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INTRODUCTION

It has been known for some time that the sampler In a

sampled-data control system does not reveal fully the nature of

the sampler's input function. A non-monotonic input fvinction

having aero crossings at the sampling intervals is completely

annihilated by the sampler. This fact has led Jury (1, 2) to

Introduce a modified Z-transform to obtain a non-zero value of

the function between the sampling intervals. The modified Z-

transform delays the annihilable function so that its zeros do

not lie at the sampling points.

Annihilable functions are not dodged so easily. One can

imagine a function of time whose zero crossings coincide with

the sampling points after a delay operation, and the problem

of annihilation has not been avoided.

The only resort, then, is to become thoroughly familiar with

annihilable fimctions and not waste time avoiding them. Various

properties of annihilable functions of time are investigated in

this paper, and a solution for the partial recovery of the an-

nihilable input to the sampled-data control system is proposed.

THE Z-TRANSFORM

The Z-transform technique was originated by Demoivre and

Laplace (8, 15) in developing a form of transform calculus which

could be applied to the solution of linear difference equations.

Hurewicz (6) later adapted this approach to the solution of
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pulse filters and sampled-data systems. After subsequent efforts

by Barker, Lanlng, Ragazzini, and Zadeh (3, 7, 9, 10, 12), the

Z-transform of present type was formulated.

The Z-transform is, in fact, a Laplace transform of a dis-

crete function. It is defined to be the Laplace transform of a

r n
sampled function Z jf(t) and

zffCt)
I

- f(t) . 5(t - nT) (1)
,

L n=0

where ^ Sit - nT) is a periodic impulse sequence with period
n«0

T seconds. The Z-transform of f(t) is then defined to be

z[f(tj] « L[f(t) . 21 Sit - nT)] (2)
n«0

Further calculation yields

1
7(s) (3)7( A) •

zr,—TTm
2iTj /y 1 - e(s-^)T

where the region of integration contains only the poles of ?(A)

Letting e^^ = z, the Z-transform of f(t) becomes

z[ris)\ ^ — £ rcA) • — dx
^ 2Trj 7^ 1 - ze^^

or residue of
poles of 7( A )

(4)
1 - ze

The Z-transform possesses the following properties:

A. The Z-transformed functions can be added, multi-

plied, or divided (except division by zero), subject to the

basic rules of algebra.

Commutativity of addition and multiplication:
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Zf + z; = zi + zf, (Zf)(zg) = (zi)(Zf) -
, (5) •:.

Associativity of addition and multiplication:

Z? + (Zg + ZE) = (Zf + Zi) + Zh ' '

^

Zf(zg • zE) = (Zf • Zg);^ (6)

,
•

,
Distributivity of addition and multiplication:

ZfCZg + Zh) = (Zf)(Zi) + (Zf)(Zh)

The existence of identity elements:

Zf + = Zf ; Zf . 1 « Zf

V B. The Z- transform of the sum (or difference) of two

functions is equal to the sum (or difference) of their respec-

tive transformed fxanctlon. This property does not apply to the

product of functions. By way of example,

Z(f + i) = Zf + Zg (8)

whil0 Z{Ii) ^ (Z7)(Zg); Z(f/i) ^ (Z?)/(Zi) (9)

C. The Z-transform of a Z-transforraed fmction is

again the original Z-transformed function, and in general

(Z) f = Zf
. This implies that the performance of a set cascaded

sampler with the same sampling rate is equivalent to those of a

single sampler. To show this, let

z7 = J_i^r(A)
2TrJ / 1 - ze'^T

oo
« 21 f (nT) ^
naO

o- r_i 1 r.
a: Z Zf

I

= -1- cb^^ f(nT)e-'^PT dp
- J 2TrJ 7 n 1 . e-(s-p)T

f(nT)e-'^s'r .

1 r 1

n 2trj 7 1 - zeP'I'
dp



Therefore Z^f = ^ f (nT) = Zf
n

By Induction, one can show that (Z)^ = Zf (10)

D. The Z-transform of the discrete convolution of a

continuous and a sampled function is equal to the product of

two sampled functions.

