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I. INTRODUCTION

Deep-bed filters are of importance in purification of potable water
and in treatment of wastewater. The solid-liquid separation in deep-
bed filters has been modeled deterministically by various investigators
using the phenomenological equation of kinetics (Iwasaki, 1937; Ives, 1960,
1961; Camp, 1964) and the trajectory analysis (0O'Melia and Stumm, 1967;

t al., 1971; Payatakes, 1973; Rajagopalan and Tien, 1976, 1979;

Yao

Tien et al., 1978 a,b).

Deep bed filzration involves flow of mesoscopic particles through ran-
domly distributed passages; thus, it tends to be stochastic in nature.
Stochastic models of the Markovian type, therefore, have also been used to

model the deep bed filtration (Litwiniszyn, 1963, 1966, 1967, 1968 a,b,

1969; Hsu, 1981; Hsu and Fan, 1984; Fan et al., 1984). Stochastic process

models are often relatively simple and easy to apply, thereby providing a

viable alternative to deterministic models. In Litwiniszyn's pure birth

model (1963), the entire bed is considered as one state, and the number of

blocked pores is taken as a random variable. In his birth-death process

model (1966), the number of trapped particles over the entire bed is a ran-

dom variable. These works of Litwiniszyn have not received sufficient

recognition since the parameters of resultant models are not explicitly
related to measurable variables of the process (e.g., pressure drop and

concentration). Hsu (1981), Hsu and Fan (1984), and Fan ec al. (1984) have

extended the pure birth and birth-deach process models by incorporating them

with the Carman-Kozeny equation to simulate the pressure drop dynamics of a

deep-bed [ilter under constant flow conditions. However, the concentration

of the filtrate as a Function of time is also of vital importance in fil=-



e

tration. Thus, it is highly desirable that a model be developed for pre-
dicting the concentration of suspended particles both in the filter and
in the effluent.

In this work, a deep-bed filter is considered to be an open flow system
composed of an arbitrary number of sections or compartments distributed
in the axial direction; a stochastic compartment model is employed to
describe the concentration dynamics of suspended particles in those
sections of the bed and at the exit. For illustration, six sets of para-
meters are used to simulate the concentration dynamics of suspended
particles in the filtrates of a two compartment filter. Finally, the
applicability of this model is demonstrated by analyzing Eliassen's

experimental data.



I1. MATHEMATICAL MODEL

1. Compartmental Model

Consider that a deep-bed filter is divided into n compartments distri-
buted in the axial direction or the direction of flow, as shown in Figure 1;
each compartment consists of one liquid phase, occupied by the liquid, and
one solid phase, occupied by the grain medium. Let Li denote the liquid
phase and Di the solid phase in compartment i. We assume that the particles
in suspension enter the system through the liquid phase of the first compart-
ment and exit from the system through the liquid phase of the last compart-
ment. Without loss of generality, we assume that suspension enter the sys-

tem at a constant volumetric rate of q and a constant particle concentration

of CO. The rate of particles entering the system through the feed streanm, X,

may be obtained as

(1)

In a small cime interval (t, t+At), a particle in the liquid phase, Li'
may (1) remain in Li' (2) move to the liquid phase in another compartment,Lj,
(3) move to the solid phase, or (4) exit from the system. A particle in the
solid phase, D,, may (1) remain in Di' or (2) move to the liquid phase. This

process is depicted in Figure 1. This system defines a Markov process with

2n states (Si’ i=1,2, ..., 2n). For convenience, we let the first n states

(S, n) belong to the liquid phase (hence, called liquid states

i i =1, 2 «eea

hereafter), and the second n states (Si’ i = n+l, n+2, ..., 2n) belong to the

solid phase (hence, called solid states hereafter), respectively ( See

Figure 1).

Let m,..(t), i, j =1, 2, ..., 2n, be the intensity functions of the

Markov process (see, e.g., Chiang, 1980). From the definitions,



mij(t)bt + o(Aat)

= Pr{a particle in state i at time t will move to state

j at time t+At, j £ i], {23

ui(t)At + o(at)
= Pr{a particle in state i at time t will exit

at time t+at], (3)

mij(t)dt + ui(t)At] + o(At)
j=1

j#1
= Pr{a particle in state i at time t will remain in
the same state at time t+At]
= 1+ m, (c)ae + o(ar) ) (4)
and

+4
pij(t. t+it)
= transition probability that a particle in state i-at time

t will be in state j at time c+at, i,j =1, 2, ..., 2n.

where o{At) satisfies the condition that
11m-9%?51 = 0,
Acr0 T

From Eq. 4, we have

2n
mii{t) = - [_E mij(t) + ui(t)], iz=1, 2, «a., 20 (s5)

j=1
jti
Let P{t,t) be the matrix of transition probabilities [pij,(T,t)}. It
can be shown (Chiang, 1980) that P(1,t) satisfies the Kolmogorov forward

differential equation, i.e.,



4 pr,0) = B(T,0)M(t) (6a)
dt — -
with the initial condition
P(rv,1) = 1 = identity matrix (6b)
where M(t) is the matrix of intensity functions, mij(t).
For a time homogeneous process (l.e., intensity functions are not
dependent on time), Eq. 6 becomes
d
— P(t-1) = P(c-1)M (7a)
dt = = =
with the initial condition
(7b)

P(0) = I = identity matrix

The solutions of Eqs. 6 and 7 depend on the intensity matrix H.

For deep bed filtration, it is reasonable to assume that, in a very

small time interval (t, ttac),

1.

the transition probability that a particle moves from the

solid phase of compartment i to that of compartment j is of{Ar), i.e.,

Pij(c, t+ac) = ofat)

or (8a)

L = ol otd; ceuy In, A # )

the transition probability that a particle moves from the liquid
phase to the solid phase, or from the solid phase to the liquid

phase, where both phases are not in the same compartment, is o(Ar),



P,.(t, c+At) = o(AL)

ij
L1 (8b)
=0
mij(t) '
£ - il>a,
3. the cransition probability that a particle moves more than one
compartment is o(at), i.e.,
pij(t, t+Ac) = o(ac)
or (8c)
= 0
mij(t)
|1 - 3]>1

.3 = Ls 5 swes B

Since particles exit from the filter only through the liquid phase of the last

compartment, we have

M, = 0 for i # n (8d)

Based on these assumptions, ye have(see Figure 2).
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For the case where the intensity functions or elements of the matrix
mM(t) are constant, the solution of the first-order differential equation, Eq. 7

is given as (see e.g., Chiang, 1980)

-1
P(e-1) = Q(r)E(t-1)Q "(r) (10)
where
Br,l(pi) Br,l(pZ) T Br,l(DZn)
B olpp) B p(e) - o B (Rp)
Q(r) = ’ ) tT ) (11a)
Br.Zn(pl) Br,Zn(pz) T Br,Zn(DZn)
and
pl(t—T) 0 —1
e 0 0 i & @
pz(t_r)
0 e 0 v & @ 0
DJ(t—T)
0 0 e - . . 0
Ef{t=x) = (11b)
pzn(t—T)
0 0 0 ... e
Column k¥ (k = 1, 2, ..., 2n) in Q(r) represents an eigenvector corresponding

to the eigenvalue Oy This is obtained as the r-th column of the adjoint

matrix (transpose matrix of the cofactor) of the matrix [pk 1 - Ml



Expanding Eq. 10 yields

2n Q.k(r)

where ij(r) is the cofactor of the element Brj(pk) of the matrix Q(r), lg(r)l

is the determinant of Q(r), and P 's are the eigenvalues of the intensity

k
matrix M and are assumed to be real and distinct. A solution is also known
for the case of nondistinct or ovarlapping eigenvalues (see, e.g., Chiang,
1980). If the entire bed is considered simply as one compartment, Eq. 7 can
be solved analytically; the resultant solution is given in APPENDIX A.

