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I. INTRODUCTION

An ice cream factory is considering two different brands of

dispensers to fill their cartons. Both brands can be adjusted to

the desired number of ounces, and this amount is automatically

dispensed at regular intervals . The company is concerned that Brand

S (which is considerably less expensive than Brand G) will not be as

precise as Brand G in the amount of ice cream it puts into the

cartons. Thus they are interested in testing the variability of the

two brands of dispensers, and if Brand S is not significantly less

precise in the amounts it is dispensing, they will use the less

expensive brand. A more formal statement of their problem follows.

Let X^, ...
i X and Y Y be independent random samples

from continuous c.d.f.'s F(x) and G(y) , respectively. Assume these

distributions are identical except for scale. Let 9 be the scale
x

parameter of F(x) and S be the scale parameter of G(y) , and let

9 - s
x/

s
y

- Th6 problem we consider in this report is the one tailed

test H : 0-1 vs. H
l

8>1.

The usual statistic for this test is F - (S /S ) , where S is
x y

the sample standard deviation. We reject the null hypothesis if F >

F(a,n-l,m-l) . However, the F test supposes F(x) and G(y) to be

normal c.d.f.'s and is known to be very sensitive to departures from

this assumption. For example, Box (1953) discusses the problem and

cites several previous references. Wasserstein (1987) shows through



simulation that under distributions other than the normal, the F

test does not even retain the a level when testing at the null

hypothesis. He discusses several alternative tests and compares

their performance under various conditions. He further suggests the

use of permutation tests based on functions of robust estimators

such as trimmed means. In this study we will investigate the

performance of such tests for the two sample scale problem presented

above

.

II. The Problem of Interest

A. Trimmed Means

Let x^ < ... < x be an ordered sample of size n from a

population with distribution function F(x) . The a percent trimmed

mean is defined (Boyer and Kolson (1983)) by

m(oj) - S x. + (l+[na] -na)(x. , , +x , ,)
i_ [na]+2 1 [na]+l n-Ina,]'

n- [noj] -1

n(l-2a)

Hence m(a) is the average of the sample values that remain after a

proportion a have been "trimmed" from each end of the sample. The

average of those discarded observations (i.e. the "mean of the

trimmings") is defined:

[na]

m (a) -

2na
2 (x + x ) + (na-[na])(x. +x . .

j_i 1 n-i+1 [na]+l n-[na]



We note that commonly used estimators can be thought of as limiting

forms of trimmed means: m(.5) and m (0) are defined respectively to

be the median and midrange , while m(0) - m
C
(.5) is the mean. Each

of these three are the most efficient estimators of location (in

fact, they are UMVUE's) for different distributions, namely the

midrange for the uniform distribution, the mean for the normal, and

the median for the double exponential.

As an example, let z - (1, 2, 3, 5, 9) be the sample vector.

The twenty percent trimmed mean, m(.2), is the average of the

observations that remain after trimming (,2)*(5)-l observation from

each end of the sample, so m(.2) - (2+3+5)/3 - 10/3. The average

of those two trimmed observations is m
c
(.2) - (l+9)/2 - 5.

According to the definition of m
c
(0) (the midrange) and because our

sample size is five, m
c
(0) - m

C
(.2) - 5. The median is m(.5) - 3,

and the mean of this sample is m(0) - (l+2+3+5+9)/5 - 4.

Note that the definition allows for fractional parts of

observations to be used if no is not an integer. For example,

m (.3) is the average of the smallest 1.5 observations (i.e. 1 and

.5*2) and the largest 1.5 observations (i.e. 9 and .5*5) so m
c
(.3) -

(1+1+9+2.5)/ 2*5*. 3 - 13.5/3 - 4.5.



B. Test Statistics

Since, as previously noted, trimmed means efficiently estimate

location in various distributions, we speculate that functions of

these trimmed means might be efficent estimators of scale. Thus in

this study, we estimate the scale parameter of both populations,

then use a test statistic which is the ratio of those two estimates,

as in the F-test. The scale estimators can be defined as follows:

Let m(a) denote the a percent trimmed mean of a sample z. , ... , z .

1 n

Subtract m(a) from each sample value and square those deviations,

yielding w. , ... , w , say. Then find the same a percent trimmed

mean of the w.'s. The square root of this trimmed mean is our

estimator of scale. The definition follows similarly for m°(a) , the

a percent mean of trimmings. It is readily seen that these

estimators are invariant to changes in location, so that we need not

even assume our populations are identical in location.

To illustrate our method of estimating scale, again let the

sample vector be z - (1, 2, 3, 5 , 9) . We will calculate estimates of

scale based on all five trimmed means that were demonstrated in the

previous section. We determined that m
C
(0) - m°(.2) - 5. Let v be

the vector of deviations from 5, then v - (-4, -3, -2, 0, 4), and

the vector of squared deviations is w - (0, 4, 9, 16, 16). The

twenty percent mean of trimmings for w is (0+16)/2 - 8, so the

estimate of scale based on m (.2) (and m
C
(0)) is J8 - 2.83.



For m(0) - 4, w - (1, 1, 4, 9, 25) and the estimate of the scale

parameter has value 7(l+l+4+9+25)/5 -75-2.83. Since m(.5) - 3,

the median based scale estimate is Jk - 2 , as computed from w - (0,

1, 4, 4, 36). Finally, m(.2) - 10/3, so v - (-7/3, -4/3, -1/3, 5/3,

17/3), and w - (1/9, 16/9, 25/9, 49/9, 289/9). The twenty percent

trimmed mean of w is
[ (16+25+49)/9]/3 - 10/3, and scale is estimated

as JlO/Z - 1.83.

If we use m(0) (i.e. the mean) as the basis for estimating

1
n

scale, then our estimator is the square root of - 2 (x - x)
n

1-1 *

which is the usual estimator of variance (using n rather than n-1)

.

Hence our test statistic is the square root of the F test statistic.

Using m(.5), scale is estimated as the median deviation from the

median, another common estimator, and the midrange type estimator is

very nearly the range estimator of scale. Thus, certain of the

tests examined in this report closely correspond to statistics

currently in use.

The estimators of scale employed here may not be (in fact, they

probably are not) unbiased estimators of I or J . However isx y x

an unbiased estimator of c» , for some constant c, and I isX y

similary an unbiased estimator of cS . Hence the ratio I /I is a
y x' y

reasonable estimate of c6 /cS - /B -6
x' y x' y



C. A family of symmetric distributions

Prescott (1978) discusses the robustness properties of trimmed

means and means of trimmings as unbiased estimators of the location

parameter n in the exponential power family of distributions defined

(Hogg (1972)) by the density function

f(x) - (2 T(l + 1/r))"
1

e"
|X "'i|

(-» < x < »
, r > 1)

The distributions in this family are symmetric about /i with variance

r O/r)/r(l/r) . If we let -y - 1/r be a continuous parameter in the

interval [0,1], this family can be shown to contain distributions

which range from the uniform (7-O) through short-tailed symmetric

distributions to the normal (7-I/2) , then through long-tailed

symmetric distributions to the double exponential (7-I) . This family

of distributions will be referred to throughout the remainder of

this report as the Prescott family.

D. Adaptive Estimation and Testing

Prescott (1978) also discusses the use of an adaptive scheme

for estimating location in this family. Several adaptive statistics

are proposed whereby the trimming proportion a is based upon a

measure of nonnormality or tailweight. In particular, Prescott

(1978) and Boyer and Kolson (1983) have shown the following to be

the preferred estimator for small sample sizes (n<50) such as are

used in this study.



m (0.2)

m
c
(0.3)

m(0)

m(0.2)

m(0.3)

Q < 2.2

2.2 < Q < 2.4

2.4 < Q < 2.8

2.8 < Q < 3.0

3.0 < Q

The choice of location estimator for this statistic is based on a

measure of nonnormality proposed by Hogg (1974), namely

Q " (V05) " L
(0.05) ) I ("(0.5) " t(0.5)>'

where U and L. are the average of the largest and smallest n0

order statistics, respectively, with fractional items used if n/3 is

not an integer. The choice of Q over other measures of tailweight

such as kurtosis is discussed in detail by Hogg (1972, 1974) and

Prescott (1978), as well as the choice of the 5 and 50% proportions.

We use T as the basis for an adaptive procedure in testing for

equality of scale. The failure of the F test in non-normal

distributions motivates the use of an adaptive procedure. We first

estimate non-normality using Q, then select a scale estimator based

on the trimmed means specified in T. If Q suggests the distribution

is normal, we estimate scale based on the mean, which is equivalent

to using the Permutation F Test to test our hypothesis. Otherwise,

we use a trimmed mean or mean of trimmings as the basis for

estimating scale.



In this problem we have two samples but wish to use the same

scale estimator, i.e. the same trimming proportion, for both

samples. Since Q is invariant to changes in scale, for each

particular distribution - , so should be approximately equal

in value to Q . To avoid the possibility of slight variations in

the two estimates causing selection of different trimming

proportions, we let Q - =(0 + ) and use T to determine the amount

of trimming to be used in both samples. We then estimate scale and

form our test statistic in the manner that was described in section

B of chapter II

.

E. Permutation Tests

Since the distribution of the test statistics used in this

study are not mathematically tractable, we use a randomization

procedure to perform the test of hypothesis. Dwass (1957) gives a

more rigorous definition of permutation tests than will be presented

here. Our purpose is to explain the procedure in this context.

Suppose x^ x and y^ y are two independent

random samples from continuous distributions, with

z - (z, z z z . ) - (x, x ,y, y )1 n n+1 n+m 1 n J 1 Jm

being the combined sample of size N - n+m. Let u(z) be a statistic

based on z and let t-u(z) be the value of u(«) for the observed z.



N'
Consider the r - -7—; permutations of the indices of z which divide

n!m!

z into two subsamples. The set u . . . ,u comprises the permutation

sampling distribution of the statistic u(-)- Note we make no

distributional assumptions about u(«). Now compare t to this

sampling distribution. If k of the u. are as extreme or more

extreme than t, then the observed p-value for this test is k/r.

If indeed the null hypothesis of no scale differences is true,

then the populations are identical. In that circumstance, we can

think of randomly assigning the labels X and Y to the observations,

or equivalently , randomly dividing z into two subsets. The observed

statistic t is thus, under H , a randomly chosen element from the

distribution of u(-), the set of all possible such elements. On the

average, t will have a value at or near the mean of u(-), and such a

value is unlikely to lead to a conclusion in favor of an alternative

hypothesis. It is important to note that this test is conditional

upon the data itself. However, the permutation test procedure does

have an overall significance level a (Randies and Wolfe (1979))

regardless of the underlying distribution.