U z_7(zi)j = (z?){zi)

Proof. Since Zg = ^ g(nT)zJ^
n

(11)

Therefore ?(Zi)] = z[f 21 g(nT)zn|
n

if(A) . g(nT)e-
2Trj J n

1
7(X)

n 2wj

« (Zg)(z7)

A new identity, along the same lines, is

t# z[7/(Zg)] « (Zf)/(Zi)

The proof is

z[7/(Zg)] zk/ij^ g(nT)an)l

1

ATn

1 - ze^T

1

1 - ze "Xt
dA

(12)

1 r
= — o

2wj
j ^ g(nT)e-

1 / f(s - p)

1 - ze
dA

2wj j
g(nT)e-(s-p)Tn i. g-pT

y- ?(s - j2Trk/T)

k Z:g(nT)e-ts-J (2Trk/T))nT
n

-dp
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z[f/(zi)] =

2Trk

2: 7(3 - j )

k T

n

= (Zf)/(Zg)

FUNCTIONS ANNIHILATED BY Z-TRANSPORM

It is readily seen from the properties of the Z-transform

that some fxinctions which are non-monotonic and have zeros at

the sampling Intervals will be completely annihilated by Z-

transform. A family of such fimctions takes the form ;

'-'^

^ f(t) = q(t) P(q(t)) (13)

where q(t) = TT (t - nT), and P(q(t)) is either a finite or
n=0

infinite degree polynomial having only real zeros, only complex

zeros, or a mixture of both. This representation yields only

continuous annihilable functions.

The discontinuous annihilable functions are best repre-

sented in the Laplace transform domain. Such functions bear

the general form:

f(s) = a(s) Z b(s) - b(s) z[a(s)J (14)

where a(s), b(s) are the Laplace transform of any two arbitrary

functions a(t) and b(t), and Za, ZH are their respective Z-

transforms. The validity of such form can be seen rather

readily, foi as Z-transform is applied to ?(s), it becomes

Zf = z[a(Zb) - b(Za)]

« z[l(ZB)] - z[¥(Za)]

« (Za)(ZS) - (ZB)(Zi) «



When the fTonctions a(t) and b(t) are free of annlhllable

elements, the functions f(t), a(t), and b(t) are uniquely related

to one another; for any given two fimctions the third one is com-

pletely defined. To show this, one needs to distinguish between

functions of s alone and of z alone by defining

Zi s A(e-sT) = A(z)

Zb 5 B(e-sT) = B(z)

The fundamental form can be written as

I(z, s) = i(s) B(z) - H(3) A(z) (15)

which can further be partitioned into functions of s and z only,

as follows:

T(z, s) a(s) A(z)
=- - (16)

b(s) B(z) B(s) B(z)

If the functions a(t) and b(t) are not free of annihilable

functions, then the function is determinable up to either known

or unknown annihilable fiinction. The problem context always

determines the two possibilities. , , : ,

Some examples are now displayed.

A. It is desired to determine the annihilable fiinction
_ 1 _ 1

generated by a(s) = - and b(s) =
s s + a

The annihilable fmotion

?(z, s) = a(s) B(z) - E(s) A(z)11 11
s 1 - ze"*^ s -f a 1 - z

a(l - z) - sz(l - e-aT)
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B. Given ?(z, s) = , and an Impulsive fimctlon

5(3) = 1, It is desired to determine the generating fxmction

a(s).

f(z, s) tr

B(s) B(z) 82 + ffS

_ ir _ Tf

Therefore a(s) = • b(s) = •— (18)

1 _ 1 - z(l + Ts)
C. Given ^(s) = f(z, a) = , it is desired

S s2(l - 2)2

to find a( s)

.

f(z, s) 1 - z(l + Ts) 1

B(s) B(z) a2(l - a)2 1 1

a 1 - z

1 - z(l + Ts)

s(l - z)

Separating the variables 2 and s yields

f(z, a) 1 T z

F(b) B(z) s 1 - z
,

1 1
Thus the desired a(s) = - • B(s) = —.

'
,

' ''v.'t ; < (19)
s a2 ^'

*

1 - z(l + Ts)
A plot of the annihi labia function f(z, a) * -»

82(1 - z)2

with period T being one second, is given in Fig. 1 (Appendix)

to exhibit the behavior of this function.



