
/LOW-LEVEL SOFTWARE FOR AN EHSI DEVELOPMENT SYSTEM

by

DAVE GRUENBACHER

B.S., Kansas State University, 1985

A MASTER'S THESIS

submitted in partial fulfillment

of the requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1987

Approved by:

Majo'r Professor

TABLE OF CONTENTS A112D7 3D70b4

CHAPTER PAGE

I. INTRODUCTION 1

History and Purpose of the EHSI Development
System 1

Elements of the EHSI Development System ... 2

Research Goals and Purpose of this Report . . 6

II. SPECIFICATIONS 7

Communication via the
Parallel Port 7

Communication Between the
Z-158 and DACI 9

Software Choices 14

III. THE LOW-LEVEL SOFTWARE INTERFACE 15

Preview of EHSI Operating Environment 15

Communicating with the Hardware 18

Interfacing Assembly Language and C 24

Interrupting the DACI, and Data Transfer ... 32

Servicing Interrupts from the DACI 53

IV. THE MAIN PROGRAM, EHSI.C 62

Purpose of EHSI.C 62

Declaration and Initializations 64

EHSI.C Interrupt Servicing 64

EHSI.C Considerations 66

V. KEY SERVICING ROUTINES 67

ii

TABLE OF CONTENTS (cont.)

CHAPTER PAGE

Purpose of Key Routines 67

HP-1345A Memory Organization 67

Description of Key Routines 71

VI. SOFTWARE CONDITIONING OF INPUT SIGNALS 74

Flight Data Sampling and Filtering 74

A Low-pass Filter for VERT_SPEED 77

A Differentiator for CDI and Glideslope ... 79

Filtering Considerations 80

VII. THE EHSI DISPLAY PAGES 85

Data Page 85

Navigation Page 85

ILS Page 88

VIII. CONCLUSIONS 90

REFERENCES 93

Appendix A. Source Code 94

Appendix B. Program Maintenance 169

Compiling and Linking 170

Adjusting Delays and Pulse Widths 176

Appendix C. Modifications 178

Z-158 Parallel Port Modification 179

DACI External Clock Switch Addition . . . 181

DACI IRQOUT and IRQIN lines addition . . 183

iii

LIST OF FIGURES

FIGURE PAGE

1. Block diagram of EHSI Development System 5

2. Control and data lines for the Z-158 -to-
DACI interface 7

3. Timing diagram of DACI interrupting the Z-158 . . 9

4. Interface Command 1 timing diagram 11

5. Interface Command 2 timing diagram 12

6. Interface Command 3 timing diagram 13

7. Interface Command 4 timing diagram 14

8. System Interaction 17

9. Z-158 Port line connection 19

10. Z-158 -to- DACI hardware interface 20

11. Control States of the data bus control lines ... 23

12. Interrupts vectored through the 8259A 23

13. Microsoft segment model 25

14. Argument lengths of C data types 28

15. Example C-assembly interface 31

16. inshake_proc flowchart 35

17. outshake_proc flowchart 37

18. input_byte_proc flowchart 39

19. output_byte_proc flowchart 41

20. output_int_by te_proc flowchart 43, 44

21. GET DATA PACKAGE flowchart 47

iv

LIST OF FIGURES (cont.)

FIGURE PAGE

22. SEND_SCREEN flowchart 49

23. RETRIEVE_SCREEN flowchart 51

24. TOGGLE_ALARM_SWITCH flowchart 52

25. INITIALIZE flowchart 57

26. HANDLER flowchart 60

27. RESTORE flowchart 61

28. Ehsi.c flowchart 63

29. 36 Key command keyboard 68

30. HP-1345A memory map 70

31. Key interrupt servicing flowchart . 73

32. VERT_SPEED data sample 76

33. Low-pass filtered GLIDESLOPE 78

34. Derivative of CDI 82

35. Average derivative of CDI 83

36. Derivative of averaged GLIDESLOPE 84

37. Proposed data page 86

38. Proposed NAV page 87

39. Proposed ILS page 89

40. Z-158 parallel port modification 180

41. DACI Clock IRQ switch addition 182

42. DACI IRQ lines addition 184

43. DACI IRQ lines addition 185

v

I. INTRODUCTION

1.1 History and Purpose of the EHSI Development System

Ever since the Wright brothers made their historic

first flight, man has been trying to make flying an easier

and safer task. Advances in aeronautical engineering

continue to make better aircraft that are easier to fly.

But, today, more advancements are being made in the cockpit

area. A multitude of analog and digital signals are

presented in the cockpit of any aircraft. For many years,

all the pilot saw of the signals was an analog meter or a

lamp. Recently, though, the age of electronics has made

possible methods of displaying flight data on cathode-ray

tube (CRT) screens. These displays can greatly reduce pilot

workload, thus increasing the safety of flying.

An electronic horizontal situation indicator (EHSI) is

a system that displays flight-related data on a cockpit

display screen. EHSI's have been developed for military

aircraft and commercial airlines, and they have proven to be

very useful to the pilots.

Because of the expense of the systems, the general

aviation community has not been offered a practical EHSI.

With the recent advances in microprocessor technology and

the decrease of costs associated with electronics, the

possibility of building an affordable EHSI for the general

aviation community is being explored.

S. A. Dyer [1] has proposed that an EHSI be developed

for general-aviation at a reasonable cost. The EHSI would

consist of one or two flight-capable high-resolution

screens, a command keyboard, and the necessary electronics

and software to display the flight data in useful forms.

Display pages showing inflight, navigation, and instrument

landing data are proposed. The display pages developed

concurrently with this report will be discussed in Chapter

7.

An EHSI Development System is being built at Kansas

State University (KSU) to look into the possibilities of

producing an EHSI in the eight-to twelve-thousand dollar

range. The targeted consumer is the general-aviation

community

.

1.2 Elements of the EHSI Development System

The basic tasks of the EHSI system include: (1)

sampling the analog flight signals, (2) assimilating

information to be displayed, and finally, (3) sending the

information in a suitable graphical form to the display

device. It would also be convenient to include a keypad so

that the pilot can interact with the system. Fig. 1 shows a

block diagram of the EHSI development system at KSU. An

interface driven by a Motorola 68000 based board has been

designed and built by J. Lagerberg [2], This interface,

known as the Data Acquisition and Communications Interface

(DACI), controls communication within the system. It also

digitizes flight data for use by the rest of the system.

The interface detects key presses of the command keyboard on

an interrupt basis, and also sends graphics commands to the

Hewlett-Packard 1345A vector graphics display. The 1345A is

a $4,000 dollar unit with high resolution and is specified

for operation at pressure altitudes up to 15,000 feet. The

"Vector Graphics Memory" (VGM) option of the HP-1345A

eliminates the need for constant refresh of the screen from

the DACI. In other words, the 1345A display is refreshed

from commands in the VGM. If the display needs to be

changed, the DACI can change parts of the memory, thus

altering the display. The flight data being digitized is

coming from an ATC-610 Flight Simulator. The ATC-610

provides analog information similar to that available during

flight in an airplane. Therefore, the possibility exists of

developing near "real-life" situations in the laboratory for

the EHSI Development System.

The host computer, a Zenith-158 personal computer, acts

as the central processing unit for the EHSI system. The Z-

158 does all of the display generation and calculation work

for the system. The Z-158 is connected to the DACI via the

parallel printer port. Communication has been established

between the DACI and the Z-158 in an interrupt environment

supported by a handshaking protocol. The routines to

accomplish the interface are written in 8088 assembly-

language. Assembly-language is used for maximum speed, but

an intermediate-level language, C, is used for the display

generation routines. Therefore, interfacing the assembly-

language routines with the C functions has also been

accomplished

.

Host Computer

Z-158 PC

68000-based
educational

board

Interface

Driver

DATA ACQUISITION
AND

COMMUNICATIONS
INTERFACE

(DACI)

Z\
rL 36 Key

Command
Keyboard

ATC-610
Flight Simulator

Figure 1. Block diagram of EHSI Development System.

1.3 Research Goals and Purpose of This Report

The research covered in this thesis was directed toward

the development of the required low-level software to create

a suitable operating environment for the Z-158. The goals

of the research are:

1. To develop algorithms and implement them in

assembly language routines to establish

communications between the Z-158 and DACI. The

routines must be reliable, easy to access, and

fast enough to operate the EHSI in near real-time,

2. To interface the Z-158 with commands written for

the DACI by Lagerberg [2],

3. To interface the communications routines with the

C functions.

4. To provide reliable and easy to use guidelines for

using the communications routines.

5. To analyze samples of data taken from the flight

simulator and design digital filters to provide

lowpass filtering and differentiation of the

analog signals.

6. To provide adequate maintenance information and

recommendations to future project members.

II. SPECIFICATIONS

2.1 Comnunications are carried out through the parallel
port

The Z-158 parallel port is a 25-line port that is

internally divided into three different addressable ports.

One address is for an 8-line I/O databus. Another is for

input control lines, and the last is for output control

lines. One of the lines can be used to trigger hardware

interrupts. The lines used for the Z-158 -to- DACI

interface are shown in Fig. 2. Actual hardware connections

can be found in Fig. 10.

Z-158 DACI

IRQOUT

IRQIN

OUTSHAKE

INSHAKE

DATA BUS
DIRECTION

DATA BUS
ENABLE

DO' />D7 '

\
8 BIT DATA BUS

-H IRQIN

IRQOUT

INSHAKE

OUTSHAKE

DIRECTION

CHIP SELECT

D0->D7

Figure 2. Control and Data lines for the Z-158 -to- DACI
interface.

The Z-158 and DACI each have an IRQOUT, IRQIN,

OUTSHAKE, and INSHAKE line.

IRQOUT is the line used to initiate an interrupt. This

line is connected to the receiving end's IRQIN line. The Z-

158 uses its IRQOUT line to interrupt the DACI, and the DACI

uses its IRQOUT line to interrupt the Z-158.

The IRQIN lines of the Z-158 and DACI are latched by

hardware so that interrupts will not be missed. The Z-158

IRQIN line is connected internally to its 8259A programmable

interrupt controller. The DACI IRQIN line is latched to a

6821 PIA. Additional information on the interrupt hardware

design of the DACI is available in [2],

All external hardware interrupts are tied to the 8259A

within the Z-158. The controller prioritizes interrupts

and tells the 8088 central processing unit (CPU) within the

Z-158 what interrupt should be serviced next. The 8259A can

be programmed to ignore certain interrupts and give higher

priority to others. A discussion of how the 8259A is

programmed is presented in Sec. 3.5.

DATA BUS ENABLE and DATA BUS DIRECTION are two lines

that the Z-158 uses to control the data bus buffer (74LS245)

found on the DACI. Before attempting a read or a write to

the DACI, the Z-158 must make sure the data bus is

appropriately set up. When the data bus is not in use, the

bus is kept in the high-impedance state.

The data bus has 8 lines and is bidirectional. A

8

modification was made to the Z-158 parallel port so that the

data bus could be read. The modification is shown and

explained in Appendix C.

2.2 Communications Between the Z-1S8 and DACI

DACI interrupting the Z-158

The DACI interrupts the Z-158 on the occurrence of one

of several physical events. The DACI pulses the IRQOUT line

after placing the appropriate interrupt vector on the data

bus. The Z-158 must then suspend its current process and

initiate an interrupt service routine. The Z-158 retrieves

the interrupt vector from the data bus and then pulses the

OOTSHAKE line. The interrupt service routine of the Z-158

concludes and the suspended process continues. The DACI

continues after seeing the acknowledge pulse on its INSHAKE

line. The timing diagram in Fig. 3 shows the states of the

pertinent lines.

r Start of interrupt j— F
nd of

DACI must have interrupt T interrupt
Start of interrupt

DACI must have in

vector on data bus

DACI
IRQOUT

Z-158
OUTSHAKE"

Z— 158 retrieves

interrupt vector on 12 u
the data bus

Z-158
' IRQIN

DACI
INSHAKE

Figure 3. Timing diagram of DACI interrupting the Z-15£

The physical events that cause the DACI to interrupt

the Z-158 are:

event interrupt vector sent

System switch turned on 65H

System switch turned off 66H

System clock updated 60H

A key has been pressed 01H— >23H*

* interrupt vector is the
number of the key pressed.
See Fig. 30.

Z-158 interrupting the DACI

The Z-158 interrupts the DACI by pulsing its IRQOUT

line after placing an interrupt command vector on the data

bus. The four commands and their respective command vectors

are given below:

COMMAND NUMBER FUNCTION

01H: The Z-158 requests that the flight data
package be sent. The data package contains
current digitized values of the flight
simulator signals, and the system clock.

02H: The Z-158 wants to send screen commands to
the HP-1345A. The words are transferred
until the top byte of a screen command
contains FFH

.

03H: The Z-158 requests that a certain area of HP-
1345A vector memory commands be sent back to
the Z-158.

04H: The Z-158 tells the DACI to toggle the
current state of the alarm.

Each command will now be explained in detail.

10

Command 01H:

The Z-158 places 01H on the data bus and pulses its

IRQOUT line. The DACI will acknowledge by pulsing its

OUTSHAKE line. To set up for the transfer of the data

package, the DACI places the number of entries of the data

package on the data bus and pulses its OUTSHAKE line. The

Z-158 reads the number and acknowledges with a pulse on its

OUTSHAKE line. The transfer of the data package will then

occur within a handshaking environment. After the final

entry is received and acknowledged, the Z-158 and DACI

return to their interrupted processes.

Z-15B
IRQOUT

DACI
OUTSHAKI

— Start of Interrupt.

Z— 158 must hove Interrupt
vector on the data bus.

End of
Interrupt1

Acknowledge l5t entrycommand #1 on bus
2nd entry
on bus

Parrallsl Port enabled
for another interrupt -i

18 usee

lJ' s

|
max. I I

80
-usee*

Z-158
OUTSHAKE

^Lh

DACI
' IRQIN

105
usee

min J .sslU l

Z-158
" INSHAKE

DACI
' INSHAKE

All Z-158 OUTSHAKE
pulses hove a minumum
low time of 12 ueec.

Acknowledge 1st Acknowledge 2nd Acknowledge last

entry received entry received entry received

Figure 4. Interface Command 1 timing diagram.

Command 02H:

The Z-158 places 02H on the data bus and pulses its

IRQOUT line. The DACI acknowledges on its OUTSHAKE line,

11

and the transfer of screen words is ready to begin. Each

word is sent as two bytes, first the most-significant byte

(MSB) and then the least-significant byte (LSB). The Z-158

places the MSB on the data bus and strobes the DACI. After

the DACI reads the byte and acknowledges on its OUTSHAKE

line, the Z-158 places the LSB on the data bus and strobes

the DACI. The screen words are sent in this fashion until

the MSB of a screen word is FFH. This signals the end of

the transfer, and the Z-158 and the DACI return to their

interrupted processes.

Z-158
ROOUT

Stort of Interrupt.

Y Z— 1SB must have Interrupt
vector on the data bug. DACI

IRQIN

Parrallel Port enabled
for another Interrupt End of

Interrupt

It '

t
Strobe with strobe with

puleee have a minumum USB
|

on "" l-SB on hue
low time of 12 ueec

All Z-158 OUTSHAKE

t

r<

r

USB

Strobe t

for n< xt _
Strobe for

^-i FFH done
signal

Repeat until USB It FFH, then go on

Figure 5. Interface Command 2 timing diagram.

Couand 03H:

The Z-158 places 03H on the data bus and pulses its

IRQOUT line. The DACI acknowledges on its OUTSHAKE line.

Using the same handshaking protocol as used in the previous

12

2 commands, the Z-158 sends the starting address and ending

address of the screen memory desired. The DACI then

proceeds to transfer the requested screen words to the Z-

158. After the last word is sent, the DACI and Z-158 return

to their interrupted processes.

r Start of interrupt

Z— 158 must have interrupt

vector on data but

£mm»OTl SSL'S "' ACK LSB <" *<* "SB of ACK LSS ofcommond #3 S(ort Addr. Slort Addr End oddr. End dddr.

'J-

Stdob* for MSB Strob* for LSB
Of 'command of command

Strobe for

MSB of naxt
command

~^g

30 ujSzl 30 will! l«r

Rop«at until loit command it i.nt.

Figure 6. Interface Command 3 timing diagram.

Command 04 H:

The Z-158 places 04H on the data bus and pulses its

IRQOUT line. The DACI will acknowledge the interrupt on its

13

OUTSHAKE line. The DACI will proceed to toggle the state of

the alarm, and the Z-158 and DACI will return to their

interrupted processes.

Z-158 '

'

Start of
" Interrupt

End of -,
Intorrupt w

DACI

i
_Z— 158 has command 04
on the data bus

disable
par port

enable par 1

port for
next IRQ

;RQIN

1 "1

,„ [23
130 u*ec LB 54 usee

Acknowledge
command fA

H

Figure 7. Interface Command 4 timing diagram.

2.3 Software Choices

It is worth mentioning the two languages used to

implement the algorithms for the interrupt procedures.

Microsoft Macro Assembler (MASM) Version 4.0 by

Microsoft, Inc. was used to write the 8088 assembly language

routines -- the communication routines which involve

interrupt servicing and handshaking. The use of MASM allows

good speed of execution and tight control over the object

code.

Microsoft C Version 4.0 was used as the high-level

language because of its portability, speed compared to other

high-level languages, bit manipulation functions, and the

extensive libraries that are included with the compiler.

Because the assembler and the compiler were produced by

the same company, interfacing the two proved to be a fairly

straightforward task.

14

III. THE LOW LEVEL SOFTWARE INTERFACE

3.1 Preview of EHSI Operating Environment

Before detailing the communication routines to

implement the commands described in Chapter 2, a basic

description of how the routines are used is needed. The

main program of the system initializes the system, acts on

interrupts received from the DACI, and restores the system

on shutdown.

The first thing the main program does when invoked is

install the interrupt handler and prepare the environment

for the EHSI system. The main program will then poll the

first element of the "Interrupt Vector Stack", waiting for a

non-zero vector. The interrupt handler is the only module

that can place vectors on the interrupt vector stack. It

places interrupt vectors on the stack when the DACI

interrupts the Z-158 with a vector on the data bus. If the

main program is slow in servicing the vectors on the stack,

the interrupt handler has the capability of stacking the

interrupts so that all of them are serviced. As the main

program services the interrupts, it rolls the stack down if

it detects more than one interrupt on the interrupt vector

stack.

When the main program detects an interrupt vector it

enters a decision loop to determine what kind of action to

take. If a screen needs to be updated, Command 1 will be

15

called to fetch the current data package. Calculation of

the HP-1345A screen code will then take place. Finally,

Command 2 will be called to send the screen code through the

DACI to the HP 1345A.

The control of the program would then return back to

polling the Interrupt Vector Stack. When the shutdown

vector is received, a function to restore the environment to

its original state is called. The main program would then

terminate. See Fig. 8 for an illustration showing system

interaction.

Now that the basics of the system have been covered,

the low level software can be developed in detail. Sections

3.2 and 3.3 will develop tools for the routines, and

Sections 3.4 and 3.5 will show the actual development of the

routines

.

16

Interrupt

Vector
Stack

1st element

| int_depth

M-

HANDLER.ASM

A

Main
Program

EHSI.C

DATA PACKAGE

SCREEN CODE

SCREEN CODE

TOGGLE ALARM SWITCH
5-

DAC

Figure 8. System interaction.

17

3.2 Communicating with the hardware

Before developing the interface functions, it is useful

to describe the 8088 assembly language instructions used to

communicate through the ports.

To input a byte from a port with address PORT_ADDRESS,

the following assembly language code is required:

dx, PORT_ADDRESS
; put port number in dx

ln al
*

dx
! input byte is now in al

The byte read from port PORT_ADDRESS is now in the low byte

of accumulator ax, otherwise known as al.

To output a byte, 0UTPUT_BYTE, through a port with

address PORT_ADDRESS, the following assembly language code

is required:

dx, PORT_ADDRESS
; put port number in dxmov al. OUTPUT_BYTE
; put output byte in al

out dx - al
; output al to port dx

Three ports control all the lines used in the parallel

port interface from the Z-158 to the DACI. Port 378H is the

data bus port. Reading this port will read the data bus,

and outputting a byte to this port will put that byte on the

data bus. Port 379H is the input control line port. Only

two lines of Port 379H are used, D4 and D6. DA is the

INSHAKE line, or where the DACI OUTSHAKE's to. D6 is the

IRQIN line, or where the DACI IRQOUT's to. Port 37AH is the

output control line port. Five of the lines are used. DO

is the Z-158 OUTSHAKE line, D2 is the Z-158 IRQOUT line, Dl

controls the direction of the data bus, and D3 controls the

18

state of the data bus. D4 is set high to enable parallel

port interrupts, and low to disable IRQ7.