If the intensity functions, mij(t)' are not constant and are contin-
uous functions of time, Eq. 7 can be solved uniquely; however, the resultant
solution may not be in closed form (Bellman, 1960). It may be expressed
as
t

P(r,£) = G(r,t) = I+ [ G(r,0)M(£) dE (13)
T

The matrix G(t,t) may be obtained iteratively according to the following

matrix sequence (see, e.g., Bellman, 1960).

90 = I = didentity matrix
G = 1+ % c ME) de . (14)
—m+l = T ™

It can be shown that Eq. 14 reduces to the time homogeneous solution if M

is constant.

2. Internal Particle Distribution

To gain insight into the performance of a deep-bed filter, 1t is essen-



tial that the spatial distribution of suspended particles in the bed should

be determined as a function of time.

In other words, it should be of inter-

est to determine the distribution of particles in suspension (liquid phase)

or on the solid medium (solid phase)
bed. It is assumed that the process
functions are not functions of time)

system only chrough the liquid phase

is also assumed that these particles

same shape and size) and behave ‘independently of one amother.

the NO

probability plj(t-T)’ = Ly

over the different compartments of the
is time homogeneous (i.e., the intensity
and N_ particles enter instantameously the

0
of the first compartment at time 7. Ic
have the same characteristics (e.g., the

Then, each of

particles originally in state 1 will be in one of the 2n states with

,2n, which is obtained from Eq. 10 wicth M

5pecified by Eq- 9, or be outside the system (i.e., in the surroundings)

with probability rlé(t-T)' which may
equation;
C
- - t-
r, (e TI pln( £) M

Hence, if NO

be obtained from the following

dg (15)

particles are initially in state 1, then the number of suspended

particles in each of the 2n states at time t follows a multinominal distri-

bution (see, e.g., Rohatgi, 1976).

variable representing the number of suspended

t. Then, the joint density of (Yl(c), Yz(t),

Pr[Yl(c)=y1(t). Yz(t)=y2(t).

(NO)!

n n 1
{m y (1HN- Ty, ()
i=1 1=1

23

(p; (-0}

Let Yi(t), i=1,2,...,2n, be the random

particles in state i at time

- Yn(t)) is

e, Yn(t)=yn(t)l

n
- &
i=1

[N yi(c)]

y. (t) 0

}1-

i

(| e B |

pli(c-T)}

1 (16)
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The distribution of the numbers of suspended particles over the states k
(k = at+l, n+2, ..., 2n) in the solid phase may also be obtalned from the multi-

nominal distribution as

PriY 1 (O=y (0 ¥ o (®)=y (B i, Y, (D)=y, ()]

2n

[NO- L yk(t)]

n

" In 2n {kj +1[91k(t-r)] }(1—_Elplk(c-t)}
(r oy (HN- &y () =n i

o e (17

Then, the mean and variance of the number of suspended particles in any state

i (i =1,2,...,2n) at time t are

(18)

E[Yi(t)] N, pli(t-T)

(19)

Var(Y, ()] Ny py; (=021 - Pyy(t-1)]

If the particles enter the filter at a constant rate of X during the
time interval (t,t), then Xd& particles will enter the bed during the time
interval (&, &+df) where T<E<t. The mean and variance of the number of

these particles in any state i(i=1,2,...,2n) at time t are, respectively,

E[in(t)] =  Xdf pli(t~€) (2Ca)

(20b)

Var[in(t)] Xdg pli(t—E)(l - pli(c—E)l

Integration of Egqs. 20a and 20b over (1,t), subject to the initial condition,

Yi(O) = 0, E= 1y 24 wewy 20
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t
E(Y ()] = X i P, (t-£)dE (21a)
1

t
X [ Py (t-8)[1 - pli(t-ﬁ)]dg (21b)

T

VarIYi(t)]

Furthermore, if a particle is trapped permanently on the grain medium
(i.e., the states in the solid phase are absorbing), the distribution of
the numbers of suspended particles over all the states in the solid phase at
time t provided that NO particles entered the bed at time T, is also multinominal

as given in Eq. 16, except that p,, (t-T) are replaced by rlk(t_r)’ which are

obrained from the following equation;

dg, k = n+l,n+2,...,20  (22)

t
r,, (c-1) = f P, ,_.(e-8m
1k  Plken n

Py % (t-s) in this expression is obtained from Eq. 7 with M being an n x n

matrix specified as follows

... 0 0 ]
r-“"11 Mg L
0 0
Bax Pz Py
0 m m . e . 0 0
4, = oy (23)
. 0 0 mn-—l.n—l mn—i,n
—0 0 a II‘n.n—-]. mnnJ
where
= - =1,2 ,n-1
my T M Y My i) ford 1.2, n

m m + m + 4
nn n.n-1 n,Zn n
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PELY (©)=y ) (), Y (0)=y o (8), ..., ¥, (6)=y, (6)]

(NO)! Zn Yk(tl
= T 7a {k=:+1 frpe=al™ )
{ ™ y (e)t}(N, - &k ¥, (€) }!
k=ntl ¥ 0 fentl *
2n
(N.- L vy, ()]

n e
(L- £ £, (-0} (24)

k=n+1

and the mean and variance of the number of suspended particles in the solid

phase of each compartment at time t are, respectively,

E[Yk(t)l =N, rlk(t—t) (25a)

Var[Y, (£)] = N, rlk(t—t)fl—rlk(t-r)] ; (25b)

k = n+l, n+2, ..., 2n0.

