AC

/%n Implementation of the Kermit Protocol Using
the Edison System/

by
Terry A, §cott

B. S. Iowa State University., 1964

Ph. D. University Of Wyoming, 1972

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Approved by

Ood e [Puk

1
Major Professor

- ii -

LD ez e
}%’5 TABLE OF CONTENTS

Table Of Figures . [] L * L . L] L] L] L] L] . . L L] L] - L] L] iii

AcknowledgementsS . o o o ¢ + o ¢ o 2 s+ o 4 e s o0 o« o« iv

Chapter
ls IntroduckEion < & & & & & & & & & 4 & % 5 @ % % 1
2., EJison Languagde . « « « o o o « o s o s o o« s & 5

3. Edison System and Program
Development Enviromment . . « + & ¢« « s « o « » 15

4 FKermlt Protoe0l « « ¢ 5 s % 5 % % w % = % % & = 28
5. Edison-Kermit SysSteM. « « « ¢ « & s + « « « « o+ 38
6. Edison-Kermit ImplementationN. « . « ¢« ¢« o« o« « « 49

7. Conclusions and Further Work. « « + « « s« « « « 54

Appendix
A. User'smanual . . +« « 4 &« &« « s o« o s o o « o« +» 56
B. Hints for Edison ProgrammerS. « . « « « « « « « 63
C. ©Sample Kermit Session « . ¢ ¢ & ¢« ¢ o ¢ o o o« « 17
D. Edison-Kermit Kernel Code . + + +« « & + + « « « 80
E. Edison-Kermit Code. . « 4 « ¢ ¢ ¢« ¢ « « &« « o . 102
F. Unix Kermit Code . . + « v & ¢ v & « & o« o « » 130

Bibliography' L] L L] L] L] L L] L] L] L] L] . L] . - . L 150

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH ILLEGIBLE
PAGE NUMBERS
THAT ARE CUT OFF
OR MISSING.

THIS IS AS
RECEIVED FROM
THE CUSTOMER.

= il ~

LIST OF FIGURES AND TABLES

Figure/Table Title Page
Number
2.1 Pascal ané Edison Syntax Comparison., . . . 7
4.1 Kermit Packet Fields 28
4,2 Initialization Data Fields 33
5.l Configuration Values + « « « 39
5.2 Actual File Characters Per

Data PaCket * L] e L] L] - L] Ll - L] [3 * L] L] 44
5.3 Performance of Two Kermit Systems. . . . 45
5.4 Edison-Kermit Protocol Parameters, . . . 47

al.l Configuration Values . . + + +« « « « « « 58

- iy -

ACKNOWLEDGEMENTS

The author would like to express sincere thanks to Professor
Richard McBride for suggesting this problem and for his help

and encouragement in its completion.

In addition, thanks go to Bill McDaniel, Harvard Townsend,
and Earl Harris. Without their help, the completion of this

project and report would have been more difficult.

Chapter 1: Introduction

1.1 The project.

The Edison operating system and program development
environment [Bri 1982] was used to implement the RKermit pro-
tocol [Cru 1984A]([Cru 1984B] for file transfer via the
serial port on the PC microcomputer. This was done by
changing the original operating system so that there are new
operations that can be done. These operations allow files
to be sent and received between the‘PC microcomputer and the

Kermit running on a Unix-based mini-computer.

l.2 Why the project was done.

The Edison operating system and programming enviromment,
hereafter called the Edison System, is relatively simple
and can be learned in a very short time. The Edison
language that is the medium for program development is also
relatively easy to learn and supports facilities for creat-
ing concurrent programs. The simplicity and the features of
this programming language make it an ideal tool for learning
and writing concurrent programs, During program development
it would be helpful to use an editor other than the rather
primitive one included in the Edison System. The transfer
of files between the micro and another computer ﬁith more

sophisticated editing is a real advantage.

Eventually the Kansas State University Computer Science
Department would like to be able to run Edison programs and
even the Edison operating system on a minicomputer .in the
department. A file transfer system that allows text and
object files to be moved to Unix would facilitate this pro-

ject considerably.

In addition, the project was a real challenge, and a great

deal was learned in arriving at a solution.

l.3 The Edison Systenm.

The Edison System was written by Per Brinch Hansen. The
system was written to be run either on the PDP-1l computer
or the IBM PC microcomputer. He designed the operating sys-
tem and environment with the two main goals of simplicity
and the ability for a programmer to write nontrivial pro-
grams with a minimum of difficulty [Bri 1982]. He men-
tions several design rules he used to accomplish these
goals: keep the system small, use the same language
throughout, hide machine details, and use uniform interfaces

to the terminal, printer. and the disks [Bri 1982].

1.4 The Edisop language.

Per Brinch Hansen designed and implemented the Edison
language. This language was used to implement all of the
Edison System except for the kernel which is written in an

assembly language called Alva. Alva is a subset of PDP-11

-3 -

assembly code with slight changes in syntax. The changes in
syntax generally make the commands more meaningful [Bri
1982]. For example the PDP-11 assembly command BNE becomes
ifnotequal in Alva, Brinch Hansen chose to make the Edison
language somewhat like Pascal[Bri 1982], but he has made
judicious additions, subtractions, and changes. He made
these decisions based on making the overall system as sim-

ple, compact, and unambiguocus as possible [Bri 1982].

1.5 EKermit protocol.

Kermit [Cru 1984A] [Cru 1984B] is a sliding window protocol
of size one, It uses a single character checksum to deter-
mine if errors have occurred in transmission. Data and con-
trol information are clumped together in units called pack-

ets,

A sender transmits a packet with a sequence number and a
checksum. When the receiver has received the packet, it
checks the sequence number and checksum value. If it
agrees with both of the wvalues, it sends a positive
acknowledgment (ack) back to the sender. If there is
disagreement on the checksum it sends a negative
acknowledgment (nak) . If the checksum is okay, but the
sequence number is one less than it should be, then the pre-
vious packet is acked. If the sequence‘ number is neither
the current value nor the previous value, then a nak is

sent. If the sender receives an ack, it sends the next

packet, otherwise it will timeout after some specified time
and it will retransmit the same packet. If no headway is
made in some predefined time or no response is received by
either of the sides, then the protocol times out, and the

file transfer must be started again.,

l.6 The report organization.

This report may be helpful to persons that want to: develop
a program on the Edison System, transfer files between an
Edison System and a Unix system, learn about the Rermit pro-
tocol. read about the Edison-Kermit system, or modify the

Edison operating system.

For readers interested in program development, chapters 2,
3, and appendix B should be helpful. If you are only
interested in transferring £files then you should read
chapter 5 and appendix A. Chapter 4 and appendix C should
be helpful in learning more about the Kermit protocol.
Information aBout the Edison-Kermit system is contained in
chapters 5 and 6 and appendices D and E. Finally chapters
2, 3., and appendix B are useful in learning how to change

the Edison operating system.

Chapter 2. Edison Language.

2.1 Introduction.

In this chapter the Edison and Pascal languages will be com-
pared. Brinch Hansen wrote the Edison language for the
Edison System. The operating system and all wutility pro-
grams were written in this language except for the kernel.
The kernel 1is written in Alva, which is an assembly

language similar to PDP-11 assembly language [Bri 1982],.

As was discussed in chapter one, Brinch Hansen used the
design rules of simplicity and compactness in designing the
overall system [Bri 1982]. 1In addition, the Edison language
was written specifically for implementing operating systems.
The Edison language is similar to the Pascal language, but
Brinch Hansen has made additions and deletions from Pascal
to keep the language simple, compact, and oriented toward

operating system applications.

The remainder of this chapter will discuss Edison from the
viewpoint of syntactic differences with Pascal, semanfic
deletions from Pascal, and semantic additions t6 Pascal.
All keywords in Pascal and Edison will be capitalized

throughout the rest of this chapter.

2ul Smtﬂxchﬁngeaﬁmmaaml

The following table shows the Standard Pascal [Wir 1971]

syntax in the left column, and in the right column the

eguivalent Edison syntax. The angle brackets ,i.e., <, >

around a word signify a non-terminal. The word prefix used

in the parameter list of a program is a set of constants and
that are defined in

procedures the operating system and

passed to a program in the program parameter list.

Standard Pascal
Syntax Examples

PROGRAM <identifier>
(<Eiles>)

INTEGER

BOOLEAN

ORD

CHR

TYPE sector =
ARRAY[1..256] OF INTEGER

TYPE RECORD =
item
number: INTEGER;
price: INTEGER;
weight: INTEGER
END

TYPE daytype =
{mon, tues, wed)

PROCEDURE
FUNCT ION

IF <condition>» THEN
<stmt>

Eguivalent Edison
Syntax Examples

PROC <identifier>
(<prefix>)

INT
BOOL
INT

CHAR

ARRAY sector[1l:256] (INT)

RECORD item(number, price,
weight: INT)

ENUM daytype (mon, tues, wed)
PROC

PROC

IF <condition> DO

<stmt>
END

IF <condition> THEN IF <condition®> DO
BEGIN <{stmts>
{stmts> END
END
WHILE <condition}> DO WHILE <condition> DO
BEGIN <stmts>
{stmts> END
END
{a comment} "a comment™

In the body of a function a value is assigned to the
function in the following way.

<function name)> := <value> VAL <function name) :=
{value>

A program is terminated in the following way.

END. END

Figure 2.,l1: Pascal and Edison Syntax Comparison.

The other main syntax change involves the use of the semi-
colon, In Edison the semicolon is used to separate state-
ments in a statement list. However no semicolon should be
placed in front of words such as VAR, CONST, BEGIN, PROC,
ARRAY, RECORD, ELSE, MODULE, or END. Pascal places a null
statement after a semicolon that is placed before a reserved
word such as END. This allows the programmer to be somewhat
sloppy about semicolon placement. Edison is not forgiving
of this kind of error, and you must place all semicolons

correctly before a program will compile,

2.3 Deletions From Pascal.

This section will discuss the semantic deletions from Pas-

- 8 -

cal. It will be organized by covering in order the dele-
tions from: flow of control constructs, data types, and

operations on data.

The FOR statement, REPEAT-UNTIL statement, and CASE state-
ment have been left out of Edison., Because the WHILE, IF-
DO, and IF-DO-ELSE-DO statements allow a programmer to do
everything that is necessary, these other flow of control

statements were not included.

The REAL, POINTER. and subrange types have been deleted from
Edison, These types are not generally needed in writing

operating system type programs.

The Edison language has no variant records which is in
keeping with simplicity., compactness, and the non-~necessity
of this concept in programming. Edison has no nameless
types which 1is sometimes referred to as implicit typing in
Pascal, If a user-defined ¢type 1is needed, it must be
declared as a type, and then that name is used when declar-

ing a variable of that type.

The WITH statement in Pascal can save some time in entering
a program. but it can make a program more difficult to read,
particularly if the WITH statements are nested. Because it
is a 1luxury, and it can make a program more difficult to

read, the with statement was not included in Edison.

The SUCC and PRED functions have been left out of Edison.

There are no standard input/output routines ,e.g., WRITELN

and READ or file operations in Edison as there are in Pas-
cal. All input/output routines and file operations are
defined in the operating éystem, and are accessed by a pro-

gram through the prefix.

2.4 Additions To Pascal.

Edison has some very nice additions that in some ways make
it an easier language to work with than Pascal. The addi-
tions will be discussed under the general topics of ARRAY
and RECORD constructors, modules, retyping, flow of control

constructs, and concurrency.

In Pascal it is necessary to have a separate statement for
every assignment made to an ARRAY element and RECORD field.
However. in Edison it is possible to assign values to every
element of an ARRAY and every field of a RECORD with a sin-
gle statement. These constructs are called ARRAY and RECORD
constructors. The example below demonstrates the syntax of
a constructor.

ARRAY lengths[1l:12] (INT)

VAR month_lengths : lengths

BEGIN

month_lengths := lengths(31, 28, 31, 30, 31, 30,
31r 31, 30r 31! 30: 31)?

The assignment statement in this example places a 31 in

month_lengths[l], a 28 in month_lengths[2], etc.

Edison has a module structure which is a way of placing

related procedures, functions, and data types together. Not

- 10 =

only does this make the code more readable, but it serves to
encapsulate the data types and the operations that can be
performed on them. This 'concept is sometimes called an
abstract data type. The module concept modifies the scope
of the data types, procedures, and functions inside the
module. Only those named types with an asterisk in front of

them may be exported to the surrounding scope.

There is a problem with this concept as implemented in
Edison. If two modules in the same scope have exported
identifiers that have the same name, then there will be an
unresolved name ambiguity. This makes it necessary to keep
track of identifier names in different modules with the same
scope., One nice aspect of an Edison module is that each
module has an initialization portion which is performed when
the module is started up. This is similar to a class or

monitor type in Concurrent Pascal [Bri 1977].

The type concept serves very well to make certain that a
programmer does not do anything foolish when he is passing
parameters or performing operations on a data type. How-
ever, sometimes it is important to relax type checking. An
example of this is when a text file is to be retrieved from
the disk. The information is stored on the disk as
integers, but if retrieved as integers, they would have to
be converted to characters. It would be far easier to read
the text file from the disk as characters and no conversions

would then be necessary. To accomplish this Brinch Hansen

- 11 -

introduced the concept of data retyping [Bri 1982]. The
following example should explain this idea.

ARRAY sector[1:256] (int)

ARRAY page[l:512] (char)

VAR block: page

BEGIN

readsector(block:sector)

The variable block is declared to be of type page. The
definition of readsector has a parameter of type sector, and
therefore the variable block can not be used directly at the
call. The solution is to retype block to be of type sector
when the readsector procedure is called. The reason for the
apparent different memory sizes is because the integer type
in Edison is two bytes long. This illustrates an important

point about retyping; retyping can only be done between two

types that require the same amount of memory.

The two main flow of control constructs in Edison have some
added features which make them more useful. The IF-DO-
ELSE-DO requires a condition after the else so that it is
similar to the ELSE-IF in Pascal. An example will illus=-
trate how this is done.
IF sex = 'f' DO
num females := num_females + 1
ELSE sex = 'm' DO
num males := num_males + 1
ELSE TRUE DO
write_line (display.,
line(' Error, sex must be m or £.'))

The write_line statement is Edison's way of displaying a

line of text on the screen.

- 12 =

The other main flow of control mechanism is the while 1loop.
It is possible to write an ordinary while loop that looks
very much like Pascal, however else clauses can be added to
the WHILE loop. An example should illustrate this.
accept (petkind);
WHILE petkind = 'd' DO
num dogs := num_dogs + 1;
accept (petkind)
ELSE petkind = 'c' DO
num cats := num cats + 1;
accept (petkind)
ELSE petkind = 'b' DO
num birds := num_birds + 1;
accept (petkind)
END
The accept statement takes a value £from the keyboard and
places it in the memory location of petkind. As long as the
value read from the keyboard is a 'd', '¢', or 'b', the
statements under the clause with the true condition will
continue to be done. If it is any other value, it will quit

the loop and begin executing on the statement following END,

The SKIP statement has been included in Edison as a no
operation statement. It can be used anytime that it is syn-
tactically necessary for a statement, but nothing is done by
the statemént. The only time this statement has been used
in this project is between a BEGIN and END in the initiali-

zation portion of a module.

The Edison language has semantic constructs for doing con-
currency. To execute several statements concurrently it is

necessary to use the following construct, where sll, sl2,

13
«ee; 8ln stand for statement lists 1, 2, ..., N,

COBEGIN 1 DO
<sll>

ALSC 2 DO
<sl2>

ALSO n DO
<sln>
END
Of course the IBM PC style computers have only one cpu, so

"concurrently"” Jjust means <that the statements can poten-

tially be executed in any order.

If the statement lists in the previous example operate on
shared data. then it is necessary that there be no context
switch that would allow improper evaluation of the data. To
avoid this there must be a way of synchronizing the con-
current statement lists. A mechanism for accomplishing this
synchronization, called a conditional critical region was
first published by Tony Hoare [Hoa 1972]. Process synchron-
ization wusing conditional «critical regions in Edison is
accomplished by a when statement, which is illustrated

below.

WHEN <conditionl>» DO
<sll>

ELSE <condition2> DO
£812>

ELSE <condition3>» DO
£813>

END

There are two separate parts to the execution of a WHEN

statement, During the synchronization phase a proc¢ess is

- 14 ~

delayed until there are no processes executing a critical
phase of a WHEN statement. Once the critical phase of all
WHEN statements is clear. a process is allowed into the
critical phase, The conditions of the WHEN and ELSE clauses
are checked one at a time in the order in which they are
written. If a condition is true, then the statement list of
that clause is executed and the WHEN statement is ter-
minated. If none of the conditions are true, then the pro-

cess returns to the synchronizing phase.

Chapter 3. Edison System and Program Development

- 3.1 Introduction

This chapter will discuss how to use the Edison System and
the steps in developing an Edison program. First, all of
the Edison operating system commands will be given along
with a brief description of what each does. Next the auxi-
liary programs that are useful in developing an Edison pro-
gram will be discussed, and finally the steps that are
needed in developing a program and in changing the kernel

and operating system will be listed.
3.2 Edison Operating System Commands.

In the following paragraphs a list of all twelve operating
system commands will be given along with a brief description
of what each of them does and an explanation of its useful-
ness. Further descriptions of these commands are contained

in chapter 5 of reference [Bri 1982] in the bibliography.

List. The list command displays names, their sizes,
and protected/unprotected status of all files
on a floppy disk., This command is indispens-

able.

Formatdisk. The formatdisk c¢ommand readies a disk for

Delete.

Protect.

Unprotect.

Copy.

- 16 =

receiving files, This command must be per-
formed on a disk before any information can be
placed on the disk. This means that none of
the system commands can be used on a disk until

the formatdisk command is performed.

This command deletes a file from the file cata-
log and frees the disk space occupied by that
file. The delete command only works on unpro-
tected files. To unprotect a file, use the
unprotect command listed below. Obviously the

delete command is very important.

This command protects a file so that it can not
be overwritten, deleted, or renamed. 1If a file
is important it should be protected so that it

will not be accidentally lost.

This command changes a file'’s status from pro-
tected to unprotected. Once the file is unpro-
tected it can be overwritten, deleted, or
renamed, If a file is protected it obviously is
important to be able to unprotect it so that it

can be removed from the disk when necessary.

The copy command copies a file into an empty
file, This can be used to make a backup copy
of a file, and it also allows the prefix to be

copied into a new file prior to starting a new

Backup.

Rename,

Newsystem.

...17-

program. Being able to copy the prefix saves
about 50 lines of typing for each new program
that is created. If the name of the file to be
copied 1is in the file catalog of both disks,
the file on disk 0 will be the one that is

copied.

The backup command copies a disk's contents,
sector by sector to another disk. This is use-
ful for backing up a complete disk because it
copies the operating system and kernel in addi-
tion to the files in the catalog. Backups
should be made of all Edison disks to prevent
accidental erasure or loss due to a disk

failure.

This command allows a file's name to be changed
if the file is not protected. To unprotect a
file use the unprotect command explained above.
There are. times that it would be helpful to
rename a file by choosing a more meaningful
name, It can also be used to prevent a name
ambiguity between the two disks or an Edison

file and a Unix file.

If a change is made in the operating system
program, the changed code is compiled to obtain
object code, and then the newsystem command is

used to install this new object code. This

Newkernel.

Insert.

Create.

w Ll

command is only used if changes are to be made
to the operating system., If the name of the
new operating system file exists in the file
catalogs of both disks, the file on disk 0 will

be the one installed as the operating system.

If a change is made in the kernel program, the
changed code is assembled to obtain object code
and then the newkernel command is wused to
install this new object code. This command is
only used if changes are to be made to the ker-
nel. If the name of the new kernel file exists
in the file catalogs of both disks, the file on
disk 0 will be the one installed as the new

kernel.

The insert command can be used when a new disk
or disks are placed in the disk drives. This
command updates the file catalogs in memory

without the necessity of rebooting the system.

The create command is used to create a new,
unprotected, and empty file, This command
should be of 1limited usefulness to systeﬁ
users, If a £file is needed, it can be created
by typing edit and a new file name, or by using
the copy command to copy the prefix command

into a new file,

- 19 -

3.3 Edison System auxiliary Programs.

This section will discuss the auxiliary programs that are
outside the operating system, but are necessary in develop-
ing a program. The two programs called format and underline
are not needed in program development and they will not be
discussed here. If you wish information on these two pro-
grams or further information on the programs that will be

discussed below, see chapter 5 in reference [Bri 1982].

Whenever an auxiliary program is used ,e.g., edit and com-
pile, a file name will be requested. 1If the file name given
is in the file catalogs of both floppy disks, the Edison
operating system will check the file catalcg of disk 0
first, and use that file. If you want to use an auxiliary
program on a file on disk 1, be certain no file by that name

exists on disk 0.

The following are programs which are necessary or helpful in
program development: edit, compile, assemble, print, cut,

and paste.

Edit. The edit command allows new lines to be added to
a file, changes to be made to a file, and lines
to be deleted from a file, The user should be
aware of several things. When the user leaves
the editor the program will ask if the changes
are to be saved., 1If thaf is true, then you must

type exactly the word yes. 1If you type anything

- 20 =

other than the exact word yes, then the changes

will not be written to the disk.

The user should check before he enters the editor
to determine the size of the file to be edited.
There must be at least that many £free pages on
the disk where the file is to be saved. For
example, if a file is 50 pages and it resides on
disk 1 and will be saved on disk 1, then there
must be at least 50 free pages on that disk, or

the file will not be saved.

A further check should be made on ambiguous
names, This can cause trouble when a file on one
disk is edited and it is to be saved on the other
disk. If a file of the same name as the edited
file already exists on the disk, then there will

be a name conflict, and the file will not be

saved.

With the ability to transfer files back and forth
between Unix and the Edison System, the workings
of the Edison System editor may not be as impor-
tant. Only for the case of a file with a small
number of required changes should it be advanta-
geous to use the Edison System editor. For all
other situations it will probably be easier and
faster to edit the file on Unix and then transfer

it back to the microcomputer with the Edison-

Compile,

Assemble.

Print,

- 21 -
Rermit system.

In the following description, the expression
<name> is a nonterminal and any legal name may be
used in its place. Brinch Hansen's convention of
calling source files <name>text and the compiled
code <name> was used [Bri 1982]. This helps to
keep straight which files are executable and
which executable files go with which source

files,

One difficulty that was encountered in using the
compiler was exceeding the name table size. A
list of possible compiler failures can be £found
on pages 139-140 of reference [Bri 1982] in the

bibliography.

The only time a user would need this command is
if it is necessary to make changes in the kernel
of the Edison System. The kernel 1is in two
parts: kerneltextl and kerneltext2, 1In the case
of this project, only changes were made to the
kerneltextl, but the assemble command requires
that both parts be assembled even though changes

were made to only one of the files,

For the print command to work, a printer must be
attached to the parallel port of the microcom-

puter. This program may not be as useful now

Cut.

Paste.

- 90 -

that a file can be transferred to Unix and

printed on a high speed printer.

The cut program allows a part of a file to be

copied to another file.

The paste program allows a file to be appended to

the end of another file.

The cut and paste programs can be used to move
pieces of a file to another location in the file
or to take a piece from an existing file and
place it in a new file. This can save consider-
ably on typing. These two programs are probably
not as useful now that it is possible to transfer
a file to Unix, edit the file with vi, and then

transfer the file back to Edison,

3.4 Developing an Edison Program.

This section will discuss the steps in developing an Edison

program and how to change the operating system and kernel.

Initially assume that the program development will be done

with no file transfer to Unix. In that case the development

would follow these steps.

1, Place two Edison disks in the microcomputer and switch on

the computer.

2. Make certain the prefix file is on one of the disks, and

.....23-.

copy the prefix f£ile into a file with ‘text as the suffix

for the file name.

Edit this file and begin adding your program code below

the prefix.

Once the program is the way you want it, hit the F6 key
and type yes when the prompt asks if you want to save the

changes,

Compile the program and name the object £file the same

name as the source file without the text suffix.