Port number line(s) Z-158 function DACI connection
378H D0->D7 Data Bus Data Bus
379H D4 INSHAKE OUTSHAKE
379H D6 IRQIN IRQOUT
37AH DO* OUTSHAKE INSHAKE
37AH Dl* DATA BUS DIRECTION DIRECTION
37AH D2 IRQOUT IRQIN
37AH D3* DATA BUS ENABLE CHIP SELECT
37AH D4 IRQ7 ENABLE NONE

Actual outputs of these lines are inverted

Figure 9. Z-158 parallel port line connections.

Figure 10 is a schematic showing the hardware interface

in more detail. Notice the three Z-158 ports and their

respective names. With the port and line functions now

identified, commands can be written to perform specific

actions .

19

DACI

rM*7 L

19AP1C*. [

Figure 10. Z-158 -to- DACI Hardware Interface.

20

The different states of the databus control lines,

DATA_BUS_ENABLE and DATA_BUS_DIRECTION, are summarized in

Fig. 11. It should be noted that these lines are inverted

in the Z-158.

ACTION
DATA_BUS_DIRECTION DATA_BUS_ENABLE
PORT 37AH Line D3 PORT 37AH Line D3

Enable Z-158 to Read Low Low

Enable Z-158 to Write High Low

Disable Data Bus Low* High

*This would normally be a "Don't Care",
but keeping the Z-158 in read mode will
help to avoid bus conflicts.

Figure 11. Control states of the data bus control lines.

Line D4 of Port 37AH is the IRQ_ENABLE line.

IRQ_ENABLE must be high before a high-low transition on the

IRQ_IN line can trigger an interrupt. (See Fig. 10.)

Noting the inverters between Port 37AH's output latch

and the 25-pin connector, the states of the port can be

found to accomplish different tasks.

To prepare to read the data bus, the following assembly

language instructions are issued:

mov dx, 037AH
mov al, OFEH
out dx, al

Following the data bus preparation is the actual read:

mov dx, 0378H
in al, dx

21

After the read, it is good practice to disable the data

bus. Since the input byte is in al, it should be stored

before performing the following disable bus procedure:

raov dx, 037AH
mov al, 0F4H
out dx, al

To perform a write to the data bus, a similar procedure

of enabling, writing, and disabling the data bus is used:

Enable data bus for a write:

mov dx, 037AH
mov al, OFCH
out dx, al

Output the byte OUTPUT_BYTE:

mov dx, 0378H
mov al, OUTPUT_BYTE
out dx, al

Disable the data bus:

mov dx, 037AH
mov al, 0F4H
out dx, al

Other useful sequences of code that are used frequently

in handshaking are:

To clear the OUTSHAKE line:

mov dx, 037AH ; load port address
in al, dx ; get current state
or al, 01H ; set bit DO
out dx, al ; output the byte

Similarly, to set the OUTSHAKE line:

mov dx, 037AH ; load port address
in al, dx

; get current state
or al, OFEH ; clear bit DO
out dx, al ; output the byte

22

To check the level of the INSHAKE line:

mov dx, 0379H ; load port address
in al, dx ; get current state
and al, 10H ; result if if INSHAKE low

; result is 1 if INSHAKE high

All of the procedures written so far have been for

communications through the parallel printer port, but two

ports internal to the Z-158 are important for interrupt

handling. Both ports, 20H and 21H, talk directly with the

8259A Programmable Interrupt Controller. The 8259A

prioritizes external hardware interrupts, such as the

keyboard interrupt and system clock interrupt. The parallel

port interrupt is wired directly to the 8259A.

Port 21H gives access to the interrupt mask register.

The mask controls which interrupts are serviced or ignored.

A low level in the mask corresponds to interrupts being

serviced, and a high level means that interrupt is disabled.

The table in Fig. 12 shows the interrupts connected to the

8259A and the interrupt mask register bit corresponding to

each [4]

.

DOS 8259A Interrupt
Interrupt No. Function Register Mask Bit

08H System Clock
09H Keyboard Interrupt
OAH Not used
OBH Asynch. Port 1

OCH Asynch. Port 2
ODH Fixed Disk Controller
OEH Floppy Disk Controller
OFH Parallel Port Interrupt

Figure 12. Interrupts vectored through the 8259A.

23

Port 21H DO
Port 21H Dl

Port 21H D2
Port 21H D3
Port 21H D4
Port 21H D5
Port 21H D6
Port 21H D7

To enable and disable interrupts vectored through the

8259A, read Port 21H, set or clear the desired mask bits,

and send the new mask back to Port 21H. The assembly code

can be written as:

mov dx, 21H
; port number of mask

in al, dx
; read current mask

(set or clear desired bits) ; change the mask
out dx, al

; write new mask

When interrupts are funnelled through the 8259A, a

special command is given at the end of the interrupt service

routine to clear the 8259A. Port 20H is the control port

used for this purpose. After an interrupt, the following

assembly code is used to clear the 8259A:

mov dx, 20H ; control port number
mov al, 20H ; End of Interrupt byte
out dx, al ; send EOI to 8259A

3.3 Interfacing Assembly Language and C

One last subject will now be covered before developing

the communication routines between the Z-158 and DACI. The

assembly-language routines must be able to read and write to

data variables and structures in the main C routine.

Writing these routines thus requires some knowledge of the

architecture of the 8088's memory.

Memory on the 8088 processor is divided into segments

of up to 64K each. Segments are given names to correspond

to their contents, and similar segments are grouped together

when modules are linked together. Since Microsoft products

24

were used, Microsoft's segment model was adhered to in the

structure of the interface. The segments and their relative

locations in memory are shown in Fig. 13.

HIGH MEMORY

LOW MEMORY

Sp 3ce for dynamic allocation

STACK

_BSS and c_common

CONST

.DATA

NULL

_TEXT

Figure 13. Microsoft segment model.

The contents of the segments shown in Fig. 13 are

listed below:

CONTENTSSEGMENT

STACK

_BSS

c common

The STACK segment contains the user's
stack. This will be a common stack to
the C and assembly language routines.

The _BSS segment contains all
uninitialized static data items.

The c_common segment contains all global
uninitialized data items.

25

CONST The CONST segment contains all constants
that can only be read.

_DATA The _DATA segment is the default data
segment. All initialized global and
static data are put in this segment.

NOLL The NULL segment is a special purpose
segment that is placed at the bottom of
DGROUP. The segment contains the
compiler copyright notice, and is
checked before and after program
execution

.

_TEXT The _TEXT segment contains all the code
of the C and assembly language routines.

The above definitions are for small-model programs. A

small-model program has two segments that contain all the

segments listed above. One segment contains all the code,

and the other contains the data. Maximum size for each is

64K, so maximum size of the program cannot exceed 128K. If

a problem with size ever becomes a problem, a medium-model

program could then be created.

The _TEXT and _DATA segments will be the ones referred

to when implementing an assembly-language routine to be

called from a C program. The code for the assembly-language

routine should be placed in the _TEXT segment, and global

data must be placed in the _DATA segment, or else the C and

assembly-language will not be able to access the same data.

The _DATA segment was defined before to contain all

initialized global data items, so data structures and

variables needed to be accessed by both the C and assembly-

language routines must be initialized. This will ensure the

2 6

data of being placed in the _DATA segment instead of the

c_c omraon segment.

A small-model program was mentioned before to contain

two segments, but there are seven segments defined in Fig.

13. This is possible because of "groups", which allows the

combination of several segments into one. The _DATA, CONST,

_BSS, c_common, NULL, and STACK segments are grouped

together by the Microsoft C compiler into a group named

DGROUP. The advantage of groups is that any data in a group

can be accessed by the same segment register. Instead of

needing two words to access a different piece of data, only

the offset in the segment is needed. Thus, access time is

nearly halved. After a data transfer of hundreds of words,

the time saved can be significant. To summarize what

segments are to be used in the assembly-language routines,

it can be said that all code shall be in the _TEXT segment,

and all global data items will be in the _DATA segment which

is grouped into the DGROUP. Listing files of compiles and

links will show segment and group names of all data.

It will be necessary to pass arguments from C to

assembly-language routines. Arguments are passed on the

stack, and the called routine must pop the arguments off the

stack. Since words are only pushed and popped from the

stack, the number of words pushed for the different data

types is needed. Fig. 14 gives the number of words used for

the standard data types in C.

27

data type
Number of words
pushed on stack

char, short, int,
signed char, signed short,
signed int, unsigned char,
unsigned short, unsigned int

1 word

long, unsigned long 2 words

float, double 4 words

Figure 14. Argument lengths of C data types.

When C calls an assembly-language routine, the last

argument is pushed first and the first argument last. If an

argument requires more than one word, the high word is

pushed first, followed by the next higher word.

When a C program passes control to an assembly-language

routine, certain registers must be preserved or changed

before arguments can be grabbed and the routine executed.

The BP, SI, and DI registers need to be saved, and the BP

register should be set to the current SP register. Any

segment values changed in the routine, such as SS, DS, or

CS, should also be saved and then restored on exit from the

routine. After the entry sequence, the arguments passed can

be found on the stack starting at offset bp+4. Each

argument must be popped off the stack according to the

guidelines of Fig. 14.

28

With the arguments off the stack, the assembly-language

routine then goes about its business. There is one

extremely important convention when C and assembly need to

use a common global variable or function. The global

variable names and function names in the assembly language

routine must be prepended by an underscore (_). If an

assembly-language routine is required to access a global

data variable named RESULT declared in a C program, the

assembly routine must declare _RESULT as external in the

_DATA segment. The routine can then modify the variable.

The same applies toward routine names. If the C program

wants to execute an assembly-language routine, the routine

name must begin with an underscore. The C function call

DO_IT() will access the assembly language routine named

_DO_IT, as long as D0_IT() has been declared external in the

calling C program. To summarize, if the assembly-language

name does not begin with an underscore, it cannot be

accessed in a C program.

As in the calling of C functions from other C programs,

arguments are not automatically passed from assembly-

language routines when returning to a calling C program.

However, a value may be returned to a calling C program by

placing the return value in the AX register. This works

when returning characters, integers, or shorts, whether

signed or unsigned. If a long, float, double, or pointer

needs to be returned, see [4] for further information.

29

After the return value has been put in ax, the

assembly-language must restore registers that were preserved

on entry to the routine. Si, di, sp, and bp are restored

before the return command is given.

An example of an assembly-language /C interface is

shown in Fig. 15.

30

/*-*»* c program source f i le ***#/

extern int RESULT;
extern int DO_IT();

nuinO
<

int error, x, y;

x - 3,
y - =i

•rror DO_IT(x,y);

if (trror ! 0)
printfC'an trror has occurred\n"

)

;

>

printfC'the answer is *d\n", RESULT)

j

;###* assembly language source file **#*

_DflTfl SEGMENT UQRD PUBLIC * DflTfl'

extrn _RESULTiword
_DflTA ENDS

_TEXT SEGMENT BYTE PUBLIC 'CODE'

PUBLIC _D0_IT
_D0_IT proc near

push bp
, entry from C.

mov bp, sp
sub sp, S
push di
push si

mov ax, word ptr Cbp+43
; pop x

mov bx, word ptr Cbp+6J ; pop y

(operate on x and y in ax and bx, and put result in bx)

mov ds:C_RESULT:,bx
j put answer in RESULT,

mov ik,
; return no error.

POP *»
I exit to C.

pop di
pop ds
pop bp

>*»t
; return

_D0_IT endp

_TEXT ends

Figure 15. Example C-assembly interface.

31

3. A Interrupting the DACI, and data transfer.

The first three sections of this chapter have been

devoted to explaining what the communication routines need

to accomplish, and the tools available to help accomplish

the tasks. In this section, the routines to implement the

four commands discussed in Sec. 2.2 are developed.

Five routines have been written to accomplish

relatively low-level tasks. These routines handle

operations such as inputting and outputting bytes, inshaking

and outshaking, and sending interrupt bytes. The

instruction sequences given in Sec. 3.2 are used heavily in

these five routines. Once the five "tools" were developed,

the four command driver routines could be designed. These

routines are the actual ones called from the main C program

when one of the four commands is desired. The four command

driver routines and the five low level routines will be

included in the same source file for convenience and ease of

maintenance. The name of the source file is COM_EHSI.ASM,

which stands for: "Communication Routines for the EHSI

Development System." Before the code is entered in the

source file, some important commands need to be issued to

conform with the interfacing restrictions described in the

previous section.

COM EHSI. ASM header

Before an 8088 op code is written, the segment and

32

group names need to be set to comply with the rules of

interfacing C and assembly.

The _TEXT and _DATA segments are assigned the same

align type, combine class, class name, and group so that

code and data put in the segments are combined with the

corresponding C segments at link time. Two variables from

the C program are declared to be external words in the _DATA

segment

:

_SCREEN is the base address of the SCREEN array, which is

the array of words sent via interface Command 2.

_data_pkg is the base address of the DATA_PKG structure,

which is the destination for data received through interface

command #1

.

The CONST, _BSS, NULL, and _DATA segments are combined

into a group named DGROUP, just as the C programs are

grouped. Also, the code segment is assumed to be the _TEXT

segment. The data, stack, and extra segment are all assumed

to be the value of DGROUP.

The compiler directive EQH is used to make the assembly

code more readable and easier to maintain. Any constants

can be EQUated to an expression. On the first pass of the

compiler, the expression is replaced by the constant equated

to it earlier. The port addresses, enable and disable

values, and error definitions are given expressions,

hopefully descriptive of their functions.

The last line of the header opens up the _TEXT segment

33

so that all the following code is placed in the _TEXT

segment. The line following the last routine in the source

file tells the compiler to stop putting code in the _TEXT

segment.

COM EHSI.ASM low level routines

inshake_proc is a procedure that watches for the DACI

to pulse the Z-158 INSHAKE line. Fig. 16 shows the flow of

the procedure. Since the line is normally high, the routine

waits for the line to go low. If this doesn't occur within

a certain amount of time, an error is returned in ax. The

time that is allowed for the line to go from high to low is

controlled by an expression called INSHAKE_WAIT_LOW. The

value of the expression is defined in the header of

COM_EHSI.ASM, and the equation to determine the actual time

is found in Appendix B. After the INSHAKE line goes low,

the routine watches for the transition back to high. An

error is returned by ax to the calling routine if the line

does not go back high within a specified amount of time.

INSHAKE_WAIT_HIGH controls the length of time to wait for

the line to go back high. See Appendix B for more

information. If no errors occurred, N0_ERR0R is returned in

ax to the calling routine. This procedure is only called by

other assembly language routines. Therefore, special entry

and exit procedures for this routine are not necessary. A

'return' instruction transfers control back to the calling

routine .

34

(_
START

)
t

initialize time— out
length-INSHAKE_WAIT_LOW

Read
ACK.PORT

Initialize time— out
length-INSHAKEJVAIT_HIGH -L

INSHAKE line

did not go low.

ax-ACK.LOW.ERR

Y.j

-L
INSHAKE line did
not go back high.

ax-ACK_HIGH_ERR

No error occurred.
ax-NC_ERROR

E
RETURN

Figure 16. inshake_proc flowchart.

35

outshake_proc is a procedure that outputs a pulse on

the OUTSHAKE line of the Z-158. Fig. 17 shows a flowchart

of the procedure. The line is normally high, so the pulse

consists of a transition from high to low, and then back

high. The time that the line is low is controlled by an

expression defined in the header. Errors cannot occur, so

nothing is returned. This procedure is only called by other

assembly language routines. Therefore, special entry and

exit procedures for this routine are not necessary. A

'return' instruction transfers control back to the calling

routine

.

36

(START

1
Read

STROBE-PORT

I
Set the

OUTSHAKE bit

J
Pre—outshake delay

length-OUTSHAKE_DELAY

X
Output STROBE-PORT
(OUTSHAKE now low)

J
Clear the

OUTSHAKE bit

I
Outshake low delay

length-OUTSHAKE.HOLD.LOW

I
Output STROBE.PORT
(OUTSHAKE now high)

J
RETURN j

Figure 17. outshake_proc flowchart.

37

input_byte_proc is a procedure that performs the steps

necessary to read the data bus. Fig. 18 is a flowchart of

the procedure. The data bus is enabled for a read, the read

is performed, and the data bus is disabled. ou tshake_proc

is then called to tell the DACI that the read was

accomplished. No errors can occur, so an error code is not

returned. The byte read from the data bus is returned in

ax. This procedure is only called by other assembly

language routines. Therefore, special entry and exit

procedures for this routine are not necessary. A 'return'

instruction transfers control back to the calling routine.

38

START

Enable data bus
for a read

Read
DATA-PORT

Disable the
data bus

Acknowledge receipt
of the byte,

call outshake.proc

ax-input byte

Figure If input_byte_proc flowchart.

39

output_by te_proc is a procedure that outputs a byte to

the data bus and then waits for the acknowledge pulse from

the DACI on the Z-158 INSHAKE line. Fig. 19 is a flowchart

of the procedure. The byte to output is passed to the

routine in al. The data bus is enabled for a write, and the

output byte is put on the bus. ou tshake_proc is called to

let the DACI know that a byte is on the data bus waiting to

be read. Before disabling the data bus, the routine must

wait for the DACI to acknowledge that it read the byte. The

procedure inshake_proc is called to wait for the acknowledge

pulse on the INSHAKE line. If an error occurred in

receiving the acknowledge pulse, the error returned from

inshake_proc is kept in ax to be passed to the calling

routine. The data bus is disabled after inshake_proc. This

procedure is only called by other assembly language

routines, so the special entry and exit sequences required

for calls from C programs are not necessary. A 'return'

instruction transfers control back to the calling routine.

40

START

at = byte to output

Enable data bus
for a write

Output byte on
DATA_PORT

Tell DACI a byte
is on data bus.

call outshake_proc

Wait for acknowledge
from DACI.

call inshake_proc
ax— inshake_proc_error

Disable the
data bus

ax^error code
from inshake_proc

RETURN

Figure 19. output_by te_proc flowchart.

41

o u t pu t_in t_b y t e_p ro c is a procedure used for

interrupting the DACI to initiate one of the four interface

command routines. Fig. 20 is a flowchart of the procedure.

After enabling the data bus, the interrupt vector passed by

the calling routine in al is placed on the data bus. To

interrupt the DACI, the IRQOUT line is pulsed low and back

high. The routine must then wait for an acknowledge pulse

from the DACI. From the timing diagrams in Sec. 2.2, the

DACI can take up to 135 usee to respond to the interrupt

pulse. If an acknowledge error occurs, the routine returns

an error code to the calling function. If the acknowledge

pulse was received without error, a bus check is performed

to make sure the DACI is thinking the same thing the Z-158

is. The data bus is cleared by writing 00H to it, and then

a read is performed to make sure the DACI is not trying to

output something. If 00H is read in, then no error

occurred. If a non-zero byte was read, a bus conflict error

is returned to the calling routine. All error checking is

completed, and the data bus is disabled. This routine is

called only by other assembly language routines, so special

entry and exit sequences are not necessary. A 'return'

instruction transfers control back to the calling routine.

The five procedures have been coded and can be found in

COM_EHSI.ASM, Appendix A. The sequences written in Sec. 3.2

are used throughout the routines. Also, the expressions

42

used for port addresses, output control bytes, and error

codes are defined in the header portion of COM EHSI.ASM.

INSHAKE line

did not go low
ax-INT_LOW_ACK_ERR

Figure 20. output_int_byte_proc flowchart

43

Enable data bus
for a read.

Output 00H to
DATA.PORT

Read
DATA_PORT

no error occurred.
ax«NO_ERROR

Disable the
data bus

INSHAKE line did

not go back high.
x-INT_HICH_ACK_ERR

bus conflict error
occurred.

x-INT_BUS_CONFTJCT

RETURN

Figure 20. output_int_byte_proc flowchart (cont.)

44

COM EHSI.ASM Command routines

The development of assembly-language routines to

implement the four commands discussed earlier can now be

described. The previous three sections have laid the

groundwork for the commands. The timing diagrams (Fig. 4,

5, 6, 7) will be adhered to.

GET_DATA_PACKAGE is the procedure called from a C

program to execute command #1. The data package is to be

transferred from the DACI to the Z-158. A structure named

data_pkg is the final destination of the transferred data.