These results are obtained under the condition that NO suspended particles
are fed instantaneously into the liquid phase of the first compartment at
time 1. If the suspended particles enter the filter at a constant rate of X
over the time interval (T, t), the mean and variance of the number of sus-
pended particles in the gplid phase of each compartment at time t are,

respectively,
t
E(Y (E)] = X T[ r, (=€) dE (26a)

t
Var[Yk(t)] =X T[ rlk(t—g)[l —rlk(t—ﬁ)] de (26b)
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3. Distribution of Particles in the Effluent

Suppose that Nb particles are initially fed instantaneously into the
liquid phase of the first compartment; at time t, each of these particles will
exit from the system with probability rls(t—t}, which is obtained from Eq. 15,
or remain in the bed with probability [1 - rls(t-r)]. Hence the number of

suspended particles in the surroundings (i.e. outside the bed) at time t has a

binominal distribution. Let Ys(t) be the random variable representing the

number of suspended particles - in the effluent at time’t, then we have
Pe(v_(r) = y.(£)]

Ny y () (N, - y ()]
yg(e)t [Ny -y (e} ]} Loy it d (1= (e (27

The mean and variance of the number of suspended particles in the surroundings

at time t are expressed, respectively, as

E(Ys(t)j = Nb rls(c-tJ {(28)

Var[Ys(t)] - HO rls(c-t)[l - rls(t—r)] (29)

If the suspended particles enter the filter at a constant rate of X over

the time interval (tr, t), the mean and variance of the number of suspended

particles in the effluent at time t are, respectively,

t
E[Ys(t)l = X TI rls(c-E) dg (30)

t

Var[YS(L)] = X rf r 5((—&){1 - rls(twﬂ)] dE (31)

1
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IIT. NUMERICAL SIMULATION AND PARAMETER ESTIMATION

In the previous sections we have formulated expressions for the expected
numbers of suspended particles in the liquid and sclid phases in each compart-
ment of the bed as functions of time. For experimental purposes, the expected
number concentration can be recovered by dividing the expected numbers of
particles by the respective volume. For instance, let Ci(t) be the particle
concentration of the filtrate sampled from the end of compartment i, i=1,2,...n,
during the time interval (t, t+At). Then, the mean of Ci(t), E[Ci(t)], for a

deep-bed filter with a constant volumetric flow rate of q and a constant sus-

pension concentration of CO(C0 = X/q) is

E[(Y.(t)(8q/q) m_ . .At] E[Y.(t)m, . .At]
. _ i Lyik] - i i, i+l

i=1, 2, ..., n-1

where 8q is rate of sampling from each compartment. Substitution of Eq. 2la

into Eq. 32 and rearrangement of the resultant expression yield

t
B(C ()] = (/@) [ pyy(e-Bhmy g6
t
= (cy) Tf Py (E-Edmy ., dE
or
t
E(C,(£)/C;] =Tf Py (t=Bm; 44 dE i, By weey n=l €33)
For i = n, i.e., the last compartment, we have
t
(34)

E(C_(e)/C,) =£j Pyalt=8lu dg

Similarly, the variance of {Zi(l), V;tr[[]i(L}], is obrained ¢
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2 5 )
Var(C ()/Cyl =(my /) Tf P (-0 [1-p  (£-2) |dE (35)

For i = n, we have

t
2
Var[Cn(t)/C0} = mnfx) f[ pln(t-i)ll-pln(t—ﬁﬂdﬁ {36)

l, Numerical Simulation

In the derivation of the present model, it is assumed that the particles

in the suspension are uniform and spherical, Thus, the ratio of Ci{t) to
the initial particle concentration of the suspension, CD' is essentially

equal to that of the weight concentracion, Ui(t), to the initial weight
concentration of the suspension, Ho. If che intensity functions of this
system are known a priori, we can simulate the concentration dynamics of
the filcrate sampled from each compartment of the bed through the fol-
lowing procedure:

1. Obtain the transition probabilities, plj(t-r), by solving numerically
the system of differential equations, Eq. 7, by means of a finite
difference scheme or the Monte Carlo method.

2. Calculate E[Ci(t)/CO] from Eq. 33 or E[Cn(t)lco] from Eq. 34.

For illustration, six sets of parameters have been used in simulating
the case where the bed is divided into 2 compartments. The results are
shown in Figures 3 through 5. In Figure 3, lines I-1 and I-2 represent,

respectively, the concentration dynamics of the filtrates from compartments
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1 and 2 for the case where the intensity function, m, , is equal to zero (i.e.,
the backmixing between compartments is insignificant), while lines II-1 and II-2
are for the case where the backmixing between compartments i1s significant. Figure
4 compares the concentratien dynamics of the filtrates for different values of

m and M,y with other intensity functions fixed. Finally, Figure 5 shows

12
the case where the solid parts are absorbing, i.e., once the suspended

particles are trapped by the solid medium, they will not return to the

liquid phase.

2. Parameter Estimation

The parameters of the model can be estimated from the transition prob-
abilicies, plj(t—t), which are related to the weight concentrations of the
filtrates sampled from the liquid phase of each compartment as shown in Eqs.

33 and 34. Values of parameters in the mpdel are selected in such a way
that they minimize the deviations between the observed (obs) and expected (exp)
weight concentrations of the filtrates. The objective function used to measure

the extent of deviatiom in this study is the sum of least square errors, i.e.,

n
2
0.F. = L (Apg —Aexp)i (37)
i=1
where
A= wi(c)fwo
A is evaluated from an experimental data point, and Ae from Eq. 33 or

obs

34: the summation is over all data points. Among various minimization
techniques available, a random search technique (Brooks, 1958; Fan et al.,

1979; Chen and Fan, 1976) has been employed in this work since LU i3
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difficult to obtain the derivatives of the transition probabilitv functions
with respect to their parameters and the random search techaique utilizes

no derivatives in its algorithm (see APPENDIX B).



IV, DISCUSSION AND CONCLUSION

The present stochastic model is more general than the pure birth process
and birth-death processes - considered by earlier investigators (Litwiniszyn,
1963, 1966,; Hsu, 1982; Hus and Fan, 1984; and Fan et al., 1984) in that it

is capable of modeling the dynamics of spatial distributions of suspended

particles in the bed, and its parameters can be related to the measur-

able variable of the model, namely, concentration. Once the parameters,

mij and u s are obtained, the distribution, mean and variance of the number
of particles (and hence, the concentration of particles) in the liquid and
solid phases inside the filter at any time t may be obtained from Egs. 16,

20, and 21. Also, the distribution, mean and variance of the aumber

-of sguspension particles in the effluent at time t may be obtained from Egs.

27, 30, and 31.

To demonstrate its applicability, the experimental results of Eliassen

(1935) have been analyzed in the light of the present model; the results

are shown in Figure 6. In his experiments a down-flow filter, i.e., the

direction of flow was downward through the bed, with the depth of 60 cm, was

used to remove Fuller's earth suspended particles from water. The weight

concentrations of the filtrates from different bed heights (4.27 cm, 11.89 cm,
27.13 em, 42.37 cm, and 60 cm) were measured at different times {2 hrs,
12 hrs, 24 hrs, 36 hrs, 48 hrs, 58 hrs, 72 hrs, 83 hrs, and 96 hrs).