While the permutation test is intuitively appealing, there is

one inherent problem. For small sample sizes, the permutation set

is relatively short and easily enumerable. For example, if n-m-3

,

there are only 20 possible permutations. However, for n-in-10, there

are 184,756 possible permutations to consider, too large a set to

evaluate in practice (especially in a study involving runs of 1000



replications each!). Thus, a subset sampling approach first

suggested by Dwass (1957) holds considerable merit. We randomly

sample 500 out of the set of all permutations, and calculate u(z)

for each of those 500. If 20 of the u(z) are more extreme than t,

our p-value is 20/500 - 0.04, which is an estimate of the actual

significance level we would have observed by evaluating all 184,756

permutations.

To determine if 500 sampled permutations is sufficient to

estimate the actual significance level of the test, we examined the

power of four of our tests for one distribution (the double

exponential) at six sizes of permutation subset sampling. We were

looking for stability in the power estimates; if 500 samples gave

approximately the same estimate of power as 1500 samples, then there

would not be a need to use 1500.

Wasserstein (1987) showed that a test based on 1600 samples is

highly comparable to full enumeration for this same problem. We

looked at subsets of 100, 250, 500, 750, 1000 and 1500 permutations.

At the null hypothesis (i.e. 6 - 8 /S - 1) there is virtually no

difference in either the .01 or .05 rejection rates across the

different sizes of subsets. (See Table II. E, which is based on 500

replications of the simulation.) At 6-2 and 0-4, there is a

substantial power difference between a subset of 100 and the other

subsets, but once the subset size is increased to 250, the rejection

rates stabilize. Thus we do not seem to gain substantial accuracy

by choosing subsets of 1500 or even 1000 over subsets of 500.

10



TABLE II. E Comparison of Power at Different Levels of Subsaropling
.01 Rejection Rates
.05 Rejection Rates

m
c
(0) m

C
(.5)

9-1 9-2 8-4 9-1 9-2 9-4

100 .010 .124 .444 .012 .118 .480
.040 .326 .764 .042 .352 .806

250 .010 .142 .528 .010 .140 .528
.040 .346 .790 .040 .360 .846

500 .008 .134 .506 .010 .118 .556
.040 .344 .784 .044 .364 .844

750 .010 .144 .530 .010 .138 .564
.042 .348 .786 .044 .376 .846

1000 .008 .132 .514 .010 .126 .566
.044 .344 .780 .044 .366 .840

1500 .010 .140 .502 .010 .120 .558
.044 .344 .782 .044 .374 .836

m(.5) adaptive

0-1 9-2 0-4 9-1 9-2 9-4

100 .004 .058 .302 .014 .116 .484
.058 .252 .670 .052 .354 .820

250 .010 .086 .388 .010 .158 .594
.054 .264 .690 .044 .376 .860

500 .010 .064 .354 .012 .140 .562
.044 .260 .684 .048 .368 .852

750 .008 .078 .374 .012 .150 .572
.052 .268 .690 .046 .378 .850

1000 .008 .068 .362 .010 .142 .566
.052 .264 .696 .048 .368 .846

1500 .008 .076 .348 .010 .142 .566
.054 .253 .698 .050 .374 .848

11



III. A Simulation Study

A. Scope of the Simulation

We compare by simulation the power of eight randomization

tests, each based on robust estimators of scale. These eight tests

will be referred to according to the trimmed mean or mean of

trimmings used in estimating the scale parameter. One of these

tests uses the adaptive estimation statistic T described in section

D of chapter II. The other seven use fixed levels of a (the

trimming proportion)
. Five of these comprise the adaptive

statistic; the median and midrange are also used. Hence the eight

statistics are based on functions of the following trimmed means:

1) m (0) -- the midrange

2) m
c
(0.2)

3) m
c
(0.3)

4) m (0.5) - m(0) -- the mean

5) m(0.2)

6) m(0.3)

7) m(0.5) -- the median

8) the adaptive statistic, which uses one of 2) through 6)

based on the observed value of the statistic Q.

The tests were compared under several symmetric distributions,

with sample sizes of 10 and 10. Five values of 7 were chosen to

12



represent the exponential power family of distributions defined in

section II. C : 7-0 (the uniform distribution); 7-0.25; 7-O.5 (the

normal); 7-0.75; and 7-I.O (the double exponential). We also used

the Cauchy and 10% Mixed Normal, which consists of 90% N(0,1)

contaminated with 10% N(0,64). These two distributions were used by

Wasserstein (1987), and we also used them because his work on the

same problem prompted this study. In addition, these distributions

tend to have heavier tails than any of the members of the Prescott

family.

Let fi and S be, respectively, the location and scale

parameters of population 1, and let u and d be the location and
y y

scale parameters of population 2. In the simulation, u - u -
x y

which causes no loss of generality since all the tests are location

invariant. Let S - S / S . Four values of $ are considered in
y x

each distribution to provide a wide range of power estimates. The

results appear in Appendix 2.

B. Description of the Simulation Program

This simulation was actually executed in two parts. Part one

consisted of generating the sample values through IMSL subroutines

on an NAS 6630 (National Advanced System) mainframe. The remainder

of the simulation was also written In Fortran but implemented on a

Harris 700 computer. Both programs are listed in Appendix 1.

13



The required input for the sample generation program is as

follows: number of replications, sample sizes (n,m), the value of 7

(To generate from the Cauchy, set 7-1.25, for the Mixed Normal, set

7-1-50. This is for convenience only, and is not meant to imply

that these distributions belong to the Prescott family.), the values

°f *
x

and > and the seeds for the random number generators. These

values and the sample data are then output to a file which is used

as input for the second part of the simulation. The Prescott family

can be derived via a power transformation from the gamma

distribution with scale parameter 1 and shape parameter 7, and this

method was used to generate these distributions.

The simulation program consists of four main parts, which are

discussed here in some detail.

1) Input all parameters associated with sample generation,

along with a seed for the random number generator in the permutation

test. Set all arrays to zero.

2) Input the two samples, which are then combined and sorted

(for use in the permutation test). Calculate each of the test

statistics based on the original data. For the adaptive statistic,

only Q and the interval in which Q falls is calculated, since T will

always use one of the statistics previously calculated.

14



3) Run the approximate permutation test by sampling 500 out of

the entire set of permutations, without replacement. Calculate each

test statistic and compare the permutation value to the original

value for each statistic. Calculate an approximate p- value as

e/500, where e is the number of permutation statistic values more

extreme than the original. To mimimize the run time of the

simulation, whenever e exceeds 25 (5% of 500) for a particular

statistic, discontinue calculation of that statistic. If e is

greater than 25 for all statistics, then exit the permutation test.

The 500 permutation samples are generated in the following way.

Let N-n+m. A set of n random integers between 1 and N are randomly

selected without replacement, representing the indices of the items

in the combined sample to be assigned to the first sample, with the

remaining items assigned to the second sample. The statistics are

then calculated from these two samples

.

4) Note which tests are significant at the a-. 05 level. Repeat

steps 2 and 3 as desired (1000 times in this study). Calculate .05

rejection rates, the average number of permutations sampled and the

mean and variance of Q.

Figure III.B gives a partial list of the subroutines used in

the simulation program.

15



FIGURE III.B List of Subroutines Used in the Simulation

BPERM Executes the permutation test

DEVSQ Calculates two vectors of squared deviations
around corresponding location estimates

MEAN Calculate the sample mean,
MEDIAN median and midrange,
MIDRAN for each of two samples.

QHAT Calculates an estimate of Q, Hogg's
nonnormality indicator

QINT Determines the interval in which Q is observed
by which a (the trimming proportion) is
adaptively chosen

SAMPER Chooses the permutation sample from the set
of all possible permutations

SHELL Performs a shell sort

TCMEAN Calculates the a mean of trimmings

TMEAN Calculates the a timmed mean

TMNSCL Calculates estimates of scale based on the
trimmed mean (similar for TCMNSC, MNSCAL,
MEDSCL, and MIDSCL)

C Results of the Simulation Study

The simulation results are presented in three sections. In the

first, we compare the power of the eight tests under the various

distributions. The second section examines the performance of Q as

16



an estimator of Q. In the third section, we discuss a time saving

method of performing the permutation test.

1. Power Comparisons

The reader should refer to Tables A-l through A-8 and Figures

B-l through B-8 in Appendix 2. The findings can be summarized as

follows

.

1) The means of trimmings ( m°(0) , m°(.2), m
C
(.3) ) perform

better than either the 20% or 30% trimmed means for the short- to

medium- tailed distributions, but the opposite is true for the long

tailed Cauchy and 10% Mixed Normal, where the trimmed means perform

far better. In fact, for the 10% Mixed Normal, the tests based on

the 20% and 30% trimmed means are the most powerful tests. They

outperform any of the "standard" tests (those based on the midrange,

mean and median) and the adaptive test. This was the only

distribution where one of those four was not the most powerful.

2) The mean test performs well for all except the Cauchy and

Mixed Normal, but even for those distributions its power is greater

than the other means of trimmings. Also the test performs better

than might be expected for the Double Exponential.

3) The median test did not perform well at all except for the

Cauchy and Mixed Normal; even there it was not the most powerful

17



test. The median test does not perform well even for the Double

Exponential, where we might expect that it would.

4) The adaptive estimation test consistently performs well,

especially for the heavy-tailed distributions. It is always in the

top group of tests in terms of power. No other statistic is so

consistent.

Thus while the adaptive statistic does not always yield the

single most powerful test, under no distribution is any other test

clearly more powerful than the adaptive. In fact, no test is the

overwhelming favorite for any distribution.

2. Performance of

We calculated average values of Q (with standard errors) for

each run of the simulation. These results are presented for the

four values of S examined in each distribution, along with the true

population value of Q. As can be seen in Table III.C below, the

statistic Q is invariant to changes in scale, but, as noted by Boyer

and Kolson (1983), tends to underestimate the population value Q.

For the Uniform distribution, this error is not substantial (Q

averages 1.85 when Q - 1.90) but as the tailweight of the population

increases, the degree of under-estimation becomes more severe.