Fig. 21 gives a flowchart of the procedure. Since these

procedures are called from C programs, the entry sequence

explained in Sec. 3.3 is used. There are no arguments

passed to this routine. First, the starting address of the

data_pkg structure is retrieved. out put_int_by te_proc is

then called to output the interrupt vector 01H to the DACI.

If the interrupt was unsuccessful, an error value is

returned to the C program via the ax register. The routine

will jump to the exit sequence after the error. If the

interrupt was successful, the DACI will then start the data

transfer. inshake_proc is called to wait for the pulse

signalling the number of bytes to be sent is on the data

bus. If an error is returned from inshake_proc , the error

handling procedure is the same as with output_int_by te_proc.

The number of entries is checked with the known value, and

an error is returned if there is a discrepancy. The routine

45

reads the data after each outshake pulse is detected, until

all the data has been received. Acknowledge pulses are sent

on the OUTSHAKE line after each byte is received. After the

transfer is complete, the routine must execute the exit

sequence described in Section 3.3. This will restore the

registers saved in the entry sequence. A 'return'

instruction transfers control back to the calling C program.

46

START

ENTRY from C
program

Interrupt DACI with
command vector #1

on data bus.

Figure 21. GET DATA PACKAGE flowchart.

47

SEND_SCREEN is the procedure called from a C program to

execute Command 2. The contents of the SCREEN array are to

be transferred from the Z-158 to the DACI. Fig. 22 is a

flowchart of the routine. Data words are sent to the DACI

until the MSB is OFFH. This is the End of SCREEN signal.

As with Command 1, the entry sequence from C programs must

be executed since this routine will be called from C

programs. After the entry sequence, output_int_byte_proc is

called to output the interrupt vector corresponding to

Command 2. If the interrupt was successful, the data words

in SCREEN are sent by bytes, first the MSB and then the LSB.

If an error occurs either in o u t p u t_in t_by t e_p r oc or

output_byte_proc, the transfer is suspended and an error

code is returned. In any case, before the routine is

finished, the exit sequence must be executed to restore the

C register to their original values. A 'return' statement

then transfers control back to the calling C program.

43

START

ENTRY from C
program.

Interrupt DACI with
command vector §2

on data bus

Get SCREEN word out
of SCREEN array.

Send the USB to
the DACI.

Send LSB to

the DACI

Point to next
SCREEN word. EXIT to C program.

X
RETURN

Figure 22. SEND SCREEN flowchart.

49

RETRIEVE_SCREEN is the procedure called from a C

program to retrieve display code that is currently in HP-

1345A VGM. Fig. 23 is a flowchart of the procedure. After

the entry sequence, which is required for routines being

called from C routines, ou t put_in t_by te_proc is called to

output the interrupt vector corresponding to Command 3. The

beginning address of the code to retrieve is found in

SCREENfO], and the end address is in SCREENfl]. The

transfer is then conducted by bytes, first the MSB and then

LSB. The retrieved screen code is placed in the SCREEN

array starting with the first element. If an error occurs,

an error code is returned in ax. If no errors occur, the

exit sequence to restore the C registers is executed. A

'return' instruction transfers control back to the calling C

program.

50

START

ENTRY from C
program.

Interrupt DACI with
command vector #3

on data bus.

Figure 23. RETRIEVE_SCREEN flowchart.

51

TOGGLE_ALARM_SWITCH is the procedure called from a C

program to toggle the ON/OFF status of the alarm. Fig. 24

is a flowchart of the procedure. After the entry sequence

is completed, the Z-158 only needs to have

o u t p u t_in t_b y t e_p r oc output the interrupt vector

corresponding to Command 4. This will cause the DACI to

toggle the alarm state. The exit sequence is executed to

restore the C registers, and then a 'return' instruction

transfers control back to the C program. If an error was

returned from ou t put_in t_by t e_proc , the error code is

returned to the calling program.

START

ENTRY from C
program.

Interrupt DACI with
command vector #4

on data bue.

RETURN

Figure 24. TOGGLE ALARM SWITCH flowchart.

52

The four routines have been implemented in code and can

be found in C0M_EHS I. ASM , Appendix A, along with the low

level routines. Error codes and other expressions can be

found in the header at the beginning of the source file.

3.5 Servicing Interrupts from the DACI

Several routines will be presented in this section that

deal with the setup, execution of, and restoration of the

interrupt environment needed for the EH SI development

system. The DACI interrupts the Z-158 by pulsing its IRQOUT

line with an interrupt vector on the data bus (see Fig. 2).

The Z-158 must suspend its current process and service the

interrupt. The routine that does the servicing is installed

at startup time into the DOS environment as interrupt OFH,

the parallel port interrupt. After the servicing is

complete, the suspended process is continued without knowing

that the interrupt occurred. It will find out though, when

it checks a special stack which holds received interrupt

vectors. After a shutdown vector is received, the interrupt

environment is returned to its original state. INT_EHSI.ASM

is the assembly-language source file that contains the

procedures discussed in this section. Header information

will be discussed first, followed by the presentation of

each routine.

53

INT EHSI.ASM header

At the top of INT_EHSI.ASM is a header similar to the

one found in COM_EHSI. ASM. The segment and group names

necessary to allow C and assembly to communicate are

assigned according to the guidelines set forth in Sec. 3.3.

Since the implementation of the correct segment and group

names were done in the C0M_EHS I . AS iM header, see its

explanation in the preceding section for details. There are

some different variables in the header that do need

explanation. Args is an expression that holds the offset of

the first argument from the base of the stack after entry

into an assembly language routine called from a C program.

The value is for a small-model program.

Three double-word locations are initialized to and

inserted into the _DATA segment. These locations are for

addresses that are saved as static variables, so that the

three routines discussed shortly may have access to the same

addresses. The values cannot be disturbed by any other

routines. The function of each is described below:

int_0F is where the address of the old interrupt OFH

handling routine is stored during operation of

the EHSI Development System. At shut-down this

address is reinstalled into the interrupt address

table.

54

int_depth is the address of the variable in the C program

that keeps track of the interrupt vector stack

depth .

int_stack is the address of the first element of the

interrupt vector stack created in the main C

program.

INT EHSI.ASM interrupt routines

INITIALIZE is a routine called from the main C program

to set up the Z-158 so that interrupts received on the IRQIN

line can be serviced. The setup includes installing HANDLER

as the servicing routine. Fig. 25 is a flowchart of the

routine. Since this routine is called by a C program, the

entry sequence covered in Sec. 3.3 must be executed first.

Two arguments are being passed by the calling C program.

The last argument, the address of the interrupt vector

stack, is popped off the stack first. The address of

int_depth is popped last since it was the first argument in

the call.

Before installing the new interrupt OFH service

routine, the old routine's address is fetched from the

interrupt vector table and saved for its reinstallment after

system shut-down. The new interrupt OF servicing routine,

named HANDLER, is now installed by placing HANDLER'S address

in the interrupt vector table in low memory.

Interrupt OF is channelled through an S259A

55

Programmable Interrupt Controller (PIC). The PIC receives

and prioritizes interrupt numbers 08 through OF. When the

PIC detects an interrupt on one of its lines, if there are

no other interrupts pending, the PIC will interrupt the 8088

and pass on the interrupt number. If two interrupts hit the

PIC at the same time, the one with the higher priority is

serviced first.

The PIC contains an Interrupt Mask Register (IMR) that

needs to be changed. The parallel port interrupt must be

enabled, and the system clock needs to be ignored during

operation of the EHSI Development System. The internal

clock interrupts the system over 18 times per second for

updating purposes, and the update routine causes timing

problems for the Z-158 -to- DACI routines. Therefore, the

clock is temporarily disabled via the IMR. The procedure

for changing the IMR is explained in Sec. 3.2.

The output control port (Port 037AH) needs to be

initialized so that control lines are in their default

levels. Line D4 of Port 037AH is the IRQ_ENABLE line. Sec.

3.2 discusses what it needs to be to enable interrupts on

the parallel port interrupt line. Initialization is now

complete. The exit sequence necessary for restoring C

registers is executed, and a 'return' instruction transfers

control back to the calling C program.

50

START

ENTRY from
C program

Pop address of int.depth
off of stack

Pop address of int_stack
off of stack

Install HANOLER.ASM in

the DOS environment.

Enable parallel port
interrupt (OFH)

Disable the system
dock Interrupt (08H)

Set parallel port to
default values

EXIT back to the
calling C program.

RETURN

Figure 25. INITIALIZE flowchart.

57

HANDLER is the interrupt service routine installed by

INITIALIZE to service interrupts from the DACI. This

routine is not executed directly from any C or assembly

language routine. The procedure for servicing the interrupt

is shown in the flowchart of Fig. 26. All interrupts are

turned off immediately in the routine. This will ensure

that the interrupt service routine is not interrupted. All

registers used by HANDLER must be saved before the actual

servicing, so that when the suspended process is continued,

registers will not be mysteriously changed. The data bus is

then read to retrieve the interrupt vector from the DACI.

The OUTSHAKE line is taken low to acknowledge receipt of the

vector

.

The interrupt vector needs to be placed appropriately

in the interrupt vector stack. The current depth of the

interrupt vector stack is retrieved and incremented to get

the depth of the current vector. Since the vectors are

stored as words (2 bytes), the offset of the current vector

on the stack will be twice the current depth. After the

offset is calculated, the base address of the interrupt

vector stack is fetched. The offset is added to the stack

base address, and this is the destination for the received

interrupt vector.

There are two conditions that affect placement of the

received interrupt vector in the interrupt vector stack. If

the interrupt vector stack is full, then the current

58

interrupt is ignored by not placing it in the stack. If the

shut-down vector is received, priority is given to it by

placing it at the bottom of the stack so that it will be

next in line to be serviced.

Since the DACI needs an acknowledge pulse of at least

23 microseconds, a short delay is performed before bringing

OUTSHAKE back high. One last duty must be performed before

executing the exit sequence. An End of Interrupt signal is

sent to the 8259A PIC so it can resume operation. The

process, written out in Sec. 3.2, is like an "outshake"

pulse to the PIC to acknowledge the interrupt. The

registers saved during entry are then restored, and

interrupts are turned back on. The 'iret' instruction

transfers control back to the suspended process in the exact

state it was interrupted in.

59

START

Clear interrupts

I
Save all registers
that are used.

Enable data bus
for a read.

Get the interrupt vector.
Read DATA_PORT

I
OUTSHAKE Low

get the current depth of
interrupt vector stack,

lnt_depth.

increment int.depth

int.depth «• 1

Place interrupt vector
in the interrupt vector
stack according to the

value of int depth

Delay for OUTSHAKE
low signal.

X
OUTSHAKE high

I
send End of Interrupt

signal to 8259A.

Tum interrupts
back on.

RETURN

Restore registers
saved on entry.

Figure 26. HANDLER flowchart.

60

RESTORE is the routine called to restore the operating

environment back to the state before INITIALIZE was called.

The routine is called after the system shut-down vector is

received. Since this routine is called from a C program,

the entry sequence for calls from C must be executed first.

The old interrupt OF address, saved in INITIALIZE as int_0F,

is reinstalled in the interrupt vector table in low memory.

The PIC Interrupt Mask Register is also restored to its

original state. The exit sequence to restore the C program

registers is executed, and a 'return' instruction transfers

control back to the calling program.

f~ START]

ENTRY from
C program

Install old parallel port
servicing routine at

saved address, int.Of.

I
Disable parallel port

interrupts.

Enable system
clock interrupt.

EXIT back to the
calling C program.

RETURN

Figure 27. RESTORE flowchart.

61

IV. THE MAIN PROGRAM

4.1 Purpose of EHSI.C

The bulk of this report has been devoted to

communication routines, but these would be useless if there

were not routines to call upon them. Ehsi.c is the main

program that controls the EHSI development system. The main

program calls other functions to service the interrupts from

the DACI. The routines that are called from ehsi.c use the

four commands discussed earlier to talk with the DACI.

There are three different classes of functions that are

called on receipt of an interrupt vector.

If the start-up or shut-down vector is received,

initialization or restoration is performed respectively. If

the system clock interrupt is received, a function is called

to update the current page. This usually involves a call to

GET_DATA_PACKAGE, HP-1345A code generation, and then a call

to SEND_SCREEN. If a key number is received, a specific

function to service that key is invoked. The key routines

will be discussed in Chapter 5. The flow chart of ehsi.c is

shown in Fig. 28. The following sections shall explain what

goes on in each block of the program.

62

START

X
Variable and structure

declarations/Initializations

i —
call INIT1AUZE.ASM

Get bottom element
of interrupt vector stack

decrement Int.depth

Adjust stack by rolling

it down for the number
of vectors on the stack.

Service the vector
popped off the stack.

a
h

Service Interrupt Vector

Update __
display

Figure 28. Ehsi.c flowchart.

63

4.2 Declarations and initializations.

The main program is responsible for declaring all the

global data used in the system, and it is logical to declare

other variables and flags along with them at the beginning

of the program. "data_str.h" is the include file that

declares the structures needed. data_pkg is a structure of

type DATA_PKG which holds the current data package when

interface Command 1, GET_DATA_PACKAGE, is called. The other

two structures defined were added by C. Robertson [3] in his

work. The flags defined at the bottom are also his. Notice

that data_pkg has been initialized to zero. This must be

done, or else the structure will end up in the c_common

segment where the assembly can't access it. SCREENf] is

initialized to OFFFFH and a size of 1000 words. It is

initialized also to insure placement in the _DATA segment.

After the declarations, but before polling the

interrupt vector stack can occur, INITIALIZE is called to

set up the environment and install the interrupt service

routine, HANDLER. The system is now ready to service

interrupts from the DACI.

4.3 Ehsi.c Interrupt Servicing.

Ehsi.c polls the variable int_depth, waiting for it to

become greater than zero. A greater than zero value tells

the main program that an interrupt vector is present on the

stack. The vector is popped and placed in a variable named

64

int_number. int_depth is decremented to tell HANDLER where

to put the next vector. If int_depth is still greater than

zero after the decrement, the stack is rolled down to put

the next interrupt vector in the queue.

The interrupt vector stack operations are completed for

the current vector. The rest of ehsi.c is devoted to

determining what course of action to take with the current

vector. If the startup vector is received, the static parts

of the displays are installed in display memory. If the

shutdown vector is received, RESTORE is called to restore

the DOS environment back to normal. The program will also

terminate. On receipt of the clock interrupt vector, Ehsi.c

calls a function to perform an update of the currently

displayed page. da t_pg_d y na m i c , na v_p g_d y na m i c , and

ils_pg_dynamic are three functions written by Robertson [3],

that update the dynamic parts of the displays. The final

type of interrupt that can be received is the keyboard

interrupt. Another decision statement is used to determine

which key was pressed and what kind of action is needed.

The "service key" block in the flow chart of Fig. 28 will be

expanded in the next chapter.

After the interrupt vector has been serviced, the main

program returns to polling int_depth, waiting for the signal

that another interrupt vector is on the interrupt vector

stack.

65

4.4 Ehsi.c considerations.

The claim was made earlier that the system is running

in an interrupt environment, but it can be seen from the

main program, ehsi.c, that some polling does occur. This

hardly hampers system performance because all that is polled

is one memory location. int_depth can be checked every

couple microseconds when the interrupt vector stack is

empty. When vectors do appear on the stack, they are

executed as quickly as the service functions can be

completed. In the case where there is more than one vector

on the stack, the bottom vector will be serviced first. As

soon as that service is completed, the program will return

to see that there is still a vector on the stack. The

second vector will then be executed immediately.

The program continues until the shut-down vector is

received from the DACI. As mentioned before, RESTORE is

called to return th

then terminates.

e system to its original state. Ehsi.c

66

V. KEY SERVICING ROUTINES

5.1 Purpose of key routines

An important part of the EHSI Development System is the

command keyboard. Figure 29 shows how the 6x6 keyboard is

set up. Several of the keys deal with changing displays,

and some enter flight-related data. Others operate a clock

timer implemented by Robertson [3], A Hewlett Packard style

calculator has been implemented by the author as a means of

keeping data entries in a stack environment.

Two variables, x_buffer and y_buffer, are declared in

ehsi.c as the elements of a small "calculator" stack to be

shared by all the key servicing routines. x-buffer will be

referred to as the first, or bottom element. Key_buffer is

a character string that keeps track of the current numbers

being displayed on the "command line" of the data page.

Chapter 7 will show the data page display with the command

line in use.

5.2 HP-1345A memory organization

In the key routines it is necessary to generate screen

code for the display. Two routines, string_gen() and

insert(), were written by Robertson [3] in his work. These

routines generate HP-1345A code for character strings, and

the code words are placed in the SCREEN[] array, but the

calling routine is responsible for the address pointer in

the display memory. The organization of the HP-1345A

67

EHSI

SYSTEM
STflTCH

ON

&
OFF

START
TIMER

3RG/HLD
INBND TIMER

RESET
TIMER

SET
CLOCK

ADF
FUGHT
DATA
PAGE

11DA/DH
ASGN
ALT

EST
TOTO

SET/RST
ALARM

VOR1 RNAV
PAGE 7 8 9

V0R2 US
PACE + 4 5 6

com CLEAR X 1 2 3

COM2 ENTER
•

•

1

9 /

Figure 29. 36 Key command keyboard.

68

"Vector Graphics Memory" for the EHSI development system is

presented below.

A memory map of the VGM is shown in Fig. 30. For the

EHSI development system, all the static display information

is stored in static memory during system operation. Dynamic

display information is stored in locations that are often

changed. Jump vectors are placed throughout memory to tell

the HP-1345A which commands are to be displayed on the

screen. At address 000H, a jump vector tells the HP-1345A

to display the static parts of one of the display pages. The

static sections are installed upon receipt of the start-up

interrupt vector from the DACI. After the static display

commands are performed, a jump vector transfers the HP-1345A

pointer to the dynamic part of the currently displayed page.

After these commands are completed, a jump vector points to

the command line memory. After the command line is

displayed, a jump to the end (FFFH) is performed. The only

rule with jump vectors is that a jump vector cannot be

jumped to. Therefore, location FFFH contains a NO-OP. The

next location (OOOH) starts the refresh operation again by

repeating the process of jumping to static display memory.

69

OOOH

001

H

300H

500H

700H

900H

COOH

EOOH

FFFH

Jump vector to stotic DATA, NAV, or ILS page.

Static DATA page
Last command is jump to 700H

Not used

Static NAV page
Last command is jump to 900H

Not used

Static ILS page
Last command is jump to COOH

Not used

Dynamic DATA page
Last command is jump to EOOH

Not used

Dynamic NAV page
Last command is jump to EOOH

Not used

Dynamic ILS page
Last command is jump to EOOH

Not Used

Command line screen code
Last command is jump to FFFH

Not used

NO-OP

Figure 30. HP-1345A memory map.

70

5.3 Description of key routines

The key servicing routines that the author has

implemented are discussed below.

update_key_buf f er is a function called when one of the

digits or the decimal point key is hit. The routine

determines which key was hit, and then adds the character to

the end of key_buffer. The updated key_buffer is then

converted to screen code and sent to the display via

SEND_SCREEN.

roll_stack is a routine called when the ENTR key is

hit. This function moves the old value of x_buffer into

y_buffer, and the number currently displayed is put into

x_buffer. Remember that the number being displayed is

actually stored as a character string in key_buffer.

Therefore, a conversion function is called to convert the

character string in key_buffer to a number. key_buffer is

then cleared, and SEND_SCREEN is called to clear the command

line.

clear_stack is a routine called when the CLEAR key is

hit. This function clears the contents of x_buffer,

y_buffer, and key_buffer. SEND_SCREEN is called to clear

the command line.

do_math is a routine called when the addition,

subtraction, multiplication or division key is hit. The

specified math function is performed on the contents of

y_buffer and x_buffer, and the result is placed into

71

x_buffer. The result is also placed on the command line via

SEND_SCREEN.

d i s

p

1 a y_d a t a_p a g

e

, d i

s

p 1 a y _n a v_ p a g e , and

display_ils_page are routines that use SEND_SCREEN to change

jump vectors in vector memory so that the respective pages

are displayed.

reset_alarm is a routine that is called when the RESET

ALARM key is hit. TOGGLE_ALARM_SWITCH is invoked to toggle

the ON/OFF state of the alarm on the interface board.

call_cmd3 is a routine written for the purpose of

testing interface command 3, RETRIEVE_SCREEN. Since the

routine is not yet being used in the main part of the system

this routine shows the operation of command 3. The start

address of the retrieve is taken from y_buffer, and the end

address is in x_buffer. The call to RETRIEVE_SCREEN is

performed, and the retrieved code is printed on the Z-158

screen

.