If there are compile errors, edit the text file, Once in
the editor type s, and the editor will display the com-
pile errors, Repeat steps 4, 5, and 6 until all compile
errors are removed. Be aware that the compiler may not
report all errors after a compilation, If an error |is
made in the block structure of the language, the compiler
may become confused and may not check part of the pro-

gram.

Once all compile errors have been removed, run the pro-
gram by typing the object file name to the Edison System

prompt ,e.g., Command = .,

If there are execution errors, the Edison System will

give a line number where the error occurred. Edit the
text file, locate where the werror occurred, £ix the

error, and recompile the program. Run the program as in

— 3d -

number 7 and continue until the execution errors are

removed,

If there are substantial changes to be made to the file, it
should be preferable to do the editing on Unix, If you
decide on this route, then transfer the prefix over to Unix.
Consult appendix A of this report to see how this is done.
Once the prefix is transferred, you should make a copy of it

so that this transfer need only be made once.

Use vi or the editor of your choice to construct the program
you want, Do not forget that the pfefix should be at the
start of your program. Once the file is the way you want
it, then transfer the file back to a floppy disk on the

microcomputer, and proceed starting at step 5 above,
3.5 Changing the Edison Kernel.

It is important that a backup system disk always be avail-
able, If the kernel 1is changed incorrectly. it may very
well make the Edison operating system unuseable, To change

the kernel of the Edison System, proceed with the following

steps.

1. Boot up the Edison operating system with the disk con-

taining the kerneltext files in drive 0 or 1.
2. Determine which of the kerneltext files you must change,

3. Edit the proper file and make the needed changes.

25

4, Once the kernel is the way you want it, hit the F6 key
and type yes when the prompt asks if you want to save the

changes.

5. Assemble both parts of the kernel and come up with a

unique name for the object file.

6. Once the kernel is assembled with no assembly errors, use
the newkernel command to place the kernel on pages 0
through 6 where it will replace the 0l1d kernel. The
newkernel procedure will ask which disk is to receive the
kernel. You may type either 0 or 1, but if you choose
disk 0, make certain that a backup system disk is avail-
able, because an incorrect kernel will very likely make

the operating system unuseable.

7. To test the new kernel you should make certain that the
disk with the new kernel program has an operating system
in place. Place the disk with the new kernel in drive 0
and reboot the operating system by simultaneously holding

down the control, alt, and delete keys.

8. If the changes you made are incorrect then you must start

over at step three,

To avoid the Edison editor, you may at steps 3 and 4
transfer the kerneltext file to Unix, make the needed
changes, and then transfer the file back to the Edison Sys-

tem.

26
3.6 Changing the Edison Operating System.

It is important that a backup system disk always be avail-
able. If the operating system is changed incorrectly., it
may very well make the Edison operating system unuseable.
To change the operating system of the Edison System,

proceed with the following steps.

1. Boot up the Edison operating system with the disk con-

taining the system text file in drive 0 or 1,

2., Edit the operating system file and make the needed

changes.

3. Once the program is the way you want it, hit the F6é Key
and type yes when the prompt asks if you want to save the

changes.

4, Compile the program and come up with a unique name for

the object file.

5. Once the operating system is compiled with no compile
errors, use the newsystem command to place the new system
on pages 7 through 24 where it will replace the old
operating system. The newsystem procedure will ask which
disk is to receive the operating system. You may type
either 0 or 1, but if you choose disk 0, make certain
that a backup system disk is available, because an
incorrect operating system will very likely make the

operating system unuseable.

27

6. To test the new operating system you should make certain
that the disk with the new operating system has a kernel
in place. Place the disk with the new operating system
in drive 0 and reboot the operating system by simultane-

ously holding down the control, alt, and delete keys.

7. If the changes you made are incorrect then you must start

over at step two,

To avoid the Edison editor you may replace steps 3 and 4 by
transferring the operating system text file to Unix, make
the needed changes, and then transfer the file back to the

Edison System.

Chapter 4: Kermit Protocol

4.1 Introduction.

This cﬁapter will discuss the Rermit protocol [Cru
1984A] [Cru 1984B]. All information is sent in lumps of data
and control information., These lumps are called packets,
In the terminology of network theory, the word frame is more
correct, but the Kermit implementers use the word packet.
First, the form of the packets and what values are allowed
in each field will be described, then the order in which the
packets are sent will be discussed, and finally the differ-

ences between the handling of text and binary files.
4.2 Packets.

4.2.1 General Packet Structure,.

Figure 4.1 shows the generalized format of a packet.

sSoH LEN SEQ TYPE DATA CHECK

"k e B0
s sp s a8

Figure 4.1: Kermit Packet Fields.

Because Kermit should be a completely portable protocol, it
should send only printable characters with the exception of

the control A character used at the start of each packet.

- 29 -

This 1is necessary because some control characters may cause

problems for computers at one or the other end.

4.2.2 Header Field.

The SOH field is start of header. Traditionally SOH has
been ASCII value 1, which is a control A, and this character
is reserved on most computers for just this purpose [Cru

1984a].

4.2.3 Length Field.

The LEN field stands for the length of the packet. It 1is
always a singie printable character. The character is
obtained by counting all the characters in the packet after
the length field, adding 32 to the value, and converting the
integer value to its equivalent ASCII character. In ASCII
all the characters between and including 32 to 126 are
printable. By taking 126 and subtracting 32 and adding 2
for the two field characters at the beginning of the packet,
the value 96 is obtained. This should be the maximum total
length of a packet. If the 5 control characters are sub-
tracted from 96 this leaves a maximum of 91 characters in

the data field.

4.2.4 Sequence Number Field.

The SEQ field stands for the packet sequence number. The
sequence number is used by both sender and receiver to know

which packet has just been received. If a positive ack-

30

nowledgment were lost, then when a packet is resent, the
receiver might think it is a new packet and write it to the
file. However the sequence number allows the receiver to
know that the packet has already been received and the
packet can be discarded., This field is a single printable
character and starts at ASCII character 32, the blank char-
acter. This is considered sequence number 0, Each succeed-
ing sequence number is just the next ASCII character up to
and including character 95. After 95 the sequence starts

over.

4.2.5 Type Field.

The TYPE field is also a single printable character. There
are several different types of packets that are sent. The
following is a list of the type of paékets that were imple-

mented on the Edison-Kermit system.

S "Send Initialization" Packet. This 1is transmitted
by the sender and prepares the receiver to start
receiving, The data field contains information
about the sender's parameters for such things as the
timeout period. This topic will be discussed later

in section 4.2.7.

F "File Header"™ Packet. This contains the file name

in the data portion of the packet.

D "pata” Packet, The data that are to be transferred

will be sent in the data portion of the packet.

31

Sometimes it is necessary to send some control char-
acters such as a new line or carriage return charac-
ter. These are sent with a # character prefix and
the sixth bit is flipped. This has the effect of
adding 64 to all characters with ASCII values less
than 32 and subtracting 64 from ASCII character 127.
A binary file may require that the high bit be on,
Unix does not use this bit for parity, therefore it
is okay for bit seven to be on. The treatment of
bits =zero through six ignores the value of bit

seven.

"End of File" Packet. This indicates the end of the

file. The data field will always be empty.

"End of Transmission" Packet. This indicates there
are no more files to be sent. The data field will

always be empty.

"Positive Acknowledgment" Packet. This is sent by
the receiver when it receives a correct packet. The
data field will be empty except when it responds to
the send initialization packet. In that case it
will contain the receiver's values for such things
as the timeout period. This will be discussed later

in section 4.2.7.

"Negative Acknowledgment" Packet. This is sent by

the receiver when it receives an incorrect packet.

..32—
The data field will always be empty.

4.2.6 Checksum Field.

Finally the CHECK field is a single printable character
checksum. Making this character printable avoids control
character problems with the computer, and it also makes it
easy for a system developer to analyze a packet and see that
the checksum value is correct. The CHECK field character is
obtained by summing the ASCII values of all characters in a
packet with the exception of the header and the check
fields. This wvalue 1is converted into binary and only the
low order byte is kept. Bits 7 and 6 of this byte are moved
to bit 1locations 1 and 0 respectively and added to bits 0
through 5. This sum is converted to a decimal value, 32 is
added to this number, and the result is converted to an
ASCII character. The largest value that can be represented
by 6 bits is 63, and counting the value 0 there is a total
of 64 possibilities, If 0 is represented by ASCII character
32, the first ASCII printable character, then the largest
ASCII value that will occur will be 95, and this is a print-

able character.

4.2.7 1Initialization Data Fields.

The "Send Initialization" packet and the receiver's ack-
nowledgment of that packet contain values in the data field
for the initial values of the sender's and receiver's proto-

col parameters [Cru 1984RB]. The data £field for these

- 33 -

packets is shown in Figure 4.2.

QCTL:QBIN:CHKT:REPT:RES

MAXL : TIME : NPAD : PADC : EOL

®s su o8 as
e aa
e as
e we
. e
*e o0 [1] -e
o @
e on
8 an
we o8 s sa

Figure 4.2: Initialization Data Fields.

The terms computerl and computer2 will be used in the fol-
lowing descriptions. The computerl refers to the sender of
the packet and the computer2 refers to the receiver of the
packet. In the case of numeric values, the values are
changed to printable ASCII character by taking the value,
adding 32, and converting that value to an ASCII character,
These parameters have default values, and the default value

will be used if no parameter value is sent,

MAXL This field gives the maximum length of packet
that computerl wants to receive. Computer2
responds with the maximum it wants computerl to

send.

TIME The amount of time in seconds that computerl

wants before it is timed out by computer2.

NPAD The number of padding characters computerl wants
before each packet that 1is sent to it by com-

puter2.

PADC The padding character computerl wants sent to it

before each packet,

- 38 -

EQL The character computerl wants sent to it to ter-

minate a packet if any.

QCTL The printable character that computerl expects to

prefix a control character.

QBIN The printable character that computerl expects to
prefix a byte with bit seven on. This is
unnecessary in Unix since bit seven can be sent

in a normal manner,

CHEKT The type of error checking that computerl will
use., The number 1 is the simplest, and it uses a
one character checksum. The two other methods
are chosen by using 2 or 3 in this field. 1If
computer2 agrees with computerl on the ¢type of
error checking, then that mgthod will be used.
If there is disagreement, then error <checking

method 1 will be used.

REPT The prefix character computerl will use to indi-
cate a repeated character. Any character can be

used except for blank.

RES This is a reserved area to be used by the indivi-
dual user and for future use by the Kermit

developers.

4.3 The order of sending packets.

As mentioned in the introduction of this report, Kermit is a

- 35 -

sliding window protocol of size one. Each packet that is
sent is checked by the receiver for the proper sequence
number and checksum. If the checksum and sequence number
are the expected values,.then the receiver sends a "Positive
Acknowledgment" for that packet. If the checksum does not
agree with the calculated value, then a "Negative Ack-
nowledgment" is sent. If the checksum is correct and the
sequence number is one less than the expected value then a
"Positive Acknowledgment" packet 1is sent for the previous
frame. If the checksum is correct, but the sequence number
is not the expected value or one less than the expected
value, then a "Negative Acknowledgment" is sent. The sender
always waits for a "Positive Acknowledgment™ before it goes
on, If it receives a “Negativé Acknowledgment" or no ack-
nowledgment within the allowed time, it resends the packet.
It will resend a packet several times before giving up. If

it gives up, the protocol must be restarted.

The receiver checks each packet it receives, If the check-
sum, sequence number, packet type are the expected values,
then a "Positive Acknowledgment" is sent. If the checksum
or packet type are incorrect, then a "Negative Acknowledg-
ment” is sent. If the sequence number is one less than the
expected value, then that previous packet is positively ack-
nowledged. Any sequence number other than the expected
value or one less than the expected value cause a "Negative

Acknowledgment" to be sent,

—36_

When the receiver gets the first packet, a "Send Initializa-
tion"™ packet, it sends an acknowledgment for that packet
containing the values of the parameters in Figure 4.2 which
it will use. At this time the receiver and sender adjust
their packet lengths, timecut periods, and other parameters
based on the information contained in the data fields of
these two packets. The sender now outputs a "File Header"
packet. When the packet is received, the receiver opens a
file with that name and acks that packet. Once the sender
receives the ack, it starts to send "Data" packets, each

time waiting until the receiver acks the last packet.

The "Data" packets continue to be transferred until the end
of the file is reached. At this point the sender ocutputs an
"End Of File"™ packet, and the receiver closes the file when
it receives the packet. Finally an "End Of Transmission"
packet is sent, and the receiver leaves the receive state.
If all packets are positively acknowledged, then the proto-

col gives a message that the file transfer was successful,

4.4 Text and Bipary Files

When Kermit is started up with the command kermit r or ker-
mit s <filename>, a text file will be received or sent,
This has two effects on the protocol: bit seven is ignored,
and a carriage return and line feed become only a line feed
on the receive and a line feed becomes a carriage return and
line feed on a send. If the command is kermit ri or kermit

si <filename> then a binary or image file will be received

37

or sent, The protocol will now use bit seven, but no car-

riage return and line feed conversion will be done.

For an example of Kermit session packets, see Appendix C of

this report.

Chapter 5. Edison-Kermit System
5.1 Introduction.

This chapter will discuss the Edison-EKermit system. This
chapter 1is divided into the following sections: Edison-
Kermit System Commands, Edison-Kermit System Performance,

and Aspects of the Edison—-Kermit System.

5.2 Edison-Kermit System Commands.

The Edison-Kermit system has 9 commands: delete, list, pro-
tect, rename, unprotect, connect, initport, send, and
receive. The delete, list, protect, rename, and ‘unprotect
commands have been explained in chapter 3 of this report and

reference [Bri 1982] in the bibliography.

The commands backup, copy, create, formatdisk, insert, newk-
ernel, and newsystem which were in the original Edison
operating system have been deleted from the Edison-Kermit
system. In addition no auxiliary programs can be run by the
Edison-Kermit system. This was necessary because there was
not sufficient room to include all the original commands and
code along with the new commands for file transfers, The
commands delete, 1list, protect, rename, and unprotect were
included because they take little additional code, and they

seemed the most useful commands for a file transfer system.

Initport, connect, send, and receive are the four commands

which were added to the original operating system. Each of

39

these commands will be discussed below.

Initport.

When this command is given, the system responds
with "Type t for default configuration". If the
user types t, the serial port on the microcom-
puter is configuréd at 1200 baud, no parity, one
stop bit, and a byte length of 8 bits. If the
user types anything but t, the system will ask
"Configuration value =", To decide what value to

type, consult Table 5.1 below [Zen 1984].

Baud rate
9600 -—~> 224
4800 ---> 192
1200 --=-> 128
600 ~---> 96
300 --=> 64
150 =--> 32

110 —--=> 0
parity

no parity - 0

odd parity =---> 8

even parity ---> 24
number of stop bits

1l —>0

2 ——=> 4
byte length

7 Bitg ——35 2

8 bits =-==-> 3

Table 5.1: Configuration Values,

Add all the values for your choices under each of

the four categories. Type this sum for the con-

figuration value. It would be easy to add code

which would gquery the user about what specific

Connect.

Send.

- 40 -

configuration was required. The reason this was
not done was due to the limited space available
for the operating system, since adding this code
would make the system too large. Of course some
of the extra commands could be left out, but it
was decided by the implementer that it was more
important to have the commands than to have the
option to easily change the port configuration,
especially since the default configuration should

work in almost all situations,

This command connects the microcomputer to the
serial port so that anything that is typed on the
keyboard is sent to the serial port, and anything
coming into the serial port is displayed on the
screen. This command can be used to make the PC
microcomputer into a terminal for the computer
attached to the serial port. This command allows
the wuser to login to the Unix operating system,
and start Kermit running on the remote computer.
The user should hold down the control key and

press the g key to return to the microcomputer.

To use the send command you must first connect to
the remote computer using the connect command,
login to the system, and type kermit r or Kkermit
ri depending on whether you are sending a text or

binary file, Return to the microcomputer by

Receive,

_41..

pushing the g key while holding down the control
key. Once back to the microcomputer type send
and press the return key. The Edison-Kermit sys-
tem will ask which file you want to send. Type
the file name to be sent and press the return
key. The system will ask whether it is a text or
binary f£ile. Type the correct response for this,
and hit the return key. The transfer should then
proceed with the system recording on the screen
how many packets have been sent, and how many
packets have been sent more than once., This will
continue until the file is sent successfully or
unsuccessfully. If the file is sent success-
fully, a message to that effect will be placed on
the screen. If the file transfer is unsuccess-
ful, a message to that effect will be placed on

the screen or an error message will be given,

To use the receive command you must first connect
to the remote computer using the connect command,
login to the system, and type Kkermit s or Kkermit
si followed by a file name. F¥Kermit si should be
used for all binary files. A text £file can be
sent with kermit s or kermit si. If kermit s is
used, a line feed character in a Unix £file will
cause a carriage return character and a line feed
character to be sent. Since two characters are

not needed to terminate a line, it can make an

- 42 -

Edison file longer than necessary. The Edison-
Kermit system text file is about 1500 lines long.
If it is sent using kermit s, then the file will
be about 1500 characters or nearly 3 pages longer
than necessary. Sending a file with kermit si
eliminates the extra character at the end of each
line. Because of this difference, it makes sense
to send a text file on Unix with kermit si also.
Return to the microcomputer by pressing the g key
while holding down the control key. Once back to
the'microcomputer type receive and press the
return key. Edison-Kermit will ask whether it is
a text or binary file. Type the correct response
for this, and press the return key. Finally the
system will ask which drive 1is to receive the
file, and you should type 0 or 1 and press the
return key. The transfer should then proceed
with the system recording on the screen how mény
packets have been received correctly, and how
many packets have been received more than once.
This will continue until the file is received
successfully or unsuccessfully. If the file is
received successfully, a message to that effect
will be placed on the screen, If the file
transfer 1is unsuccessful, a message to¢o that
effect will be pla?ed on the screen or an error .

message will be given,

- 43 -

5.3 Edison-Kermit System Performance.

The system was tested by sending and receiving short files,
long files, text files, and binary files. Although it is
impossible to test the protocol completely, it does work

correctly on all files that have been tried.

My testing checked binary files by observing the word length
of a file on a floppy disk and its length after being
transferred to Unix and back to Edison-Kermit. 1In all cases
the file length on Unix was twice as long as it was on the
floppy disk. This is correct because for a binary file
Edison counts two bytes as a word, whereas Unix is counting
bytes., Several times working programs were transferred to
Unix and back to the microcomputer and then the transferred
file was run. In all cases the program behaved as it had

before the transfer,

The text files were tested in a similar way by taking a text
file on Edison and compiling the file and running the pro-
gram. Then the text file was transferred to Unix, back to
the microcomputer, compiled, and the program was run. In
all cases it performed as it had before, A text file
transferred to Unix will not have the same length as it did
when it was on the microcomputer. This is because the Ker-
mit that runs on Unix takes an arriving carriage return
character and line feed character and converts them to Jjust
a line feed character. The reverse occurs when the Unix

Kermit sends a file unless the command kermit si is used as

- 44 -

discussed above under the receive command. The net effect
of this is to make a text file transferred to Unix have

fewer characters by just the number of lines in the file.

It has been found that approximately 16 packets per minute
are sent or received by the Edison-Kermit system. Table 5.2
shows the approximate average number of file characters sent

in a data packet.

Sending a Text File: 83 char/data packet
Receiving a Text File: 83 char/data packet
Sending a Source File: 54 char/data packet

Receiving a Source File: 51 char/data packet

Table 5.2: Actual File Characters Per Data Packet.

From this information it is possible to calculate approxi-
mately how long it will take to transfer a file to Unix or
back to the microcomputer. As an example, the time it takes
to send the Edison-Kermit system text to Unix is calculated.
The file is approximately 85 pages long, and a page is 512
characters. Therefore the number of packets required will

be

]

number of (85 page)* (512 char/page)/ (83 char/packet)

packets
524 packets.

The amount of time this will take is

- 45 -

524 packet/16 packet/min

n

time

33 minutes.

Table 5.3 compares bit transfer rates and bandwidth usage of
MS-DOS RKermit and the Edison-Kermit system for a text file
transfer, The actual data transfer rate is the number of
file character bits sent each second. The effective data
transfer rate is the total number of bits transferred each
second, which includes file characters and packet control
charactérs. The effective data transfer rate for MS-DOS
KRermit was estimated because it was not certain how many
actual characters were sent in transferring a file. The
estimate was obtained by proportionality with the actual and
effective data transfer rates for Edison-Kermit. To obtain
the bandwidth wusage, the data transfer rate is divided by
the maximum data transfer rate, which in this case is 1200

bits per second (bps).

System Actual Effective Actual Effective
Data Data Bandwidth Bandwidth
Transfer Transfer Usage Usage
Rate Rate

Edison- 165 bps 195 bps .14 .16

Kermit

MS-DOS 420 bps 500 bps +3 3 .42

Kermit estimated estimated

Table 5,3: Performance of Two Kermit Systems.

- 46 -
2.4 Aspects of the Edison-Kermit System.

There are several differences between this implementation of
Kermit and the standard Kermit protocol., There are four
main differences: carriage return-line feed conversion,
control character prefixing if bit seven is on, initializa-
tion parameters, and text/binary £file send and receive

differences. These topics are discussed in the next few

paragraphs.

The standard Kermit protocol upbn receiving a text file will
take a carriage return and line feed and write only the line
feed to the file. This procedure is reversed when a text
file 1is sent. The Edison-Kermit system sends and receives
files without making changes to the carriage return ahd line

feed characters,

In standard Kermit bit seven is ignored for a text file and
used for a binary file [Cru 1984A)[Cru 1984B]. The Edison-
Rermit system does not ignore bit seven at anytime. Stan-
dard EKermit treats bits 0 through 6 the same whether bit
seven is on or not., This has the effect of prefixing and
adding 64 to characters 128 to 159, and prefixing and sub-
tracting 64 from character 255 just as the characters 0 to
31 and 127 are prefixed and 64 added or subtracted,
Edison-Kermit treats characters 0 to 127 the same as stan-
dard Kermit, but it sends and receives characters 128 to 255
with no special processing, The implementer realized char-

acters 128 to 255 will have no special effect on either Unix

_47-

or the PC so there was no reason to have the overhead of a
prefixing character. This lack of prefixing explains why
more actual file characters are sent in an average Edison-
Rermit binary file packet than are sent by the Unix Kermit

for the same kind of file. This can be seen in Table 5.2.

Edison-Kermit does nothing with the initialization protocol
parameters it receives from the other computer. The values
of the parameters that occur in fiqure 4,2 are set inside
the Edison-Kermit system and can only be changed by modify-
ing the code. The values for these parameters are given in

Table 5.4 below.

MAXL: 94.

TIME: 20 sec approximately.

NPAD: 0, no padding characters.

PADC: no padding character.

EOL : no end of packet character,

QCTL: #, character used to prefix a control character.
OBIN: no prefixing character if bit seven is on,

CHET: 1, a single character checksum.

REPT: no repeated character prefix.

Table 5.4: Edison-RKermit Protocol Parameters,

Edison-Kermit has one difference in the way it treats binary
files compared with text files, An Edison-Kermit text file
consists of charactérs and therefore the program only sends

and receives single and separate bytes. A binary file

- 48 -

contains integers, and an integer in Edison is
long,. This means that when a binary file
received the bytes are treated in pairs. If the
of the pair has its most significant bit on,

will be negative.

two bytes
is sent or
high byte

the integer

Chapter 6. Edison-Kermit Implementation.
6.1 Introduction.

This chapter is divided into two sections. The first sec-
tion discusses the entry procedures that were added to the
Edison-Kermit kernel. The second section deals with the
changes that were made to the Edison-Kermit operating sys-

tem,
6.2 Procedures Added to fthe Edison Kernel.

Five new procedures were added to the kernel which are entry
points to the kernel from the operating system, 1In the
Edison-Kermit operating system they are called init_port,
send_port, port _rec, test_key, and test_port. The following
paragraphs will give a brief description of what each of

these procedures does,

Init_port., This procedure receives an integer value through
its pass by value parameter. This procedure uses
the parameter value to set the serial port's baud
rate, number of stop bits, parity, and byte

length [Zen 1984].