In the present work, Eliassen's filter is divided into 2 axial compartments

(0 = 27.13 cm of the bed as the first compartment, 27.13 < 60 cm as the

second compartment) in the direction of flow for convenience. Since the

dirvction of flow in the Eliassen's bed is downward, it is reasonable Lo



assume that the transition probability of a particle moving from compartment

i to i-1 during a small time interval (t, t+At) is o(At), i.e., mi i1 = 0,
,i-
or the upward migration of particle is negligible. The intensity matrizx,

M, is expresses as

_
-(myy + my4) By 4 .
. 0 ~(m,, +4y) O My,
= m 0 -m 0 (38)
- 31 31
o 2 . "“azJ

Canputational subroutines are available for determining the eigen-
values, p's, the matrix of eigenvectors,Q, of the intensity matrix M, and
the inverse of a matrix (see, e.g., EIGRF and LEQ2C in the IMSL Library).
We can obtain the probability functions, plj(t-r), from Eq. 10. To obtain
the optimal set of parameters for the present model, we resorsted to the ‘random
search technique (also see APPENDIX B), and used the sum of least square
errors as the objective function. To reduce the computation time and cthe
search effort, these parameters were estimated in a sequential manner, i.e.,
wa applied the one-compartment model to estimate the first three parameters

(mlz, ml3’ and m31) which are associated with compartment 1. Then, with
these three parameters in hand, we applied the two-compartment model to est-
mate the second three parameters (mZQ’ LY and uz) which are associated
with compartment 2, Finally, the six estimated parameters were used as the
starting point to search for the optimal set of parameters. The para-
meters obtained are shown in Table 1. Comparison between the simulated
results and experimental data are shown in Figure 6. Note that the agree-
ment between experimental observations and the present model is sufficiently

good, indicating that the present model is suitable for predicting the

concentration dynamics of the filtrate in a deep bed filtration process.



The intensity functions, mij and,ﬁn, are functions of many factors, among
which are the size distributions of collector grains and suspended particles,
properties of the liquid and involved surfaces, filtration rate, bed porosity
and suspension concentration. These intensity functions may be estimated through
tracer experiments or, as for the Eliassen's example, from the observed concen-
trations of suspended particles in different sections of the bed. Estimation
techniques as well as the correlation of the intensity functions with the char-
acteristics of the bed and suspension, and operating conditions will be inves-

tigated in our futur work.
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Experimental Data
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Simulation of the concentration dynamics of filtrates sampled from
a deep-bed filter which is divided into two compartments with the
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Simularion of the concentration dynamics of filtrates sampled from
a deep-bed filter which is divided into two compartments with the
following parameters to demonstrate the exit effect.
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Fitting the present model to Eliassen's data (1935); sand diameter
(0.051 cm), bed depth (60 cm), flow rate (0.136 cm/sec), hydrous
ferric floc suspension (dia., 0.00124 cm; conc., 50 x 10-6 vol.X),
2 compartments.
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NOMENCLATURE
Brj = defined in Eqs. 11 and 12
C = particle concentration of suspension
Di = solid phase of compartment i
E[ ] = expected value of a random variable
G = defined in Eq. 13
Li = 1liquid phase of compartment 1
M = matrix of the intensity functions
mij = intensity function of a Markov process
¥ = matrix of the transition probabilities [pij]
pij = transition probability
Q = defined in Eq. 11
q = volumetric flow rate of suspension
Si = states of a Markov process
t = time
v = volume of effluent collected
Var[ ] = wvariance of a randome variable
X = number of particles entering the bed per unit time
Yi = random variable representing the number of particles in state i
y = obgerved value of Y,

eigenvalue of matrix M

p=)
1]
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APPENDIX A: TRANSITION PROBABILITY FUNCTION FOR THE SINGLE
COMPARTMENT MODEL

For the one-compartment model, the intensity matrix, M, reduces to

(see Eqs. 4 and 9 in the text)

M = (A-1)

and the characteristic equation of M, by definition, is
det (pI - M) = [pL - M| = 0 (A-2)
By expanding Eq. A-2, we have

pz + (m +

12 ¥ uyp vy de tumy, =0 Gh-d)

1f

2 5 i .
12 My + le) # 6%p21. (distinct eigenvalues)

we have

i 7
(mp, +uyp +my)) +/(mpy +uy +my))° - bumy)

1 2
+ + )4 - 4 ((8-t)
Campy g b ) - dmy, oy bmy, uP1
pz -
2




Let
A =
B
Then,
oL -

Adj (p 1£ - M)

Similarly, we have

Adjp,I - M)

+ -
"2 T M T M
- g
Ampy +up + my )7~ dumy
A+ B )
2 Byb
E -
i -A 4+ B
21 2

21

12

12
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(A-5)

(A-6)

(A-7)



From Eqs. lla

Q1)

E(t-1)

From Eq. 12 in

Pll(t-T)
plz(t-r)

PZl(t_T)

If

"1

Since

>0,

m >

12

Fq. A-11 implie

35

and 1lb in the text, we obtain, respectively,

12 12
{A-8)
A+ B A-B
2 2 j
[ (e-0)p 1
e 1 0
(A-9)
(t=1)p
_ 0 e 2
the text, we have
{-a + B) exp[(t-1)p,] + (A + B) exp[(c-t)p,] /2B
= m,,{exp[(t-1)po,] - exp[(t-T)p,]}/R
12 1 2 > (A-10)
= m21{exp[(t-1)91] - exp[(e-T)p,]}/ B
= {(A + B) exp[(c—r}alj + (-A + B) exp{(t-r)czl}/?.s y,
+ 2 -y identi i
le) = 4um,,, (identical eigenvalues)
2 _ s
- m21) + hmlzmzl = 0 (A-11)

>0,

My >0, and m,

5
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that

- A-
{ £m12m21 0 (A-12)

If in Eq. A-12

= ] = (A“l&)
iy S M 0.

If, however,

m = 0,

12

we have from Eq. A-13 that

U, = m (A-15)

(A-16)

=
n

For this case, the solution of Eq. 7 in the text is obtained by the Laplace

Transform technique as

-(t-T)u
Pip(t=1) = © 1
Pyple-m) = 0 | ) (A-17)
P, (=D = (e=T)uy e~ (6=TI
P,,lt-1) = ety /
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APPENDIX B: THE RANDOM SEARCH METHOD - USING THE SHRINKING STRATEGY

As a class of optimization techniques, the random search procedure
falls into the category of direct methods since it utilizes no derivatives
in its algorithm. In a sequential random search method, the value of the
objective function is evaluated at a trial point in the search space, and

the search for the optimum is guided by the outcomes of the direct compari-

son between it and the current best value. The sequential random search

method differs, however, from deterministic direct methods, such as Hooke and

Jeeves' pattern search (1962), Nelder and Mead's simplex search (1964) or
Box's complex method (1965) in that a random strategy is employed in selecting
the location of the next trial point. 1In a deterministic search, the be-
havior of the selection scheme is always identical under identical conditions
regardless of its complexity, i.e., the probability of selecting a particular
point at a given search stage is unity while the probabilities of selecting

all other points are zero. In contrast, any point in the search space may be

selected with a known probability between zero and unity in a random method.