18



TABLE III.C Observed Values of Q Compared with Population Values

Average Values of Q
Standard error of estimate

Q »1

Uniform 1 . 90 1.842
.213

Prescott(.25) 2.20 1.952
.226

Normal 2.58 2.109
.265

Prescott(.75) 2.95 2.240
.290

Double Exp 3.30 2.363
.323

Mixed Normal 4.95 2.677
.521

Cauchy 10 . 00 3.095
.579

9
2

1.851 1.848 1.847
.210 .207 .203

1.963 1.969 1.955
.231 .224 .221

2.096 2.111 2.116
.258 .260 .265

2.262 2.266 2.251
.298 .282 .286

2.392 2.371 2.392
.310 .308 .330

2.656 2.680 2.690
.521 .510 .503

3.102 3.114 3.132
.594 .596 .594

For example, in the case of the Double Exponential, the average Q is

2.38 for a population value of Q - 3.30; Q - 10.0 for the Cauchy but

the average Q is 3.11. At the completion of this project we

discovered that when n-10 the numerator of Q actually estimates the

upper and lower 10% rather than 5% of the distribution, so that the

population values of Q for this special case are smaller than the

general values which appear in the table above. For example, at

19



n-10 the population values of Q are 5 for the Cauchy, and 3.4 for

the 10% Mixed Normal. Hence the values of Q which we observed do

not show such marked underestimation. The fact that our adaptive

procedure displayed such consistently high power even under these

conditions suggests that only crude estimates of tailweight are

necessary for this test to perform well.

3, A Permutation Test Short-Cut

In this simulation, we were only interested in .05 rejection

rates. Thus, for any given replication, if rejection at the .05

level became impossible (because more than 25 of the permutation

values were more extreme than the original value) the test was

terminated. For runs of the simulation at the null hypothesis (i.e.

^„/^v " 1) an average of only 150 (approximately) sampled

permutations were necessary. For the cases of the most extreme

departures from the null hypothesis which we examined, an average of

493 permutation were required. This disparity resulted in a ratio

of almost 5 to 1 in CPU minutes required to complete the simulation

(a maximum of 635 CPU minutes to a minimum of 130), a substantial

time savings. Thus in an actual application of the permutation

test, one might wish to consider 500 to 1000 samples of the set of

permutations, but only continue evaluation of the statistic u(«)

while H can still be rejected at the desired level of a.

20



IV. Conclusion

We have seen that, in general, randomization tests based on

functions of trimmed means perform well for the two sample scale

problem. In particular, the test based on the mean (which is the

permutation F test) is quite powerful for all except the heaviest

tailed distributions. The adaptive test is by far the most

consistent of the tests we have examined here. Based on this

finding we recommend the use of the adaptive test for this problem.

We also recommend the permutation test shortcut discussed in section

III.C.3. Continued research in this area could examine the power of

this adaptive procedure for sample sizes other than 10 and 10, and

consideration of the problems posed by unequal sample sizes. We

believe the adaptive statistic will continue to display the

desirability it has shown here.

21
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APPENDIX 1

Source Listing of Simulation Program

C GENERATION PROGRAM
C PURPOSE
C GENERATES THE SAMPLES FROM VARIOUS DISTRIBUTIONS
C FOR THE SIMULATION
C

C

C DEFINE VARIABLE NAMES
C

C ID - INDICATES SAMPLING DISTRIBUTION
C SAMPL 1,2 - REAL*8 ARRAY OF SAMPLE VALUES FROM POP'N 1,2
C N,M - SAMPLE SIZES
C NREPS - NUMBER OF INDEPENDENT REPLICATIONS DESIRED
C GAMMA - PARAMETER OF THE PRESCOTT FAMILY
C THETA 1,2 - ACTUAL SCALE PARAMETERS OF POPULATION 1,2
C MT 1,2 - ADDITIONAL SCALE PARMS FOR MIXED NORMAL DIST'N
C IX,JX,KX,LX - SEEDS FOR THE RANDOM NUMBER GENERATORS
C DIX,DJX,DKX,DLX - DOUBLE PRECISION VAR'S WITH SEEDS VALUES FOR RNG
C

PROGRAM GEN
REAL*8 SAMPL1(10),SAMPL2(10),R,A,B,T,DIX,DJX,DKX,DLX,PI

C

REALM GAMMA, X(10), Y(10) ,WK(50) , BETA1 ,BETA2 .THETA1 ,THETA2 ,MT1 MT2
C

INTEGER*4 NREPS , IX, JX.KX, LX,N,M, ID
C

CHARACTER*15 IDENT
C

COMMON/RNG/DIX , DJX , DKX , DLX
C

DATA NREPS ,N,M, GAMMA/1000
, 10 , 10 , . 00/

DATA THETA1 , THETA2 , MT1 , MT2/1
.

, 1
.

, . , .

/

C

READ(5,240) IX,JX,KX,LX
WRITE(6,240) IX,JX,KX,LX

DIX-IX
DJX-JX
DKX-KX
DLX-LX

C

C GENERATE THE SAMPLES
C

DO 170 J-l, NREPS
ID - 4.*GAMMA + 1

GOTO (100, 110, 110, 110, 110, 120, 130), ID
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100 CALL UNIF0R(SAMPL1,SAMPL2,N,M,THETA1,THETA2)
IDENT - 'UNIFORM'
GOTO 150

C

110 CALL PRESCT(SAMPL1,SAMPL2,N,M,THETA1,THETA2, GAMMA)
GOTO (111, 112, 113, 114, 115), ID

111 GOTO 150
112 IDENT - 'PRESCOTT(.25)'

GOTO 150
113 IDENT - 'NORMAL'

GOTO 150
114 IDENT - 'PRESC0TT(.75)'

GOTO 150
115 IDENT - 'DOUBLE EXPON'

GOTO 150
C

120 CALL CAUCHY(SAMPL1,SAMPL2,N,M,THETA1,THETA2)
IDENT - 'CAUCHY'
GOTO 150

C

130 CALL MIXED ( SAMPL1 , SAMPL2 , N , M , THETA1 , THETA2 , MT1 , MT2

)

IF (J .GT. 1) GOTO 140
IDENT - 'MIXED NORM'
WRITE(6,200) IDENT, NREPS
WRITE(6,220) N , M , THETA1 , THETA2 ,MT1,MT2

140 WRITE(6,230) (SAMPLl(I) ,1-1, N)
WRITE(6,230) (SAMPL2(I),I-1,M)
GOTO 170

C

150 IF (J .GT. 1) GOTO 160
WRITE (6, 200) IDENT, NREPS
WRITE(6,210) N,M,THETA1,THETA2

160 WRITE(6,230) (SAMPLl(I) , I-l.N)
WRITE(6,230) (SAMPL2(I),I-1,M)

C

170 CONTINUE
C

STOP
c

C DEFINE OUTPUT FORMATS
C

200 F0RMAT(1X,A15,I5)
210 FORMAT(2I5,2F10.5)
220 FORMAT ( 215, 4F10. 5)
230 FORMAT(10F8.4)
240 FORMAT(4I10)

END
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C

C SUBROUTINE CAUCHY
C PURPOSE
C GENERATES TWO SAMPLES OF SIZES N AND M, RESPECTIVELY, FROM
C THE CAUCHY DISTRIBUTION WITH LOCATION PARAMETER ZERO AND SCALE
C PARAMETERS BETA1 AND BETA2 , RESPECTIVELY. USES THE PROBABILITY
C INTEGRAL TRANSFORM TECHNIQUE TO GENERATE CAUCHY DEVIATES FROM
C UNIFORM DEVIATES.
C

C USAGE
C CALL CAUCHY ( SAMPL1 , SAMPL2 , N , M , BETA1 , BETA2

)

C

C SUBROUTINES CALLED
C GGUBFS
C

C DESCRIPTION OF PARAMETERS
C SAMPL1 - REAL*8 ARRAY OF LENGTH N CONTAINING THE SAMPLE VALUES
C FROM POPN 1

C SAMPL2 - REAL*8 ARRAY OF LENGTH M CONTAINING THE SAMPLE VALUES
C FROM POPN 2

C N,M - SAMPLE SIZES
C BETA1 - SCALE PARAMETER OF POPN 1

C BETA2 - SCALE PARAMETER OF POPN 2

C

C

SUBROUTINE CAUCHY( SAMPL1 , SAMPL2 , N , M , BETA1 , BETA2

)

INTEGER*4 N,M
REAL*8 SAMPL1(N),SAMPL2(M),DIX,DJX,DKX,DLX,PI
REAL*4 BETA1,BETA2,A,B
COMMON/RNG/DIX , DJX , DKX , DLX
DATA PI/3.141592654/

C

DO 100 I-l.N
A - GGUBFS (DIX)

100 SAMPLl(I) - BETA1 * TAN(PI*(A- . 5)

)

C

DO 110 I-l.M
B - GGUBFS (DJX)

110 SAMPL2(I) - BETA2 * TAN(PI*(B- . 5)

)

RETURN
END
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C***********************************************************************
C SUBROUTINE MIXED
C PURPOSE
C GENERATES TWO SAMPLES OF SIZES N AND M, RESPECTIVELY, FROM
C A 10% MIXED NORMAL WITH SCALE PARAMETERS THETA1 AND THETA2
C FOR 90% OF THE SAMPLE, AND MIXING SCALE PARAMETERS MT1 AND
C MT2 FOR THE REMAINING 10 %. (THE SCALE PARAMETERS ARE
C STANDARD DEVIATIONS)
C

C USAGE
CALL MIXED ( SAMPL1 , SAMPL2 , N , M , THETA1 , THETA2 , MT1 , MT2

)

C

C

C SUBROUTINES/FUNCTIONS CALLED
C GGNPM, GGUBFS
C

C DESCRIPTION OF PARAMETERS
C SAMPL1.2 - REAL*8 ARRAY OF LENGTH N CONTAINING THE SAMPLE VALUES
C FROM POP'N 1,2
C N,M - SAMPLE SIZES
C THETA1.2 - STANDARD DEVIATION OF POPN 1,2
C MT1.2 - STANDARD DEVIATION OF THE MIXING POPULATIONS
C

C METHOD
C CALLS SUBROUTINE GGNPM TO OBTAIN THE N(0,1) RANDOM DEVIATES,
C THEN ADJUSTS THEM TO HAVE CORRECT VARIANCE
C

SUBROUTINE MIXED (SAMPL1 , SAMPL2 , N , M , THETA1 , THETA2 , MT1 , MT2

)

