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CHAPTER 1

INTRODUCTION

Multistage optimization problems of management systems arise in

connection with processes developing in time in which one or more control

variables must be controlled to achieve certain conditions. Out of all

possible values for the control variables, the one which Rives a certain

maximum (or minimum) performance index while simultaneously keeping all

the state and control variables within the specified constraints of the

problem must be determined.

Various methods have been developed and applied to solve multistage

and single stage problems. The Kuhn-Tucker method, quadratic programing

and linear programming is in' a sense an adjacent extreme point method

which employs the simplex algorithm as the fundamental computational

tool.

The calculus of variation is a classical tool for solving optimization

problems. Until recently, however computational difficulties limited this to

solving simple problems only. Dynamic programming provides an entirely

new concept of optimization and has been used quite extensively to solve

management optimization problems. However, owing to the dimensionality

difficulty and the limited fast memory capacity of present day computers

,

this technique cannot be applied to problems with a fairly large number

of state variables. In view of the complexity of many industrial and

management systems, this is a serious limitation.

The gradient technique or the method of steepest ascent is an

elementary concept in solving optimization problems. It dates back to



Cauchey [Ita] and, in a variational version, to Hardomarrl [5a]. It is

based on the fact that if movement is made in the direction of the gradient

of the objective function, movement is also made in the direction of

the maximum rate of increase in the objective function. In recent years

the computational appeal of the method has led to its adaptation in a

variety of applications. The dynamic version of the technique, generally

known as the functional or serial gradient technique, has been applied

successfully to solve problems in aerospace, control and chemical

engineering systems, [lt-6, 8-13]

This report is a study of the way in which the gradient concept can

be applied to the solution of optimization problems with constraints.

The application of the concept can assume a variety of forms depending

on the type of problem to be solved and on the manner it is modified

to account for the constraints. This report is dealing with fixed and

constraints for some state variables in general and with the inventory

and production scheduling problem in particular.



CHAPTER 2

THE METHOD

1. A General Problem

An optimization problem in a fairly general form can be stated as

follows: Determine 0(t) in the interval t
Q

< t < T SO as to maximize

* = (x(T), T)

subject to the constraints

* = *(x(T), T) =

3f- f(x(t), Jit), t)

(1)

(2)

(3)

vith t
Q

and x(t ) being given

where

e(t) an mxl matrix of control variables

x(t) =

f \M]

.
* (t).

an nxl matrix of state variables which
results from the choice of 6_(t) and the

>*P

an pxl matrix of terminal constraint
functions each of which is a known
function of x(T) and T.



If an integral is to be maximized, simply introduce an additional

dx~L = q.(x(t), 6(t), t) (U)

where q is the integrand of the integral. Now x ., (T) is maximized
n+1

with the initial condition x ,(t.) = 0.
n+l u

2. Concepts

The gradient technique is basically a method in which the control

variable is improved from a point far away from the optimum along the

gradient direction. The gradient direction being referred to is the

gradient that a particular control variable has with respect to the

given objective function.

Figure 1 is a sketch of an optimum programming problem. The state

variable x must satisfy the functional relationship

where 6 is the control variable. The functional relationship must be

satisfied at all points between the two end points t = t and t = T.

The problem of optimization basically arises when it is necessary

to find the controls which, while satisfying the path, also optimizes

the objective function <Jj. In addition to optimizing the process and

satisfying the functional relationship, it might be required that the

controls also meet certain additional final conditions on the time variable

t or on the final values of the state variables.

To solve this problem by the gradient technique, a certain sequence



t rtQ

Terminal Poin't

l t= T

dx
X(x,6)

Pig.l Symbolic Sketch Of Control Proble::



of values is assumed for the control variables. The gradient of the

objective function with respect to the control is determined at all points

along the path or trajectory. According to the gradient technique, it

is best to improve the control variable along the gradient direction in

order to reach the optimum as quickly as possible. The control variable

is hence improved in the gradient direction by a certain predetermined

step size at all points along the path. At each new point the gradient

is redetermined and a step is again taken in this new direction.

Proceeding in this manner, an optimum is reached. After determining the

gradient direction and the
1

step size, the new control variable can be

computed from the relationship

e (t) = e ,.('t) + k II-new old 30
|

3. Functional Equations

Before beginning a numerical calculation based on the gradient

method, two decisions must be made. First, a method of calculating the

partial derivatives making up the gradient must be selected. Second,

some scheme to determine the step size along the gradient must be

devised. The direction of step along the gradient will be determined

by whether a maximum or a minimum of the objective function is desired.

Two main methods are available to calculate partial derivatives.

The simpler way is the independent perturbation of each element of the

control variable. The partial derivatives can be estimated from these

perturbations.

For example, consider the process of obtaining the gradient with



respect to the control 0, the grid size being A. The first step is to

function S . The next step would be to purturb 9 by a small amount AS

and let the new value of the objective function be S . The gradient o

the objective function with respect to the control may now be written

88
38

35 I

vhere t- is the partial derivative of the objective function with
36

l t

respect to the control variable at time t.

The above procedure has the advantages of simplicity and of high

relative accuracy even in the presence of nonlinear effects. However,

its major disadvantage is a rapid increase in computation time as the

number of time increments involved increases. For example, increasing

the number of time increments from 5 to 10 would increase the computer

time required for the calculation of the gradients by almost k times.

Thus, practical considerations limit the use of this technique to

problems involving optimization over a relatively small number of

control variables with a fairly small number of grid points.

The second method for calculating the partial derivatives which

avoids the difficulty mentioned above is by setting up recurence relationships

for the calculation of the derivatives.

Suppose there are n state variables and one control variable.

Further assume that a feasible sequence of control variables 8(t),

t„ ^ t <_ T can be obtained to start the calculations.



The performance equation as given in Eq. (3) may also be written

x,(t + it) = x,(t) + f.(x.(t), x„(t), x (t), 8(t)) At (5)
1 l 1 X & n

where x.(t) and i = 1, 2, ... n designate the value of the i element

of the state vector at time t. Now, define

S(x , x , — , x ) = The final value of the objective function is

and using the assumed control sequence 9(t),

Using Eq. (5), then

S(x, , x„, ..., x ) = S(xn
+ f, At, x + fit, ..., x + f it). (6)

1 c n 1 X d 2 nn
It is necessary to determine

as(v x
2

, ..., x
n )

This is the partial derivative of the final value of the objective

function with respect to the control variable evaluated at time t. Using

Eq. 6, then

3S(x,, x , ..., x ), 3S(x, + f,4, ..., x + f A)i
X d nj 1 1 n n #7 \

36 |

t
38 |

t
"I

How, by the chain rule



3(x. + f.A)
1 1

(6)

Using Eq. (5),

a(x. + f.At)
i

3f.
l l 1

Combining Eqs. (8) and (9), gives

3S

38
_ r db_ i

.

~ A 3x. I , 36 .

t 1=1 l 't+A 't

(10)

The left hand side of the above equation is the desired partial

derivative of the objective function with respect to the control at a

3f.
i

particular stage with a given At. The partial derivative may be

calculated analytically. Thus one has a starting value and a recurence

3S
relationship for However, before making the calculation, a

recurence relationship must also be obtained for -— l = 1, 2,
3x.

l 't

Differentiating Eq. 6 with respect to x gives

3S(x
n , >.„, ..., x ) I 9S(x_ + f. At, x„ + f„At, ..., x + f At)
1 2 n _ 1 12 2 n n

3X
J

It
3X

J

(11)

|
_ y - as

|

it
~

i=i
3(x

i
+ f

i
t}

It

3(x. + f.At)
l l

3x,
(12)



IE)

But

3(x. + f .At)
(13)

3(x. + f.At) I 3f. ,

%x
* - ~ At i j J (Ik)

i = J (15)

Combining Eq_s. (11) through (15) results in

3S I
33 ? 3S

it.