This probability distribution for selecting the next trial, or the scan dis-

tribution for short, can be modulated by an adaptive scheme in such a way that
appropriate emphasis may be placed on points far and near from the current

best estimate. The random methods thus generally offer advantages of freedom

from artificial mathematical restrictions on the functional form of an ob-
jective function (e.g., continuity, differentiability, or convexity), strong
convergence characteristics in noisy environments, and ©8S€ in computer imple-
mentation (Bekey, 1970; Wozny and Heydt, 1972; White, 1972; Jarvis, 1975). Of

more importance is the fact that a random search method often can achieve the

global solution in a multimoedal problem if wide as well as narrow scans are
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employed during the course of search (Bekey and Ung, 1974; Karnopp, 1963;

Thoft-Christensen and Hartmann, 1975). This feature is unlikely to be matched
by other optimization techniques, direct or otherwise, which sorely utilize
local properties such as gradients.

For global minimization of a scaler objective function J(x), x € RP, sub-

ject to the set constraints

Vo= {x|L, <x <u, 1=1,2,..., 0} (B-1)

i
the basic strategy behind the single-region random search procedure is to
gradually reduce the size or content of the search space in stages. --In each

stage, a single, hypercubical search region is constructed and centered about the
point which is the best estimate of the location of the global minimum obtained

.up to that stage. In its basic form, the search is conductéd in the-féllowing

manner:

1. Select the search parameters (c,k,m) by
c = 1.80
k = 3.92 log(l/a)
m = 14.37 log(l/b) (B-2)
where

the nominal size reduction rate, i.e., the ratio of contents

(k]
]

of two successive search regions

k = the total number of search stages allowed

m = the nominal sampling rate, i.e., the number of trial points
taken at a stage

a = the desired reduction ratio of the contents of the final
search region to the initial search region

a parameter pertaining to the reliability of search, usually

o
]

e 1Y _fal o mie e



2. Calculate the range reduction factor f as
g = C-l/n (B-3)
3. Set the stage counter j to 1. Let ﬁp denote the central point
of V. and determine J(EO) or, more simply, set 3(59) "

4. Generate trial points x = (x oy xn) m times by

1’ xz!
X, =X + (Ui Li)f g, i=1, 2; wasy N (B-4)

where

(U, - Li) the initial range of the variable x;

uniform random number taken from the

™
[

interval [-0.5, +0.5].

If a trial so generated violates the upper or lower bounds, replace it by
the nearest feasible point lying on the boundary of VO.

5. Evaluate the objective function J at these m trial points and

let %’ denote the trial at which the objective function has the smallest

value. Replace‘ﬁ?Fl by 3? if J(g?) < J(gﬁ—l). Otherwise, replace‘g? by

o7k
6.1f j = k, terminate the search. Otherwise, increment the state

counter j by 1 and go to step 4.
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APPENDIX C: PROGRAM USED TO SEARCH FOR THE OPTIMAL SET OF

PARAMETERS OF THE MCDEL WHICH FITS ELAISSEN'S
EXPERIMENTAL DATA

cccccLcceceeecccececceccecoccoeccccoccecreccccecceccceoecceoccececcececcccccoceccecccecececc

l.
2e

3.
4.
54

Ge
7.
Ae

OO N0 0O 00NN OO0

THE FOLLOWING PROGRAM IS USED TG SOLVE THE KOLMOGGROV FORWARD
DIFFERENTIAL EQUATION FOR A GIVEN SET CF INTENSITY FUNCTINONS.
TO ESTIMATE THE OPTIMAL SET OF PARAMETERS OF THE MODEL FROM
THE EXPERIMENTAL DATA, IT IS COUPLED wWITH THE RANDCM SEARCH
TECHNIQUE. TN ORDER TO USE THIS PROGRAM, THE FOLLOWING DATA
SHCULD B8 GIVEN:

NX: NO. OF INDEPENDENT VARIABLES.

NG: NO. OF IMPLICIT CONSTRAINTS. FOR EXAMPLE., LET
F(X,YsZ) BE A GIVEN FUNCTICNy; AND 5.0 < F(X:YsZ)
< 100, THEN THE NO., GF IMPLICIT CCNSTRAINTS WILL
2. AND IN THE MAIN PROGRAM WE HAVE TC DEFINE GI(1)
= FUXeYyZ) = 5.0 AND G(2) = 10.0 - F{XsYsZ}s ALL
G(I) SHOULD BE DEFINEC IN SUCH A WAY THAT G(I) BE
NON-NEGATIVE-VALUED.

NI: MAX. NO. COF ITERATIONS.

MP: NO. OF POINTS SEARCHEC IN EACH REGICN.

NR: NO. OF REGIONS (THE INDEPENDENT VARIABLE SPACE IS
DIVIDED INTO NR REGICNS FOR THE SEARCH PURPOSEI.

NS: ANY ODD INTEGER FOR GENERATING RANDOM NUMBERS.

XLO(I) AND XHI(I): XLO(I) < X(I) < XHI(ID)

XLUI Y AND XU(I): XLO(I} < XL{I) < XTI} < XULI) < XHIUI}

o —— v ———— —————— . — o T — i A —————— —— " " ——— ———

* ALL CALCULATIONS ARE IN SINGLE PRECISION MODE.
Iw(l) IS THE EIGENVALUES OF THE [INTENSITY MATRIX.
Zt1,49) IS THE MATRIX OF EIGENVECTORS.

ZI(I,J) IS THE INVERSE MATRIX OF EIGENVECTCRS.
NNNN IS THE NOQe OF DATA TO BE READ Ih.
DAX14+DAY]1 sDAY2 +1eees ARE EXPERIMENTAL DATA.
DAYY1,DAYY2s.2+ ARE CALCULATED FRCM THE MOCEL.

cccceeecceceeececccceccceecccccceccceececoccecccccccceccceccccecccccececcecececcc

IMPLICIT COMPLEX*8 (Z)

DIMENS ION X(10),XB(10,10)+XC{10)}XLCI1O) s XHICLC) XL (20,
1XA(10,2),XUlS50),FA(8),FB(6),GB(10,1C),S5(10),RG(10),G(10)
DIMENSION SM{&),STATLO),PRMIE) ,WR(1C),UR{LICCI} ,XD(L10O)
DIMENS ION NAC{10},NAD(10) ,NAGCt10) ,NAX(10]} ,NPR(1QO)

D IMENSION KA(6),KB(6),E(10),JB(2},JX(10),GA(10,2),FF(10)
DIMENSION DAX[10)sDAYL(10),DAY2{1C),DAYYLLL2],0AYY2(12]
CCMM(CN/SPPL /DAX,CAYL1,DAY2,DAYY1,DAYYZ2, X

CQUIVALENCE [NAD(1),NAX(1)), {NAC(1) NAG(1})

OO0 0000000 nD

c
c
C
G
C
C
c
C
C



20

40

60

80
982
100
120
140

160
l1ao

31

21
22

200
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EQUIVAL ENCE (STAT(1),FBM),{STAT(2) ,FBR),(STAT(3),KF)
EQUIVALENCE (STAT (4} ,RGF)y (STATI(5),RFL)