Send_port. This procedure receives a character in its pass
by value parameter, It places this character in

the serial port's send register.

Port_rec. This procedure obtains an integer from the serial

port. In the Edison-Kermit system an integer is

50.

two bytes long. The high byte contains informa-
tion on the status of the port, and the low byte
is the ASCII value of the character at the port.
This integer is placed in the procedure's pass by

reference parameter.

Test_key. This procedure tests the keyboard to see if a key
has been pressed. If a key has been pressed,

then it returns a 1, otherwise it returns a 0.

Test_port. This procedure tests the serial port and returns
the port status in its pass by reference parame-
ter. The port status is an integer and the high
byte of this integer contains information about
the port. The meaning of the integer value is
explained in reference [Zen 1984] of the bibliog-

raphy.
6.3 TIhe Edison-Eermit Operating System Implementation.

In this section an overview will be given of the additions
and changes that were made to the Edison operating system

and a top down view of the Edison-Kermit system.

It was necessary to remove some system commands from the
Edison operating system so that there would be sufficient
room for the new file transfer commands. Besides the com-
mands, some procedures called by the commands were also

removed,

51

Four new modules were added to the operating system and sub-
stantiai changes were made to the Standard Commands module.
The four new modules are Frames, Kermit Utilities, Send and
Check Frames, and Receive and Check Frames. These modules

are discussed in a general way in the next few paragraphs.

The Frames module has four procedures to manipulate the
packet sequence number. The remainder of the procedures
create the eight different kinds of packets used by the

Edison-Kermit system file transfer protocol.

The Kermit Utilities module has procedures which are used by
more than one of the standard commands: connect, send, and
receive, These procedures are of a general sort and do such
things as send a character to the serial port, receive a
character from the serial port, clear the monitor's screen,
test the serial port's status, send a packet to the serial

port, and receive a packet from the serial port.

The Send and Check Frames module contains procedures that
are used by the send procedure in the Standard Commands
module. The procedures generally retrieve information from
the disk, send packets, wait for the acknowledgment packet
that comes back from the remote computer, and check the ack-
nowledgment packet for the correct sequence number and

checksum.

The Receive and Check Frames module contains procedures that

are used by the receive procedure in the Standard Commands

- 52 =

module, The procedures generally receive packets from the
remote computer, check the packets for correctness, send
acknowledgment packets, and write out the received informa-

tion to the disk.

The Standard Commands module contains procedures which are
called from the main program of the operating system. There
is a procedure in this module for all nine commands of the

Edison-Kermit system.

In what follows, an overview will be given of the general

workings of each of the four new commands.

Initportl., This procedure is the simplest of the four, It
queries a user to determine the proper configura-
tion of the serial port. This information is an
integer and the value is passed to the init_port

kernel entry procedure,.

Connect. This procedure is very simple. It is a WHILE
loop that continues looping until an ASCII char-
acter 17, control q, is read from the keyboard.
The 1loop code tests if the keyboard is active,
and if it has been, then the Kkeyboard character
is sent to the serial port. Also inside the
loop, a character is taken from the port and if a
character has arrived, it 1is displayed on the

monitor screen,

Send. The send procedure sends a series of packets and

Receive,

- 53 -

after each packet it waits for a reply from the
receiver., If a positive acknowledgment (ack)
comes back from the receiver, it tests the check-
sum and sequence number of the ack packet. If
they are correct, it sends the next packet., If
they are not correct, it retransmits the last
packet. If no response comes back from the
receiver after 5 seconds, or a negative ack-
nowledgment is received, then the last packet is
sent again., A packet can be sent 5 times before
the procedure gives up. This procedure continues
through the sequence of packets: send initializa-
tion, file header, multiple data packets, end of

file packet, and end of transmission packet.

The receive procedure takes each incoming packet
and checks the sequence number, packet type, and
checksum wvalue, If the ©packet's checksum,
sequence number, and packet type are correct, it
sends a positive acknowlegment, otherwise it
sends a negative acknowlegement. The order of
the packet types must be send initialization
packet, file header packet, data packets, end of
file packet, and end of transmission packet. The
receive will wait approximately twenty seconds
for a response, if no response is received, then

it gives up.

Chapter 7. Conclusions and Future Work.

Overall the Edison-Kermit system works well. Of course it
is impossible to test the systenm completely, and perhaps
there are problems with the system which have not been
discovered yet. 1If a problem does arise, it should be rela-

tively minor and easily fixed.

One problem for which there is no easy solution is the slow-
ness of a file transfer. This is apparently limited by the

execution speed of the Edison code.

A nice improvement to the Edison-Kermit system would be to
allow the vi editor to be used while the Edison-Kermit sys-
tem is in operation. This would permit a file to be
transferred to Unix, changes made to the file, and the
changed file to be transferred back to the Edison-Kermit
system without moving from the terminal or changing the

microcomputer to MS-DOS and Perfect Link [Col 1983].

The present Edison System only runs on microcomputers with
two floppy disk drives. 1Its performance would be increased
if the system could be loaded onto a partition of a Winches-
ter disk. This would increase the speed of loading the
operating system and decrease the access time for reading

and writing files from and to the disk.

Assuming the Winchester disk is used for file storage, the
number of files allowed will be greatly increased. For a

large file catalog, a directory system would be very

- 55 =

helpful. Therefore it is suggested that if the Edison Sys-
tem is placed on the Winchester disk, that the file catalog

system be expanded to allow directories.

The usefulness of the Edison language could be increased if
Edison programs could be run on the KSU Computer Science
Department's minicomputers. Another approach to this is to
transfer the entire Edison System to Unix and have the

Edison operating system run on top of Unix.

One way to accomplish this task would be to change the code
generation pass, pass 4, of the Edison compiler so that it
generates machine code for the target machine. 1In addition,
it will be necessary to change the kernel from Alva to the
assembly language used by the target machine. Another way
to accomplish the kernel changé is to leave it as is and
write a cross assembler which will generate target machine

assembly code from Alva assembly code,

Appendix A. User's Manual
l.l Introduction.

This appendix is a user's manual for operating the Edison-
Kermit file transfer system. In the text all user typed
commands will be placed on a separate line and computer
responses will be placed in double quotes ,i.e., ". The
abbreviation <{ctl> preceding a character means to hold the
control key down and then strike the key for the character.
The abbreviation {rtn> stands for the return key. For the
expression <file name> you should type a specific file name.
This appendix is divided into the following sections:
Selecting a Proper Microcomputer, Connecting to the Unix
System, Sending a Text File, Receiving a Text File, Sending

a Binary File, Receiving a Binary File, and Sample Sessions.

l.2 Selecting a Proper Microcomputer

The Edison-Kermit system will work on an IBM PC microcom=-
puter, or a microcomputer that is compatible with the PC,
Currently, in the Kansas State University Computer Science
Department, there are Zenith 150 microcomputers and Columbia
Data Products PC's that support the Edison-Kermit system.
This system will work only with those microcomputers that
have two floppy disk drives, The microcomputer selected
must have a connection to the Unix system through serial
port one, which is sometimes called COMl1. 1If the Unix sys-

tem has a fixed baud rate line it must be 1200 baud or

_57-

slower. At higher baud rates the Edison-Kermit system will

miss some of the characters that are sent and received.

l.3 Connecting to the Unix System

The Edison-Kermit system disk should be placed in the left
or top drive. In MS DOS this is referred to as the A drive,
and in the Edison-Kermit system it is drive 0, Another
Edison-Kermit formated disk must be placed in the other

drive. The computer should be switched on, and the operat-

ing system will then be automatically booted.

If you make a mistake in typing a command to Edison-Kermit,
then use the backspace key to backup to where the error
occurred. Type the command correctly, and then use the

delete key to remove the extra characters at the end of the

command,

The operating system should write out a header, and then the
"Command =" prompt will be displayed. 1If the computer has
just been switched on, the port must be initialized. To

initialize the port you should type the command

initport <rtn>

and Edison-Kermit will respond with

"Type t for default configuration.,”

If you type

t <rctn>

- 58 -

you will initialize the port with this standard configura-
tion. The standard configuration is 1200 baud, 1 stop bit,
no parity, and an 8 bit byte. If you type any other letter,

Edison-Kermit will come back with

"Configuration value ="
Use Table Al.l to decide what value to use if you need a

different configuration.

Baud rate
9600 ---> 224
4800 =-==> 192
1200 ---> 128

600 ---> 96

300 ---> 64

150 ===> 32

110 -—-=> 0
parity

no parity -—=> 0

odd parity ---> 8

even parity ---> 24
number of stop bits

1l =—=3 0

2 ——=> 4
byte length

7 bits ---> 2
8 bits ===> 3

Table Al.l: Configuration Values,

Add all the values for your choices under each of the four
categories, Type this sum for the configuration value. A
decision was made not to have the system do this calcula-

tion. The reasons for that decision are explained in

chapter 5.

Again the Edison operating system will give the prompt

..59..

"Command =", To use the microcomputer as a terminal you

should type the command

connect <rtn’>.
Unix should respond with the 1login and password prompts.
Login to the Unix system in the wusual way. Unix will
request a terminal type. A good terminal emulation type has
not been found, so go with the default or vt52. This has no
great consequences unless you decide to use the vi editor.

Vi is pretty well unusable because of this problem.

After that Unix should give you a prompt, and you should

respond with

stty vt05 <rtn>.
This sets the terminal so that the first character on each

line is not lost.

l.4 Sending a Text file.

Login to Unix as described above and return to the microcom-

puter by typing

<ctl> q.
The file you wish to send must be on the system disk in
drive 0 or the disk in drive 1. To see what files are on

each disk, type the command

list <rtn>,

and Edison-Kermit will respond with "Drive no =", Type

- 60 -

0 or 1 <rtn>
to this prompt. If the file you wish to send is not on
either disk, insert the proper disk and reboot the system by

holding down the keys

<ctl> <shift> and .
Again list the files on the disks. Assuming you now have

the file you want to send on one of the disks, reconnect to

Unix by typing

connhect <rtn>,

and to the Unix prompt you should type

kermit r <rtnd>.
You should do the next part relatively quickly because EKer-

mit on Unix can timeout if too much time is taken. Type

ctl> g

to return to the microcomputer. After the Edison-Kermit

prompt type

send <rtn>

and the system will print "File to be sent =", You should

then type
<file name> <rtn)>

If the file name that you use is in the file catalogs for

both disks, the system will use the file on floppy disk 0.

Finally the system will ask "text or binary file = ", You

...61.—
should type

text <rtn>.

Sit back and watch the diagnostics.

The system will eventually give the message "Send completed

ok", "Send failed", or an error message.
If the send failed then go back to Unix and start by typing

kermit r <rtn>

and repeat the steps following that command in the text

above.

l.5 Receivipg a Text File.

Login to Unix as described above in the section entitled
"Connecting to the Unix System®", Find the file on Unix that
you wish to transfer back to the microcomputer. Go back to

the microcomputer by typing

<ctl> q.

To the "Command =" prompt type

listl<rtn>
and Edison-Kermit will respond with "Drive no =", You
should type the drive number of the floppy disk where the

file is to be sent either

0 or 1 <rtn>.

Check to make certain that an Edison-Kermit file of the

- 62 -

same name as the one to be sent does not already exist on
the drive. If one does then you may rename the file., To do
this consult chapter 3 of this report, or you may change the

Unix file name by going back to Unix and typing

mv <o0ld file name> <new file name> <rtn>.

Once any name conflict is resolved, return to Unix and type

kermit si <filename> <rtnd>.
Rermit si is used because it prevents the carriage-
return/line-feed character conversion that results when
kermit s is used. A complete explanation of this can be
found in Chapter 5 of this report. The next several com-
mands should be done relatively quickly otherwise Kermit on

Unix will time out. You should type

ctl> q.

To the Edison-Kermit prompt you should type

receive <rtn$
and the system will ask "text or binary file = " and vyou

should respond with

text <rtn>.
n

Finally the system will ask "Receiving file drive = ", You

should respond with

0 or 1 <rtn>
depending on which disk you want to receive the file. Sit

back and watch the diagnostics and the system will eventu-

63

ally give a message "Receive completed ok", "Receive

failed"™, or an error message.
If the receive failed, connect to Unix again with

connect <rtn>

and type

kermit si <file name> <rtn>
and repeat the steps following that command in the text

above,

l.6 Sending a Binary File.

Sending a binary file is identical with sending a text £file
except for two command changes, The command kermit r <rtn>

should be changed to

kermit ri <rtn>
and to the Edison-Kermit prompt "text or binary file = " you

should type
binary.

Appendix B discusses an error that was found in the Unix
Kermit, Until the error in the Unix Kermit is fixed, it is
necessary to make a local copy of Kermit and change a line
in the FKermit source code. Consult appendix B to see how

this is done.

64
l.Z Receiving a Binary File.

Receiving a binary file is identical with receiving a text
file except for one command change. When the Edison-Kermit

prompt "text or binary file = " is given you should type

binary.

l.8 Sample sessions.

For the following sessions all Unix and Edison-Rermit
responses and the explanations that go with them will be
underlined . For these examples it has been assumed that:
the microcomputer has just been turned on so it is necessary
to initialize the port, the user has not previously logged
onto Unix, a text file is to be sent, and the name of the
file to be sent or received is systxt. Under the section
Receiving a Text File, the Unix command kermit si systxt is
given as opposed to the kermit s systxt. The reason for
this choice is explained in Chapter 5 of this report. 1In
each of the next two subsections there are starred lines,
Those are lines that you must change if a binary file is to
be sent instead of a text file. This is explained in sec-

tion 1.8.3 of this chapter.

1.8.1 Sending a Text File.

Command =
initport <rtn>

<msg about the
<default config.>

t <ctn>

Command =

connect <rtn>

login

terry <rtn>

password
billbo <rtn>

<geveral megssages>
ferm Lfype =

vt52 <rtn>

3

stty vt05 <rtnd>

kermit r <rtn>

<ctl> q

command =

send <rtnd>

File to be sent =

systemtext <rtn>

- §5 -

Edison-Kermit prompt

request to initialize
port config, values

Edison-Kermit response

accept default init-
ialization of port

AEdisp.n-xami.t bPrompt

request to connect to Unix
Unix login prompt

type login name

Unix password prompt

type password

Unix login messages

Unix asks for fterm. fype
user vt52 emulation

Unix prompt (C-shell)

set Unix so it prints
the first character

Unix prompt

start Kermit running on Unix,

do not type the asterisk.

go back to micro

Edisop-Kermit prompt

request to send file

Edison Rermit prompt

name of file to send

- 66 -

text or binary file =

text <rtnd>
<$disnn-$ez§i£
file transfer ok
Command =

connect <rtn>

13

l.8.2 Receiving a Text File.

RESPONSES

Command =

initport <rtn>

<msg about the
default config.>

t <rtn>
Command =
connect <rtn>
login

terry <rtnb>

what kind of file

text file to be sent,
do not type the asterisk

messages on file transfer
System reports transfer ok

Edison-Kermit prompt

hook up to Unix

Unix prompt

make certain the file
arrived okay

EXPLANATION

Edison-RKermit prompt

request to init port values

Edison-Kermit response

accept default init. of port

Edison-Kermit prompt

request to connect to Unix

Unix login prompt

type login name

_67—

billbo <rtn> type password

<several messages> Unix login messages

term type = Upnix asks for term. type

vt52 <rtn> user vt52 emulation

$ Unix prompt (C-shell)

stty vt05 <rtnd> set Unix so it prints
the first character

% Unix prompt

kermit si systxt <rtn> start Kermit running on Unix,

<ctl> g go back to micro
Command = Edison-Kermit prompt
receive <rtn’ request to receive file

text or binary file = yhat kind of file

text <rtn> text file,
do not type the asterisk

Receiving file drive = Edison Rermit prompt
1 <rtn> place file on drive 1

<Edison-Eermit
diagnostics> messages on file transfer

Ieceive completed ok system reports transfer ok

- 68 -

Command = Edisopn-EKermit prompt
list <rtn> look at file directory
Which drive = Edison-Kermit prompt

1 <rtn> look at directory drive 1

l.8.3 £Sending and Receiving Binary Files.

You need make at most two changes to the sample sessions to
send or receive binary files. In the above sample sessions
a star has been placed in front of each line where a change

must be made., The command

text

must be changed to

binary,

and the command

kermit r

must be changed to

kermit ri

Appendix B. Hints for Edison Programmers.
2.1 Introduction.

This appendix will try to help future Edison programmers by
discussing information which was learned the hard way while
completing this project. This appendix is broken into three
parts: information that will be helpful while using the
standard Edison System, information that can be used when
making changes to the Edison operating system and kernel,
and information that can help a programmer trying to use the
serial port on the microcomputer and Kermit on the micro and

Unix,
2.2 Helpful Hints On Using Standard Edison.

The operating system commands: copy, newsystem, and newker-
nel and all the auxiliary programs do not ask the drive
number where a file is to be found. The system begins
searching for a file on disk 0. If it finds a file of that
name on disk 0 then it does not check any further. This of
course can lead to problems if the file you want to use is
on disk 1 and a file with the same name is on disk 0. It is
recommended that name ambiguity be checked for before you

begin any of the operations listed above.

Chapter 3 of this report discusses some things to be aware
of while using the Edison editor. Those suggestions are
repeated here. After editing a file the editor will ask if

you want the changes saved. You must respond with the word

—_

yes if the changes are to be saved. Anything other than the

word yes and the changed file will not be written to the

disk.

Before using the editor, it is important to check to see how
many free pages are left on the disk where the file is to be
saved. For a file to be saved, there must be at least as

many free pages on the disk as the size of the file to be

saved.,

A final precaution is to check for a name ambiguity. If you
try to save a file on a disk where that file name already
exists, then the file will not be saved. For example con-
sider the case where you edit a file that originally was on
disk 0. If there is not enough room to save the file on
that disk, then you must save it on disk 1. However, if
that file name already exists on disk 1, the edited file
will not be saved. The easiest way to prevent this problem
is to check the file catalog before editing, and make cer-

tain there will be no name ambiguity.

Two common compile errors are misplacement of a semicolon
and name ambiquity. The semicolon usage in Edison is dif-
ferent from Pascal. Make certain you place a semicolon
between statements, but never before the reserved words
proc, var, begin, end, array, const, record, else, or
module. Another possible error to watch out for is name
ambiguity, which can occur if two 4identical names are

exported from different modules.

- 71 -

The readsector procedure in the prefix can be very useful
for reading a disk sector. If you should use this procedure
to read the file catalog, remember that the parameter 1list
of readsector contains a sector number, but what is read in
the file catalog is a page number. To convert a page number

to a sector number use the formula
sectornumber = (pagenumber - 1) * 2,

2.3 Helpful Hints When Changing the Edison Operating System
and Kernel.

If you need to make changes to the Edison operating system
or kernel, this section has information which was discovered

while doing this project.

The compiler can fail to work correctly because a 1limit is
exceeded in the compiler. The compiler failures are listed
on pages 139-140 of reference [Bri 1982] in the bibliogra-
phy. To fix this sort of error, identify the reason for the
failure, increase the size of the constant which caused the
failure, and recompile the compiler textfile where the

change was made.

The BIOS interrupt routines are called in the kernel. The
Programmer's Utility Guide [Zen 1984] has a very clear
description of what each of the interrupts does and should
answer most gquestions you might have about the BIOS rou-
tines. The only problem encountered in making changes to

the kernel was discovering that the kernel maxparameter

_72...

constant must be increased by one every time a procedure is

added to the list of other kernel entry procedures.

If procedures are added to the prefix of the operating sys-
tem, then all programs that are used with that operating
system must have their prefix changed to agree with the new

prefix,

The operating system must fit on pages 7 through 24 of the
system disk. If the operating system becomes tooc large, it
may become necessary to increase the number of pages given
to the operating system. It may be tempting to increase the
upper page limit to more than 24, but then this will write
over the disk catalog, and this will cause a lot of prob-

lems,

The easiest solution is to eliminate unnecessary operating
system procedures until the system fits on the normal pages.
However, if this will not work, the next best alternative is
to change the kernel so that it expects to find the operat-
ing system at the top end of the page numbers. The operating
system loader is found at the end of kerneltextl and it is
only necessary to change the progsector constant from 7 to
the new value, The newsystem procedure in the operating
system must also be changed so that the operating system is
placed at the proper location on the floppy disk. The Sy s—
temaddr and systemlimit constants in the newsystem procedure
must be changed to the new starting page number and the new

length of the operating system,

73.

One final problem that occurred was a name overflow. This
is caused by overflowing the store., When a program is run,
the variables and constants are placed in the store. Every
new block that is entered has its local variables added to
the store. 1If there are too many global variables, then
when a new block with too many local variables is entered,
there will not be sufficient room in the store for the local
variables. The only easy cure for this problem is to try to
eliminate as many variables as possible, particularly global

variables.
2.4 Helpful Hints on the Serial Port, Kermit, and Unix.

In the process of writing the Edison-Kermit system some
information was gained that might be helpful to persons

interested in this part of the project.

Once the baud rate on the serial port was set, it was
thought that sending characters to the port and receiving
characters from the port would always be done at the proper
rate. That is not true and it is up to the programmer to
make certain that characters are not overrun when they are

sent, nor extraneous characters taken from the port.

The receive procedure returns an integer which contains
character and port status information. The port status
information reports when no character has arrived at the
port within one second. When the receive procedure was

first written, only character information was returned.

- 74 =

Written this way the procedure appeared to receive an ASCII

character 96 when no character had arrived at the port.

For sending characters it is necessary to have a separate
kernel procedure which tests the port and makes certain the
last character has been completely sent before a new charac-
ter is placed in the send register. One difficulty that was
encountered is that the port test procedure can not be used
without a time delay between calls. If the time delay is
not long enough, then the test_port procedure does not work
correctly. The solution was to use a delay loop which is
done before a call to the test port procedure. If the delay
time is not long enough, then Edison-Kermit will stall out,
since the test_port procedure will always report that the

send register is not empty.

One very big help in working on the port communications was
a cable that was used to connect between the serial ports of
two microcomputers. Once the serial port procedures were
written, they were tested by loading the modified operating
systems on the two microcoﬁputers and testing to see if

characters could be sent between the two computers.

A cable was also used when testing the Edison-Kermit pro-
cedures, This cable was connected to Unix and three micro-
computers. One of the micros served as a terminal and the
other two were used to monitor what was sent by the terminal
micro and by Unix. 1In this way the actual Kermit packets

sent by the terminal and by Unix could be observed.

_75.—

Once logged onto Unix through the serial port the command,
stty vt05, must be given. This command has Unix delay send-
ing the next character after a carriage return. In Edison
there 1is a delay after a carriage return, and because of
this, the first character of a line will be 1lost at 1200

baud unless the stty vt05 command is given,

When the microcomputer is first connected to Unix, a car-
riage return, i.e., CHAR(13) must be sent before the login
prompt is displayed. You must use a CHAR(13) rather than a
CHAR(10) because Unix uses this first character to determine
what to send for the new line character. If CHAR(10) is
sent, only a line feed and not a carriage return will come

back from Unix,

The Unix Kermit has a coding error which was discovered when
trying to have Unix receive a binary file. The Unix Kermit
requires an i to be added to the command line when a binary
file is to be sent or received, This i should force the
Kermit Protocol to use bit seven of each byte, 'but in the
Kermit program bit seven is automatically made zero without
consideration of whether an i appeared on the command 1line.
A local copy of Kermit was changed by adding an if statement
to the Kermit program so that bit seven is zeroed only if an
i does not appear on the command line. To change a local
copy for your own use, copy or mail the Kermit source code
from the Interdata 3220 /usrb/wb/kermit/kermit2.c to your

own account. Change the code in procedure xread from

- 76 -

buf[i] &= 0x7£f; to if(limage) buf[i] &= 0x7f;

In Unix you type cc kermit2.c which will compile the code
and produce object code in a.out. If is is necessary to
have Unix receive a binary file, you must use this 1local

copy of Kermit,

The problem that took the longest time to discover occurred
when Edison-Kermit was to send a relatively long file. The
transfer usually failed when the first data frame was sent.
The Unix Kermit was timing out because the Edison-Kermit
system was slow in sending that first data frame. The fix
for this problem was to tell the Unix Kermit to wait longer
before timing out. This 1is done by sending the needed
timeout period in the send initialization packet. See

chapter 4 of this report for details of how this is done.