IS- Tr " •
(l6)

3X
J [t

3X
j 't+At i=l

3X
i 't+At

3X
j It

The recurence relationships obtained above are essentially equivalent

to those developed by Bryson and Kelley [k , 6]. However, the developments

due to Bryson and Kelley are considerably more complex, involving

perturbations and adjoint equations.

The derivations outlined above were based on the situations where the

control vector contained only one element. Problems with control vectors

containing several elements do not cause any basic change in the development.

However, there would be individual recurence relationships for the partial

derivative of the objective function with respect to each control variable.

Now, a relationship must be developed to obtain an improved control



n

variable based upon the gradients. Ao stated bcrorc, the new value of

the control variable can be computed from the relationahip

i
lt »" 8

i
1
>>* 1 ||7 UT1

new old i 't

Hote that e^t) is the value of the ith element of the control variable

at time t. The scaler, K, may be thought of as the step size along

the gradient. Thus the problem of obtaining a correction based on the

gradients reduces to one of selecting a proper K. One feature of K is

immediately obvious: its sign depends upon whether a maximum or a

minimum is desired. Maximization problems require a positive K and

minimization problems require a negative K.

A straight forward method of obtaining K would be to search over

all reasonable values and select the one which gives the maximum

improvement in the objective function. However, there is no way to

specify the best range of K over which the search should be conducted.

There is an additional difficulty of computation time. Since the

objective function is defined at the final time, evaluation of a trial

K requires a complete integration of the performance equations. If

the process has a large number of state variables or a large number of

time increments, this integration would require a great deal of computer

time.

An alternative to the direct search for the determination of K is

as follows. The expression K rrr~ is basically the difference between
1 't

the old and the new values of 6 . at time t. In incremental form this



12

may be written as

1

Suppose it is wished to estimate the total change in the objective

function due to a series of changes in 8.. One way to obtain this estimate

for a process containing T time increments would be through the

approximation

»:! If- I "i (t) (19)

t=o
39

i It
x

Combining Eqs. (18) and (19) gives

- K I flf- I f (20)

Substituting the value of K from Eq. (21) into Eq. (IT) yields

(21)

A* 3S
* w

(t) = e. (t) + -= ^-L—
. (22)

r old r [3S
|

Jo i
3e

i k
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In this equation, one must Delect a suitable value for A*|>. In other

voriio , it must he decided how much a change in the objective function io

desired. If too small a value of A<|> is selected, many evaluations of

the gradient will be required to obtain the optimum while too large a

value of A({> runs risk of obtaining no improvement at all. Notice that

only a linear relationship is used in obtaining the gradients. A large

A<(> can move the new controls outside the region where linearization is

valid. Sometimes it may be possible to obtain a scheme for adjusting

A$ during the calculations to obtain a good balance between computation

time and accuracy.

If there are no constraints, one would exoect rr— to approach zero
l

as the maximum or minimum value of S is approached. Since the correction
T

f3s
I \2

scheme requires division by 7 \TS~ > *^e computation will involve
t=0 L

38
i l t I

division by a very small number when the maximum or minimum is appraoched.

The severity of this difficulty will be discussed in later chapters.

k. Functional Equations with Fixed End Conditions

Suppose that the following condition must also be satisfied at the

end point:

z(x
n , x„, x , t) = 0.
1 ti n

It is desired to compute the influence of the control variable 6 on the

final value z

.

The arguments used to derive the relationships would be identical

to those used in deriving the recurence relationships. The following

recurence relationship for the additional final condition can be obtained
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° 7' - V 37' La fn->\

m L " A sr LA ~o" L
A (23)

't 1=1 1 ' t+A 't

j 't j 't+A i=l 7: i 't+A j 't

with the final condition

3f.
i

1?_ - A5_ |M. / M I I -lit I fosl
3x

j It
" 3x

j It
"

^
3t dt

> It
3x

j It

'

Now let the improvement in the control variable take the form

i-'t i 't

simultaneous equations:

^vlfiU^ilif ItU ™
t=o ^

ae
It

3e
ll

* • *^"X f* I* * I; ]
* *» J- te L

1* (23)

Due to the difficulties in finding the initial feasible trajectory,

the term Az, which represents the deviation from the desired final

condition, can be thought of as a correction in the final value of the



15

subsidiary condition.

It is to be noted that the expression

2 36. L
l 't

in Eq. (26) is a penalty function imposed on the improvement of the

control variable due to the auxiliary final condition which must be

satisfied by the optimal sequence of the control vector. The penalty

function, in general, reduces the rate of approach to the optimum.

Summarizing the above discussion, it is seen that if some end

conditions at the final time have to be satisfied, Eq. (17) must be

modified to

6
i

<t>-6 <t) + Kl ff-
+ K

2 ff- (29)
new old l l 't l 't '

- I

where the constants K n and K„ and the expression for -rr-— are computed
1 2 36.

| t

from the relationships specified in Eqs. (23) through (28).

5. Computational Procedure

Knowing the recurence relationships, the step to step computational

procedure for a problem without given end conditions are:

1. Assume a sequence of control variables.

2. Using the performance Eq. (5), determine the sequence of state

variables.
3f. I 3f.

|

3. Evaluate t—— and -— for every t using the numerical
36

|

t
3Xj

| t

values of the state vectors and controls.
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k. From the final values of the state vector and the controls,

evaluate —'— at the end of the process.

l

5. Calculate rr— by backward recursion of Eq. (16).
86

j it

6. Calculate — from Eq. (10).
36

| t

T. Calculate the new control from Eq. (22).

8. Repeat Steps 2 through 7 until the gradient is so small that

further improvement is not significant.

In case the problem involves satisfying some end conditions on the

state variables, the only difference in the computational procedure

would be in Step 7 where the improved control would now be computed from

Eq. (26) instead of Eq. (22).
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CHAPTER 3

APPLICATIONS

Three problems relating to the optimization of management systems

have been solved by the gradient technique in this report. The first is

a simple problem in the field of production control. Here both the

initial and the final inventories are given. Thus this is an optimization

problem with one fixed end condition. The sales in this case are assumed

to be known. The second problem considers the diffusion model of

advertising. The problem is to find the optimum advertising for the

maximum profit with a given production rate. The model also controls

the inventory level. The final problem considers both production and

sales as variables with the operating temperature controlling the

production rate and the diffusion model being used for the advertising.

3.1 A Production and Inventory Control Problem

3.1.1 The Model "
.

•

Consider the solution of a simple problem in the field of production

and inventory control using the gradient technique. Further consider the

sales rate Q(t) to be known with certainty and that the rate of change

of the inventory level I(t) is given by

^-=p(t)-Q(t) (30)

where p(t) is the production rate at time t. The problem is to minimize

the cost function



IB

C
T

= ^ k(Kt)) 2
+ C exp (p - p(t))

2
]dt (31)

It r m
j

where C
T

is the total cost of inventory and production. C is the

inventory carrying cost. C is the minimum production cost which occurs

when the production rate equals p which can be considered as the

capacity of the manufacturing plant. Since the plant is designed for

capacity p^, an increase in capacity may require additional equipment

and manpower and thus can be very expensive. On the other hand, a

decrease in capacity can be equally expensive because of maintenance

of unused equipment and because of manpower which, due to contract

agreements, cannot be easily reduced.