REAL*8 SAMPL1 (N) , SAMPL2 (M) , DIX , DJX , DKX , DLX
REAL*4 X(10) ,Y(10) ,THETA1,THETA2,MT1,MT2,T,R
INTEGER*4 N,M
COMMON/RNG/DIX , DJX , DKX , DLX

C

CALL GGNPM(DIX,N,X)
C

DO 100 I-l.N
T-THETA1
R-GGUBFS(DKX)
IF(R .LT. .10)T-MT1
SAMPL1(I)-X(I)*T

100 CONTINUE
C

CALL GGNPM (DJX.M.Y)
C

DO 110 I-l.M
T-THETA2
R-GGUBFS (DLX)
IF(R .LT, .10)T-MT2
SAMPL2(I)-Y(I)*T

110 CONTINUE
C

RETURN
END
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c

C SUBROUTINE PRESCT
C

C PURPOSE
C GENERATES TWO SAMPLES OF SIZE N AND M, RESPECTIVELY, FROM
C THE PRESCOTT FAMILY OF SYMMETRIC DISTRIBUTIONS DEFINED BY
C GAMMA IN THE INTERVAL (0,1), HAVING SCALE PARAMETERS BETA1
C AND BETA 2

C

C USAGE
C CALL PRESCT ( SAMPL1 , SAMPL2 , N , M , THETA1 , THETA2 , GAMMA)
C

C SUBROUTINES CALLED
C GGAMR, GGUBFS
C

C DESCRIPTION OF PARAMTERS
C SAMPL1 - REAL*8 ARRAY OF LENGTH N CONTAINING THE SAMPLE
C VALUES FROM POPULATION 1

C SAMPL2 - REAL*8 ARRAY OF LENGTH M CONTAINING THE SAMPLE
C VALUES FROM POPULATION 2

C BETA1.2 - SCALE PARAMETER OF POPULATION 1,2
C GAMMA - PRESCOTT FAMILY PARAMETER
C

C METHOD
C CALL SUBROUTINE GGAMR TO OBTAIN GAMMA(GAMMA, 1) DEVIATES,
C MAKES A POWER TRANSFORMATION TO THE APPOPRIATE PRESCOTT
C DISTRIBUTION, AND ADJUSTS TO THE CORRECT SCALE
C

C

SUBROUTINE PRESCT ( SAMPL1 , SAMPL2 , N , M , BETA1 , BETA2 , GAMMA)
REAL*8 SAMPL1(N),SAMPL2(M),R,DIX,DJX,DKX,DLX
REAL*4 GAMMA, X(10) ,Y(10) ,WK(20) ,BETA1,BETA2
INTEGER*4 N,M
COMMON/RNG/DIX , DJX , DKX , DLX

C

CALL GGAMR(DIX, GAMMA, N,WK,X)
C

DO 100 I-l.N
SAMPLl(I) - (X(I) ** GAMMA) * BETA1
R - GGUBFS (DKX)

100 IF (R .LT. 0.5) SAMPLl(I) - -1 * SAMPLl(I)
C

CALL GGAMR(DJX, GAMMA, M,WK,Y)
C

DO 110 I-l.M
SAMPL2(I) - (Y(I) ** GAMMA) * BETA2
R - GGUBFS (DLX)

110 IF (R .LT. 0.5) SAMPL2(I) - -1 * SAMPL2(I)

RETURN
END
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c

C SUBROUTINE UNIFOR
C PURPOSE
C GENERATES TWO SAMPLES OF SIZES N AND M FROM U( -THETA1 ,THETA1)
C AND U(-THETA2,THETA2) , RESPECTIVELY.
C

C USAGE
C CALL UNIF0R(SAMPL1,SAMPL2,N,M,THETAI,THETA2)
C

C FUNCTION CALLED
C GGUBFS
C

C DESCRIPTION OF PARAMETERS
C SAMPL1 - REAL*8 ARRAY OF LENGTH N CONTAINING THE SAMPLE VALUES
C FROM POPN 1

C SAMPL2 - REAL*8 ARRAY OF LENGTH M CONTAINING THE SAMPLE VALUES
C FROM POPN 1

C N,M - SAMPLE SIZES
C THETA1 - SCALE PARAMETER OF POPN 1

C THETA2 - SCALE PARAMETER OF POPN 2
C

C METHOD
C INVOKES THE PRIME UNIFORM RANDOM NUMBER GENERATOR
C

SUBROUTINE UNIFOR ( SAMPL1 , SAMPL2 , N , M , BETA1 , BETA2

)

REAL*8 SAMPL1 ( 10 ) , SAMPL2 ( 10 ) , DIX , DJX , DKX , DLX
REAL*4 BETA1,BETA2,A,B
INTEGER*4 N,M
COMMON/RNG/DIX , DJX , DKX , DLX

C

DO 100 I-l.N
99 A-GGUBFS(DIX)

IF(A .LT. 0.000000001)GOTO 99
SAMPL1 (I)-(A-.5)*2. *BETA1

100 CONTINUE
C

DO 110 I-l.M
101 B-GGUBFS(DJX)

IF(B .LT. 0.000000O01)GOTO 101
SAMPL2(I)-(B-.5)*2.*BETA2

110 CONTINUE
RETURN
END
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c

C SIMULATION PROGRAM
C PURPOSE
C COMPARE SIMILAR MEASURES OF SCALE BASED ON TRIMMED MEANS
C FOR THE PRESCOTT FAMILY OF SYMMETRIC DISTRIBUTIONS, CAUCHY,
C AND MIXED NORMAL DISTRIBUTIONS
C

C VARIABLE DEFINITIONS
C

C SAMPL 1,2 - ARRAY OF SAMPLE VALUES FROM POPULATION 1,2
C PSAMP 1,2 - ARRAY OF SAMPLE VALUES AS ASSIGNED IN THE
C PERMUTATION TEST
C SQDEV 1,2 - ARRAY OF SQUARED DEVIATIONS (SEE SUB. DEVSQ)
C COMB - ARRAY OF COMBINED SAMPLE VALUES
C OSTAT - VALUES OF THE TEST STATISTICS EVALUATED ON
C THE ORIGINAL SAMPLE DATA
C PSTAT - VALUES OF THE TEST STATISTICS EVALUATED ON
C THE PERMUTED SAMPLE DATA
C EXTREM - ACCUMULATOR W/IN PERM. TEST OF EXTREM OBS

.

C REJECT - COUNTS REPS WHICH YIELDED SIGNIFICANT PERM. TESTS
C REJPER - PERCENT REJECTIONS FOR EACH STATISTIC
C CONTIN - DETERMINES CONTINUATION OF PERMUTATION LOOP FOR
C INDIVIDUAL STATISTICS
C ALL - DETERMINES POINT OF TERMINATION OF PERM. LOOP
C ODD - NOTES EVEN OR ODD SAMPLE SIZE FOR SUB. MEDI
C N,M - SAMPLE SIZES
C NREPS - NUMBER OF INDEPENDENT REPLICATIONS DESIRED
C NPERM - NUMBER OF PERMUTATIONS TO BE SAMPLED
C NSTAT - NUMBER OF STATISTICS TO BE TESTED
C CVAL - CRITICAL VALUE OF EXTREM OBS. AT P-.05
C ALPHA - DESIRED AMOUNT OF TRIMMING
C LOC 1,2 - LOCATION ESTIMATOR FOR SAMPLE 1,2
C SCALE 1,2 - SCALE ESTIMATOR FOR SAMPLE 1,2
C Q - NONNORMALITY INDICATOR USED IN THE ADAPTIVE SCHEME
C INT - INDICATES THE INTERVAL (2,6) IN WHICH Q IS OBSERVED
c ICT - VECTOR COUNTING THE TIMES Q WAS PLACED IN EACH INTERVAL
C QSUM - SUMS THE VALUES OF Q ( FOR MEAN Q)
c QSQ - SUMS THE SQUARED VALUES OF Q (FOR VARIANCE OF Q)
C IP - PERMUTATION COUNTER (USED AS A CHECK)
c PSUM - SUMS THE NUMBER OF PERMUTATIONS NECESSARY FOR EACH REP
C PCT - THE NUMBER OF REPS THE PERM TEST ENDED EARLY
C ISAM - INDICATOR ARRAY FOR DIVISION OF SAMPLE IN PERM TEST
C SEED - SEED FOR RANDOM NUMBER GENERATOR
C THETA 1,2 - ACTUAL SCALE PARAMETER FOR POPULATION 1,2
C MT 1,2 - ADDITIONAL SCALE PARMS FOR MIXED NORMAL
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PROGRAM SCALES IM
REAL*6 SAMPL1(10),SAMPL2(10),PSAMP1(10),PSAMP2(10),COMB(20),

1 SQDEVl(lO) ,SQDEV2(10) ,OSTAT(10) , PSTAT(IO) , SAMP(IO)

,

2 REJECT(IO) ,REJPER(10) ,W(10) , Z(10) , SAMPl(lO) , SAMP2(10)

,

3 LOC1,LOC2,SCALE1,SCALE2,QVAL1,QVAL2,Q,QHAT,X(10) ,Y(10)

,

4 THETA1 , THETA2 , MT1 , MT2 , TM1 , TM2 , SCI , SC2 , U , C , T , DIV

,

5 MEAN1 ,MEAN2 ,MEDI1 ,MEDI2 ,MIDRA1 ,MIDRA2 .RATIO , CVAL, ALPHA,
6 SUM

, SUM2 , HOLD1 , HOLD2
, TSUM , TCSUM , TMEAN , TCMEAN , SEED

,

7 QSUM,QSQ,REPS,PSUM,AVEPERM,AVEQ,VARQ

INTEGER*3 IP, IC,JC,N,M, INT, NREPS, NSTAT, NPERM, ICOMB(20),ISEED, II, S,
1 INUM,IDEN,NSAM,ISAM(20) ,NSIZE , ISTART, 12 , EXTREM(IO) , PCT,
2 ICT(10),GS(10)

LOGICAL*3 CONTIN(10),ALL,ODD

CHARACTER*15 IDENT,LABEL(10)

COMMON/PERMCOM/OSTAT , NSTAT , N , M , COMB , INT , NPERM , CVAL
C

C DEFINE OUTPUT FORMATS
C

1 FORMAT(I5)
2 FORMAT(8I5)

3 F0RMAT(1X,A15,I5)
4 FORMATC THIS RUN INVOLVED SAMPLING FROM THE ' ,A15 ,' DISTRIBUTION'

)