Appendix C: Sample EKermit Session.

The following is an example of a Kermit session,

Packet Sent Explanation

“A) SH(e-#" send init

“A) YH(@-#% ack for send init
“a+ ! FMOON, DOC2 file header

“A$L1Y? ack for file header

“AE"D No celestial has required J

first data frame

“Ag"Ye@ ack for data frame

“AE#Das much labor for th%%%tudy of its#

bad data frame

“A$#NS nak for bad frame

“A##ZB eof frame

“A##YA

“A#SB+

“A#SYB

The

of header.

each packet, but in short the fields

Type, Data,

values of each of the fields for

Chapter

Checksum,

- 78 =

ack for eof frame

eot frame

ack for eot frame

the

are:

first packet

“A at the beginning of each packet stands for SOH, start

4 of this report gives the fields for

SOB, Len,

The following table will explain the

The symbols sp stand for the space character.

Packet Field Name Subfield Name Meaning

sp

sp

SOH

Length

Seq Num

Packet Type

Data

Data

Data

Data

max pkt. len.
timeout period

num. padding
characters

padding char.

start of header

4 - 32 =9
chars following
length field

32 -32=0
first packet

send init. pkt.

72 - 32 = 40

40 - 32 = B sec.
32 - 32 =0

@

Seq,

above,

‘79

- Data end of line 45 - 32 =13
character carriage rtn char.
Data control quote prefix for a
. character control char.
~ Checksum checksum is 94

ASCII character °

The checksum is obtained in the following manner.

characters) sp S H (sp @ = #
ASCII values 41 32 83 72 40 32 64 45 35

Notice the SOH and checksum fields were not included. The
total of the ASCII values is 444. Moding this with 256 will
keep only the low byte. The low byte is 188 base ten, and
this converted to base two is 10111100, Adding bits 7 and 6
to bits 5 through 0, the result 111110 is obtained. This

number in base ten is 62, and adding 32 to this gives 94.

The next frame is just the acknowledgment for the
"Send Initialization™ packet. The next frame sends the
file name, which in this case is MOON.DOC. A series of data
frames are sent, until a frame is sent which is corrupted
in transmission, The receiver sends a nak for this
packet, and the sender retransmits the packet. When all
of the data have been sent, an end of £file packet is
transmitted. This packet 1is acknowledged and an end of

transmission is sent and acknowledged by the receiver.

APPENDIX D

This appendix contains the modified kernel «c¢ode used with
the Edison-Kermit system,

$ "Edison kernel for the IBM Personal Computer

] and the Compag Portable Computer

$ Part 1 of 2

$ 18 August 1982

$ (Revised 20 May 1983)

$ Copyright (¢) 1982 Per Brinch Hansen"

$ Changes made 1985 by Terry Scott indicated by *'s
base 1280

do start: proc kernel

$
jump(disks)

$ const overflow = false;
const false = 0 $ baseaddr = 640;
const true =1 s maxaddr = 9999 -
const maxaddr = #177774

$ array store
reg ax(0) $ [0:maxaddr] (int)
reg bx(3)
reg cx (1) $
reg dx(2) $
reg sp(4)
reg b(5)
reg s(6)
reg p(7)
word €

var st: store;
b, s, £, p: int

<n

pre proc diskproblem

module "disks"
const extendsign = #231
const sectorlength = 512 * const sectorlength = 256
const sector = 256 * array sector
[l:sectorlength] (int)
const drive = 0 * const drive = 0;
const input = 513 input = 513;

const output = 769 output = 769

var loaded: bool;
errors: int

word loaded
word errors

proc diskerror
begin
"BIOS_disgkreset;"
if loaded do
errors := errors + 1;
if errors = 3 do
diskproblem;

const diskreset = (

do diskerror:
move(diskreset, ax)
interrupt(19)
compare(true, st[loaded])
ifnotequal (diskerror2)
increment(st([errors])

W -4 An <0 N N-nAn w0 2]

compare(3, st[errors])
ifnotequal (diskerror2)
call(diskproblem)
move(0, sterrors])

do diskerror2:
return

word headno

word trackno

word sectorno

do diskio:
move(sp, bx)
move (st [bx+4], ax)
instr (extendsign)
move {320, cx)
divide (cx)
move({ax, st[headno])
move (st [bx+4], ax)
instr (extendsign)
move({80, cx)
divide(cx)
halve (dx)
move(dx, stltrackno])
and(3, ax)
move (st [bx+4], dx)
and(l, dx)
double (dx)
double(dx)
add(dx, ax)
increment (ax)
move(ax, st[sectornol])
move(0, st[errors])

do diskio2:
move(sp, bx)
move(st[headno], dx)
move (8, cx)
shiftleft(dx)
add(st[bx+6], dx)
move (st [trackno], ax)
move(8, cx)
shiftleft(ax)
add(st[sectorno], ax)
move (ax, Cx)
move(st[bx+8], ax)
move (st [bx+2], bx)
interrupt (19)
ifnotcarry(diskio3)
call(diskerror)
jump(diskio2)

do diskio3l:
return(8)

const formatl = 1280
const sectortype = 512

- 81

$
$
$
$

-m-:n-r.n-tn-m-m-m-m-cnmmmmmmmmmmmmmmmmmmmmmmmm

errors := 0
end
end
end

* proc diskio(
operation,
driveno,
sectorno,
address: int)
var headno, trackno: int;
again: bool
begin
"0 <= sectorno <= 639"
headno :=
sectorno div
trackno :=
sectorno mod
sectorno :=-
sectorno div 80 mod 4
+ sectorno mod 2 * 4
+ 1;
errors := 0;
again := true;
while again do
"BIOS_diskiof(
operation,
driveno,
headno,
trackno,
sectorno,
address,
again) ;"
if again do
diskerror
end
end
end

320;
80 div 2;

$§ * proc formattrack(

driveno, trackno: int)

const sectors = 8
array table [15]
word endtable
word headno2

word trackno2

do formattrack:
move (sp, bx)
move(st[bx+2], ax)
instr (extendsign)
move (40, cx)
divide (cx)
move (ax, st[headno2])
move (dx, st[tracknol])
move (8, cx)
shiftleft(ax)
add (dx, ax)
move (sectortype, cX)
move(table, bx)

do formattrack2:
increment (cx)
move (ax, st[bx])
move (cx, st[bx+2])
add (4, bx)
compare(endtable, bx)
ifnothigher(formattrack2)
move(0, st[errors])

do formattrack3:
move (sp, bx)
move (st [headno2], dx)
move (8, cx)
shiftleft(dx)
add(st[bx+4], dx)
move(st[trackno2], ax)
move (8, cx)
shiftleft(ax)
move (ax, CX)
move({table, bx)
move (formatl, ax)
add (sectors, ax)
interrupt(19)
ifnotcarry(formattrackd)
call(diskerror)

- jump(formattrack3)

do formattrack4:
return(4)

const loadaddr = 31744
word addr
word sectorno2
do disks:
move (0, ax)
move_ss{ax)
move_ds (ax)

1
(o]
(%]

I

n-nnnhnnnnanBonnnannnonnoannn oo s AN U

*

AN N n

const sectortype = 2;

sectors = 8

"packed" record item(

track_no,
head_no,

‘sector_no,
sector_type: int

array list [1:8] (item)
var table: list;

headno, sectorno: int;
again: bool

begin

"0 <= trackno <= 79"
headno :=
trackno div 40;
trackno :=
trackno mod 40;
sectorno := 1;
while sectorno <= 8 do
table[sectorno] :
item(trackno,
headno,
sectorno,
sectortype);
sectorno :=
sectorno + 1
end;
errors := 0;
again := true;
while again do
"BIOS_format(driveno,
trackno, headno,
table, sectors,
again);"
if again do
diskerror
end
end

end

const minaddr = 999

var addr, sectorno: int
begin

"Input this module
from the autolocad sector
(sector 0 on disk Q) and
place it at the load

- 83 -

move_es(ax)

move (maxaddr, sp)
move (loadaddr, s)
move (start, p)
move(sector, c¢x)

address (31744);
Set the four
registers to zero;

Place the kernel stack
temporarily at maxaddr;

segment

do disks2: Move the autoload
move(st[s], ax) sector to the base
move(ax, st[p]) address (1280) - the
add(2, s) first address after the
add(2, p) BIOS data area;
loop(disks2) Input the rest of the
jump_cs {0, disks3) kernel;"

loaded := false;
sectorno := 0;

do disks3:

move(false, st[loaded])

move (0, st[sectornoll]) addr := baseaddr;

move(start, st[addr]) while addr < minaddr do
do disksd: sectorno :=

compare (minaddr, st[addr]) sectorno + 1;

ifhigher(disks5) addr :=

addr + sectorlength;
diskio(input, drive,
sectorno, addr)

increment {st[sectorno2})
add(sectorlength, st[addr])
move (input, ax)

push(ax) end;
move{drive, ax) loaded := true
push({ax) "Place the kernel stack

at its final position”

push(st[sectorno?])
end "disks"

push(st[addr])
call(diskio)
jump(disksd)

do disks5:
move(true, st[lcaded])
move (stackbottom, sp)

“rnLnnnunnnunnnanannannnnnnnnnonn

jump(screen) $ "end of autoload sector"
pad 1792 $ enum opcode (
do opcode: $ "standard codes"
jump (addx) s add4,
jump(alsox) $ alsod,
jump (andx) $ and4,
jump(assign) $ assign4,
jump(blank) $ blank4,
jump(cobeginx) $ cobegindg,
jump(constant) $ constantd,
jump(construct) $ construct4,
jump (difference) $ differenced,
jump (dividex) 5 divide4,
jump (dox) $ dod,
jump (elsex) $ elsed,
jump (endcode) s endcoded,
jump (endlib) $ endlib4,
jump (endproc) S endprocé4,
jump (endwhen) $ endwhen4,
jump (equal) $ equal4,
jump(field) $ fieldd,

jump(goto)
jump(greater)
jump (inx)

jump (index)
jump(instance)
jump(intersection}
jump(less)

jump (libproc)
jump({minusx)
jump (modulo)
jump(multiplyx)
jump(newline)
jump (notx)
jump(notequal)
jump(notgreater)
jump(notless)
jump(orx)
jump(paramarg)
jump(paramcall)
jump(procarg)
jump (proccall)
jump(procedure)
jump(process)
jump(subtractx)
jump(union)
jump(valspace)
jump(value)
jump(variable)
jump (wait)

jump (whenx)
jump (addrx)
jump (haltx)
jump (obtainx)
jump(placex)
jump(sensex)

jump(elemassign)
jump(elemvalue)
jump(localcase)
jump(localset)
jump(localvalue)
jump(localvar)
jump (outercall)
jump(outercase)
jump (outerparam)
jump(outerset)
jump (outervalue)
jump(outervar)
jump (setconst)
jump(singleton)
jump(stringconst)

align

1
V- 1 NN AN D AN N D N0 m-m-m-mmm-mmmmmmmmmmmmmmmmmmmmmmmm-m-m-m-u.-.-w g
: 1

goto4,
greater4,
in4,
index4,
instanced,
intersection4,
lessd,
libprocd,
minus4d,
modulod,
multiply4,
newlined,
notd,
notequald,
notgreater4,
notlessd,
ord,
paramarg4,
paramcalléd,
procarg4,
proccalld,
procedured,
process4,
subtract4,
uniond,
valspaced,
valued,
variabled,
wait4,
whend,
addr4,
halt4,
obtaind,
place4,
sensed,

"extra codes"
elemassignd,
elemvalued,
localcased,
localset4,
localvalued,
localvard,
outercalld,
outercased,
outerparamé4,
outersetd,
outervalued,
outervard,
setconst4,
singletond,
stringconstd4)

array

stack [99]

word stackbottom

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

const
const
const
const
const
const
const

const
const

const
const
const

const
const
const
const

array

bel = 7
1f

pdpll = false
cursorno = 0
eraseno = 1
displayno = 2

acceptno = 3
printno = 4
getno = 5
putno = 6
formatno = 7
initportno =

sendportno
recportno = 1
testkeyno = 1
testportno = 12
maxparam = 13
paramlength = 58
namelength = 24
name = 12

setlimit = 127
setlength = 16
settype = 8

maxproc = 20
maxproc = 20
statelength = 8
queue = 80

q [queue]

word this
word tasks
word stacktop
word progtop
word blocked

ol -

const

bel = char(7):
1f = char(10);
cr = char(13);
nl = 1f;
sp="'";
none = 0;
pdpll = false;

cursorno = 0;
eraseno = 1;
displayno = 2;
acceptno = 3;
printno = 4;
getno = 5;
putno = 6;
formatno = 7;

hhkdkhkhkhkkhkhkhhkhhhhhkthkhkhkkhhhhkhkkkhk

* initportno = 8; *
* gendportno = 9; *
* recportno = 10; *
* testkeyno = 11; *
* testportno = 12; *
*

maxparam = 13 "procs" 8 to 13 *
* paramlength = 19 wrds;38to 58 *
khkhkhhthhkhhkhdhdhhbdhkdthhkkhktdhddddd
const namelength = 12

array name [l:namelength] (char)

textlength = 80
text [l:textlength] (char)

const
array

const setlimit = 127
set settypel (int)
const setlength = 8

array settype2[l:setlength] (int)
const maxproc = 20
const maxproc = 20

record procstate(bx,sx,tx,px:int)
array queue [l:maxproc] (procstate)
(]

var q: gueue;
this: int;
tasks: int;
stacktop: int;
progtop: int;
blocked: bool

module "screen"

const maxrow = 25
const maxcolumn = 80
const pageno = 0

const putl = 512
do putcursor:
move (sp, bx)
move (putl, ax)
move (st [bx+4], dx)
decrement (dx)
move (8, cXx)
shiftleft(dx)
add (st [bx+2], dx)
decrement (dx)
move (pageno, bx)
push(b)
interrupt(16)
pop(b)
return(4)

const getl = 768

do getcursor:
move(getl, ax)
move (pageno, bx)
push(b)
interrupt(16)
pop(b)
move (dx, ax)
move(8, cx)
shiftright(ax)
increment (ax)
and(#377, dx)
increment (dx)
move(sp, cx)
move(cx, bx)
move (st [bx+4], bx)
move({ax, st[bx])
move (cx, bx)
move(st[bx+2], bx)
move (dx, st[bx])
return(4)

const portl = 0

do initportl:
move(portl, dx)
move (sp, bx)
move (st [bx+2], ax)
push(b)
interrupt (20)
pop (b)
return(2)

const send = 256
do sendportl:

- 86 -

* const maxrow = 25;
maxcolumn = 80

$

$

$ * proc putcursor(
$ row, column: int)
$ begin

S "]l <= row <= maxrow,
] 1l <= column <=

s maxcolumn”
$ FOW := IOW — 1;

$ column := column - 1
$ "BIOS_putcursor(

$ row, column)"

$ end

* proc getcursor(
var row, column: int)
begin
"BIOS_getcursor(
row, column);"
row := row + 1;
column := column + 1
"l <= row <= maxrow,
1l <= column <=
maxcolumn"

O U0 N NN NN A S W

end

$**********************************

$ * proc initportl(value: int) *
$ const portl = 0 "set to COM1" *
$§ begin *
$ Bios_configport(portl,value)*
$ end *
$**********************************

$*********************************
$ * proc sendportl(value: char) *#*

move(portl, dx)
move(sp, bx)
move(send, ax)
add (st [bx+2] ;ax)
push(b)
interrupt (20)
pop (b)

return(2)

const testk = 256

do testkeyl:
move(testk, ax)
interrupt(22)
ifnotequal (testkey2)
move (#0, ax)
jump (testkey3)

do testkey2:
move(#l, ax)

do testkey3:
move (sp, bx)
move(st[bx+2], bx)
move({ax, stlbx])
return(2)

const receive = 512

do recportl:
move(portl, dx)
move(receive, ax)
interrupt (20)
move(sp, bx)
move(st[bx+2], bx)
move (ax, st[bx])
return(2)

const testp = 768

do testportl:
move(testp, ax)
interrupt (20)
move (sp, bx)
move (st [bx+2], bx)
move({ax, st[bx])
return{2)

const writel = 3584
do write:
move (sp, bx)
move(writel, ax)
add (st [bx+2], ax)
move (pageno, bx)
push(b)
interrupt(16)
pop(b)
return(2)

- 87 -

$ begin *
$ "Bios_sendport(value) *
$ end *
$*********************************

$*********************************
§ * proc testkeyl(var value: int)*

$ var num: int *
$ begin *
$ "Bios_testkey(num) ;" *
$ if num = 0 do *
$ value = 0 *
$ else true do *
3 value = 1 *
$ end *
S end *
$*********************************

$*********************************
$ * proc recportl(var value: int)¥*

$§ Dbegin %
$ "Bios_recport(value)" *
$ end *

$*********************************

s*************************t*******
$§ * proc testportl(var value:int)*

$ begin *
$ "Bios_testport(value)" *
$ end *
$*********************************

$ * proc write(value: char)
$ begin

$ "BIOS_writetty(value)"
$ skip

$ end

_BB-

do writechar: $ * proc writechar(
move(sp, bx) $ value: char)
push(st[bx+2]) $ begin
compare(lf, st([bx+2]) s if value = 1f do
ifnotequal (writechar2) $ write(cr)
move(cr, ax) $ end;
push(ax) $ write(value)
call(write) $ end

do writechar2:
call(write)
return(2)

const period = ',! § * proc writetext(

do writetext: 8 value: text)
move(sp, bx) ‘ $§ const period = ',!
move (st [bx+2], bx) $ var i: int; c: char
move(st[bx], ax) $ begin
compare{period, ax) 8 i:=1;
ifequal(writetext2) $ c := value[l];
push({ax) s while ¢ <> period do
call(writechar) S writechar(c);
move (sp, bx) $ i:=1+1;
add(2, st[bx+2]) $ ¢ := value[i]

. Jump(writetext) $ end

do writetext2: $ end
return(2)

word il * proc writeint(value: int)

array table [1l:6] (char)
var no: table; i: int
begin "value >= 0"
if value = 0 do
i :=1; no[l] := '0!
else value > 0 do
i = 0;
while value > 0 do

do writeint:
move (sp, bx)
move (0, st[il])
move(st[bx+2], ax)
do writeint2:
increment (st[ill])
instr(extendsign)
move(l0, c¢x)

divide (cx) i =1+ 1;
add('0', dx) nol{i]l := char(value mod
push(dx) 10 + int('0'));

value := wvalue div 10
end
end;
while i > 0 do
writechar(no[i]; i =1 - 1

compare(0, ax)
ifgreater(writeint2)
do writeint3:
call(writechar)
decrement (st[il])

ifnotequal (writeint3) end
return(2) end
word i2 * proc writename (

value: name)
var i; int; c: char
begin
i = 0;
while 1 < namelength do
i =14+ 1;
¢ := value[i]:

do writename:
move(name, st[i2])

do writename2:
move(sp, bx)
move (st [bx+2], bx)
move (st [bx], ax)
compare (space, ax)

U NN NN N AN DD

ifequal (writename3)
push(ax)
call(writechar)

do writename3:
move (sp, bx)
add(2, st[bx+2])
decrement (st[i2])
ifnotequal (writename2)
return(2)

const write_ac = 2304

const attribute = 7

word row

word column

do erasescreen:
move(row, ax)
push(ax)
move (column, ax)
push(ax)
call(getcursor)
move (maxrow, ax)
subtract(st[row], ax)
increment(ax)
move(maxcolumn, cx)
multiply(cx)
subtract (st[column], ax)
increment (ax)
move({ax, cx)
move(write_ac, ax)
add(space, ax)
move (pageno, bx)
add (attribute, bx)
interrupt (16)
return

do beep:
move (bel, ax)
push(ax)
call(write)
return

$§ "The screen initialization has been slightly modified to make
$ the kernel work on both the IBM-PC and the Compag Portable"

const SetBW80x25 = 2
do screen:
push (b)
move (SetBW80x25, ax)
interrupt (16)
pop(b)
jump (keyboard)

- 89 -

$ if ¢ <> sp do
$ writechar(c)
$ end

S end

$ end

* proc erasescreen
var row, column,
positions: int
begin
getcursor(row, column);
positions :=
(maxrow — row + 1)
* maxcolumn
- column + 1
"BIOS_write_ac(
positions, sp)"

% -0 0 0 U AN RN i AN D

()]
3
Q.