Sales, a known quantity, is given by the linear relation

Q(t) = a + b(t) . (32)

The initial inventory is

1(0) = C (33)

It is desired that the inventory level at final time t = 1 be I(T) = D.

Reformulating this problem according to the notations used previously

results in x^t) = l(t) and 6(t) = p(t). Equation (|6) now becomes

dx
x
(t)

—jr— « 6(t) - a - b® (3U)

x
l
(0) = C

(35)

x
x
(T) = D.

(36)
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x
2
(t) = /* [C

I
(x

1
(t))

2
+ C exp (pm

- p(t))
2

] 4t. (37)

x
2
(T) = C

T

-jj|- C
I
(x

1
(t))

2
+ C exp (pm

- p(t))
2

(38)

x
2
(0) = 0. (39)

Equations (3^) and (38) are the desired differential equations

corresponding to Eq. (3) with n = 2. The initial conditions are given

by Eqs. (35) and (39). The function to be minimized is

* = x
2

. (U0)

The terminal conditions are

<|i = t - T = (1*1)

and

z = x (T) - D = . . (1(2)

3.1.2 The Recurence Equations

Considering t as the third state variable, the variational equations



20

can bo obtained easily. From Eq. (10),

f§ = ~ A - 2 |f- [C (p - 6} exp (p - 6)
2

] (U3)
3* U ax

i l-t+a
3x

2 l t+4 p ffi m U

Using Eq. (l6) yields

is I is : ^ is
I „ „,

,

3X
1 >t

3X
1 U+fi

3X
2 U+A J X U

(U5)

The terminal conditions are obtained from Eq. (9) give

||- - (1,6)3X
1 'T

ff- - 1 - (1*7)

2 't

An equation for rr can be obtained from Eq. (8). However, for the

present problem this equation is not needed.

The variational equations for the second constraint

z = x (T) - D =

can be obtained in a similar manner. From Eq. (23),
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From Eq. {2k)

3x
i It

3x
i U+a

3x
2 U+a *

x|
t

lr -fx~ •

(50)
3X

2 It
3X

2 U+A

The terminal conditions can be obtained from Eq. (25]

3z _ . , ,

3x"~
= 2 (5l'X

l <T

3x
l It

From Eqs. (Uo) and (1*2), then

2 U 3X
2 It+A

(53)

Equations (39). (kl) and (1*3) give

3z _ 3z_
I , _ . ,,, ,

3X
1 U 3X

1 't+A

Substituting the values obtained in Eqs. C*3) through (51) into Eqs. (27)

and (25), the values of the constants K and K can be calculated. By-

substituting these values of K and K into Eq. (29) the improvement in

Az is obtained. The value of Az is (x

improvement in the objective function.
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3-1.3 Numerical Results

The numerical values used are

a = 2 D = 9.25

*>* 1 C = 0.001
p

C = 5 pm
= 5

Cj = 0.1 T = 1

A = 0.01

This problem was solved on an IBM 360-50 computer. The convergence

rate of the control variable, the production rate, is shown in Fig. (2).

The convergence rates of the inventory level and the cost function are

shown in Figs. (3) and (It), respectively. The Runge-Kutta integration

formula was used to integrate Eqs. (39) and (38). The step size used

was 0.01, which is the same as the A value used. A value of A(J> equal

to - 0.1 was used for the first 25 iterations and values of A<*> = - 0.01

and A<)> = - 0.001 were used for 26 to 72 and 73 to 126, respectively.

The last part of the production rate curve is very insensitive

to the cost function x
2

- Only five iterations were required to get a

cost very near the optimum. However, the curve for the production rate

at the fifth iteration is far from the optimum one. (See Fig. 2). The

cost C^ at the fifth iteration was 5.25; the minimum cost was 5.17, a

decrease of only l.lltjS.

The convergence rate from the fifth iteration to the optimum is

very slow. Approximately 90 iterations were required to improve the cost

from 5.25 to 5.17. This difficulty cones from the fact that the gradient
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•

is very small near the optimum. The end condition required of the inventory

vas satisfied at the second iteration, and the inventory converged to the

required final value.

3.2 An inventory Control Problem with Advertising

3.2.1 The Model

Consider an inventory control model as shown in Fig. 5- With the

production rate given, the problem is to balance the cost of advertising

and the inventory level for maximum profit. The variables involved are

production, inventory, sales and advertising. Production can be considered

a function of time. Let production at time t be

P(t) = A + bt (1*6)

where A and b are constants.

The rate of change of inventory I(t) is the difference between the

production and sales at time t. If Q,(t) represents the number of

customers at time t and C represents the number of times bought by

each customer, the rate of change of inventory level may be represented

by

^-=p(t) -C
q
Q(t) (VT)

To determine the rate of change of customers (informed persons)

at time t, a diffusion model incorporating advertising will be used.

Consider a group of people in which only a certain number possess a

particular piece of information. Suppose that the total number of persons
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in the group under consideration remains constant and that diffusion of

information only occurs through personal contact. The number of contacts

made by an average person in an arbitrary unit of time is given by a

contact coefficient. In a contact, the contactee receives information

if he does not have it; if he already has it; the contact is wasted so

far as increasing the number of people who have the information is

concerned.

Let

Q(0) = the number of informed participants in the group at

time 0.

N = the total number of participants in the group.

Q(t) = the number of informed participants at time t.

am

1 -
"

proportion of uninformed persons in the group at time t.

C Q(t)dt = contacts made during a time interval dt.
1

The increase in the total number of informed persons during a short

interval At is obtained by multiplying the number of contacts by the

proportion of persons who do not possess the information, since only

contacts with uninformed persons leads to an increase in the informed

members

.

dQ(t) = CQ(t)[l -^ ]At (W)

The differential equations is



2J

«t4l.fl,(t)U-^l]
( u9)

Suppose that the information in the model given above is about the

product of a firm and assume that the firm can influence the number of

contacts by spending money for advertising. In particular, it can in-

crease the number of contacts made by the informed persons (above the

ones included in C) by an additional number per unit of time. Then

aQ(t)dt = number of additional contacts made in the time interval dt

.

Hence the differential equation becomes

«J*1. [C + a]Q(t) [l-^1 ] . (50)

The.net profit can be obtained from the equation:

Net Profit = Revenue - Cost of holding inventory - Cost of

advertisement.

Since C Q(t) units are sold at time t, the revenue is FC Q(t). If I
q q ir

p
cost, the cost due to inventory is CT [I - I(t)] . The cost of advertising

1 m
p

is C Q(t) A (t) and the total net profit over the duration of the process

is

J = / [FC Q(t) - C [I - I(t)]
2

- C Q(t)a
2
(t)]dt. (51)

q 1 1 "> A

3.2.2 The Recurence Equations '

The state variables are l(t) and Q(t) and the control variable is
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the additional contact coefficient a(t). The objective is to maximize

the total net profit J. The differential equations representing the

process are Eqs. (1*6), (I47) and (kg) with the profit represented by J.

To reformulate the problem in terms of the derivations, let l(t)=x (t),

Q(t) x
2
(t) and a(t) = 6(t). In addition the following variable can be

introduced:

,"*
? ?

x,(t) = /. [FC Q(t) - C T
[I - I(t)r - C

A
Q(t)a*(t)]dt (52)

i 1 q 1 m A

-rr1 * [FC Q(t) - CUl - I(t)]
2

- C Q(t)a
2
(t)] (53)ut q 1 n A

with

and

x
3
(0) =

x
3
(t

f
) = J .

The objective now became the maximization of <{> = x (t_) with the terminal

condition

* = t - T = .

