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INTRODUCTION

A full diallel cross is the set of p^ possible single crosses and

selfs between p inbred homozygous parental lines. The animal or plant

breeder needs the full diallel cross in order to determine whether cross-

ing per se is of value in improving productivity. Furthermore, he needs

to determine the relative importance of certain types of specific combin-

ing ability and to indicate whether extensive crossing is needed to exploit

non-additive genetic variation. Thus, the purpose of the diallel cross is

to investigate the types and magnitudes of variability that contribute to

differences among the p inbred parental lines

.

The p^ combinations may be displayed in a p x p table where x.

.

represents the mean value of the i inbred line, x. . represents the

mean value of the F^ generation resulting from crossing the i and j

inbred lines, and x . . represents the mean valiie of the F^ generation of

the reciprocal cross. Hence, the p^ combinations may be divided into

three groiips: (l) the p parental lines, (2) the set of l/2p(p-l) F 's,

and (3) the set of l/2p(p-l) reciprocals.

There have been many different approaches to the analysis of the

diallel cross depending upon the mathematical model xised. This maices it

very difficult for the experimenter to select one of the many methods

available for his particular needs. Yates (19^7) presented the orginal

analysis. This was modified and stated in genetic parameters by Jinks and

Hayman (l953) and improved further by Jinks (1954) and Hayman (195^ a, b).

Kenrpthome (195^) discussed the analysis in terms of the variances of the

inbred parents and the crossbred offspring, and the covariances between



parents and offspring. Griffing (1956) discussed the analysis in terms

of general combining ability (g. c. a.) and specific combining ability

(s. c. a.) as defined by Sprague and TatXM (19^2) . Henderson (19^8, 1952)

discussed the analysis in terms of combining ability variances and maternal

effects. Jinks (l95^) and Jinks and Broadhurst (1963) discussed still

another analysis concerned with maternal effects. Wearden il96k) summerized

and compared most of the different preceding analyses in connection with

two new more realistic models in order that the experimenter might use

the diallel cross more effectively.

The pmpose of this report is to discuss the analysis of the full

diallel cross replicated in a randomized complete block design with

special emphasis on the results of Wearden 's (l964, 1965) work. Two

methods of sampling may be applied to the diallel models. Four analyses

will be considered for each of the sampling methods and model combinations.



DESIGN

A randomized complete block design with replication was chosen because

of its common \isage and its ease of application to the full diallel cross.

Various other designs may be tised q^uite successfully, but some form of

replication is necessary for an estimate of random variation. It is

assumed that there are p^ matings each of which is assigned at random

within each of the r replicates. The source of variation, degrees of

freedom, and eicpectations of mean sq.uares for such a design are:

SOURCE d.f. E (M. S.)

a^ + p2a|

0^ + ra5

The purpose of the analysis of a full diallel cross is to partition

the p -1 degrees of freedom, the corresponding sum of squares, and variances

among matings into meaningful and useful genetical components or effects.

To accomplish this, a linear model is necessary which will give reliable

estimates of the magnitudes of these various genetical components or

effects when used with the appropriate analysis.

MODELS

In diploid species the female and male parents both contribute

equally to the nuclear genetic composition of the zygote, but the biological

contribution of the female parent is usually greater than that of the male

REPLICATES r-1

MATINGS P^-1

RANDOM VARIATION (r-l)(p2-i)



parent. Maternal effects are possible through cytoplasmic inheritance

(if one accepts this theory), or may exist because the female gamate is

usually larger than the male gamate. Also the zygote usiially receives

nutrition for development either directly or indirectly, from the female

parent, and finally, it is usually the female parent who feeds and cares

for the yoimg after they are bom. Wearden (l964) has presented the

following maternal effects model (m. m. e.),

^iJK = ^ * % ^ Sj -^ "^j
•*

^ij
•*
^K

*•

^iJK '

which includes a single linear term, m., to account for these various
J

maternal effects.

Often the progeny of the ij cross differ greatly from the progeny
'

of the ji cross and maternal effects do not always account for these

differences. Sex linkage or heterotic effects are probably the best

explanation for these effects. Wearden (l964) has also presented the •

following reciprocal effects model (m. r. e.),

^ijK = "^ -^ Si -^ Sj -^
-io

-^
-ij + \ -^

^ijK '

which takes into account these reciprocal effects.

