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INTRODUCTION

In the last twenty-five years, Boolean algebra has developed from

what was often regarded as just an interesting curiosity into an exten-

sive and nature branch of mathematics (5, ix) . Boolean algebra is named

after the English mathematician, George Boole, He developed this algebra

after the realization that an algebra is an abstract system. This gave

Boole the opportimity he needed, and he separated the symbols of mathe-

matical operations from the things upon which they operate and proceeded

to investigate these operations in their abstract setting. Ke produced

many notable mathematical works, but his main effort was in x-n:iting his

book, "The Laws of Thought," As the name Boolean algebra suggests, it

is part of that branch of mathematics knox-m as modern or abstract algebra.

It is an algebra usually studied in a basic course of modern algebra,

and it has "readily available applications to illustrate the theory. One

phase of its development has been inspired by the applications of Boolean

algebra to the design of switching circuits for telephone and control

systems, and to design of logic circuits for corputers. However, the

subject has also developed into a significant branch of abstract algebra

with important applications to topology (5, ix). Thus Boolean algebra

is a proper sphere of interest for the pure mathematician as xcell as for

those primarily interested in applications

,

The purpose of this paper is to approach Boolean algebra from a

basic set of postulates, then to develop this algebra from the postulates

and theorems of lattices, and finally to present a class of simple

In thxis report the first number vdll be used to indicate the refer-
ence and the second number viill indicate the page. The references are
listed in the bibliography.



ST-dtching circuits as a model of Boolean algebra. A primary purpose in

presenting this nodel is to illustrate hox'j- observation of a physical or

logical system dictates tho details of the mathematical system used to

describe it. Since in the present instance the mathematical system used

is different from the familiar ones of elementary algebra, geometry, and

the calculus, it is well to consider some of the characteristics of a

formal, mathematical description of a physical system.

In a foriral, mathematical system one considers the following condi-

tions. Because one cannot define every word in terms of simpler xcords,

every mathematical system necessarily contains undefined terms. Simi-

larly, because one cannot deduce every theorem as a logical consequence

of simpler theorems, every mathematical system must also contain unproved

theorems or postulates. From the undefined terms and the postulates

one deduces theorems by means of the rules of logic. Then one introduces

definitions of new terms and proves more theorems.

The choice of the undefined terms and the postulates of a rathemat-

ical system is by no means an easy task. Those of Euclidean geometry

were the outgroirth of several thousand years* experience \Ndth exoerimental

and intuitive geometry. In all other exam.ples of postulational systems

the undefined terms, postulates, and the definitions are likewise selected

on the basis of physical or mathematical experience and in such a way as

to yield useful results.

VJhen mathematics is applied to a phj'-sical system, it is relatively

rare that the system being studied is well enough understood so that

even a reasonably complete set of undefined terms and postulates are

suggested. Often, however, it is possible to give a set of postulates

for a mathematical system which is a useful description of a physical



system. An example of this is the use of Boolean algebra to represent

switching circuits. One then has a mathematical system representing a

particular physical ^stem.

¥.0 mathematical ^stem has ever provided all the answers to all

of the problems concerning its corresponding physical system (5f x-xi).

This is because it cannot take into account all of the conditions which

affect the physical system in question. Normally one ignores all but

what appears to be the most important factors. Taking these factors into

account, one idealizes and ^mbolizes one's physical concepts and obser-

vations, thus utilizing a mathematical system which produces theorems

which correlate closely with what is observed, l-flaen this is the case,

the system in question is a useful one. Otherwise, the system is unsatis-

factory and at least one conditional factor must be added to the list of

vital ones.

This circumstance appears in the mathematical study of svjitching

circuits. The simple mathematical system with which one begins is based

on certain admittedly incomplete and inaccurate assumptions concern-

ing the switching circuits which, however, make the mathematical system

much more tractable. The resulting system is useful in solving a mde

variety of problems because the factors invalidating the assumptions in

question are not of major significance for the problems in question.

When the invalidating assumptions do become significant, theory and

observation ivill no longer correlate satisfactorily, and one must replace

the system by a more general one which recognizes the importance of

these factors.

In what follows an attempt ivill be made to point out where simpli-

fying assumptions are made, and also to indicate the physical origins



of the postiolates being used.

DEFINITION OF A BOOLEAN ALGEBRA

For later ease of reference and in order to emphasize that Boolean

algebra is, in fact, a mathematical structure independent of its appli-

cations, a Boolean algebra will be defined abstractly and the most useful

rules will be derived. Some of the postulates may appear strange or

artificial. The study of applications ;d.ll help to make clear the

necessity and naturalness of the postulates. The postulates are given

in an order that is convenient in the remainder of the paper. They do

not form an independent set.

Consider a set B of elements for which first of all equality is

introduced and the familiar notation x = y is used. If one attaches

meanings to these statements, the meaning of x = y would be that x and y

are two names for identical objects. There are no restrictions placed

on the nature of the objects, so that one has equality not only betvreen

numbers, as is common in mathematics, but between sets, or between

functions, or indeed between the names of any objects.