Using Eq. (12), these recursive relationships are obtained:

3S_ I _ 3S_ I

+
fas_ I !£l| +

3S_| af
2 I 3S I

3f
3 I )

3x
l It

" 3X
1 If* K l t+A

3x
l It

3x
2 If4

3X
1 It

+
3X

3 lt+A
3X

1 IJ
^

(5M
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^ t"^LMid <2C
I
(I»- X1»I

1 't 1 't+A " 3 t+A

3S I _ 3S_ I

+
I"3S_ I ^1.1 +

3S_! !I2| +
1S_| !!l I | A

8X
2 It

" 3X
2 U+A K I t+A

5X
2 It

3X
2 U+A

3X
2 U 3X

3 't+A
3X

2 U >

(56)

I- 1 lr| (c+eja-^ + ff-l im/)1.
3X

1 I t+A
3X

2 U+A N 3X
3 't+A

A
>

(57)

and

3S 3S ^ 3S

3x
3 It

3x
3 I t+A l

8x
l I t+A

3x
3 It

3X
2 I A

3x
3 It

3S I

3f
3

3x
3 't+A

3x
3 U

3S [ 3S_
|

3x
3 U+A

=
3X

3 U
' (59)

Terminal conditions obtained from Eq. (16) are

1— - (60)
3x

i It

ft-." (6l)
2 >T
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3x
3 | T

" X>
(62)

To find the recursive relationship for the gradient of the objective

function with respect to the control variable, there is the general

relationship

as I K1
as I

3f
i I

39 L A 3x. L. ~Te L (63)
't 1=1 i 't+A 't

2
(3S

I

x
? 3° 1

Equations (ll) through (21) are the required recursive relationships

for the solution of the above problem by the gradient technique.

3.2.3 Computational Procedure

The numerical values used were

C
J

= 0.15 A = 70

C
A
=1.5 b = 100

F = 10.0 C = 2.0

B = 150 C = 1.0
q

I
m

= 50.0 At = .01, T = 1

The values of A* used were: A$ = 1+0 for first 17 iterations, and A* = .05

for the remaining iterations. With the initial conditions as



X (0) = 20.0, x (0) = 20.0 and x (0) = 0,

the step-by-step procedure followed for obtaining the solution was:

1. Integrate Eqs. (1)7), (50) and (51).

2. Obtain the end conditions for — , gj- , J^~ , from Eqs. (60)

through (62).

3. Calculate the values of ||— ,
~— and. |^— at the 101 grid

points by means of backward recursion of Eqs. (55) through (59:.

9S
It. Calculate the gradient of the control variable j^ at the 101

grid points by means of backward recursion of Eq. (6U).

5. Calculate the improvement in the control variable 8 by the

relationship

3S/36

new old T ,~ 2

y (—

)

6. Repeat Steps (l) through (5) till no further improvement could

be made.

3. 2. It Discussion of Results

Using an initial guess of 2.5 for the advertising, the control variable

converged to the optimal in 80 iterations. The convergence rate of

advertising is shown in Fig.. 6. The profit function had a value of 25-0

with the assumed controls and converged to the optimal value of 530.0 in

80 iterations. It is seen that the rate of convergence during the

initial stages of iteration was much faster than during the final stages.

The reason for this is that the gradient is small and hence improvement

is also small at the final stages of iteration. The trajectories of the
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state and control variables are given in Figs. 6 through 9.

3. 3. A Production, Inventory Control and Advertising Problem

3.3.1 The Model

Consider the manufacturing process shown in Fig. 10. The raw

material is fed into two reactors in series and the Arrhenius reaction

rate expression

k = G exp (- g|)

will be used for the rate constants. The reactions are first order and

can be expressed as

A $ B & C

where k is the reaction rate constant, G is the frequency factor constant,

E is the activation energy of the reaction, R is the gas constant and T

is the temperature. Material B is the desired product for which inventory

and advertising are assumed.

The transformation equations for the two reactions are

i dt
= q(x

o " X
l'

" V
l V X

l
(65)

v
i ir * (y - y

i> - v
i \ y

i
+ v

i \ v
i

(66 >

V
2 dT * (X1 - X2> " V

2 \ X
2

(6T)

V
2^ = q(y, - y

2
) - V

2
K y

2 ^ k x,, (68)
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respectively, q is the flow rate, k and k represent the reaction rate

i i

for the first and second reactions, respectively, and x and y are the

concentrations of A and B, respectively.

If C represents the number of items bought by each informed person,

the change in inventory l(t) can be represented by the differential

equation

«g*l = qy
2

- C
q

K(t) (69)

where K(t) is the number of informed persons at time t.

To determine the sales, the diffusion model of advertising discussed

in Section 3-2 will be used and the differential equation is

SfJ^- [C a(t)] K(t) [1 - *]&•] (70)

The profit equation can be written as

Net Profit = Income from sales of A + Income from sales of B

+ Income from sales of C - Cost of Inventory

- Cost of Advertising - Cost of Production

the profit equation can be written as

J = / [C^KU) + C
2
qx

2
+ C

3
q(l-x

2
-y

2
) - Cjd^-Kt ) f - C

A
[a(t)K(t)!

" C
T
tT
lm"

T
l
)2 + fri-*2

>
2
n*t-



41

where C , C , C , C , C. and C are the per unit costs of B, A, C,

inventory, advertising, and production, respectively.

Introducing an additional state variable x now gives

,* ? ?
Xj(t) = / [C

1
C

<i

K(t) + C
2
qx

£
(t) + C

3
q(l-x

2
-y

2
) - C^I^T - Cje^r

- c
T

[( Tlm
-T

1
)

2
+ (T

1
-T

2
)

2
]]dt (71)

with x (0) = and x (t ) = J. Representing K(t) by x, (t) and I(t) by

x,(t), a problem involving six state variables, x , y , x , y , x and x,

and three control variables, T , T and a(t), is involved. Let V = V = V;

now the differential equations representing the process may be summarized

as:

dx^ q(x
Q

- x
x

)

dt " V "
K
a
1

X
l

dy
l

q(y - y
l>

dt V

dX
2

q ' X
l

~
~A
2

I

dy
2

q(y
x

- y2 )

dx
3

tt~
= ^2 " C

q
X
k
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. 2
dx, x.

dx

V^/ + ( Tl-T2
)

2
]

vith the given initial conditions x (0) = x , y.(0) = y , x (0) = x ,

y2
(0) = y°, x

3
(0) = x°, x^to) = x° and x

5
(0) = 0.

The problem is to maximize $ = x (T) subject to the end condition

constraint iji t - T = 0.

3.3.2 The Recurence Equations

For the end condition of the slope of the objective function with

respect to the state variables, this equation exists:

!§_ I - lt_ I _ fit / Jit) I 14-
| 1 = i2 7

3x
j If

3x
j It

l"' atJ
It

3x
j It

J 1,2> ••• >T -

For the present case, then

3S

3x~~
=

° (T2)
1 'T

w:l m0
(73)

2 'T

" ° ilk)



§- =° (75)

35
' =0 (76)3x

3 't

3x
it 't

||- - 1. (76)3x
5 't

The recursive relationship as derived in Chapter II are:

dS _ dS
[ _

r dS 1 .

3x, ~ 3x,
I

•, .*, 3x. ... 3x, ,

J 't J 't+A 1=1 l 't+A j 't

Using this equation for the state variables, then

K l«M V
l "l U

3y
l I t+A

a
l 't

3X
2 U+A

2

1 \ U

|f-
(q/Vj| A

'2 't+A



3S 3S [3S I , . I

sr = ir \

+ tar (_ q/v
? - k

« ndX
2 U 3X

2 U+A ^
3X

2 U+A 2 a
2 I

3S 3S I 3S I , , ,|

*y2 U *y2 U+A 3x
5 U+A 2 ^2 U

as
| _ 3s_

3 U+A <*
3x

l, U+A 3

The recurence relation for the control variables are:

.„ I n+1
3S _ y c

as L

it.