Griffing (1956) discussed the model

^iJK = ^^ -^ % * ^Xj -^
^ij

*- \ ^ ^ijK

for the full diallel cross which does not account for maternal effects and

always accounts for reciprocal effects whether they exist or not. Hayman

(195^ a, b) discussed the model



which accounts for additive variation between the parents and for maternal

effects. In order to account for the dominance effects Hayman partitioned

the s. component into the components b^, b^, and b^ where

b = a general heterotic effect common to all bipeirental progeny.

bp = a \aniq.ue heterotic effect shared by all biparental progeny from a

given parent.

b_ = a third form of dominance accounting for the remaining genetic

differences or the fortuitous combination of genes.

Kempthome (195^) has discussed Hayman's g., g., and s. further in

statistical genetic terms.

The components in the above four mathematical models are defined as

follows

:

X. .^ = the obseirvation of the cross between the i paternal line

and the j maternal line in the K replicate.

p, = a mean valxie common to all matings to which inferences can

be made from this set of p^ crosses.

g. = the common genie contribution of the i paternal line

(mean deviation from the grand mean due to the i paternal

line ) .

g = the common genie contribution of the j maternal line

(mean deviation from the grand mean due to the j maternal

line).



g. = the general combining ability effect of the j maternal

line vhich is confounded with maternal effects if they exist.

m. = the maternal contribution of the j maternal line.

I th
m. = the difference between the effect of the j parental line
J

xised as a male parent and as a female parent.

s. . = the Interaxition between the genetic contribution of the i

line and that of the j line such that s. . = s . , .

f

s. . = the specific combining ability effect for the cross between

the i paternal line and that of the j maternal line.

r. . = the additional effect of lasing the i line as a male parent

and the j line as a female parent such that r . . =

and r . . = -r . .

.

b^ = the effect of the K replicate. It is usually assumed that

the bj^ are normally, identically, and independently distributed

random variables with zero mean and variance a^.
B

6 . „ = the random effect peculiax to the ij cross in the K

replicate. It is assumed that the e. .^ are normally,

identically, and independently distributed random variables

with zero mean and variance a^.

The sampling distributions of g , g., g , m., m., s. , s. and r. .

1 J J J J ij ij ij

depend upon the sampling method -used and are discussed under sampling

methods

.



Spragxie and Tatum (1942) defined general combining aoility (g. c. a.)

as "the average performance of a line in hybrid combination, " and specific

combining ability (s. 'c. a.) as "those cases in which certain combinations

do relatively better or worse than would be expected on the basis of the

average performance of the lines involved." Weaxden's (19^4) definition

of g is not that of general combining ability as defined by Griffing

(1956). Furthermore, Wearden's definition of s. . does not fit Griffing 's

s* . Griffing defined these effects as deviations from the mean of the

F^ 's while Wearden defined these effects as deviations from the weighted

means of the p inbred lines and p(p-l) crossbred lines. Although the

differences between Weeirden's g. and general combining ability axe

probably trivial, his s . . in addition to specific combining ability

contains a component for the average deviation of the crosses from their

respective midpaxents. This additional component is Hayman's "mean

dominance deviation." He has developed a method for computing the sum •

of sq.viares due to this effect and has indicated the appropriate variance

ratio to test this "mean dominance deviation" effect for significance.

RANDOM SAMPLING EFFECTS

Sometimes it is impossible to include all parental lines in an

experiment as a species is often easily subdivided into readily identifiable

subgroups such as clones, varieties, families, herds, or flocks. A random

sample is taken from the paxent population and inferences axe not made so

much about the individual lines in the sample, but are made about the

parental population parameters. Eisenhart's (19^7) Model II describes
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the situation where the p psa-ental lines are a random sample of some inbred

homozygous parent population.

Under the assumption of random sampling, p. is the mean of the parent

population and the expectations of all components of the model are zero.

While the expectations of these components sq.uared are respectively

a^, a^, a^, a?, and a^. The reciprocal effects are fixed in the sense.
g' m' s' B' ^

that Tn = and r. . = -r... but it is assumed that the l/2 p(p-l)

pairs of r. come from a very large population of such pairs of effects.

Therefore the expectation of r. . is zero and the expectation of the square

of r. . is a^. In order to make valid variance ratio tests of significance

under the ass\amption of random sampling where n is a constant and all

other effects are random variables, it is necessary to assume that these

random variables axe normally, identically, and independently distributed

with zero means and variance a? where = g, m, s, and r respectively.