Fig. 31. shows a flowchart of the decision making being

done in the "key service" block of Fig. 28. Routines not

explained above have been written by Robertson [3].

72

from EHSI.C
K(>y

S<,™8
„d block.

Call update_key_buffer

Call roll.stack

Call clear.stack

Call do.math

Call reaet.alarm

Call di3play_data_page
Call di3play_nav_page
Call di3play_ils_page
depending on key hit.

Call eall_cmd3

Figure 31. Key interrupt servicing flowchart.

73

VI. SOFTWARE CONDITIONING OF INPUT SIGNALS

6.1 Flight Data Sampling and Filtering

Filtering of analog flight data has become of interest

in the development of the EH SI system. Analog meters tend

to have non-linearities and electrical zero-crossing points

that are undesirable. A digital filter can be implemented

in software to alleviate some of the problems. A filter

could also be used to extract information from a signal that

would be helpful to a pilot. Therefore, a routine has been

written to sample and filter the flight data signals coming

from the flight simulator in order to explore the many

possibilities.

Flt_ehsi.c is a routine that allows a user to sample

and filter a selected element of the DATA_PKG structure.

The user must enter the desired filter order and coefficient

values in an include file named flt_ehsi.h. Ehsi_filter is

the function called by flt_ehsi to implement the filter.

The executable file, flt_ehsi.exe, is created by issuing the

command MAKE FLT_EHSI. After the executable file is

created, the program is run with the flight simulator

operational

.

The user will be prompted to enter a number

corresponding to the data element he wishes to sample. He

will then enter the number of samples to take. The program

will prompt him to enter the names of the files in which to

74

place the unfiltered and filtered data streams. After

running the program, the user can upload the data files to

the VAX and run a program named CONVERT. FOR to convert the

data file from IBM-PC format to VAX-VMS format. RALPH2, a

signal analysis program, can then be run to look at the data

files. A number of functions can be invoked in RALPH2, one

of them being PLOT. As an example, VERTICAL_SPEED was

sampled at 2 Hz and filtered by a fourth-order moving

average filter. The two data files created were uploaded to

the VAX via KERMIT, converted to VAX format via CONVERT, and

plotted by the FANCY PLOT function in RALPH2. The resultant

plot is shown in Fig. 31. The lowpass nature of the filter

is evident from the way some of the sharp peaks were

smoothed out.

Using this method of sampling and filtering data signals

from the flight simulator, some practical applications are

looked at in the next two sections.

75

ro

i

OJ

+

til en
I

' X
OJ

+

-O
to

OJ
1

u
01 X

OJ

1

0J

e

H

+

1

_c

X
ru

003 001

(aval pas* i«hj»a

002 oot

(aval paads ie3t}J3A

Figure 32. VERT_SPEED data sample.

76

6.2 A Low-pass filter for GLIDESLOPE

The GLIDESLOPE line coming out of the simulator was

sampled at 20 Hz. for the purpose of extracting trend infor-

mation. It was found, though, that a considerable amount of

noise was present in the signal. The top graph of Fig. 33

shows the sampled data. A digital low-pass filter consisting

of a ninth-order moving average filter was built to condi-

tion the signal. As can be seen by the bottom graph of Fig.

33, most of the noise has been removed, and the signal seems

to have the same characteristics as the raw data.

This averaging process may be used on any of the

data_pkg signals. The conditioned signals do not have the

sudden changes that make displays "flicker", and the pilot

can obtain more accurate flight data.

77

09T OST

(I3VQI 3dO"B3CHT9

09T

(36ej3*e) 3d01S30IT9

Figure 33. Low-pass filtered GLIDESLOPE.

78

6.3 A Differentiator for CDI and Glideslope

Two signals, CDI and GLIDESLOPE, are critical during

the performance of an ILS approach. The trends of these two

data streams could give the pilot information about the

tendancies of the airplane to deviate from the approach

path. Therefore, a digital filter differentiator was

designed to extract this information.

A "low-noise" differentiator given in [5] has the

following form:

k=N
3 \ k x(n-k)

/ N(N+1)(2N+1)
k=-N

Setting N equal to 3, the coefficients were found to

be:

y(n) = -,107x(n+3) - .0714x(n+2) - .0357x(n+l)
+.0357x(n-l) + .0714x(n-2) + .107x(n-3)

To force the filter to be causal, a time delay of three

periods must be introduced. If a filter is operating in

real-time, it cannot use input values that have not occurred

yet. Such is the case with the x(n+_) components. This does

introduce some error into the differentiation, since the

"true" result is always 3 periods late. If sampling rates

are sufficiently high, the delay is unnoticable in the

cockpit. The digital differentiator used in the EHSI

development system is written out below:

79

y(n) = -.107x(n) - .0714x(n-l) - ,0357x(n-2)
+.0357x(n-4) + .0714x(n-5) + .107x(n-6)

The CDI signal was sampled and filtered by the

differentiator. The two plots are shown in Fig. 34. The

diffentiator did a good job, but it magnified the small

amount of noise present with the input signal. The output

of the differentiator was then averaged and plotted in Fig.

35. The averaged signal gives a good indication of the

trend of the CDI.

The averaged GLIDESLOPE signal found in Sec. 6.2 was

also filtered by the differentiator. The results are shown

in Fig. 36. The derivative of the averaged signal gives a

good indication of the trend of the GLIDESLOPE. The

approach taken here is different than the previous one used

in differentiating CDI, but the two results are similar. As

expected, though, the average of the differentiated signal

(CDI) was smoother than the differentiated average

(GLIDESLOPE).

With trend information available, an indicator can be

placed on the ILS page to show the pilot his trend.

6.4 Filtering Considerations

It is worth noting some considerations concerning the

filtering of flight signals. The EHSI Development System

currently has a maximum refresh rate of 2 Hz., and a

sampling rate this low makes real-time digital filtering

80

somewhat limited. Increasing speed by changing processors

will be necessary to get the sampling rates higher so that

useful information can be obtained. There will undoubtly be

an abundance of noise present in the cockpit, so low-pass

filtering and shielding will become important. As was shown

in the plots, noise shows up quite readily when

differentiating, so a differentiator with a cut-off may be

needed to smooth the differentiated signals.

A simple way of displaying trend information with the

differentiated CDI and GLIDESLOPE signals is to treat one as

the real and the other the imaginary part of a complex

number. The phase and magnitude of the complex number could

be used to display an arrow with variable length that

pointed according to the phase value. The length of the

arrow could show how much of a change is occurring.

81

091 02*

(lava) iao

Figure. 34 Derivative of CDI.

82

01

>
01 ^
en cj

H
<U 4J

in 10w >
iH

0) c.e
(1)

tj
CD

Dl
(0

C_

01

>
<

5

(36ejaA6) iao ;p/p

Figure 35. Averaged derivative of CDI.

83

UJ
Q.

' O
_l
CO
UJ
Q

-C\J

U _i
OJ CD
in

<4-

O
m
E

0).T •1-1

OJ h- >
rH
-1-1

>

C0
«4 m

Q

09f 031

(3fiej3Ae) 3d01S3CI19

2 o

3d01S3ail9 }p/P

Figure 36. Derivative of averaged GLIDESLOPE.

84

VII. THE EHSI DISPLAY PAGES

Using the routines developed in this research, C.

Robertson [3] has written fuctions in C to implement the

different pages on the HP-1345A. He has also written

routines to service key presses and operate alarms. The

three display pages, Data page, NAV page, and ILS page, were

proposed by Lagerberg [2]. Robertson has implemented

variations of these concurrently with the research conducted

in this thesis. Each page shall now be discussed briefly.

7.1 Data page

The Data page is designed to give general flight data

and provide for a page to enter communication frequencies,

timer values, and other keyboard entries available. Fig. 37

shows the proposed Data page [2], Also available are engine

statistics and weather information.

7.2 NAV Page

The Navigation page is designed to offer a view to the

pilot of where he is relative to navigational fixes. A

type of "road map" is displayed on the screen showing the

plane relative to VOR's, NDB's, and preprogrammed waypoints.

Fig. 38 shows the proposed NAV page [2]. The compass rotates

as the plane changes course, and distance and direction

information is constantly updated.

85

HEADING: 217

IAIRSPEED: 153 CAS|(162 TAS)
GNDSPEED: 175

EST WIND: 220/20

ASSIGNED: 3000

I
ALTITUDE: 3040T

|

MDA / DH: 1229

ITIMER: 05:39

TIME-OUT: 05:50

|COMl: 119.10
[120.75

COM2: 121.90 126.30

RNAV: WP1 8.6/048.0 (112.6)

WP2 0.0/000.0

RPM: 2560

TEMP: 17.0C (62.5 F)

I
TIME: 14:29 EDT| (18:29Z)

NAV1: 112.6 110.1 S
NAV2: 110.1 112.6 S
ADF: 242

MNFLD PRES: 28.9

BAROMETER: 29.92

SINCE L/O: 00:17:36

Figure 37. Proposed Data page.

86

AIRSPD: 152 HDG: 021

GNDSPD: 169

TRK: 024

ALT: 4000

EST WIND: 220/21

RCP BRG: 201

Figure 38. Proposed NAV page,

87

7.3 ILS Page

The Instrument Landing System (ILS) page gives

information for an instrument landing. The GLIDESLOPE and

CDI are used to derive the airplanes position relative to

the landing system beams being projected from the threshold

of the runway. Fig. 39 shows the proposed ILS page [2], The

tunnel shows the "walls" to stay within so that a landing

can be made. As the plane nears the runway, the runway grows

and the tunnel shortens until the runway is in sight for the

pilot. A trend indicator is proposed in the box below the

heading. The differentiated CDI and GLIDESLOPE signals

would be used to point the arrow in the correct direction.

88

I
ALT: 2100"

DH: 1000

HDG: 230 DIST: 5.5 NM
OM

Figure 39. Proposed ILS page.

89

VIII. CONCLUSIONS

In this thesis, a number of algorithms have been

presented that establish communications between an interface

and a host computer of an EHSI development system. The

algorithms have been implemented on a Zenith 158 personal

computer, and the communication routines were interfaced

with C. As a result, a system has been designed to operate

an EHSI development system. Display update functions have

been written by another team member, and the communication

routines are used extensively within the functions. The

routines seem to be "bug free" and hard to "lock up".

A main program for the system was presented. This

program coordinates interrupt vector servicing with the

communication routines.

Key routines were presented that service key presses in

a calculator-style environment. Throughout these routines,

the procedure for using the interface command routines is

found

.

Several flight simulator signals have been filtered,

and useful trend information was obtained from the CDI and

GLIDESLOPE signals. The program Flt_ehsi.c was designed so

that future project members can sample and filter flight

signals

.

90

The research covered in this thesis has contributed to

an EHSI Development System which is presently functional.

The system display pages are close variations of the ones

proposed, and the 2 Hz. update frequency enables real-time

viewing of the display pages.

Recommendations for Future Work

There is still much to be done before a prototype can

be built and tested. A few suggestions are listed below,

and more can be found in [2] and [3].

After a sufficient amount of development and testing of

the current display pages, work should be accomplished to

determine how the current host computer's work will be

accomplished in the cockpit of an airplane. This will most

likely entail the design of a dedicated processor board. A

processor will be required that enables more than a 2 Hz.

screen update rate. The board should be compatible with the

DACI, and provisions should be made to make it easy to

modify the memory on the board. This would be handy during

flight testing. A non-Intel processor will probably be

used, and it is hoped that the detailed algorithms presented

in this thesis will aid in the writing of code for a

different processor.

A very worthwhile project would be a display driver

interface that operated on short codes from the host, and

translated them to the HP-1345A. This would take many time-

91

consuming tasks away from the host so that it could increase

the update rate, or generate more detailed pages.

The ATC-610 flight simulator has a wealth of

information readily avaiable in the form of navigational

aids. A data base could be designed that stored information

on NDB's, VOR's, and obstacles that are normally presented

on flight maps. The main program should then be able to

access information on objects that are within a certain

radius of the airplane. Using the data base information,

the page update functions could then show detailed

information of the NDB's, VOR's, and obstacles such as radio

towers in the area.

There are many more tasks left to be accomplished

before the EHSI is installed in an airplane. For the time

being, it is exciting to see one operating from a simulator.

With a new set of team members and fresh ideas, it is hoped

that the EHSI system can continue to progress towards the

cockpit

.

92

REFERENCES

[1] Dyer, S.A., "A Proposed Electronic Horizontal Sit-
uation Indicator for use in General- Aviation Air-
craft," Proceedings of 1982 Position, Location and
Navigation Symposium , pp. 198-205.

[2] Lagerberg, J.D., A_n Electronic Horizontal Situation
Indicator and Develop m ent Syste m , M.S. Thesis,
Kansas State University, 1987.

[3] Robertson, C, Graphical-page Development of an
Electronic Horizontal Situation Indicator , M.S.
Thesis, Kansas State University, 1987.

[4] Duncan, R., Advanced MS-DOS , Microsoft Press, 1986.

[5] Hamming, R.W., Digital Filters . Prentice-Hall, Inc.,
1977.

[6] M icrosoft C Version 4.0 User's Manual . Microsoft
Press, 1986.

93

APPENDIX A

SOURCE CODE

COM_EHSI.ASM 95
header 95
GET_DATA_PACKAGE ...".".""

98
SEND_SCREEN ' '

'

101
RETRIEVE_SCREEN !.'.'! 104
TOGGLE_ALARM_SWITCH

! ! ! 108
inshake_proc HO
outshake_proc

, \\2
input_by te_proc 114
o u t p u t_b y t e_p roc 116
output_int_byte_proc 118

INT_EHSI.ASM 121
header 121
INITIALIZE

, 123
HANDLER '.'.'.'.

126
RESTORE 129

EHSI.c , the main program 131
data_str.h , structure declarations 137

key_buff.c
, update_key_buf f er() 140

key_entr.c , roll_stack() 143
key_cler.c

, clear_stack() 145
key_math.c

, do_math() 147
key_dat.c , display_data_page() 150
key_nav.c

, display_nav_page() 152
key_ils.c , display_ils_page() 154
key_alrm.c

, reset_alarm() 156
key_cmd3.c

, call_cmd3() ' 158

FLT_EHSI.c
, sampling and filtering 160

EHSIFILT.c
, digital filter 164

FLT_EHSI.h
, filter coefficients 166

FLT_EHSI , MAKE FILE ' 167
CONVERT. FOR, Z-158-to-VAX data converter .'.'.'.'.'.

168

94

PAGE 55,132 ;listing page size is 55 lines by 132 col.
NAME C0M_EHSI ;set name of module
TITLE Communication routines for EHSI development system
- ***************************** ******************************

* SOURCE FILE
*

* FUNCTION:
*

*

*

* AUTHOR:
*

* DATE CREATED: 01Aug86 Version 1.0

COM_EHSI.ASM

Header containing declarations for
communication routines for the EHSI
development system.

Dave Gruenbacher

* REVISIONS: 01Dec87
Interfaced with C.
Dave Gruenbacher

01Apr87
Made segment names completely compatible.
Implemented true return of error codes.
Dave Gruenbacher

******************************^^^^^^^^fc^s^,^.,..^^

;Segments of the assembly language routines are given the
;same segment names, align types, and combine class as the
;C programs that will be linked with them. This will force
;the assembly language code and C code to be combined so
;that variables can be shared.

_TEXT SEGMENT BYTE PUBLIC 'CODE'
TEXT ENDS

•.declare the C program SCREEN array and data_pkg structure
;as external. The variables are used to get the base
;addresses of the array and structure.
_DATA SEGMENT WORD PUBLIC 'DATA'
EXTRN _SCREEN:word ;first elelment of SCREEN.
EXTRN _data_pkg:byte ;first element of data pka.
_DATA ENDS - s

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS

_BSS SEGMENT WORD PUBLIC *BSS'
BSS ENDS

95

NULL SEGMENT PARA PUBLIC 'BEGDATA'
NULL ENDS

STACK SEGMENT PARA STACK 'STACK'
STACK ENDS

;A11 segments except _TEXT are grouped together in a
; small-model C program. _TEXT has its own segment.

DGROUP GROUP CONST, _BSS, _DATA , NULL, STACK

;The default value in the cs register is _TEXT, and the
;default for ds is DGROUP, which as mentioned above is
;the same segment value for several different segments.

ASSUME CS: _TEXT, DS : DGROUP, SS: DGROUP, ES : DGROUP

;Definitions of port addresses, output states, error codes,
;pulse lengths, and time-out delays.

;port addresses.
DATA_PORT_ADDR
ACK_PORT_ADDR
STROBE_PORT_ADDR
ENABLE PORT ADDR

EQU 378H
EQU 379H
EQU 37AH
EQU 37AH

;bytes to output to control state of data bus.
ENABLE_READ_DATA EQU OFEH
ENABLE_WRITE_DATA EQU OFCH
DISABLE_DATA_PORT EQU 0F4H

;command interrupt vectors.
CMD1_INT_VECT0R EQU 001H
CMD2_INT_VECT0R EQU 002H
CMD3_INT_VECT0R EQU 003H
CMD4_INT_VECT0R EQU 004H

;error definitions.
NUM_FAULT_ERR EQU ODOH

N0_15RR0R EQU 00OH

INT LOW ACK i

ACK
SRR
ERR

EQU
EQU

OEOH
INT""HIGH 0E1H
im'_"bus_CONFLICT EQU 0E2H

ACK LOW ERR EQU OFOH
ACf"high_ERR EQU 0F1H

96

;number of entries in data package.
DPKG_ENTRIES EQU 018H

;end of SCREEN array signal.
END_SCREEN EQU OFFH

;pulse widths and time-
INSHAKE_WAIT_LOW EQU
INSHAKE_WAIT_HIGH EQU
INSHAKE_LINE_HIGH EQU
OUTSHAKE_DELAY EQU
OUTSHAKE_HOLD_LOW EQU
INT_WAIT_LOW
INT WAIT HIGH

EQU
EQU

out V

050H
007H
010H
OOFH
OOBH
020H
007H

ilues

.

TEXT SEGMENT

9 7

SUBTTL GET_DATA_PACKAGE.ASM
PAGE+

*

* SOURCE_FILE: COM EHSI.ASM
*

* FUNCTION: GET_DATA_PACKAGE
*

* DESCRIPTION: This procedure is used to receive the
* current data package from the DACI.
*

* EXTERNAL
* VARIABLES:
*

* data_pkg (structure)
* C program structure where the contents of
* the received data structure are to be
* placed.
*

* RETURN
* REGISTER:
*

* ax (integer)
* error status according to the following:
* N0_ERR0R: Normal completion.
* INT_LOW_ACK_ERR: DACI did not
* acknowledge interrupt.
* INT_HIGH_ACK_ERR: DACI did not bring
* ack line back high
* after interrupt.
* ACK_LOW_ERR: Acknowledge line did
* not go low.
* ACK_HIGH_ERR: Acknowledge line did
* not go back high after
* going low.
* other: Other error code.
*

*

* REGISTERS
* CHANGED: ax.cx.dx

* FUNCTIONS
* CALLED: output_int_byte_proc
* inshake_proc
* outshake_proc
* input_by te_proc
* output_byte_proc
*

* AUTHOR: Dave Gruenbacher

98

DATE CREATED: 01Aug86 Version 1.0

* REVISIONS:
*

*

*

21Feb87 Version 2.0
overhauled error return and type structure.
Dave Gruenbacher

PUBLIC _GET_DATA_PACKAGE
_GET_DATA_PACKAGE proc near

enter_get_data_pkg

:

push bp
mov bp,sp
sub sp,8
push di
push si ;save C program registers.

try_cmd_l

;

mov di, offset ds:_data_pkg ;get start addr of

mov al,CMDl_INT_VECTOR
call output_int_byte_proc
test ax,N0_ERR0R
jnz dpkg_error

;data package structure.
;get_data_pkg is crad #1.
;interrupt the DACI.
;check for error.
;jump if error occurred.

call inshake_proc
test ax,N0_ERR0R
jnz dpkg_error

call input_byte_proc

mov ah.OOH
mov ex, ax
emp cx,DPKG_ENTRIES
jnz bad_num_received

;wait for byte-ready sig.
;check for error.
;jump if error occurred.

;get number of data
;package entries.

;num. of entries is in ex,
;cx should be 24D.
;jump if 24 not received.

read_loop:
push ex
call inshake_proc
emp ax,N0_ERR0R
jnz dpkg_error
call input_byte_proc
mov byte ptr ds:[di],al
inc di
pop ex
dec ex
j z n o_d pkg_error

;save ex for later.
;wait for ack.
jcheck for error.
;jump if error occurred.
;read the data port.
;insert item in data pkg.
;point to next data item.
;get counter.
;decrement counter.
;jump if done.