36, ! ,', 3x. I . 36, ,

J 't 1=1 l 't+A j 't

Applying this equation to Eqs. (l) through (7) gives

44

" U
a »

+ 37" ^-0 4)1 A
2 U+A a

2 U dx
5 U+A d 6

(81)

3x 1 +
i7"

«- C
3
1» A

3 't+A
dx

5 U+A J (82)

3S „ 3S_
J

+ (3S_
| (2CT (I - xj) A

t
_3x

3 U+A
T

l3x
5

l t+i
-I-»- X3"|

t
(83)

(1 "^)+
^L+A

(c^- 2Ca6M i (81.)

3S _ 3S_
3x r I

™ 3x^
5 't 5 't+A

(85)
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k

3S_ I f as I , _^l.| 3S_ I

3T
1 It K If* 1T

1 It 8y
l If A

3k 3t_

( _!i _A
5 1 + ii_ I

lX
l JT. " y

l 3T/
. 3xB L.

1 1 't 5 t+A

(- C
T C- 2 (T

lm
- T

x
) + 2(T

X
- T

2
) ))| A (86)

3k 3k
a
2 , 1 3S I

f _!
3T

2 U" i
3x

2 If4
%
"

"23T
2 U *2 If A

2 3T
2

•3S 3S
I , 2 J 3S I , 2

^2,
I .

as

and

-y
2 lf) +ff- (- C (- 2(T -T ) )) A (87)
2 3T

2 U 3X
5 't+A

T X 2
't '

2

The improvement in the control is given by

a* 3S

e (t) _ 8 (t) — J—L- J = 1, 2, 3 (89)
Jnew J old c 3S_ I

t£o
38

j it

where A<(> is the desired improvement in the objective function due to the

jth control.
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Equations (65) through (89) are the desired equations for the solution

of the problem by the gradient technique. ."It should be noted that since

the decision vector is multidimenstional, individual improvements A$ are

suggested for each control.

3.3. Numerical Results

Based on the model stated above, the problem was solved using different

parameters and different starting values. The parameters and starting

values used are summarized in Table 1. The initial conditions for the

seven state variables used are shown in Table 2. The results are discussed

in the following sections for each of the problems shown in Table 1.

Problem la : It can be seen from Fig. 11 that the optimal temperature

profile for T had a value of about 362°K at time t and 339°K at t
f

.

The concentration of A in Fig. 12 fell to a value of .1*58 at time O.65

and raised to . U8U at t . The concentration of B in Fig. 13 arises to

0.1*65 at t=0.65 and falls to 0.1*5l* at t . The profit as can be seen

from Fig. 20, with the initial controls was $T2.0l» and at the 20th iteration

it was to $97.05, an increase of 3l*.5#. However, after the 20th iteration

it took another 200 iterations for the profit to reach its optimal value

of $107.01*. This slow increase of only l.OJf in 200 iterations was due

to the slow convergence rate near the optimal. At the 20th iteration

3S — 3 —

S

the sum of (-r=-) was 0.1* x 10 . This sum was 0.2 x 10 for the optimal
3T

1
profile. Since the value of the gradient is very small at this point,

3S 2 —1*
sum of (r^— ) at the initial iteration was 0.3 x 10 . At the 20th it

3T

e T -3 -1*
was 0.6 x 10 and at the optimal it was 0.3 x 10 . It can be

seen in this case that the gradient at the



Table 1. Parameters and Initial Approximations
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INITIAL
GUESS

PARAMETERS

R

1

V
l

G
a

E
a

V
2

\
C
q

c

N

C n

Prob. la Prob. lb Prob. 2

2.0 2.0 2.0

60.0 60.0 60.0

12.0 12.0 12.0

•535X10
11

.535xl0
U

.535xl0
n

18000.0 18000.0 18000.0

12.0 12.0 12.0

,lt6lxl0
18

.Wixio18 .l*6lxl0
18

30000.0 30000.0 30000.0

1.0 1.0 1.0

,
1.0 1.0 1.0

100.0 100.0 100.0

5.0 5.0 5.0

0.0 0.0 0.0

0.0 0.0 • 0.0

1.0 1.0 1.0

0.0002 0.0002 0.01

0.005 0.005 0.005

0.53 0.53 0.53

0.1*3 0.1*3 0.1(3

3l»0.0°K 31*0. 0°K 31*0. 0°K

330. 0°K 3U5. 0°K 31*5. 0°K

330. 0°K 31*5. 0°K 31*5. 0°K

8.0 10.0 3.0



Table 2. Initial Conditions for the State Variables

4b

Variable Prob. la Prob. lb Prob. 2

x
1
(0) 0.53 0.53 0.53

yx
(o) 0.1*3 0.1(3 0.U3

x
2
(0) 0.53 0.53 0.53

y2
(o) 0.1*3 0.1(3 0.1(3

x
3
(o) 8.00 8.00 8.00

Xfc(O) 0.10 0.10 1.00

x (0) 0.00 0.00 0.00
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20th iteration was steeper than the initial gradient and the gradient

at the optimal vas not very different from the gradient at the initial

guessed control. Since the problem vas to optimize the process with

respect to the three controls, it was not necessary to have the same

gradient for all the controls. The problem was to adjust the step size

for each control so that the optimum could be obtained with the minimum

amount of computation.

In the case of the advertising, (please refer to Fig. IT) the

gradient at the initial iteration was 3.0. This indicates that the

initial guess was fairly far from the optimum and is also evident from

the plot in Fig. 17. At the 20th iteration the gradient was 0.2; at the

optimal it vas 0.3 x 10 . From Fig. 18 it is seen that the major

change in the number of informed persons occurred during the initial

stages of the process. This fact is also evident from Fig. 17 where

the additional contact coefficient rises to 16.95 at t = 0.U and then

falls to a value of at the final time. It should be noted that a non-

negativity constraint was used for the additional contact coefficient.

The plots of temperature and concentrations of products A and B versus

time in the second reactor can be seen from Fig. ih through 16.

Problem lb : In this problem, the same parameters were used as in problem

la except that different starting values were used for the controls.

From Fig. 30 it is seen that the profit at the initial iteration

vas $55-90 and at the 20th iteration it increased to $80.50, an increase

of U5i«. However, after the 20th iteration it required 180 further

iterations to improve the profit to $107. 16, which is the same result

as in problem la. The percentage improvement vas only 2©5 in 180

iterations.
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The concentration of B in the second reactor as can he seen from

Fig. 26 is seen to converge quite rapidly to a point dorse to the optimal

However, the rate of convergence from this point to the optimal is very

slow.

For the temperature in the first reactor, the value of the sum of

V
3T~

?
3S —

"^ -5
(t=— ) at the initial iteration was 0.9 x 10 ; this value was 0.2 x 10

1

at the optimum. A value of A<t> equal to 0.1 was used for the first fifty

iterations and values of A<t> = 0.01 and 0$ « 0.001 were used for 51 to

99 and 100 to 150, respectively. Thereafter the value of A$ was

successively reduced and the optimal was reached with a A<J value of

0.001 for T . As has teen stated previously, the initial guess for

advertising was far from the optimal. This necessitated the use of A<i>
=

1.0 for the first 70 iterations; thereafter A<J = 0.5 was used for

iterations 71 - 100 and Aiji = 0.01 was used for iterations 101 through

150. The value of A* for the temperature in the second reactor was

0.1 for the first fifty iterations and an optimal was reached with

A* = 0.001.