FIXED SAMPLING EFFECTS

The experimenter often encounters the situation where the p parental

lines are regarded as being the pop\iLation about which inferences are to

be made. Eisenhart's (19^7) Model I describes the situation where the

parental lines are a fixed sample.

When the experimenter uses a fixed set of parental lines, n is the

mean of all possible replications of the experiment. Fixed effects mean

that the components of the model s\jm to zero for all i and j except for

r^ which is assumed to sum to zero only for each ij combination. Thus,

the effects b,, and e
K 'ijK

^^^ random variables while g^, g , m , s^ , and
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r. . are constants. The expectations of the constant conrponents in the

model are the constants themselves. The expectations of the squares of

the above constants are the constants sq.uared. Statistically, these

constants have no variance althoiigh an average of the squared effects may-

be computed. This average squared effect corresponds to the expected

mean square in the analysis of variance for fixed effects experiments.

It is computed by dividing the sum of the squared constant by the

appropriate degrees of freedom for that term in the analysis of variance

table. These averages of squared deviations will be called "variances

of fixed effects" and will be denoted by a?. Which is the same a|

notation \ised with random sampling with a tilde superscript.
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ANALYSIS OF THE FULL DIALLEL CROSS

The four ansLLyses to be considered for the full diallel cross are

(l) Hayman (l95^ a, h) in terms of the Wearden {l96k) models with Hayman's

subdivision of the b sum of squares, (2) the p x p factorial used by Jinks

and Broadhurst (1963), (3) the Wearden il96k) interpretation of the sum

of squares given by Henderson (1952), and (4) Griffing's (1956) analysis

for his model. Modified or partial diallel crosses will not be considered

and the reader is referred to Griffing's (1956) discxjssion for this

situation.

Each analysis will be developed for a single replicate of the full

diallel cross to keep the mathematical symbolism to a minimum. In order to

expand the analyses to r replicates, crosses are summed over all replicates

'

and the indicated analysis is performed on these totals. Thus, all divisors

for the sums of squares must be multiplied by r and all of the coefficients

of all variance components except a^ in the expectations of mean sqxiares

must be multiplied by r.

SUMS OF SQUARES AND EXPECTATIONS FOR RANDOM SAMPLING METHODS

It is necessary to compute eleven different sxms of squares in order

to partition the p^-1 degrees of freedom and the corresponding sums of

squares for raatings according to the four analyses under consideration.

Table 1 presents the sums of squares and their expectations imder both of

Wearden 's models for a single replicate.

In table 1, a dot indicates the simmation from 1 to p over the values

with the omitted subscript, and the capital sigmas indicate the summation
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over all values of the i, j, and ij combinations. Letters with a prime

indicate that the suas of sqviares express variation from the orgin while

letters without a prime indicate that the sums of squares express varia-

bility from the mean. The symbol 1 is used for the correction factor

since one degree of freedom is associated with this value.

Table 2 gives the degrees of freedom, sums of squares, and expectations

of mean squares for both the maternal effects model and reciprocal effects

model in conjunction with the Hayman, factorial, and Henderson analyses,

and Griffing's model used with his analysis.

The Hayman analysis for the maternal effects model gives a valid

variance ratio test (F - test) for the significance of maternal effects

as verified by the ratio c e3q>ected mean sqviare / d expected mean square.

The ratio b expected mean square / d expected mean sqviare indicates a valid

variance ratio test for the significance of the variance due to genetic

interaction. There is no valid variance ratio test for detecting a

significant genie variance. The ratio b^ esq^ected mean square / d

expected mean square indicates a valid variance ratio test for the

significance of general heterosis. The valid variance ratio test for

the significance of nested heterosis is verified by the ratio b_ expected

mean square / d expected mean square. The ratio b_ expected mean square

/ d expected mean square demonstrates a valid test for the significance

of the fortuitous combination of genes.

The reciprocal effects model for the Hayman analysis has the same

expectations for the c and d mean squares which allows these two terms

to be pooled. With replication, the significance of genetic interax:tion

variance may be tested, as shown by the ratio b expected mean square /
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Random variation expected mean square. The valid variance ratio test

for the significance of reciprocal effects is shovn hy the ratio pooled

c and d expected mean square / Random variation expected mean square

.