99

jmp read_loop ;if not done,
;get next byte.

bad_num_received

:

sti ;turn interrupts back on.
mov ax,NUM_FAULT_ERR [return error code.
jmp exit_get_data_pkg ;go to exit sequence.

dpkg_error: [return ack error code.
st * ;turn interrupts back on.
jmp exit_get_data_pkg ;go to exit sequence.

no_dpkg_error

:

mov ax,N0_ERR0R ;return no error code,
jmp exit_get_data_pkg ;go to exit sequence.

exit_get_data_pkg

:

P°P si [restore C program
P P di [registers,
mov sp,bp
pop bp

sti [turn interrupts back on.
ret [return to calling

[C program.
_GET_DATA_PACKAGE endp

[****end of GET DATA PACKAGE********************************

100

SUBTTL SEND_SCREEN.ASM
PAGE+

*

* SOURCE_FILE: COM EHSI.ASM
*

* FUNCTION: SEND SCREEN
*

* DESCRIPTION: This procedure is used to send the contents
of the SCREEN array to the HP-13A5A through

* the DACI via command #2.
*

*

* EXTERNAL
* VARIABLES:
*

* SCREEN (word)
*

*
C program array that holds the words
to be sent. The end of the array is
detected when the MSB of a word is FFH.

*

* RETURN
* REGISTER
*

* ax
*

*

*

*

* ACK LOW ERR
*

— —
*

*

*

(integer)
error status according to the following:

N0_ERR0R: Normal completion.
INT_L0W_ACK_ERR: DACI did not

acknowledge interrupt.
INT_HIGH_ACK_ERR: DACI did not bring

ack line back high
after interrupt.
Acknowledge line did
not go low.

ACK_HIGH_ERR: Acknowledge line did
not go back high after
going low.

other: Other error code.

* REGISTERS
* CHANGED: ax.cx.dx
*

* FUNCTIONS
* CALLED: output_int_byte_proc

inshake_proc
outshake_proc
input_byte_proc

* output_byte_proc

101

AUTHOR:

DATE CREATED:

REVISIONS:

Dave Gruenbacher

01Aug86 Version 1.0

*

*

*

*

*

*

*

*

*

*

*

21Feb87 Version 2.0
overhauled error return
error type structure
Dave Gruenbacher

tad

HApr87
changed name from UPDATE_SCREEN
to SEND_SCREEN.
Dave Gruenbacher

PUBLIC _SEND_SCREEN
SEND SCREEN PROC NEAR

e n t e r_s end_screen:
push bp
mov bp , sp
sub sp,8
push di
push si

;save C program
; registers

.

mov al,CMD2_INT_VECT0R ;get interrupt vector #2.
call output_int_byte_proc ;interrupt the DACI.
test ax,N0_ERR0R ;error code returned in ax.
jnz send_error ;jump if error occurred.

mov di, offset ds:_SCREEN ;set pointer to array start

send_screen:
mov ax, word ptr ds:[di]
push ax
xchg al.ah
call output_by te_proc
cmp ax,N0_ERR0R
jnz send_error
pop ax
xchg al.ah
cmp al,END_SCREEN
jz no_scr_error
xchg al.ah
call output_by te_proc
cmp ax,N0_ERR0R

;get SCREEN word.
;save for sake of LSB.
;MSB -> al, LSB -> ah.
;send MSB to DACI.
;check for error.
;jump if error occurred
;get original word.
;MSB -> al, LSB -> ah.
;is MSB = FFH?
;jump if finished.
;MSB -> ah, LSB -> al.
;send LSB to DACI.
jcheck for error.

102

jnz send_error ;jump if error occurred,
inc di ;increment pointer twice to
inc di ;point to next SCREEN word,
jmp send_screen ;jump to send another word.

send_error: ;error code is in ax.
Sti ;turn interrupts back on.
jmp exit_send_screen ;go to exit sequence.

no_scr_error

:

mov ax,N0_ERR0R ;return no error occurred,
jmp exit_send_screen ;go to exit sequence.

exit_send_screen

:

pop si ;restore C program
pop di ;registers.
mov sp , bp
pop bp

sti ;turn interrupts back on.
ret jreturn to calling routine.

_SEND_SCREEN endp

;****end of SEND SCREEN*************************************

103

SUBTTL RETRIEVE_SCREEN.ASM
PAGE+
** [:*******

SOURCE_FILE:

FUNCTION:

DESCRIPTION:

EXTERNAL
VARIABLES:

SCREEN

ax

* RETURN
* REGISTER:
*

*

*

*

*
*

*

*

*
*

*

* REGISTERS
* CHANGED:

COMJEHSI.ASM

RETRIEVE_SCREEN

This procedure is used to retrieve contents
of a specified block of HP-1345A memory.
The start of the block is taken from
SCREEN[0], and the end is taken from
SCREENfl]. The retrieved memory is put in
the SCREEN[] array.

(word

)

On entry, the first and second elements
contain the start and end addresses of the
HP-1345A memory to retrieve, respectively.
On exit, the array holds the memory
recieved through the DACI.

(integer)
error status according to the following:

N0_ERR0R:
INT_LOW_ACK_ERR:

INT HIGH ACK ERR:

ACK_LOW_ERR:

ACK HIGH ERR:

other

:

ax , bx , ex , dx

Normal completion.
DACI did not
acknowledge interrupt.
DACI did not bring
ack line back high
after interrupt.
Acknowledge line did
not go low.
Acknowledge line did
not go back high after
going low.
Other error code.

FUNCTIONS

104

* CALLED: output_int_byte_proc
* inshake_proc
* outshake_proc
* input_byte_proc
* output byte proc
*

* AUTHOR: Dave Gruenbacher
*

* DATE CREATED: 01Nov86 Version 1.0
*

* REVISIONS:
*

* 21Feb87 Version 2.0
overhauled error return and

* error type structure

PUBLIC _RETRIEVE_SCREEN
_RETRIEVE_SCREEN PROC NEAR

push bp ;save C program registers,
raov bp , sp
sub sp,

8

push di
push si

mov al,CMD3_INT_VECT0R ;get interrupt vector #3.
call output_int_byte_proc ;interrupt the DACI.
test ax,N0_ERR0R ;ax=0 means no error.
jnz send_error ;jump if error occurred.

mov di, offset ds:_SCREEN ;point to start of SCREEN.

mov ax, word ptr ds:[di] ;get start address.
P«sh ax ;save start address,
push ax ;save LSB for later,
xchg al.ah ;MSB -> al, LSB -> ah.
call output_byte_proc ;send start address MSB.
test ax,N0_ERR0R ;ax=0 means no error.
jnz rtr_error ;jump if error occurred.
P P a x ;get LSB of start address,
call output_byte_proc ;send start address LSB.
test ax,N0_ERR0R ;ax=0 means no error,
jnz rtr_error ;jump if error occurred.

i" c di ;point to the end address
inc d i ;of the transfer.

mov ax, word ptr ds:[di] ;get end address.

105

push ax
push ax
xchg al.ah
call output_by te_proc
test ax,NO_ERROR
jnz rtr_error
pop ax
call output_by te_proc
test ax,NO_ERR0R
jnz rtr_error

pop bx
pop ex
sub bx , ex

;save end address for sub.
;save LSB for later.
;MSB -> al, LSB -> ah.
;send end address MSB.
;ax=0 means no error.
;jump if error occurred.
;get LSB of end address.
;send end address LSB.
;ax=0 means no error.
;jump if error occurred.

;put end address in bx.
;put start address in ex.
;bx = end - start address

mov di, offset ds:_SCREEN ;point to start of SCREEN.

rtr_screen

:

push bx
call inshake_proc
test ax,N0_ERR0R
jnz r t r_e r r o r

call input_byte_proc
mov byte ptr ds:[di+l],al
inc di

call inshake_proc
test ax,N0_ERR0R
jnz rtr_error
call input_byte_proc
mov byte ptr ds:[di-l],al

pop bx
crap bx,0
jz rtr_done

dec bx
inc di
jmp rtr_screen

save counter.
wait for byte ready sig.
check for error.
jump if error occurred.
get the MSB of scrn word.
put MSB in screen array.
point to next scrn byte.

wait for byte ready sig.
check for error.
jump if error occurred,
get the LSB of scrn word,
put LSB in screen array.

get counter,
is bx = ?

jump if done.

adjust counter.
point to next screen byte.
jump to get another word.

rtr_error

:

sti
jmp exit_rtr_screen

rtr_done:
mov ax,NO_ERROR
jmp exit_rtr_screen

;turn interrupts back on.
;jump to exit sequence.

;return no error code.
;jump to exit sequence.

exit_rtr_screen:
pop si ;restore C program

106

pop di ;registers.
raov sp, bp
pop bp

sti ;turn interrupts back on.
ret ;return to calling routine.

_RETRIEVE_SCREEN endp

i****end of RETRIEVE SCREEN******************************

107

SUBTTL TOGGLE ALARM SWITCH. ASM
PAGE+

*

* SOURCE_FILE: COM EHSI.ASM
*

~"

* FUNCTION: TOGGLE ALARM SWITCH

* DESCRIPTION
*

*
*

* EXTERNAL
* VARIABLES: None.
*

* RETURN
* REGISTER:

This procedure is used to toggle the state
of the alarm on the interface. If an error
occurs, an error code is returned.

* ax (integer)
error status according to the following:

N0_ERR0R: Normal completion.
INT_L0W_ACK_ERR: DACI did not

acknowledge interrupt,
INT_HIGH_ACK_ERR: DACI did not bring

ack line back high
after interrupt.

* REGISTERS
* CHANGED: ax.cx.dx
*

* FUNCTIONS
* CALLED: output int byte proc

* AUTHOR: Dave Gruenbacher

* DATE CREATED: 01Aug86 Version 1.0
*

* REVISIONS:
*

* 21Feb87 Version 2.0
* overhauled error return and type structure.

Dave Gruenbacher

* HApr87
* changed error return.

Dave Gruenbacher

PUBLIC _TOGGLE_ALARM_SWITCH

108

_TOGGLE_ALARM_SWITCH PROC NEAR

enter_tog_alarra:
push bp ;save C program registers,
raov bp.sp
sub sp,

8

push di
push si

mov al,CMD4_INT_VECT0R ;get interrupt vector #4.
call output_int_byte_proc :interrupt the DACI.

icorrect error code
;is in ax for return,

e x i t_t o g_a 1 a r m

:

pop si ;restore C program
pop di ;registers.
mov sp.bp
pop bp

sti ;turn interrupts back on.
ret [return to calling routine.

_TOGGLE_ALARM_SWITCH ENDP

;****end of TOGGLE ALARM SWITCH*****************************

109

SUBTTL INSHAKE_PROC.ASM
PAGE+

*

* SOURCE FILE: COM EHSI.ASM

* FUNCTION:
*

* DESCRIPTION:

* ARGUMENTS:
*

* RETURN:
*

* ax
*

*

*

*

*

* REGISTERS
* CHANGED:

INSHAKE_PROC

This procedure waits for the DACI to pulse
the Z-158 INSHAKE line from high to low and
then back to high.

None.

error status according to the following:
N0_ERR0R:
ACK_LOW_ERR:

ACK HIGH ERR:

ax , ex , dx

Normal completion.
Acknowledge line did
not go low.
Acknowledge line did
not go back high after
going low.

None.

Dave Gruenbacher

Version 1.0

* FUNCTIONS
* CALLED:
*

* AUTHOR:
*

* DATE CREATED: 01Aug86
*

* REVISIONS:
*

* 21Feb87 Version 2.0
* tightened time delays and inserted error
* handling capabilities.

***###£*### tf*;^

inshake_proc proc near

mov dx,ACK_PORT_ADDR ;get inshake port address,
mov ex, INSHAKE_WAIT_LOW ;initialize time-out delay

ack_low_loop

:

in al.dx
dec ex

;read the inshake port.

110

jz low_ack_err ;jurap if time-out occurred,
and al,INSHAKE_LINE_HIGH ; check if inshake is high,
jnz ack_low_loop ;if still high, try again.

mov cx,INSHAKE_WAIT_HIGH initialize time-out delay

a c k_h i g h_l o o p

:

in al.dx ;read the inshake port,
dec ex
jz high_ack_err Ijump if time-out occurred,
and al,INSHAKE_LINE_HIGH ;check if inshake is high,
jz ack_high_loop ;if still low, try again.

mov ax,N0_ERR0R ; return no error.
jmp end_inshake ;jump to end.

low_ack_err

:

mov ax,ACK_LOW_ERR ;inshake did not go low.
jmp end_inshake ;jump to end.

h i g h_a c k_e r r

:

mov ax,ACK_HIGH_ERR ;inshake did not go high,
jmp end_inshake ;jump to end.

end_inshake

:

ret ;return to calling routine.

inshake_proc endp

;****end of inshake_proc************************************

111

SUBTTL OUTSHAKE_PROC.ASM
PAGE+
***„;

* SOURCE_FILE:
*

* FUNCTION:
*

* DESCRIPTION:
*

*

*
*

* ARGUMENTS:
*

* RETURN:
*

* REGISTERS
* CHANGED:
*

* FUNCTIONS
* CALLED:
*

* AUTHOR:
*

* DATE CREATED: 01Aug86 Version 1.0
*

* REVISIONS: None.
*

COM_EHSI.ASM

OUTSHAKE_PROC

This procedure puts a low pulse on the
Z-158 OUTSHAKE line. There is an
adjustable delay before the pulse is
sent, and the length of the pulse is
also adjustable.

None.

None

.

al , ex ,dx

None.

Dave Gruenbacher

outshake_proc proc near
mov dx,STROBE_PORT_ADDR
in al , dx
or al.OlH

mov cx,OUTSHAKE_DELAY
os_delay

:

dec ex
jnz os_delay

out dx ,al
dec al

mov cx,OUTSHAKE_HOLD_LOW
o s_l o w_d e 1 a y

:

dec ex
jnz os_lo w_d e 1 a y

;get outshake port address.
;get current ouput value.
;set the outshake line.

;need to wait before
;pulsing the outshake line
;so that the DACI will be
; ready

.

;outshake line is now low.
;prepare to bring
;outshake back high.

;need to hold the outshake
;line low long enough for
;the DACI to see it.

112

out dx ,al
ret

o u t s h a k e_p roc e n d p

;outshake line is now high,
;return to callin routine.

;****end of outshake_proc***********************************

113

SUBTTL INPUT BYTE PKOC. ASM
PAGE+

*

* SOURCE_FILE: COM_EHSI.ASM

* FUNCTION: INPUT_BYTE_PROC

* DESCRIPTION: This procedure is used to read a byte from
* the data bus.

* ARGUMENTS: None.
*

* RETURN:
*

* al byte read through data port.
*

* REGISTERS
* CHANGED: ax.cx.dx
*

* FUNCTIONS
* CALLED: outshake_proc

* AUTHOR: Dave Gruenbacher

* DATE CREATED: 01Aug86 Version 1.0
*

* REVISIONS: None.
*

input_byte_proc proc near
mov dx,ENABLE_PORT_ADDR
raov al,ENABLE_READ_DATA ;enable data bus
out dx.al ;for a read.

mov dx,DATA_PORT_ADDR ;read the data bus and put
in al.dx ;the result into ax.
mov ah.OOH ;clear ah.
push ax ;save the input byte.

mov dx,STROBE_PORT_ADDR
mov al,DISABLE_DATA_PORT
out dx.al ;disable the data bus.

call outshake_proc ;tell DACI the byte
;was received,

pop ax ;return the input byte

ret
; in ax.
jreturn to calling routine.

114

input_byte_proc en dp

;****end of inpu t_byte_proc*********************************

115

SUBTTL OUTPUT_BYTE_PROC.ASM
PAGE+

*

* SOURCE_FILE: COM EHSI.ASM
*

* FUNCTION: OUTPUT EYTE PROC
*

* DESCRIPTION: This procedure is used to output a byte to
the data port. An error is returned if an
acknoweledge was not received.

*

* ARGUMENTS:
*

* al contains the byte to send.
*

* RETURN:
*

* ax error status according to the following:
N0_ERR0R: Normal completion.

* ACK_LOW_ERR: Acknowledge line did
*

ACK_HIGH_ERR: Acknowledge line did
* not go back high after
*

* REGISTERS
* CHANGED: ax.cx.dx
*

* FUNCTIONS
* CALLED: outshake proc
*

*

not go low.
Acknowledg
not go bac
going low.

inshake_proc

* AUTHOR: Dave Gruenbacher

* DATE CREATED: 01Aug86 Version 1.0
*

* REVISIONS: HApr87
changed error return to ax

* Dave Grruenbacher
*

*if*********:!!**************************************),***-:*.!;

output_by te_proc proc near
mov ah.al ;save output byte.

mov dx,ENABLE_PORT_ADDR
mov al,ENABLE_WRITE_DATA
out dx.al ;enable write to data bus.

116

mov dx,DATA_PORT_ADDR
mov al.ah ;put byte to output in al.
out dx.al ;output byte on data bus.

call outshake_proc ;tell DACI a byte is
;on the data bus.

call inshake_proc ;wait for ack from DACI,
;error code returned in ax.

push ax [save error code.

mov dx,STROBE_PORT_ADDK
mov al,DISABLE_DATA_PORT
out dx.al ;disable data bus.

pop ax ;return error code in ax.
ret ;return to calling routine.

output_byte_proc endp

;****end of output_byte proc********************************

117

SUBTTL OUTPUT_INT_BYTE PROC.ASM
PAGE+

* SOURCE_FILE: COM_EHSI.ASM

* FUNCTION: OUTPUT INT BYTE PROC
* — — _

* DESCRIPTION: This procedure is used to output an
interrupt vector to the DACI. If an error
occurs, an error code is returned.

* ARGUMENTS:
*

al contains the interrupt vector to send.
*

* RETURN:
*

ax error status according to the following:
N0_ERR0R: Normal completion.
INT_LOW_ACK_ERR: DACI did not acknowl-

edge the interrupt.
INT_HIGH_ACK_ERR: DACI did not bring

ack line back high
after interrupt.

* REGISTERS
* CHANGED: ax.cx.dx

* FUNCTIONS
* CALLED: None.
*

* AUTHOR: Dave Gruenbacher
*

* DATE CREATED: 01Aug86 Version 1.0

* REVISIONS:
*

* 21Feb87 Version 2.0
overhauled error return and error

* type structure

output_int_by te_proc proc near
int_start

:

mov ah.al ;save interrupt vector.

mov dx,ENABLE_P0RT_ADDR
mov al, ENABLE WRITE DATA

118

out dx.al ;enable write to data bus.

raov dx,DATA_PORT_ADDR
mov a.l.ah

out dx.al

mov dx ,STROBE_PORT_ADDR
in al , dx
and al ,11111011B
out dx ,al
or al .00000100B
out dx ,al

cli

mov dx,ACK_P0RT_ADDR
mov ex, INT WAIT LOW

1 ow_i n t_a c k_l o o p

:

in al , dx
dec
jz
and
jnz

ex
n o_a c k_l o w

al , INSHAKE_LINE_HIGH
low_int_ack_loop

mov cx,INT_WAIT_HIGH

h i g h_i n t_a c k_l o o p

:

in al , dx
dec ex
jz no_ack_high
and al,INSHAKE_LINE_HIGH
jz high_int_ack_loop

mov dx,STR0BE_P0RT_ADDR
mov al,ENABLE_READ_DATA
out dx.al

;put interrupt command
;vector in al.
;output interrupt vector.

;get addr. of IRQ_0UT port.
;get current state of port.
;clear IRQ_0UT bit on port.
;IRQ_0UT line is now low.
;reset the IRQ_0UT bit.
;IRQ_0UT line is back high.

;ignore interrupts for now.

;get ready to read inshake.
;wait time for inshake low.

;read the inshake port.

;jump if time-out occurred,
;check if inshake is high.
;jump if inshake not low.

;wait time for inshake
;to go high.

;read the inshake port.

;jump if time-out occurred.
;check if INSHAKE is high.
;if not high, try again.

;enable data bus
;for a read.

mov dx,DATA_P0RT_ADDR
mov al,00H
out dx ,al

in al.dx
test al.OOH
jnz int_conflict

int_okay

:

mov ax,N0_ERR0R
jmp end_int_byte

;put 00 on the data bus.

;read the data bus.
;is DACI trying to write?
;jurap if conflict occurred.