$§ * proc beep
$ begin write(bel) end

begin
"BIOS_setmode(
BW80x25)"
skip
end "screen"

AN nn

$ module "keyboard"

const nul =

const del =

const readl

do read:
move (readl, ax)
interrupt (22)
move(ax, dx)
and (#377, ax)
move (B, cx)
shiftright(dx)
and (#377, dx)
compare(nul, ax)
ifnotequal (read3)
compare(59, dx)
ifless(read2)
compare(82, dx)
ifgreater(read2)
move (dx, ax)
subtract (57, ax)
Jjump{read4)

do read2:
compare(83, dx)
ifnotequal (read4)
move (del, ax)
jump(read4)

do read3: :
compare(del, ax)
ifnotgreater(read4)
move(nul, ax)

do read4:
move(sp, bx)
move(st[bx+2], bx)
move(ax, st[bx])
return(2)

const teststatus 256

do ready:
move(teststatus, ax)
interrupt(22)
move(sp, bx)
move(false, st[bx+2])
ifequal({ready?2)
increment (st [bx+2])

do ready2:
return

text pausetext
'Push RETURN to continue.
word response
dc pause:
move (pausetext, ax)
push(ax)
call (writetext)

1
Ve
o

V- n -4 - - -n -

- n

- nnin

const nul char(0);
del char(127)

* proc readx(
var value: char)
var keyno: int
begin
"BIOS_read(keyno,
value);"
if value nul do
if (59 <= keyno) and
(keyno <= 82) do
value :
char(keyno - 57)
else keyno = 83 do
value := del
end
else value > del do
value := nul
end
end

* proc ready: bool
begin
"BIOS_teststatus(
val ready);"
skip
end

* proc pause
var response: char
begin
writetext{text(
'Push RETURN to',
' continue.')):;
readx (response) ;

move(response, ax)
push(ax)
call(read)
move(nl, ax)
push(ax)
call(writechar)
return

do keyboard:
jump(printer)

const printerno = 0

const printl = 0

do printchar:
move(sp, bx)
move(printl, ax)
add(st[bx+2], ax)
move(printerno, dx)
interrupt (23}
return(2)

const reset2 = 256
do printer:
move(reset2, ax)
move(printerno, dx)
interrupt(23)
jump (failure)

word bO
word s0
word tO
word p0

do loadname:
push(s)
move (sp, bx)
move (st [bx+6], &)
move (st [bx+4] , bx)
move (name, Cx)

do loadname2:
move(st[s], ax)
move (ax, st([bx])
add(2, s)
add(2, bx)
loop(loadname?2)
pop(s)
return(4)

do findname:
move(st[t], bx)
compare(l, st{tasks])
ifequal (findname2)
move (st [progtop], bx)

- 91

- N

ANy 0 U D < < n

o 4N A n

O U U U0 D N D AN D

- N0

writechar(nl)
end

begin skip
end "keyboard"

module "printer"

* proc printchar(
value: char)
begin
"BIOS_print(value)"
skip
end

begin
"BIOS_resetprinter”
skip
end

module "program failure"

proc loadname(addr: int;
var value: name)
var i: int
begin
i:=0;
while i < namelength do
is=1i+1;
value[i] := char(
st[addr + 1 - 1])
end
end

proc findname(var id: name)
var addr: int
begin
if tasks =1 do
addr := £t + 1

do findname2:
add(2, bx)

do findname3:
compare(bx, p)
1fnoth1gher(f1ndname4)
push(bx)
move(sp, bx)
push(st[bx])
push(st[bx+4])
call(loadname)
pop (bx)
add (namelength, bx)
add(st{bx], bx)
jump(findname3)

do findnameé:
return(2)

text linetext = ' line .°'

array idl [name]

do stop:
move(idl, ax)
push(ax)
call(findname)
move(nl, ax)
push(ax)
call(writechar) .
move(idl, ax)
push(ax)
call(writename)
move(linetext, ax)
push(ax)
call(writetext)
move(sp, bx)
push(st[bx+4])
call(writeint)
move(space, ax)
push(ax)
call(writechar)
add(2, sp)
call(writetext)
move(nl, ax)
push(ax)
call(writechar)
call (beep)
move(stackbottom, sp)
move(false, st[blocked])
move(l, st[this])
move(l, st[tasks])
move (st [b0], b)
move (st[s0], s)
move(st[t0], ax)
move (ax, st[t])
move(st[p0], p)
jumpx (st [p])

1
w
[8]

O W 0 0 N - D D D

Oy N WD AN NN DN AN WD

else true do
addr := progtop + 1
end;
while addr < p do
loadname (addr, id):;
addr :=
addr + namelength;
addr :=
addr + st[addr]
end
end

* proc stop(lineno: int;
reason: text)

var id: name

begin
findname(id);
writechar(nl);
writename(id);
writetext(text(

' line .")):
writeint (lineno);
writechar(sp);
writetext(reason);
writechar(nl);
beep;

"restart system"
kernel
end

text'processtext =

'process limit exceeded.'

do processlimit:
pop(cx)
move (processtext, ax)
push(ax)
call(stop)

text variabletext =

'variable limit exceeded.'

do variablelimit:
pop(cx)
move(variabletext, ax)
push(ax)
call(stop)

text rangetext =
'range limit exceeded.'
do rangeerror:
pop{cx)
move (rangetext, ax)
push(ax)
call(stop)

text calltext =
'invalid program call.'
do callerror:
pop(cx)
move(calltext, ax)
push(ax)
call(stop)

text standardtext =

'invalid standard call.'

do standarderror:
move(l, ax)
push(ax)
move(standardtext, ax)
push(ax)
call(stop)

word lineno

do dividetrap:
push(st[lineno])
call(rangeerror)

const dividevector = 0

do failure:
move(dividevector, bx)
move(dividetrap, ax)
move (ax, st[bx])
move(0, st[bx+2])
jump(begin)

0
W

- n4dn - -n - 4n n N W AN AN D N i nn w4 ;W n

i nnin N wnn

* proc processlimit(
lineno: int)
begin
stop(lineno, text(
'process limit',
' exceeded.'))
end

* proc variablelimit(
lineno: int)
begin.
stop(lineno, text(
'variable limit',
' exceeded.'))
end

* proc rangeerror
lineno: int)}
begin
stop{lineno, text({
'range limit!?,
' exceeded.'))
end

* proc callerror(
lineno: int)
begin
stop(lineno, text(
'invalid program',
' call.'))
end

* proc standarderror
begin
stop(l, text(
'invalid standard’,
' call."'))
end

* proc dividetrap(
lineno: int)

"called by processor only"

begin rangeerror(lineno)
end

begin
"set the divide trap”
skip
end "program failure"

94

post proc diskproblem
begin
writetext(text(nl,
'Disk error, .'));

text disktext =
'[10]Disk error, .'
do diskproblem:
move (disktext, ax)

RO R OROEGEGE GRS

push(ax) beep;
call(writetext) pause
call(beep) end
call(pause)
return
$ proc loadset(addr: int;
$ var value: settypel)
$ var i: int
$ begin i := 0;
$ while i < setlength do
$ i =1+ 1;
S value:settype2{i] :=
$ st[addr + 1 - 1]
$ end
$ end
S proc storeset(addr: int;
$ value: settypel)
$ var i: int
8 begin i := 0;
$ while i < setlength do
S i:=1i+1;
$ stf[addr + 1 = 1] :=
$ value:settype2[i]
$ end
$ end
do preempt: $ proc preempt
move(st[this], bx) $ begin
decrement (bx) $ g[this] .bx := b;
move({3, Cx) $ glthis].sx := s;
shiftleft(bx) $ g[this].tx := t;
add(g, bx) $ glthis].px := p
move (b, st[bx]) $ end

move(s, st[bx+2])
move(st[t], ax)
move(ax, st[bx+4])
move(p, st[bx+6])

return

do resume: $ proc resume
move(st[this], bx) $ begin
decrement (bx) $ b := g[this] .bx;
move(3, cx) $ s := g[this] .sx;
shiftleft (bx) $ t := gl[this] .tx;
add (g, bx) $ p := g[this].px
move(st[bx], b) $ end

move (st [bx+2], 8)
move (st [bx+4], ax)
move (ax, st[t])

move(st[bx+6], P)
return

do switch:
call(preempt)
move(st[this], ax)
increment (ax)
compare{ax, st[tasks])
ifnotless{switch2)
move(l, ax)

do switch2:
move(ax, st[this])
call(resume)
return

const maxcode 24576

do moveprogram:
subtract (maxcode, s)
move (st [s+2], cx)
subtract (namelength,
add(namelength, cx)
push(s)
add(cx, s)
move(st[t], bx)
subtract (cx, st[t])
halve(cx)

do moveprogram2:
move({st([s], ax)
move(ax, stlbx])
subtract(2, s)
subtract (2, bx)
loop(moveprogram2)
pop(s)
return

s)

const progsector = 12

word sectornol

word addrl

do loadprogram:
move(s, stl[addrl])
add(2, st[addrl])
add (namelength, s)
add(maxcode, s)
move (progsector,

st [sectornel])

do loadprogram?2:
compare(st[addrl], s)
ifnothigher(loadprogram3)

move (input, ax)
push(ax)
move(drive, ax)

push({ax)

= 85

w-nnnnnin

$

$
$

4

NN -n-nnag

$
$I‘l
$
$
$
$
$
$
$
$
$
$
$
g
$
$
$
$

proc switch
begin
preempt;
this
this mod tasks + 1;
resume
end

.=
-

const maxcode= 12288 "12 K words"

proc moveprogram
var m: int

o
o
La
-
e |

m := st[s - maxcode + 1]
+ namelength;
& := s - maxcode
namelength;
t - m;

const progsector = 12
set starting location of os."
proc loadprogram
var sectorno, addr: int
begin
addr := s + 1;
5 := 8 + namelength
+ maxcode;
sectorno := progsector;
while addr < s do
diskio(input, drive,
sectorno, addr):;
sectorno :=
sectornoc + 1;
addr :=
addr + sectorlength
end;
moveprogram

- 96 -

push(st[sectornol]) $ end
push(st[addrl])

call(diskio)
increment (st [sectornol])
add(sectorlength, st[addrl])

jump (loadprogram2)

do loadprogrami:
call(moveprogram)
return

do initialize: proc initialize

$
move(false, st[blocked]) $ begin
move(l, st[this]) S blocked := false;
move(l, st[tasks]) S this := 1;
move (minaddr, b) 3 tasks := 1;
add(paramlength, b) $ b := minaddr + paramlength;
mOVE(dellr st[b-58]) $*****************************
move(maxrow, st[b-56]) $* st[b - 29] := int(pdpll);*
move (maxcolumn, st[b-54]) $* st[b - 28] := maxrow; *
move{cursorno, st[b-50]) $* st[b - 27] := maxcolumn; *
move(eraseno, st[b-46]) $* st[b - 25] := cursorno; *
move(displayno, st[b-42]) $* st[b - 23] := eraseno; *
move(acceptno, st[b-38]) $* st[b - 21] := displayno; *
move (printno, st[b-34]) $* st[b - 19] := acceptno; *
move(getno, st[b-30]) $* st[b - 17] := printno; *
move(putno, st[b-26]) $* st[b - 15] := getno; *
move (formatno, st[b=-22]) $* st[b - 13] := putno; *
move(initportno, st[b-18]) $* st[b - 11] := formatno; *
move(sendportno, st[b-14]) $* st[b - 9] := initportno; *
move(recportno, st[b-10]) §* st[b - 7] := sendportno; *
move(testkeyno, st[b-6]) §* st[b - 5] := recportno; *
move(testportno, st[b-2}]) $* st[b - 3] := testkeyno; *
move(b, s) $* st[b - 1] := testportno; *
*

$****ﬁ***********************

add(8, s) $ s :=b + 4;
move(none, st[s]) $ st[s] := none;
move(maxaddr, st[t]) $ "dummy return address"
call(loadprogram) $ t := maxaddr;
move(st[t], p) $ loadprogram;
add(namelength, p) $ p := t + namelength + 2
add(4, p) $ end
move(b, st[b0])
move(s, st[s0])
move(st([t], ax)
move{ax, st[t0])
move(p, st[p0])
return

$ "Procedure parameters"

do cursor: $ proc cursor
subtract (4, s) § var row, column: int
push(st[s+2]) $ begin s := 8 - 2;
push(st[s+4]) S row := stis + 1];

call(putcursor)
return

‘do erase:
call(erasescreen)
return

do display:
push(st[s])
call(write)
subtract (2, s)
return

do accept:
push(st[s])
call(read)
subtract(2, s)
return

do print:
push(st[s])
call({printchar)
subtract(2, s)
return

do get:
subtract({6, s)
move(input, ax)
push(ax)
push({st[s+2])
push(st[s+4])
push(st[s+6])
call(diskio)
return

do put:
subtract(6, s)
move (output, ax)
push{ax)
push(st[s+2])
push(st[s+4])
push(st[s+6])
call (diskio)
return

do format:
subtract (4, s)
push(st [s+2])

- 97

Ndn ANAnin

% 4n W NN -n-inawn Oy NN -n-n4nnn A -nn Wy 3 -0 -0 W 0 0 -

column := stfs + 2];
putcursor(row, column)
end

proc erase
begin erasescreen end

proc display

var value: char

begin value := char(st[s]):;
write(value);
8 :1=8 -1

end

proc accept

var addr: int

begin addr := st[s];
readx (st [addr]:char);
g8 :=s5 -1

end

proc print

var value: char

begin value := char{st[s]):
printchar(value);

8 (=85 =1
end
proc get

var driveno, sectorno,
addr: int

begin 8 := 58 - 3;
driveno := st(s + l1;
sectorno := st[s + 2];
addr := st[s + 3];
diskio(input, driveno,

sectorno, addr)
end

proc put

var driveno, sectorno,
addr: int

begin s 1= 8 - 3;
driveno := st[s + 1]:
sectorno := sts + 2];
addr := st([s + 3]:
diskio(output, driveno,

sectorno, addr)
end

proc format
var driveno, trackno: int
begin s := 5 - 2;

1
D
[e-

|

push(st[s+4]) $ driveno := sts + 1];
call(formattrack) $ trackno := st[s + 2];
return $ formattrack{(driveno, trackno)
end
g***********************
do initport: $§ proc testport *
push(st[s]) $ var value: int *
call(initportl) $ begin value := st[s];*
subtract(2,s) $ initportl(value); *
return $ s := 8 -1 *
$ end *
s************t**********
s*****************************
do sendport: $ proc sendport *
push(st[s]) § var value: int *
call(sendportl) $ begin value := char(st[s]);*
subtract(2,s) $ sendportl (value) ; *
return § s:=s5-1 ¥
$ end ¥
s*****************************
dc recport: $ proc recport *
push(st([s]) $ var addr: int *
call(recportl) $ begin addr := st[s]; *
subtract(2,s) $ recportl (st[addr]);*
return $ s :1=85 -1 *
$ end *
$***********************
do testkey: $ proc testkey %
push(st([s]) $ var addr: int *
call(testkeyl) $ begin addr := sts]; *
subtract(2,s) $ testkeyl(st[addr]);*
return $ s :=s5 -1 *
$ end *
S************************
do testport: $ proc testport e
push(st[s]) $ var addr: int *
call(testportl) $ begin addr := st[s]; *
subtract({2,s) $ testportl(st[addr]);*
return $ § :1=s8 =1 *
$ end *
$************************
do feasible: $ proc feasible(
move(sp, bx) $ procno: int): bool
move(true, st[bx+4]) $ "Determines whether a given
compare(acceptno, st[bx+2]) $ kernelcall can be
ifnotequal (feasible2) $ completed without delay"
push(cx) $ begin
call(ready) $ if procno = acceptno do
pop(cx) $ val feasible := ready
move (sp, bx) $ else true do
move (cx, st[bx+4]) $ val feasible := true
do feasible2: $ end
return(2) $ end

do kernelcall:
move({sp, bx)
move (st [bx+2], ax)
move(kernelcalll3, cx)
push(cx)
compare{cursorno, ax)
ifnotequal (kernelcall2)
jump(cursor)

do kernelcalll:
compare (eraseno, ax)
ifnotequal (kernelcalll)
jump(erase)

do kernelcall3:
compare(displayno, ax)
ifnotequal (kernelcall4)
jump(display)

do kernelcalld:
compare{acceptno, ax)
ifnotequal(kernelcalls)
jump(accept)

do kernelcall5:
compare{printno, ax)
ifnotequal (kernelcall6)
jump(print)

do kernelcallé:
compare(getno, ax)
ifnotequal (kernelcall?7)
jump(get)

do kernelcall?7:

compare(putno, ax)
ifnotequal (kernelcalls8)
jump (put)

do kernelcalls:
compare{formatno, ax)
ifnotequal (kernelcall$)
jump(format)

do kernelcall9:
compare(initportno, ax)
ifnotequal (kernelcalll0)
jump(initport)

do kernelcalllO:
compare(sendportno, ax)
ifnotequal (kernelcallll)
jump(sendport)

do kernelcallll:
compare{recportno, ax)
ifnotequal (kernelcalll?)
jump(recport)

do kernelcalll2:

- 99 -

$ proc kernelcall(

$ procno: int)

$ begin

$ if procno = cursorno

$ do cursor

$ else procno = eraseno

$ do erase

$ else procno = displayno

$ do display

§ else procno = acceptno

$ do accept

$ else procno = printno

S do print

$§ else procno = getno

$ do get

$ else procno = putno

$ do put

$ else procno = formatno

$ do format
S******************‘k*********
$ else procno = initportno*
$ do initport *
§ else procno = sendportno*
$ do sendport *
$ else procno = recportno *
$ do recport *
S else procno = testkeyno *
$ do testkey *
s else procno = testportno*
$ do testport *
$****************************
$§ end

$ end

$ added t scott 1/1985

compare (testkeyno, ax)
ifnotequal (kernelcalll3)
jump(testkey)

do kernelcalll3:
compare(testportno,ax)
ifnotequal (kernelcalll 4}
jump(testport)

do kernelcallld:
return(2)

$ "sStandard instructions"

$ "Comment:
$ Empty # 'newline'"
do newline:
add(4, p)
Jumpx (st [p])

$ "Library procedure:
$ 'goto!

do goto:
add (st [p+2], p)
jumpx (st [pl)

do libproc:
compare(l, st([tasks])
ifequal(libproc2)
push(st[p+6]})
call(callerror)

do libproc2:
move (b, ax)
subtract (st [p+2], ax)
subtract(2, ax)
move(ax, stib+4])
move (s, ax)
add(st[pt+4], ax)
compare(st[t], ax)
ifnothigher(libproc3)
push(stpt+6])
call(variablelimit)

do libproc3:
add (8, p)
jumpx (st [p])

do endlib:
call (moveprogram)
move(st[t], p)
add(namelength, p)
add (4, p)
jumpx (st [p])

$ "Complete procedure:

- 100

$

$
$

$
$

wn-nnnnnnnnwmann

400 N

9 changed to 14 by t scott 1/1985

proc newline(lineno: int)

begin p := p + 2 end

'libproc' Expression 'endlib'"

proc goto(displ: int)
begin p := p + displ end

proc libproc(paramlength,
templength, lineno: int)
begin
if tasks > 1 do
callerror(lineno)
end;
st[b + 2] :=
b - paramlength - 1;
if 8 + templength > t do
variablelimit(lineno)
end;
p :=p + 4
end

proc endlib(lineno: int)
begin

moveprogramj;

p := t + namelength + 2
end

$ ['goto!']

do procedure:
move(b, ax)
subtract(st[p+2], ax)
subtract(2, ax)
move(ax, st[b+4])
add (st [p+4], s)
move(s, ax)
add(st[p+6], ax)
compare(st[t], ax)
ifnothigher(procedure2)
push(st[p+8])
call(variablelimit)
do procedurel:
add(10, p)
jumpx (st [pl])

do endproc:
move(st[b+8], ax)
compare (none, ax)
ifequal (endproc2)
move(ax, p)
move(st[b+6], ax)
move({ax, stlt])
move(st[b+4], s)
move(st[b+2], b)
jumpx (st [p])

do endproc2:
add(2, p)
jumpx (st [p])

Module declaration:

Declaration:

-y 0 - -

'procedure’
$ Statement part 'endproc'"

"Procedure declaration:
Complete procedure # Library procedure # Empty

- 101

L A 40 0 A AN D A AN AN

Uy N N AN AN N AN DD

[Declaration 1*

proc procedure(
paramlength, wvarlength,
templength, lineno: int)
begin
st[b + 2] :=
b - paramlength - 1;
5 := s + varlength;
if s + templength > t do
variablelimit(lineno)

proc endproc
begin
if st[b+4] <> none do
p := st[b + 4];
£ :=st[b + 3];
s := stib + 21;
b :=st[b + 1]
else true do
p:=p+1
end
end

[Declaration]* Statement part

Procedure declaration # Module declaration # Empty"

APPENDIX E

This appendix has the operating system code for the Edison-
Rermit system,

"The Edison-PC Operating system

17 July 1982
Copyright (c) 1982 Per Brinch Hansen"
"Changes 1985 by Terry Scott"

array sector [1l:256] (int)

proc system(
pdpll: bool;
maxrow, maxcolumn: int;
proc cursor(row, column: int);
proc erase;
proc display(value: char);
proc accept(var value: char);
proc print(value: char);
proc read_sector(drive, sectorno: int;
var value: sector):;
proc write_sector(drive, sectorno: int;
var value: sector);
proc format_track({drive, trackno: int);
proc init_port(value: int);"configures serial port"
proc send_port(value: char);"sends character to COMl port"
proc port_rec(var value: int);"rtns integer from COMl port"
proc test_key(var value: int);"rtns 1 if key pressed else 0"
proc test_port(var value: int))"rtns port status in value "

const nl = char(l0); sp = ' !

module "character sets"

* set charset (char)
* yar capitals, comment: charset

* proc subset(first, last: char): charset
var c: char; value: charset
begin ¢ := first; value := charset;
while ¢ <= last do
value := value + charset{c);
¢ := char(int(c) + 1)
end;
val subset := value
end

- 103 —

* proc lowercase(c: char): char
begin
if ¢ in capitals do
¢ := char(int({c) + 32)

end;
val lowercase := C
end
begin capitals := subset('aA', 'Z');
comment := charset(nl, sp)
end

module "integers"

* const minint = #100000; maxint = 32767
var signs, digits, numeric: charset

* proc read_int(proc read(var c: char):
var value: int)
var c: char; plus: bool; digit: int
begin value := 0; read(c);
while ¢ in comment do read(c) end;
if ¢ in signs do plus := ¢ = '+'; read(c)
else true do plus := true end;
while ¢ in digits do
digit := int(c) - int('0");
if value >= (minint + digit) div 10 do
value := 10 * value - digit

end;
read(c)

end;

if plus and (value > minint) do
value := - value

end

end

* proc write_int(proc write(c: char); value, length: int)
const max = 6
array numeral [l:max] (char)
var no: numeral; min, i: int; negative: bool
begin
if value = minint do
‘ho := numeral('-32768"'"); min := max
else value = 0 do
no[max] := '0'; min :=1
else true do
if value < 0 do

negative := true; value := - value
else true do negative := false end;
min := 0;

while value > 0 do
no(max - min] := char(value mod 10 + int('0"));
min := min + 1; value := value div 10

- 104 -

end;
if negative do
no[max - min] := '-'; min := min + 1
end
end;

while length > min do
write(sp); length := length -1
end;
while min > 0 do
min := min - 1; write(no[max - min])
end
end

begin signs := charset('+-"');
~ digits := subset('0', '9")
end

module "names”

* const namelength = 12
* array name [l:namelength] (char)
var alphanum, letters: charset

* proc read_name (proc read(var c: char);
var value: name)
var i: int; c: char
begin value := name(sp); read(c);
while ¢ in comment do read(c) end;
if ¢ in letters do
i=1;
while (c in alphanum) and (i <= namelength) do
¢ := lowercase(c); valuel[i] := ¢;
- read{(c); 1 =1 + 1
end
end
end

* proc write_name(proc write(c: char); wvalue: name)
var i: int
begin i := 1;
while i <= namelength do
write(value[i]): i =1 + 1
end
end

* proc less_name(x, y: name): bool

var i: int

begin i := 1;
while (i < namelength) and (x[i] = y[i]) do

i:=1i+1

end;
val less_name := x[i] < y[i]

end

= LO% =

begin letters := capitals + subset('a', 'z'):
alphanum := letters + subset('0', '9') + charset('_')

end

module "lines"

* const linelength = 80
* array line [l:linelength] (char)

var endline: charset

* proc write_line(proc write(c: char); text: line)
var i: int; c: char
begin i := 1; 1= text([1l]:
while not (¢ in endline) and (i < linelength) do
write(ec); 1 := i + 1; ¢ := text[i]
end;
if ¢ = nl do write(nl) end
end

begin endline := charset(nl, '.') end

module "terminal™

* const bel = char(7); bs = char(8); ht = char(9);
1f = char(10); cr = char(l3); esc Y3

del = char(127); right = ht; left = bs;
tab = 5 "char"

var normal: bool; graphic: charset;
text: line; typed, used: int

* proc write_terminal(value: char)

begin
if normal and (value = 1f) do display(cr) end;
gisplay(value)

en

* proc writename_terminal(value: name)
begin write_name(write_terminal, value) end

* proc writeline_terminal(value: line)
begin write_line(write_terminal, value) end

proc typeline
var i, x, n: int; c: char
begin text[l] :=nl; n :=1; x := 1; accept(c);
while ¢ <> cr do
if (¢ = left) and (x > 1) do
display(bs); x :=x =1
else ¢ = right do
i 2= x;
if x + tab < n do x := x + tab

- 106 -

else x < n do x := n end;
while 1 < x do display(text[i]); i := i + 1 end
else (¢ = del) and (x < n) do

n:=n-1; i := x;

while i < n do '
text([i] := text[i + 1l]; display{text[i]);
i=1i+1

end;

text[n] := nl; display(sp)s i :=n + 1;
while i > x do display(bs); i := i - 1 end
else (¢ in graphic) and (n < linelength - 1) do

n:=n+1; i := n;
while i > x do
text[i] := text[i - 1]; i =1 -1
end;
text[x] :=¢; x =X + 1;
while i < n do
display(text[i]): i :=1i + 1

end;

while i > x do display(bs); i (=i - 1 end
end;
accept (c)

end;
write_terminal(nl); typed := n; used := 0
end

* proc read_terminal(var value: char)
begin
if normal do
if used = typed do typeline end;
used := used + l; value := text[used]
else true do accept(value) end
end

* proc readname_terminal (var value: name)
begin read_name(read_terminal, value) end

* proc readint_terminal(var value: int)
begin read_int(read_terminal, value) end

* proc select_terminal(standard: bool)
begin normal := standard; used := typed; display(nl) end

* proc pause_terminal
var value: char
begin
writeline_terminal(
line{'push return to continue', nl));
accept (value)
end

begin
if linelength < maxcolumn do

- 107 -

writeline_terminal(line('line limit.')); halt
end;
graphic := subset(char(32), char(126));
select_terminal(true);
writeline_terminal(
line(' The Edison-Kermit System', nl));
writeline_terminal (
line('1982 Per Brinch Hansen; changes 1985 Terry Scott', nl))
end

module "failures"

* proc assumel{condition: bool; text: line)
begin
if not condition do
writeline_terminal(text); halt
end
end

* proc assume2{condition: bool; title: name;
text: line)
begin
if not condition do
writename_terminal (title):
write_terminal(sp):
writeline_terminal (text); halt
end
end

begin skip end

module "disk pages"