The significance of average heterosis among lines, nested heterosis,

and the fortuitous combination of genes may be tested validly with the

respective ratios, b^ mean square, h- mean square, and b_ mean square

by Random variation mean square. An exact variance ratio test does not

exist for the significance of genie variance, but the ratio a mean square

/ b mean square is a conservative test of genie variance. A conservative

test is one where the actual probability of a type I error is less than

the a - level given in a table of critical valiies. This test is approx-

imate since the coefficient of a^ in the b expected mean square is

approximately eq\aal to the coefficient of a^ in the a expected mean

square

.

Valid variance ratio tests exist only for the maternal effects model

when the factorial analysis is used. Significant maternal effects are

detected by the ratio Maternal mean square / Paternal mean square . The

ratio Paternal expected mean square / M x P expected mean square indicates

a valid variance ratio test of significant genie variance. Replication

is necessary to test the significance of genetic interaction variance.

This is tested by the ratio M x P mean square / Random variation mean

sq\iare.

The factorial analysis used in conjunction with the reciprocal effects

model is of no use because there are no valid or even good approximate

variance ratio tests. Also, it is not possible to estimate the variance
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components as the expectations of the Maternal and Paternal mean sq.\iares

are the same. This results in trying to solve two independent eq.uations

for three unknown variance components

.

The analysis which Wearden has inferred from Henderson's equations

for the estimation of variance components is particularly intended for

the maternal effects model. The significance of maternal effects is tested

validly by the ratio Dams mean sq.uare / Sires mean square . Genetic inter-

action can he tested for significance as inferred by the ratio Crosses

expected mean square /Remainder expected mean square. There is no exact

test of genie variation. The ratio Sires mean square /Crosses mean sqxaare

is a conservative test of genie variation. This test may be too conservative

though if a^ is very small. The Crosses term is the same as the b term in

the Hayraan analysis . Th\is it may be partitioned into general heterosis,

nested heterosis, and the fortuitotis combination of genes. These effects

are tested for significance as discussed under the Hayman analysis.

There is no valid variance ratio test for genie variance when the

Henderson analysis is used in conjunction with the reciprocal effects

model. Valid variance ratio tests exist for testing the significance of

reciprocal effects and genetic interaction variance when there is replication.

These effects are tested with the ratios Remainder mean square and Crosses

mean square by Random variation mean square respectively. Again Crosses .

may be partitioned into Hayman 's three b components. These effects are

tested for significance as indicated in the Hayman analysis for the

reciprocal effects model.

Replication is necessaa:^- for any variance ratio tests to be valid

under the Griffing analysis. The significance of general combining
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ability effects and specific combining ability effects are tested with

the respective ratios (g. c. a.) mean sq.uare and (s. c. a.) mean sq\;iare

by Random variation mean square. The ratio Reciprocal effects mean

sqxaare / Random variation mean sq.viare is a valid variance ratio test of

reciprocal effects. Griffing's analysis of the full dieaiel cross does

not estimate the variances of general combining ability and specific

combining ability as defined by Sprague and Tatum (1942). They defined

these terms about the mean of the F^ generation or the mean of the

crossbreds. Griffing's analysis resiilts in these terms being computed

from the weighted mean or the mean of the purebreds and crossbreds. If

maternal effects exist, they will be confounded with reciprocal effects

since Griffing's reciprocal effects term combines Hayman's c and d terms

xmder the maternal effects model.
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TABIE 1

Coefficients for variation from the orgin in a single replicate of a diallel cross
uader the assusiption that the parental lines constitute a random sample

,UMS OF SQUAEES

!x2

:(x,;Vp

:(x,.)Vp

^/i>^

SYlfflOL

0?'

P'

M'

g
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%

^s

P

m ^

P(P-I)
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(p-1)
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SUMS OF SQUABES AND EXPECTATIONS FOR FIXED SAMPLING METHODS

-. Table 3 gives the sums of squares and their expectations for the

situation when the p parental lines are a fixed sample and inferences are

just to be made about these fixed parental lines . The symbolism and

notation used in this table is the same as that of table 1.

The coefficients in table 3 differ in many cases from those in table

1. This is because fixed effects when summed over all values add to zero.

This also introduces a negative correlation, -l/(p-l), within any set of

p constants

.