Formulas involve operations, and it is assumed that in B there are

two binary operations, that is, operations that may be applied to any

ordered pair of elements of B to yield a unique third element of B. A

Boolean algebra can then be defined in the folloi-Ting manner (3, 112).

Definition . A Boolean algebra B is a system consisting of a set

B of elements, two operations ^ and r\ (usually read "cup" and "cap"),

and the folloxd.ng postulates:

la, ^ is commutative on B,

lb. O is commutative on B.



2a. B contains an identity element ;d.th respect to \J .

2b. B contains an identity element 1 with respect to H .

3a. \J ±s distributive Td.th respect to H •

3 b. n is distributive td-th respect to \J .

if. For each element b in B there is an element b' in B such that

b U b' = 1 and b n b' = (b» is called the complement of b)

.

Next some important theorems concerning Boolean algebra vdll be

tn.ven.

Theorem 1-1. Every statement or algebraic identity deducible from

the postulates of a Boolean algebra remains valid if the operations

". ." and "/^", and the identity elements and 1 are interchanged through-

out. (This is known as the nrinciple of duality.)

The proof of this theorem follows from the symmetry of the postu-

lates i-dth respect to the txro operations and the two identities.

%• virtue of this principle, pairs of theorems will be stated.

Furthermore, it viill be necessary to prove only one of the theorems,

for the steps in one proof are dual statements to those in the other,

and the justification for each step is the dual postulate or theorem

in one case of that in the other.

Theorem 1-2. For every b in B, b \J b = b.

Theorem 1-2 a. For every b in B, b O b = b.

Proof: One has

b = b u = b \J (b n b') = (b U b) n (b U b') =

(b u b) n 1 = b U b.

Theorem 1-3. For every b in B, b VJ 1 = 1, -
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Theorem

•

1-3 a. For every b in B, bH = 0,

Proof: One has

b U 1 = 1 ^ (T= U 1) = (b U b«) /% (b U 1) =

b U (b« n 1) = b \J b* = 1.
1

i

Theorem 1-4. For every a and b in B, a IJ (a A b) = a.

Theorem 1-1^ a. .For every a and b in B, a ^ (a VJ b) = a.

Proof:

,

One has

a U (a n b) = a U (b n a) = (b n a) U a =

(b n a) U (1 n a) = (b U 1) H a = 1 H a = a.

Theorem 1-5. U is associative on B.

Theorem 1-5 a. n is associative on B.

Proof: It is necessary to show that a \J (b VJ c) = (a VJ b) VJ c '

for any a, b , and c in B.- Let T = a VJ (b U c) and S = (a \J b) <j c.

Then a n T == a n[a \J (b \J c)J = a by theorem 4. Similarly

a n S := a n ["(a U b) VJ c] = [a n (a \j b)] U (a n c) =

•
a \j (a n c) = a.

Thus a n T == a n S. Furthermore,..

a . n T == a' n [a VJ (b U c)] = (a'H a) \J [a' A (b \J c)] =

U [a* rv (b \J c)] = a* r\ (b VJ c) and

a * n s =
= a«n [(a VJ b) VJ c] = [a' A (a VJ b)] VJ (a' H c) =

_(a' n a) VJ (a' A b)] VJ (a* A c) =

(a* A b) VJ (a» A c) = a' A (b U c).

Thus a' n T = a» A S. Then
— '

'



(a n T) \J (a* n T) = (a n S) U (a' A S) or

(a n a') U T = (a n a') U S

or T = S. Kence a \J {h \J c)' = {5. \J b) \J c.

Theorem 1-6. The eler..>.-int b' corresponding to each b in B is unique.

Proof: Assume there are two such elements, b-,' and bo', satisfying

postulate (4). Then

bi» = 1 r\ b]_' = (b \j b2') n b;^' = (b n \') u (02* n b^') =

U(b2' n b^') = U (b-L* n b2') = (b n bg') U (bi* n ^2*^ =

(b u b-^') n b2' = 1 n ^2' = bg'.

Theorem 1-7, For every b in B, (b*) • = b.

Proof: b' \J b = 1 and b' n b = 0, hence by theorem 6, (b»)' = b.

The follomng pair of theorems is knoim as DeKorgan's laws.

Theorem 1-3. For every a and b in B, (a VJ b) ' = a' A b'

.

Theorem 1-S a. For every a and b in B, (a A b) ' = a' U b'.

Proof: •

(a U b) U (a' n b«) = [(a U b) \J a«] H [(a U b) U b«] =

[(a U a') U b] n [a \J (b \J b')] =

(1 u b) n (a u 1) = 1 n 1 = 1

whereas •
. .

'.

(a \J b) n (a* n b') = [a H (a* H b*)] \J [b H (a* H b')] =

[(a n a') n b'] U [a* A (b A b')] =

(0 n b') U (a n 0) = U = 0.



Then, by Theoren 6 (a \J h)^ = a» H b'

.

