/AN ELECTRONIC CALENDAR SYSTEM
INA
DISTRIBUTED UNIX® ENVIRONMENT/
by
DOUGLAS M. CLABOUGH

B. S.. North Carolina State University, Raleigh, 1980

A MASTER’S REPORT

submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

Kansas State University
Manbhattan, Kansas

1986

Approved by:

fokod [Lot

Major Professor

LD!»E AL1202 bLhL3407
Al €

ACKNOWLEDGMENTS

I am indebted to many people and organizations for making this possible.
First, I would like to thank AT&T Technologies for allowing me the time off each
summer to come work on this degree. Second. I would like to thank my major
professor and committee, Rich McBride, Virg Wallentine and Beth Unger. for the time
they took out of their busy schedules to help in the preparation of this paper and

project. Finally, there is my wife Peggy for her help in proofing this manuscript.

This is dedicated to Peggy and Brian for their understanding

during the many hours that I was away working on this degree.

Unix is a trademark of AT&T Bell Laboratories

TABLE OF CONTENTS

Chapter One . .
1.1 Introduction

Chapter Two
2.0 Review of the therat.ure

ChapterThree ‘
3.1 Project Goals

3.2 Design Specifications and melementatmn Conmderanons 3

3.2.1 User requirements . .
32.1.1 Toscheduleaconfuence 2
3.2.1.2 To erase old calendar entries

3.2.1.3 To update a calendaron a relm;t.e mac]:une

3.2.2 Design Considerations .
3.3 Order in which work was done

Chapter Four . . .
40Enhancemmtsmdetotheongmalegram .

Chapter Five . .
5.1 PotenualeeﬁtsoftheSystem ‘
5.2 Possible Extensions to the System .

5.3 Recommended Features for Electronic balendars

References .
Appendix 1: Instalallation and Maintenaince

Appendix 2: New and Changed Modules
1.0 Changed Modules . . .
1.1 Header Declarations

1.2 main() . .

1.3 insert check()

1.4 do__insert()

1.5 delete() . .

1.6 find_ecal_dir()

1.7 get_schedule().

1.8 update_disk() .
2.0 New Modules .

2.1 compress() .

2.2 set_traps().

2.3 hndl_sigsQ)

240y0) .

2.5 clean up()

2.6 rd_dsk() .

2.7 wr_dsk(Q) .

28ex(0 .

2.9 confer()

W W

[y
[=JVo 0 BEN I e W« e W= W -

12
12

14
14
14
15

20
22

23
23
23
25
26
27
27
27
28
28
29
29
29
30
30
30
31
31
31
32

TABLE OF CONTENTS

210 wup_date)
2.11 update() .

2.12 open_ecal()

2.13 what_sys()

2.14 touch_lcks()

215 edit()

216 reply().

Appendix 3: "C" Language Source Code .
main(arge, argv) . & .
get_today() . .

time_map(num.a_or _p)

time_string(i) . .
d@_hudmg(wmkday.mounth)
dlsp_schedulc(schedule.length)
which_weekd) . . .

get_successorQ) .

insert(schedule,length parms)

insert check(schedule.length.num.numz Jlocn)
get__time(count.string.first.second) i
get_new_day(parms) . .

do msert(schedule.length.locn.numl.num.strmg)
delete(schedule,length,parms) . :
find_ecal_dirQ) . .
get_schedule(fpl.schedule.length).

update__ d:sk(fp1.schedu1e.1ength)

compress() . .
what_sys()

set_traps(). .

hndl s:gs(sng_num)

touch_lcksQ) .

byQ . .

clean_up(). .

rd__dsk(fpl.schl posxt)

wr_dsk(fpl.schl) .

ex(tmp)

confex()
up_date)
update() i s owm ow w
open_enl(l) S
edit(parms)
reply(parms)

Abstract

32
34
34
36
36
36
37

38
41
44
44
45
45
46
48
49
50
51
53
55
59
61
63
64
67
69
7
71
72

74
75
76
76
77
78
84
86
89
91
93

Chapter One

1.1 Introduction

Current efforts in the area of office automation are concentrating on tools;
each of which automates a specific office function. An electronic calendar is one
particular tool of this type which aids in the scheduling of personal time, meetings, and

common resources. [Zisman]

This paper deals with the extensions to an existing electronic calendar. [James] The new
features provide a conference scheduling capability and a facility for updating calendars
on remote machines. These features are important in the modern office environment
because they save time in arranging meeting between several people and allows users to
maintain a copy of their calendar on any UNIX® machine that they might have an
account on. This calendar was originally implemented in the Pascal language and later
translated into the "C" programming Language under the UNIX® operating system. In
the process of translation. the program lost it's original capability to schedule
conferences and it has never had the capability to maintain copies on more than one
machine.

The scope of this project was limited to the modification of this program to
implement the scheduling capability and the remote system update capability while
maintaining calendar integrity and user privacy.

The rest of the report is broken into four chapters and several appendices.
The remaining chapters are organized in the following manner.

The second chapter presents a review of the literature dealing with electronic

calendars and scheduling; it also provides definitions and vocabulary in the area of office

B

automation. Chapter three gives a detailed look at the work done on this project, The
next chapter gives describes the enhancements made to the original calendar program.
The last chapter gives a description of the results, some applications, and some possible
future extensions to the work in the light of a survey of calendar users.

There are three appendices at the end of the report. Appendix 1 contains a
discussion of the items that the UNIX® system administrator needs to be aware of. The
second appendix contains a detailed discussion of how each module of the program

works. The last appendix is the source code listing of the program.

Chapter Two

2.0 Review of the Literature

This paper deals with the area of networking and office automation.
Specifically, it deals with the scheduling of meetings, appointments and the reservation
of common office resources using an electronic calendar system in a distributed.
multiuser office environment.

Zisman says that the move into office automation is not a revolution, but
rather an evolution. He goes on to break this evolution into four stages: initiation,
expansion, formalization, and maturity. In the second stage, one of the objectives is the
replacement of "paper flows with electronic information flows”. To achieve this
replacement, the development emphasis will be on the development of tocls to automate
certain office functions. These tools include such things as form filing systems,
document preparation, electronic mail, and electronic calendars. [Zisman]

What is meant by "distributed systems™? Bochmann defines a distributed
system as consisting of “several interacting components” with the degree of coupling
between the systems varying from weak to strong. [Bochmann] For the purposes of this
paper, a distributed system is two or more computers interconnected using the UNIX®
uucp protocol or a compatible protocol. With this definition, the computers are the
components, the uucp connections is the coupling mechanism, and the interaction
between the systems consists of uucp file transfers and remote command execution by
the users on the systems. [Nowitz]

In distributed systems, one of the problems that must be addressed is how to
share data among users. There are three types of problems associated in this
environment. They are lost updates. dirty reads. and unrepeatable reads. Dirty reads

are reads that collide with a another user’s write, producing invalid data. Unrepeatable

=,

reads are reads that occur after another user has modified data and not written it yet.
A second read of the same data record will produce different data. Locking of files,
records, or devices such that only one user can read/write at a time eliminates these
problems. [Bayer] In this way. race conditions are eliminated and data integrity is

The case that Jeffrey Holden puts forth for electronic mail is even more
applicable to the scheduling of meetings. [Holden] He says that in a study of calls placed
by him, only 26 percent of them went through the first time. In other words, to talk
with one person. Holden had to attempt to call that person, on average, four times.
This is not very surprising in light of the study that Barcomb mentions that shows that
managers and professionals spend 40 to 70 percent of their time in meetings. [Barcomb]
Holden goes on to show how an electronic mail system saves time and trouble. In
scheduling meetings, many more people must be contacted. usually more than once. If
an electronic calendar system were available that could check the calendars of those
who need to attend, then the calendar program could very quickly tell the person
scheduling the meeting the common blocks of time that everyone had open in the
calendar.

In his book on office automation. David Barcomb describes several
characteristics of an electronic calendar/reminder system. These characteristics include
the capability to keep track of an individual's schedule, the capability to schedule both
meetings and the use of common resources, and an automatic reminder service
(ticklers). [Barcomd] Also, while the calendar system should be implemented to be
easily and conveniently used, it should not sacrifice the privacy of personal calendar
information. [Greif]

In David James' original implementation of a calendar system, many of these

concepts were incorporated. His calendar, implemented in Pascal, was menu driven and

=5

allowed for the insertion, deletion and viewing of entries in a person’s calendar. Also
the automatic scheduling of meetings used the calendar files of the proposed participants

to determine an available block of time. [James]

Chapter Three

31 Project Goals

At present, KSU has an electronic calendar system that keeps track of
appointments on an individual basis. This is the same system that was implemented by
David James discussed above. This program was recoded in "C" language sometime after
David's report and in the process, the capability to schedule meetings was lost. The
objective of this project was the modification of this system so that a person could once
again tentatively schedule a meeting or appointment with multiple individuals. It
would accomplish this by presenting the person scheduling the meeting with a sequence
of times for which all of the principals involved in the meeting are free. When a
meeting time is picked, each person involved in the meeting would have his calendar
marked with a tentative appointment. Also, electronic mail would be sent notifying
him that he must confirm or reject that appointment which has been scheduled. The
system was also to be extended to a distributed environment, such that a person with
calendars on several machines, could automatically update all the calendars with the

same information.

32 Design Specifications and Implementation Considerations

3.2.1 User requirements

The completed system had the following user requirements and specifications
for the new commands:
3.2.1.1 To schedule a conference

1. The user will be prompted for the user identifiers of the proposed

meeting participants.

-7-

2. The program will then use these identifiers to access the system
password file to find the home directory of the identifier. If an identifier is not found in
the password file, a message is issued to the user and that identifier is dropped from the
list to be scheduled.

3. For each valid login identifier, the home directory is found from the
passwd file entry and from this, the path to the calendar directory is created. This
directory is then checked to see if a "LOCK" file exists (This "LOCK" file is a special file
generated by the program to tell other ecal processes that this particular file is busy). If
S0, a message stating that this person’s calendar is busy is issued and the user is
requested to try again later. If no "LOCK" file is found, one is created and an entry is
made into a list of active calendar files.

4, Once all calendars are acquired, the user is asked to specify a range of
times in which to try and schedule the proposed meeting. This range of times is then
searched for times in which every participant is free and common block of free time is
then displayed. Based on this information, the user is asked to specify a specific
proposed meeting time. This chosen time is then rechecked for conflicts and, if none are
found, the meeting entry is made in each calendar. If a conflict is found. the user is
asked to try again.

Finally, mail is sent to all proposed participants, requesting confirmation of
attendance. Each individual will be able to do this using the confirm command. This
command will allow the user to delete or confirm the tentative meeting in their
calendar and will automatically send mail to the scheduler, informing them of the
action taken.
3.2.1.2 To erase old calendar entries

The program scans all entries in the user’s calendar file. It then marks as

inactive all entries that are prior to today's date and moves all other entries to the front

-§-

of the file. When it is done, all active entries are at the front of the file in the same
order as they were originally and all inactive entries are at the end of the file. The
inactive entries at the end of the file will be used as needed to add new entries. In this
way. a lot of inactive entries will not accumulate at the front of the file and the overall
file size will tend to be smaller than it otherwise might. The routine does not prompt
the user for any input.
3.2.1.3 To update a calendar on a remote machine

The program first calls the erase routine (see above) to ensure that no out of
date data is transmitted. The user is then prompted for the name of the machine on
which the remote calendar exists and the login identifier of the owner of the calendar on
that machine. The calendar file is then scanned and the active data in it is converted to
ASCII representation and then sent to the remote machine via the uux(1) command of
UNIX®. The owner of the file on the remote machine is also sent mail informing him
that someone is about to update is calendar and giving him the name (login identifier)
and system from which the update request is sent. uux(1) will send the requester
return mail concerning the success or failure of the ecal update on the remote machine.

When the update request arrives on the remote machine, the data file is
"catted" and piped to ecal’s standard input. The update routine then reads the first two
lines of the file and gets the system name and login identifier from the requesting
system and the login identifier of the owner of the file to be updated. The system name
and login iaentiﬁer that made the request is put in a temporary file. The rest of the file
is then read and the information is converted to the proper formats and a regular
calendar insertion is done. Any insertion conflicts are added to the temporary file
above. At the end of the update, the temporary file is mailed to the owner of the file
being updated. This way. the owner is notified of the update and of any conflicts found

so that they can manually resolve these conflicts at a later date.

3.2.2 Design Considerations

The completed system also had the following general requirements and
specifications

Since the new system had the potential for several users to try to access the
same calendar files, a method was required to prevent simultaneous writes to the same
file. This was done through the use of "LOCK" files.

Care must be taken that any "LOCK" files be removed in the event that the
program is abnormally terminated. This meant that all signals (see signal(2) in section
2 of the UNIX User's Manual) had be caught to avoid having a termination that leaves a
"LOCK" file laying around. Unfortunately, a signal "9" cannot be caught, so it is still
possible for a "LOCK" file to be left around. This led to the need for the ignoring of any
"LOCK" files older than a certain threshold of time.

The use of "LOCK" files meant that the "LOCK" file check/creation must now
be done to a user’s own calendar before they can be allowed access to it. The "LOCK"
files also required that all of a person’s calendar information to be kept in a single data
file, instead of the many (unlimited number?) originally used [James] and an equal
number of "LOCK" files.