5 FORMATC WITH ',15,' REPLICATIONS',/)
6 FORMAT(2I5,2F10.5)
7 FORMAT(2I5,4F10.5)
8 FORMATC SAMPLE SIZES WERE: ',15,' AND ',15)
9 FORMATC SCALE PARAMETERS WERE: ',F7.4,' AND \F7.4,/)

10 FORMATC SCALE PARAMETERS FOR SAMPLE 1: ',F7.4,' AND \F7.4)
11 FORMATC AND FOR SAMPLE 2: \F7.4,' AND '

'

F7 4 /)
12 FORMAT (10F8. 4)
13 FORMATC THE VALUE OF ' ,A15 ,' STATISTIC FOR THE ORIGINAL SAMPLE"

1F10.5)
14 FORMAT(/,' THE PERMUTATION TEST ON THE ',15,

l'TH REPLICATION WAS TERMINATED AFTER ',15,' PERMUTATIONS' / /)
15 FORMATC EXTREMCI1,'): ',I5,2X,' REJECTC , II, ' ) : \F5.2)'
16 FORMATC REJECTION RATE FOR THE TEST BASED ON \A15,'IS \F7.5,/)
17 FORMATC NPERM: ',15,' CVAL: '

, F8 .4 ,
' SEED: ' ,F8.2, ' NSTAT: ',15)

18 FORMAT (IX, 15,' TIMES THE ADAPTIVE STATISTIC USEd' '
, A15

, /)
19 FORMATC AVERAGE NUMBER OF PERMUTATIONS: '

, F7 . 2
, / ,

'

1 ' THE PERMUTATION TEST ENDED EARLY ',15,' TIMES' /)
20 FORMATC AVERAGE VALUE OF Q: ',F7,4,' WITH VARIANCE- ' F7 4 /)

C '
"'

C

C DEFINE NUMBER OF PERMUTATIONS
C AND NUMBER OF STATISTICS TO BE COMPARED
C AND SET SEED FOR RANDOM NUMBER GENERATOR
C
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NPERM-500
CVAL - 0.05*NPERM
NSTAT-8
READ(17,1)ISEED

SEED-FLOAT(ISEED)
CALL RANUP(SEED)
WRITE( 16 , 17 ) NPERM , CVAL , SEED , NSTAT

c

C INITIALIZE ARRAYS

DO 50 K-l ,10
REJECT(K) -

OSTAT(K) - 0.0
PSTAT(K) - 0.0
CONTIN(K) - .TRUE.
REJPER(K) -
SAMPLl(K) - 0.0
PSAMPl(K) - 0.0
SAMPl(K) - 0.0
SAMP(K) - 0.0
SQDEVl(K) - 0.0
X(K) - 0.0
Z(K) - 0.0
SAMPL2(K) - 0.0
PSAMP2(K) - 0.0
SAMP2(K) - 0.0
SQDEV2(K) -- 0.0
Y(K) - 0.0
W(K) - 0.0

50 ICT(K) -

DO 60 K-l, 20
ICOMB(K) - 13

COMB(K) - .0

60 ISAM(K) -
c

PCT -

PSUM - 0.0
QSUM - 0.0
QSQ - 0.0

LABEL(l) - 'THE MIDRANGE
LABEL(2) - 'MC(.2)'
LABEL(3) - 'MC(.3)'
LABEL(4) - 'THE MEAN'
LABEL(5) - •M(.2)'
LABEL(6) - 'M(.3)'
LABEL(7) - 'THE MEDIAN'
LABEL(8) - 'ADAPTATION'

READ(15,2)(GS(I), 1-1,8)
WRITE(16,2)(GS(I), 1-1,8)
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c

c

C BEGIN REPLICATION LOOP
C

c

c

C INPUT THE SAMPLES
C

READ (15, 3) IDENT, NREPS
WRITE(16,4) IDENT
WRITE (16, 5) NREPS

C

DO 200 J-l, NREPS
IF (IDENT .EQ. 'MIXED NORM') GOTO 110

C

IF (J .GT. 1) GOTO 105
READ (15, 6) N,M,THETA1,THETA2
WRITE(16,8) N,M
WRITE (16, 9) THETA1 , THETA2

105 READ(15,12) (SAMPL1(I),I-1,N)
READ(15,12) (SAKPL2(I),I-1,M)

C* WRITE(16,12) (SAMPL1(I),I-1,N)
C* WRITE(16,12) (SAMPL2(I),I-1,M)

GOTO 120
C

110 IF (J .GT. 1) GOTO 115
READ(15,7) N,M,THETA1,THETA2,MT1,MT2
WRITE(16,8) N,M
WRITE(16,10) THETA1.MT1
WRITE(16,11) THETA2.MT2

115 READ(15,12) (SAMPL1(I),I-1,N)
READ(15,12) (SAMPL2(I),I-1,M)

C* WRITE(16,12) (SAMPL1(I),I-1,N)
C* WRITE(16,12) (SAMPL2(I),I-1,M)
C

C COMBINE AND SORT THE SAMPLES
C

120 DO 125 I-l.N
125 COMB(I) - SAMPLl(I)

DO 130 I-l.M
130 COMB(I+N) - SAMPL2(I)

C

CALL SHELL(COMB,N+M)
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CALCULATE THE STATISTICS

K-I MC(O) -- MIDRANGE
K-2 MC(.2)
K-3 MC(.3)
K-4 MC(.5) - M(0) -- MEAN
K-5 M(.2)
K-6 M(.3)
K-7 M(.5) -- MEDIAN
K-8 ADAPTIVELY CHOSEN TO BE ONE OF THE ABOVE

DO 190 K-l.NSTAT
GOTO (135 , 140 , 145 , 150 , 155 , 160 , 165 , 170) , K

135 CALL MIDSCL(SAMPL1,SAMPL2,N,M,SCALE1,SCALE2)
GOTO 175

C

140 ALPHA-.

2

GOTO 148
C

145 ALPHA-.

3

C

148 CALL TCMNSC(SAMPL1,SAMPL2,N,M,SCALE1,SCALE2, ALPHA)
GOTO 175

C

150 CALL MNSCAL(SAMPL1,SAMPL2,N,M,SCALE1,SCALE2)
GOTO 175

C

155 ALPHA-. 2

GOTO 162
C

160 ALPHA-.

3

C

162 CALL TMNSCL(SAMPL1,SAMPL2,N,M,SCALE1,SCALE2, ALPHA)
GOTO 175

C

165 CALL MEDSCL(SAMPL1,SAMPL2,N,M,SCALE1,SCALE2)
GOTO 175

C

170 CALL QINT(SAMPL1,SAMPL2,N,M,Q,INT)
OSTAT(K) - OSTAT(INT)
ICT(INT) - ICT(INT) + 1

QSUM - QSUM + Q
QSQ - QSQ + Q ** 2

GOTO 190
C

175 OSTAT(K) - RATI0(SCALE1 , SCALE2)
C*180 WRITE(16,13)LABEL(K),OSTAT(K)

190 CONTINUE
C
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c

C RUN THE PERMUTATION TEST
C

C

CALL BPERM(ALL,EXTREM IP)
C

PSUM - PSUM + IP
IF (IP .LT. NPERM) PCT - PCT + 1

C

IF (ALL) GOTO 192
C

C* WRITE(16,14)J,IP
GOTO 200

C

192 DO 195 K-l.NSTAT
IF (EXTREM(K) . LT

. CVAL) REJECT(K) - REJECT(K) +10
C* WRITE(16,15)K,EXTREM(K),K,REJECT(K)

195 CONTINUE
C

200 CONTINUE
C

C

C END OF REPLICATION LOOP
C

C

C

C CALCULATE SUMMARY STATISTICS
C

C

REPS - FLOAT(NREPS)
DO 210 K-l.NSTAT

REJPER(K) - REJECT(K) / REPS
WRITE(16,16) LABEL(K),REJPER(K)

210 CONTINUE
DO 220 K-2,6

220 WRITE(16,18) ICT(K) ,LABEL(K)
C

AVEPERM - PSUM /REPS
AVEQ - QSUM / REPS
VARQ - (QSQ - (QSUM**2)/REPS) / (REPS-1)
WRITE (16, 19) AVEPERM, PCT
WRITE(16,20) AVEQ, VARQ

STOP
END
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C

C SUBROUTINE BPERM
C

C PURPOSE
C TO PERFORM AN APPROXIMATE PERMUTATION TEST BY SAMPLING
C 1000 TIMES FROM THE SET OF ALL POSSIBLE PERMUTATIONS
C

C USAGE
C CALL BPERM(ALL,EXTREM,IP)
C

c

C DESCRIPTON OF PARAMETERS
C ALL - LOGICAL MARKER SIGNIFYING AN ABORTED PERMUTATION
C LOOP MEANING P-VALUE FOR ALL TESTS GREATER THAN .05
C EXTREM - VECTOR COUNTING EXTREM VALUES OF THE STATISTICS
C

C SUBROUTINES CALLED
C SAMPER
C

C

SUBROUTINE BPERM(ALL, EXTREM, IP)
REAL*6 OSTAT(10),PSTAT(10),COMB(20),CVAL,PSAMP1(10),PSAMP2(10)
INTEGER*3 IC.JC ,N,M, NSTAT, IP, NPERM, INT, ISAM(20) , EXTREM(IO)
LOGICAL*3 ALL.CONTIN(IO)
COMMON/PERMCOM/OSTAT , NSTAT , N , M , COMB , INT , NPERM , CVAL