Defir.ition . A binary relation - which, for simplicity's sake, is

read "less than or eqxial to," is defined to be the folloiidns : a = b

if a n b = a. •

This relation differs from the linear order relation of the algebra

of real numbers in that, given any two elements a and b of B, it may

be that a = b or b = a or that neither of these holds. Some pairs of

the elements then may be not coaparable. From this definition the

follo'.-ring theorems can be proved, '
,

Theorem 1-9. For every a an element of B, = a = 1.

Proof: Since A a = 0, then = a. Also, since a A 1 = a,

a - 1. Hence = a = 1.

Theorem 1-10. If for a, b elements of 3, a = b and b = a, then a = b.

Proof: If a = b, then a A b = a, also if b - a, then b A a = b.

Since a /^ b = b O a, one has that a = b.

Theorem 1-11. If for a, b, c elements of B, a = b and b = c,

then a = c.

Proof: If a O b = a, then a = b. If b O c = b, then b = c.

Since a A b = a, and b = b CS o, it follovxs that a A b A ^ = a, and

aOc=a. So,a=c.

Any collection B of elements, for which the definitions of equality

and of " = " are satisfied and wliich satisfies the postulates and the

theorems of the previous section is called a Boolean algebra.



ORDERED SETS AND LATTICES

Other methods could be used to define a Boolean algebra. One could

choose a set of postulates different from those in the previous section.

Also, as vD-ll be done in this section, one can define a Boolean algebra

by use of other mathematical concepts.

In this section the concern will be with an ordering relation.

First a relation is defined.

Definition . If, for any a and b in a set S of elements, either a

is in relation R to b or a is not in relation R to b, then R is a binary

relation (3, 2),

Frequently, a binary relation is referred to as a relation. The

notation used in connection with relation is described in the follo-d.ng.

The letter "R" -vd.11 be used to denote a relation and " a R b '• >7ill

denote that a is in relation "R" to b. Having defined the concept of

relation, the concept of a special type of relation xd.ll be discussed

in some detail, '

Definition . An ordering relation is a relation R defined on a set

S such that for elements a, b, c of S,

(1) a R a for every a in S,

(2) if (a R b) and (b R a), then a = b, and

(3) if (a R b) and (b R c), then a R c.

It is instructive to compare these three conditions i,dth those

which characterize an equivalence relation. Condition (1) and (3) are

the familiar reflexive and transitive properties. Condition (2) differs

from the symmetry property. If a R b is true and a and b are different.
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then b R a is false. A relation satisfying condition (2) is said to be

antisymroetric

.

Now one can define what is meant by an ordered set.

Definition . An ordered set is a set S together with an ordering

relation R on S (1, ^2). S is said to be ordered by the relation R.

The set S consisting of the set of all real numbers is ordered if

for each pair a, b of real nurabers, a R b means a is less than or equal

to b in the usual order relation. This set is more restrictive than is

necessary'" for a set to be ordered. This is indicated in the next example.

Let the set S be a collection of sets; for each pair A, B of sets

in the collection S, "A R E" is defined as "A is a subset of E"'; in

^yrabols, A C B. This relation is called the relation of inclusion.

This ordered set is important, especially in the case of the collection

of all subsets of a given set. The relation of inclusion between subsets

of a given set is a more general ordering relation than is the relation

"less than or equal to" between real nurabers. The reason for this is

that every tvjo real numbers a and b are comparable; that is, at least

one of the relations "a is less than or equal to b" and "b is less than

or equal to a" must be true. On the other hand, it is easy to find two

sets A and B such that both of the relations "A C E" and "B CI A" are

false. Thus, for the inclusion relation, it is possible to have an

incomparable pair of elements; that is, there may be tvjo elements such

that neither one is related to the other.

Next the idea of a greatest and least element of an ordered set

is discussed. By definition, a greatest element of an ordered set S

is an element g of S such that for each element a of S, a = g, where

= is an ordering relation, generally read "less than or equal to". A



least element of an ordered set S is an element m of S, such that, for

each clement a of S, m = a,

7nere are ordered sets which have neither a least nor a j^reatest

element, and also those which have both a greatest and a least element.

The open unit interval is an example of a set ^v^hich has neither a greatest

nor a least element. Also the closed unit interval is an exaniple of

a set x-rhich has both a greatest and a least element.

In tiiis section ordered sets T^dll be studied as algebraic systems.

First of all one begins by defining what is meant by an algebraic system.

To define an algebraic system one must define a closed binary operation.

Definition . A closed binary operation on a set S is a mapping of

S X S into S (3, 8).

For an operation * defined on a set S, it is required that, for

each pair a, b of elements of S, a * b must be an element of S, It is

not required that each element of S be expressible in the form a * b.

Now one can define an algebraic system.

Definition , An algebraic system is a set S together T-rith certain

relations or operations defined on S (1, kB)

,

Also, some new terminology is needed to state the definition of

an algebraic system of an ordered set.

Let S be an ordered set and let A be a subset of S.