The program had to ensure that the owner had some privacy of the data in
their calendar file while at the same time allowing other users use of the necessary
information with which to schedule meetings.

The required capability to update calendars on a remote machine combined
with the requirement that the program must be able to open and write to any user’s
calendar gave rise to the possibility of the unauthorized modification of a calendar file
by someone other than the user. In order for the program to open any user’s calendar
file for the scheduling conferences, it became necessary to run the program with root

ownership and the SUID bit set. This raised the requirement that the user not be

-10-

allowed to escape the program or execute shell commands with the effective UID of
root. [Ritchie, Grampp]

The program also had to be easily portable to different UNIX® machines.
Along this line, all system and library calls used were kept to a very common set of
routines that exist on most all machines. The successfulness of this attempt is seen by
the fact that the source code, at the time of this writing, has been compiled and run on
an AT&T 3B2 , AT&T 3B20, and a VAX 11/780 running 5.0 UNIX®, a VAX 11/780
running 4.2 UNIX® and a VAX 11/780 running 4.2 BSD UNIX®. The BSD version has
just one (1) extra line to it than did the version that ran on the other machines.

[Johnson, Ritchie]

33 Order in which work was done
As mentioned before, the program that I started with was a
translation of David’s original Pascal into "C" language. The work started with
converting the format of the source code into a format that was familiar and then
studying the code very carefully to see what was done and why. When it was
understood how the program worked, work then proceeded to convert the program to
work using a single data file per user and made these changes work before continuing.
After the first modifications were working, the routines for the scheduling of
conferences were written. This took several iterations of coding and debugging. In the
end, these routines included the locking routine, signal trapping and handling routines,
and the globalization of several variables and data structures since they needed to be
known by the signal handling routine and could not be passed to it. A cleanup routine
was also implemented that the calendar system was forced to exit through to ensure

that all of the lock files were removed.

-11-

The last item implemented was the remote machine update. This feature
required two routines. The first routine scanned the calendar data file on the local
machine, creating a file in a specific, known format. The calendar program on the
remote end uses this file in conjunction with the second routine to update the calendar
data on the remote machine. Conflicts found during the update were stored and mailed
to the owner of the calendar on the remote machine to help ensure data privacy and

security.

-12-

Chapter Four

4.0 Enhancements made to the original Program

Besides the previously described additions made to the calendar program just
described, the following enhancements were also made to the program in the process.

All of the data is now stored in a single binary data file, owned by "root” and
having a mode of 400. This ensures that a user must employ the calendar program (or
know the root password) in order to see the contents of the calendar’s data. Therefore,
the security and privacy of the data is greatly enhanced. This single data file also
greatly reduces the number of i-nodes (the i-node is the data structure that UNIX® uses
to keep track of files in the file system) used by the system while not using any more of
the actual disk space (128 bytes per record).

The use of binary data directly through the buffered binary read/write
routines of the standard /O package also serves to increase the I/O throughput of the
system. This is because the program does not have to run "fprintf” every time a write is
done or "fgets” and "sscanf” whenever a read is done. Also, since only one file per user
needs to be opened, it is now possible to leave that one file open all the time. This saves
opening and closing a file every time some form of 1O is done. Also, the six month
look ahead limit of the original calendar has been extended to one year.

The disk update routine was rewritten such that it now only writes to disk
those entries that have been changed since a day’s calendar was read into memory. This
cuts the disk write activity to a minimum, since in most cases only one or two entries

need to be written in any given session.

-13-

While undocumented in the menu selection, a shell escape is available now.
This was very helpful in debugging the code and has been left in. It is implemented in
such a way that any routines executed by it lose the root effective UID which the rest
of the program runs under.

An edit command was also added to the system. This allows a user to edit a
description for an already existing appointment. It is implemented using the same
routine as the shell escape in the previous paragraph and allows the user the choice of

editors to use.

il

Chapter Five

5.1 Potential Benefits of the System

This project presents one way of implementing a calendar system in a
multiuser and/or a distributed environment while still maintaining some data security
and privacy. It‘ should be very useful to any group of people having a need to schedule
meetings among themselves and to those who find it necessary to maintain a calendar on

more than one computer system.

3.2 Possible Extensions to the System

This is a first attempt at moving this electronic calendar into a distributed
environment. Originally, the calendar was going to allow the scheduling of meetings
with principals with logins on several machines. However, the uucp network proved to
be to slow and unreliable for such a function. When a network is available that will
allow access to files on remote machines in the same manner as they are available on the
local machine (open., read, write system calls work), then the scheduling through
remote machines can be added with very little effort.

A third improvement to be made to the program is in the area of the LOCK
files. The method used has a race condition inherent in it. For instance, assume that
two processes (A and B) want the same file. Process A checks for the existence of the
LOCK file and finds it non existent. Before it can create the LOCK file, it is swapped
out and process B is swapped in. Process B now checks and finds the file unlocked and
proceeds to lock it and go on with its business. Later, if A is swapped back in before B
releases the LOCK, then A, having already found the LOCK file nonexistent. will also
create 2 LOCK file and each of the processes will think that it has exclusive access to the

file.

A8

The solution to this will require a methed of checking for the lock and
locking within a single system call. This type of solution would involve modifications
to the UNIX® kernel, either in the writing of a device driver that implements a pseudo
device to perform this function or the actual addition of a system call to the operating
system. Either of these alternatives proved impractical to implement due to the lack of

an available system on which to experiment with kernel modifications.

5.3 Recommended Features for Electronic Calendars

C.M. Kincaid [Kincaid et al] recently published the results of a survey
involving users of electronic calendar systems. This article included a summary of
recommendations made by these users as to what features an electronic calendar should
have. These recommendations and a comparison of how this calendar system, as
currently implemented, meets these recommendations follows.

1. "There should be a daily format in which all events are recorded. The
format should be as unstructured as possible. requiring only that optional begin/end
times be in some fixed location. There should be no restriction on the amount of text
per entry." The present calendar implementation has such a daily format. ie.,
begin/end times and a description. However, the format is structured and the
begin/end times are required. There is also a 100 character limit on the description.
This limit could be changed relatively easily though.

2. "The calendar should allow certain keywords within the daily entry to be
marked as "event descriptors’ which will appear in a weekly or monthly condensed
format." There is no provision made for keywords or condensed format or summarized

displays in the current implementation.

-16-

3. "A weekly calendar format should summarize the daily events and then
present them on a chart showing the event begin/end times." Again, there is no
provision for such a feature in the current implementation.

4. "Events should have an optional alarm/reminder time at which the event
will appear on the screen.” An alarm/reminder function is not implemented either.
Such an implementation could be done using a2 daemon, running in the background. that
keep a record of who has requested alarm reminders and sending them at the
appropriate time.

5. "The calendar should allow the user to access the next/previous day, week.
or month easily. It should also allow a specific date to be accessed.” This is implemented
in the current calendar system.

6. "The user should be able to switch between daily and weekly or monthly
formats while maintaining the current date across all display formats." There are no
current weékly or monthly formats.

7. "When an electronic calendar is part of an integrated electronic office
system, the calendar should be easily accessible from anywhere in the system.” At the
moment, this system is not part of an integrated office system.

8. "Events should be allowed to span several days and to be inserted
automatically in each day’s calendar.” This is not currently implemented in such a way
that it can be done automatically. Such an implementation is possible but would
require modifications to the routine that checks for schedule conflicts and to the routine
that requests the begin/end times of events. However, by separately scheduling the
event for each day. the user can accomplish this function manually.

9. "The range of the calendar should be unlimited. Events should be
scheduled as far in advance as desired. Old entries should be kept as long as the user

feels it necessary. An archiving facility should be available.”" The unlimited scheduling

-17-

is implemented. However, past entries are not currently accessible. An archiving
facility does not currently exist, but could be added relatively easily.

10. "There should be included a monthly format condensed from the daily
calendar and describing a day’s events without specifying times." As mentioned above,
there are no condensed or summarized formats in the current implementation.

11. "The user should be allowed to block out or reserve the same time period
over a range of days, weeks, or months." While this is not specifically implemented, it
is possible by using the "day of week" mode for each day and leaving it there for as long
as needed.

12. "The system should notify a user, when logging in, of existing calendar
events for the day." While not implemented, it could be easily added in the form of a
routine that prints the current day's calendar entries and exits. The calendar system
would then invoke this routine when it sees some option in the command line. The user
would then just have to include a call to the calendar with this new option in their
.profile”.

13. "A scheduling facility should be available." The functions recommended
for this scheduler are the following:

a. "Users should be allowed to specify who is to attend (not
necessarily themselves)." The current implementation allows the user to
specify who is to attend, the only requirement is that all attendees must
have an account on the computer system doing the scheduling. However, the
calendar does require that the user requesting the meeting be included in the
scheduling computations.

b. "The specification of a meeting’s time range should be allowed."

This is implemented on the current system.

-18-

c. "All possible meeting times should be presented, and the user
permitted to select the most appropriate time." This is also implemented in
the current system.

d. "A warning should be given when conflicts arise, but conflicts
should not prevent a meeting request from being sent.” The current
implementation will not schedule a meeting if there are conflicts.

e. "Each participant should be notified of the tentative meeting,
and the system should request a response from each. The participants,
however, should be allowed the option of postponing their reply to a later
time " Currently. participants are notified by mail of the tentative meeting
and are asked to respond by return mail. Thus, the participant can postpone
his reply by saving the mail message and coming back to it at a later time.

f. "The person setting up the meeting should be allowed to
automatically cancel or confirm the meeting, with a notification sent to all
participants.”" This feature is not currently implemented directly. The user
can however include in his description of the meeting that attendance is
mandatory.

g. "It should be possible to book resources along with meetings."
This is implemented by giving each schedulable resource a "login" on the
computer system and thus, its own calendar file.

In addition to the preceding features, I would like to add to the above list
that a calendar should be able schedule meetings in a distributed environment. While
this calendar does not fully accomplish this last goal, the program has been so
structured that it should be relatively easy to add this feature when a network is

available that meets the requirements of such a feature.

-19-

It should be stressed that this survey deals with features that seem desirable
to users. There is no calendar system that currently implements all or even most of
these features. Thus, this survey serves as a list of possible extensions not only to this
calendar system, but to any calendar system. The calendar system described in this
paper meets as many or more of these requirements as any other calendar system,
making it an excellent calendar for both single machine environments and distributed

environments.

Bibliography

[1] Barcomb, David, "Electronic Calendars”, Office Automation: A Survey
of Tools and Technology. Digital Press 1981, Pp 115-123.

(2] Bayer. R.. Graham, R.M., and Seegmuller, G., "Operating Systems:
An Advanced Course", Lecture Notes in Computer Science,
Vol. 60, Springer-Verlag, Berlin, 1978, Pp. 430-438.

[3] Bochmann, Gregor, "Architecture of Distributed Computer Systems”,
Lecture Notes in Computer Science, Vol. 77, Springer-Verlag,
Berlin, 1979, Pp. 1-26.

[4] Grampp, F.T. and Morris, R.H., "UNIX Operating System Security”",
AT&T Bell Laboratories Technical Journal, Oct. 1984 Vol. 63,
No. 8. Part 2, Pp. 1649-1671.

[5] Greif, Irene, "Computer Support for Cooperative Office Activities”
MIT-LCS, April 1982.

[6] Holden, Jeffrey B.. "Solving Communication Problems - The Case for
Electronic Mail", JEEE 1980 COMPCON FALL. 1980, Pp65-
68.

[7] James, D., A UNIX Based Electronic Calendar System A Masters
Report from Kansas State University, 1982, Pp 1-42.

[8] Johnson., S.C. and Ritchie, D.M., "Portability of "C" Programs and the
UNIX Operating System", The Bell System Technical Journal,
July-August, 1978, Vol 57, No 6, Part 2, Pp 2021-2048.

[9] Kincaid, Christine M., Dupont, Pierre B., and Kaye, A. Roger,
"Electronic Calendars in the Office: An Assessment of User
Needs and Current Technology”. ACM Transactions on Office
Information Systems, Vol. 3, No. 1, Jan. 1985, Pp. 89-102

[10] Nowitz, D.A., "UUCP Implementation Description”, UNIX
Programmers Manual, Vol 2, AT&T Bell Laboratories.

-21-

[11] Ritchie. D.M., "On the Security of UNIX", UNIX Programmers
Manual. Vol 2, AT&T Bell Laboratories.

[12] Zisman, Michael D., "Office Automation: Revolution or Evolution?",
Sloan Management Review, Spring 1978, Pp. 1-16.

22

APPENDIX 1

This will be a discussion of installation and administration requirements for the
program.

The program must be installed in /usr/bin or some other location that is
included in the search path of both general users and of incoming wx commands.

When compiled and installed, it must have the name ecal and be owned by
root or some other login identifier with a numeric user ID of zero (that of the super
user). It should have a mode of 4755 (set effective UID on execution).

The /usr/lib/wucp/L.cmds file or its equivalent must allow execution of the
programs caf and ecal to allow update of calendars on remote machines. This is the file

that tells uucp which programs a remote machine may execute on the local machine.