Table k gives the degrees of freedom, method of computing sums of

squares, and expectations of mean squares for the Hayman, factorial, and

Henderson analyses used with Wearden's models. It also gives this infor-

mation for the Griffing analysis using his model.

. The Hayman analysis was especially designed for experiments involving

a fixed set of parental lines. Under the maternal effects model genie

variation is tested for significance with the ratio a mean square / d

mean square. The valid variance ratio test (F - test) for the significance

of genetic interaction variance is indicated by the ratio b expected mean

square / d expected mean square . Significance of maternal effects is

tested by the ratio c mean sqioare / d mean square. General heterosis may

be tested for significance with the ratio b mean square / d mean sqiiare.

The ratio b^ expected mean square / d expected mean square indicates a

valid variance ratio test for the significance of nested heterosis. The

ratio b^ mean square / d mean square is used to test the significance of

the fortuitoxas combination of genes.
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All variance components may be tested by the Random variation expected

mean square to yield exact variance ratio tests when the Hayman analysis

for the reciprocal effects model is replicated. General heterosis, nested

heterosis, and the fortuitous combination of genes may also be tested

validly by the Random variation expected mean sqviare.

The factorial analysis for the maternal effects model gives exact

variance ratio tests . Maternal effects can be tested for significance

as seen by the ratio Maternal effects expected mean square / Paternal

effects expected mean sq.\mre. With replication significance of genie

variance is detected by the ratio Paternal effects mean square / Random

variation mean square. The ratio M x P expected mean square / Random

variation expected mean square indicates the test for significant genetic

interaction variance.

As in the case of random sarapling, the factorial analysis for the

reciprocal effects model is of little valvie. No valid variance ratio

tests exist and it is not possible to estimate the variance components

for the same reasons as discussed under random sampling.

The Henderson analysis for the maternal effects model results in

exact variance ratio tests when the parental lines are fixed. Maternal

effects are tested for significance by the ratio Dams mean square /

Sires mean sqi:iare. Significant genie variation and genetic interaction

variance are detected respectively by the ratios Sires mean square and

Crosses mean square by Remainder mean square. Crosses may be partitioned

into average heterosis among lines, nested heterosis, and the fortuitous

combination of genes. These effects are tested for significance as

indicated in the Hayman analysis for the fixed effects model.
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The Henderson analysis for the reciprocal effects model does not

give an exact test for genie variation. But a very conservative test for

genie variation is made by the ratio Sires mean square / Remainder mean

square. Reciprocal effects and genetic interaction variance may be tested

for significance by the ratios Remainder mean sq.uare and Crosses mean

sqviajre by Random variation mean square respectively with replication.

Again Crosses may be partitioned into Hayman's three b components

.

These components are tested for significance as disc\issed in the Hayman

analysis for the fixed reciprocal effects model.

Griffing's analysis for his model yields exact variance ratio tests

when there is replication. General combining ability effects and specific

combining ability effects can be tested for significance as seen by the

Random variation expected mean square . Reciprocal effects are also tested

by the Random variation mean square. Again Griffing's analysis for the

full diallel cross does not estimate the variance of general combining .

ability and specific combining ability as defined by Sprague and Tatum

(19^2). The reason for this is the same as discussed under Griffing's

analysis for random sampling methods.
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TABLE 3

Coefficients of variation from the orgin in a single replicate of a full diallel
ross under the assumption that the parental lines axe a fixed sample
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^j
.

T' P^ 2P^ ^ P^ P^ P(P-I)

(x,.)-/i P' P^ P^ P-1

(X„)=A M' P^ P^ p P= p-1

• 9

1 P« I

(X +X )2/2p
J. • • JL

G* 2p^ 2p^ p+1 pV2

(x,^«j,)V2.af, C P^ 2P^ p'^ p(p+l)/2 pV2

:x,.-x_,)Vap R p-1 pV2 2(p-l)

;x,j-Xj,)-A D p(p-l)/2 P^/^ P(p-l)

^i.-pX^)^/p^(p-l) Bj^ p/(p-l) 1

:\^^,i^-:9\^)^Mv'2) Bg '^^ (p-1)

:2X -pX )2/p2(p.2)
• • •

^ij^^ji)^A-^fi B3
^^^(;^i)gg) (p-3)/fe

'^^i.'"^.i"2^ii^^/2(p-2)
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REPLICATION AND POVffiR

Replication is necessary in the analysis of the full diallel cross

regardless of the model used. It is usvially needed to provide an estimate

of the random variation a^. If a comparison within the p^ matings results

in an independent estimate of a^, then this a^ may be pooled vith the a^

resulting from replication giving greater denominator degrees of freedom,

and thvis power, where this source of variation is the testing term for

tests of significance.