Definition . An upper bound of A is an element c of S such that,

for each element a of A, a = c; a lower bound of A is an element d of S

such that, for each element a of A, d = a.
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Of course, there may be several upper bounds for a particular set

A, or there may be none at all. This suggests that it might be convenient

to choose the least of the upper* bounds for A (if there is a least one)

to represent all of the upper bounds. By definition let A be a subset

of an ordered set S. A supremum of A, sup A, is an element of S such

that sup A is an upper bound of A, and if c is any upper bound of A,

then sup A = c. Similarly, the infimvim of A, inf A, is an element of

S such that, inf A is a lower bound of A, and if d is any lower bound

of A, then d '= inf A. The greatest lower bound's of sets are unique

if they exist. If a and b are both greatest loirer bound's of the same

set A then a = b and b = a, whence a = b. The case for the least upper

bound can be shown similarly. If the set A is finite, say A = ra--j_,

a2, • • •, a^^"}, the elements sup A and inf A are sometimes denoted by

St V a^ V • • • V a^^ and a, /v ag A • • * ^ ^n respectively. Also, the

supremum of a set A can be referred to as the supremum of the elements

of the set; for example, one can speak of the sup of a and b instead

of sup£a, h\. One can speak of the infimum in a similar manner.

This leads one to the definition of a lattice.

Definition . A lattice is an ordered set such that each pair of

elements has both a supremum and an infimiim (1, 57).

As an example of a lattice , let S be a set and let ^J be the collec-

tion of all subsets of S, ordered by inclusion. Then ^ is a lattice.

In fact, if A and B are any two elements of ^ , the sup of A and B is

just the union of the two sots where the union, A \/ B, is the set of

all objects which are elements of at least one of the two sets A and B.

Similarly, the inf of A and B is their intersection, where the intersection,
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A A 3» is the set of all objects which are elements of both of the

sets A and B,

T'.e operations sup and inf are not really binary operations on an

ordered set S since it is not necessary to have ejdctly a pair of elements

in order to perform these operations. It may be possible to perform

these operations ^.Tith any subset of S, finite or infinite, or vdth the

entire set S. Of course, there may be subsets of S which do not have

a sup or an inf; that is, subsets such that the operations sup or inf

cannot be performed. The characteristic property of a lattice is that

each of the operations sup and inf can be performed vdth any pair of

elements. Th\is, in a lattice it is frequently convenient to consider

V and A as binary operations. The following theorem shows that these

operations are defined for all non-empty finite sets.

Theorem 2-1, In a lattice, any non-empty subset consisting of a

finite niiinber of elements hias both a sup and an inf.

Proof: Let S be a lattice and consider a subset of S consisting

of two elements £j^ , x 7. Since this is a subset of a lattice, these

tv70 elements have a sup and an inf. x.^ v x^ is the sup of the set

Tx^, xu^. Now assume the theorem is true for any set of n elements

f^l' ^» • • •» \|* '^^® ^^P ^^ denoted by x, v x v x_ • • 'Vx . Now

consider a subset which contains n + 1 elements f x., , x , • • •, x , x , ^"l

Now by assumption the set of elements |V , x^, . . ., x ^ has a svip.

Denote it by a. Since a is an element of S and x
, , is an element

n + 1

of S, those two elements have a sup. Denote it by b. Now since the

elements x^» x , . . • , x ^ are less than or equal to a and a = b, then the

elements x^, x,, • • •, x are less than or equal to b. Also x . = b.
^ , ^ n ^ n + 1 '
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so the eleuicnt b is an upper bound for the elements x^, x^, • • *, x^»

X,^ ,. Let c be any upper bound of £x^, x^, • • '» ^ + i}»
^^''^'^^ '^^®

elements x.^, Xp, • • •> x are less than or equal to c. Therefore

a = c since a is the supTx.^, x , • • •, x ]•. Also ^^ j. ^ ~ °* "^^^^^^^^^

b = c since b is the sup of fa, x ^ /I, Hence b = sup£x^, x^* ' ' '»
'Si»

X -,7. Similarly one can prove this statement for the inf.

Theorem 2-2, ' Let a, b, and c be elements of a lattice S, The binary

operations " V " and " A" on S have the following properties:

(i) Commutative Laws,

(ii) Associative Laws,

(iii) Idempotent Laws, '
^'

(iv) Absorption Lav;s. - .

Proof: (i) Coromutative Laws: ay b = bV a;aAb = bAa,

By definition a V ^ = sup fa, bland b V a = sup-^b, aj, but the

sets ^, b\ andTb, aj- are identical since they have the same elements.

Thus a V b = b V a. *

(ii) Associative Laws: a V (b V c) = (a V b) V/ c; a A (b A c) :

(a A b) A c.

By definition (aN/b) Vc = a.Vb and (a V b) V c = c. Since

a V b = a and a V b ^ b, then (a V b) V c ^ a and (a V b) V c = b.

Now supDOse one has x=a, x=b, x=c, then x = a V b and hence

X = (a V b) V c. So (a V b) V c is a least upocr bound for fa, b, cf,.

Similarly, a V (b V c) is a least upper bound forfa, b, cj, Now,

since the least uoper bound is unique (a V b) V c = a V (b V c).