C

DO 100 K-l, NSTAT
CONTIN(K) - .TRUE.
PSTAT(K) - 0.0

100 EXTREM(K) -
C

IP-0
DO 200 1-1, NPERM
IP - IP + 1

C

CALL SAMPER(ISAM,N,M)
C

IC-1
JC-1
DO 110 L-l.N+M

IF (ISAM(L) .EQ. 1) THEN
PSAMPl(IC) - COMB(L)
IC - IC + 1

ELSE

PSAMP2(JC) - COMB(L)
JC - JC + 1

END IF
110 CONTINUE
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c

c CALCULATE THE STATISTICS

c K-l : MC(O) -- MIDRANGE
c K-2 : MC(.2)
c K-3 : MC(.3)
c K-4 : MC(.5) - M(0) -- MEAN
c K-5 : M(.2)
c K-6 : M(.3)
c K-7 : M(.5) -- MEDIAN
c K-8 : ADAPTIVELY CHOSEN TO BE ONE OF THE ABOVE
c

c

DO 185 K-l.NSTAT
IF (.NOT. CONTIN(K)) THEN

GOTO 185
ELSE

GOTO (120 ,125,130, 140 , 145 , 150 , 160 , 165) ,K
END IF

C

120 CALL MIDSCL(PSAMP1,PSAMP2,N,M,SCALE1,SCALE2)
GOTO 170

C

125 ALPHA-. 2

GOTO 135
C

130 ALPHA-. 3

C

135 CALL TCMNSC(PSAMP1,PSAMP2,N,M,SCALE1,SCALE2, ALPHA)
GOTO 170

C

140 CALL MNSCAL(PSAMP1,PSAMP2,N,M,SCALE1,SCALE2)
GOTO 170

C

145 ALPHA- . 2

GOTO 155
C

150 ALPHA-.

3

C

155 CALL TMNSCL(PSAMP1,PSAMP2,N,M,SCALE1,SCALE2, ALPHA)
GOTO 170

C

160 CALL MEDSCL(PSAMP1,PSAMP2,N,M,SCALE1,SCALE2)
GOTO 170

C

165 PSTAT(K) - PSTAT(INT)
GOTO 185

C

170 PSTAT(K) - RATIO (SCALE1 , SCALE2)
185 CONTINUE
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ALL - .FALSE.
DO 190 K-l.NSTAT

IF (.NOT. CONTIN(K)) THEN
GOTO 190

ELSE
IF (PSTAT(K) .GT. OSTAT(K)) EXTREM(K) - EXTREM(K) + 1

IF (EXTREM(K) .GT. CVAL) CONTIN(K) - .FALSE.
IF (CONTIN(K)) ALL - .TRUE.

END IF
190 CONTINUE

C

C* WRITE(16,191) ALL
C*191 FORMATC THE VALUE OF ALL IS: ',12)

IF (.NOT. ALL) GOTO 210
200 CONTINUE
210 RETURN

END
C

C

C****************************************************************
C

C SUBROUTINE DEVSQ
C PURPOSE
C SUBTRACT A QUANTITY FROM THE SAMPLE VECTOR AND SQUARE
C THOSE DEVIATIONS
C

C USAGE
C CALL DEVSQ(SAMPL1,SAMPL2,N,M,L0C1,L0C2,SQDEV1,SQDEV2)
C

C DESCRIPTION OF PARAMETERS
C SAMPL1 (2) - REAL*6 ARRAY OF SIZE N (M) CONTAINING
C SAMPLE VALUES FROM POPULATION 1 (2)
C LOCI (2) - LOCATION ESTIMATES FOR SAMPLE 1 (2)
C SQDEV1 (2) - THE SQARED DEVIATION FOR SAMPLE 1 (2)
C

SUBROUTINE DEVSQ (X, Y,N,M,TM1 ,TM2 , Z,W)
REAL*6 X(N),Y(M),TM1,TM2,Z(N),W(M)
INTEGER*3 N,M

C

DO 100 I-l.N
100 Z(I) - (X(I) - TM1) ** 2

C

DO 110 I-l.M
110 U(I) - (Y(I) - TM2) ** 2

RETURN
END
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C

C SUBROUTINE MEAN
C

C PURPOSE
C CALCULATES THE SAMPLE MEAN FOR EACH OF TWO SAMPLES
C

C USAGE
C CALL MEAN(SAMPL1,SAMPL2,N,M,L0C1,L0C2)
C

C DESCRIPTION OF PARAMETERS
C SAMP1 (2) - REAL*6 ARRAY OF LENGTH N (M) CONTAINING THE
C SAMPLE VALUES
C LOCI (2) - ESTIMATE OF THE LOCATION PARAMETER (THE MEAN)
C FOR SAMPLE 1 (2)
C

C

SUBROUTINE MEAN(X, Y,N,M,MEAN1 ,MEAN2)
REAL*6 X(N),Y(M),SUM1,SUM2,MEAN1,MEAN2
INTEGER*3 N,M

C

SUM1-0.0
SUM2-0.0

C

DO 100 1-1,11

100 SUM1 - SUM1 + X(I)
MEAN1 - SUM1 / FLOAT (N)

C

DO 120 I-l.M
120 SUM2 - SUM2 + Y(I)

MEAN2 - SUM2 / FLOAT (M)
C

RETURN
END

C

C

c

C SUBROUTINE MNSCAL
C PURPOSE

CALCULATES AN ESTIMATE OF SCALE BASED ON THE MEAN FOR EACH
C OF TWO SAMPLES
C

C USAGE
C CALL MNSCAL(SAMPL1,SAMPL2,N,M,SCALE1,SCALE2)
C

C SUBROUTINES CALLED
C MEAN.DEVSQ
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c

C DESCRIPTION OF PARAMETERS
C SAMPL1 (2) - REAL*6 ARRAY OF LENGTH N (M) CONTAINING
C SAMPLE VALUES FROM POPULATION 1 (2)
C LOCI (2) - ESTIMATE OF LOCATION BASED ON SAMPLE 1 (2)
C SCALE1 (2) - RETURNED VALUE OF THE ESTIMATE OF SCALE

FROM SAMPLE 1 (2)
C

C

SUBROUTINE MNSCAL(SAMP1 , SAMP2 ,N,M, SCALE1 , SCALE2)
REAL*6 SAMP1(10),SAMP2(10),LOC1,LOC2,SCALE1,SCALE2,

1 SQDEV1(10),SQDEV2(10),SC1,SC2
INTEGER*3 N,M

C

CALL MEAN(SAMP1,SAMP2,N,M,L0C1,L0C2)
C

CALL DEVSCK SAMP1 , SAMP2 , N , M , LOCI , L0C2 , SQDEV1 , SQDEV2

)

C

CALL MEAN(SQDEV1,SQDEV2,N,M,SC1,SC2)
C

SCALE1-SC1
SCALE2-SC2

C

RETURN
END

C

C

C****************************************************************
C

C SUBROUTINE MEDIAN
C

C PURPOSE
C CALCULATES THE SAMPLE MEDIAN FOR EACH OF TWO SAMPLES
C

C USAGE
C CALL MEDIAN(SAMPL1,SAMPL2,N,M,L0C1,L0C2)
C

C SUBROUTINES CALLED
C SHELL
C

C DESCRIPTION OF PARAMETERS
C SAMP1 (2) - REAL*6 ARRAY OF LENGTH N (M) CONTAINING THE
C SAMPLE VALUES FROM POPULATION 1 (2)
C LOCI (2) - ESTIMATE OF THE LOCATION PARAMETER (THE MEDI)
C FOR EACH SAMPLE
C

C
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c

SUBROUTINE MEDIAN(X,Y,N,M,MEDI1 ,MEDI2)
REAL*6 X(N),Y(M),MEDI1,MEDI2
INTEGER*3 N,M
LOGICAL ODD

MEDI1-0.0
MEDI2-0.0

CALL SHELL(X.N)

ODD-. FALSE.
IF (MOD(N,2) .NE. . ) ODD- . TRUE

.

IF (ODD) THEN
MEDI1 - X( (N+l)/2 )

ELSE

MEDI1 - ( X( N/2 ) + X( N/2 + 1) ) / 2.
ENDIF

CALL SHELL (Y,M)

ODD-. FALSE.
IF (MOD(M,2) .NE. . 0)ODD-. TRUE.

IF (ODD) THEN
MEDI2 - Y( (M+l)/2 )

ELSE

END IF
MEDI2 - ( Y( M/2 ) + Y( M/2 + 1) ) / 2.

RETURN
END

C

C SUBROUTINE MEDSCL
C PURPOSE

CALCULATES AN ESTIMATE OF SCALE BASED ON THE MEDIAN FOR EACH
C OF TWO SAMPLES
C

C USAGE
C CALL MEDSCL(SAMPL1,SAMPL2,N,M,SCALE1,SCALE2)
C

C SUBROUTINES CALLED
C MEDIAN, DEVSQ
C
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C DESCRIPTION OF PARAMETERS
C SAMPL1 (2) - REAL*6 ARRAY OF LENGTH N (M) CONTAINING
C SAMPLE VALUES FROM POPULATION 1 (2)
C LOCI (2) - ESTIMATE OF LOCATION BASED ON SAMPLE I (2)
C SCALE1 (2 - RETURNED VALUE OF THE ESTIMATE OF SCALE
C FROM SAMPLE 1 (2)

SUBROUTINE MEDSCL( SAMP1 , SAMP2 , N , M , SCALE1 , SCALE2

)

REAL*6 SAMP1 ( 10) , SAMP2 (10) , LOCI , LOC2 , SCALE1 , SCALE2

,

1 SQDEV1(10),SQDEV2(10),SC1,SC2
INTEGER*3 N,M

CALL MEDIAN(SAMP1,SAMP2,N,M,L0C1,L0C2)

CALL DEVSQ ( SAMP1 , SAMP2 , N , M , LOCI , LOC2 , SQDEV1 , SQDEV2

)

CALL MEDIAN(SQDEV1,SQDEV2,N,M,SC1,SC2)

SCALE1-SC1
SCALE2-SC2

C

RETURN
END

C

C

C SUBROUTINE MIDRAN
C

C PURPOSE
C CALCULATES THE MIDRANGE FOR EACH OF TWO SAMPLES
C

C USAGE
C CALL MIDRAN(SAMPL1,SAMPL2,N,M,L0C1 LOC2)
C

C

C SUBROUTINES CALLED
C SHELL
C

C DESCRIPTION OF PARAMETERS
C SAMPL (2) - REAL*6 ARRAY OF LENGTH N (M) CONTAINING THE
C SAMPLE VALUES

LOCI (2) - ESTIMATE OF THE LOCATION PARAMETER (MIDRANGE)
c FOR EACH SAMPLE
C

C
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SUBROUTINE MIDRAN (X , Y , N , M , MIDRA1 , MIDRA2 )

REAL*6 X(N),Y(M) ,MIDRA1 ,MIDRA2
INTEGER*3 N,M

MIDRA1 - 0.0
MIDRA2 - 0.0

CALL SHELL(X.N)

MIDRA1 - ( X(l) + X(N) ) / 2.0

CALL SHELL(Y.M)