SAMPLED-DATA CONTROL SYSTEM AND
ANNIHILABLE FUNCTIONS

Two aspects of annlhllable functions should be studied In

the analysis of sampled-data control systems.

1. The partial or complete annihilation of the input func-

tions containing annlhllable elements by the sampler in the

system.

2. The generation of non-monotonlc response between the

sampling intervals due to the non-ideal demodulation process in

the system that may introduce instability to the system.

The input function to the sampled-data control system bears

the general form of f(t) = f],(t) + fo(t), where fglt) is a func-

tion whose zero crossings coincide with the sampling intervals

of the system's sampler, and the function f^Ct), while it may

have some of its zeros at the sampling points, is not annlhllable

by the sampler, foit) is annihilated by the sampler, and the Z-

transform method of analyzing the sampled-data control system

cannot reveal the existence of such a function at the input

terminals

.

Several methods for obtaining non-zero values of the func-

tion response between the sampling intervals have been intro-

duced, among which the modified Z-transform developed by J\iry

(1, 2) is considered by some authors as showing promise. Jury

(2) proposes that instead of applying Z-transform directly to

the function response, it is applied to the delayed response,

the delay being a fraction of the sampling interval so as to

yield a non-zero transform. This method, however, does not evade
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the fact of annihilation of the input function. The annihilable

elements in the input function are still annihilated by the sam-

pler; it is possible to arrange the zero crossings so that the

delayed function is annihilated.

In a system whose demodulator is of such nature that it

generates sinusoidal response between the sampling intervals, the

application of modified Z-transform does give a non-zero value,

but again, in this case, an oscilloscope can be used to observe

oscillatory response in place of the delay and sampler elements

of the modified Z-transform.

The sampled-data feedback control system with elements as

shown In Fig. 2, has an input-output relation

g(s) 1 - z 1
Y(s) «

1 + Z
i(s) 1 - z

s

Z x(s)

i(s) 1 - z

1 (1 - z) Z
g(8)

Z x(s) (20)

The trapezoidal approximation (Halijak, 16) of Z

given as

g(s) • —
.2

la

t2j

(1 - z)2
Zg - 0.5 g. (21)

where g^ is the initial value of g(t).

Substituting the above approximate value, and rearranging

terms, the equation yields

- . « 1 1 - z
,

Y = g(s) . - ( )'

1 - z + t2z [Zg - 0.5 go]

Zx



1 1 - z _ _
4 g(s) . - ( )2 . z(s) . Zx - (22)

T s

11-2
- ( ) is the delayed linear interpolator. No instability
T s

at or between the sampling intervals can occtir due to the de-

layed linear interpolator. g(s) can introduce instability be-

tween the sampling intervals, and Z(z) may cause the system to

be unstable at and necessarily in between the sampling points.

The non-monotonic response termed as "hidden" oscillations

in the literatxire (1, 2, 11, 13, 14) arises only when g(a) con-

tains complex conjugate poles coinciding with the sampling in-

tervals on the j-axis, and such system would have been at most

limitedly stable even without the sampler on it. In practice,

it is very unlikely that g(s) will be in such a form, and thus

eliminating the possibilities of the existence of such "hidden"

instability. Indeed, something stronger can be said about g(s)

than the "hidden" instability concept. The transfer fimction

g(a) should be able to follow a unit ramp input and must have a

form such as

1 + mTs
g(B) « (23)

^ 2
1 + mTs - (mTs)*

3

where "< m 1.

"Hidden" oscillation cannot exist in a stable system. The

output of the stable system does have ripples between the sam-

pling intervals due to the use of an approximation to the delayed

linear interpolator, but on no occasion will it contribute any

instability to the system. The generated ripples, in fact, can



easily be detected by an arrangement shown in Fig. 3. Ripple is

arbitrarily defined to be the variations of the system's re-

sponse from straight line Interpolation between the sampling

intervals.

When a sampler and its non-ideal demodulator are added to

a stable feedback system, the system in some Instances will be-

come unstable. The instability occurs both between and at the

sampling intervals, and there is no occasion for the system to

be unstable in between yet stable at the sampling intervals.

This is exhibited by a series of examples of increasing com-

plexity.