(iii) Idempotent Laws: aVa = a;aAa' = a, ava = sup f a\ =

a, hence a V a = a.
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(iv) Absorption Laws: a V (a A b) = a; a A (a V b) = a.

Since the ordering relation is refle:d.ve, one has a = a. Also, since

a A b is one of the lower bounds for fa, b j , one has a A b = a. These

two relations show that the element a is one of the upper bounds of the

set fa, a A bj. Evidently, if c is any upper bound of £a, a A bj,

then a - c. Thus, by definition, sup ^a, a A bJ = a.

The proofs of the remaining parts of the theorem are simlar to

those given.

The above theorem lists several properties of the binary operations

" V " and " A " in ^ lattice, ^hny other properties of these operations

could have been mentioned, but the ones given are of particiilar importance;

the following theorem shows that these properties actually characterize

lattices.

Theorem 2-3. If an algebraic system is composed of a set S and two

binary operations * and o on S such that, for all elements a, b, and

c of S;

(i) a*b=b*a, aob=boa;

(ii) a * a = a, a o a = a;

(iii) a * (b * c) = a * b) * c, a o (b c) = (a b) c;

(iv) a * (a o b) = a, a o (a * b) = a;

then there is a unique ordering relation in S whdch makes S a lattice

snd such that the given operations * and o are, respectively, \J and

A in the lattice.

The proof of this theorem consists of the folloiidng leirjmas.

Lemma 2-1. With S, *, and o as in the theorem, a * b = b if and
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only if a b = a.

Proof: Suppose a * b = b. Then aob=ao(a*b)=aby the

second of condition (iv) in the theorem. Suppose a o b = a, then a * b =

(a o b) * b = b * (a o b) by the conmutative law. Similarly, b * (a o b) =

b * (b o a). But b * (b o a) = b by tho first part of (iv) in the thoorom.

Leimna 2-2. With S, *, and o as in the theorem define = by a = b

if and only if a * b = b. Then = is an ordering relation on S; moreover,

with this ordering relation, S is a lattice and the operations V and

A in the lattice are, respectively, * and o.

Proof: It is evident that = is a relation on S; to prove it is

an ordering relation, we must show that it is reflexive, antisymmetric,

and transitive.

The relation = is reflexive since, by the first of conditions (ii)

in the theorem, a * a = a for each element a in S.

The relation = is antisymmetric since, if both of a = b and b = a

are true, then a * b = b and b * a = a. These equations, together with

the first of conditions (i) in the theorem, imply a = b.

The relation = is transitive since, if a * b = b and b * c = c,

then a*c=a*(b*c)=(a*b)*c=b*c=c. This completes the

proof that = is an ordering relation on S,

To complete the proof of the lemma it must be shovm that each pair

of elements a, b of S has a sup and an inf and that a V b = a * b and

a A b = a o b. First, notice that a = a * b since a * (a * b) = (a * a) * b =

a * b, and that b = a * b since b * (a * b) = a * (b * b) = a * b. Thus

a * b is an upper bound for £a, b^. Let c be any upper boiind for fa, b3;

then a * c = c and b * c = c, so (a * b) * c = a * (b '''• c) = a * c = c.
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Hence a * b = c; this proves that a * b = a V b.

Nov7, notice that a o b = a because (a ob) oa = ao (aob) =

(a o a) b = a o b and a o b = b because (aob) o b = a o (bob) =

aob..
Thus a o b is a lower bound for Ta, bj. Let c be any lo-.-7er bound

for fa, bJ; then c o a = c and c o b = c, so c o (aob) = (c o a) o b =

c b = c. Hence, c = a o b; this proves that a o b = a A b.

Ierj:a 2-3. With S, *, and o as in the theorem, the relation =

defined in the above lemma is the only ordering relation on S which makes

S a lattice and such that the given operations * and o are, respectively,

V and A in the lattice.

Proof: Let " R " be any ordering relation on S which makes S a

lattice, and such that "*" and "o" are, respectively, " V " ^nd " A ".

If a R b, then a y b = b. Therefore, since " V " is the sane operation

as '•*•', one has that a * b = b; thus by the definition in the previous

leraim, a = b. The proof is completed by noting that each of the above

steps is reversible. This also completes the proof of the theorem (1, 60-62),

So far only conditions which are satisfied by all lattices have been

considered. There are several interesting conditions which are satisfied

by some lattices, but not by others. The remainder of this section is

devoted to such conditions.

A lattice 3 is distributive if and only if, for all elements a,

b, c of S a A (b V c) = (a A b) V (a A c).

Thus, a lattice is distributive if and only if the operation " A "

distributes over the operation " V "• This seemingly urisymmetric treat-
'

ment of the two lattice operations is misleading; the condition is actually
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symmetric in the two operations, as the follox^ing theorem shox^^s.

Theoret:! 2-^'-. A lattice S is distributive if and only if, for all

elenents a, b, c of S, a V (b A c) = (a V b) A (a V c).