The factor that governs the choice of a proper value for A<J is the

relative position of the current control with respect to the optimal

control. In nearly all practical situations, the proper choice of A$

must be obtained by a trial and error procedure. However, if a certain

extimate for the location of the optimal control exists, the required

computation to obtain the optimal could be greatly reduced. The

temperature and concentration profiles in the two reactors are shown in

Figures 21 through 29.
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Problem 2

The model used for this problem was the same as that used for problems

la and lb except for different values of the parameters and initial guesses

for controls.

The profit with the initially guessed control was $U.10 and the

optimal profit was $66.05. Again it can be seen that the convergence

rate is very slow when the current result is near the optimum. The profit

at the 60th iteration was $27.50. Another 200 iterations were required

to reach the optimal. The temperature, concentration, inventory, sales

and profit profiles are plotted in Figures 31 through 1*0.
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CHAPTER U

CONCLUSION AND DISCUSSION

Although the three problems solved in Section 3.3 have different

parameters and different starting values, they have certain characteristics

in common. To study the common characteristics, consider the detailed

behavior of the system at any particular iteration.

At time t , the number of informed persons in the group is lov so

the number of items sold is low. There is a large number of uninformed

persons and hence advertising is high. Since the system is already

in production, there is a tendency for stock to go into inventory. As

time goes on, the sales or the number of informed persons increases and

the additional contact coefficient also increases because it is profitable

to do so. The production rate of B rises because it has to meet the sales

requirement as well as to maintain the required inventory level.

There comes a stage when the sales is much more profitable than slight

variations in the inventory level and the inventory begins to fall. In

this case this comes at about t = 0.55. However, when the inventory has

become sufficiently low, the inventory cost in the total profit equation

becomes important. It should be noted that a time delay exists between

the fall in the inventory level and the fall in the production rate. This

time delay is quite natural in any practical situation and is very well

presented in the model stated above.

The technique illustrated above could easily be extended to optimize

stagewise processes such as a transportation problem. It could also be

extended to optimize multiproduct multi facility scheduling problems with

complex interconnections.
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The choice of a proper value for A<f> is of great importance if this

technique is to be applied to actual optimization situations. It has

been found from experience that the value of A<j> should be reduced when

the gradient direction for the control changes sign together with a major

drop in the profit function. If some effective logic is developed, to

automatically adjust A$ once the gradient direction changes sign, the

required computation time can be greatly reduced. The author used a

logic in which the value of Aif was reduced by half once the gradients at

all the computed grid points changed sign. This method failed because

after the reduction the value Of A<(> was either still too large, causing

a further reduction in its value, or was too small, causing the conver-

gence rate to be extremely slow.

In the case of the production and inventory model with fixed end

conditions , it was found that by using values for the control variable

far from the optimal, the cost C went above reasonable limits. An

emperical rule was adopted of asking for only part improvement in the

inventory at each iteration. Encouraging results were obtained.

As the problem of slow convergence near the optimal still persists,

it is suggested that the first variation of the gradient technique pre-

sented above should be used to get good starting values for the controls

and other iterative optimization techniques such as the second variation

or the quasilinearization technique be used to reach the optimum.
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APPENDIX A Numerical Solution of Differential Equations

As seen in the previous sections, the gradient method requires the

solution of sets of first order differential equations. It would be

appropriate at this stage to discuss some of the numerical techniques

for the solution of such differential equations.

Ordinary differential equations are generally classified according

to the degree of difficulty in obtaining numeric solutions. They could

be classified as

1. Initial value problems

a) Linear differential equations

b) Nonlinear differential equations

2. Boundary value problems

a) Linear differential equations

b) Nonlinear differential equations

As long as the differential equations are initial value problems,

numerical techniques can solve both linear and nonlinear problems with

equal ease. However, for boundary value problems, the degree of

difficulty in solving a nonlinear equations is far greater than that for

solving a linear equation.

The three main methods generally used for the numerical solution

of differential equations can be classified as

1. The single step technique

2. The multiple step technique

Under the single step technique, the Euler and Bange-Kutta integration

methods would be discussed while the Milnes method would be discussed in

the multiple step technique.
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Euler Method [8]

Suppose that one wishes to solve the set of ordinary first order

differential equations

dx.

4^-6^, x
2

, .... x
n , rv y

2
, .... y

s
); i - 1, 2, .... n

J = 1, 2 s

where x is the state variable and y is the control variable.

The Euler method is basically an approximation of the above dif-

ferential equation in the form

Ax. dx.

1t-"dt = g
i

(V V •••• V yr y2> •••• y
s >

•

This approximation leads rather naturally to the equation

k+1 k _ .. ,kk kkk k,
x. = x. + At • g. (x, , x„, .... x , y, , y„, . ... y )
1 l °i 1' 2' ' n' *1* *a s

where x. indicates the value of x. at (k+l)At, x. is the value of x. at
i 11 l

k k kkk k
kAt and g.(x , x„, ..., x , y , y , ..., y ) indicates the value of g.

evaluated at time kAt. One can easily see how the above equation can be

used in conjunction with the values of x. at zero time to obtain values

of x. for any specified k.

Since the approximation on which the Euler method is based becomes

exact only when At + and finite At's are required for numerical

calculations, one cannot, in general, expect the Euler method to be very

accurate. Various modifications of the basic Euler method are available

which reduce the accuracy problem.
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In any computation involving the Euler method, one must select the

time interval At very carefully. Large At values lead to gross errors

vhile small At values cause excessively long computation times. The

suitability of the Euler method for use with a specific problem depends

upon there being a At which is an adequate compromise between the two

effects.

Runge-Kutta Method

Like the Euler method, the Runge-Kutta method is designed for use

with sets of first order ordinary differential equations.

The basic method is to write the Taylor series expansion for snail

purturbation of the variables about the initial conditions. The Taylor

series is terminated after a suitable number of terms and a series of

algebraic and operator manupulations is performed which leads to lumping

the various derivatives into terms which may be evaluated from formulas.

The most popular version of the Runge-Kutta is the system which results

from retention of terms of up to fourth order in the original Taylor

series.

The solution for a system of n equations of the form

dx.

-£= g
i
(x
1

, x
2

, .... xj; i = 1, 2, .... n

can be lead through application of the formulas

k+1 k
x. = x. + (R. , + 2 R. „ + 2R. , + R. ,

)

1 1 1,1 1,2 1,3 l,U

B
t,l

= " • g
i

(V X
2' •••• \ ]



i.a" 4t,8
i

(4*f B
i,l

, ^ +
t B

2.i»
•\ + 2\,i

So

S
i,3

= At
•
g
i
U
l

+
2
R
l,2 ; X

2
+
?

R
2,2

;

k .
1

+ i\, 2
]

and

R.
>u

= it • g
i
(x

1
+ R

1)3
; x

2
R
2)3

x
K

+ R J
n n,3

The index i goes from 1 to n. As usual, x. indicates the value of x^ at

a time of kit. R. indicates the J Runge-Kutta coefficient for

equation i.

The use of these equations to numerically solve the system of

equations is straight-forward. The procedure is:

k k k
1. From a knowledge of x , x , ..., x

n>
calculate R

1 ^ R
2>1

;

.... R ..
n,l

k k
2. From x , x ,

R
l,2

; R
2,2

;

,, x and R., ,; R„ .;..., R, calculate
n 1,1 2,1 n,l

n,2

3. From x
x

, x
£

, . . . , x
r

and R ; ^
2 ,2''

RR
l,3

; R
2,3

;

k k

n,3'

h. From xf, XT, .... X and R ; R
1' 2

R
1,U ; R

2,l* ;

1,3* "2,3'

. , R ., calculate
n,2

i , R „ , calculate
n,3

,, Rn,V

5. Calculate x. from x^ R
i ^ R

A 2
; R^^

3
and R

± j^.