R

APPENDIX 2

DETAILED DESCRIPTIONS OF NEW AND CHANGED MODULES

1.0 Changed Modules

Reading the following along with the source code will make it much easier to
understand what is happening in the source code. Much of the comments from the
source code are included here but the descriptions here go into much greater detail than

the source code comments do.

1.1 Header Declarations

The defined variables, global variables, and data structures of interest that
are defined at the beginning of the source code are described here.

BSD: This is a conditional compile flag. It should be defined as "1" if the
program is being compiled for a 4.X BSD system. It should be undefined for AT&T
system 3, 4.0 or 5.0 Unix systems.

DESC_LENGTH: This defines the maximum length of an appointment
description.

MAX_APP_NUM: This is the maximum number of appointments a user
is allowed to have for any one day. It is essentially limited by the amount of memory a
user process is allowed to have.

HOURS: This defines how long a "LCK" file is valid. A running
program will update it'’s LCK files every "HOURS / 2" time period. Any LCK file older

than HOURS old is assumed to have come from a program that is no longer running.

-24-

MAX_PARTIC: This is the maximum number of participants in a
conference scheduling attempt. It is limited by number of file descriptors the particular

system allows any one process to have open at any given time. In general, this is:

20: on most systems, this is the maximum number of file
descriptors a process is allowed to have open at one
time.

-3: stdin, stdout, and stderr uses 3 of these descriptors.

-2: The program uses 2 other descriptors for general
purposes.

15: Thus, 15 are left to be associated with the ecal data
files of participants.

schl: This is the data structure for the modified program. The 4 extra
characters in the information field and the extra variable ("a") provides an even 128
bytes (on 32 bit machines) in the data structure that is properly aligned on word
boundaries. It consists of short integers that store the: encoded beginning time, encoded
ending time, month number, day of week number, day of month number, year number,
and three short integer flags, (one used to indicate if the record is for a specific date, one
usedt.oin:_iicateifthereeordhasbeenmodiﬁedandnotyetwrittentodisk.andthe
third is used to indicate active or non-deleted data). The next two variables are regular
integers. The first one stores the record number where the data record is found on the
disk. The second one is used by the conference scheduling routines to store the user ID
number of the user requesting a tentative conference The last variable in the data
structure is a character string of 104 characters in length. The 4 characters over the
100 defined to MAX__APP_NUM is used as filler to bring the size of the structure to
128 bytes. This ensures that the data records on disk will not cross block (either 512 or

1024 byte) boundaries.

-25-

partc: This is an array of schedules used to keep track of requested
participants in a conference scheduling attempt. The zero index into the array always

accesses the current user’s schedule.

12 mainQ

The routine "setjmp(env1)” is called to set the longjmp return point before
the traps set. This way it is known where to return to before the traps are set. This
point is moved forward by latter calls to "setjmp()" as things are done that either don't
need to be repeated or would cause problems if repeated. Then "set_traps()" is called.
This ensures that any "LOCK" files the program creates can be removed before it
terminates. The only exception to this is a termination caused by signal 9 (the kill
signal), which cannot be caught. However, since this routine runs with an effective user
identifier of "0", the only identifier that can send us that signal is root. Thus, it very
unlikely that the program will receive this signal.

Next, the routines are run to set the file creation mask, set the alarm clock
(to update LCK files), find out the system name, and the current date. Then, the
arguments from the command line, if any, are processed. If an argument exists, it is
checked. If it is found to be the string "update”, then the routines update() and by() are
called in order. Any other argument is ignored.

If no valid argument is found, then certain flags are initialized and
find_ecal_dir() is called. If find_ecal_dir() returns, then a valid file pointer exists to
the user’s data file and it is locked to prevent others from writing to it. The jump point
is now moved forward. At this point, old data is compressed out of the data file and
deleted. Finally, the day's schedule is retrieved and the program enters the Command

Interpreter Loop.

=26-

In the Command Interpreter Loop, the jump point is set to the top of the
loop. This ensures that if a signal is caught from which execution is allowed to
continue, the program will return to the top of the loop. Also, if a routine called from
within the loop changes the jump point, it is reset to the top of the loop where it
belongs. The heading and schedule are next displayed, followed by the command menu
and the user is prompted to input a command. The valid commands are:
set up a conference
"d" delete an entry for today
e: edit an entry for the current day
insert an entry for current day
n: get a new current day
r: reply to a requested (tentative) schedule
s: get the next current day
u: update a calendar on a remote machine
X: exit the electronic calendar
shell escape

All of these commands, except for the shell escape character, are displayed in
the menu. The shell escape, from the users point of view, works the same as the "vi"

editor shell escape works.

1.3 insert_checkO

This routine was part of the original program. It was changed so that it now
returns the value of the variable "ok” instead putting the value in the location pointed
to by a parameter passed to it when it was called. The error messages were moved to

the calling routines. In this way, new routines could use this routine much easier.

-27-

1.4 do_insertO

This was also part of the original program. The actual insertion of a
schedule entry is performed on array of schedules. Changes were made to reflect the
new data structure used. It now works as follows:

First: From the end of the list to position "locn”, all entries are moved down
one. In this way, the list is kept time ordered (as long as locn was determined by
"insert__check()")

Then the new information is put in the now empty slot. For general
schedules, the program forgets the month, day of month and year numbers in order to

prevent possible later confusion.

1.5 deleteO

This was part of the original program. The actual deletion of a schedule
entry is performed on an array of schedules. Changes were made to reflect the new
data structure used. It now works by checking the length of schedule. If the schedule
length is zero, the routine has nothing to delete. Otherwise, the user is prompted for the
time of the entry to delete. If the entry exists, it is marked inactive, written to disk,
and the entries below it are moved up one in the array. Otherwise, an error message is

issued and the routine returns.

1.6 find_ecal_dirQ

This was part of the original program. It has been extensively rewritten.
Changes were made to reflect the new data structure used. It now works by
attempting to move to the "ecal’ directory under the user’s home directory. The

program creates the ecal directory under SHOME if it needs to.

1

The real user identifier is saved first. This is used in the forked shell in "ex()"
to set the effective and real user identifier of the user before exec of command. (since
ecal runs with effective user identifier of root, for security). The name field of the
participant’s data structure is then populated with the login identifier of the user
acquired ﬁ;om the password file. Then, open_ecal() is called. If successful, when the
routine returns, our data file has been properly opened and locked, and the rest of the
participant data structure for us has been populated. If open_ecal() fails, the only

thing it can do is exit since is not a valid file pointer to use.

1.7 get_scheduleQ

This was part of the original program. It has been rewritten to reflect the
new data structure that contains the schedule and for binary I/O on the disk. It now
reads the entire binary data file and keeps in the list what is needed for the active
general or specific day schedule. If the program is reading for a specific day, both data
for that specific date and for the general day of the week for that date is kept.
Otherwise, only data for the general day of the week is kept. Once all the data needed
is in memory, it is sorted by time. This saves having to do the sort every time this

schedule is displayed.

1.8 update_ disk(Q

This was part of the original program and also has been rewritten to reflect
the new data structure that contains the schedule and for binary 1/0 on the disk. It
writes a schedule (an array of structures) to disk using the wr__dsk() routine.

It first checks for a valid file pointer. This is very useful for debugging the
program. Next, it goes through the entire array of schedule structures and for each

entry is goes through the following algorithm.

-29-

It checks the modification flag. If false, this entry has not been modified and
does not need to be written. If True, it checks the record number. If the record number
is "-1" then this means that there is no previous entry on disk for this record. The
program will try and find a non active entry starting at the record number of the
previous record or O if this is the first record of the structure. If the end of file is found
before an empty entry is found, the data is appended to the end of the file. In this way,
data on the disk is kept in a semi-sorted order, reducing the sort time in the
get_schedule() routine.

We now are assured of having a data record in need of writing and a known

place to write it on disk, so it is written and then the modification is set flag to false.

2.0 New Modules
All of the remaining routines are new to the program or have been do
completely rewritten so as to be essentially new (ie, the only thing left in common is

the name of the routine).

2.1 compress)

This routine replaced "remove_today()". It searchs the entire data file,
deleting all specific entries with dates earlier than todays. and compress entries so that

all remaining active entries are at the front of the data file.

22 set_trapsQ
This routine sets the signal traps to call the routine "hndl_sigs()" when any

of the possible signals occur.

-30-

2.3 hndl_sigsO

This routine specifies what to do when any of the possible signals are caught.
The only ﬁrgument that can be passed to it is the number of the signal that the
operating system caught.

It first resets the trap for the caught signal. The Interrupt, and Quit signals
call clean_up(). followed by longjmp, generally back to the command loop in main.
The Alarm signal touches all active LOCK files so that they will not time out, letting
another user ignore them. All other signals break out of the case and cause the program
to exit by going through the by() routine.

The Kill signal (#9) cannot be caught, so it is not in the routine. If the
program ever receives a 9, the operating system forces us to die immediately and there
is nothing it can do about cleaning up. It is for this reason that the LOCK routine will

ignore any LOCK file older than the threshold defined in the header information.

24 by0
The program will usually exit through here to ensure everything is cleaned

up (all "LOCK" files removed, etc.).

2.5 clean_up0

Called by any routine wanting to get rid of all "LOCK" files and close all file
pointers, except for those associated with the single data structure the user is using. It
also removes any temporary files the program has created and closes those file

descriptors.

w31

2.6 rd_dskO
Reads one binary data structure from the disk. The data it reads is

determined by the record number passed to it by the calling routine.

2.7 wr_dsk(Q
This routine writes an entry to the disk file with an offset of some number of
(the record number multiplied by the size of the data structure) bytes from the

beginning of the file.

28 ex0

This routine is used by the shell escape function and routines needing to run
shell mmﬁmds (such as mail and uux).

It first forks another process. The child process does the work, and the parent
waits until the child terminates. A second process is used so that the effective user
identifier of the process can be set to the real user identifier of the user for the shell
command without losing the "root” effective user identifier of the parent

The child sets effective and real user identifier to that of the real user
identifier which was determined when the program started. The command is then
execed as the stdin of a shell. If the printf statement is reached, the exec failed, so the
child prints a message and exits WITHOUT GOING THROUGH by(); If this process
exited through by(), the parent would lose all temporary and "LOCK" files.

The parent checks to ensure the fork was successful. If the fork failed. an
error message is issued and the routine returns. Otherwise, the Interrupt and Quit
signals are set to ignore and wait is called until the child terminates. Then, the Interrupt
and Quit signals are reset to the signal handling routine and the parent returns to the

calling process.

San

29 confer(Q

This is the conference scheduling routine. It prompts for a list of login
identifier’s to schedule for the conference. This list, in the form of a line of character
strings separated by white-spaces (blanks or tabs) is scanned and broken down into
login identifier’'s. The password file is then searched for a matching identifier. If not
found, a message to that effect is printed and the next string of characters is processed.
If it is found, the path to the ecal directory is constructed and open_ ecal is called. If
open__ecal fails, confer returns to the calling routine. If open_ecal succeeds, then the
data file is now open and the file is locked. The schedule for this participant is then
populated and the program goes on to process the next string of characters. The
open_ecal() routine also populates the path with the correct path to the ecal "LOCK"
file associated with the ecal data file opened

The routine next prompts for a range of times in which to try and schedule
the meeting. This range of times is broken down into five minute intervals and run
through insert_check() for each active participant. The times that conflict with one or
more of the participants are so marked. A list of available times is then displayed and
the user is asked to input a specific range of times for the meeting. This range is then
double checked for availability, the meeting description is prompted for, and then the
insertions are done. All users scheduled are then sent mail concerning the proposed
meeting. Before returning, the program runs the clean_up() routine to remove all

"LOCK" files, etc.

2.10 up_date0
This routine updates calendars on the remote machine through use of the uux
command. The "ecal” and "cat" commands must exist on the remote machine and be

executable on that machine.

-33-

Mail is sent to the owner of the calendar file on the remote machine
concerning the impending update. A data file is then created to be sent to the remote
machine. This data file is made up as follows: a line containing the machine and login
identifier that initiated the update, a line containing the machine and login identifier to
be updated, and groups of 8 lines with an ASCII representation of the:

the beginning time.

the ending time,

the month number,

the day of week number,

the day of month number,

the year number,

the specific flag for entry.

and the text description for the entry.
There is no need to send the active or modify flags, the record number, or the filler
variable to the remote machine,

‘When the creation of this temporary file is complete, it is closed and a shell
command line is constructed. This line cats the temporary file and pipes it through ecal
on the remote machine with the update argument (i.e., cat tmp | ecal update). This is
accomplished using the unix "uux” command and the uucp networking facilities.

A mail message is now sent to the login on the remote machine informing the
owner that their calendar has been updated by the login on this machine that originated

the request. Finally, the two temporary files are unlinked (removed).

34

2.11 updateQ

This routine uses the ASCII data file passed to it from the remote machine to
update a user’s calendar on this machine. Mail is sent to the owner of the file, notifying
him of the update. Conflicts in the calendar are noted and also mailed to the owner of
the file on the local machine. A success/failure message is sent to the remote requester.