;return no error in ax.
;jump to end.

119

no_ack_low:
sti ;turn interrupts back on.
mov ax,INT_LOW_ACK_ERR ; return error code in ax.
jmp end_int_byte ;jurap to end.

n o_a c k_h i g h

:

st i ;turn interrupts back on.
mov ax,INT_HIGH_ACK_ERR ; return error code in ax.
jmp end_int_byte ;jump to end.

int_conf lict

:

sti ;turn interrupts back on.
mov ax,INT_BUS_CONFLICT ; return error code in ax.
jmp end_int_byte ;jump to end.

end_int_byte:
push ax ;save error code.

mov dx,ENABLE_PORT_ADDR
mov al,DISABLE_DATA_PORT
out dx.al ;disable data port

P°P ax ;return error code in ax.
ret ;return to calling routine.

output_int_byte_proc endp

;****end of output_int_byte_proc****************************

_TEXT ENDS ;en d of COH_EHSI.ASM code.
END ;end of COM_EHSI.ASM

;****end of COM EHSI . ASM************************************

120

PAGE 55,132 ;listing page size is 55 lines by 132 col.
NAME INT_EHSI ;set name of module
TITLE Interrupt routines for the EHSI Development System
- ** ******************;.
*

* SOURCE FILE: INT EHSI. ASM

* FUNCTION: Header containing declarations for
interrupt handling routines for the EHSI
development system.

* AUTHOR: Dave Gruenbacher
*

* DATE CREATED: 28Dec86 Version 1.0

* REVISIONS:
*

*

* Dave Gruenbacher
*

i**^,,.,,...

01Apr87
Made segment names completely compatible,

Segments of the assembly language routines are given the
same segment names, align types, and combine class as
the C programs that will be linked with them. This will
force the assembly language code and C code to be
combined so that variables can be shared.

_TEXT SEGMENT BYTE PUBLIC 'CODE'
_TEXT ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'
int_depth dw 0,0 interrupt depth address
int_stack dw 0,0 ;interrupt stack address
int_0F dw 0,0 ;old int Of handler address
_DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS

_BSS SEGMENT WORD PUBLIC 'BSS'
_BSS ENDS

NULL SEGMENT PARA PUBLIC 'BEGDATA'
NULL ENDS

STACK SEGMENT PARA STACK 'STACK'
STACK ENDS

121

;A11 segments except _TEXT are grouped together in a small-
;model C program. _TEXT has its own segment.

DGROUP GROUP CONST, _BSS, _DATA, NULL, STACK

;The default value in the cs register is _TEXT, and the
;default for ds is DGROUP, which as mentioned above is
;the same segment value for several different segments.

ASSUME CS: _TEXT, DS : DGROUP, SS: DGROUP, ES: DGROUP

jDefinitions of port addresses, output states, error codes,
jpulse lengths, and time-out delays.

;port addresses.
DATA_PORT_ADDR EQU 378H
ACK_PORT_ADDR EQU 379H
STROBE_PORT_ADDR EQU 37AH
ENABLE_PORT_ADDR EQU 37AH

;bytes to output to control state of data bus.
ENABLE_READ_DATA EQU OFEH
ENABLE_WRITE_DATA EQU OFCH
DISABLE_DATA_PORT EQU 0F4H

;offset of arguments in small-model C program.
ARGS EQU 004H

;maximum depth of interrupts to be stacked.
MAX_DEPTH EQU 020H

;ehsi shutdown interrupt vector.
ST0P_VECT0R EQU 066H

_TEXT SEGMENT jstart of code.

122

SUBTTL INITIALIZE. ASM
PAGE+

*

* SOURCE_FILE: INT EHSI.ASM
*

* FUNCTION: INITIALIZE(&int depth, Sint stack)
*

—

* DESCRIPTION: Performs initialization of the EHSI
developement system. An interrupt handler
called HANDLER is installed, and the
system interrupt environment is altered
to suit the needs of the main program.
This function is the first function
that the main program should invoke.

* ARGUMENTS:
*

* Sin t_d e p t h

is the address of a variable used to tell
the main program how deep the interrupts

* are stacked.
*

* &int_stack
is the address of the base of the stack
where interrupt vectors are stored while
the main program cannot keep with the

* interrupts from the DACI.
*

* RETURN: None.
*

* REGISTERS
* CHANGED: ax.cx.dx
*

* FUNCTIONS
* CALLED: None.
*

* AUTHOR: Dave Gruenbacher
*

* DATE CREATED: 29Dec86 Version 1.0
*

* REVISIONS: 03Mar87 Version 2.0
Changed arguments to an interrupt
stacking format.

*##****#*###**#***#*#****&******#%#*%%%#*#*****#*#•>:*#****#*

PUBLIC _INITIALIZE
_INITIALIZE proc near

123

push bp ;save C program registers,
mov bp.sp
push ds
push di
push si

;get the argument &int_depth off the stack, and save it at
; int_depth.

mov ax, word ptr [bp+ARGS] ;pop &int_depth.
raov ds:int_depth,ax ;save offset of int_depth.
mov ds: int_depth+2 , ds ;save offset of int_depth.

;get the argument &int_stack off the stack, and save
;it at int_stack.

mov ax, word ptr [bp+ARGS+2]
; pop &int_stack.

mov ds:int_stack,ax ;save offset of int_stack.
mov ds:int_stack+2, ds ;save offset of int_stack.

Get the current address of the handler of interrupt OF, so
that the address can be saved. The address will be
reinstalled in REST0RE() before the main program
terminates. DOS function 35H is used to fetch the current
address. AL is loaded with the interrupt number(OFH),
and AH is loaded with the function number(35H) before
INT 21H is invoked. The function returns the
segment : of f set of interrupt handler in ES:BX respectively.
The addresses than can be stored in a location
called "int_0f".

mov ax,350FH ;get ready for function call,
int 21H ;get int OFH handler address,
mov ds:int_Of,bx jstore the offset,
mov ds : int_Of +2 , es ;store the segment.

Install the address of HANDLER as the new address of the
interrupt OFH interrupt handling routine. DOS function 25H
is used to accomplish this task. DS:DX is loaded with the
segment and offset of HANDLER, respectively. AH is loaded
with the function number(25H), and AL must contain the
interrupt number(OFH) before INT 21H is invoked.

push cs
pop ds ;get the segment of HANDLER.
mov dx, offset HANDLER ;get the offset of HANDLER,
mov ax,250FH ;get ready for function call,
int 21H ;install HANDLER as new -

;int OF service routine.

124

; The interrupt mask register needs to be changed during
; operation of the main program. The system clock interrupt
; must be masked for timing purposes, and the parallel port
; interrupt must be unmasked. The mask register is located
; at port 21H.

in al,21H
and al,7FH
or al.OlH
out 21H,al

;get current mask register,
;unmask interrupt OFH.
;mask interrupt 08H.
;install new mask register,

Before interrupts can be detected on the parallel port,
(Int OF), bit 4 of port 037A must be set high. Bits 5,6,
and 7 are not used and can also be set to high. Bit
is cleared to initialize the outshake line to high,
and bit 2 is set so that the 68000 is not interrupted
prematurely.

mov dx,037AH
in al.dx
or al.llllOlOOB
and al.lllllllOB
out dx.al

Initialization is complete.

;get ready to read port 37AH.
;get current state of port.
;set bits 2,4,5,6, and 7.
;clear bit 0.
;send new state to port 37AH.

pop si
pop di
pop ds
pop bp

[restore C program
; registers.

(return to calling
;C routine.

ret

.INITIALIZE endp

l****end of INITIALIZE. ASM**************************. *******

125

adjusts the interrupt stack with received
interrupt vectors.

SUBTTL HANDLER. ASM
PAGE+

*

* SOURCE_FILE: INT EHSI.ASM
*

—

* FUNCTION: HANDLERQ
*

* DESCRIPTION: The interrupt service routine used to
receive interrupt vectors from the DACI.

*

* ARGUMENTS: None.
*

* RETURN:
*

*

* REGISTERS
* CHANGED: ax.cx.dx
*

* FUNCTIONS
* CALLED: None.
*

* AUTHOR: Dave Gruenbacher
*

* DATE CREATED: 29Dec86 Version 1.0
*

* REVISIONS: 03Mar87 Version 2.0
Changed arguments to an interrupt
stacking format.

HANDLER PROC FAR

cli ;turn interrupts off.

push ax ;save registers used
P ush bx ;in this routine.
push ex
push dx
push ds
push si
push di

mov dx,ENABLE_PORT_ADDR
mov al,ENABLE_READ_DATA
out dx.al ;enable data bus for read.

mov dx,DATA_PORT_ADDR
in al,dx ;get the interrupt vector.

126

mov ah.al ;save interrupt vector.

mov dx,ENABLE_PORT_ADDR
mov al,0F5H ;disable port and put
out dx.al ;OUTSHAKE line low.

mov bx , ds : int_depth
mov ds.ds: int_depth+2
mov ex, word ptr ds:[bx] ;get current depth of the

;interrupt stack.

emp cx,MAX_DEPTH [if the stack is full,
jge stack_full [jump to outshake delay.

inc ex [increment int_depth and
mov word ptr ds:[bx],cx ;replace in main C program,
dec ex ;new vector will be placed at

; 2*(int_depth-l) from base of
; int_stack.

mov al,ah
mov ah,0 [interrupt vector is in ax.

emp ax,STOP_VECTOR ; receive the ST0P_VECT0R?
jnz install ;if no, install vector.
mov cx,0 ;if yes, install vector at

[base of interrupt stack,
mov bx.ds: int_depth
mov ds , ds: int_depth+2
mov word ptr ds:[bx],01 ;set current depth of the

[interrupt vector stack-1.

install

:

mov si, ex
add si, ex ;si = 2*(int_depth-l

)

mov bx,ds:int_stack ;get offset of int_stack.
mov ds.ds: int_stack+2 [get segment of int_stack.

[store interrupt vector in interrupt vector stack.
mov word ptr ds : [bx+si] ,ax

; clear the wird abov so C program stops correctly,
mov word ptr ds : [bx+si+2] ,

mov cx,0004H ;delay after installation,
jmp delay [jump to delay.

stack_f ull

:

mov cx.OOOFH

127

delay

:

dec ex
jnz delay

;OUTSHAKE low delay.

in al.dx ;ge t state of outshake port.
dec al ;set outshake line bit.
out dx.al ;outshake now high.

raov al,20H ;send EOI signal to
out 20H,al ;8259A PIC.

P°P di [restore registers saved
pop si ;on entry.
pop ds
pop dx
pop ex
pop bx
pop ax

sti iturn interrupts back on.

iret [return from interrupt.

HANDLER endp

;****end of HANDLER***

128

SUBTTL RESTORE. ASM
PAGE+
**************************#* *******************##.);***£*;,;;,..,..,.

* SOURCE_FILE: INT EHSI.ASM
*

* FUNCTION: RESTOREQ
*

* DESCRIPTION: Restores the system environment to its
original state. The interrupt mask register
and the original interrupt OFH service
routine are restored. This is the last
function that the main program should
call before exiting.

*
*

*

* ARGUMENTS: None.
*

* RETURN: None.
*

* REGISTERS
* CHANGED: ax.cx.dx
*

* FUNCTIONS
* CALLED: None.
*

* AUTHOR: Dave Gruenbacher
*

* DATE CREATED: 29Dec86 Version 1.0
*

* REVISIONS: None.
*

i***^*^,,.
.. ,,,..,,. ^

PUBLIC _REST0RE
_REST0RE proc near

P usn b P ;save C program registers,
mov bp , sp
push ds
push di
push si

mov dx,ds:int_0f ;get old int OF offset,
mov ds,ds:int_0f+2 ;get old int OF segment,
mov ax,250FH ;D0S function call prep.
int 21H ;restore old int OF address.

in al,21H ;get interrupt mask.
or al,80H [disable parallel port int.
and al.OFEH ;enable system clock int.

129

out 21H,al jinstall new interrupt mask.

pop si ;restore C program
pop di ;registers.
pop ds
pop bp

ret ;return to C program.

_REST0RE endp

;****end f RESTORE***

_TEXT ends

end

,**** en(j f t[jx EHSI.ASM************************************

130

interrupt vector stack.
Iniatialization and restoration are
also performed from this routine. The
data package, SCREEN array interrupt
vector stack, and calculator stack
are declared within this routine.

*

* SOURCE FILE: ehsi.c
*

*

* FUNCTION: ehsi()
*

* DESCRIPTION: Controls the actions taken on receipt
* of an interrupt vector from the
*

*

*

*

*
*

*

*

* DOCUMENTATION
* FILES: None.
*

*

* ARGUMENTS: None.
*

*

* RETURN: None.
*

*

* FUNCTIONS
* CALLED: None.
*

*

* AUTHOR: Dave Gruenbacher
*

*

* DATE CREATED: 19Jan87 Version 1.0
*

*

* REVISIONS: None.
*

*

#define ehsi_main
#include <stdio.h>
#include "data_str.h"

void main()
{

static unsigned short int_depth = 0, int_stack[90]={0)

;

int page_number = 1, i, int_number;

131

char key_buf f er[20]
;

double x_buffer, y_buffer;

void INITIALIZEQ;
void RESTOREO;
void display_ils_page()

;

void display_data_page()

;

void display_nav_page()

;

void dat_pg_dynamic()

;

void nav_pg_dynamic()

;

void ils_pg_dynamic()

;

void dat_pg_static()

;

void nav_pg_static()

;

void ils_pg_static()

;

void update_key_buf fer() , roll_stack() ;

void set_altitude()

;

void set_estimated_wind()
;

void exit() ;

void clear_stack()

;

void insert_new_f req()

;

void set_timer(7;
void reset_alarm()

;

void do_math();

CL0CK_PKG clock_pkg;
ALARM_PKG alarra_pkg;

clock_pkg. timer_min = 0;
clock_pkg. tinier_sec = 0;
clock_pkg . time_out_min = 0;
clock_pkg. time_out_sec = 0;
clock_pkg.adf_f req = 242.0;
clock_pkg.coml_f req = 119.1;
clock_pkg.com2_f req = 121.9;
clock_pkg. vorl_f req = 112.6;
clock_pkg.vor2_freq = 110.1;
clock_pkg.assigned_altitude = 0;
clock_pkg.mda_dh = 0;
clock_pkg.estimated_wind = 0;
clock_pkg. tiraer_operation_f lag = NULL_TIMER;
clock_pkg. timer_status_f lag = TIMER_0FF;
clock_pkg.raath_operation_f lag = 0;

alarm_pkg.airspeed_alarm_f lag = ALARM_0FF;
alarm_pkg.assigned_altitude_alarm_flag = ALARM_0FF;
alarm_pkg.mda_dh_alarm_f lag = ALARM_0FF;
alarm_pkg. time_out_alarm_f lag = ALARM_0FF;

INITIALIZE(Sint_depth,int stack);
key_buffer[0] = '\0*;

132

for (;;)
{

if (int_depth != 0)
(

printf ("%X ZX\n",int_depth,int_stack[0]);
int_nuraber = int_stack[0]

;

int_depth -= 1;
for (i=0; i ! =int_depth; i++)

int_stack[i] = int_stack[i+1]

;

switch (int_number)
(

case 0x60:
int_nuraber = 0;

switch (page_number

)

(

case 1:

dat_pg_dynamic(&clock_pkg ,Salarm_pkg)

;

break

;

case 2:

nav_pg_dynamic(Sclock_pkg , &alarra_pkg)

;

break

;

case 3:

ils_pg_dynamic(&clock_pkg ,&alarm_pkg)

;

break

;

default:
break

;

)

break

;

case 0x65:
int_number = 0;
printf ("\n\nSYSTEM SWITCH 0N.\n\n");

/* set up static HP-1345A memory */
dat_pg_static() ; /* Install data page */
for (i=0;i!=100;i++);
nav_pg_static() ; /* Install nav. page */
for (i=0;i!=100;i++);
ils_pg_static() ; /* Install ils page */
break;

case 0x66:
REST0RE();
printf ("\n\nSYSTEM SWITCH 0FF.\n\n");
exit();

133

break

;

default

:

if ((int_number == 0)
break;

(int_number > 0x23))

/*
/*

/*

switch
[

(int_ lumber

)

t

case 0x04 /* received from keypad */
case 0x05 /* . received from keypad */
case OxOA /* 1 received from keypad */
case OxOB /* 2 received from keypad */
case OxOC /* 3 received from keypad */
case 0x10 /* 4 received from keypad */
case Oxll /* 5 received from keypad */
case 0x12 /* 6 received from keypad */
case 0x16 /* 7 received from keypad */
case 0x17 /* 8 received from keypad */
case 0x18 /* 9 received from keypad */

clear the buffer if a math operation */
was just completed. */
if (clock_pkg.math_operation_f lag == 1)

key_buffer[0] = '\0';
clock_pkg.math_operation_f lag = 0;

put key pressed in key_buffer. */
update_key_buf f er(int_number

,

key_buf f er)

;

int_number = 0;
break

;

case 0x02: /* ENTER hit on keypad */

roll_stack(key_buffer, &x_buffer,
&y_buf f er)

;

int_number = 0;
break

;

case 0x08: /* CLEAR hit on keypad */

int_number = 0;
clear_stack(key_buf f er , Sx_buf fer,

fiy_buf f er)

;

break;

case 0x01: /* new C0M1 freq. entered */

134

case 0x07: /* new COM2 freq. entered */
case OxOD: /* new V0R1 freq. entered */
case 0x13: /* new V0R2 freq. entered */
case 0x19: /* new ADF freq. entered */

insert_new_f req(int_nuraber , key_buf f er

,

&clock_pkg)

;

int_number = 0;
break

;

case OxlB: /* new rada/dh entered */
case OxlC: /* new asgn. alt. entered */

set_altitude(int_nuraber , key_buf f er

,

&clock_pkg)

;

int_number = 0;
break;

case OxlD: /* new est. wind entered */

int_number = 0;
set_estimated_wind(key_buf f er

,

&clock_pkg)

;

break;

case 0x22: /* SET TIMER hit */

lnt_number = 0;
set_timer(key_buf f er , &clock_pkg)

;

clock_pkg. timer_operation_f lag =

SET_TIMER;
break

;

case OxlF: /* START TIMER hit */

in t_n umber = 0;
clock_pkg. tiraer_operation_f lag =

STARTJIIMER;
break

;

case 0x23: /* RESET TIMER hit */

int_number = 0;
clock_pkg . timer_operation_f lag =

RESET_TIMER;
break

;

case OxlE: /* SET/RST ALRM hit */

int number = 0;

135

reset_alarm()

;

break

;

case 0x03
case 0x09
case OxOF
case 0x15

/* div key hit on keypad */
/* mult key hit on keypad */
/* add key hit on keypad */
/* sub key hit on keypad */

do_raath(int_number , key_buffer,
&x_buffer, &y_buffer);

int_number = 0;
clock_pkg.math_operation_f lag = 1;
break

;

case OxlA: /* DAT PAGE key hit

int_number = 0;
page_number = 1;
display_data_page()

;

break;

case 0x14: /* NAV PAGE key hit

int_nuraber = 0;
page_number = 2;
display_nav_page(

)

;

break;

case OxOE: /* ILS PAGE key hit

int_nuraber = 0;
page_number = 3;
display_ils_page(

)

;

break

;

default: /* key not implemented,
i n t_n umber = ;

break

;

break

;

*/

*/

*/

*/

136

* SOURCE FILE: data str.h

* FUNCTION: None.
*

*

* DESCRIPTION: This is a file to be included in any
function that needs to access a member
of the data package. All the pieces of
the data package are stored in the
structure data_pkg. Individual members
are accessed by using the following
name: data_pkg. ALTITUDE.

DOCUMENTATION
* FILES: None.
*

* ARGUMENTS: None.

*
* RETURN: None.