MIDRA2 - ( Y(l) + Y(M) ) / 2.0

RETURN
END

C

C SUBROUTINE MIDSCL
C

C PURPOSE
C CALCULATES AN ESTIMATE OF SCALE BASED ON THE MIDRANGE FOR
C EACH OF TWO SAMPLES
C

C USAGE
C CALL MIDSCL(SAMPL1,SAMPL2,N,M,SCALE1,SCALE2)
C

C SUBROUTINES CALLED
C MIDRAN, DEVSQ
C

C DESCRIPTION OF PARAMETERS
C SAMPL1 (2) - REAL*6 ARRAY OF LENGTH N (M) CONTAINING
C SAMPLE VALUES FROM POPULATION 1 (2)
C LOCI (2) - ESTIMATE OF LOCATION BASED ON SAMPLE 1 (2)
C SCALE1 (2) - RETURNED VALUE OF THE ESTIMATE OF SCALE
C FROM SAMPLE 1 (2)
C

C

SUBROUTINE MIDSCL(SAMP1 , SAMP2 ,N,M, SCALE1 , SCALE2)
REAL*6 SAMP1(10),SAMP2(10),LOC1,LOC2,SCALE1,SCALE2,

1 SQDEV1(10),SQDEV2(10)
, SCI , SC2

INTEGER*3 N,M

CALL MIDRAN(SAMP1,SAMP2,N,M,L0C1,L0C2)

CALL DEVSQ ( SAMP1 , SAMP2 , N , M , LOCI , L0C2 , SQDEV1 , SQDEV2

)

CALL MIDRAN(SQDEV1,SQDEV2,N,M,SC1,SC2)
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SCALE1-SC1
SCALE2-SC2

C

RETURN
END

C

C

C

C FUNCTION QHAT
C

C PURPOSE
C CALCULATES Q, THE NONNORMALITY INDICATOR BY WHICH ALPHA IS
C DETERMINED ADAPTIVELY (SEE HOGG 1974)
C

C USAGE
C QVAL - QHAT ( SAMP, N)
C

C SUBROUTINES CALLED
C SHELL
C

C DESCRIPTION OF PARAMETERS
C SAMP - REAL*6 ARRAY OF SIZE N CONTAINING SAMPLE VALUES
C FROM A POPULATION
C

C

FUNCTION QHAT(X.N)
REAL*6 X(N),HOLDl,HOLD2,QHAT
INTEGER*3 N.INUM.IDEN

C

CALL SHELL(X.N)

INUM - 0.05*N
IDEN - 0.5*N
HOLD1 - 0.0
HOLD2 - 0.0

C

IF (INUM .LT. 1) GOTO 110
DO 100 I-l.INUM

100 HOLD1 - HOLDl + X(N+1-I) - X(I)
110 HOLDl - HOLDl + (.05*N - INUM) * ( X(N-INUM) - X(INUM+1) )

HOLDl - HOLD1/(.05*N)
C

DO 120 I-l.IDEN
120 HOLD2 - HOLD2 + X(N+1-I) - X(I)

HOLD2 - HOLD2/(.5*N)
IF (HOLD2 .LT. 0.000001) HOLD2-0 . 000001

C

QHAT - HOLD1/HOLD2
RETURN
END

C
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c

C SUBROUTINE QINT
C

C PURPOSE
C DETERMINES THE INTERVAL IN WHICH Q IS OBSERVED IN ORDER
C TO CHOOSE THE BEST TRIMMED MEAN AS SUGGESTED BY PRESCOTT
C (SEE BOYER AND KOLSON, 1983)
C

C USAGE
C CALL QINT ( SAMPL1 , SAMPL2 , N , M , Q , INT)
C

C FUNCTIONS USED
C QHAT
C

C DESCRIPTION OF PARAMETERS
C SAMP1 (2) - REAL*6 ARRAY OF SIZE N CONTAINING SAMPLE VALUES

Q - THE ESTIMATED VALUE OF HOGG'S Q STATISTIC
C INT THE INTERVAL (2,6) WHEREIN QHAT LIES
C

C

SUBROUTINE QINT(X, Y,N,M,Q, INT)
REAL*6 X(N),Y(M),Q,QVAL1,QVAL2
INTEGER*3 N.M.INT

C

QVAL1 - QHAT(X.N)
QVAL2 - QHAT(Y.M)
Q - (QVAL1 + QVAL2) / 2.0

C

IF ( Q .LI. 2.2 ) THEN
INT - 2

ELSE
IF ( Q .LT. 2.4) THEN

INT - 3

ELSE
IF ( Q .LE. 2.8) THEN

INT - 4
ELSE

IF ( Q .LE. 3.0) THEN
INT - 5

ELSE
INT - 6

END IF
END IF

END IF
END IF

C

C* WRITE(16,100)Q,INT
C*100 FORMATC THE VALUE OF Q IS \F7.5,' PLACED IN INTERVAL ' 12)
C

RETURN
END
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c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

***************************************************************

FUNCTION RATIO

PURPOSE
CALCULATE THE RATIO OF TWO STATISTICS

USAGE
STAT - RATIO (SCALE1.SCALE2)

DESCRIPTION OF PARAMETERS
SCALE1 - SCALE ESTIMATE OF A SAMPLE FROM A POPULATION

HAVING SMALLER ACTUAL SCALE

SCALE2 SCALE ESTIMATE OF A SAMPLE FROM A POPULATION
HAVING LARGER ACTUAL SCALE

FUNCTION RATIO ( SCI, SC2)
REAL*6 SCI, SC2, RATIO

IF (SCI .LT. O.O0OO1) SCI - 0.00001
RATIO - SQRT(SC2) / SQRT(SCl)

RETURN
END

C

C

C

c

C

c

c

c

C

c

c

C

C

c

c

c

c

c

c

c
c

c

c

SUBROUTINE SAMPER

PURPOSE
SAMPLE AN ELEMENT RANDOMLY FROM THE SET OF ALL POSSIBLE
PERMUTATIONS

USAGE
CALL SAMPER(ISAM,N,M)

FUNCTION CALLED
RANU

DESCRIPTION OF PARAMETERS
ISAM - RETURNED INDICATOR ARRAY OF LENGTH N+M
N,M - SAMPLE SIZES

METHOD
THE ARRAY ISAM IS USED TO INDICATE THE ELEMENTS OF THE
COMBINED SAMPLE THAT WILL BE ASSIGNED TO SAMPLE 1
(INDICATOR-1) OR SAMPLE 2 (INDICATOR-0) FOR THE RANDOMLY
SELECTED PERMUTATION. THE ELEMENTS OF ISAM ARE INITIALIZED
TO AND TURNED TO 1 BY RANDOM SAMPLING WITHOUT REPLACEMENT
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SUBROUTINE SAMPER(ISAM,N,M)
INTEGER*3 N,M,I,NSAM,ISAM(N+M)
REAL*6 U,C

C

DO 100 L-l, N+M
100 ISAM(L)-0

C-FLOAT(N+M)
NSAM-0

C

150 U - RANU(0. 0,1.0)
I-INT(U*C) + 1

IF (ISAM(I) .EQ. 1) GOTO 150
ISAM(I)-1
NSAM-NSAM+1
IF (NSAM .LT. N) GOTO 150

C

RETURN
END

C

C

C

C SUBROUTINE SHELL
C

C PURPOSE
C SORT A SET OF DATA INTO ASCENDING ORDER
C

C USAGE
C CALL SHELL(SAMP.NSIZE)
C

C DESCRIPTION OF PARAMETERS
C SAMP - ARRAY OF SAMPLE DATA TO BE SORTED
C NSIZE - SIZE OF SAMPLE
C

C METHOD
C SHELL SORT TECHNIQUE
C

SUBROUTINE SHELL(SAMP, NSIZE)
REAL*6 SAMP(NSIZE) ,T

INTEGER*3 S, NSIZE
C

S-NSIZE
100 S-INT(S/2)

IF (S .LT. 1)G0T0 150
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DO 140 K-l.S
DO 130 I-K,NSIZE-S,S
J-I
T-SAMP(I+S)

110 IF (T .GE. SAMP(J)) GOTO 120
SAMP(J+S)-SAMP(J)
J-J-S
IF (J .GE. 1) GOTO 110

120 SAMP(J+S)-T
130 CONTINUE
140 CONTINUE

GOTO 100
C

150 RETURN
END

C

C

0***************************************4*****4******************
c

C FUNCTION TCMEAN
C

C PURPOSE
C CALCULATES THE MEAN OF THE TRIMMINGS DEFINED BY ALPHA
C

C USAGE
C STAT - TCMEAN ( SAMP, N, ALPHA)
C

C DESCRIPTION OF PARAMETERS
C SAMP - REAL*6 ARRAY OF SIZE N CONTAINING THE SAMPLE
C VALUES FROM A POPULATION
C ALPHA - THE PERCENT OF TRIMMING DESIRED
C

C

FUNCTION TCMEAN(X,N,A)
REAL*6 X(N) , A, TCSUM, TCMEAN, DIV
INTEGER*3 N,I1,I2,ISTART

C

CALL SHELL(X.N)
C

IF (A .LT. ,00001)A-. 00001
DIV - 2. * N * A
ISTART - N * A
TCSUM - 0.0
IF (ISTART .LT. 1) GOTO 110
DO 100 1-1, ISTART

100 TCSUM - TCSUM + X(N+1-I) + X(I)
110 TCSUM - TCSUM + (N*A - ISTART) * ( X(ISTART+1) + X(N-ISTART) )

TCMEAN - TCSUM / DIV

RETURN
END
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c

c

C SUBROUTINE TCMNSC
C

C PURPOSE
C CALCULATES AN ESTIMATE OF SCALE BASED ON THE DESIGNATED
C MEAN OF TRIMMINGS FOR EACH OF TWO SAMPLES
C

C USAGE
C CALL TCMNSC(SAMPL1,SAMPL2,N,M,SCALE1,SCALE2, ALPHA)
C

C SUBROUTINES/FUNCTIONS CALLED
C TCMEAN , DEVSQ
C

C DESCRIPTION OF PARAMETERS
C SAMPL1 (2) - REAL*6 ARRAY OF LENGTH N (M) CONTAINING
C SAMPLE VALUES FROM POPULATION 1 (2)
C LOCI (2) - ESTIMATE OF LOCATION BASED ON SAMPLE 1 (2)
C SCALE1 (2) - RETURNED VALUE OF THE ESTIMATE OF SCALE
C FROM SAMPLE 1 (2)
C ALPHA - THE AMOUNT OF TRIMMING REQUESTED
C