The routine first reads the path name of the remote identifier requesting the
update followed by the machine and identifier for the local machine. A temporary mail
file is then created. and the owner of the local file is told who is updating the file. After
this, the update is done and any entries that cannot be added to the calendar are noted
in this file

In the update, the lines of the file are scanned in groups of 8 to get the next
entry to be added, the current date is set to that of the calendar entry to be added. and
get_schedule is called to get the day's schedule the user is adding to. Then,
insert_ check() is called. If insert check returns an error, lines are added to the mail file
to identify the error, otherwise, do_insert() is called with the location that
insert_check() returned to us, followed by update_ disk().

After the entire data file has been read and the last update has been done, the
mail file is closed and mailed to the owner of the local file. Finally, the mail file is

unlinked and flags indicating their presence are reset.

2.12 open_ecalO

The open_ecal() routine is called with an index into the participant’s data
structure. This index indicates where the information generated here is to be stored. It
is assumed that the structure contains a valid login identifier for the machine and
nothing more. The login name is used to acquire the proper line from the password file.

This ensures that the program actually does have a valid login identifier and gives us

A5

the path to the HOME directory of the login. From this, the program constructs the
path to the ecal directory, the "LOCK" file and the actual ecal data file.

The routine then checks for the existence of the ecal directory. If it does not
exist, it attempts to create it and checks for its existence again. If it still does not exist,
an ERROR condition is returned.

If the index to the structure is 0, then the user is opening his own ecal file
and not someone else’s. Therefore, the program will change his working directory to
the ecal directory. A failure to change directory here will cause an ERROR to be
returned to the calling routine.

Next, the existence of the "LOCK" file is checked for. If it exists. someone
else has beat the user to the file and the routine will return an ERROR indication.
Otherwise, it attempts to create the "LOCK" file. If the routine cannot create it, it will
return an ERROR condition.

The routine now attempts to open the actual data file for updating. If that
fails, it tries to create the file and then reopen it for updating. If any of these fail, then
an ERROR condition is returned. Otherwise, everything is ok and it returns a zero to
the calling routine. The participant structure indicated by the index number now
contains a valid file pointer to the ecal data file and the full path name to the "LOCK"
file.

An error condition is returned to the calling program for any of the
following:

1. The login identifier does not exist on system,

2. The ecal directory does not exist and can’t be created,

3. Failure to change directory successfully to the ecal

directory when index is 0,

4. The "LOCK" file already exists,

A6

5. Cannot create the "LOCK" file,

6. Ecal data file cannot be opened or created,

7. After successful creation, failure to reopen the ecal data file
successfully.

2.13 what_sys0

This routine populates the "sys_name" string with the name of the system on
which this software is running. It was made necessary because of the fact that
Machines running Berkley Unix use the "gethostname(2)" system call while machines

running AT&T Unix system 3 and later versions use the uname(2) system call.

2.14 touch_Icks(O
The "touch_ lcks” routine updates the modification time of the "LCK" files to
keep them current. It then resets the alarm clock so that the program knows when

another update is needed.

2.15 editQ

This routine allows the user to edit the description of an already existing
entry in the calendar. The routine first checks to be sure that there are existing calendar
entries for the current day. If there are no entries, the program prints an error message
and then returns to the main menu. If there are active entries, the the program prompts
for which editor to use. The current choices are "vi" and "ed”. The program next checks
to see if the command line had the time of the appointment to edit included in it. If
not, the user is prompted for the beginning and ending times of the appointment to be
edited. If an appointment with this beginning time is not found, an error message is

printed and the program returns to the main menu. Now that the program knows

37

which entry to edit. it writes that description into a temporary file and then execs the
editor from a forked shell using the "ex()" routine.

When the "ex()" routine returns, the edit session is complete. The program
then reopens the temporary file and reads the new description back into the program
memory. The new description is truncated to 100 characters in length. The modified

appointment record is then written to disk and the temporary file is closed and deleted.

2.16 reply0

The reply() routine allows the user to reply to tentative conference requests.
It starts out by searching the current days schedule to find if there are any tentative
conferences on the current days schedule. If there are none, a message is printed to the
user and the program returns to the main menu. If there are one or more tentative
meetings, the program prompts for the starting and ending time of the meeting that is
to be confirmed. It then checks to ensure that this is actually a tentative meeting. If it
is not, a message is written to the user and the program returns to the main menu. If it
is a tentative meeting, the program attempts to retrieve the password file entry for the
requester. If one is not found, an error message is printed and the program returns to
the main menu. When the password entry is found, the user is prompted as to if he
wants to confirm the tentative appointment or to send regrets. An appropriate mail
message is generated and mailed to the login id that originally requested the meeting. If
confirmation is sent, the calendar entry is changed from a tentative appointment to
normal appointment. If regrets are sent, then the tentative appointment is deleted from

the calendar files. After the mail is sent, all temporary files are closed and deleted.

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/dir.h>
#include "time.h"
#include <pwd.h>
#include <errno.h>
#include <signal.h>
#include <setjmp.h>

jmp__buf envl;
extern errno,

#ifdef V5.0
#include <string.h>
#endif

#include <stdio.h>

/* #define BSD

#define DESC__LENGTH

#define MAX__APP_NUM

#define MAX_ PARTIC

#define HOURS
#define TRUE
#define FALSE
#define ME
#define ERROR

SO m

-38-

APPENDIX 3

"C" LANGUAGE SOURCE CODE

/* define BSD for 4.X BSD systems */
/* comment out for system V UNIX */

100

15 /* maximum number of appointments*/

15 /* maximum number of participants in conf */
/* limited by number of file descriptors*/

/* allowed to be open- generally: */

/*20: max file descrip. fora proc ¥/

/* -3: (stdin, stdout, stderr) %/

/* -2: other discriptors used in prog. */

/* 15: The max number left */

2 /* Number of hours a LCK file is valid */

-39-

FILE *fopen(), *mail;
char *gets();
char *strcat(), *strepy(), *strncpy(), *mktemp();

#ifdef BSD
int sleep(). alarm();
int longjmp(), exit():
#else
#include <sys/utsname.h>

struct utsname utsname;
struct utsname *un = &utsname;

unsigned sleep(), alarm(Q);
void longimp(). exit();

long time();

#endif

struct utimbuf |
time_t actime; /* access time */
time__t modtime; /* meodification time */

struct schl { Vi The data structure for the */
r* modified program */
/* The 4 extra characters in the */
/* info field provide an even */
/% 128 bytes (on 32 bit machines)

/* in the data structure 2/
short begin; /* encoded begining time */
short end; /* encoded ending time */
short month; /¥ month number x/
short wday: /* day of week number */
short mday; /* day of month number */
short year; /* year number */
short specific: /* TRUE if for a specific date *
short active; /* TRUE if contains active data x/
short mod; ’* TRUE if modified and not written to disk*/

short requestor:/* login id of person requesting conference*/
int rec_num; /* record number index for data file */
char info[104]; /* description of entry x/

-40-

struct participant {

FILE *p: /* File pointer to ecal file in use L4
char path[80]; /* Path to directory containing LCK file*/
int length; /* Length of participants schedule */
int active; /* This schedule is being used */
char name{10]; /* login name of participant */

struct schl sch[MAX_APP_NUM]: /* Actual schedule structure */
h

struct participant partc{MAX_PARTIC];
struct tm today:

char *month[12] = {
"January”,

char *weekday{7] = {
"Sunday”,

"Monday”.
"Tuesday”,
"Wednesday",
"Thursday”,
"Friday”,

"Saturday”

[l

int specific; /* TRUE if for a specific date */
/* initialized in main, only modified */
/* in get__new_ day() _ b

int wday__num, mon_ num, mday_ num, year_num;
int confer__flag, my__uid, Ingth, cupid, Ick__flg;
char fil_string{3][100]. sys_name[100];

~41=

main(arge, argv)

int arge:
char *argv(];
{
char command[100];
char p{100];
(void) setjmp(env1); /* Before Traps set so we know where to */
/% return to. %/
set__traps(); /* Set, Traps early- so we can undoe LCK */
(void) umask(077); /* files created. */
(void) alarm((HOURS * 3600 / 2)); /* So any LCK files we*/
/* we have can be kept current. */
what_sys();
get_todayQ);
if (arge > 1)

if (stremp(argv(1], "update™) == 0)
/* for updating from remote machine */
update();
by(:
printf("Illegal argument to ecal\n"):
by():
}
specific = TRUE;
confer_flag = FALSE;
wday_num = today.tm_ wday:
mon__num = today.tm__mon;
mday_num = today.tm__mday:
year__num = today.tm__year;
find_ecal_dir();

(void) setjmp(env1); /* Move jump point forward so what has 2/
/* already been done will not be repeated*/
compress();

get_schedule(partc[ME].fp, partc[ME].sch, &partc[ME].length);

-42-

/* Command Interperter Loop */

command[0] = NULL;
while (command([0] = 'x")
{
(void) setjmp(env1); /* Move jump point forward so
/* what has already been done will not
/* be repeated */

disp__heading(weekday[wday_num], month[mon_num]);
disp_schedule(partc{[ME].sch, partc[ME].length);

printf("\n\tc: confer d: delete e: edit\n");
printf("\ti: insert n: new r: reply\n");
printf("\ts: successor u: update (remote) x: exit\n");
printf(M\nwhich? -> ");

if (gets(command) == NULL) command[0] = 'x";
command[99] = NULL;
(void) strepy(p. &command([1]);

?witch(oommand[OD
case 'c’:/* set up a conference */
confer_ flag = TRUE;
confer();
confer_ flag = FALSE;
break;

case 'd": /* Delete an entry for today */
delete(partc[ME].sch, &partc[ME].length, p):
break;

case ‘e /* edit an entry for the current day */
edit(p):
break;

case 'i": /* insert an entry for current day */

insert(partc{ME].sch, &partc[ME].length, p);

break:

*/
74

-43-

case 'n’: /* get a new current day o
get_new_day(p);
get_schedule(partc[ME].fp. partc[ME].sch.

&partc[ME].length);
break:

case r': /* reply to a tentative conference sch*/
reply(p);
get__schedule(partc[ME].fp. partc{MEl.sch,
&partc[ME].length);
break;

case NULL:
case 's’:/* get the next current day */
get__successor();
get__schedule(partc[ME].fp. partc[ME].sch,
&partc{ME].length);
break;

case 'u’: /* update a calender on a remote mach*/
compress();
up_ date();
break;

case 'x": /* exit calendar */
printf(M\nEnding Electronic Calendar.\n");
break;

case 'I": /* shell escape */
ex(&command[1]):
break:

default:
printf("Invalid Command\n");
break;

-44-

/* NO CHANGES */
/* Sets external "today" to a structure pointer with info about today */
/* Fields used — today.mday : day of month (1..31); %/
/" today.mon : month of year (0..11); */
/* today.wday : day of week (0..6); */
/% THIS IS A LOW LEVEL ROUTINE */
/% (DOESN'T CALL ANY ROUTINES DESCRIBED IN THIS SOURCE CODE) */
?et_today()
struct tm *localtime(); /* external, in <sys/time.h> */
long clock:

(void) time(&clock); /* sets clock to seconds since 1/1/70 */

today = *(localtime(&clock)); /* converts clock to */

/* struct pointer ¥/

}
* NO CHANGES */
/* Common times are converted to mapped values on a 24 hour clock. */
/* Input parm[num] is assumed to be a common time that is a multiple */
/* of 5. Mapping starts at midnight : 12:00 PM => 0, 12:05 PM => 1 %/
/% ...11:55 AM => 243, 12:00 AM => 244 ... 11:55 PM => 487. */
/% THIS IS A LOW LEVEL ROUTINE */
/* (DOESN'T CALL ANY ROUTINES DESCRIBED IN THIS SOURCE CODE) */
time_map(num, a_or_p) /* ret: scaled value on 24 hour clock */
int num; /* in: Numeric legal time, (100 - 1255)*/
char a_or_p; /*in: AMor PM (A’ or 'P") */

{
int left, right, value;

left = num / 100;

right = num % 100;

if (left == 12) left = 0;
value = (left * 12) + (right / 5);

if (a_or_p=="P) value += 144;
return(value);

-45-

/¥ NO CHANGES %

/* Mapped values are converted back to conventional times and stored xz

/* (or returned) in a character string. Mapping is reverse of above. */

/* THIS IS A LOW LEVEL ROUTINE */

/* (DOESN'T CALL ANY ROUTINES DESCRIBED IN THIS SOURCE CODE) */

char *

time_ string(i) /* ret: string of human readable time */
int i; /* in: scaled value on 24 hour clock */
{

int left,right;

chara_or_p;

static char string[9]: /* added static decl. for VAX */

left = (i % 144) / 12;

if (left == 0) left = 12;

right = (i % 12) * 5;

a_or_p=(i<144)?7'A’:'P;

(void) sprintf(string, "%2d:%02d %cM", left, right. a_or_p);
return(string);

/* NO CHANGES */

/* Displays headings for general or specific day’s schedules. */
1* THIS IS A LOW LEVEL ROUTINE */
/* (DOESN'T CALL ANY ROUTINES DESCRIBED IN THIS SOURCE CODE) */

disp__heading(weeekday, mounth)
char *weeekday, *mounth;
{
if (specific) printf(M\nSchedule for %s. %s %d. 19%d:\n".
weeekday, mounth, mday_num, year_ num);
else printf("\nGeneral %s schedule:\n", weeekday);