* FUNCTIONS
* CALLED: None.
*

* AUTHOR: Dave Gruenbacher

*

* DATE CREATED: 22Jan87 Version 1.0

*

* REVISIONS:
*

*

*

*

13Apr87 Version 1.1
Added conditional statements.
Dave Gruenabcher

typedef struct
{

unsigned char BANK
;

unsigned char PITCH •

unsigned char VERT SPEED ;

137

unsigned char DELTA_X
unsigned char DELTA_Y
unsigned char MANIFOLD PRESSURE
unsigned char COURSE_DEVIATION
unsigned char GLIDESLOPE
unsigned char ALTITUDE
unsigned char AIRSPEED
unsigned char COMPASS
unsigned char ADF
unsigned char DME
unsigned char POWER
unsigned char RPM
unsigned char SPARE
unsigned char BINARY_INPUTS
unsigned char LASTJCEY
unsigned char MONTH
unsigned char DAY
unsigned char DATE
unsigned char HOURS
unsigned char MINUTES
unsigned char SECONDS
) DATA_PKG;

typedef struct
{

int timer_min
int timer_sec
int time_out_min
int time_out_sec
int math_operation_f lag
int timer_operation_f lag
int timer_status_f lag
double adf_freq
double coml_freq
double com2_freq
double vorl_freq
double vor2_freq
int assigned_altitude
int rada_dh
int estimated_wind
) CL0CK_PKG;

typedef struct
{

int airspeed_alarm_f lag
int assigned_altitude_alarm_f lag
int mda_dh_alarm_f lag
int time_out_alarra flag
) ALARM_PKG;

138

#ifdef ehsi_main
DATA_PKG data_pkg = (0);
unsigned short SCREEN[1000] = (OxFFFF);
#else
extern DATA_PKG data_pkg;
extern unsigned short SCREENf];
extern int GET_DATA_PACKAGE()

;

extern int SEND_SCREEN()

;

extern int RETRIEVE_SCREEN()

;

extern int TOGGLE_ALARM_SWITCH(
)

;

#endif

#define NULLJTIMER
#define START_TIMER 1

#define RESET_TIMER 2

#define SET_TIMER 3
#define TIMER_0FF
#define TIMER ON 1

#define ALARM_0FF
#define ALARM ON 1

139

*

* SOURCE FILE: key_buff.c

*

* FUNCTION: update_key_buf f er (key_number , buf f er)

*

DESCRIPTION: Adds the number pressed on the keypad
to the current number being shown on
the command line of the data page.
This function is called only when
a number or the decimal point is
pressed

.

*
*

*

*

*

*

* DOCUMENTATION
* FILES: None
*

*

* ARGUMENTS:

key_number (unsigned short)
key pressed on the command keyboard.

*

*

* buffer (char *)
*

*

* RETURN: None

pointer to string being shown on the
command line of the screen.

*

* FUNCTIONS
* CALLED: SEND_SCREEN(

)

* string_gen()
insert()

* AUTHOR: Dave Gruenbacher
*

* DATE CREATED: 20Feb87 Version 1.0

* REVISIONS: 12Apr87 Version 2.0
* Changed UPDATE_SCREEN() to
* SEND SCREENQ.

Changed error return

140

from SEND_SCREEN(),
Dave Gruenbacher

****#*##£#**#:}:**;!:##&*:<;#£#:(****/
#include "data_str .h"
#include "datpg_xy.h"
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<raath.h>

void update_key_buf f er (key_number , buffer)
char *buffer;
unsigned short key number;
{

int p, length, error;
float size = 1.5;
unsigned short conv[30];

void string_gen()

;

int insert();

/* The switch statement decodes the key number into the */
/* specific character hit. The character is then added on */
/* to the string being displayed on the command line. */

switch (key_number) (

case 0x04:
strcat(buffer,"0");
break

;

case 0x05:
strcat(buffer,".");
break

;

case OxOA:
strcat(buffer,"l");
break

;

case OxOB:
strcat(buffer,"2");
break

;

case OxOC:
strcat(buffer,"3");
break

;

case 0x10:
strcat(buffer,"4");
break

;

/* key hit */

/* dec. point key hit */

/* 1 key hit */

/* 2 key hit

/* 3 key hit

/* 4 key hit

*/

*/

*/

141

case Oxll
strca
break

case 0x12
strca
break

case 0x16
strca
break

case 0x17
strca
break

t(buffer,"5");

(buffer, "6");

(buffer, "7")j

(buffer, "8");

case 0x18:
strcat(buffer,"9");
break;

default:
break;

}

P=0;
SCREEN[p++] = OxCEOO;
SCREEN[p++] = 0x7818;

/* 5 key hit

/* 6 key hit

/* 7 key hit

/* 8 key hit

/* 9 key hit

/* bad key hit

/* Point to command line
/* screen memory.

/* Generate the screen code to show the revised buffer.
string_gen(buf f er , command_X0,command_Y0,

size,&length,conv);

/* Insert the new screen code into the SCREENf] array,
p = insert (p, length, conv)

;

*/

*/

*/

*/

*/

*/
*/

*/

*/

SCREEN[p++] = 0x8FFF;
SCREEN[p++] = OxFFFF;

/* Jump to end of scr mem.
/* End of SCREEN[] signal.

/* Send the screen code in SCREENf] to DACI via cmd #2.
error = 1

;

while (error != 0)
error = SEND_SCREEN()

;

return

;

*/
*/

*/

142

*

* SOURCE FILE: key_entr.c

* FUNCTION:
*

roll_stack(buf f er ,x,y)

* DESCRIPTION:
*

*

*

*

* DOCUMENTATION
* FILES:

Replaces the y element of the
calculator stack with the x element,
and places the number entered through
the keypad in the x element. The
previous y element is lost.
The commnad line buffer is cleared.

None.

buffer

* ARGUMENTS:
*

*

*

* x
*

*

y
*

*

*

* RETURN:

(char *)
pointer to string being shown on the
command line of the screen.

(double *)
pointer to bottom element of the
calculator stack.

(double *)
pointer to next to bottom element of
the calculator stack.

None.

FUNCTIONS
CALLED:

AUTHOR:

DATE CREATED:

SEND_SCREEN()

Dave Gruenbacher

20Feb87 Version 1.0

REVISIONS: 12Apr87 Version 2.0
Changed UPDATE_SCREEN(

)

143

*

*

*

#inc
#inc
#inc
#inc
#inc

to SEND_SCREEN().

Changed error return
from SEND_SCREEN()

.

Dave Gruenbacher

******** *************#**************#********#*#*****#*/
lude "data_str.h" /* ehsi include file. */
lude<stdlib.h>
lude<string.h>
lude<stdio.h>
lude<math.h>

void roll_stack(buf fer.x.y)
char *buffer;
double *x , *y

;

{

int error ;

atof (buffer)

;

strcpy(buffer,"\0")

;

SCREENfO] = OxCEOO
SCREENfl] = 0x7818
SCREEN[2] = 0x8FFF
SCREEN[3] = OxFFFF

/* replace y with x. */
/* copy number in buffer to */
/* x element of the stack. */

/* clear command line buffer. */

/* point to command line scrn */
/* memory, and place a jump to */
/* end to clear the display. */
/* end of SCREEN[] for cmd 2. */

/* Send the SCREEN[] array to the DACI via command #2. */
error = 1 ;

while (error != 0)
error = SEND_SCREEN() ; /* clear command line. */

return

;

144

/**:

*

*

*

*

SOURCE FILE:

FUNCTION:

key_cler .c

clear_stack(buf f er ,x ,y)

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

DESCRIPTION:

DOCUMENTATION
FILES:

ARGUMENTS:

buffer

Clears the calculator stack and clears
the command line buffer.

None.

(char *)
pointer to string being shown on the
command line of the screen.

(double *)
pointer to bottom element of the
calculator stack.

(double *)
pointer to next to bottom element of
the calculator stack.

RETURN: None .

FUNCTIONS
CALLED:

AUTHOR:

SEND_SCREEN()
string_gen()
insert (

)

Dave Gruenbacher

* DATE CREATED: 20Feb87 Version 1.0

* REVISIONS:
*

*

*

12Apr87 Version 2.0
Changed UPDATE_SCREEN(

)

to SEND SCREEN?).

145

Changed error return
* from SEND_SCREEN().

Dave Gruenbacher
*

#include "data_str.h" /* ehsi include file. */
#include<stdlib.h>
#include<stdio.h>
#include<string.h>

void clear_stack(buf f er ,x,y)
char *buffer;
double *x , *y

;

(

int error;

/* clear x element of stack. */
/* clear y element of stack. */

/* clear command line buffer. */

/* point to command line scrn */
/* memory, and place a jump to */
/* end to clear the display. */
/* end of SCREENf] for cmd 2. */

/* Send the SCREENf] array to the DACI via command #2. */
error = 1

;

while (error != 0)
error = SEND_SCREEN(

) ; /* clear command line. */

*x = 0.0;
*y = 0.0;

strcpy(buffer,"\0")
;

SCREEN[0] = OxCEOO
SCREEN[1] = 0x7818
SCREEN[2] = 0x8FFF
SCREEN[3] = OxFFFF

}

return

;

146

key_raath .c* SOURCE FILE:
#

*

* FUNCTION: do_math(key_number , buffer, x,y)

* DESCRIPTION:
*

*

*

*
*

* DOCUMENTATION
* FILES:

Performs either +, -, x, or / on the
x and y elements of the calculator
stack, x is taken from the command
line buffer, and y is the previous
value of x. The result is then placed
in x, and the previous element of x
is put in y. The previous element of
y is lost. The result is displayed
on the command line.

None.

*

*

*

*

*

*

*

*

*

*

*

*
*

ARGUMENTS:

key_number

buffer

RETURN:

FUNCTIONS
CALLED:

(unsigned short)
key pressed on the command keyboard.

(char *)
pointer to string being shown on the
command line of the screen.

(double *)
pointer to bottom element of the
calculator stack.

(double *)
pointer to next to bottom element of
the calculator stack.

None

.

SEND_SCREEN()
string_gen()
insert ()

147

* AUTHOR:
*

* DATE CREATED:

Dave Gruenbacher

20Feb87 Version 1.0

REVISIONS: 12Apr87 Version 2.0
Changed UPDATE_SCREEN(

)

to SEND_SCREEN().

Changed error return
from SEND_SCREEN().
Dave Gruenbacher

fine DIVIDE_BY_ZER0_ERR0R 1

clude<stdlib.h>
clude<string . h>
clude<stdio.h>
clude<math.h>
clude"datpg_xy.h" /* data page coordinate file.
elude "data_str.h" /* ehsi include file.

void do_math(key_number , buffer, x,y)
unsigned short key_number;
char *buffer;
double *x,*y;
(

int flag=0, error

;

double z

;

int p, length;
float size = 1.5;
unsigned short conv[30];
void string_gen()

;

int insert ()

;

/* key pressed.
/* string displayed.
/* double's on stack.

*/
*/

*/
*/

•y = *x;

*x = atof (buffer);

/* roll stack.

/* copy number in
/* buffer to stack.

switch (key_nuraber)
{

case 0x03: /* find z =
if (*x != 0.0)

z = *y / *x;
else

flag = DIVIDE_BY_ZER0_ERR0R;
break

;

case 0x09:

y / x

*/

*/

*/

148

z _ * x * *
y

. /* find z = x *
y */

break;

case OxOF: /* find z = x + y */
z = *x + *y;
break

;

case 0x15: /* find z = y - x */
z = *y - *x;
break

;

)

strcpy(buffer,"\0"); /* clear buffer */

if (flag == 0) {

*y = *x; /* If no errors occurred, roll */
* x = z; /* stack and place the result */
gcvt(z,20,buf fer)

;

/* inthe command line buffer. */

else /* If there was a divide error, */
/* place an error message in */
/* the command line buffer. */

strcpy(buffer,"ZEEO DIVIDE ERROR");

P=0;
SCREEN[p++] = OxCEOO; /* point to command line screen */
SCREEN[p++] = 0x7818; /* memory. */

string_gen(buf fer,command_XO,command_YO,
size.&length.conv);

p = insert(p, length, conv)

;

SCREEN[p++] = 0x8FFF; /* jump to end of screen mem. */
SCREEN[p++] = OxFFFF; /* end of SCREENf] for cmd #2. */

/* Send the SCREENf] array to the DACI via command #2. */
error = 1

;

while (error != 0)
error = SEND_SCREEN() ; /* send new command line. */

)

return

;

149

* SOURCE FILE: key_dat.c
*
*

* FUNCTION:
*

*

* DESCRIPTION:

*

* DOCUMENTATION
* FILES:
*

* ARGUMENTS:

* RETURN:
*

* FUNCTIONS
* CALLED:
*

* AUTHOR:

DATE CREATED:

display_data_page(

)

Changes the pointer in vector memory
at address OOOH to point to O01H where
the data page is stored.

None.

None

.

None

.

SEND_SCREEN()

Dave Gruenbacher

10Feb87 Version 1.0

* REVISIONS:
*

*
*

*

*

*

12Apr87 Version 2.0
Changed UPDATE_SCREEN(

)

to SEND_SCREEN().

Changed error return
from SEND_SCREEN().
Dave Gruenbacher

#include <stdio.h>
#include "data_str.h"

void display data page()
{

int p = .error

;

150

SCREEN[p++] = OxCOOO; /* Point to screen memory. */
SCEEEN[p++] = 0x8001; /* Jump to static dat page. */
SCREEN[p++] = OxFFFF; /* End of SCREEN[], */

error = 1

;

while (error != 0)
error = SEND_SCREEN() ; /* install new jump. */

return

;

}

151

* SOURCE FILE: key_nav.c
*

*

* FUNCTION: display nav page()
*

*

* DESCRIPTION: Changes the pointer in vector memory
* at address 000H to point to 300H where
* the nav page is stored.
*

* DOCUMENTATION
* FILES: None.
*

*

* ARGUMENTS: None.

* RETURN: None.

*

* FUNCTIONS
* CALLED: SEND SCREEN()
*

*

* AUTHOR: Dave Gruenbacher
*

*

* DATE CREATED: 10Feb87 Version 1.0

* REVISIONS: 12Apr87 Version 2.0
* Changed UPDATE_SCREEN(

)

* to SEND SCREENO.
*

*

* Dave Gruenbacher
*

*

Changed error return
from SEND_SCREEN()

.

Si***,}.*** *,•.$**#*£/

#include <stdio.h>
#include "data_str.h"

void display_nav page()
{

int p = 0, error

;

152

SCREEN[p++] = OxCOOO
SCREEN[p++] = 0x8300
SCREEN[p++] = OxFFFF

error = 1

;

while (error != 0)
error = SEND_SCREEN()

;

/* Point to screen memory. */
/* Jump to static nav page. */
/* End of SCREEN[], */

/* install new jump. */

return
;

153

* SOURCE FILE: key_ils.c

* FUNCTION:
*

*

* DESCRIPTION:
*

* DOCUMENTATION
* FILES:
*

* ARGUMENTS:
*

#

* RETURN:
*

* FUNCTIONS
* CALLED:
*

*

* AUTHOR:
*

* DATE CREATED:

* REVISIONS:

display_ils_page()

Changes the pointer in vector memory
at address OOOH to point to 500H where
the ils page is stored.

None

.

None.

None

.

SEND_SCREEN()

Dave Gruenbacher

10Feb87 Version 1.0

12Apr87 Version 2.0
Changed UPDATE_SCREEN(

)

to SEND_SCREEN().

Changed error return
from SEND_SCREEN().
Dave Gruenbacher

#include <stdio.h>
#include "data_str.h"

void display_ils page()
(

int p = 0, error;

154

SCREEN[p++] = OxCOOO
SCREEN[p++] = 0x8500
SCREEN[p++] = OxFFFF

/* Point to screen memory. */
/* Jump to static ils page. */
/* End of SCREEN[]. */

error = 1

;

while (error != 0)
error = SEND_SCREEN()

;

/* install new jump. */

return :

155

/**************#********#*#*********************************
*

*

*
SOURCE FILE: key_alrra.c

*
*
*

FUNCTION: reset_alarm(

)

*

* DESCRIPTION: Toggles the s
*

*
interface com

*

*

DOCUMENTATION
FILES: None.

#

*

*
ARGUMENTS: None

.

*
* RETURN: None

.

* FUNCTIONS
* CALLED:

* AUTHOR:
*

*

* DATE CREATED:

TOGGLE_ALARM_SWITCH(

)

Dave Gruenbacher

10Feb87 Version 1.0

12Apr87 Version 2.0
Changed error return from
TOGGLE_ALARM_SWITCII()

.

Dave Gruenbacher

* REVISIONS:
*

*
*

*
*

^^^S^**^^.^,;.,^ ,

#include "data_str.h"
#include<stdio.h>

void reset alarm()
{

int error = 1;

/* Call TOGGLE_ALARM_SWITCH to toggle on/off state of */
/* the DACI alarm. */

while (error != 0))
error = TOGGLE_ALARM_SWITCH(

)

;

/* do command k. */

156

157

*

* SOURCE FILE: key_cmd3.c
*

*

*

*

FUNCTION: call_cmd3(buf f er , x , y)

* DESCRIPTION: Key function that uses command #3 to
* retrieve HP-1345A memory, x contains
* the starting address, and y contains
* the ending address. The received code
* is printed on the screen.
*

* DOCUMENTATION
* FILES: None.
#

* ARGUMENTS:
*

* buffer (char *)
pointer to string being shown on the

* command line of the screen.
*

* x (double *)

pointer to bottom element of the
* calculator stack.
*

* y (double *)
* pointer to next to bottom element of
* the calculator stack.
*

*

* RETURN: None.
*

* FUNCTIONS
* CALLED: None.

*

* AUTHOR: Dave Gruenbacher

DATE CREATED: 13Apr87 Version 1.0

REVISIONS: None.

158

**$*;[;$#/
#include<stdlib.h>
#include<string.h>
#include<stdio.h>
#include "data_str.h"

void call_cmd3(buf f er,x,y)
char *buffer; /* string displayed */
double *x,*y; /* double's on stack */

int i , num_words , error

;

*y = *x; /* roll stack */

x = atof (buf f er) ; / copy number in buffer */
/* to calculator stack. */

SCREENfO] = (int)(*y); /* x contains starting addr. */
SCREEN[1] = (int)(*x); /* y contains starting addr. */

/* check for overflow or underflow. */
nura_words = SCREEN[1] - SCREENfO] +1;
if ((nura_words >= 1000)

| |
(num_words < 1))

return

;

/* check for out of bounds. */
if ((SCREENfO] < 0)| |(SCREEN[1] > 4095))

return

;

strcpy(buffer,"\0"); /* clear buffer */

/* RETRIEVE screen memory via command #3. */
error = 1;
while (error != 0)

error = RETRIEVE_SCREEN()

;

/* print the received screen code. */
for (i=0; i<(num_words-l) ; i++)

printf("SCREEN[%d] = %x\n" , i , SCREENf i])

;

return
;

}

159

*

* SOURCE FILE: flt_ehsi.c

* FUNCTION: fit ehsi()
*

* DESCRIPTION: This program allows a user to sample
a number of signals coming from the
flight simulator, and to also filter
the incoming stream. The unfiltered
and filtered data are written to
user specified filenames after the
sample is taken.

* DOCUMENTATION
* FILES: None.

ARGUMENTS: None.

GET_DATA_PACKAGE()
RESTOREO
ehsi_f ilterQ

*

* RETURN: None.