* const pagelength = 512; pagesectors = 2
* array page [l:pagelength] (char)
array overlay [l:pagesectors] (sector)

* proc read_page(drive, pageno: int; var block: page)
var i: int
begin i := 1;
while i <= pagesectors do
read_sector (drive,
pagesectors * (pageno - 1) + i -1,
block:overlayli}]);
i:=1+1
end
end

* proc write_page(drive, pageno: int; var block: page)
var i: int-
begin i :=1;
while i <= pagesectors do

- 108 -

write_sector (drive,
pagesectors * (pageno - 1) + i -1,
block:overlay[i]):
ix=1i+1
end
end

begin skip end

module "disk maps"

160 "per disk side";
firstpage 27:; lastpage = 320;
available maxint; endlist = 0

array list [firstpage:lastpage] (int)

const pages

* record diskmap (free, next: int; status: list)

* proc allpages(sides: int): int
begin val allpages := pages * sides - firstpage + 1
end _

* proc empty_diskmap(var map: diskmap): int
- begin val empty_diskmap := endlist end

* proc extend_diskmap(var map: diskmap;
var address: int)
var elem, succ: int
begin assumel (map.free > 0, line('disk limit.')):
while map.status[map.next] <> available do
if map.next < lastpage do map.next := map.next + 1
else true do map.next := firstpage end
end;
if address = endlist do address := map.next
else true do
elem := address; succ := map.status|elem];
while succ <> endlist do
elem := succ; succ := map.status[elem]
end;
map.status{elem] := map.next
end;
map.status[map.next] := endlist;
map.free := map.free - 1
end

* proc discard_diskmap(var map: diskmap;
address: int)
var succ: int
begin
if address <> endlist do
while address <> endlist do

= 109 =

succ := map.status([address];
map.status[address] := available;
map.free := map.free + 1;

address := succ
end;
map.next := firstpage
end
end

* proc address_diskmap(var map: diskmap;
address, pageno: int): int
var succ, p: int
begin assumel {address <> endlist, line('file limit."));
succ := map.status[address]; p := 1;
while (p < pageno) and {succ <> endlist) do
address := succ; succ := map.Status[address]:;
p:=p+1
end;
assumel (p = pageno, line(' file limit."')):;
val address_diskmap := address
end

begin skip end

record position (pages, words: int)
record attributes (address: int; length: position;
protected: bool)

module "disk catalogs"
const maxitem = 45
record item (title: name; attr: attributes)
array table [l:maxitem] (item)

* record diskcatalog (size: int; contents: table)

proc locate(var catalog: diskcatalocg; key: name;
var index: int; var found: bool)
begin
if catalog.size = 0 do found := false
else true do
index := 1;
while (catalog.contents[index].title <> key) and
(index < catalog.size) do index := index + 1
end;
gound := catalog.contents[index] .title = key
en
end

* proc list_diskcatalog(var catalog: diskcatalog;
sides: int; proc write(c: char))
var index: int; entry: item; lengthx: position;
used: int
begin index := 1; used := 0; write(nl);

= 11D =

while index <= catalog.size do
entry := catalog.contents[index]:
lengthx := entry.attr.length;
write_name(write, entry.title):;
if entry.attr.protected do
write_line(write, line(' protected .'"))
else true do
write_line(write, line(' unprotected.'))
end;
write_int(write, lengthx.pages, 4);
write_line(write, line(' pages.'));
if (0 < lengthx.pages) and
(lengthx.pages < 64) do
write_int(write, pagelength ¥
(lengthx.pages - 1) + lengthx.words, 7);
write_line(write, line(' words.'))
end;
write(nl); used := used + lengthx.pages;
if index mod (maxrow - 3) = 0 do
pause_terminal
end;
index := index + 1
end;
write(nl);
if sides = 1 do
write_line(write, line('Single-sided disk:.'))
else true do
write_line(write, line('Double-sided disk:.'"))
end;
write(nl); write_int(write, catalog.size, 5);
write_line(write, line(' entries', nl));
write_int (write, used, 5);
write_line(write, line(' pages used', nl)):
write_int (write, allpages(sides) - used, 5);
write_line(write, line(' pages available', nl))
end

* proc include_diskcatalog(var catalog: diskcatalog;
key: name; attr: attributes)
var x, y: item; index: int
begin assumel (catalog.size < maxitem,
line('catalog full.'));
X := item(key, attr); index := 1;
while index <= catalog.size do
y := catalog.contents[index];
assume2(x.title <> y.title, key,
line{' ambiguous.')):
if less_name(x.title, y.title) do

catalog.contents[index] := x; x :1= y
end;
index := index + 1

end;
catalog.size := catalog.size + 1;

catalog.contents[catalog.size] X

- 111 =

end

* proc search_diskcatalog(var catalog: diskcatalog;
Rey: name; var value: attributes; var found: bool)
var index: int
begin locate(catalog, key, index, found);
if found do value := catalog.contents[index].attr end
end

* proc change_diskcatalog(var catalog: diskcatalog;
key: name; value: attributes)
var index: int; found: bool
begin locate(catalog, key, index, found);
assume2 (found, key, line(' unknown.')):
catalog.contents[index] .attr := value
end

* proc exclude_diskcatalog(var catalog: diskcatalog;
key: name)
var index: int; found: bool
begin locate(catalog, key, index, found);
assume2 (found, key, line(' unknown.')):
while index < catalog.size do
catalog.contents{index) :=
catalog.contents{index + 1];
index := index + 1
end;
catalog.size := catalog.size - 1
end

begin skip end

module "disk library"
const tracks = 40 "per disk side"; firsttrack = 0;
sectors = 320 "per disk side"; firstsector = 0;
labelpage = 25 "and 26"
array labeloverlay [1:2] (page)
array filler [l:6] (int)

record disklabel (sides: int; map: diskmap;
catalog: diskcatalog; unused: filler)

array labelpair [0:1] (disklabel)

array boolpair [0:1] (bool)

var labels: labelpair; original: boolpair
* proc check(drive: int)

begin
assumel ((drive = 0) or (drive = 1),

= L12 w

line('drive no invalid.'))
end

proc flushdisk_library(drive: int)
begin
if original[drive] do
write_page(drive, labelpage,
labels[drive]:labeloverlay{1l]):
write_page(drive, labelpage + 1,
labels[drive]:labeloverlay[2]):
original[drive] := false
end
end

proc insertold_library(drive: int)
begin
read_page (drive, labelpage,
labels[drive]:labeloverlay[l]);
read_page (drive, labelpage + 1,
labels[drive] :1labeloverlay[2]);
original[drive] := false
end

proc flush_library

begin flushdisk_library(0);
flushdisk_1library(1l)

end

proc list_library(drive: int; proc write(c: char))
begin check(drive);
list_diskcatalog(labels[drive].catalog,
labels[drivel .sides, write)
end

proc delete_library(drive: int; title: name)
var attr: attributes; found: bool
begin check(drive);
search_diskcatalog(labels[drive].catalog,
title, attr, found):;
if found do
assume2 (not attr.protected, title,
line(' protected.'));
discard_diskmap(labels[drive] .map, attr.address);
exclude_diskcatalog(labels[drive].catalog, title);
original[drive] := true
end
end

proc create_library(drive: int; title: name)
begin check(drive); ,
delete_library(drive, title);
include_diskcatalog(labels[drive] .catalog, title,
attributes(empty_diskmap(labels[drive] .map),
position(0, 0), false)):;

= 113 =

original[drive] := true
end

proc protect_library(drive: int; title: name;
value: bool) '
var attr: attributes; found: bool
begin check(drive);
search_diskcatalog(labels[drive].catalog,
title, attr, found);
assume2 (found, title, line(' unknown.'));:
attr.protected := value;
change_diskcatalog(labels[drive] .catalog,
title, attr):;
original[drive] := true
end

proc rename_library(drive: int; o0ld, new: name)
var attr: attributes; found: bool
begin check(drive);
search_diskcatalog(labels[drive] .catalog,
new, attr, found);
assume2 (not found, new, line(' ambiguous.')):
search_diskcatalog(labels[drive].catalog,
old, attr, found);
assume2(found, old, line(' unknown.'));
assume2 (not attr.protected, old, line(' protected.')):;
exclude_diskcatalog(labels([drive] .catalog, old);
include_diskcatalog(labels[drive] .catalog, new, attr);
griginalldrive] := true
en

proc change_library(drive: int; title: name;
new: attributes)

var old: attributes; found: bool

begin check(drive):;
search_diskcatalog(labels[drive] .catalog,

title, old, found);

assume2 (found, title, line(' unknown.')):
assume2 (not old.protected, title, line(' protected.')):
change_diskcatalog(labels[drive].catalog, title, new):;
original[drive] := true

end

proc search_library(var drive: int; title: name;
var attr: attributes)
var found: bool
begin drive := 0;
search_diskcatalog(labels[0] .catalog,
title, attr, found):
if not found do
drive := 1;
search_diskcatalog(labels[l].catalog,
title, attr, found)
end;

= 114 =

assume2 (found, title, line(' unknown.'))
end

* proc address_library(drive, start, pageno: int): int
begin check(drive);
val address_library :=
address_diskmap(labels([drive] .map, start, pageno)
end

* proc extend_library(drive: int; var start: int)
begin check(drive);
extend_diskmap(labels[drive] .map, start);
original[drive] := true
end

 begin original := boolpair(false, false);
insertold_library(0); insertold _library(1l)
"Both drives contain disks"

end

module "disk files"

* record diskfile (title: name; open, safe, changed: bool;
drive, start: int; size: position)

* proc open_file(var file: diskfile; title: name;

var size: position)

var drive: int; attr: attributes

begin search_library(drive, title, attr);:
size := attr.length; ;
file := diskfile(title, true, attr.protected, false,

drive, attr.address, size)
end

* proc read_file(var file: diskfile; pageno: int;
var block: page)
begin assumel(file.open, line('file closed.')):
assume2((1l <= pageno) and .
(pageno <= file.size,pages),
file.title, line(' limit.')):
read_page(file.drive, address_library(file.drive,
file.start, pageno), block)
end

* proc write_file(var file: diskfile; pageno: int;
var block: page)
begin assumel (file.open, line('file closed.')):
assume2 (not file,safe, file.title,
line(' protected.'));
assume2((1 <= pageno) and
(pageno <= file.size.pages),
file.title, line(' limit.')):
write_page(file.drive, address_library(file.drive,

- L1E -

file.start, pageno), block)
end

* proc extend_file(var file: diskfile;
newpage: bool; newwords: int)
begin assumel (file.open, line({'file closed.')):
assume2 (not file.safe, file.title,
line(' protected.'));
if newpage do
extend_library(file.drive, file.start):
file.size.pages := file.size,pages + 1
end;
gile.size.words := newwords; file.changed := true
en

* proc end_file(var file: diskfile)

begin assumel (file.open, line('file closed.')):

if file.changed do
change_library{file.drive, file.title,
attributes{file,start, file.size, file.safe))

end;
file.open := false

end

begin skip end

Phkbkdhhkkkhkhhkhkkhkhkhthhhhkhkthkhthhhhkhththhhkhkrthdhdhhkhhhhdr

This module does all the required operations on the
*sequence number and produces the eight different *
*packets used in the system, *
khhkkkhkhkhhhkhhdhdbhhkhehdbhbhhhkdbhhddhhddhdhddhhkd bbbk hdhiiht

module "packets"

const pktlength = 94; timeout = 12
* array frametype[l:96] (char) "used for forming packets"
var seq: int; "seq, num for packets "
block: page "holds page of info ready to send to port"

"takes filled frame and returns the checksum character”
* proc checksum(frame: frametype): char
var total, cnt: int; hi_bit_on: bool
begin
cnt := 1;
total := 0;
while cnt < int(frame[2]) - 31 do "totals ascii values"

cnt := cnt + 1; "keeps low order byte"
total := (total + int(framel[cnt])) mod 256
end;

hi_bit_on := false;

if total div 128 = 1 do "removes bit 7 from low byte"
hi_bit_on := true; - "records it was on"
total := total - 128

end;

. = 116 =

if total div 64 = 1 do "removes bit 6 and adds it to bit"
total := total - 63 ‘"position Q"

end;

if hi_bit_on do "adds bit 7 to bit position 1°
total := total + 2

end;

total := total mod 64;
val checksum := char(total + 32)
end

"seq. nhum. set to -1 because it is incremented before used"
* proc init_seq
begin seq := -1 end

* proc inc_seq
begin seq := (seq + 1) mod 64 end

* proc dec_seq
begin seq := seq - 1;

if seq = -1 do
seq := 63
end
end

* proc rtn_seqg: int
begin val rtn_seq := seqg end

"Fills in fields: SOH, len, seq. num., pkt type, and checksum."
proc initframe(var frame: frametype; length: int; kind: char)

begin

frame[l] := char(l):

frame[2] := char(length + 30);

frame[3] := char(seq + 32);

frame[4] := kind;

frame[int (frame[2]) - 30] := checksum(frame)
end

* proc startframe(var frame: frametype) "Start init. packet"”
begin inc_seq;
frame[5] := char(32 + pktlength); "sets packet length"
frame[6] := char(32 + timeout);"sets timeout in sec”
initframe(frame, 7, 'S')
end

* proc eofframe(var frame: frametype) "End file packet"
begin inc_seq;
initframe(frame, 5, '%2")
end

* proc eotframe(var frame: frametype) "End transmission packet"
begin inc_seq;
initframe(frame, 5, 'B')
end

- 117 -

K proc ackframe(var frame: frametype) "Posit. acknowlegment pkt"
begin initframe(frame, 5, '¥') end

"Packet used to ack the start initialization packet”
* proc ackframel (var frame: frametype)
begin
frame[5] := char(32 + pktlength); "sets packet length"
frame[6] := char(32 + timeout); "sets timeout period in secs”
initframe(frame, 7, '¥")
end

* proc nakframe(var frame: frameﬁype) "Negat. acknowlegment pkt"
begin initframe(frame, 5, 'N') end

"File header packet. Places f£_name in data portion of packet"”
* proc headerframe(var frame: frametype; fname: name)
var cnt: int; let: char
begin inc_seq;
cnt := 1;
let := fname[cnt];
while (let <> sp) and (cnt <= 1l1) do

frame[4 + cnt] := let;
cnt := cnt + 1;
let := fname[cnt]
end;
initframe(frame, 4 + cnt, 'F')

end

array inttype[l:2](int) "holds high and low bytes of integer”
"Constructs data packet."
* proc dataframe(var frame: frametype; block: page; var cnt: int;
length: int; textfile: bool)
const maxint = 32767; maxpktlen = 92
var £ill, value, i: int; let: char; values: inttype:
negative: bool '
begin inc_seq;
£ill := 4;
while (fill < maxpktlen) and (cnt < length) do
cnt := cnt + 1;
let := block[cnt]:;
value := int(block[cnt]);
if value < 0 do "if bit 7 of high byte on then negative so"
value := value + maxint + 1; "zero out this bit and"

negative := true "record it was on,"
else true do

negative := false
end;

values[l] := value mod 256; "low byte placed in values[1l]"
if negative do "high byte placed in values[2]. If bit 7"
values[2] := value div 256 + 128 "was on, then turn on"
else true do
values[2] := value div 256
end;
if textfile do "text file treated byte at a time and"

-118 -
"binary file bytes are treated in pairs."

end;
while i >= 1 do
£ill := £ill + 1l;
if values[i] > 127 do "characters 128 to 255 sent as is"
frame[£fill] := char(values[i])
else (values[i] > 31) and (values[i] <> 127) do "chars 32"
frame[fill] := char(values[i]); "to 126 sent as is."

if char(values[i]) = '#' do "if '#' then add another"
fill := £ill + 1: "one. character stuffing.”
frame[£fill] := '§!
end
else true do "1f char. 0 to 31 or 127 prefix"”

frame[£ill] := '#'; "with '$'"

£ill := £ill + 1;

if values[i] <= 31 do "If char less than 32, add 64"
values[i] := values[i] + 64 "to make it printable"

else true do "Tf char, is 127 then subtract 64."
values[i] := 63 -
end;)
frame[fill] := char(values[i])
end;
ix=1i-1
end

end;
iniéframe(frame,fill + 1, 'D') "£ill in control fields.,"

begin skip end

Mhkhkhkhkkkhkrhkhkkhkhhhhdhdkhdhhkkhhhhhrbhdkhdhkhdhkhdhhdhhhhbkdtthkdokd

*Elementary procs and functions used by higher level procs. *
Khkdkhkhkkhdkdhhhdhhdhdhdhhdhdhdddddddhhtdhbhdhbdtdhdddtdhktdhkttkidn

module "Kermit utilities"

*

proc clearscreen "clears monitor's screen”
const maxrow = 24
var row: int
begin row := maxrow;
while row > 0 do

cursor(row, 1):
erase;
IOW := row - 1

end;
cursor(2, 1)

"Calls port_rec. <Converts low byte to a char, increments

num if high byte is negative."
proc receive(var num: 1nt° var let: char)
var value: int

- 119 -

begin
port_rec(value);
let := char(value mod 256);
if value < 0 do "value negative port has timed out."
num := num + 1 "timeout period is 1 second."
end
end

"Returns 1 if serial port send register is empty, else 0."
proc ready(var value: int)
var cnt: int

begin
cnt := 0; :
while cnt < 16 do "time wasting loop"
cnt :=c¢nt + 1
end;

test_port(value);
if value < 0 do "takes absolute value of number in value"
value := value * (-1)
end;
value := (value mod 16384) div 8192 "tests if bit 5 of "
end "high byte is on. It is on if send register is empty."”

"Places char. in serial port send register when it is empty."
* proc send_char(let: char)
var value: int
begin
ready(value);
while value <> 1 do "check if serial port send register"
ready(value) "is empty"
end;
send_port(let)
end

"Determines the packet length using 2nd character in
packet and sends the packet to the serial port"
* proc sendframe(frame: frametype)
var cnt: int
begin cnt := 0;
while cnt < int(frame[2]) - 30 do
cnt := cnt + 1;
send_char(frame[cnt])
end
end

"Reads entire packet from serial port., It waits for SCH
and reads rest of packet. If SOH is received at any time
procedure starts reading packet over."
* proc readframe(var recframe: frametype; var failed: bool)
var times, cnt: int; let: char; frame: frametype
begin times := 0;
receive(times, let);
while (int(let) <> 1) and (times < 25) do "wait 25 s for SOH"
receive(times, let)

- 120 -

end;
if int(let) =1 do
times := 0;
receive(times, let);
recframe[2] := let;"read pkt length and place in 2nd cell"
cnt := 2;
while (int{(let) <> 1) and (cnt < int(recframe[2]) - 30) and
(times < 25) do
cnt := ¢nt + 1; "continue to read characters"
receive(times, let);
recframefcnt] := let
else (int(let) = 1) and (times < 25) do
receive(times, let):; "resynch. if SOH is received"

c¢nt := 2;
recframe{2] := let
end

end;
if times >= 25 do
failed := true
else true do
failed := false
end
end

begin skip end

LEL 222 LA 2222222222222 R A A A it i st il it sl

*Contains procedures called or used by the send procedure.¥
dhkdkhkkkhkhkkrhhhdhhhrrdhhdhdhddhrhhhhhkbhddhdhhdbbhbhhhhkhdbhtdhin

module "send and check frames"
var num_gd_£frms, num_bd_frms: int

* proc initfrmentsd
begin num_gd_£frms := 0; num_bd_frms := 0 end
"Checks ack packet's seq. num., checksum, and type field.,
Returns true if all are okay, else it returns false."
* proc checkframel (recframe: frametype): bool
var seqgchar: char
begin seqchar := char(rtn_seq + 32);
if (recframe([3] = seqchar) and (recframe[4] = 'Y') and
(recframe[int (recframe[2]) - 30] = checksum(recframe}) do
val checkframel := true
else true do
val checkframel := false
end
end

"Sends a pkt, calls readframe which returns a packet or failed
is true, if not failed it checks the packet using checkframel,
and increments num_bd_frms or num_gd_frms depending on the
result. Trys to send a packet 5 times before it gives up."

* proc sendandwait(frame: frametype; var failed: bool)

= 121 =

var recframe: frametype; cnt: int; done, badframe: bool
begin cnt := 0;
done := false;
while not done do
badframe := false;
sendframe({frame);
readframe(recframe, failed);
if failed do
badframe := true
else not checkframel (recframe) do
badframe := true
end;
if badframe do
num_bd_frms := num_bd_£frms + 1;
cursor(4, 58);
write_int(display, num_bd_frms, 4);
cnt :=¢cnt + 1
else true do '
done := true;
cursor(4, 31);
num_gd_£frms := num_gd_=£frms + 1;
write_int(display, num_gd_£frms, 4)
end;
if cnt = 6 do
done := true;
failed := true
end
end
end

"Receives a disk page of info, calls dataframe so a data packet
is formed, calls sendandwait to send frame and check for ack."
* proc sendpage(block: page; size: int; var failed: bool;
textfile: bool)
var frame: frametype; cnt: int
begin ¢cnt := 0;
failed := false;
while (cnt < size) and not failed do
dataframe(frame, block, cnt, size, textfile);
sendandwait(frame, failed)
end
end

begin skip end

Nkkdkkdhhkhkhhkhhdkdhkhhdhhhhhhhhdhdhhdbhhhhhhhhhdhhdhkdhhkdkdkhhddhdk

Contains procedures called or used by receive procedure,
(22228 AR 2R 2R 2R R A XS R AR AR AR ES A AR R AR R XA TSR E R R AL

module "receive and check frames"

* array dblebuftype[0:1] (page)"accepts incoming info. Once page
is full start on other page. Between pkts it writes out page"

= 122 1=

var num_gd_£frms, num_bd_£frms: int

* proc initfrmentre _
begin num_gd_frms := 0; num_bd_frms := 0 end

"Receives the file header frame and retrieves the file hame from
the data portion of the packet,.,”
* proc getname(frame: frametype; var f_name: name)
var cnt: int
begin cnt := 4;
while (¢nt < int(frame[2]) - 31) and (cnt < 16) do
cnt := cnt + 1;
f_namelcnt - 4] := frame[cnt]
end;
while cnt ¢ 16 do "fills in remainder of f_name with blanks"
cnt := ¢cnt + 1;
f_name[cnt - 4] := sp
end
end

"Function returns integer to recandcheck: 0 if okay and more data
to come, 1 if okay and eof, 2 if previous packet received but
otherwise okay, and 3 if any error."

proc checkframe2(recframe: frametype; kind: char): int
var segchar : char
begin
seqchar := char(rtn_seq + 32);
if(recframe[3] = seqchar) and
(recframe[int (recframe(2]) - 30] = checksum(recframe)) do
if recframe(4] = kind do
val checkframe2 := 0

else recframe[4] = 'Z2' do
val checkframe2 :=1
end
else recframe[3] = char(int(seqchar) - 1) do
val checkframe2 := 2

else true do
val checkframe2 := 3
end
end

"Calls readframe and checkframe2., 1If checkframe2 gives 0 or 1
inc. num, good frames and rtns. pkt in recframe and if 1 sets
quit to true, if 2 dec seq num, send ack, and read next pkt, if
3 send nak and read next pkt., If 2 or 3 inc num bad frames."