Proof: Suppose S is distributive; then

(a V b) A (a V c) = [(a V b) A a] V [(a V b) A c].

By the absorption law and another use of tho distributive property,

[(a V b) A aj V [(a V b) A c] = a V [(a Ac) V (b A c)j.

The associative law, and another vise of the absorption law, give

a V [(a A c) V (b A c)J = a V (b A c).

Thus, if S is distributive, then

a V (b A c) = (a V b) A (a V c).

To Drove the converse assume

a V (b A c) = (a V b) A (a V c)

and use the above proof with the interchange of A and V • Then

a A (b V c) = (a A b) V (a A c).

An example of a distributive lattice is the lattice of all subsets

of a given set S, ordered by inclusion. If A, B, and C are subsets of

S, the set A A (S V C) is composed of all elements which are in A and

also in at least one of 3 or C. The set (A A E) V (A A C) is composed

of all elements which are either in both of A and B or in both of A and C,
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From this ono can see that these two conditions on the elements of S

arc equivalent; thus A A (B V C) = (A A B) V (A A C)

.

It has been sho-m that an ordered set may or inay not contain greatest

and least elements. The same is true of a lattice.

The collection ^ of all subsets of a given set S forms a lattice

vhen inclusion is the ordering relation. The greatest element g of this

lattice is S itself, and the least element m is the empty set 0. Tae

familiar set operations of union and intersection are the operations

sup and inf in the lattice. But there is another set operation, comple-

mentation, which has not been needed so far. The complement of a subset

a of S is defined to be the collection of all elements of S which are not

elements of A. Thus, complementation is aii unary operation. If A* is the

compleriont of A, one can see that A V A» = S, and A A A' = ^:, This

familiar set operation suggests the follovTing definition.

Definition . In a lattice S. with greatest element g and least element

m, a complement of the element a of S is an element, b' of S such that

a V b = g and a A "b = m.

Definition . A complemented lattice is a lattice in which there

is a greatest element and a least element and in which each element

has at least one complement.

Ordered sets have been presented and a lattice has been defined as

a special type of ordered set. A Boolean algebra is then a special type

of lattice. It can be defined in the follovdng manner. A Boolean algebra

is a complemented, distributive lattice. Thus, a Boolean algebra is an

ordered set in which each pair of elements has both a sup and an inf.
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each of the binary operations
!'
V " and "/\ " distributes over the other,

there is a greatest element and a least element, and each element has

at least one complement. Note that a Boolean algebra must be nonempty

—

in particular, it must contain a greatest element. From this beginning,

one can derive the same properties which were presented in the beginning

description of a Boolean algebra. This completes the development of a

Boolean algebra by beginning vjith the concept of ordered sets.

APPLICATION

An irrport'nt application of the Boolean algebra defined in the first

section of this paper tTill be covered in this section. This application

consists of using a Boolean algebra to represent a model of combinational

relay circuitry,^

In electronic digital computers, telephone svdtching systems, control

systems for automatic factories, and other systems involving communication

or processing of data, one finds many examples of electric circuits xirhich

employ what are laioim as two-state or bi-s table devices (5, 1), The

simplest example of such a device is a switch or contact which may be

in the open state or in the closed state. \h.en a contact is operated

vdth the aid of an electromagnet, the combination is called a relay.

A switch or relay is called a bilateral circuit element since it permits

the passage of current in either 'direction when it is closed. Devices

which permit the passage of current in only one direction are called

unilateral.

The methods and results of Boolean algebra and related subjects

have been found useful in discussing circuits emploj^ing two-state devices.

Initially, one uses contact networks to illustrate how this is done, for
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the niathematical system is particularly simple to develop in this case.

Tiro mathematical symbols are introduced as the first step in construct-

ing the desired system. With an open contact or path in a circuit, one

associates the sjTnbol "0"; and ^^dth a closed contact or path, one associates

the symbol "1". Tne postulates that follow vdll give and 1 their mathe-

matical meaning.

VJhen the condition of a contact is variable in a problem, it is repre-

sented by a literal symbol such as a, b, x, y, etc. Such a S7,-mbol, called

a circuit variable, takes on the value when the contact is open, the value

1 when it is closed. With each symbol x, a symbol x' is associated called

the complement of x, which is 1 when x is 0' and \dien x is 1. The comple-

ment x' of X is the circuit variable associated id-th a contact which is open

when the x- contact is closed and is closed x^rhen the x- contact is open.

Note that the operation of complem.entation is thus defined in terms of the

symbols and 1.-. This defirAtion implies that 0« = 1 and !• = 0.

I'Jhen two or more contacts alvrays open and close simultaneously,

they are denoted by the same circuit variable. If a "iriake contact" is

denoted by x, then a "break contact" operated by the same electror^agnet

is denoted by x' (5, 3). Employing tlxis notation, it may be verified

th^t in the follox-jing diagram there is a path from t to t if and only if

x» = y« = 1 or X = y = 1 and a path from t to t. if and only if x = 0,

y = 1 or X = 1, y = 0.

