assigned as having 0-9 individual traffic demands.
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Figure E.74: Results of CQR Routing using the bit complement traffic demand (BC). Two
individual traffic demands were assigned for possible values described in Table 2.1.
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Figure E.75: Results of Enhanced CQR Routing using the transpose traffic demand (TP).
Two individual traffic demands were assigned for each permutation of all x,y,z values.
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Figure E.76: Results of Enhanced CQR Routing using the tornado traffic demand (TOR).
Three individual traffic demands were assigned for possible values described in Table 2.1.
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Figure E.77: Results of Enhanced CQR Routing using the flood traffic demand (FL). Two
individual traffic demands were assigned to each node from each node.
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Figure E.78: Results of Enhanced CQR Routing using the flood traffic demand (FL) with
Hot-spots. Two individual traffic demands were assigned to each node from each node. Five
percent of the nodes were made hot-spots, and they are marked as red in the figure.
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Figure E.79: Results of Minimal Adaptive Routing (MA) using the flood traffic demand
(FL). Two individual traffic demands were assigned to each node from each node.

E.3 Results from the 5-ary 3-cube Topology
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Figure E.80: Results of Minimal Adaptive Routing (MA) using the flood traffic demand
(FL) with Hot-spots. Two individual traffic demands were assigned to each node from each
node. Five percent of the nodes were made hot-spots, and they are marked as red in the
figure.
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Figure E.81: Results of CQR Routing using the flood traffic demand (FL). Two individual
traffic demands were assigned to each node from each node.
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Figure E.82: Results of CQR Routing using the flood traffic demand (FL) with Hot-spots.
Two individual traffic demands were assigned to each node from each node. Five percent of
the nodes were made hot-spots, and they are marked as red in the figure.
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Figure E.83: Results of Enhanced CQR Routing using the flood traffic demand (FL). Two
individual traffic demands were assigned to each node from each node.
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Figure E.84: Results of Enhanced CQR Routing using the flood traffic demand (FL) with
Hot-spots. Two individual traffic demands were assigned to each node from each node. Five
percent of the nodes were made hot-spots, and they are marked as red in the figure.
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