-46-

/* NO CHANGES */
/* Displays schedule (after headings), with formatted description */

/* fields that may break between words and take two lines if required. */
/* THIS IS A LOW LEVEL ROUTINE i

1% (DOESN'T CALL ANY ROUTINES DESCRIBED IN THIS SOURCE CODE) */

disp_schedule(schedule, length)
struct schl *schedule;

int length;

{

inti,j k., L
char begin_str[9], end_str{9];
char outline[256];

if (length == 0)

| printf("\n **** no appointments scheduled ****\n\n");
else

{ for (i=0;i < length; i++)

{
if (schedule[i].active == FAISE) continue;

(void) strcpy(begin_ str.,
time_ string(scheduleli].begin));
(void) strepy(end_ str, time_ string(schedulelil.end));
printf(N\n%8s - %8s ", begin_ str, end_ str);
if (scheduleli].requestor = -1) printf("* ");
else printf " *);
k=0;
for (j = 0; ((schedule[il.infolj] '= NULL) &&
((schedulelil.info[j] t= ") I (j < 45))): j++)

outline[k++] = schedulelil.info[jl;

outline(k++] = \n";

a4 7

i{f (schedule(i].info[j] '= NULL)

” if needed, print a second line */
for (1=0; 1<=20; 1++) outline[k++] = ' *;
iwhile (scheduleli].info[j] t= NULL)

: outline[k++] = schedule[i].info[j++];
outline[k++] = "\n";

outline{k++] = NULL;
} printf("%s", outline);

}
for (i = (length * 2); i < 14; i++) printf("\n");

-48-

/% NO CHANGES 3y

/* Algorith to compute the day-of-the-week, given a numeric date, */

/* month, and year. Thanx to Bill McDaniel, KSU. */

/% THIS IS A LOW LEVEL ROQUTINE */

/* (DOESN'T CALL ANY ROUTINES DESCRIBED IN THIS SOURCE CODE) */
which__weekd()

{

int funct{12]; /* Conversion factors for each month */

int i;

funct[0] = funct{9] = 0./* The algorith assumes initially */
funct[1] = funct[2] = /* that month doesn’t matter, then */
funct[10] = 3: /* corrects itself. (look at a calendar)*/
funct[3] = funct[6] = 6:

funct[4] = 1;

funct[5] = 4;

funct[7] = 2;

funct[8] = funct[11] = 5;

if ((mon_num == 0 Il mon_num == 1) && (year_num % 4 == 0))

i = ((funct{mon_ num] + mday_num + year_num
+year_num / 4-1)% 7);

i = ((functfmon_num] + mday_ num
+ year_num + year_num / 4) % 7);
b

return(i);

-49-

/* NO CHANGES 74
/* Gets the next day via modulo arrithmic. For general or specific =~ */
/* days. x/
/* THIS IS A LOW LEVEL ROUTINE */

/* (DOESN'T CALL ANY ROUTINES DESCRIBED IN THIS SOURCE CODE) */
get__successor()
int num;

wday_num = (wday_num + 1) % 7;
if (specific)
if (mon_num==3 | mon_ num==5 Il mon__num==3§ |l
mon__num==10 | mon_ num == 12)
{

}
?Ise if (mon_num == 1)

num = 30;

if (year_num % 4 == 0) num = 29;
else num =28§;

}

elss num=31;

mday_num = (mday_num % num) + 1;
i{f (mday_num == 1)
mon_num = (mon_num + 1) % 12;
if (mon_num ==0) year num = year_num + 1;

/* NO CHANGES

/* Main routine to perform inserts to schedule arrays.

/* EXTERNAL - get__time : Parse the input string for beginning &
r* ending time. "/
/* check__insert : Check for schedule conflicts */
/% (overlapping.etc.) */
/* do__insert: Perform actual insertion. */

insert(schedule, length, parms)

struct schl *schedule; /* Schedule (array of structures) to insert into*/
int *length; /* Length of array. (Number current appointments */

c[:har *parms; /* String exists if user included parms.after i’ x/

char string[20];

char desc{[DESC_LENGTH];

char temp_ begin{10]. temp_end[10], temp2_ begin[10], temp2_ end[10];
int locn, numl, num2;

if (*parms I= NULL) (void) strcpy(string, parms);
else
{

printf(

"Enter beginning and ending time of new appointment. -> ");

(void) gets(string):
get_time(2, string, &num1, &num?2);

(void) strepy(temp_ begin, time_ string(num1));
(void) strepy(temp_end, time_ string(num2));

if (insert_check(schedule, *length, num1, num?2, &locn))
i[f (((*length) + 1) >= MAX_APP_NUM)

printf("No room for a new calendar entry\n");
return;

}

printf("Enter description of appointment\n-> ");
(void) gets(desc):

do__insert(schedule, length, locn, num1, num2, desc):
update_disk(partc[MELfp, schedule, length);

x/

*/
L

-51-

(void) strepy(temp2_ begin, time_string(schedule[locn].begin));

(void) strepy(temp2__end. time_string(schedule[locn].end)):

printf(

*%s - %s conflicts with previous %s - %s appointment.\n",
temp_ begin, temp_end, temp2_ begin, temp2__end);

(void) sleep(3);

-52-

/* NO CHANGES ¥

/* THIS IS A LOW LEVEL ROUTINE 3/
/* (DOESN'T CALL ANY ROUTINES DESCRIBED IN THIS SOURCE CODE) */

insert__check(schedule, length. num1, num2, locn)

struct schl *schedule; /* in: schedule, array of structures. x/
int length; /* in: length of array, number of appointments. */
int numl; © /* in: beginning time (scaled) of prospective insert */
int num?2; /* in: ending 3/
int *locn: /* out: locn to insert (if *ok) or conflict (else) */
{
int ok; /* TRUE if no conflicts, FALSE otherwise. */
inti=20;
*locn = i;
ok = TRUE;
if (length > 0)
while (i<length && schedulelil.begin < num1) i+
*locn =i;
}.f (i == length)
i{.f(schedule{i—-l].end > numl)
ok = FALSE;
(*locn)—;
} }
c{alse if (schedule[i].begin == num1)
ok = FAISE;
}
else
{
if i > 0)
{
if (schedule[i-1].end > num1)
{
ok = FALSE;
(*locn)—;
’ }
if(sahedule[i].begin < num?2)
ok = FALSE;
}
}

return(ok);

-53-

i NO CHANGES %/

get__time(count, string, first, second)
int count:

char *string;

int *first;

}nt *second;

int i, num, ct, ok;

char a_or_p;

char temp_ begin[10], temp_ end[10];

ok = FALSE;
while (fok)
{
i=0;
ok = TRUE;
for (ct=0; ct <count; ct++)

num = 0;

while (string[i] == " ") i++;

while (((string[i] >= "0" && string[i] <="9") 1
string[i] == ":") && string[i] != NULL)

i{f (stringli] >="0" && stringli] <="9")

\ num = num*10 + string[i] - 0";

i++;
i{f (num == 0)

ok = FALSE:
} printf("Missing time.\n");

flseif(num%SI-O)

ok = FAISE;
; printf("%d is not a multiple of 5.\n", num);
else if (num < 100 ll num > 1255 | num % 100 > 55)
{

ok = FALSE:

printf("%d:%02d is an invalid time.\n",
\ num/100, num%100);
if (num < 700 Il num >=1200) a_or_p="P";
else a_or_p="A';

/%

-54-

get__time() (continued) NO CHANGES

while ((string[i] < "0’ Il string[i] > "9")
{ && string(i] = NULL)

i‘f (string[i] = "p’ Il string[i] == "P")
a_or_p="P;

}
flse if (string[i] == "a’ I string[i] = "A")

| a_or p="A";
i++:
}
i(f (ok)
if (ct ==0)
; *irst = time_map(num, a_or_p);
?lse
*second = time__map(num, a_or_p);
}f (*first > *second)
ok = FALSE;
(void) strcpy(temp_ begin,
time_ string(*first));
(void) strepy(temp_end.
time_ string(*second)):
printf(
"%s - %s is an illegal time frame.\n",
} temp_ begin, temp_ end);
}
}
}
l;f (tok)

printf("Reenter time(s). -> ");
(void) gets(string);

*/

-55-

/* NO CHANGES x/
/* The user’s command-line input is parsed to determine which day’s*/

/* schedule is to be observed. Four possibilities exist: */

/* (1) A null line entered is assumed to mean the current specific day. */

/* (2) If a numeric date only is entered, the month is deduced. Specific day.*/

/*(3) If a weekday (eg. "wed") is entered, the general weekday is inferred. */

/* (4) If a month (eg. "sep”) is entered, a date is also expected ("sep23"). */

i% THIS IS A LOW LEVEL ROUTINE x/

/* (DOESN'T CALL ANY ROUTINES DESCRIBED IN THIS SOURCE CODE) */

get_new__day(parms)

c{:har *parms:

extern struct tm today;

extern char *weekday{], *month[];

int i, nwptr, tdate; /* nwptr - non-white space ptr added for VAX .
int ok, second;

char temp{4];

char string[10];

int found; ' /* added for VAX ¥/

second = FALSE;
(void) strcpy(string, parms);

ok = FALSE;
while (fok)
{
/* skip white space for VAX */

for (i=0: string[i] == * I string[i] == "\t"; i++) ;
nwptr = i;

/* check for parm after the 'n" */
if (stringlnwptr] == NULL Il second)
{

printf("Enter date, weekday, or <ret>.->");

(void) gets(string);

/* skip white space for VAX */

for (i=0; string[i] == * * Il string[i] == "\t"; i++);
| nwptr = i;

second = TRUE:
ok = TRUE:;

-56-

'tf (string[nwptr] == NULL)

specific = TRUE;

wday__num = today.tm__wday:;
mday_num = today.tm__mday;
mon_num =today.tm_ mon;
year__num = today.tm__year;

?1.* if (string[nwptr] >='0" && stringlnwptr] <="9")

/* get__new_day()*/
/* (continued) */
/* NO CHANGES

/* date based on digit alone */

specific = TRUE;

tdate = 0;

i=nwptr;

;vhile ((string[i] >="0") && (string[i] <="9"))

}

tdate = (tdate * 10) + string[i] - '0";
i++;

if (tdate < today.tm_ mday)

else

mon_ num = (today.tm_mon + 1) % 12;

mon_ num = today.tm__mon;

if ((tdate>31) I

d
—-—.%\

(tdate>30 && (mon__num==3 | mon_num==>5 |
mon__num==§ | mon_num==10)) |l
(tdate>29 && mon_num==1))

printf("%s does not have %d days.\n",
month[mon_num], tdate);
(})k = FAI SE;

mday__num = tdate:
if (mon_num < today.tm__mon)
{

year_num = today.tm_ year + 1;

else
{

}
wday_ num = which_ weekd();

year__num = today.tm_ year;

#ifdef V5.0
#else

#endif

-57-

/* date based on month and day or weekday */

(void) strncpy(temp. &stringnwptr], 3);
temp{3] = NULL;

temp[0] = toupper{temp[0]):
if (temp(0] > "a’) temp[0] = temp[0] - ('a’ - "A");

/* check for weekday (= general schedule) */

/* added for VAX to exit table search loop */
found = FALSE:
t{'or (i=0: i< 7 && !found; i++)

if (strncmp(temp, weekday[il,3) = 0)
] found = TRUE;

}

i{.f (found)

specific = FALSE;
wday_num = i-1; /* -1 kludge added for VAX */

/* didn’t find general schedule - check */
/* for month and day &/

for (i=0; (i<12) &&
(strncmp(t.e)mp.month[i].3) 1= 0);
i++ :

'if (strncmp(temp,month(i],3)==0)
/* found the month */

specific = TRUE;
mon__num = i;
for (i=3+nwptr;: (string[i] I= NULL) &&
((stringli] < "0
(string[i] > "9")):
i++) ;

tdate = Q;

-58-

while ((string[i] >="0") &&
(stringli] <="9))

tdate = (tdate * 10) +

stringi] - "0";
i+
}
%f (tdate == 0)
printf(
"+ Must include date with Month. **\n");
} ok = FALSE;
/* get__new__day()*/ else if ((tdate>31) 1l
/* (continued */ (tdate>30 && (mon_num==3 Il
/* NO CHANGES */ mon_ num==5 || mon_ num=—3

| mon_num==10)) |l
(tdate>29 && mon_num==1))

printf(

"%s does not have %d days.\n",
month[mon_ num], tdate);

ok = FALSE;

mday_ num = tdate:

if ((mon_num < today.tm_mon) Il
(mon_ num == today.tm_ mon
&& mday_num <today.tm_mday))

year_num =
today.tm_ year + 1;

else year_num = today.tm__year;
wday_num = which__ weekd();

~e-

printf("(%s) is invalid. " string);
printf"Examples: mon jan23 30.\n"):
ok = FALSE;

-59-

4% Changes made to reflect the new data structure L
/* Actual insertion is performed on array. */
I* THIS IS A LOW LEVEL ROUTINE 7