^-
7'

xt >y
2

^>
7'
1 ^i

Figure 1,

%
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In figure 1 above, one sees where the mathematical systen does not

represent all conditions of the s\>iitch. VJhen the coil of such a transfer

contact is energized, thore is a brief tireo whon neither contact is

closed. Similarly in figure 2, thore is a brief time when neither contact

is open.

x«

1

x#

Figure 2.

xt x'

A B

Thus, the assumption that one may call one contact x and the other x*

is not strictlj'- justified. Ifnen this becomes a serious problem, it can

be corrected by design technique, to eliminate undesirable effects (5, ^).

Next it i-ri-ll be sho\-m how the physical situation can be interpreted

in terms of two operations on the symbols 0, 1, x, y, etc.

Applied to two circuit variables, the operation of imion, denoted

^y KJ » ^^y ^ represented physically by the parallel connection of

the contacts corresponding to those variables. Thus, in figure 3 A,

contacts symbolized by a and b a?e sho-vm connected in parallel, and the

connection is represented in the mathematical system by the union a VJ b,

This is read as a or b since the circuit provides a closed path between

its endpoints if and only if the a- contact, or the b- contact, or both,

are closed.

^ h- ^ ^ h

B
Figure 3,



23

Applied to tz-jo circuit variables, the operation of multiplication,

denoted by r\ or simply by ju:^taposition, may be represented physically

by the series connection of the contacts corresponding to these variables.

In figure 3 B, contacts symbolized by a and b are shovni connected in

series and this connection is represented by the product a O b. This

is read as "a and b" when it is desired to emphasize the fact that the

circuit orovides a closed path between its endpoints if and only if the

a- contact is closed and the b- contact is also closed.

The circuits dra:m in figure 3 provide open or closed paths bettreen

the terrdnals t, and t2 depending on the states of the contacts involved.

Any circuit consisting of interconnected contacts whose purpose is to

connect two fixed points with a conducting path under specified conditions

of the contacts is called a two-terminal switching circvdt, and it is

such circuits that are included in this section.

There is a largo class of two-terminal sxd.tching circuits and -.dth

each circuit, one can associate a function of the circuit variables.

The characteristic property of each of these functions is that it takes

on the value 1 for all combinations of values (O's or I's) of the circuit

variables which correspond to the circuit being closed and takes on the

value for all combinations v:hich correspond to the circviit being open.

This function is called the snatching function of the two-terminal circuit,

Txv'o switching functions of the same set of circuit variables --Till

be regarded as equal and their circiiits as equivalent if and only if both

svrf.tching functions take on the value 1 for exactly the same combinations

of values of the circuit variables and hence, also both take on the value

for the same combinations of values of the circuit variables.

For a permanently open circuit, the switching function is identically
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and for a permanently closed circuit, the switching function is 1.

For a circuit containing a single contact represented by the circuit

variable a, the switching function is just a.

In the case of a two-terminal circuit consisting of two contacts

connected in parallel, a (J ^ is to be the corresponding switching function

where a and b are the circuit variables corresponding to these contacts.

Now, only when a = b = does the circuit fail to provide a closed path

between its terminals. Hence, only when a = b = should the switching

function a U b take on the value zero. However, if a = 1 and b = 0, or

a = and b = l, ora = b = l, the circuit does provide a closed path

between its terminals and hence, in all these cases, the switching function

a U b should take on the value 1. For all these conditions to be satisfied,

define

OUO=iO, 1U0 = 1, 0\J1 = 1, l\Jl=l.

In the case of a two-terminal circuit consisting of two contacts

connected in series, a H b is the corresponding switching function where

a and b are circuit variables representing the contacts. If a = b = 0,

or if a = and b = 1, or if a = 1 and b= 0, the circuit fails to provide

a closed path and hence, the switching function a H b should take on the

value in all these cases. Only if a = b = 1 does the circuit provide

a closed path between its terminals and hence a O b should be 1 only in

this case. For all these conditions to be satisfied, define

• ono = oni = ino = o, ini = i.

Now suppose one has given two circuits with switching functions

f and g respectively, and suppose the circuits are connected in parallel.
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Then the resulting circuit is closed if either one of the two given

cii'cuits is closed or if both are closed. Hence, for exactly those

combinations of values of the circuit variables such that f = 1, g =

or f = 0, g = 1 or f = g = 1, the s^^dtching function of the parallel

circuit must take on the value 1, and thus laay be" represented by f Vi^ g.

To evaluate f ^ g at a given combination of values of the circuit variables,

first evaluate f and g individually, and then compute the union of these

values as defined above.

If the two circuits are connected in series, the resulting circuit

is closed only when the two given circuits are both closed, Kence, for

exactly those combinations of values of the circuit variables such that

f = g = 1, the switching function of the series circuit must take on the

value 1, and this may be represented by f ^ g. To evaluate f ^ g at

any given combination of values of the circuit variables, multiply the

individual values of f arid g as defined above.