DATA SM/TFEAST o ' X" 'G'y"'STy ' INF','E'/WRFL2/0.50/,RFL/1./
DATA BIG/le E30/,SMALL/1E=30/ ERGF/1aE~3/4RGF/1e/ NNNN/L1D/
DATA JR/1/,NUR/L1/ZNURT/1009/ KRP/ -1/ KSP/=1/EMN/L./

DATA PRM/ 051 6916351e3:43.04C85/,5A1/0.5/,TML/1.2,T/1.0
READ, (DAX(I),I=1,NNNN ); READ, {CAYL(T),I=1,NNNN)
READ,{DAY2(1),1=1,NNNN)
READ,NPROBsNFUORM; NXs NGy NIy NPy NRyNS

WRITE(6,20) MPROB  NXNG ,NFORM

FORMAT( *1PROGRAM: TIME HOMOGENEOLS', /)

WRITE(6 +40) NI NP sNR#NS

FORMAT( ' MAX NO. OF STAGES =, 1G9y 7/
1 ' NOMINAL SAMPLE SIZE/R =1y 19y /»
2 ' NO. OF SEARCH REGIONS ="', 19y /s

3 ' RANDOM GENERATION NOe. ="'y 19 / )
ANT=NI H ANP=NP H ANR=NR
READ(5, 60) (NAX{(I},I=1,NX)

FGRMAT(8011)

ND =0

DO 80 I[=1.NX

IFINAXII).EQ.0) GO TO 80

ND=ND+1

NAD{ND) =1

CONTINUE

BMD=1./ND

CALL PRCBE {1 +MESG,F,NNNN)

GO TO (100,120}, NFCRM

READ, (XLO{I),I=1,NX) : REAC, IXHITI), I=1,NX)
REAC, [XL(I).I=1,yNX) H READy{XU(I) +I=1,NX)
WRITE(6,140) ND

FOPMAT( /., ' NO« UF INDe VARIABLES =", 17+ /7 )

DO 160 II=1,ND

I=NAD(ILI)

WRITE(64180) T 4XLO(TI) I oXHITIL), e XLII),TXULD)
FORMAT(2X ?XLO1Yy [2y ') ="' FlTe7s5Xe"XHI[ " 12,"') ='4F]1 7.7
ToLO0Xs" XL ", 12, *) =" FlTeaT+SX"™XU("y I2, ') =1,F1l7.7])
WRITE{(6,31)

FORMAT(//)

DO 21 I=1,NNNN

WRITE(6,22) DAX{I),DAY1(I),DAYZ2( ]}

CONTINUE

FORMAT[5X,3F1l2.4)

WRITE{6 ,31)

IFING.EQ.O) GO TO 260

READI5,60) (NAG({I},I=1,NG)

NC=0

DO 200 I=1,NG

IFINAGI{ 1).EQ.O0) GO TO 200

NC=NC+1 H NACINC) =1 : S{1)=0.0
CONTINUE



220
2490

260
280
300

310

315

330

360

435

465
467
460
981

480

500

[FINC.EC.D) GO TO 260
NTYPE=2
WRITE(6,240) NC,(NAC(I)},I=1,NC)

FCRMAT{/y"' NUOe OF CONSTRAINTS =",17," { IN ORDER:
1, //.026%X, 2015))

GG TO 20C

WRITE(6,280)

FORMAY(/s* NO IMPLICIT CONSTRAIMNT IMPOSED.'")
NTYPE=]

DL 310 II=1,ND

I=NAD(II) H XCL D) =[XHICL)+XLCII)) /2,0

RGII)=UXHI{I)=-XLO(I)}/2,

DO 315 I=1,NURT

CALL RANDOM (NS ,NSS,TEMP)

NS=NSS

URLI=2.0*TEMP-1.0

DO 330 J=1:NR

FB(J)=8BIG ; WR(JI=1.0 H NPR{ J)=NP
D0 330 II=1.ND

I=NAD(II)

XBUIyJ)=XCLI)

DO 360 I=1+6

FA(LI)=BIG

KA(I)=0 ; KRA=NR : KRB=NR H
DO 400 IT=1.,NI

RL1=PRM (2)}-PRM{1)*KRA
RF=(1./{EMN*PRM {4 )*KRA+1.50) )**BND
RS=RF**(1./PRM(5)]
KB{1)=KB(2)=KB(3)=KB{4)=KB(5)=KB(6)=0
FBM=FPA=0.0

DO 420 J=1,NR

IFINPRIJ)}.EQ.O) GO TO 420

D0 435 II=1:ND

I=NADI(II)

XC(I)=XB{1,J) : NNN=NPR(J) H 1Z=-1

DO 450 IP=1,NNN

[Z=—-1Z

DO 460 1I=1.ND

I=HADIII)

IF(IZ.LT.0) GO TO 465

XD (1)=UR(NUR)I*RGIII*RGF; X{I)=XCULI)+XDIT} 3
IF {NURs GTe NURT) NUR=1

GC TD 467

X(1)=XC(I)}-XDI(I)

IF(X(I)eGTa XULI)) X(ID=XULI)
IF(X(I)eLTaXLLI)) XUI)=XL(I)

CALL PROBE (2+IX,F,NNNN)

GO TO (480,450}, IX

FP=F ; GSQ=PEN=0.0
GO TO (540,500), NTYPE

DO 520 I1=1,NC

BMP=ANP

NUR=NUR+1
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520
540
545
550
560

570

580
590

600
610

615
620

450

420

680

690

710

I=NAC(I )

IFIG(I).GE.O.) GO TO 520

GSQ=GSQ+G(T )*=2 ; PEN=EPN+S (11*G(1)
CONTINUE

IF{GSQe LTe SMALL) GO YO 540

[X=2 H FP=F+T*G5Q-PEN
IF(FP.GE.FALIX)) GO TO 590

FALIX)=FP : FA{IX+2)=F ; JOB(I X)=J
GO 7O (550+545), IX

FA{5)=635Q : FA{&)=PEN

KBl IX+2)=KB({IX#2)+]

DO 560 I=1,NX

XACI,IX)=X(1)

GO TO (590, 570), NTYPE

DO 580 II=1,NC

I=NAC(11I)

GA(I,I1X)=GI(1)

IF(FP.GE.FBlJ)) GC TO 620

FBLJ)=FP 5 FF{J)=F

DO 600 I1I=1,ND

I=NAD(I 1)

XB(I,J)=XI(I)

IX(JI=IX

GO TO (620,610), NTYPE

DO 615 II=1,NC

I=NACLII)

GBI(I,J)=G(I)

KBIIX)=KB(IX)+1

CONTINUE

FBM=FBM+FB(J);: KB{(5)=KBI1)+KB(2);: KB(6)=KB{3)+KB(4%)
CONTINUE

IF(KB(5).EQ.0) GO TC 987

JT=1

[F(FA(1).GTeFA(2)) JT=2

DO 680 I=146

KA{I[)=KA(I)+KB(I)