* proc recandcheck(var recframe: frametype; kind: char;

var quit, failed: bool)
var frame: frametype; cnt, result: int
begin inc_seq;
quit := false;
readframe(recframe, failed);
if not failed do
result := checkframe2(recframe, kind);
cnt := 0;

- 123 =

while (result > 1) and not failed do
if result = 3 do
nakframe(frame);
sendframe(frame)
else result = 2 do
dec_seq;
ackframe(recframe);
sendframe(recframe);
inc_seq
end:;
readframe(recframe, failed):;
if not failed do
result := checkframe2{recframe, kind)
end;
num_bd_frms := num_bd_£frms + 1;
cursor(4, 62);
write_int(display, num_bd_frms, 4)
end ,
end; #
num_gd_£frms := num_gd_£frms + 1;
cursor(4, 35);
write_int (display, num_gd_£frms, 4);
if result = 1 do quit := true end
end

"Called by writeoutfile, Proc rcvs data pkt, decodes values,
and places them in dblebuf. Once a page of dblebuf is filled
it sets full to true and continues to write to other page.”

proc locadpagebuf (var dblebuf: dblebuftype; frame: frametype;
var full: beool; var row, col, i, sum: int; textfile: bool)
var cnt, value: int '
begin full := false;
cnt := 4;
while cnt < int(frame[2]) - 31 do
if col »= 512 do "if page is full set full to true and"”
col := 0; "write info to other page in dblebuf."
full := true;
row := (row + 1) mod 2
end;
while (i >= 1) and (cnt < int(frame[2]) - 31) do
cnt := cnt + 1;
if frame[cnt] <> '#' do"char not prefixed keep as is."
value := int(framelcnt])
else true do "if prefixed advance to next character.”
cnt := cnt + 1;
if (framef[cnt] <> '#') do "if next char is not '#',"
value := int(framefcnt]);"subtract 64 unless it is"
if ((value >= 64) and (value <= 95)) or"ascii value"
({value >= 192) and (value <= 223)) do"191 or 63"
value := value - 64
else true do "if ascii value is 191 or 63 add 64"
value := value + 64
end
else true do "if 2 '4' in a row, actual char is '#',"

- 124 -

value := 35
end
end;
if {(value > 127) and (i = 2) do "if bit 7 of high byte"
value := value - 256 "is on, make value negative.,"

end; ;
if i = 2 do
sum := value * 256 "if first value of pair, convert to"
else true do "high byte value, else add to previous"
value := sum + value "high byte value.,”
end;
i :=1i-1
end;
if i = 0 do
if textfile do "if text file only deal with one byte at"
iz::=1 "a time,"
else true do "if binary file deal with bytes in pairs."
i =2
end;

col :=col + 1;
dblebuf{row] [col] := char(value) "place value in buffer"
end
end
end

"Calls recandcheck which returns a pkt. Assuming there are more
data pkts and nothing failed, then loadpagebuf is called, If
loadpagebuf rtns true then buffer written to file and directory
is updated. An ack is sent. This continues until eof pkt is
received or failed becomes true. Last partial page is written
to the file, ack for eof is sent, eot is received and acked."
* proc writeoutfile(file; diskfile; var failed: bool; value:name)
var frame, recframe: frametype; quit, full, textfile: bool;
pageno, col, amount, row, i, sum : int; dblebuf: dblebuftype
begin row := 0; col := 0;
pageno := 0; sum := 0;
recandcheck(recframe, 'D', quit, failed):;
if not failed do .
if value = name('text') do
i:=1;
textfile := true
else true do

i = 2;
textfile := false
end;

loadpagebuf (dblebuf, recframe, full, row, col, i, sum,
textfile);
while not quit and not failed do
if full do
pageno := pageno + 1:
if full do
amount := 512
else true do
amount := col

- 125 -

end;
extend_file(file, true, amount);
write_file({file, pageno, dblebuf[(row + 1) mod
end;
ackframe (frame) ;
sendframe(frame);
recandcheck (recframe, 'D', quit, failed);
if not failed do
loadpagebuf (dblebuf, recframe, full, row, col,

sum, textfil
end
end;
if not failed do
if full do
amount := 512

else true do
amount := col
end;
extend_file(file, true, amount);
write_file(file, pageno + 1, dblebuf(row]):
ackframe(frame);
sendframe(frame);
end_file(file)
end
end
end

begin skip end

Thkhkhkhhkkkhhhhhkhkkdhddhhhhhkhkhkhhkdkdhkhthkddhkthhdhhdhdhbhhhkhhhhhd

*Contains procedures called by the operating system *

*standard commands
[T I R TR IR TSR IR AR FE X2 RS RIS RSS2 2SS S48 222 8 0 & 4 2

*

module "standard commands"

*

proc readdrive(var drive: int)

begin writeline_terminal(line(' Drive no = .'));:
readint_terminal (drive)

end

proc readfile(var title: name)

begin writeline_terminal(line(' File name = .'));
readname_terminal (title)

end

proc protect(value: bool)

var drive: int; title: name

begin readdrive(drive); readfile(title);
grotect_library(drive, title, value)

en

proc list

2])

i,
e)

- 126 -

var drive: int

begin readdrive(drive);
list_library{drive, write_terminal)

end

* proc delete
var drive: int; title: name

begin readdrive(drive); readfile(title);

delete_library(drive, title)
end

"Tests keyboard and if pressed, character sent to serial port.
Char. obtained from serial port is displayed on monitor
screen, Escape from procedure by typing esc char., char(1l7)"

* proc connect
const esc = char(1l7)
var value, inval: int; outval: char
begin
send_port(cr):;
outval := ' ';
while outval <> esc do
test_key(value);
if value = 1 do
accept (outval);
if outval <> esc do
send_port(outval)
end
end;
port_rec(inval);
display(char(inval mod 128))
end
end

* proc rename

var drive: int; old, new: name

begin readdrive(drive);
writeline_terminal(line(' 0ld name
readname_terminal (old);
writeline_terminal(line(' New name
readname_terminal (new) ;
rename_library(drive, old, new)

end

U))
«')) s

"Obtains serial port configuration value from user and
configures port by calling init_port kernel entry."

* proc init_portl
var ok: char; value: int
begin
writeline_terminal

(line('Type t for default configuration.'));

display{cr); display(nl):;
accept (0ok) ;

display(ok);;display(cr); display(nl):

if ok = 't' do

- 127 -

value := 131
else true do
writeline_terminal(line(' Configuration value = .'));
readint_terminal (value)
end;
init_port(value)
end

const n = 10
array table[l:n] (page)"accepts info from disk"”
"Sends series of pkts: start init., file header, data pkts,
eof, eot, Each time waits for ack before sending next pkt."
* proc send
var title, value: name; file: diskfile; size: position;
block: table; pageno, lastfull, m, i: int;
frame: frametype; textfile, failed: bool
begin
clearscreen;
writeline_terminal(line(' File to be sent = .')):
readname_terminal(title);
writeline_terminal(line(' text or binary file = .'));
readname_terminal (value);
if value = name('text') do
textfile := true
else true do
textfile := false
end;
writeline_terminal(line(
write_int (display, 0, 4)
writeline_terminal(line(
write_int (display, 0, 4)
initfrmcntsd;
open_file(file, title, size);
init_seq:;
startframe(frame);
sendandwait(frame, failed); "send start init packet"
if not failed do
headerframe(frame, title);
sendandwait(frame, failed); "send file header packet"
if (size.pages > 0) and not failed do
pageno := 0; lastfull := size,pages - 1;
while (pageno < lastfull) and not failed do

Packets sent successfully = .'));

Number of retries = ,.')):

m := 0;
while (m < n) and (pageno + m < lastfull) do
m:=m + 1;
read_file(file, pageno + m, block[m]) "load block"
end; "with disk info."
i := 0;
while (i ¢ m) and not failed do
i = i+ 1; "send block info to port in data pkts."
sendpage(block[i], pagelength, failed, textfile)
end;

pageno := pageno + m
~end;

- 128 -

if not failed do "send last parital page to serial port"”
read_file(file, size.pages, block[l]):;
sendpage(block[i], size.words, failed, textfile)
end
end;
if not failed do
end_file(file);
eofframe (frame);
sendandwait (frame, failed); "send eof pkt"
if not failed do
eotframe(frame);
sendandwait (frame, failed) "send eot pkt"
end
end
end;
cursor(6, 1};
if not failed do
writeline_terminal(line(' Send completed ok .'))
else true do
writeline_terminal(line(' Send failed .'))
end;
cursor(9, 1)
end

"Receives in order the pkts: send init, file header, data, eof,
eot., It receives pkt, if okay sends ack otherwise sends nak."
*¥ proc receive
var title, temp, value: name; file: diskfile; size: position;
block: table; drive: int; frame: frametype;
quit, failed: bool
begin clearscreen; init_seq;
writeline_terminal(line(' text or binary file = .'));
readname_terminal (value);
writeline_terminal(line(' Receiving file drive = .'));
readint_terminal (drive);
writeline_terminal/(
line(' Packets received successfully = .'}));
write_int (display, 0, 4):
writeline_terminal(line(' Number of retries = ,'));
write_int(display, 0, 4);
initfrmentrce;
temp := name('temp');
recandcheck (frame, 'S', quit, failed);
if not failed do
ackframel (frame);
sendframe(frame); "send ack for start init pkt"
recandcheck (frame, 'F', quit, failed):
if not failed do
getname(frame, title); "retrieve file name from file"
delete_library(drive, title); "header pkt and open”
create_library(drive, temp); "file by that that name"
open_file(file, temp, size);
ackframe(frame);
sendframe(frame);"ack file header frame., send file"

= 129 =

writeoutfile(file, failed, value);"in data pkts"
if not failed do
rename_library(drive, temp, title):
recandcheck (frame, 'B', quit, failed);
if not failed do
ackframe(frame);
sendframe(frame) ;"send ack to eot pkt"
cursor(6, 1);
writeline_terminal(line{' Receive completed ok .'))
end
end
end
end;
if failed do
cursor{6, 1);
writeline_terminal(line(' Receive failed .'"))
end;
cursor(9, 1)
end

begin skip end

LEXTE RIS T EEEZTSRLES AR S22 2222 RS2 RS0 SRR 222 R 2 2 R X2 R 242

* Main Program *
IR I XTI EE LIRSS R AEE SR RS XSRS R SRR ER 2222 22222 22 22 R 22 R

var op: name
begin
while true do
write_terminal(nl);
writeline_terminal(line('Command = .')):
readname_terminal (op):
if op = name('connect') do connect

else op = name('delete') do delete

else op = name('initport') do init_portl

else op = name('list’') do list

else op = name('protect') do protect(true)
else op = name('receive') do receive

else op = name('rename') do rename

else op = name('send') do send

else op = name('unprotect') do protect(false)

else true do
writeline_terminal(line(' Not a legal operation'));
writeline_terminal(nl):
end;
flush_library
end
end "Edison-Kermit Operating System"”

APFENDIX F

This appendix contains the code for the Unix Kermit, This
is the code found on the Interdata 3220 in the Kansas State
University Department of Computer Science in the file
/usrb/wb/kermit/kermit2.c, except for one amall change found
at the end of this code in the procedure xread.

~
o

Kermit File Transfer Utility

UNIX Kermit, Columbia University, 1981, 1982, 1983
Bill Catchings, Bob Cattani, Chris Maio, Frank da Cruz

usage: kermit [csr][dlbe line baud escapechar] [f1 £2 ...]

where c=connect, sssend [files], r=receive, d=debug,

l=tty line, b=baud rate, e=escape char {decimal ascii code).
For "host" mode Kermit, format is either "kermit r" to
receive files, or "kermit s £f1 f2 ..." to send f1 .. fn,

~

f#define SYS3 0
#define V7 1

f#define TRACE 1

#include <stdio.h> /% Standard UNIX definitions %/
#if SYS3

#include <termioc.h>

f#endif

#if VT

#include <sgtty.h>

f#fendif

f#include <signal.h>

#include <setjmp.h>

/% Conditional Compilation: 0 means don't compile 1t, nonzeroc means do %/

/® Conditional compilation for UNIX #/

/% Conditional compilation for TOPS=20 #/°
Ditto for VAX/VMS #/

/® Ditto for Amdahl UTS on IBM systems #/

#define UNIX

f#define TOPS 20
#define VAX_VMS
f#define IBM_UTS

[o= I == 3 o Y
~
L |

/% Symbol Definitions #/

f#define MAXPACK g4 /% Maximum packet size #/
f#def'ine SCOH 1 /® Start of header #/
#define SP 32 /® ASCII space #/

f#define CR 015 /® ASCII Carriage Return #/

#define
fdefine
#define

#def'ine
f#define
f#define
#define
#define
#define
#define
#define

#define
f#define

DEL
CTRLD
BRECHR

MAXTRY
MIQUOTE
MYPAD
MYPCHAR
MYEOL
MITIME
MAXTIM
MINTIM

TRUE
FALSE

/®* Global Variables #/

int

char

#if SY33

size,
I,
rpsiz,
spsiz,
pad,
timint,
numtry,
oldtry,
fd,
remfd,
image,
remspd,
host,
debug;

state,

padchar,

eol,

escchr,

quote,
##filelist,
#filnam,
recpkt[MAXPACK],
packet [MAXPACK];

struct termio

#endif
#if v7

struct sgttyb

#endif

rawmode,
cookedmode,
remttymode;

- 131 -

127 /%
I

CTRLD /%
5 /%
! /T
0 /e
0 /t
0

5 /®
20 /*
2 /%
- /l
0

/%
/®
/®

Delete (rubout) #/

Default escape character for CONNECT #/

Times to retry a packet #/
Quote character I will use %/

Number of padding characters I will need #/

Padding character I need #/

/% End=0f-Line character I need #/
after which I should be timed out #/

Seconds
Maximum timeout interval #/
Minumum timeout interval #/

Boolean constants #/

Size of present data %/

Message number #/

Maximum receive packet size #/
Maximum send packet size #/

How much padding to send #/

Timeout for foreign host on sends #/
Times this packet retried #/

Times previous packet retried #/
File pointer of file to read/write #/
File pointer of the host's tty #/

-1 means 8-bit mode %/

Speed of this tty #/ -

-1 means we're a host-mode kermit &y

-1 means debugging */

Present state of the automaton #/
Padding character to send %/
End-0f-Line character to send #/
Connect command escape character #/
Quote character in incoming data #/
List of files to be sent ®#/

Current file name #/

Receive packet buffer #/

Packet buffer #/

Host tty "raw" mode #/
Host tty ™normal™ mode #/
Assigned tty line "raw" mode #/

Jjmp_buf env;

- 132 -

/% Environment ptr for timeout longjump #*/

/#
madin

#

® Main routine - parse command and options, set up the
® tty lines, and dispatch to the appropriate routine.
L

main(arge, argv)

int arge; /% Character pointer for #/
char ##apgyv; /% command line arguments #/
{
char #®remtty, *cp; /% tty for CONNECT, char pointer #/
int speed, coflg, rflg, =sflg; /% speed of assigned tty, ¥/
/® flags for CONNECT, RECEIVE, SEND #/
if (arge < 2) usage(); /% Make sure there's a command line, #/
cp = ¥4+argv; argve+; arge == 2; /% Set up pointers to args #/

/® Initialize this side's SEND-INIT parameters #/

eol = CR; /% EOL for outgoing packets #/

quote = MYQUOTE; /% Standard contreol-quote char "#" ®/
pad = 0; /% No padding #*/

padchar = NULL; /% Use null if any padding wanted %/
speed = cflg = sflg = rflg = 0; /% Turn off all parse flags #/

remtty = 0; /% Default is host (remote) mode ¥/

image = UNIX;

/% Default to 8-bit mode for UNIX, #/
/% T-bit CRLF mode for others #/

image = 0; /% KSU default to non-image always #/
escchr = BRKCHR; /% Default escape character #/
while ((®*cp) 1= NULL) /% Get a character from the cmd line %/
switeh (®cp++) /% Based on what the character is, %/
{ /% do one of the folloing %/
case '=': break; /% Ignore dash (UNIX style) #/
case 'e': coflg++; break; /% C = CONNECT command #/
case 'a': sflg++; break; /% S = SEND command #/
case 'r': rflg++; break; /®* R = RECEIVE command %/
case 'e': if (arge=--) /% E = specify escape char #/
escchr = atoi(%®argv+e+); /% as ascii decimal number #/
else usage();
if (debug) fprintf(stderr,"escape char is ascii %#d0,escchr);
break;
case '1': if (arge--) /% L = specify tty line to use #/
remtty = ®argv++;
else usage();
if (debug) fprintf(stderr,"line $s0,remtty);
break;
#if UNIX /% This part only for UNIX systems #/
case 'b': if (arge--) speed = atoi(®argv++); /% Set baud rate #/

- 133 -
else usage();
if (debug) fprintf(stderr,"speed %d0,speed); break;

case 'i': image = TRUE; break; /% Image (8-bit) mode #/
fendif /% UNIX %/

case 'd': debug = TRUE; break; /% Debug mode #/

}
/% Done parsing ¥/
if ((eflg+sflg+rflg) 1= 1) usage(); /% Only one command allowed #/

remfd = 0; /% Start out as a host (remote) ¥/
host = TRUE;
if (remtty) /® If another tty was specified, W/
remfd = open(remtty,2); /% open it #/
if (remfd < 0) /% check for failure #/
{
fprintf(stderr,"Kermit: cannot open %s0,remtty);
exit(=1); /% Failed, quit, %/
}
host = FALSE; /% Opened 0K, flag local (not host) #/

}
/® Put the tty(s) into the correct modes #/

#if SYS3
ioetl(1, TCGETA, &cookedmode) ;
ioetl(1,TCGETA, &rawmode);
rawnmode, ¢_iflag = 0;
rawmode, c_oflag = 0;
rawmode.c_cflag &= ~(CSIZE|PARENB|PARODD):
rawmode, c_cflag |=
rawmode,c_1lflag =
rawmode,c_oc[l] =
rawmode. ¢_cc[5] =

f#endif

;
/% min chars #/
; /% 2.0 second timeout #/

#if VT
gtty(0,&cookedmode); /% Save current mode for later #/
gtty(0,&rawmode);
rawmode, sg_flags |= (RAW|TANDEM);
rawmode, sg_flags &= “{ECHO|CRMOD);

gtty(remfd, &remttymode); /% If local kermit, get mode of #/
/* assigned tty #/
remttymode, sg_flags |= (RAW|TANDEM);
remttymode, sg_flags &= ~(ECHO|CRMOD);
fendif

#if UNIX && V7 /% Speed changing for UNIX only %/

- 134 -

if (speed) /% User specified a speed? %/

{
switch(speed) /% Get internal system code #/
{

B110; break;

B150; break;

B300; break;

B1200; break;

case 110: speed
case 150: speed
case 300: speed
case 1200: speed
case 2400: speed = B2400; break;
case 4800: speed = BU4B00; break;
case 9600: speed = B9600; break;
default: fprintf(stderr,"bad line speed0);

}
remttymode, sg_ispeed = speed;
remttymode, sg_ospeed = speed;
}
f#endif /¥ UNIX #/

if (remfd) stty(remfd, ¢remttymode); /% Put asg'd tty in raw mode #/

/% All set up, now execute the command that was given, ¥/

if (ecflg) connect(); /% CONNECT command %/
if (sflg) /% SEND command #/
if (arge—--) filnam = ®argve+; /% Qet file to send %/

else usage();
filelist = argv;
#if SYS3
if (host) ioctl(1,TCSETA, &rawmode);
#endif
#if V7
if (host) stty(0,&rawmode); /% Put tty in raw mode if remote #/
fendif
if (sendsw() == FALSE) /% Send the file(s) #/
printf("Send failed.0); /% Report failure #/
elze /% or #/
printf{"0K0); /% success %/
#if SIS
if (host) ioetl(1,TCSETA, &cookedmode);
#endif
#if VT
if (host) stty(0,&cookedmode); /% Restore tty #/
fendif
}

if (rflg) /% RECEIVE command %/

{
#if SYS3
if (host) ioctl(1,TCSETA, &rawmode);
f#endif
#if VT

= 135 =

if (host) stty(0,&rawmode); /® Put tty in raw mode if remote #/
f#endif
if (reecsw() == FALSE) /% Receive the file #/
printf("Receive failed.0); /® Report failure #/
else /% or %
printf("0K0); /® success %/
#if SYS3
if (host) ioctl(1,TCSETA, &cookedmode);
f#endif
#if V7
if (host) stty(0,&cookedmode); /% Restore tty %/
f#endif
}
}
usage() /% Give message if user makes #/
/% a mistake in the command #/
fprintf(stderr,

mysage: kermit [esr][di][lbe] [line] [baud] [esc char] [f1 f2 ...]0);
exit();

}
/e
® sendsw
El
Sendsw is the state table switcher for sending
) files, It loops until either it finishes, or
an error is encountered., The routines called by
sendsw are responsible for changing the state,
[}
®/
sendsw()
{
char sinit(),sfile(),seof(),sdata(),sbreak();
state = 157; /% Send initiate is the start state #/
n = 03 /% Initialize message number #/
nuntry = 0; /% Say no tries yet %/
while(TRUE) /% Do this as long as necessary %/
{
switch(state)
{

case 'D': state
case 'F': state
case 'Z': atate
case 'S': state
case 'B': state

sdata(); break; /¥ Data-Send state #/
sfile(); break; /¥ File~Send #/

seof (); break; /% End-of-File ¥/
sinit(); break; /% Send-Init #/
sbreak(); break; /% Break-Send ¥/

case 'C': return (TRUE); /% Complete %/

case 'A': return (FALSE); /% "Aborth &/
default: return (FALSE); /% Unknown, fail #/
}

- 136 =

/8
* sinit

&

¥ Send Initiate: Send my parameters, get other side's back.
&/

char sinit()

{
int pum, len; /% Packet number, length #/

if (debug) fprintf(stderr,"sinit0);

if (numtry++ > MAXTRY) return('A'); /* If too many tries, give up ¥
spar(packet); /% Fill up with init info #/

if (debug) fprintf{stderr,™n = %d0,n);

#if UNIX
#if S¥S3
if (host)
ioetl{1,TCFLSH,0);
else
ioctl(remfd, TCFLSH,0);
f#endif
#if V7T && O
if (host) /% Clear any pending input #/
ioctl(); /® like stacked-up NAKs #/
else
ioctl(remfd, TIOCFLUSH,0);
fendif
fendif /® UNIX %/
spack('s',n,6,packet); /% Send an S packet #/
switch(rpack(&len, &num, recpkt)) /® What was the reply? ¥/
{
case 'N': return(state); /% NAK #/
case 'Y': /% ACEK %/
if (n != num) return(state)}; /% If wrong ACK, stay in S state #/
rpar(recpkt); /® Get other side's init info #/
if (eol == 0) eol = '0; /% Check and set defaults #/
if (quote == 0) quote = '#'; /% Control-prefix quote #/
numtry = 0; /® HReset try counter #/
n = (n+1)%64; /% Bump packet count #/
if (debug) fprintf(stderr,"Opening %s0,filnam);
fd = open{filnam,0); /% Open the file to be sent #/
if (fd < 0) return('A'); /® if bad file descriptor, give up #/
if (lhost) printf("Sending %s0,filnam);
return('F'); /% 0K, switch state to F %/
case FALSE: return(state); /% Recelve failure, stay in S state #/
default: return('A'); /% Anythig else, just "abort® #/
}
}

/¥

= 137 =

& sfile

%

Send File Header,
L7

char sfile()
{

int num, len;
if (debug) fprintf(stderr,®sfilel);

if (numtry++ > MAXTRY) return('A');
for (len=0; filpam[len] != ' ';

#if UNIX && O

len++;

fendif

spack('F',n,len, filnam};
switch(rpack(&len, &num, recpkt))
{

case 'N':
if (n != (num=({=-num<0)763:num))
return(state);

case 'Y':
if (n != num) return{state);
nuntry = 0;
n = (n+1)%64;
size = bufill(packet});
refturn('D?);

case FALSE: return(state);

default: return('A');
}
}
¥z
L] sdata
»
L] Send File Data
&/
char sdata()
{
int num, len;

if (numtry++ > MAXTRY) return('A');
spack('D',n, size, packet);

switch(rpack(&len, &num, recpkt))
{
case 'N':
if (n !z (num=(--num<0)}?63:num))

/4

Ve

/&
VA
Ve]

/&
/&

/&
/¥
/®
/%
/%
/¥
Vi
/&
Vi i
/&

/*
Vi

/2

/%
/®

Fa

/&
/®

Packet number, length #/

If too many tries, give up %/

len++); /% Add up the length &/

Don't know why this is here %/
Add 1 %/
But leaves an extra null #/

Send an F packet #/
What was the reply? #/

NAK, just stay in this state, #/
unless NAK for next packet, #/
which is just like an ACK %/
for this packet, fall thru to... %/