* FUNCTIONS
* CALLED: INITIALIZEQ
*

*

*

* AUTHOR: Dave Gruenbacher
*

* DATE CREATED: 02Apr87 Version 1.0
*

* REVISIONS: None.
*

*

#include <stdio.h>

typedef struct
(

unsigned char BANK

160

unsigned char PITCH
unsigned char VERT SPEED
unsigned char DELTA X
unsigned char DELTA Y
unsigned char MANIFOLD PRESSURE
unsigned char COURSE DEVIATION
unsigned char GLIDESLOPE
unsigned char ALTITUDE
unsigned char AIRSPEED
unsigned char COMPASS
unsigned char ADF
unsigned char DME
unsigned char POWER
unsigned char RPM
unsigned char SPARE
unsigned char BINARY INPUTS
unsigned char LAST KEY
unsigned char MONTH
unsigned char DAY
unsigned char DATE
unsigned char HOURS
unsigned char MINUTES
unsigned char SECONDS
) DATA_PKG;

DATA_PKG data_pkg (0)

extern int GET_DATA_PACKAGE();
unsigned short SCREENfl];

float data_array[A096] , f ilt_array [4096]

;

void main()
{

static unsigned short int_depth = 0, int_stack[10]=(0]
int index = 0, int_number, i, error;
int num_samples = 0, element_num = -1;
FILE *stream;
char data_file[15] , f ilt_f ile[15]

;

unsigned char *element;

void INITIALIZEQ
;

void REST0RE();
float ehsi_f ilter()

;

/* Prompt the user to pick the data package element he
/* wishes to sample. The "while" loop ensures a
/* valid choice.

while ((element_nura < 0)
| |

(eleraent_num > 12))

*/
*/
*/

161

pri
pri
pri
pri
pri
pri
pri
pri
pri
pri
pri
pri
pri
pri
sea
]

ntf ("\nEnter the number corresponding to the\n");
ntf("data package element you wish to sample : \n")

;

ntf(" BANK
ntf(" PITCH
ntf(" VERT_SPEED
ntf(" DELTA_X
ntf(" DELTA_Y
ntf(" C0URSEJ3EVIATI0N
ntf(" GLIDESLOPE
ntf(" ALTITUDE
ntf(" AIRSPEED
ntf(" COMPASS
ntf(" ADF
ntf(" DME
nf ("%d",&element_num);

\n")
\n")
\n")
\n")
\n")
\n")
\o
\n")
\n")

10\n")
ll\n")
12\n")

/*

/*
/*

element = &data_pkg .BANK +
element_num*sizeof (unsigned char);

Prompt user to enter number of samples to be taken,
printf ("\nEnter number of samples to be taken:\n");
printf("(4096 max)\n");
scanf ("%d",&num_samples)

;

Prompt user to enter name of file to place
unfiltered data.
printf ("\nEnter name of file to place raw data: \n");
scanf ("%s", da ta_file);

*/
*/

/*
/*

/*

Prompt user to enter name of file to place */
filtered data. */
printf ("\nEnter name of file to place filtered data:\n");
scanf ("%s",filt_file);

INITIALIZE(&int_depth,int_stack);

Collect the data until num samples has been taken. */
for (;;)

!

if (int_depth != 0)
(

int_nuraber = int_stack[0]

;

int_depth -= 1;
for (i=0; i !=int_depth;i++)

int_stack[i] = int_stack[i+1]

;

if (int number == 0x60)
(

error = 1;

162

while (error != 0)
error = GET_DATA_PACI(AGE()

;

data_array[index] = (float) (*element) * 4;
printf("%d,%d\n", index, *element);
f ilt_array[index++] = ehsi_f ilter (*element*4)

;

if (index == (num_saraples+l)

)

/* If done, write the two files to the */
/* specified names and exit the routine. */

{

/* Write the raw data to file "data_file". */
stream = f open(data_f ile , "wb")

;

index = fwrite((char *)data_array

,

sizeof(float) , num_samples .stream)

;

f close(stream)

;

/* Write the filtered data to "filt_file". */
stream = fopen(f ilt_f ile , "wb")

;

index = fwrite((char *)f ilt_array

,

sizeof(float) , num_samples .stream)

;

f close(stream)

;

REST0RE();
exit(0);

)

if (int_number == 0x66)
{

REST0REO;
f close(stream)

;

exit(0);

}

}

163

*

* SOURCE FILE: ehsifilt.c

*

* FUNCTION: ehsi_f liter (

)

*

*

* DESCRIPTION: This program does the actual filtering
of the input data stream according to

* the values in flt_ehsi.h.

*

* DOCUMENTATION
* FILES: None.
*

* ARGUMENTS:
*

* element (int)
* new input value.
*

*
*

* RETURN:
*

* result (float)
* result of filter function.
*

*

* FUNCTIONS
* CALLED: None.
*

*

* AUTHOR: Dave Gruenbacher

* DATE CREATED: 08Apr87 Version 1.0
*

*

* REVISIONS: None.

#include "fit ehsi.h"

float ehsi_f ilter (element

)

int element;
(

static float data [FILT_0RDER+1] ;

164

int 1

;

float result;

for (i=FILT_ORDER;i>0;i—

)

data[i] = data[i-lj;

data[0] = (f loat)(element) ;

result = data[0] * COEFFO +
datafl] * C0EFF1 +
data[2] * C0EFF2 +
data[3] * C0EFF3 +
data[4] * C0EFF4 +
data[5] * C0EFF5 +
data[6] * COEFF6;

return(result)

;

165

/***

* SOURCE FILE: flt_ehsi.h
*

* FUNCTION: include file for fd_filt.c

*

* DESCRIPTION: This include file allows a user to
* change the coefficients and order

of filter to use in flt_ehsi.c.
* Fd_filt.c is the file that includes
* this file, since the actual
* filter is located in that file.
*

*

* DOCUMENTATION
* FILES: None.

* ARGUMENTS: None.
*

* RETURN: None.

*

* FUNCTIONS
* CALLED: None.
*

*

* AUTHOR: Dave Gruenbacher
*

*

* DATE CREATED: 10Apr87 Version 1.0
*

*

* REVISIONS: None.

***/
#define FILT_ORDER 6

#define COEFFO -.107
#define C0EFF1 -.0714
#define C0EFF2 -.0357
#define C0EFF3
^define C0EFF4 .0357
#define C0EFF5 .0714
#define C0EFF6 .107

166

J***

#* SOURCE FILE: flt_ehsi
#*
#*
#* FUNCTION: MAKE file.
#*
#*
#* DESCRIPTION: MAKE description file
#* for FLT_EHSI.EXE.
**
#*
** FILES
#* NEEDED: f lt_ehsi .

c

#* flt_ehsi.h
#* f iltehsi . c
#* com_ehsi .asm
#* int_ehsi .asm
#*
#*
#* AUTHOR: Dave Gruenbacher
#*
#*
#* DATE CREATED: 10Apr87 Version 1.0
#*
#*
#* REVISIONS: None

.

#*
#*
#******************#***************#***********=**###*###£**'/

f lt_ehsi.ob j : flt_ehsi.c
msc flt_ehsi;

ehsifilt.obj : ehsifilt.c flt_ehsi.h
msc ehsifilt;

com_ehsi.obj : com_ehsi.asm
masm com_ehsi;

int_ehsi.obj : int_ehsi.asm
masm int_ehsi;

flt_ehsi.exe : flt_ehsi.obj ehsif ilt . ob j\
com_ehsi.obj int_ehsi.obj

link flt_ehsi ehsifilt com_ehsi int_ehsi;

167

*

* SOURCE FILE: CONVERT. FOR

DESCRIPTION: Converts Z-158 created data file into
the unformatted VAX format so that
the data file can be read by RALPH2.

Z-158 data file.

Unformatted VAX format data file.

10Mar87

Dave Gruenbacher

None.
*

**

INTEGER*2 A(5000)
CHARACTER*15 INFILE, OUTFILE

*
*

*

* ARGUMENTS:

* RETURN:

* DATE CREATED
*
* AUTHOR:
*
* REVISIONS:

10

20

15

99

100

WRITE (*,*) 'Enter name of Z-158 input data: 1

READ (*,15,ERR=10) INFILE
WRITE(*,*) 'Enter name of unformatted output file:'
READ (*,15,ERR=20) OUTFILE
FORMAT (A15)

OPEN (UNIT = 1, FILE=INFILE, STATUS = 'OLD')
OPEN (UNIT = 2, FILE=OUTFILE, STATUS = 'NEW,

FORM = 'UNFORMATTED')

NEXT =1
DO WHILE(.TRUE.)

READ(1,99,END=100) LEN, (A(I) , I=NEXT, NEXT+LEN/2-1

)

NEXT = NEXT + LEN/2
END DO

F0RMAT(Q,5000A2)

WRITE(2) (A(I+1),A(I), I=1,NEXT-1,2)
TYPE *, NEXT/2
END

168

APPENDIX B

PROGRAM MAINTENANCE

Compiling and Linking 170

Adjusting Pulse-widths and Time-out delays 176

169

Compiling and Linking

To create an executable file to operate the EH SI

Development System, issue the following command from within

the directory containing all the source files:

MAKE EHSI <RETURN>

This will invoke Microsoft's MAKE utility [6], The required

MAKE file is included starting at page 171. MAKE looks at

the target file and determines whether a dependent file has

been modified. If one has, then the commands on the

lines following are performed until a blank line is

encountered. The compile and link are performed in the

process of executing MAKE.

170

(/##**###*###**#*##*#*#* *#*###;!c##^

#* SOURCE FILE: ehsi
#*
#*
#* FUNCTION: None

.

,/*

#*
#* DESCRIPTION: Make file for the EHSI host program.
#* Used when running make utility.
#*
#*
#*
#* DOCUMENTATION
#* FILES: None.
#*
#*
#* ARGUMENTS: None

.

#*
**
#* RETURN: None.
#*

f*
i* FUNCTIONS
t* CALLED: None.
#*
#*

#* AUTHOR: Dave Gruenbacher
A ih Chuck Robertson
#*
#*
#* DATE CREATED: 10Apr87 Version 1.0
**
#*
#* REVISIONS: None.
i
: *

#*
i******************************^^^*^*^^^^^^^^^*^^^^.!;^^^^,!.;).^.

insert. obj : insert.

c

use insert;
lib ehsi-+insert , ehsi. crs

;

tirae_gen.obj : tirae_gen.c
msc time_gen;
lib ehsi—htime_gen, ehsi . crs

;

line. obj : line.c
msc line;

171

lib ehsi-+line, ehsi . crs ;

clim_box.obj : clim_box.c
msc clim_box;
lib ehsi-+clim_box, ehsi .crs

;

clim_hsh.obj : clira_hsh.c
msc clim_hsh;
lib ehsi-+clim_hsh , ehsi .crs

;

clirarate. ob J : clirarate.c
msc climrate;
lib ehsi—l-clirarate, ehsi . crs ;

cllmfilt . ob j : climfilt.c climfilt.h
msc climfilt;
lib ehsi-+climf ilt , ehsi .crs

;

arc_circ.obj : arc_circ.c
msc arc_circ;
lib ehsi-+arc_circ , ehsi .crs

;

str_gen.obj : str_gen.c
msc str_gen;
lib ehsi-+str_gen , ehsi .crs

;

plane. obj : plane.

c

msc plane;
lib ehsi-+plane , ehsi .crs

;

waypoint.obj : waypoint.c
msc waypoint;
lib ehsi—hwaypoint , ehsi . crs

;

vortac.obj : vortac.c
msc vortac;
lib ehsi—i-vortac , ehsi. crs ;

box. obj : box.c
msc box;
lib ehsi

—

Hbox , ehsi . crs

;

compass. obj : compass.

c

msc compass;
lib ehsi-+compass , ehsi .crs;

clira_aro.obj : clim_aro.c
msc clim_aro;
lib ehsi-+clim_aro , ehsi . crs ;

172

arrow. obj : arrow.

c

msc arrow;
lib ehsi—harrow , ehsi ,crs

;

ndb.ob j : ndb .c
msc ndb;
lib ehsi-+ndb ,ehsi . crs

;

heading. obj : heading.

c

msc heading;
lib ehsi-+heading , ehsi .crs

;

runway. obj : runway.

c

msc runway;
lib ehsi-+runway , ehsi . crs

;

zero_pad.obj : zero_pad.c
msc zero_pad

;

lib ehsi-+zero_pad , ehsi . crs

;

timer. obj : timer. c data_str.h
msc timer;
lib ehsi-+timer, ehsi . crs

;

altitude. obj : altitude. c data_str.h
msc altitude;
lib ehsi-+altitude, ehsi .crs;

dme.obj : dme.c data_str.h
msc dme;
lib ehsi—Kdme, ehsi .crs

;

ndb_angl.obj : ndb_angl.c
msc ndb_angl;
lib ehsi-+ndb_angl , ehsi . crs

;

airspeed. obj : airspeed. c data_str.h
msc airspeed;
lib ehsi-+airspeed , ehsi .crs

;

climrate.obj : climrate.c data_str.h
msc climrate;
lib ehsi-+climrate, ehsi . crs

;

ils_cmps.obj : ils_cmps.c
msc ils_cmps;
lib ehsi-+ils_cmps , ehsi . crs

;

173

hdg_brg.obj : hdg_brg.c
msc hdg_brg;
lib ehsi-+hdg_brg , ehsi .crs

;

key_alrra. ob j : key_alrm.c
msc key_alrm;
lib key_ehsi—hkey_alrm,key_ehsi .crs

;

key_dat.obj : ke y_d a t . c

msc key_dat;
lib key_ehsi-+key_dat ,key_ehsi .crs;

key_nav.obj : key_nav.c
msc key_nav;
lib key_ehsi-+key_nav ,key_ehsi.crs

;

key_ils.obj : key_ils.c
msc key_ils;
lib key_ehsi—hkey_ils , key_ehsi.crs

;

key_entr.obj : key_entr.c
msc key_entr;
lib key_ehsi—Kkey_entr ,key_ehsi .crs

;

key_cler . ob j : key_cler.c
msc key_cler;
lib key_ehsi—hkey_cler ,key_ehsi .crs

;

key_freq.obj : key_freq.c data_str.h
msc key_freq;
lib key_ehsi-+key_f req , key_ehsi .crs

;

key_stmr.obj : key_stmr.c data_str.h
msc key_stmr;
lib key_ehsi-+key_stmr , key_ehsi.crs

;

key_math.ob j : key_math.c
msc key_math;
lib key_ehsi—hkey_math, key_ehsi .crs

;

key_buff.obj : key_buff.c
msc key_buff;
lib key_ehsi-+key_buf f , key_ehsi . crs ;

key_alt.obj : key_alt.c data_str.h
msc key_alt;
lib key_ehsi—hkey_alt , key_ehsi .crs

;

174

key_wind.obj : key_wind.c data_str.h
disc key_wind ;

lib key_ehsi-+key_wind , key_ehsi . crs

;

key_cmd3 . ob j : key_cmd3.c
use key_cmd3;
lib key_ehsi-+key_cmd 3 , key_ehsi . crs

;

dat_pg_s.ob j : dat_pg_s.c datpg_xy.h
use dat_pg_s;

dat_pg_d.obj : dat_pg_d.c data_str.h datpg_xy.h
ntsc dat_pg_d ;

nav_pg_s.obj : nav_pg_s.c navpg_xy.h
msc nav_pg_s;

nav_pg_d.obj : nav_pg_d.c data_str.h navpg_xy.h
msc nav_pg_d

;

ils_pg_s.obj : ils_pg_s.c ilspg_xy.h
msc ils_pg_s;

ils_pg_d.obj : ils_pg_d.c data_str.h ilspg_xy.h
msc ils_pg_d

;

int_ehsi.obj : int_ehsi.asn
inasm int_ehsi;

com__ehsi . ob j : com_ehsi .asm
raasm com_ehsi

;

ehsi.obj : ehsi.c dat a_s t r .

h

msc ehsi ;

ehsi.exe : ehsi.obj dat_pg_s.obj nav_pg_s.obj ils_pg_s. ob j\
dat_pg.obj nav_pg_d.obj nav_pg_d . ob j\
com_ehsi.obj int_ehsi.obj ehsi. lib key_ehsi.lib

link ehsi dat_pg_s nav_pg_s ils_pg_s dat_pg_d
nav_pg_d ils_pg_d com_ehsi int_ehsi/stack : 4000,
ehsi , ehsi , ehsi . lib key_ehsi.lib;

175

Adjusting Pulse-widths and Time-out delays

Expressions are defined in the header of com_ehsi.asm

that control the widths of output pulses and the maximum

amount of time to wait for an acknowledge pulse. Each

expression is discussed below, and the equations assume that

the Z-158 is operating at 8MHz.

INSHAKE_WAIT_LOW controls the maximum amount of time

that INSHAKE_PROC will wait for a high-to-low transition on

the DACI OUTSHAKE line. The time in microseconds is found

from the following equation:

27 + (INSHAKE WAIT LOW - 1)*34
8

OOTSHAKE_WAIT_HIGH controls the maximum amount of time

that INSHAKE_PROC will wait for the DACI OUTSHAKE line to

return back to high after going low. The time in

microseconds is found from the following equation:

18 + (INSHAKE WAIT HIGH - 1)*34
8

OUTSHAKE_DELAY controls how long OUTSHAKE_PROC waits

before actually pulsing the OUTSHAKE line. The timing

diagrams in Sec. 2.2 show that the DACI needs time to get

ready to watch for a pulse on the Z-158 OUTSHAKE line. The

following equation gives the time in microseconds:

43 + (OUTSHAKE DELAY - 11*18
8

OUTSHAKE_HOLD_LOW controls the time that 0UTSHAKE_PR0C

176

keeps the Z-158 OUTSHAKE line low. The following equation

gives the time in microseconds:

18 + (OUTSHAKE HOLD LOW - 1)*18
8

INT_WAIT_LOW controls the length of time that the Z-

158 will wait for the DACI to pulse the OUTSHAKE line after

being interrupted by OUTPUT_INT_BYTE_PR0C. The time in

microseconds is given below:

22 + (INT WAIT LOW - n*34
8

I N T_W A I T_H I G H controls the time that

OUTPUT_INT_BYTE_PROC waits for the interrupt acknowledge

pulse from the DACI to go back high after going low. The

time in microseconds is given below:

16 + (INT WAIT HIGH - 1)*34

177

APPENDIX C

MODIFICATIONS

Z-158 Parallel Port Modification 179

DACI External Clock Switch Addition 181

DACI IRQOUT and IRQIN lines addition 183

178

Z-158 Parallel Port Modification

The Z-158 parallel port was modified to enable data

reads from the data bus. The output latch of port 0378H was

always enabled previously, thus only allowing the latch to be

read instead of data coming through the external parallel

port connection. As can be seen in Fig. 40, the RPA line was

inverted and sent to the output latch's enable pin to correct

the problem. This forces the output latch to go into the high

impedance state while the read is occurring, so that the data

on the parallel port is read instead of the latch. The

bottom figure is the corrected circuit, and the top diagram

shows the original circuit. The modification was

accomplished by adding an inverter chip to the top of the

output latch.

179

74LS374
V D0

\01

\D2 •

\£JJ
MM 1

\pa i

\flfl_L

\D71

C

D G

Q

D

3 C

»*. C

2
2

1

1

t 2

1 1

T i

i a

1 ff

3 7

3 8

7 a

ai ai

A2 B2

A3 B3

A4 84

A3 B3

AS 88

A7 87

» ua
M

OCR C

15_

6

12.

13

14
IB

WPA
jj yi i Oi.

X" M II

VD1 H

SM 1'

\P3 1-

vJX 1

>ps 7

XP»

-^7_J

0E OE

Z

i

8

11

13

13

17

RPA V V

74LS374

a

a

7

8

,
1

1

74LS243

\D0 3

\D1 *

\fl2J

\D3 a

NQftjj

\P3 V

\Dfli:

KD71I

D Q

D

D

10

9

a a

D C
dk

« ; 2

2

4

t ?

3 7

3 8

ai ai

A2 92

A3 S3

A4 84

A3 B3]

A8 88
.

A7 B7
;

« US M -

la

s

s 5

12. 8

13 7

14
ID

WPA

nan
JXMI
J1 11

^02 t'

Npg i:

\P4 j

vp3 7

\DB i

sp7 3

OE OE

2

4

9

8

I
1

A 3

13

7—
RPA V V

Figure 40. Z-158 Parallel Port Modification.

180

DACI External Clock Switch Addition

In order to run the EHSI system at variable speeds, a

switch was added to the DACI that gives the user the choice

of using the system clock or adding an external signal

generator. The line connections changed are seen in Fig. 41.

The benefit of this modification was apparent in the

filtering section, where greater than 2 Hz updates are

required. The system can also be pushed to its limit by

adjusting the frequency of the signal generator, thus finding

the maximum update rate that the system can keep up with.

181

Figure 41. DACI Clock IRQ Switch Addition.

182

DACI IRQOUT and IRQIN lines addition

Two lines were added to the DACI that helped seperate

interrupt requests and handshaking sequences. Figs, 42 and

43 show the change of connections made on the DACI. A

routine was added to the DACI software that pulses the DACI

IRQOUT line. Dedicated interrupt request and receipt lines

are necessary to alleviate timing problems. Interrupts were

being missed, and OUTSHAKE pulses were being mistaken for

interrupts before the IRQ lines were added. The modification

has greatly reduced the number of acknowledge errors and bad

interface commands between the Z-158 and the DACI.

183

Figure 42. DACI IRQ Lines Addition

184

Figure 43. DACI IRQ Lines Addition

185

LOW-LEVEL SOFTWARE FOR AN EHSI DEVELOPMENT SYSTEM

by

DAVE GRUENBACHER

B.S., Kansas State University, 1985

AN ABSTRACT OF A MASTER'S THESIS

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1987

Assembly-language routines are presented that establish

communications between the host computer (Zenith-158) , and

the smart interface of an electronic horizontal situation

indicator (EHSI) development system. Communications are

accomplished in an interrupt environment supported by a

handshaking protocol. The main program, written in C, is

presented as the controlling program for the EHSI system.

The main program and communication routines are interfaced

together. Functions are presented that service key presses

of the system keypad. Flight simulator data is sampled and

differentiated, via digital filtering, to extract airplane

trend information. User guidelines and maintenance

information for the communication routines are given.