IF(KB(6).EQ.0) GO TD 690

KSP=-1 : KRP=KRP+1
BNP=AMA X1 (BNP-PRM{3)*KRP,3.9); RFS=1.0/RS** (KRP/3)
GO TO 710

KRP=-1

KSP=KSP+1

BNP=AMIN] [(BNP+PRM [3 ) *KSP,ANP*(1 ,+PRM[6) *ALOG1O0(RGF)))
RF S=RF®RS*%*K SP

IF(KRA.EQ.1) GO TO 780

FBM=FBM/KRA

IF(ITeEQel) FBR=FBM+{FBM-FA(JT))*2,
FBR=RL2*FBR+(1l+.-RL2)*FBM : FD=FBR-FA(JT)
IFIFD.LT.SMALL) FD=SMALL

KR B=WRT=EMN=0.0
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D3 720 J=14NR
E(J}1=0.0
IF{WR{J)eLE«Qe) GO TO 720
E(JI=1.0
IF1J.EQ.JBIJT)) GO TO 737
DO 730 II=1,ND
I=NAG(1 )
TEMP=1.0-ABS(XBII J)-XA{I1,4T))/{2.%RG(]}*RGF)
IF{TEMP .GT.0.) GU TO 730
El{J)=0.0
GC TO 735
720 E(J)I=ELJ)*TEMP
735 WR{JI=RLI*WR{J)+{1e0-RL1)*(FBR~FB(J})/FD*(1.0-E(J)*%2)
IF(WR(JJelE-O.,] GO TO 715
GO TC 738
737 WR{J}I=RL1*WR{(J)+(1.0-RL1)
738 KRB=KRB+1
WR T=WRT+HWR{ J) ; EMN=EMN+WR (J) *E(J)
GO TO 720
715 WRIJ)=0.0
720 CONTINUE
EMN=EMN/WRT H KRA=0
DO 740 J=1.,NR
NPR{J)I=KRB*BNP*WR (J}I/WRT
IFINPRIJ)4GTNPL) NPRIJ)I=NPL
IF(NPR(J)EQ.0) GO TO 740
KRA=KRA+1
740 CONTINUE
IFIKRAL,EQ.1) KRB=1
GO TO BOO
780 NPR{JR)I=BNP
FBM=FPA/KBI(5) - FBR= (FEM=-FA(JT})/RGF
B0OO EGF =RGF *RFS
IF(IT<EQsNI<OR.RGF,LT.ERGF} GO TO 82C
IFIKBI&6).EQ.0) GO TD 910
820 WRITE(6,830) IT,{(NPR{J) +4=14NR}
820 FORMAT ({//+' STAGE NOs',14,6X,'NPR = ',2015)
IF{KRAL,EQ.1) GO TC 835
WRITE(6,833)EMN, (E(J),J=1,NR)
833 FORMAT(16X,"E(?,F4.2,') = *,20F5.2)
835 WRITE(6,840) KRAZKRBy(KB{I)sI=1,6),(KA(I),I=1,6)
840 FORMAT{18X,"KRA/B = ",02,"'/'y12+,11X,'KB =",615,11X,
KA =1,5615,/)
WRITE(6,850) (STAT(I),I=1,5)
B50 FORMAT(SX,' STAT =!',2F20.7,4E20,.7)
855 IF(KA[1).,EQ.0) GU TO 890
WRITE(6 ,860) SMI1),FAL]l)
860 FORMAT(S5XsA4y ' =" 42F20.T7T14E20.7)
IF(KB(3 },EQ.0) GO TD 890
WRITE(6,870) SM{2),JBI1) (XA(L,1},1I=1,NXI}
870 FORMAT({4X,Al,*(*,12,%) =4y5F2C. 7+ /,111X,5F20.7))

NPL=1. 5*BNP

JR=J
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G2 TC (900,8680), NTYPE
880 ARITEL6,B870) SMI3),J8(1)+{GAINACII}si),I=1,NC)
B90 [FIKB(2).EQ.0) GU TO 900
WPITE(L,895)
E95 FORMAT(2X)
WRITE(E,860) SMIS)+FA(2),FA(4),FALS),FA(6)},T
IF(KBl4).EQ.0) GO TQ 897
WRITE(6,870) SM(2).,J81(2),(XA(1+2),1=14NX])
WRITELE,870) SMI3),JBI2), [GAINACII),2),I=1,NC)
897 IF(IT.LT«NI/2) GO TO 900
B98 WRITE(6,870) SM{4),4BL2),{SINAC{I) ), I=1,NC)
900 IF{IT.EQ.NI.OR.RGF.LT.ERGF) GO TC 980
910 RFL=RFS
GO TO (400,920, NTYPE
920 IF{KB{(2).EQ.0) GO TD 400
FA(6)=0,0
DG 930 II[=1,NC
I=NAC(I]) : TG=T*GA{I,JT)
IF(GA{I ,JT)elLE-De.) GO TO 940
SUT)=SOI)-SAI*S{II*TG*(2.*S{1)+TG)/(S{IV+TG)**2
IFIST{I)LTSMALLY) SII}=0.0
GO TG 930
940 S{I)=S({1)-2.%SAI[*TG
FAL6)I=FA(6)+STLI)*GA(],J4T)
930 COUNTINUE
FA(2)=FA(4)+T%=FA(5)-FA(6)
IF{KFALEQ.1) GO TO 965
DO 950 J=1,NR
IF(NPR{J)sEQeOsURaJUX(J)EQ.1) GO TO 959
GSG=PEN=D.0
DO Sé60 I1=1,NC

I=NAC{ITI)
IF{GEB{l +J)e GEaDa ) GO TO 960
GSQ=GSQ+GB(I ,J)**2 ' PEN=PEN+S(I )*GB(1,J)}

960 CONTINUE
FBIJI=FFl{J)+T®*GSQ-PEN
950 CONTINUE
GO TO 400
965 FBIJRI=FALJIT)
400 CCNTINUE
980 CALL PROBE(3,MESG,F, NNNN)
IF{IRGF.LT.ERGF) GO TO 990
WRITE(G6,985)
985 FORMAT(///,20X,"THE SPECIFIED NCe CF STAGES HAS'
*,'EPIRED.'///}
sTap
987 WRITE(6,988)
988 FORMAT(///+,20X,'A SEVERE CASE OF UNCCMPUTABILITY HAS!
1,' DEVELOPED. PROGRAM TERMINATEOS? /771
STOP
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990 WRITEL&,870) SME21,JBL1 ) (XALT,10,1=2,NX)
WRITEI6 +992) RGF, ERGF,IT
992 FORMAT(///+20X,*THE FACTOPR RGF',E15.7,' HAS BECCME ',
1'LESS THAN ', EL15.,7,' AT STAGE NU&',I3,%.",///)
WRITE(6,37)
37 FORMAT({1H1)
AER]1=AERZ2=SERI=SER2=0.0
DO 101 I=1.NNNN
AER1=AER]1 +ABS(CAY1{I)-DAYY1l( [))
AER2=AER2+ABS(DAY2(I)-DAYY2(1))
SERI=SERL1+(DAY3(I1)-DAYY3(I))**2
SERZ=SERZ+(DAY4 {1 1-DAYY&(]) ) *#2
WRITE(6,104) DAX(I) DAYLLI),DAYYL(IL),DAY2(I),DAYY2(])
101 CONTINUE
TAERR=AER1+AER2 + TSERR=S5ERL+SERZ
WRITE(6,102) AER1,AER2, TAERR,SER1,SEF2,TSERR,F
102 FORMAT(10X,7F8.4//)
104 FORMATI( 10X, 5F8.4)
STaP
END