6. Repeat steps 1 * 5 until the final value of A is reached.

The problem of accuracy is not of great importance in the Runge-Kutta

integration scheme as the truncation error is of the fifth order. However,
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the stability problem sometimes arises as the process might not converge.

Multiple Step Method [8]

For the solution of the differential equation of the type

£.*(..*>.

the formulas for the recurrence relationship could be represented by

* (W - x(t
k-r'

= h( t, f(x(t
k
), t

k
),

f(x(Vl), xCt^), ... f(x(t
k_n

), t
k_n

))

where r and n are positive integers.

To evaluate x(t
k+1 ), the values of x(t

k ),
*(*fc_i)>

••« x
^k-n'

and x(t ) must be known. Hence it is seen that it is not possible to
k-r

calculate x(t ) directly from the initial value x . Also, to start

the calculation the points x(t ,), x ' t
k-2^'

- " must be kn0WI1 throuSh

another integration method.

To increase the accuracy, two integration formulas are generally used

in the multiple step method. The first formula, known as the open end

integration formula, is used to predict the approximate value of xt^.^)'

Then the second formula, or closed end formula, is used to generate

a more accurate x(t, .). This latter formula may be iterated to obtain

as accurate an answer as desired.

These two formulas form a predictor correcter scheme which is a

powerful numerical tool. Milnes method is probably the best known
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multiple step integration formula. The predictor for this method is

x(W x(\-3 ) +
3

At [2f(x(V- V - fWVi>> Vr

+ 2f(x(t
k_2

), V2 ))]

and the correcter is

To begin the integration, the starting values at the three grid

points t , t and t can be obtained by a single step integration

formula or by using Taylor series.

The single step methods have a number of advantages in terms of the

use of digital computers. First in using the multiple step methods the

starting values must be calculated by some other methods; no such

predictions or corrections are necessary for the single step methods.

Second, during the integration process several different values of the

integration step At may be necessary in solving the sane equations. It

is not easy to reduce the integration step At for the multiple step

methods as the integration proceeds. Some kind of interpolation formula

must be used to reduce this step size.

Because of its high relative accuracy and ease of computation, the

Runge-Kutta method is used for the numerical solution of the differential

equations encountered in this report.
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ATPKNDIX S3 Plow Ghnrta

Start Dimension pjlcl

Function Statements

Calculate partial

derivatives of final

perfornEiice criterion

with respect to control

variables

H

Calculate a nev control

sequence usin£ old control

sequence, partial derivetives

and step size Delta.

Head initial conditions

end parameters

Asgu.'G a control
seauence

Calculate state voxiables

and final value of objective

function corrospondirv; to

assurred control sequence

Calculate state variables

and objective function

corroopondinc to new control

variables.
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APPENDIX C

COMPUTER PROGRAKS



) F0RMAU8F8.3, 11,13) qP-

. F0RMATIF8.6) ^
) F0RMATI1H , 10HITERATIOM ,13)
) FORMATdH ,3f.l6.8)
) FORMAT! 1H ,51H SUM SUM OF DTHETA/DZSUM OF DTH/DZ+DS/OZ

I

DIMENSinNT(200),Pl(200),P2(200) , P3I200) , P4I2C0) .QK2CO) ,02(200)

,

103(200) ,0^(200 ), St 200) f XI ( 200 ) , DX ( 200 ) , DX2 ( 200 ) , X2 ( 200) .SXK200)

,

2ST1200) , E 1200) , Z (200) ,PSZ( 200)
DO 10 1=1,101
H=l-1
X=H*D

I T( I )=X*4.75+3.
I SUM=0
SUMT=0
SUMP=0
DO A 1=1, 101
S ( I 1 = 1-1

Xl(l)=5.
X2(l)=0.
P1(I)=(T( t)-A-B«D«S(I) )*D
P2( I ) = D*( T( I )-A-B*(D*S( I 1+0/ 2. ) )

P3(I)=P2( I)

P4( I )=D*(T(I )-A-F-*(D*S( I )+D) )

DXI I ) = I 1./6. )* (PI I I )+2.*P2( I K2.*P3( I )+PM I ) )

X1(I+1)=X1( Il+CXI I

)

QUI >=(CI*1 (Xl( I)**2)+CP*EXP( (PA-TI [) )**2) )*D
02(1 )=(CI*(K1(I)*.5*PI (I) )**2+CP*EXP( I PA-TI I ) )**2))*D
Q3<I) = (CI*(XKI) + .5*P2U))**2 + CP*EXP((PA-T(I))**2))*D
QMI)=<CI*(X1(I)+P3U) )**2+CP*EXP( ( PA- T ( I ) ) **2 ) ) *D
DX2II ) = ( 1./6. )*(QltI )+2.*Q2( I)+2.*Q3
DX2(I) = (l./6. ) MQK I )+2.*Q2( I)+2.*Q3(I)+Q4( I))
X2( I + 1) = X2( I 1+0X21 t I

E(I)=S( [)*0
CONTINUE
FORMAT! 1H ,.« I T£R« *3X, »TIME» ,2X, ' INVENTORY' , 4X,' COST ', 10X, THE TA'

,

II OX, 'CS/DX1',1CX,'DS/DZ',10X, 'DTH/DZ'

)

PRINT 300
DO 5 1=1,100
SX1(1CD = 0.

N= 101-1
SXl(N)=SXl(Ntl)+2.*D*CI*XllN)
ST!N)=0*(SX1(N+1)-2.*CP*(PA-T(N) )*EXP( (PA-T(N) )**2) )

SUM=SUM+ST(N)**2
ST(101)=ST!100)
SUM=SUM+ST( 1011**2
DO 15 1=1,101
TZ(I)=D
sumt=suht*:tz( i 1**2
00 6 1=1,101
PRINT 200, I, El I ),X1( I),X2( I),T(I),SXK I ),ST(I),TZ!I )

PRINT 700
PRINT 500, SUM, SUMT, SUMP
K=K+1
IF(K-L)7O,50,50
0TH=9.25-X1(101)
A2=(DEL*SUMP-DTH*SUM)/(SUMP**2-SUMT*SUM)
A1=(DEL-A2*SUMP)/SUM
DO 7 1=1,101
T(I) = T(I)<-(A1*ST(I) + A2*TZ( I ) )

PRINT ' :0,K



DIKENSI
DIMENSI
FORMAT!
.2X.13HA
FORMAT!
FORMAT!
FORMAT!
FORMAT!
FORMAT!
FORMAT!
FORMAT!
FORMAT!
FORMAT!
FORMAT!
READ 18
READ 14
READ15,
PRINT19
PRINT16
PRINT17
DO 9 1 =

AII)=2.
SUM=0
DO 1 1 =

T=I-1
T=T*D
P(I) = AB
A1=(P(I
B1=!(C+
A2=(P!I
B2=(!C+
B3=( (C+i

B4=( (C+
A3=(P(I
A4=(P(I
C1=(F*X
C2=(F*(
L)*(X2(I
C3=(F*(
M*(X2(I
C4=(F*(
L1+B3) )*

X1II+1)
X2II + 1)