For a feedback system with open loop transfer function
i(8) k

= — , the system's characteristic equation
• s _

g(s) k + s

1 + = (24)
S 8

has zero at s « k. The continuous feedback system is thus stable

for all positive value of k. As the sampler and its demodulator

are added to the forward loop, the characteristic equation of

the sampled-data feedback system becomes

1 + Z
1 - e-sT

J

a 1 + k(l - Z)

1 - z + kTz

1 - z

The zero of the equation as z =

1
for

1 - kT

> 1, which Implies

(1 - z)2

(25)

, and the system Is stable

kT < 2. For kT >- 2,
1 - kT

where the continuous counterpart is still stable, the sampled-
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data feedback system is unstable. At the border line kT « 2,

the output response of the system

1k (1 - z)

y = ~ •

1 + z
k(l - z)

Z X

1 - z 1
= k • { )2

1 + z

Consider now the case where

Z X

G(s)

8 8 -t- S

istic equation of the continuous feedback system 1 +

s + a + k

(26)

The character-

G(s)

has zero at s = -(k + a), and the continuous system
s + a

is stable for all values k+a>0, i.e.,k> -a.

The corresponding sampled-data system with zero order hold

circuit as its demodulator will have characteristic equation,

letting T = 1 second.

1 + Z
1 - e-s

s + a
= 1 + k(l - z)

a 1 - z 1 - ze-*

a(l - ze-a) + k(l - ze-«) - k(l - z)

(27)
a(l - ze-a)

The zero of the equation is given as z(k - ke"® - ae"*) + a = 0,

8-1
and when bilinear transformation z = which maps the ex-

s + 1

terior of the unit circle in z-plane into the left half of the

8-plane is made on the system characteristic equation in z, the

zero in s-domain becomes

j(k - ke~s - ae"^} + ajs + a - (k - ke"® - ae'^) (28)
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Applying Routh's stability criterion, the required conditions

for a stable system are given as

k - ke-a - ae-a + a > (29)

and a - k + ke-a - ae-a > (30)

The intersections of the areas represented by equations (29) and

(30) are found, and this region in which the values of k and a

satisfy the stability criterion is plotted together with the

region of k + a > required for a stable continuous system in

Figs. 4 and 5.
k

Again consider the case where G(s) = . The con-
s(s + a)

tinuous feedback system with such open loop forward transfer

function yields characteristic equation

7j{s) s2 + aa + k '

1 + « . (31)
• s( s + a) > ' • s • ^

The system is stable for all values k > and a > 0; i.e., all

values of k and a in the first quadrant of the k versus a plane.

In the case of its counterpart sampled-data system, the

zeros of the system's characteristic equation can be shown to be

[k + e-a(a2 - ka -
k)J + [e-a(k - a^) + k(a - 1) - aS] z

+ a^ + (T = 1 sec) (32)

If the bilinear transformation which maps the exterior of unit

circle into the left half of s-plane, and the Routh's stability

criterion is applied, the stability conditions are found to be:

ak(l - e-*) > (33)

a^ - e-a(a2 - ak - k) - k > (34)

e"»[2a2 - k(a +
2)J

+ k(2 - a) + 2a^ > (35)

The intersections of these three areas are plotted in Fig. 6,



and It Is compared with the region of stability of the contin-

uous counterpart in Pig. 7.

It is readily seen from Figs. 4 and 5 that the region of

stability for the sarapled-data feedback control system using a

holding filter demodulator is smaller than the stability region

for its continuous counterpart. It is possible for a stable con

tinuous feedback system to become unstable when the sampler and

its non-ideal demodulator is added to the system, but the inser-

tion of sampler and holding filter combination to an unstable

continuous system, on the other hand, do not alter the instabil-

ity condition of the system. The stability region of the

modulator/demodulator configuration is always contained in that

of the original servo, and hence the moduletor/demodulator servo

cannot be expected to perform as well as the parent servo.