™ (DOESN'T CALL ANY ROUTINES DESCRIBED IN THIS SOURCE CODE) */

do__insert(schedule, length, locn, num1, num?2, string)

struct schl *schedule; /* out: schedule after insertion. */
int *length; /* in/out: length of array, incremented here. */
int locn; /* in: location in array to insert. */
int numl, num2; /% in: beginning & ending times if insertion. */
char *string; /* in: string description of appointment. */
{
int i;
/* From the end of the list to position "locn”, move all */

/* entries down one. This way, the list is kept time ordered */
/* (as long as locn was dertermined by "insert_check()") ¥/

for (i=(*length); i>locn; i—)

schedule[i].begin = schedule[i-1].begin;
schedule[i].end = schedule[i-1].end:
schedule[i].month = schedule{i-1].month;
schedulefi]. wday = schedule{i-1].wday;
schedule{il. mday = schedule{i-1].mday:;
schedule(i].year = schedule(i-1].year:
schedulefi]l.specific =~ = schedule[i-1].specific;
schedulefi].active = schedule{i-1].active;
schedule{i].mod = schedule[i-1].mod;
schedule[i].requestor = schedule[i-1].requestor;
schedulelil.rec_num = schedulefi-1].rec_num;
(void) strcpy(schedule{il.info, schedule{i-1].info);

-60-

/* Put new information in the now empty slot */

schedule{locn].begin =numl;

schedule{locn].end = num2;

schedule{locn].month = mon_num;

schedule{locn].wday = wday_num:

schedule{locn].mday = mday_num:

schedulellocnl.year = year_num;

schedule{locn].active = TRUE:

schedule[locn].requestor= -1;

schedule{locn]lmod = TRUE: /* tell the update routine that ¥/
/* this entry needs writing = */

schedule[locn].rec_num =-1; /*so the update routine will */
/* not overwrite an active entry*/
/* on the disk */

(void) strepy(schedule{locn].info, string):

if (specific) schedule{locn].specific = TRUE;

e‘:lse
scheduleflocn).specific = FALSE; /* For general */
schedule{locn].month = 0; /* schedules, forget the*/
schedule{locn].mday = 0; /* month, day of month */
schedule[locn].year = 0; /* and year- prevents */
/* confusion later */

}
(*length)}++;

-61-

/* Changes made to reflect the new data structure

delete(schedule, length, parms)
struct schl *schedule;

int *length;

?har *parms;

char string[20];

char temp_ begin[10];

int i, numl;

'tf(mmgm—o)

printf("No appointments to delete.\n");

(void) sleep(2):
else
{

if (*parms != NULL) (void) strepy(string, parms);

else
{

printf(

"Enter beginning and ending time of appointment to delete. -> ");

} (void) gets(string);
get__time(1, string, &num1, &numl);

for (i=0; i <*length && schedule[i].begin < num1; i++);

i (scheduleli].begin == num1)

i{f (schedule|i].requestor !=-1)

*/

(void) strepy(temp_ begin, time_string(num1)):

printf("%s is a tentative appointment”,
temp__begin):

printf(" : use ‘reply’ command to decline\n");

(void) sleep(1);

return;

}

/* delete by marking active flag false, then %/
/* updateing disk. */
schedule[i].active = FALSE:

schedule[i]l.mod = TRUE;

update_ disk(partc[ME].fp. schedule, length);

~a -

—62-

/* Now, compress the unused entry out of the¥/
/* list- saves steps when displaying */
(*length)—;

for(;i < (*length); i++)

schedule{i].begin = schedule[i+1] begin;
schedulelilend = schedule[i+1].end:

schedule{il.month = schedule[i+1].month;
schedulelil wday = schedule[i+1].wday;
scheduleli] mday = schedule[i+1].mday;
schedule[i] year = schedule[i+1].year:
schedule[i].specific = schedule[i+1].specific;
schedule[il.active = schedule[i+1].active:

schedule[i].mod = schedule[i+1].mod;
schedule(i].requestor= schedule[i+1].requestor:
schedulefi]l.rec_num = scheduleli+1].rec_num;

(void) strepy(schedule[il.info,
schedule[i+1].info):

(void) strcpy(temp_ begin, time_ string(num1));

printf("Cannot find %s appointment to delete\n",
temp_begin);

(void) sleep(2);

63-

/* REWRITTEN 2/
/* Attempts to move to directory "ecal” under the user's home */
/* directory. Program creates ecal directory under SHOME if need be. */
find__ecal_dir()

{
struct passwd *getpwuid(), *my_ passwd_ rec;

my_ uid = getuid(); /* save the real user ID. used in the */
/% forked shell to set effective UID to Real */
/% UID before exec of command. (since ecal */
/* runs set uid to root, for security) *f

my_ passwd_rec = getpwuid(my_ uid);
(void) strepy(partc]ME].name, my_ passwd_ rec->pw_name);

i{f (open__ecal(ME) != 0)
printf("can’t open or create ecal data file\n");

}
Ingth = 1;

-64-

/* REWRITTEN FOR NEW DATA STRUTRURES AND BINARY I/O

/* A specific or general day's schedule is attempted read from disk. */
/* If a specific date’s schedule is desired. the file whose name is */
/* built by appending the date to the month is attempted opened. */
/* If that file does not exist (an unsuccessful opening attempt), the */
/* day-of-the week is determined. and that file is opened. although */
/* the user doesn't know (or care) where the schedule came from. */

get_schedule(fpl, schedule, length)

FILE *pl:

struct schl *schedule; /* out: table of appointments for date/day */
'int *length; /* out: length of table)

int i, k, changed;
struct schl tmp;

i=0;
k=0;

/* Reads the entire binary data file and keeps in the list */
/* what is needed for the active general or specific day o

v[wl:u'le(rd_ dsk(fp1, &schedule[i], k++) = NULL)

if (schedule[i].active == FALSE) continue;
}f (specific)

if (((mday_ num == schedule[i].mday) &&
(mon_num == schedule[i]l.month)) I
((wday_num == schedulelil. wday) &&
(schedule[il.specific = TRUE)))

i+

if (schedule[i].specific) continue;
}f (schedule[i].wday == wday_num)

i+

-65-

schedule{i].mod = FALSE:

';f (GG + 1) >=MAX_APP_NUM)
printf("Calendar for this day is full\n");
break:

}

}
*length = i;

get_ schedule() (continued) - ADDED FOR NEW DATA STRUTRURES 2/

/% sort the new schedule by time */
/* saves having to do it every time displayed %/
changed = TRUE:
?rhile(cha.nged)

changed = FALSE;

for (k=0;k < (i-1)k++)

i{f(schedule[k].begin > schedule[k + 1].begin)

changed = TRUE:
tmp.begin = schedule[k].begin;
tmp.end = schedule{k].end;

tmp.month = schedule[k]. month;
tmp.wday = schedule[k].wday;
tmp.mday = schedule{k].mday;
tmp.year = schedule[k].year;
tmp.specific = schedule[k].specific;
tmp.active = schedule[k].active;
tmp.mod = schedule[k].mod;
tmp.requestor = schedule{k].requestor;
tmp.rec_num = schedulek].rec_num;
(void) strepy(tmp.info, schedule[k].info):

-66-

schedule[k].begin = schedule[k+1].begin:
schedule(k].end = schedule[k+1].end;
schedule[k].month = schedule[k+1].month;
schedule(k]. wday = schedule[k+1].wday:
schedule[k].mday = schedule[k+1].mday:
schedule[k].year = schedule[k+1].year;
schedule[k].specific= schedule[k+1].specific;
schedule[k].active = schedule[k+1].active;
schedule(k].mod = schedule[k+1].mod;
schedule[k].requestor= schedule[k+1].requestor;
schedulek].rec_ num= schedule[k+1].rec_num;
(void) strepy(schedulelk].info,
schedule{k+1).info);

schedule[k+1].begin = tmp.begin:
schedule{k+1]lend = tmp.end:
schedule[k+1].month = tmp.month;
schedule(k+1].wday = tmp.wday:
schedule(k+1].mday = tmp.mday:
schedule[k+1].year = tmp.year:
schedule{k+1].specific = tmp.specific;
schedule[k+1].active = tmp.active:
schedulelk+1].mod = tmp.mod:
schedule[k+1).requestor = tmp.requestor;
schedule[k+1).rec_num = tmp.rec_num;
(void) strcpy(schedulelk+1].info, tmp.info);

/* REWRITTEN FOR NEW DATA STRUTRURES AND BINARY I/O

-67-

/* Writes a schedule (an array of structures) to disk. The filename is */
/* built by either concatanating the month to the date (for specific */
/* days), or simply using the weekday string (for general days). */

/*

THIS IS A LOW LEVEL ROUTINE

*/

*/

™ (DOESN'T CALL ANY ROUTINES DESCRIBED IN THIS SOURCE CODE) */

update_ disk(fpl, schedule, length)

FILE *fp1:

struct schl *schedule; /* in:specific or general day’'s schedule */

}nt *length:

int i, j;

/* in:length of schedule, (number appointments)

struct schl tmp;

/* Check for a valid file pointer- very useful for debugging */
/* the program *

if (fp1 == NULL)

}

printf"ERROR: Null file pointer in update\n”);
return;

for (i=0: i < (*length); i++)

if (schedule[i]l.mod == FALSE)continue;
/* No need to write anything */
/* that has not been modified */

/* This means there is no previous entry on disk */
/* for this record. We will try and find a non active */
/* entry starting at the record number of the previous
/* record or O if this is the first record of the */

/* structure. If the end of file is found before an */
/* empty entry is found, append the data to the end of
/* of the file. In this way,. data on the disk is kept */
/* in a semi-sorted order, reucing the sort time in the */
/* read__dsk routine, x/

*/

*/

*/

/%

-68-

}f (schedulei].rec_num == -1)

i=0:
if (i > 0) j = scheduleli - 1].rec_num:

?vhile(rd_dsk(fpl, &tmp, j) != NULL)

if (tmp.active == FALSE) break:
} i

’ schedulefil.rec_num = j;

/* The location in the file is stored in recnum, write it ¥/

wr_dsk(fp1, &scheduleli]):
schedule{i]l.mod = FALSE:

END OF ORIGINAL PROGRAM

*/

-69-

i ALL NEW ROUTINE &/
#* REPLACES "remove__today()" */
/* THIS IS A LOW LEVEL ROUTINE */
r* (DOESN'T CALL ANY ROUTINES DESCRIBED IN THIS SOURCE CODE) */
compress()
{
int wrt, rd:
struct schl sch;
int tmp:

wrt = 0;

rd = 0;

/* search the entire data file, deleting all specific entries x/

/* with dates earlier than todays, and compress entries such */

/* all entries are at the front of the disk file. */

}while(rd_dsk(partc[ME].fp. &sch, rd++) != NULL)
if (sch.active == FALSE) continue;

if ((sch.specific == FALSE) |l
(sch.year > today.tm_ year) I
((sch.year == today.tm_ year) &&
(sch.month > today.tm_mon)) |
((sch.year == today.tm_ year) &&
(sch.month == today.tm_mon) &&
{ (sch.mday >= today.tm_ mday)))
i{f (sch.rec_num == wrt)
Wrt++;
continue;
}
else if (wrt > sch.rec_num)
{
printf("Fatal Error in Compression routine\n");
printf("rd: %d. wrt: %d, rec_num: %d\n",
rd, wrt, sch.rec_num);

by():

90+

tmp = sch.rec_num;
sch.rec_num = wrt;
wr__dsk(partc[ME]fp, &sch);
sch.rec_num = tmp;
sch.active = FALSE;
wr__dsk(partc[ME].fp. &sch);
Wrt++;

| continue:

sch.active = FALSE;

wr__dsk(partc[ME].fp, &sch);

-71-

/* ALL NEW ROUTINE
/* This routine populates the sys_name string with the name */
i of the system on which this software is running. It was made
/* neccessary because of the fact that Machines running Berkley*/
/* Unix use the "gethostname(2)" system call while machines */
/% running AT&T Unix system 3 and later versions use the uname(2)
/% system call. */
what_sys()
{
#ifdef BSD

(void) gethostname(sys_name, 100);
#else

(void) uname(un);

(void) strepy(sys_name, un->nodename);
#endif

sys_name{99] = NULL;
}
/* ALL NEW ROUTINE
:{;et_traps()
int hndl_ sigs();

(void) signal(SIGHUP, hndl_ sigs);
(void) signal(SIGINT, hndl_sigs);
(void) signal(SIGQUIT, hndl_sigs);
(void) signal(SIGILL, hndl_ sigs):
(void) signal(SIGTRAP, hndl_sigs);
(void) signal(SIGIOT, hndl_sigs);
(void) signal(SIGEMT, hndl_sigs);
(void) signal(SIGFPE, hndl_sigs);
(void) signal(SIGBUS, hndl_sigs):
(void) signal(SIGSEGV, hndl_sigs);
(void) signal(SIGSYS, hndl_ sigs):
(void) signal(SIGPIPE, hndl_ sigs);
(void) signal(SIGALRM, hndl_sigs):
(void) signal(SIGTERM, hndl_ sigs);

*/

*/

2

L

/*

1

ALL NEW ROUTINE

/* What to do when signals are caught *

hndl_sigs(sig _num)

int sig_num;

(void) signal(sig_num, hndl_ sigs);
switch(sig_num)