cccccecceceeccceocccecececcoececccccceccceceecccececceccecceecceccececcccceccccecceccccceccec

c c
C THE FOLLOWING SUBROUTINE IS A RANCOM NUMBER GENERATOR. C
c C

(04 01 o of o o o o o o o o o 5 o o o o ol o o o o o o o] i o o o o ot o o o o o L o o o o of o o o o of ol o of of o of o o o of ¥ f S o o o A R 8

SUBROUT INE RANDOM L IX,1Y,RM)
IY=1X*655329
IF(IY) 10+20,+20
10 IY=1Y+214748364T+1
20 RM=1Y
RM=RM*, 465661 3E-9
RE TURN
END

100 L 0 0 o % o o o o o % o o o o o o o oo oo o o o o ot o o o 8 o o o o o o o o o o o of o o o o o o o o o o ff o' o o o of

c c
C THE FOLLGWING SUBROUTINE COMPUTES THE OPRJECTIVE FUMCTION FOR THE C
C RANDOM SEARCH PROGRAM, THE OBJECTIVE FUNCTION IS DENOTED BY F. C
c L

08 0 o o o o o O o o2 % o i o o o o o8 A o o o o 5 o o o o o o o o o o o o o o o o o o o o o o o ol o o o ol { o S o o o oY o

SUBROUTINE PROBE( JOB+MESG,F ) NNNN)

IMPLICIT COMPLEX*8 (2)

DIMENSICN DAX(10),DAY1(10),DAY2(10),CAYYL(22),DAYY2(12)
CGMMON/ SPP1/DAX 0AY1,DAY2,DAYYL,DAYYZ, X
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GU TC (501, 902, 993, 999), JCB
901 MESG = 1
RETURN
902 MESG = 1
SUM=C, 0
CALL PRCBSL (X}
DO 1 1=1,NNNN
SUM=SUM+{DAY1 ([ [)=DAYYL{I))**2+(DAY2(1)-DAYY2(1))%*%2
1 CONTINUE
F= SUM
RETURN
903 MESG = 1
RETURN
999 MESG = 2
RE TURN
END

ECCCCCECLECLECCCLCCLECLCLCeCcLecCCeCCLCCCCOLCCLeCCeccocccrLecLeccocoecc
C C
C THE FOLLOWIMNG SUBROUTINE IS USED T3 SGLVE THE KGLMCGORMV FCRWARD C
C DIFFERENTIAL EQUATION FOR A GIVEN SET OF INTENSITY FUNCTIONS. C
C THE INTENSITY FUNCTICNS ARE DENQOTED BY A(I,J). C
c c
01 9108 of 0% of of o o of o o o o o o o L o o . o o o o o % o o o o o o o o o L o o o o o o o o o o o o o o o o o o o o off o o o of o o ¢

SUBROUT INE PROBSL (X)

IMPLICIT COMPLEX%*8 (1)

DIMENSION DAX{10),DAY1(101).,DAY2(10),LAYY1(12},D4AYY2(12)
DIMENSION Z2(4:4)+,21(454),2ZW14),ZA04C)

COMMCN/ SPP1/DAX,DAY1,+DAY2,DAYY1,DAYY2, X

NMX=4; LA=[Z=N=NNX; T=96.0: CT=0.0; DELS=1.0; IJOB=2
[JGB2=3 3 M=T/DELS ; ND=M+1 S

D0 10 J=14N

I
)
21{J.J}
10 CONTINU

CCCCCCCcLcceccecececcccececocecccccccoccerceoccecccececccccccccececcecccccecccccccececcccce

C C
C X(1)=M12, X12)=M13, X{3)=M31, X(4)=U2, X{5)=M24, X(6)=M42 C
c C

ccceeceecccccceccecceoccceccceccceeccceecccceoccccoccecceccceccececccceccccec

Al1,2)=XL1); AlLl,3)=X12); A(3,1)=X13); Al(Z2,4)=XI5])
Al4,2)=X{6); Al3:3)==X(3); Al4,4)==X(6)



AlL2)==(X(1)exX(2)); AL2,2)=—-(X14)+X[5))
CALL EIGRF (AsNsIAyIJUBsZWeZeIZeHWKIER)
CALL LEQ2C [Z,N,IA,ZI,N,I[A,1JCB2yZAVWBy IERZ)
DAYYL(1)=DAYY2(1)=0.0
Kn=1
DO 40 K=1:ND
AT=DELS*K
IF{AT.EQe 2.0 ) GO TO
IF{AT.EQs12.0) GO TO
IF{AT.EQe24.0) GO TO
IF(AT.EQa36.0) GO TO
IFIAT.EQe 48.0) GO TO
IFIAT. EQ.58.0) GO TO
IFIAT.EQe 72.0) GO TO
IFIAT.EQ.83.0) GO TO
IF(AT.EQe96.0) GO TO
GO TO 40

1 ZT=AT
KW=Kh+1
F1=F2=0.0
DO 41 KK=1,N
IC=ZW{KK)*ZT
CH=REALI{ZC)
IF(CHeGE«e~25.0) GO TO 43
IL=-25.0

43 F1=Fl¢Z{l ,KK)*(CEXPIZIC)-1.0)*Z](KK,1}/IW(KK)
F2=F2+Z {1 KKI*(CEXPIZC) -1 0)*If(KK,2)/IW(KK])
DAYYLIKWI=F1%X (1) ; DAYYZ2IKWI=F2*X{(4)

40 CONTINUE

- RETURN
END

[ e B I S e ]
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ABSTRACT

To gain insight into the performance of a deep-bed filter, it is
essential to determine the spatial distribution of suspended particles in
the bed as a function of time, More often than not, a filtration process
behaves stochastically rather than deterministically; therefore, a stochastic
compartmental model is proposed to simulate the concentration dynamics of
suspended particles in the liquid and solid phases over the different
sections of the filter. In this study, the filter bed is divided into an
arbitrary number of compartments in the direction of flow. The model yields
the distribution of suspended particles ingide as well as outside the
filter Jed and the mean and variance of the distributien. The parameters
of the model are estimated by fitting the model to the experimental data.
The reasonably good agreement between the simulated results and experimental

data ensures the applicability of the present model.