PARTIAL RECOVERY OF AN ANNIHILABLE INPUT

Since "hidden" oscillations cannot occior when the forward

transfer function G(s) is stable, the problem of the annihila-

tion property of Z-transform is therefore reduced to the invest!

gation of the input functions, and the development of a method

with which the annihilated portion of the input can be either

partially or fully recovered at the output terminals. It la

also well to note that the solution to such a problem does not

lie in the use of adaptive feedback system configurations as

shown in Fig. 8, for any feedback errors containing the annihil-

able elements are \inable to get throvigh the sampler in the main



forward loop. The annlhilable elements of the input function

have zeros at the sampling intervals and they are the high order

harmonic components of the input. A high-pass filter having

cut-off frequency a bit lower than the sampling frequency of the

sampler if used in supplement to the sampler, will provide the

recovery of the annihilated components by the sampler. The ar-

rangement of the sampler and the high-pass filter is shown in

Pig. 9.

Consider the sampled-data control system with a high-pass

filter of transfer function h(s) in the forward branch loop

shown in Pig. 2, where the sampling period of the sampler is

assvimed to be one second, and the cut-off frequency of the filter

is set at X TT. < > < 1. Let the input function be

f(t) = f]^(t) + fo(t)

= a sin m t + sin w t

and f(s)=-- (36)

The output response at the x terminals is therefore being

1 - e-s
Zf(s) + f(s) h(8)

8

= x-^it) + Xo(t) (37)

and it is desired that XQ(t) be in the form of fo(t) if the

annlhilable components are to be restored.
s

Using first order high-pass filter with h(s) = , th«
— s + Xtt
Xq(s; component of the output response is given as

XqCs) = h(s) • f(s)



a +

am y\ir

am IT

' am* m

j2 + A^ir^ + m^/ Vm^ + y\^-tr^ + jj^y

amXir f 1

Xo(t) =

^m2 + ;\2xf2 s + ?\Tf.

A 1

am

la + A2 s2 + tr2,

m2 + A2^2

1

1 + A2

am

fm2 +A2it2

X

(Aw cos mt + m sin mt - Atre"'^'''*)

(A cos TTt + sin IT t -A«~'^^*)

1
sin (mt + tan"-*- )

f1 + A2
sin (TTt + tan~lA

)

- A a- ( — + )

i2 4-A2Tr2 1+A2

AW
3in(mt + tan"-*- )

m
1 + ( )

m

ain(wt + tan"-'-/^ )

- Aa - ATTt (
amw

16

m2 +A2tt2 1+a2
The steady-state response of this system with A= 1 and m<^<w is

Xo(t) 0.707 sin(wt + 45« ) (38)
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Replacing the first order high-pass filter with second order

approximation (Butterworth) transfer function h(s) =

s2
-—

, the Laplace transform of x^lt) is, then
s + >Tr y2 s + ( XTr)2

.2s'

As + B

am

+ m2 s2 + Tr2

Cs + D
+ +

Es + P

where

82 + Xir f2 8 + a2„2 82 + m2 + Aw f2 s + A^wS

Gs + H

g2 + ^2

A = -

B = -

a \rt fz m3

am A^ir^ (m^ - X^rt^)

m4 4 (>w)4

aXiT f2 m^
C =

D =

E

P

m4 + (Xir)4

«m3(m2 - XStrS)

m4 + (X-rr)4

>f2

1 +X4

TrX2(l - ;a2)

1 + X*

G =

H

^f2

1 + x*

w(l - A2)

1 + X4

Por 1, and m <r<Tr, the steady-state response of Xo(s) is



approximately to be

^/2
xi{3)

8^ + ir^

Xo(t) 0.707 sin(irt + 90°) (39)

If the transfer function of third order approximation

h(s) =
a3

Is used, the response is given as

Xq(s) t= h(s) • f(s)

am

8^ + 2 AtrsS + 2 X2Tf2s + (A Tr)^ + m^ +

As2 ». Bs + C Ds + E
* —- +
8^+2 Atrs^ + 2 A2it2s + (;\ n)^ +

Ps^ + Gs + H Js + K

s3 + 2Atrs2 + 2 >^^'n^a + (A Tr)^ + ir^

Evaluating the constants, they are found to be

am3( A3nf3 _ 2m2 Atr)
A = -D =

B =

C =

E =

vfi + (Air)6

am(A^TT6 - 2m4.A2iT2 + 2m2 AM)
m6 + Tr)6

am A^trS (m* - 2m2 A2tr2)