ACK %/

If wrong ACK, stay in F state %/

Reset try counter #/

Bump packet count #/

Get first data from file #/

Switch state to D #/

Receive failure, stay in F state ¥/
Something esle, Jjust "aborth" #/

Packet number, length #/

If too many tries, give up %/
Send a D packet #/

What was the reply? #/

NAK, just stay in this state, #/
unless NAK for next packet, #/

- 138 -

return(state);

case 'Y':
if (n != num) return(state);
numtry = 0;
n = (n+1)%64;
if ((size =
return('2');
return{'D');

case FALSE: return(state);
default: return('A');

seof

Send End-0f-File,

L7

char seof()

{

int num, len;

if (debug) fprintf(stderr,mseocf0);
if (numtry++ > MAXTRY) return('A');
spack('Z',n,0,packet);

if (debug) fprintf(stderr,"seof? ");
switch(rpack(&len, &num, recpkt))

{

case 'N':
if (n != (num=(==num<0)?63:num))
return(state);

case 'Y':

if (debug) fprintf(stderr,Mseof?2

if (n 1= num) return(state);
numtry = 0;
n = (n+1)%64;

/®
/®
/#
/&
/®
/¥

/&
/*

/¥
/%

/&

Vi i
/&

/®

/®
/e
/%
/®

");

/&
/&
/&

which is just like an ACK #/
for this packet, fall thru to...
ACK %/

If wrong ACK, fail #/

Reset try counter %/
Bump packet count #/

bufill{packet)) == EQF) /% Get data from file ¥/

If ECF set state to that %/
Got data, stay in state D %/

Receive failure, stay in D #/
Anything else, "abort® #/

Packet number, length %/

If too many tries, "abort" #/
Send a 'Z' packet #/

What was the reply? ¥/

HAK, fail %/
...unless for previous packet, %/

in which case, fall thru to ... #/

-ACK #/

If wrong ACK, hold out #/
Reset try counter #/
and bump packet count %/

if {debug) fprintf(stderr,%closing %s, ", filnam);

close(fd);

/%

Close the input file %/

if (debug) fprintf(stderr,"ok, getting next filed);

if (gnxtfl() == FALSE)
return('B');

/%
Vi

No more files go? ¥/
if not, break, EOT, all done #/

if (debug) fprintf(stderr,"new file is %s0,filnam);

fd = open(filnam,0);
if (£d<0) return(’a');

if (lhost) printf("Sending %s0,filnam);

return{ 'F');

case FALSE: return(state);
default: return(TA');
}

/8

/&
/e

More files, switch state to F #/

Receive failure, stay in state Z #/
Scomething else, ®abort® #/

8/

- 139 -

/%
* sbreak
#
Send Break (EQT)
L7
char sbreak()
{
int num, len; /% Packet number, length #/
if (debug) fprintf(stderr,"sbreak0);
if (numtry++ > MAXTRY) return('A'); /% If too many tries "aborth #/
spack('B',n,0,packet); /% Send a B packet #/
switch (rpack(&len, &num, recpkt)) /® What was the reply? #/
{
case 'N': /% NAK, fail %/
if (n 1= (num=(=-num<0)?63:num)) /* ,,.unless for previous packet, #/
return(state); /* in which case, fall thru to ... %/
case 'Y': /% ACK %/
if (n 1= num) return(state); /% If wrong ACE, fail #/
numtry = 0; /% Reset try counter #/
n = (n+1)%64; /% and bump packet count #/
return(tCt); /% switch state to Complete #/
case FALSE: return(state); /% Receive failure, stay in state B %/
default: return ('A'); /% Other, mabortn #/
}
}
/%
¥ recsw
L
L This is the state table switcher for receiving files.
L74
recsw()
{
char rinit(),rdata(),rfile(); /® Use these procedures %/
state = 'RY; /% Receive is the start state #/
n= 0; /% Initialize message number #/
numtry = 0; /% Say no tries yet #/
while(TRUE) switch(state) /% Do until done #/
case 1D': state = rdata(); break; /% Data receive state #/
case 'F': state = rfile(); break; /% File receive state #/
case 'R': state = rinit(); break; /% Send initiate state #/
case 'Ct: return(TRUE); /® Complete state #/
case "A': return(FALSE); /% mAbort® state #/

}

- 140 -

/"
rinit

* Receive Initialization
L7

char prinit()
{

int len, num;

if (numtry++ > MAXTRY) return('A');
switeh(rpack{&len, &num, packet))
{
case '3':
rpar(packet);
spar(packet);
spack('Y',n,6,packet);
oldtry = numiry;
numtry = 0:
n = (n+e1)364;
return('Ft);

case FALSE: return (state);
default: return('A');
}

}

/"
* rfile
]

* Receive File Header
L7

char rfile()

{

int num, len;

if (numtry++ > MAXTRY) return{'i');
switch(rpack(&len, &num, packet))
{

case 'St;

/B

/&
/t

/&
Vi
Va
VA
/&
/%
/%
/7t

/&
/&

/®

VA
Va |

/%

Packet length, number #/

If too many tries, "abort" #/
Get a packet #/

Send=-Init #/

Get the other side's init data #/
Fill up packet with my init info #/
ACK with my parameters #/

Save old try count #/

Start a new counter #/

Bump packet number, mod 64 #/
Enter File-Send state &/

Didn't get a packet, keep waiting %/
Some other packet type, “abort® %/

Packet number, length %/

tgabort® if too many tries #/
Get a packet #/

Send-Init, maybe our ACK lost #/

if (oldtry++ > MAXTRY) return('A'); /# If too many tries, "abort" #/

if (num == ({n==0)?63:n=1))
{
spar(packet);
spack('Y',num,6,packet);
numtry = 0;
return(state);
I

else return('A');

case 'Z':
if (oldtry++ > MAXTRY) return('A');
if (num == ((n==0)763:n=1))

/%
/%
/%
/e
/®
/&

/"
/¥
/®

Previous packet, mod 642 #/

Yes, ACK it again %/

with our Send~Init parameters #/
LN 3 ./

Reset try counter #/

Stay in this state #/

Not previous packet, mTabort® #/
End=-0f-File %/

Previous packet, mod 647 #/

-1 -

{
spack('¥',num,0,0);
numtry = 0;
return(state);

}

else return('A');

case 'F':
if (num I= n) return('A');

if (lgetfil(packet))
{

/®

/&
/%

/8
/s
/®
/#

Yes, ACK it again. %/

Stay in this state #/
Not previous packet, "aborth #/

File Header, #/

which is what we really want %/
The packet number must be right %/
Try to open a new file #/

fprintf(stderr,"Could not create %s0); /% Giv up if can't #/

return(*A');

3

else

/&

0K, give message #/

if (lhost} printf("Receiving %s0,packet);

spack('Y',n,0,0);
oldtry = numtry;
numtry = 03

n =z (n+1)%64;
return('D');

case 'B':
if (num != n) return ('A');
spaek('Y',n,0,0);
return('C');

case FALSE: return(state);

default: return ('A');
}
}
/4
rdata
]
#® Receive Data
&/

char rdata()

{

{

int num, len;

if (numtry++ > MAXTRY) return('A');

switch(rpack(&len, &num, packet))
case 'Dl:

if (noum 1= n)
{

/%
/t
/¥
/%
/2

/8
/T
/¥
/&

VA
/%

VA

/"
/8
/%

Vi
/%

i1f (oldtry++ > MAXTRY) return(’'A');

if (num == ((n==0)763:n=-1))

spack('Y',num,6,packet);
numtry = 03

/%
/®
/e
/#

Acknowledge the file header #/
Reset try counters #/

L] '/

Bump packet number, mod 64 #/
Switch to Data state #/

Break transmission (EQT) #/
Need right packet number here #/
Say OK #/

Go to complete state #/

Couldn't get packet, keep trying %/
Scme other packet, “abort" #/

Packet number, length #/

"aborth if too many tries #/
Get packet %/
Got Data packet #/

Right packet? #/

No #/

/% If too many tries, give up %/
Else check packet number #/
Previocus packet again? %/

Yes, re=ACK it #/

Reset try counter #/

- 142 -

return(state); /% Stay in D, don't write out datal ¥/
}

else return('A'); /% sorry wrong number #/

}

/% Got data with right packet number #/
bufemp(packet, fd, len); - /% Write the data to the file #/
spack('Y',n,0,0); /% Acknowledge the packet #/
oldtry = numtry; /% Reset the try counters #/
numtry = 0; VA SRR ¥4
n = (n+1)%64; /% Bump packet number, mod 64 #/
.return('D'); /® Remain in data state #/

case 'F': /® Got a File Header %/
if (oldtry++ > MAXTRY) return{'A'); /% If too many tries, "abort" #/
if (num == ((n==0)%63:n=1)) /% Else check packet number #/
{ /% It was the previous one ¥/
spack('Y',num,0,0); /% ACK it again %/
nuntry = 0; /® Reset try counter #/
return(state); /% Stay in Data state #/
}
else return('A'); /% Not previous packet, Maborth #/
case 'I': /% End-0f-File %/
if (npum != n) return('4'); /® Must have right packet npumber #/
spack('Y',n,0,0); /% OK, ACK it, #/
close(fd); . /% Close the file #/
n = (n+1)%64; /% Bump packet number #/
return('Ft); /% Go back to Receive File state #/
case FALSE: return(state); /® No packet came, keep waiting */
default: return('A'); /% Some other packet, "aborth" #/
}
}
/#
® connect
#
Establish a virtual terminal connection with the remote host, over an
assigned tty linpe.
*
"/
connect()
{
int parent; /% Fork handle %/
char ¢ = NULL, r = '7";
if (host) /% If in host mode, nothing to connect to %/
{
fprintf(stderr, "Kermit: nothing to connect to0);
return;
}

parent = fork(); /® Start fork to get typeout from remote host #/

- 143 =

if (parent) /% Parent passes typein to remote host #/
{ .
printf("Eermit: connected,T70); /% Gilve message #/
#if SYS3
ioctl(1,TCSETA, &rawmode);
fendif
Fif V7
stty(0,&rawmode); /% Put tty in raw mode #/
f#endif
xread(0,&e,1); /% Get a character #/
while ((c&0xT7f) |= escchr) /% Check for escape character #/
/% Not it #/
xwrite(remfd, &c,1); /% Write the character on screen #/
¢ = NULL; /% Nullify it #/
xread(0,4%c,1); /% Get next character #/
} /% Until escape character typed #/
kill(parent,9); /% Done, get rid of fork #/
#if SYS3
ioctl(1,TCSETA, &cookedmode) ;
f#endif
#if V7
stty(0,&cookedmode); /% Restore tty mode #/
#endif :
printf("0ermit: disconnected.0); /% Give message #/
return; /% Done %/
}
else /% Child does the reading from the remote host #/
{
while(1) /% Do this forever #/
{
xread(remfd, &c,1);
xwrite(1,%c,1);
}
}
}
/I
* EERMIT utilities.
L7
clkint() /® Timer interrupt handler #/
{
longjmp(env, TRUE); /% Tell rpack to give up %/
}

/% tochar converts a control character to a printable one by adding a space #/

char tochar(ch)
char ch;
{

return(ch + ' 1'); /% make sure not a control char #/

}

/% unchar undoes tochar #/

- 14 -

char unchar(ch)
char ch;
{

return(ch = ' '); /% restore char #/

}

/%
® otl turns a control character into a printable character by toggling the
¥ control bit (ie. “A becomes A and A becomes “A).

L

char ctl(ch)
char ch;

{
return({ch " 64); /% toggle the control bit #/

}

/8
* spack
#
bd Send a Packet
®/

spack(type, num, len, data)
char type, *data;
int num, len;

{
int i; /% Character loop counter #/
echar chksum, buffer[100]; /% Checksum, packet buffer #/
register char #bufp; /® Buffer pointer %/
bufp = buffer; /% Set up buffer pointer #/
for (i=1; i<{=pad; i++) xwrite(remfd, &padchar,1); /® Issue any padding #/
*bufp++ = SOH; /® Packet marker, ASCII 1 (SOH) #/
chksum = tochar(len+3); /® Initialize the checksum ¥/
*bufp++ = tochar(len+3); /% Send the character count #/
chksum = chksum + tochar{num); /% Init checksum %/
#bufp++ = tochar(num); /® Packet number #/
chksum = chksum + type; /% Accumulate checksum #/
fbufp++ = type; /% Packet type ¥/
for (i=0; i<len; i++) /% Loop for all data characters #/
i
*bufp++ = data[i]; /% Get a character #/
chksum = chksum+data[i]; /% Accumulate checksum #/
}
chksum = (chksum + (chksum & 192) / 64) & 63; /% Compute final checksum %/
*bufp++ = tochar({chksum); /#% Put it in the packet #/
#bufp = eol; /% Extra-packet line terminator #/

xwrite(remfd, buffer,bufp-buffer+1); /% Send the packet #/
if (debug) pute('.!,stderr);

- 145 -

rpack

® W

Read a Packet
#

*/

rpack(len, num, data)
int ®len, *num;
char %#data;

{

int i, done;

char chksum, t, type;

#if UNIX
if (setjmp(env)) return FALSE;
signal (SIGALRM, clkint);

/® Packet length, number #/

/% Packet data #/

/% Data character number,
/% Checksum, current char,

loop exit %/
pkt type #/

/% TOPS=20 can't handle timeouts,.. %/

/% Timed out, fail #/
/% Setup the timeocut #/

if ((timint > MAXTIM) || (timint < MINTIM)) timint = MYTIME;

alarm(timint);

#if SYS3
if (host)
ioctl(1,TCFLSH,0);
el se
icectl(remfd, TCFLSH,0);
fendif
#if VT && 0O
if (host)
ioctl();
else
ioetl(remfd, TIOCFLUSH,0);
fendif
fendif /% UNIX #/

/® Clear any pending input

y ¥/

/% like stacked-up ACKs #/

while ((t&0x7f) != SOH) xread(remfd,%t,1); /% Wait for packet

done = FALSE;
while (ldone)
{
xread(remfd, &t,1);
if (limage) t &= 0177;
if ((t&0x7f) == SOH) continue;

chksum = t;
#len = unchar(t)=3;

xread(remfd, &t,1);

if (limage) t &= 0177;
if (t == SOH) continue;
chksum = chksum + t;
#num = unchar(t);

xread(remfd, &, 1);
if (limage) t &= 0177;

/% Got SCH, init loop #/
/% Loop to get a packet #/

/® Get character #/
/®* Handle parity #/

header #/

/® Resynchronize if SCH #/

/% Start the checksum #/
/® Character count #/

/® Get character #/
/% Handle parity %/
/® Resynchronize if SOH #/
/® Accumulate checksum %/
/% Packet number #/

/% Get character %/
/% Handle parity #/

- 146 -

if (t == SOH) continue; /% Resynchronize if SOH %/
chksum = chksum + t; /% Accumulate checksum #/
type = t; /% Packet type #/
for (i=Q; i<%len; i++) /% The data itself, if any #/
{ /% Loop for character count %/
xread(remfd, &t,1); /#* Get character %/
if (limage) t &= 0177; /% Handle parity #/
if (t == SCH) continue; /% Resynch if SOH #/
chlkksum = chksum + t; /% fccumulate checksum #/
data[i] = t; /% Put it in the data buffer #/
}
data[®len] = 0; /% Mark the end of the data #/
xread(remfd, &t,1); /% Get last character (checksum) #/
if (limage) t &= 0177; /% Handle parity %/
if (t == SOH) continue; /% Resynchronize if SOH #/
done = TRUE; /® Got checksum, done #/
}
#if ONIX
alarm(0); /% Disable the timer interrupt #/
fendif

chksum = (chksum + (chksum & 192) / 64) & 63; /% Fold bits 7,8 into chksum #/
if (chksum != unchar(t)) return(FALSE); /% Check the checksum, fail if bad #/

return(type); /% All OK, return packet type #/
}
/8
burfill
#
® Get a bufferful of data from the file that's being sent,
hd Only control-quoting is done; 8-bit & repeat count prefixes are
* not handled,
®/
bufill{buffer)
char buffer[]; /% Buffer #/
{
int i; /% Loop index %/
char t, t7;
i=0; /% Init data buffer pointer #/
while(read(fd, &t,1) > 0) /% Get the next character #/
if (image) /® In B=bit mode? #/
{
t7T = t & 0177; /% Yes, look at low-order 7 bits #/
if (t7 < SP || t7==DEL || t7==quote) /® Control character? ¥/
{ /® Yes, #/
buffer[i++] = quote; /¥ quote this character #/

if (t7 != quote) t = ctl(t); /% and uncontrollify #/
}

- 147 -

else /% Else, ASCII text mode #/
{
t &= 0177; /® Strip off the parity bit %/
if {(t < SP || t == DEL || t == quote) /% Control character? %/
{ /% Yes #/
if (t=='0) /% If newline, squeeze CR in first #/
{
buffer[i++] = quote;
bufferfi++] = otl('7");
}
buffer[i++] = quote; /® Insert quote #/
if (t 1= quote) t=ctl(t); /% Uncontrollified the character %/
}
}
buffer[i++] = t; /% Deposit the character itself #/
if (i >= spsiz~8) return(i); /% Check length #/
} ‘ .
if (i=z=0) return(EOF); /% Wind up here only on EOF #/
return(i); /% Handle partial buffer #/
}
/®
® bufemp
]
* Get data from an incoming packet into a file,
8/
bufemp(buffer, fd, len)
char buffer[]; /% Buffer #/
int fd, len; /% File pointer, length #/
{
int 1; /% Counter #/
char t; /% Character holder #/
for (i=0; i<len; i++) /% Loop thru the data field #/
{
t = buffer{i]; /% Get character #/
if (t == MYQUOTE) /® Control quote? %/
{ /% Yes #/
t = buffer[++i]; /% Get the quoted character #/
if ((t & 0177) 1= MYQUOTE) /% Low order bits match quote char? #/
t = ctl(t); /% No, uncontrollify it #/
}
if (image || (t I= CR)) /% Don't pass CR in text mode #*/
write(fd,&t,1); /® Put the char in the file #/
}
}
/#
getf i1

Open a new file
¥/

- 148 -

getfil(filemm)
char ®*filenm;
{
if (filemm[0] == T 1)
fd = creat{packet,0644); /% If filename known, use it #/
else
fd = creat(filenm,0644); /% else use sourcefile name %/
return (fd > 0); /% Return false if file won't open #/

}

/%
b gnxtfl

#

b Get next file in a file group

"

gnxtfl()

{
if (debug) fprintf(stderr, "gnxtfl0);
filnam = #(filelist++);

if (filpam == 0) return FALSE; /® If no more, fail %/
else return TRUE; /® else succeed ¥/
y
/#
) spar
]
* Fill the data array with my send-init parameters
]
®/
spar{data)
char data[]l;
{
data[0] = tochar(MAXPACK); /® Biggest packet I can receive #/
data[1] = tochar(MYTIME); _ /% When I want to be timed out #/
data[2] = tochar(MIPAD); /% How much padding I need #*/
datal[3] = ctl(MYPCHAR); /% Padding character I want %/
data[4] = tochar(MYECL); /% End=-0f-Line character I want #/
data[5] = MYQUOTE; /® Control~-Quote character I send %/
}
/* rpar
#
Get the other host's send-init parameters
#
&/
rpar(data)
char data{l;
{

spsiz = unchar(data[0]); /% Maximum send packet size #/
timint = unchar(data[1]); /® When I should time out #/
pad = unchar{data[2]); /% Number of pads to send #/

- 149 -

padchar = ctl(data[3]); /% Padding character to send #/
eol = unchar(datall]); /% EOL character I must send #/
quote = data[5]; /% Incoming data quote character #/

}

xread (fd,buf, len)
int fd, len;
char #buf;
{
int i, n;
n=read(fd, buf, len);
for (i=0; i<n; i++)
if(limage) buf[i] &= Ox7f; /® Changed by t. scott 5-1985 #/
#if TRACE /% if(limage) was added ®/
if (debug) {
fprintf(stderr,"xread len=%x ", n);
for (i=0; i<n; i++)
fprintf(stderr,"$x ", #(buf+i) & 0xff);
fprintf(stderr,”0);
}i
f#endif

}s
xwrite (fd,buf,len)

int f£d, len;
char ®%puf';

return n;

{
int i, n;
n=write(fd, buf, len);
#if TRACE
if (debug) {
fprintf(stderr,"xwrit len=%x ", n);
for (i=0; i<n; i++) _
fprintf(stderr,"$x 7, #(buf+i) & 0xff);
fprintf(stderr,"Q);
b
f#endif

return n;

b

BIBLIOGRAPHY

[Bou 1982] Bourne, S. R.: "The UNIX System", Addison_Wesley,
1982,

[Bri 1977] Brinch Hansen, Per: "The Architecture of Con-
current Programs", Prentice-Hall, Englewocod Cliffs, 1977.

[Bri 1982] Brinch Hansen, Per: "Programming a Personal
Computer", Prentice-Hall, Englewood Cliffs, 1982.

[Col 1983] MPC Asynchronous Communications Program: Perfect
Link: Columbia Data Products, Columbia, Maryland, 1983

[Cru 1984A] Cruz, Frank da; Catchings, Bill: "Rermit: A
File-Transfer Protocol for Universities, Part l: Design
Consideration and Specifications", Byte (June 1984) vol.
gp No. 6;‘ PP. 255_2780

[Cru 1984B] Cruz, Frank da; Catchings, Bill: "Kermit: A
File-Transfer Protocol for Universities. Part 2: States and
Transitions, Heuristic Rules, and Examples", Byte (July
1984) vol. 9, No. 7, pp. 143-145, 400-403.

[Cru 1984C] Cruz, Frank da; Tzoar, Daphne; Catchings, Bill:
"Kermit Users Guide®™, Columbia University Center for Comput-
ing Activities, New York, 1983.

[Dig 1975] "LSI1l1 PDPll/03 ©Processor Handbook": Digital
Equipment Corporation, Maynard, MA., 1975.

[Hoa 1972] Hoare, C. A. R.: "Towards a Theory of Parallel
Programming", Operating Systems Techniques, Academic Press,
New York, pp. 61-71, 1972,

[Ker 1978] Kernighan, Brian W.; Ritchie, Dennis M.: The C
Programming Language", Prentice-Hall, Englewood Cliffs,

1978.

[Nor 1983] Norton, Peter: "Inside the IBM PC", Brady, 1983,
Bowie, MA, 1983,

= LRl =

[Wir 1971] wWirth, N.: "The programming language Pascal"”,

Acta Informatica 1, pp. 35_63, 1971.

[Zen 1984] "MS-DOS Version 2 Programmer's Otility Pack":
Zenith Data Systems Corporation, St. Joseph, MI, 1984, pp.

6.30-6.33.

An Implementation of the Kermit Protocol Using
the Edison System

by

Terry A. Scott

B. S. Iowa State University, 1964

Ph. D. University Of Wyoming, 1972

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1985

ABSTRACT

This report is primarily concerned with the Edison-Kermit
system. The Edison-Kermit system was developed to allow
transfer of files between the Edison operating system run-
ning on the PC microcomputer and a minicomputer running Unix

attached to the serial port of the microcomputer.

The Edison-Kermit syétem was created using the Edison
operating system and program development environment
hereafter called the Edison System. The Edison System was
written by Per Brinch Hansen and consists of a relatively
small and uncomplicated operating system, a compiler written
for the Edison language, an editor, and several programs to
assist in program development, All of the Edison System
programs are written in the Edison language with the excep-
tion of the kernel of the operating system. This kernel |is
written in Alva, which is an assembly language patterned

after PDP-11 assembly language.

The Kermit protocol is a sliding window protocol of size
one, It uses a single character checksum and a sequence
number to detect errors that might occur when files are
transferred between the microcomputer and the minicomputer

attached to the micro's serial port.

In addition to the discussion of the Edison-Kermit systen,
the report has chapters on the Edison language, the Edison

operating system and program development environment, and

the Rermit file transfer protocol. There are also appen-
dices which contain a user's manual, helpful hints for
Edison System users, a Kermit session showing the packets
transmitted by the sender and receiver, and the code for the
Edison-Kermit operating system and kernel and the C code for

the Kermit that runs on the minicomputer.