C

SUBROUTINE TCMNSC (SAMP1 , SAMP2 ,N,M, SCALE1 , SCALE2 , A)
REAL*6 SAMP1 (10) , SAMP2 (10) , LOCI , LOC2 , SCALE1 , SCALE2

,

1 SQDEV1(10),SQDEV2(10),A
INTEGER*3 N,M

C

LOCI - TCMEAN (SAMP1.N, A)
LOC2 - TCMEAN (SAMP2.M, A)

C

CALL DEVSQ( SAMP1 , SAMP2 , N , M , LOCI , LOC2 , SQDEV1 , SQDEV2

)

C

SCALE1 - TCMEAN (SQDEV1.N, A)
SCALE2 - TCMEAN(SQDEV2,M,A)

C

RETURN
END

C

C

C

C FUNTION TMEAN
C

C PURPOSE
C CALCULATES THE ALPHA TRIMMED MEAN FROM A SAMPLE
C

C USAGE
C LOC - TMEAN (SAMP, N, ALPHA)
C
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C DESCRIPTION OF PARAMETERS
C SAMP - REAL*6 ARRAY OF SIZE N CONTAINING THE SAMPLE
C VALUES FROM A POPULATION
C ALPHA - THE PERCENT OF TRIMMING DESIRED
C

C

FUNCTION TMEAN(X,N,A)
REAL*6 X(N) ,A,TSUM,TMEAN,DIV
INTEGER*3 N,I1,I2,ISTART

C

CALL SHELL(X.N)
C

IF ( A .GT. .499999)A-. 499999
DIV - N - 2.0*N*A
I START - N*A
11 - ISTART + 2

12 - N - ISTART - 1

TSUM - 0.0
IF (II .GT. 12) GOTO 110
DO 100 I - 11,12

100 TSUM - TSUM + X(I)
110 TSUM - TSUM + (1.0 + ISTART - N*A ) * ( X(ISTART+1) + X(I2+1) )

TMEAN - TSUM / DIV
C

RETURN
END

C

C

C*************************************************************i4*
C

C SUBROUTINE TMNSCL
C PURPOSE
C CALCULATES AN ESTIMATE OF SCALE BASED ON THE DESIGNATED
C TRIMMED MEAN FOR EACH OF TWO SAMPLES
C

C USAGE
C CALL TMNSCL(SAMPL1,SAMPL2,N,M,SCALE1,SCALE2, ALPHA)
C

C SUBROUTINES/FUNCTIONS CALLED
C TMEAN, DEVSQ
C

C DESCRIPTION OF PARAMETERS
C SAMPL1 (2) - REAL*6 ARRAY OF LENGTH N (M) CONTAINING
C SAMPLE VALUES FROM POPULATION 1 (2)
C LOCI (2) - ESTIMATE OF LOCATION BASED ON SAMPLE 1 (2)
C SCALE1 (2) - RETURNED VALUE OF THE ESTIMATE OF SCALE
C FROM SAMPLE 1 (2)

- THE AMOUNT OF TRIMMING REQUESTEDC ALPHA
C

C
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SUBROUTINE TMNSCL(SAMP1 , SAMP2 ,N,M, SCALE1 , SCALE2 , A)
REAL*6 SAMPK 10) , SAMP2 ( 10) , LOCI , LOC2 , SCALE1 , SCALE2

,

1 SQDEV1(10),SQDEV2(10),A
INTEGER*3 N,M

LOCI - TMEAN(SAMP1,N,A)
LOC2 - TMEAN(SAMP2,M,A)

CALL DEVSQ( SAMP1 , SAMP2 , N , M , LOCI , LOC2 , SQDEV1 , SQDEV2

)

SCALE1 - TMEAN(SQDEV1,N,A)
SCALE2 - TMEAN(SQDEV2,M,A)

C

RETURN
END

C

C

C-i*******************************************************^^.^^.-;.
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Appendix 2

Listing of Simulation Results

Power Tables and Figures

page
Tables
Uniform Distribution 52
Prescott( .25) Distribution 53
Normal Distribution 54
Prescott( .75) Distribution 55
Double Exponential Distribution 56
10% Mixed Normal Distribution 57
Cauchy Distribution 58

Figures
Uniform Distribution 59
Prescott( . 25) Distribution 60
Normal Distribution 61
Prescott( .75) Distribution 62
Double Exponential Distribution 63
10% Mixed Normal Distribution 64
Cauchy Distribution 65

Legend

Test Statistic Plot Character

m (0.0) diamond

m (0.5) square
m (0.5) triangle
adaptive star
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TABLE A-l

Simulation Results
.05 Rejection Rates

Uniform Distribution

m (0.0)

m
c
(0.2)

m
C
(0.3)

m°(0.5)

m (0.2)

n (0.3)

m (0.5)

adaptive 0.048 0.494 0.816 0.974

»-l 0-1.5 6-1 9-3

0.048 0.501 0.824 0.973

0.048 0.494 0.814 0.973

0.055 0.489 0.799 0.969

0.047 0.436 0.756 0.963

0.050 0.295 0.538 0.818

0.045 0.243 0.452 0.736

0.046 0.205 0.395 0.630
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TABLE A-

2

Simulation Results
.05 Rejection Rates

Prescott(.25) Distribution

9-1 0-2 9-3 9-4

m
c
(0.0) 0.052 0.663 0.933 0.981

m
c
(0.2) 0.054 0.658 0.933 0.981

m
c
(0.3) 0.052 0.674 0.936 0.980

m
c
(0.5) 0.050 0.682 0.931 0.975

m (0.2) 0.051 0.494 0.817 0.911

m (0.3) 0.045 0.436 0.731 0.867

m (0.5) 0.047 0.359 0.631 0.780

adaptive 0.056 0.669 0.936 0.979
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TABLE A-

3

Simulation Results
.05 Rejection Rates

Normal Distribution

9-1 0-2 0-3 0-4

m
C
(0.0) 0.045 0.533 0.833 0.940

m°(0.2) 0.047 0.530 0.829 0.941

m°(0.3) 0.042 0.544 0.854 0.956

m
c
(0.5) 0.047 0.569 0.871 0.958

m (0.2) 0.049 0.463 0.758 0.889

m (0.3) 0.052 0.410 0.699 0.835

m (0.5) 0.045 0.351 0.602 0.764

adaptive 0.051 0.546 0.857 0.955
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TABLE A-

4

Simulation Results
.05 Rejection Rates

Prescott(.75) Distribution

0-1 6-2 0-3 0-4

» (0-0) 0.052 0.399 0.697 0.877

m
C
(0.2) 0.049 0.397 0.696 0.869

m (0.3) 0.049 0.430 0.715 0.895

m (0-5) 0.054 0.450 0.739 0.907

m (0.2) 0.060 0.410 0.658 0.851

m (°- 3 ) 0.056 0.377 0.597 0.806

m (0.5) 0.048 0.327 0.546 0.733

adaptive 0.055 0.444 0.737 0.908
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TABLE A-

5

Simulation Results
.05 Rejection Rates

Double Exponential Distribution

0-1 8-2 0-4 6-6

m
C
(0.0) 0.044 0.326 0.793 0.911

n>°(0.2) 0.045 0.320 0.784 0.914

m
C
(0.3) 0.046 0.342 0.807 0.928

m
C
(0.5) 0.048 0.359 0.826 0.945

m (0.2) 0.057 0.327 0.780 0.924

111 (0.3) 0.054 0.295 0.750 0.900

m (°-5) 0.052 0.271 0.694 0.847

adaptive 0.059 0.365 0.823 0.948
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TABLE A-

6

Simulation Results
.05 Rejection Rates

Mixed Normal Distribution

9-1 6-2 0-4 8-6

m°(0.0) 0.048 0.297 0.555 0.706

m
c
(0.2) 0.047 0.295 0.552 0.716

m (0.3) 0.047 0.302 0.572 0.746

m°(0.5) 0.047 0.320 0.595 0.763

m (0-2) 0.042 0.336 0.778 0.909

m (0-3) 0.046 0.313 0.749 0.881

"> (0.5) 0.056 0.287 0.683 0.836

adaptive 0.055 0.364 0.719 0.861

Note: Population 1 was N(0,1) contaminated with 10% N(0,64).
If, for example, I / 8 -3, then Population 2 was N(0,9)

contaminated with 10% N(0,576).
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TABLE A-

7

Simulation Results
.05 Rejection Rates

Cauchy Distribution

0-1 0-3 0-5 9-8

m°(0.0) 0.052 0.318 0.478 0.618

m
C
(0.2) 0.049 0.315 0.479 0.621

m°(0.3) 0.049 0.333 0.498 0.642

»
C
(0.5) 0.048 0.350 0.520 0.658

m (0.2) 0.038 0.446 0.687 0.846

"> (0-3) 0.039 0.455 0.693 0.849

m (0.5) 0.037 0.417 0.674 0.834

adaptive 0.055 0.447 0.691 0.850
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FIGURE B-l: UNIFORM DISTRIBUTION
.05 REJECTION RATE
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FIGURE B-2: PRESC0TT(.25) DISTRIBUTION
.05 REJECTION RATE
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FIGURE B-3: NORMAL DISTRIBUTION
•OS REJECTION RATE
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FIGURE B-4: PRESC0TT(.75) DISTRIBUTION
•OS REJECTION RATE
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FIGURE B-5: DOUBLE EXPONENTIAL DISTRIBUTION
.OS REJECTION RATE
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FIGURE B-6: MIXED NORMAL DISTRIBUTION
•OS REJECTION RATES
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FIGURE B-7: CAUCHY DISTRIBUTION
•OS REJECTION RATES
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ABSTRACT

When testing for equality of scale in two populations, the

usual F test has been shown to have undesirable properties when the

populations in question are heavy tailed. The test is low in power,

but even worse, the demonstrated power of the F test cannot be

trusted since it fails to retain the .05 level when testing at the

null hypothesis. This report details a study of alternative tests

for this two sample scale problem. Specifically chosen for study

were seven symmetric populations which vary in tailweight. The

power of eight test statistics based on functions of trimmed means

(the average of a specified portion of the sample) are compared via

permutation tests. Of special interest is an adaptive test

procedure, which first estimates the tailweight of the population,

then, based on that estimate, chooses the amount of trimming used in

the test statistic. This procedure is shown to be the most

consistently powerful of the tests studied here.