{

case SIGHUP: break;
case SIGINT:
case SIGQUIT:
printf"TABORT"):
(void) flush(stdin);
printf(M\nDo you wish to return to the main menu");
printf(" or exit the program? (r/e):");
if (getcharQ) =) by(:
clean_up();
(void) longjmp(env1, 1);
case SIGILL:
printf("FATAL ERROR: Illeagal instruction\n");
break;
case SIGTRAP:
printf"FATAL ERROR: Trace trap\n");
break;
case SIGIOT:
printf"FATAL ERROR: I/O Trap\n");
break;
case SIGEMT:
printf"FATAL ERROR: Emulator Trap\n");
break;
case SIGFPE:
printf "FATAL ERROR: Floating Point Execption\n");
break;
case SIGBUS:
printf "FATAL ERROR: Bus Error\n");
break:
case SIGSEGV:
printf "FATAL ERROR: Segmentation Violation\n");
break;
case SIGSYS:
" printfCFATAL ERROR: System Call Error\n");
break;

*/

-73-

case SIGPIPE:
printf"FATAL ERROR: Pipe Write Error\n");
break;
case SIGALRM:
touch_ lcks();
return;
case SIGTERM:
printf "FATAL: Software Termination Signal\n");
break:
default:
printf"FATAL ERROR: Signal Number %d Caught\n",
sig_num);

}
by(); /* If we are still here, exit gracefully through by() */

—74-

/* ALL NEW ROUTINE '
1% Update the lock files that we have currently active x/
Eouch_lcks()

int i;

struct utimbuf *buf;

buf = NULL:
for (i =0:i < Ingth: i++)
{

] if (partc[i].active == TRUE) (void) utime(partc[il.path. buf):
(void) alarm((HOURS * 3600 / 2)):

/¥ ALL NEW ROUTINE */
/% Exit thru here always to ensure everything is cleaned up 2/

if (Ick_flg == 0) exit(1);
clean_up():

(void) fclose(partc[ME].fp);
(void) unlink(partc[ME].path);
exit(0);

-75-

/% ALL NEW ROUTINE *f
i clean-up for all but the data structure that [am using. 7
:{:lea.n_up()

int i;

for (i=1:i < Ingth; i++)
i{f (partclil.active == TRUE)

(void) fclose(partclil.fp);
(void) unlink(partc[i].path);
; partcfil.active = FALSE;

gth = 1;
if (confer_flag > TRUE)

?rhile (confer_flag > TRUE)

(void) unlink(fil_string[(confer_flag - TRUE - 1)]):
confer_ flag—;

}
(void) fclose(mail);

-T76-

/* ALL NEW ROUTINE */
/% Reads one binary data structure from the disk 2/

rd__dsk(fpl, schl, posit)

FILE *fpl;

struct schl *schl;

int posit; /* The record number of the structure to read*/

long bytes:

bytes = posit * sizeof (*schl);
(void) fseek(fp1. bytes, 0);
return(fread((char *)schl, sizeof (*schl), 1, fp1));

/* ALL NEW ROUTINE */
/* Writes an entry to the disk file with an offset of the ¥
/* record number multiplied by the size of the data structure */
7~ bytes from the beginning of the file. */
wr__dsk(fp1, schl)
FILE *fp1;
struct schl *schl;
{
long bytes:

bytes = schl->rec_ num * sizeof (*schl);

(void) fseek(fp1, bytes, 0);

(void) fwrite((char *)schl, sizeof(*schl), 1, fp1);

(void) fiush(fp1):

return;

-77-

/% ALL NEW ROUTINE L
/% Used by the shell escape function and routines needing to */
/* run shell commands (send mail, etc) */
ex(tmp)
?ha.r *tmp:
int wait_ flg, w;
int (*sig1)Q), (*sig2)();
/% Forks a shell. The child process does the work, the */
/* parent waits until the child terminates. */
/* A second shell is used so that the effective UID %/

/* can be set to the real UID for the shell command x/
/* without losing the "root” effective UID of the parent */

if((cupid = fork()) == 0) /% child process */
(void) setuid(my__uid); /* sets effective and real UID */

/* to that of the real UID */
/* determined when the program */

/* started. */
(void) execl("/bin/sh", "sh”, "¢", tmp, 0);
printf("error in exec\n"): /* If we are still here*/
exit(ERROR); /* the exec failed. x/

/* DO NOT exit through by() or 4
/* we may mess up the parent */

}

/* Parent process... continued x/

if (cupid ==-1) /* parent checks to ensure the fork */

{ /* was successful. */
printf("Can’t fork process\n");

} return;

sigl = signal(SIGINT. SIG_IGN): /* Ignore inturupts, */

sig2 = signal(SIGQUIT, SIG_IGN):; /* while waiting. */

wait_flg = 0;
while (((w = wait{&wait_flg)) = cupid) && w = -1)
- /* wait until the child dies */

(void) signal(SIGINT, sigl); /* reset inturupt handleing */
(void) signal(SIGQUIT, sig2); /* for things ignored above. */

-78-

/* ALL NEW ROUTINE

/* Conference scheduling routine.

/* Prompts for a list of login ID's to schedule for the conference. */
/* This list , in the form of a line of white-space (blanks or tabs) */
/* seperated character strings is scanned and broken down into login */
/* ID’s. The passwd file is then searched for a matching ID. If not */
/* found, a message to that effect is printed and the next string of %/
/* characters is processed. If it is found, the path to the ecal */

/* directory is constructed and open__ecal is called. If open__ecal fails.*/
/* confer returns to the calling routine. If open__ecal succeds, then */
/* the data file is now open and the file is locked. The schedule for */
/* this participant is then populated and we go on tho process the */
/* next string of characters. open_ecal() also popupates the path */
/* with the correct path to the ecal LCK file for the ecal data opened */
i ®/
/* The routine next prompts for a range of times in which to try and
/* schedule the meeting. This range of times is broken down into ~ */
/* five minute intervals and run through insert_check() for each active
/* participant and times conflicting with any one or more participants
/* is so marked. A list of available times is then dispayed and the */
/* is asked to input a specific range of times for the meeting. This */
/* range is then double checked for availability, the descriptionis */
/* prompted for, and then the insertions are done. All users scheduled

/* are then sent mail concerning the proposed meeting. Before returning*/
/* the program runs the clean_up() routine to remove all LCK files, etc.*/

c{:onfer()

struct passwd *getpwnam(), *passwd_rec;

char string[20], desc{DESC_LENGTH], temp_ begin[10];
char temp_ end[10], command[100]:

int i, j. k. locn, num1, num2;

short times{290];

printf("Enter the login ID's of the participants:\n");
printf("-> %s ", partc{ME].name);

(void) gets(command);

i=0;

k=0;

ju=1;

*/

*/

¥/

*/
*/

*/

-79-

confer() (continued) ALL NEW ROUTINE */
Iwhile(commnnd[i] = NULL)
while ((command[i] == "\n") | (command[i] == " ")

{ I (command[i] == "\t"))
i++;
] continue;
if (command[i] == NULL) break:

while ((command[i] != \n’) && (command[i] =")
: && (command(i] 1= "\t') && (command[i] 1= NULL))

partc{jlname[k++] = command(i++];

}
partc[jl.name[k++] = NULL:
passwd__rec = getpwnam(partc[jl.name);

21' (passwd_rec == NULL)
printf("user id %s does not exist\n", partc[j].name);
];’anoc{j].name[O] = NULL:

while ((command[i] == "\n") Il (command[i] == ")
| (command[i] == "\t"))i++;

} continue;
if (open__ecal(j) 1= 0)

printf("Can’t open ecal file for %s\n", partc[jl.name);
clean_upQ);
} return:
get_schedule(partc[jl.fp, partc[jl.sch, &partc[jl.length);
partc{jl.active = TRUE;
Ingth++;

H+
k=0;

i{f (Ingth >= MAX_PARTIC)

printf("To many participants entered. *);

printf("Only using the first %d\n",
MAX_PARTIC):

break;

/!

-80-
confer() (continued) ALL NEW ROUTINE x/

printf("Enter beginning and ending times of range in which\n");
printf("to try and schedule the conference. -> ")
(void) gets(string):

get_time(2, string, &numl, &num2);

(void) strepy(temp_ begin, time_string(num1));
(void) strepy(temp_ end, time_ string(num?2));
for (j = 0; j <= 288; j++) times{j] = TRUE;
f’or (i=0:i < Ingth; i++)

for (j=numl; j <= num2; j#+)

if (insert_check(partc(i).sch, partc[il.length,
j» j+1, &Kk) == FALSE)

times[j] = FALSE;

}

printf("Available times in this time frame are the following:\n");
k=0;
for (j = numl; j <= num2; j++)

}f (times[j] == TRUE)

(void) strcpy(temp_ begin, time_ string(j)):
\{while (timesj] = TR%%!;! i

%f(j >= num2)

(void) strcpy(temp_ end.
time_ string(j));

} break;

i+
}
k++;
(void) strepy(temp_end, time_string(j));
printf (" %s to %s\n’, temp_ begin, temp_ end);

/t

-81-

confer() (continued) ALL NEW ROUTINE ®/

if (k == 0)
printf("No times available in the time range\n");
printf("Do you wish to try again (y/n)? "):
(void) gets(string);
clean__up():
if (string[0] == "y") confer();
return;
}
printf("enter begining and ending time for the conference: ");
(void) gets(string):
get_time(2, string, &i. &j);

}f (G < num1) 1 (G > num2))

printf("time entered is outside of requested range\n");
clean_up();
return,

}

numl = i;
num?2 = j;
for (i = numl; i <=num2; i++)
';f (times[i] t= TRUE)
printf("The time range entered conatains ");
printf("a non-available time.\n");
clean_up();
return;
} }
printf("Enter description of conference.\n-> ");
(void) gets(desc):

(void) strepy(command, "mail *);

-82-

for (i=0:i < Ingth; i++)

}
Vid

(void) streat(command, partc[il.name);
(void) strcat{command, " ");
‘?f ((partc[il.length + 1) >= MAX_APP_ NUM)

printf("No room for a new calendar entry "):
printf("in the calendar file of %s\n", partc[i].name);

}
else if (insert_check(partc{i].sch, partc[i].length,
; numl, num?2, &locn) == FALSE)
printf("lost our insertion slot for %s\n",
} partc[il.name);
?lse
do__insert(partc[il.sch, &partc[il.length.

locn, num1, num?2, desc);
partcfil.sch[locn].requestor = my_ uid:

te_disk(partc[i].fp, [i].sch,
e &pa.:'\‘.cﬁ]f:ngtcl:):

Send a mail message to everyone involved */

(void) sprintf(fil_string[0], "/tmp/ecal XXXXXX");
(void) mktemp(fil_string{0]);

confer__flag++;

(void) streat(command, "<");

(void) strcat(command, fil _string[0]);

i{f ((mail = fopen(fil_string[0], "w")) == NULL)

printf("Unable to send mail to participants\n");

/*
{

else

-83-
confer() (continued) ALL NEW ROUTINE x/

(void) fprintf(mail, "\n\n\t\tECAL NOTICE:\n\n");
(void) fprintf(mail,

"You have tentatively been scheduled for a meeting as follows:\n\n"):

}

(void) fprintf(mail, "\tDATE: %s, %s %d, 19%d:\n",
weekday{wday_ num], month[mon_ num],
mday_ num, year_ num);

(void) strepy(temp_ begin, time_ string(num1));

(void) strepy(temp__end, time_ string(num?2));

(void) fprintf(mail, "tTIME: %s to %s\n",
temp_begin, temp_ end);

(void) fprintf(mail, "\t WHAT: %s\n\n", desc);

(void) fprintf(mail, "Please confirm your attendance to");

(void) fprintf(mail, * %s by return mail\n", partc[0].name);

(void) fclose(mail);

(void) chmod(fil_ string[0], 0644);
ex(command);

(void) unlink(fil_string{0]);
confer__flag—:

clean_up();

-84-

/* ALL NEW ROUTINE

/* updates calendars on the remote machine thru use of the

/* uux command. "ecal’ and "cat” must exist on the remote */
/* machine and be executable on the remote machine BY REMOTE
/* MACHINES. Mail is sent to the owner of the calendar file */
/* on the remote machine concerning the impending update.

?P_date()

struct schl sch:

int i;

char command(512]. mac_ target[25], log _target[25];

(void) printf("Enter the machine to update calendar on:);

(void) gets(mac_target);
(void) printf(

“Enter the login on that machine to update calendar of: ");

(void) gets(log_target);

confer_flag = TRUE;

(void) sprintf(fil_string[0], "/tmp/ecal. XXXXXX");

(void) mktemp(fil_string{O]):

if ((mail = fopen(fil_string{0], "w™)) == NULL)
printf("Unable to create temporary files\n");

} return;

confer_ flag++:

(void) fprintf(mail, "%s!%s\n", mac__target, log_target);

i=0;

(void) fprintf(mail, "%s!%s\n", sys_name, partc[ME].name);

/* No need to send sch.active, sch.mod, sch.a, or sch.rec_num¥*/

/* the remote machine.