X3I1+1)
E(I)=T
DO 2 1 =

SXK101
SX2I101
5X3(101
N=101-I
SX1(N)=
SX2(N>=
L-SX3IN +

SX3(N)=
ST(N)=(
L*D

SUM=SUM
ST(lOl)
SUM=SUN

OMP! I

0MSX1
1H ,">

DVE'U
IH ,F

1H ,9
E 1 5 . 9

8F8.3
2F5.2
IH ,8
IH ,2

3F10.
1 H ,3
F20.B
, X 1 1 1

,AB,R
D.DEL
,XL ! 1

,AB,B
iD.DE
1,101
5

1,101

02) ,X

! 1C2)
II TIM
I SEME
5 . 2 , ft

HITFR
)

,214)
)

F8.3 f

F5.2)
2)

F10.2
)

),X2(
,C,PO

) ,X2(
,C,PO
L

2! 102) , XI (102) , X3I102) ,A( 102) ,E( 102)
,SX2(120) ,SX3(120) ,ST(102)
E,6X,9H INVENTORY, 10X , 5HSALES , 9X, 6HPR0F I T

,

NT,5X,10HPR0DUCTI0N,7X,8HGRADIENT)
C15.4)
AT ION, 16)
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214)

1),X3!1)
,PI ,F,CI ,CA,K,L

1) ,X3(1)
,PI ,F,CI ,CA,K,L

+ B*T
)-X2(
A(l) )

)-X2<
AID)
All.) )

4(1)1
1-X2I
)-X2(
2! I)-
X?(I)
1+B1/
X2(I)
)+B2/
X2II)
D

= X1( I

= X2< I

«X3*(I

1,100
1 =

)=0
) = 1

1)1*0
*(X2(l)-IX2( I)**2)/P0) )*D
I 1-B1/2. )*D
*(X2(I)+Bl/2.-((X2(IH-Bl/2.)**2)/P0))*D
*(X2( t HB2/2.-I 1X2 1 I 1+B2/2. )**2)/P0) 1*0
*(X2[ I 1+B3-! (X2( I ) +R3 ) **2 ) / PO ) )*D
()-B2/2.)*D
I l-B3J*0
( (PI-X1 ( I ) )**2)*CI-CA*(A( I )**2)*X2( I) )*D
+B1/2.1-I (PI-IXK I 1+A1/2.

)

)**2)*CI-CA*!A! I 1**2

2.) J*0
+B2/2. )-( (PI-IXK I 1+A2/2.) ) **2 ) *C I-CA* ( A ( 11**2
2. ) 1*0
+B3)-((PI-(X1(I)+A3) )**2)*CI-CA*IA! I )**2)*(X2( I

l + (AH-2.*A2 + 2.*A3 + A4)*l./6.
)+<Bl+2.*B2+2.*B3+B4)*l./6.
)+(Cl+2.*C2+2.*C3+C4)*l./6.

(SX3!N*l)*2.*CI*!PI-Xl(N)))*D
l-SXKN+1 )+SX2(N+l)*(C+A(N) )*( I .-2. *X2 (N ) /PO)
IN)**2)-F) )*0

SXKN+D + C
SX2IN+1 1+

I

1)*<CA*(AP
SX3IN+1I
SX2IN+1 1*1X2 (N)-(X2(N)**2)/P0)-SX3(N+1)*2.*A(N)*X2(N)*CA)

+ST(N)**2
=ST(100)
ST! 1011**2



PRINT10
DO 3 1=1,101,5
PRINT 11. ,E([),X1([),X2(I),X3(I),A(I),P!I),ST(I)
K=K+1
IFJK.GE.18)DEL=.05
IF(K-LK,5,

5

DO 6 1=1,101
A(I)=A( I)40£L*ST(

I

1/SUM
PRINT12.K
GO TO 7

DO 8 1=1,101
WRITEIZ, 13)M I)

STOP
END

100. 2. 10.
, IS 1.5 120
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DIMCNSICNTK 10
DIMENS ION Xld
DIMENSICNSX2I1
DIMENSI0NST2I1
DIMENSI0NZX5! 1

DIMENSIONPSZH
DIMENSION AA1 I

1DB1TK 10?) ,l)A2

DIMENSION CLT1
FORMATdH ,6HD
FORMAT! 1H ,2F8
FORMAT! 1H ,7F8
F0RMAT11H ,3F1
F0RMATI1H ,7F1
FORMAT! 1H ,2G2
FORMATdH ,2F1
F0RMAT(3f 11.4)
FORMAT! 1H ,3F6
F0RMATI1H ,F4.
FORMATdH ,F4.
FORMAT! 1H ,.4HD

FORMATdH r4HT
1C. 2A, 7X.RH
FORMATdH ,4HT
1R0FIT,10X,5HGR
FORMATdH ,9F1
FORMAT! IH ,3X,
15HSUMZ3,7X,5HP
FORMATdH ,9HI
F0RMATI3E20.-3)
F0RMAK2F4.2)
REAC7C0,X0,Y0
F0RMATI7F8.2.3
READ6C0,Xl( I)

,

FCRM,AT(8F10.4)
F0RMATI7F10.4)
READ8C0,C0,C,P
READ850,CI,CA,
FCRMATI2E10.3,
READ9C0,GA,Gn,
F0RMATI5F6. i)

FCRMAT12F10.2)
READ 150,D,-DEL
DO 11 1=1,101
T1(I>=340
T2( I)=340
T3(I)=2.
OLTK I) = TK I )

0LT2! I)=T2! I)

0LT3! I ) = T3( [ )

PRINT10l,X0,Y0
PRINT1Q2.X1! 1 )

PRINT103.CQ.C,
PRINT104,CI,CA
PRINTI05.GA.GB
PRINT106.D.0EL
DO 15 1=1,101
PRINT108,TUI )

A=10.
SUM1=0

2),
C2)
C2)
C2)
C2)
102
102
1 2 I

(10
ELT
.2)
.?,

0.4
C.4
C. I

C.3

T2I102) ,TS (102), E( 102) ,S (102), SX 1(102 ),SY 1(102)
,Yl(102),X2(102),Y2!102),X3(102),X4d02),X5d02)
, SY2(102),SX3(102),SX4(102),SX5( 102) ,ST1< 102)
, ST 3 (102), ZXK 102) , ZX2( 102) ,ZX3( 102),. ZX4 1102)
,ZY1(102),ZY2(102),ZT1(102),ZT2(102),ZT3(102)
),r>SZ2(102),PSZ3( 102)
), AO 11102) ,AA2(102),AB2! 102 ) , DA IT 1 ( 102 )

,

102) ,DB2T2(102)
2) ,.GLT2( 1021.0LT3! 102)
l=,F9.6,6HDELT2=,F9.6,6HDELT3=,F9.6)

215)
)

)

,2F10.0)
)

.2)

2.6CI
2, 3E1
EL=,F
IME.7
CCNC
IMF,

6

,T1,1
2.6)
4HSUM
SUM1,
TFRAT

[2]

5.4)
5.4.E18.7.3E15.4)
5.2)
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The objective of this report is to apply the functional gradient

technique to optimize management systems. The basic methodology in the

functional gradient technique is to obtain a set of functional equations

which gives the gradient of the objective function with respect to the

control. The objective function is then improved in this gradient

direction. If the state variables have to satisfy certain final conditions,

a penalty function is introduced in the equations.

A set of problems in the field of production, inventory control and

advertising have been solved with the purpose of making a critical

study of the technique. The first problem solved considers sales to be

fixed and production controlled in order to minimize cost and maintain

a. certain desired inventory level at the final time. In Section 3.2

the diffusion model is used to determine sales with the production

considered as a constant. The control here is advertising and the objective

is to maximize profit. In Section 3.3 a set of three problems, each with

six state variables and three control variables, is solved. The results

obtained are satisfactory but the inherent difficulty of slow convergence

rate near the optimal still persists.