The relative power of the different variance ratio tests many times

determines the analysis used if the experimenter is interested in analyzing

the significance of one particular variance. The following discussion

concerning the relative power assumes that there is replication and that

all estimates of random variation a^ are pooled. The h (Genetic inter-

action) mean square of Hayman's analysis and Crosses mean square of the

Henderson analysis give the more powerful test of o^ for both of Wearden's
s

models under both sanipling methods. For a fixed set of parental lines

the Hayman analysis gives the most powerful test of a^ for the reciprocal

effects model. The factorial analysis or Henderson analysis are probably

more powerfiil than the Hayman analysis in testing a^ for the maternal

effects model. The Hayman analysis is probably less powerful since the

presence of the coefficient for a^ in the a mean square for the maternal

effects model requires the use of the c mean square as a test term resulting

in a loss of denominator degrees of freedom for the variance ratio test.

The larger the relative size of a^ and the greater the loss in degrees of

freedom, the more adversely affected will be the power in testing a^



27

under the Hayman analysis for the fixed maternal effects model. The pooling

of the c and d mean sq.uares and testing them with the Random variation

mean square gives the most powerful test of o^ under the reciprocal effects

model for both sampling methods. Griffing's Reciprocal effects term is

the same as the Hayman pooled c and d terms under the reciprocaJ. effects

model. Therefore, testing Reciprocal effects by Random variation is also

the most powerful test of o^ .
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LEAST SQUARES ESTIMATES FOR WEAEDEN'S MODELS

The least squares estimates for the components of the maternal

effects model,

are obtained under the assumption that g., g m., and s.. are fixed
^ J <j ij

variables. Then the expectations of the partial derivatives taken with

respect to the various components of the error sum of squares,

2(X.^ - H - g, -
gj - m. - s.j)2

,

are set identically equal to zero. This results in the following set of

normal eqiiations.

a L(x^^ - ^ - g^ -
g^

- m^ - s^^)2/ da

^ ^(^ij - ^^ - % - Sj - n^j - Sij)V 8
gi

= 2 Z(X^. - ^ - g^ -
g^ - m. - s^^)

= Z X - pji - pg - Zg. - Zm. - ZS"^ . E 0.

3 £(X,j - ^ - g^ - 8j - m. - s^j)V 8 m_j
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= Z X^j - p; - Z g. - pg. - p^. - ^ s. .
H 0.

The condition that s. . = s^. must be utilized in the following manner to

obtain a normal eq.viation for s. .

8 (Ze?. +Ze2.) /as..

a(Z(X^^-,a-g^-g^-m.-s..)2 *-Z(X.^-H-gj-6.-m.-s^.)2)/8 s^^

2( (X. .-n-g.-g.-m.-s. .) + (X..-ia-g.-g.-m.-s,.) )^ ^ ij ^ *i ^j ij' ^ jx "^ ^j '^x X jx' '

A ^

^ij
-^

^oi
- 2^^ - 2Si - 2g^ - -. - m^ - 2s^j :. 0.

The assumption that g.^ g., m.^ and s. . sLre fixed variables implies
* J J xj

the restrictions that

1-k. =l-k. =Z^. =IS.. =0.
1 J J ij

The leajst squares estimates of the various effects are then obtained by

applying the above restrictions to the nonaal equations when solving them.

Therefore, the least squares estimates are:

^ = X /i)2 = X
• • • •

g = (X - ptL)/i) = X - X
^ •> • X • • •

2j"%=^J. -^

because it is assumed that the genie contributions of the maternal and
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paternal lines are the same,

S. = (X - pll - pg ) /p = X.-X -X, +X
• • '

= X ,
- X, , and

The least square estimates for the reciprocal effects model,

Xi . = (.-*- g, + g. + s.. .- r.. -f e..
,

are obtained in a similar way. The normal equations for the reciprocal

effects model are:

8 Z(x,j - . - g^ -
,j

. s^j . r^.)a / a ,

= E x^
J

- p2^ - pEg^ - pZi^ - J2 - Z?^ . E .

ai:(x.. -^x-g^-g. -s.. -r..)2 /ag^

= 2 Z(X,. - ^ - g. - g. - 3^. - r,.)