+ ( A it)6

am^lm* - 2m2A2Tr2)

P = -J =

m6 + ( ATr)6

(A^ - 2 A* - 2A+ 4 X2)

(1-2 X2)(i + ;^6)



Tr( A® - 2 a8 + 2 A + 2 - 4 A5 - 4 a2 +4a3)

(1 •». A®)(1 - 2 ^2)

2 >^^ir^ - a AV
H

K =

1 + a6

ir(l - 2A)

1 +

Again, let A = 1 and m< < tt, the approximate steady-state re-

sponse Xq(s) becomes

1 s - TT

x„{s)
2 a2 + ir2

Xo(t) i(C0S IT t - sin TT t)

= s f2 coa(Trt + 45**

)

= 0.707 slnCtrt + 135") (40)

The results of using first, second, and third order high-

pass filter are very encouraging. It is seen that for m very

much greater than tt, if the response is nade to delay for certain

appropriate time, the annihllable elements can be recovered at

the output terminals of the filter with a slightly reduced mag-

nitude. High order filter introduces a rather large phase shift,

which may on occasions cause the system to be unstable.

CONCLUSIONS

It is evident from the discussions presented that the prob-

lem of dealing with the annihilation property of Z-transform is

not at all solved by employing the modified Z-transforra tech-

nique. Oscillations between the sampling intervals due to the



20

non-Ideal demodulation that cause the sampled-data system to be-

come unstable in between the sampling intervals, cannot exist in

a system where its continuous forward transfer ftmction 6(8) is

stable, and the detection of such instability can be accomplished

by investigating the existence of complex conjugate poles of G(s)

whose imaginary component is an integral multiple of the sampling

frequency.

When an input function to a sampled-data control system

contains elements whose zero crossings coincide with the sampling

intervals, the elements are annihilated by the sampler and the

informations carried by these elements are totally lost in the

process. The recovery of the annihilated elements cannot be done

by any adaptive feedback system configurations, as the elements

cannot pass through the sampler in the main forward loop without

being annihilated.

The solution, however, is found to be rather simple and it

turns out that a high-pass filter of second order approximation

can be made to recover the elements except for phase shift.

When the input function is fed through the filter, the annihil-

able elements, which have relatively higher frequency, are repro-

duced at the output with phase shift and reduced magnitude.
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The property of the sampler to annihilate non-monotonlc In-

put function having zero crossings at the sampling intervals has

led Jury to propose a modified Z-transform to obtain a non-zero

value of the function between the sampling intervals. The modi-

fied Z-transform delays the annihilable function so that its

Mro does not lie at the sampling points.

Annihilable functions are not dodged so easily. One can

Imagine a function whose zero crossing coincides with the sam-

pling points after a delay operation and the problem of annihila-

tion has not been circumvented.

Various properties of Z-transform are investigated, and it

is shown that the Z-transform, aside from obeying commutative,

associative, and distributive laws of algebra, has the following

additional properties.

1. The Z-transform of a Z-transformed fiinction is again the

original Z-transformed f\inction and in general (Z)^ f = Zf.

2. Z-transform of the discrete convolution of a continuous

and a sampled function is equal to the product of two sampled

functions.

3. Z(f/Zg) = (Zf )/(Zg), provided ^ 0.

A family of fvmctions which takes the form

f(t) = q(t) P[q(t)

where q(t) = 77 (t - nT) and P q(t)
|

is either a finite or in-
ro=0

-*

finite degree polynomial, yields continuous annihilable func-

tions having zero crossings at the sampling intervals. Their

discontinuous coimterparts are best represented in the Laplace



2

transform domain. Such functions have the form

f(s) = a(s) Zb - b(s) Za

where a(s) and F(s) are the respective Laplace transform of any

arbitrary fxinctions (t) and b(t), and Za, ZB are their respec-

tive Z-transform.

Partial recovery of such annihilable input in a sampled-

data control system is possible with a high-pass filter. The

input fxinctions are separately fed through a first or second

order high-pass filter and then added to the output of the sam-

pler. The annihilable elements are partially recovered at out-

put of the filter with a reduced magnitude and a certain phase

shift which increases with the order of the high-pass filter.