*/

*/
*/
»

*/

-85-

up__date() (continued) ALL NEW ROUTINE
?vhile(rd_ dsk(partc[ME).fp, &sch, i++) != NULL)
if (sch.active == FALSE) continue;

(void) fprintf(mail, "%d\n", sch.begin);
(void) fprintf(mail, "%d\n", sch.end);
(void) fprintf(mail, "%d\n", sch.month);
(void) fprintf(mail, "%d\n", sch.wday):
(void) fprintf(mail. "%d\n", sch.mday);
(void) fprintf(mail, "%d\n", sch.year);
(void) fprintf(mail, "%d\n", sch.specific);
(void) fprintf(mail, "%s\n", sch.info);

}
(void) fclose(mail);

(void) sprintf(fil_ string[1], "/tmp/ecal. XXXXXX");
(void) mktemp(fil_string[1]):
if ((mail = fopen(fil_string[1]. "w")) == NULL)

(void) printf("Unable to create temporary files\n");
} return,
confer_ flag++;

(void) sprintf(command, "mail %si%s <%s\n", mac__target,
log_target, fil_string[1]);

(void) fprintf(mail, "%s!%s", sys_name, partc[ME].name);

(void) fprintf(mail, " has updated your calendar\n");

(void) fclose(mail);

(void) chmod(fil_ string[0]. 0644);
printf("%s", command);
ex(command):

(void) sprintf(command, "uux \"%slcat 1%s | ecal update\"\n",
mac__target, fil_string{0]):

(void) chmod(fil_ string[0], 0644);
printf("%s", command);
ex(command);

(void) unlink(fil_string{0]);
confer_ flag—:
(void) unlink(fil_string{1]);
confer_ flag—;

*f

-86-

/* ALL NEW ROUTINE

/* This routine take the ascii data file passed to it from the */
/* remote machine and uses it to update a users calendar on this*/
* machine. Mail is sent to the owner of the file, notifying them */
/* of the update and what was added. Conflicts in the calendar */

/* are noted and sent to the owner of the file on the local w0
/* machine. A success/failure message is sent to the remote %/
/* requestor. */
?pdate()

struct schl sch;

struct passwd *getpwnam(), *passwd_ rec;
char requestor{25], tmp[512], target[512], *tmp1:
char command[512];

int locn;

if ((gets(target) == NULL) |
(gets(requestor) == NULL)) return;

tmpl = target;

while ((*tmp1 t= 1) && (*tmp1 != NULL)) tmpl++;
if (*tmpl == NULL) return;

tmpl++;

if (*tmpl == NULL) return;

(void) strepy(partc{ME].name, tmp1);
passwd__rec = getpwnam(partc[ME].name);
if (passwd_rec == NULL) return;
if (open_ecal(ME) !=0) return;

confer_ flag = TRUE;
(void) sprintf(fil_string[0], "/tmp/ecal XXXXXX");
(void) mktemp(fil_ string{0]):

if ((mail = fopen(fil_ string{0], "w")) == NULL) return;

confer_ flag++;

(void) fprintf(mail, "\n%s has updated your ecal calendar\n",
requestor);
(void) fprintf(mail,
"The following entrys were not added due to conflicts:\n");

&

=87

/* update() (continued) ALL NEW ROUTINE *x/
?rb.ile(gets(tmp) = NULL)

(void) sscanf(tmp, "%hd", &sch.begin);
if (gets(tmp) == NULL) break;
(void) sscanf(tmp, "%hd", &sch.end):

if (gets(tmp) == NULL) break:
(void) sscanf(tmp, "%hd", &sch.month);
if (gets(tmp) == NULL) break:
(void) sscanf(tmp, "%hd", &sch.wday);
if (gets(tmp) == NULL) break;
(void) sscanf(tmp, "%hd", &sch.mday);
if (gets(tmp) == NULL) break:
(void) sscanf(tmp, "%hd", &sch.year);
if (gets(tmp) == NULL) break;
(void) sscanf(tmp, "%hd", &sch.specific):
if (gets(tmp) == NULL) break;
(void) sscanf(tmp, "%s". sch.info);

- ific:
wday__num = sch.wday:
mday_num = sch.mday:;
mon_num =sch.month:
year__num = sch.year;

get_schedule(partc][ME].fp, partc{MEl.sch, &partc[ME].length);

-88-

if (((partc{ME].length + 1) >= MAX_APP_NUM) I
(insert_check(partc[ME].sch, partc[ME].length,
{ sch.begin, sch.end, &locn) == FALSE))

if (stremp(sch.info, partc[ME).sch[locn].info) == 0)
continue;

}

(void) fprintf(mail, "n%s. %s %d, %d\n",
weekday[sch.wday], month[sch.month],
sch.mday, sch.year);

(void) fprintf(mail, "%s\n", sch.info);

} continue;
;lse

do__insert(partc[ME].sch, &partc[ME].length,
locn, sch.begin, sch.end, sch.info);

update_disk(partc[ME].fp. partc{MEl.sch,

} &partc[ME].length);
}
(void) fclose(mail);
(void) sprintf(command. "mail %s <%s\n", partc[ME].name,
. fil_string[0O]):
(void) chmod(fil_string{0], 0644);
ex(command);
(void) unlink(fil_string[0]):
confer_flag—;

-89-

/% ALL NEW ROUTINE ¥

open__ecal(i)

int i;

{

struct passwd *getpwnam(), *passwd_ rec;
struct stat info;

char sys_ string{25], temp[200];

long clock:

passwd__rec = getpwnam(pa.rtch] name);
if (passwd_rec == NULL) return(ERROR);

(veoid) strepy{partc|i].path. passwd_rec->pw_ dir);
(void) strcat(partclil.path, "/ecal");

(void) strepy(temp. partc{il.path);
(void) streat(temp. "/ecal.file");
if (access(partcli].path, 00) = 0)
(void) sprintf(sys_string, "mkdir %s", partcli].path);
(void) system(sys_string):
/* only root can use mknod to */
/* create a directory! */
if (access(partcil.path, 00) '= 0) return(ERROR);
if (i == ME)
if (chdir(partc[ME].path) != 0) return(ERROR);

(void) streat(partc(il.path, "/LCK.ECAL");

-90-

if (stat(partc(i].path, &info) == 0)

(void) time(&clock);
}f ((clock - info.st_mtime) < (HOURS * 3600))
printf(Centry for %s is locked- try later\n",
partc[il.name);
| return(ERROR);

}
}f ((partcli].fp = fopen(partc[i].path, "w")) == NULL)

printf("cannot create lock for %s\n", partc[i].name);
return(ERROR);

}
(void) fclose(partclil.fp):
i{.f ((partc[il.fp = fopen(temp, "r+")) == NULL)

if ((partc[il.fp = fopen(temp, "w")) == NULL)

printf("can’t open or create ecal data file\n");
\ return(ERROR);
(void) fclose(partclil.fp):
i{f ((partclil.fp = fopen(temp, "r+")) == NULL)

printf("can’t open or create ecal data file\n");
return(ERROR);
}
}
Ick_flg=1;
return(0);

-91-

edit(parms)
char *parms;

char string[20];
char temp_ begin[10], command[100];
int i, numl, ed:

if (partc{ME].length == 0)

printf("No appointments to edit.\n");
(void) sleep(2):

} return.

printf("which editor would you like to use:\n");

printf(\t1) vi\t2) ed\nwhich? *);

(void) gets(string);

if (string(0] == "2") ed=2;

else if (string[0] == "17) ed=1;

if (*parms I= NULL) (void) strepy(string, parms);
else

{
printf(

"Enter beginning and ending time of appointment to edit. -> ");
(void) gets(string);

get_time(1, string, &num1, &num1);
(void) strcpy(temp_ begin, time_ string(num1));

for (i=0; i <partcME].length && partc[ME].sch(i].begin < num1; i++);
if (partc[ME].schfi].begin == num1)

confer_flag = TRUE:

(void) sprintf(fil_string[0], "/tmp/ecal XXXXXX");

(void) mktemp(fil_string[0]);

if ((mail = fopen(fil_ string[0], "w")) == NULL) return;
confer__flag++;

(void) fprintf(mail, "%s\n", partc{ME].sch(il.info);

(void) fclose(mail);

(void) chown(fil_string[0], my_ uid, 0);

? (ed ==2)
(void) sprintf(command, "ed %s", fil_string);

else (void) sprintf(command, "vi %s", fil_string):
ex(command);

-92-

if ((mail = fopen(fil _string[0], "r")) == NULL)

printf("can’t open edited file\n");
(void) sleep(2):
return;

}
if (fgets(command, 100, mail) == NULL)

printf("empty file\n");
partc{ME].schli].info[0] = NULL;

}
else if (command[0] == \n") partc[MEl.sch(il.info[0] = NULL;
else (void) strcpy(partc[ME].sch[i].info, command);

pu‘tc[N[E].schh].mod = TRUE;

update_ disk(partc[ME].fp, partc{ME].sch, &partc[ME].length);
(void) fclose(mail);

(void) unlink(fil_string[0]):

confer__flag = FALSE;

printf("Cannot find %s appointment to edit.\n",
temp_ begin);

(void) sleep(2):

-93-

reply(parms)

t{:har *parms;

char string[20];

struct passwd *getpwuid(), *passwd_rec

char temp_ begin[10], command[100], temp end[10];
int i, numl, ok:

ok = 0;
t{'or (i=0:i < partc[ME].length; i++)

i{f (partc[ME].schli].requestor = -1)

ok=1;
break:
}
}
i{f (ok == 0)
printf("No tentative appointments to reply to.\n");
(void) sleep(2);
return;

}

if (*parms l= NULL) (void) strcpy(string, parms);

else
{
printf(
"Enter beginning and ending time of appointment to reply to. -> ");
} (void) gets(string);

get_time(1, string, &num1, &num1);
(void) strepy(temp_ begin, time_ string(num1));

for (i=0; i < partc{ME].length && partc[ME].schli].begin < num1;i++) ;
i[f (partc[ME].schi].begin == num1)
i{f (partc[ME].schli].requestor == -1)

printf("%s is not a tentative appointment.\n",
temp__begin):
(void) sleep(1):
} return;
passwd_rec = getpwuid(partc[ME].sch(i].requestor);

—94-

i{f (passwd_rec == NULL)

printf("Can’t find the requestor in the passwd file\n");
(void) sleep(1);

return;

}

printf("Do you wish to confirm attendence or send regrets”);
printf (" \(e/r\): ");

(void) gets(string);

i{f ((string[0] != "¢") && (string[0] 1= "r"))

printf("Invalid response to confirmation query\n");

(void) sleep(1);
return;
}
Send a mail message to the requestor L

(void) sprintf(command, "mail %s", passwd_ rec->pw_ name);
(void) sprintf(fil_string[1], "/tmp/ecal XXXXXX");

(void) mktemp(fil_string[1]);

confer_ flag++;

(void) streat(command, "<");

(void) streat(command, fil_string[1]);

printf(command);

it ((mail = fopen(fil_string(1]. "w") == NULL)

printf("Unable to send reply mail to requestor\n");

-95-

(void) fprintf(mail, "\n\n\t\tECAL NOTICE:\n\n");
(void) fprintf(mail,
"Regarding the following tentative meeting:\n\n");
(void) fprintf(mail, "tDATE: %s, %s %d. 19%d:\n",
weekday{wday_num], month[mon_ numl],
mday_ num, year_num);
(void) strcpy(temp_ begin.
time_ string(partc[ME].schli].begin)):
(void) strepy(temp_end,
time_ string(partc[ME]sch[i].end));
(void) fprintf(mail, "tTIME: %s to %s\n",
temp_ begin, temp_ end);
(void) fprintf(mail, \tWHAT: %s\n\n",
partc[ME].schli].info);
(void) fprintf(mail,
"%s is ", partc[ME].name);

if (string[0] == "c?)

(void) fprintf(mail,

"confirming their intention to attend\n");
partc{ME].sch(i].requestor = -1:
partc{ME].sch[i]l.mod = TRUE:

}

0
(void) fprintf(mail, "unable to attend\n");
partc]ME].sch[i].mod = TRUE:

} partc{ME].schi].active = FALSE:

update_ disk(partc[ME].fp. partc[ME].sch,
&partc[ME].length);

(void) fclose(mail);

(void) chmod(fil_ string[1], 0644);

ex(command);

(void) unlink(fil_ string{1]);

printf("Cannot find %s tentative appointment to reply to.\n",
temp_ begin);

(void) sleep(2);

AN ELECTRONIC CALENDAR SYSTEM
INA

DISTRIBUTED UNIX® ENVIRONMENT

by

DOUGLAS M. CLABOUGH

B. S.. North Carolina State University, Raleigh, 1980

AN ABSTRACT OF A MASTER’S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

Kansas State University

Manhattan, Kansas

1986

ABSTRACT

Current efforts in the area of office automation are concentrating on tools;
each of which automates a specific office function. An electronic calendar is one
particular tool of this type which aids in the scheduling of personal time, meetings, and
common resources.

This paper deals with the extensions to an existing electronic calendar. The
new features provide a conference scheduling capability and a facility for updating
calendars on remote machines. These capabilities are important in the modern office
environment. The first capability saves much time in arranging meetings between
several persons. The second capability allows users who maintain accounts on different
machines to have access to an accurate copy of their calendar regardless of the machine
on which they happen to be working. This project implemented the scheduling
capability and the remote system update capability while maintaining calendar

integrity and user privacy.