Ex
ij

PtA - pg. -Eg - E s, , - E r. . E
J- J x,i 1.1ij
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8 Z(x,j . ^. - g^ - g^ - s^^ - r.^)2 / a gj

2 E(X. . - ^x - g. - g. -
s. J - r,j)

Z X^j - p^ - L g^ - pgj - I Sij - 2 r^j ^ 0.

Again, the condition that s . . = s . . mxist be utilized to obtedJi a normal

eq.uation for s. ..

' (^ ^\j - ^ 1i) / 9 ^ij

= 3 (Z(X^^-^.-g^-g.-s^.-r. .)^ *- Z(X..-^-g.-g.-s^.-r^^)2)/8 s^^

= 2 ( (X^.-^.-g,-g.-s. .-r^.) H. (Xj^-^-g^-g^-s ..-r..) )

_^ ^

^ij
-^

^ji
- ^^ - ^h - ^Sj - 2Sij H 0.

Also, the condition that r. . = -r . . is necessary to obtain a normal

equation for r . .

^0

8(Zef..Ze5^)/8r,j

= 8(Z(X,.-^-g^-gj-s^^-r,^)- - ^(Xji-H-gj-gi-Sj,-rj,)-)/8 r^^

= 2((X^j-^-g^-g.-s,^-r,j) - (X^,-^-g.-g,-Sj^-rj^))

X. , - X,, - 2r, . E 0..
IJ Ji ij
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The restriction,

Zg. =Zgj=Zs.^=Er.. = 0,

is applied to the above normal equations when solving them for the least

sq.uares estimates of the various effects. Thus, the least squares estimates

for the components of the reciprocal effects model are:

• • • •

• g = (X - pTL) = X - X

^ij = ^^ij^V"'^^"^%-'V /^

^j = (^ij-V/' •

The least square estimates for components of Wearden's (l964) maternal

effects model, Wearden's reciprocal effects model, and Griffing's (1956)

reciprocal effects model are summerized in table 5. The least squares

estimates for the components of Griffing's model are derived in a similar

manner.
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TABLE 5

Least squares estimates of the effects of Wearden's maternal effects model,
reciprocal effects model, and Griffing's reciprocal effects model

Si X . - X
1* •

^J
X, - X

• • •

"J \i -
^i.

X

X. - X
X • • *

X . - X

EFFECT MAIERHAL EFFECTS RECIPROCAL EFFECTS GRIFFING 'S
ESTIMATE MODEL MODEL MODEL

6(^^+xJ,/2-x^

-X -ic )/z+x

ij ^^ij-^di)/2 (^ij-^ji)/^
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ABSTRACT

A f-all diallel cross is the set of p^ possible single crosses and

selfs between p inbred homozygous parental lines. The animal or plant

breeder needs the full diallel cross in order to determine whether crossing

•per se is of value in improving productivity. Furthermore, he needs to

determine the relative importance of certain types of specific combining

ability and to indicate whether extensive crossing is needed to exploit

non-additive genetic variation. Th\as, the purpose of the analysis of the

full diallel cross is to investigate the types and magnitudes of variability

that contribute to differences among the p inbred homozygous parental

lines

.

The experimental design discussed is the randomized complete block

design with replication. Four statistical models are applied to this

design: Wearden's maternal effects model, Wearden's reciprocal effects

model, Hayman's additive effects model, and Griffing«s reciprocal effects

model. The purpose, advantages, and disadvantages of each model is

discussed.

Two methods of sampling, fixed and random, are considered. The

sampling method has a profound effect on the analyses and interpretation

of the above models.

Four analyses of the full diallel cross are presented for both of

Wearden's models and Griffing's model under both sampling methods;

namely, Hayman's, the factorial, Henderson's, and Griffing's. The purpose,

advantages, and disadvantages of each analysis is discussed for each model

and sampling method.



ii

The least squares estimates for the components of Wearden's maternal

effects model and reciprocal effects model are presented. Power and

replication of the four analyses are discussed in order that the experimenter

may select the test combination of model, analysis, and sampling method to

etccomplish his purpose

.