Also, the operation of complementation can be applied to arbitrary

switching functions. Given a two-terminal circuit c viith sxdtching ftmction

f, a circuit denoted by c* is closed when c is open and open vrhen c is

closed. The smtching function of c* will be denoted by f. This is

consistent with the earlier use of x and x* as circuit variables to

denote normally open and normally closed contacts on the same relay.

These ideas can be illustrated by referring to figure 1, In this

figure there is a path through the circuit joining t, to t^ if the x-

contact and the y- contact are closed or if the x*- contact and the y'-

contact are closed, i,e,, if x = y = 1 or x' = y' =1. Each of these

paths has two contacts in series and the two paths are in parallel,

Eence, by the principles outlined above, the switching function is
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(x n y) U U' n y').

In the case of the circuit joining to to t/^,, there is a closed path

if the X' -contact and y-contact are colsed or if the x-contact and y'-

contact are colsed, i.e., if x' = y = 1 or x = y' =1. Again, each path

has tvro contacts in series and the two paths are in paralled. Hence,

the switching function must be (x' f) y) V^ (x VJ /')•

These results are summarized in table 1,

Table 1.

x y (x n y) U (x' n y ) (x' n y) U (x H y'

)

110 110 1111
Rxim the table one can see that the two functions have complementary

values. As a result, the two functions are complements of each other.

The function (x' O y) U (x O y' ) is said to be the exclusive or

function since it is 1 if x = 1 or y = 1, but not when both are 1.

Now the postulates governing the application of the symbols \J ,

n f and ' to arbitrary switching functions which come from the physical

considerations can be given. In the diagrams to follow, equivalence

of circuits is denoted by a capital "E". The symbols f
, g, h denote

arbitrary switching functions, which include 0, 1, and qonbols for

single contacts as special cases.



The Commutative Laws:

f U g = g U f

g

f Hg = g n f

Figure 4,

The Associative Laws;

f

g

h

g

f U (g U h) = (f U s) U h.

f n (g n h) = (f n g) n h.

Figure 5,
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Here connecting f in parallel Td.th the parallel connection of g

and h gives the same physical circuit as connecting the parallel connection

of f and g in parallel vdth h. Similarly, in the series it is legitimate



to write f U S U ^ ^^'^ ^ ^ g O h as switching functions for these

circuits.

The Distributive Laws:

E

f g

f h

f n (gu h) = (f n g)u (f n h).

28

Lli

g h _

£

f u (gHh) = (f u g) n (f u h).

Figure 6.

The first of these laws indicates that multiplication distributes

to each term of a union and the second indicates that union distributes

to each factor in multiplication. In the first case, both circuits are

closed if and only if the f-circuit is closed and at least one of the

other two circuits is closed. In the second case, both circuits are

closed if and only if the f-circuit is closed or both of the other

twa circuits are closed.

I
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f

f

f U f

f f
E

f n f = f

.

Figure ?.

These laws are dictated by the fact that each circuit here is closed

if and only if the f circuit is closed. These laws account for the

absence of conventional exponents and coefficients other than and 1

in the algebra of switching circuits.

The Laws of Operation with and 1:

E

u f = f

.

E

1 n f = f

.

Figure 8.

Here a designates a permanently open circuit and a 1 designates
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a permanently closed circuit.

Note that 0, with respect to union, and 1, with respect to multipli-

cation, are identity elements; that is, they leave the function f unchanged.

Contrast this with the behavior of in miatiplication and of 1

in union:

n . f*
E

Of = 0.

1

E
1 .

f

1 U f = 1.

Figure 9.

The Laws of Complementarity:

f . - -PI
E

1 "

(•

1

f r
^ f • = 0.

1

E
1

^»

f u f
•
= 1.

Figure 10.

j

>



31

In the first case, one of the circuits corresponding to f and f

'

is always open while in the second case one of these circuits is always

closed.

A prime on a circuit denotes the complement of that circuit. One

should notice that whenever a particular circuit is closed (open),

the corresponding complementary circuit shown here is indeed open (closed),

These laws enable one to compute the complement of an arbitrary switching

function. The following is a statement of these laws. The complement

of .a product is the union of the separate complements and the complement

of a union is the product of the separate complements.

The Laws of IXialization (Deltorgan's Laws):

£

(f n g)' =f' u g'.

• f

6

f g'

(f u g)' =f n g'.

Figure 11.
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The Law of Involution:

i-s-)-
(f )• = f.

Figure 12.

If one forms the complement and then forms the complement again,

the original function is recovered.

An important fact to note is that the above postulates, except for

the last, appear in dual pairs, each member of a pair being obtainable

fiX)m the other by replacing each of the operations " \J" and " f\ " by

the other and replacing each of the symbols and 1 by the other, whenever

they appear. In these simple cases, such interchanges may be interpreted

as the interchange of series and parallel connections and of open and

closed circuits. The last postulate may be regarded as its own dual

since the required interchanges leave it unaltered.

The symbols f\ and y respectively have been used to represent the

concepts "and" and "or" and these concepts have been interpreted with the

aid of series and parallel connections, respectively. One can build up

circuits of desired complexity by suitable successions of series and

parallel connections. Such circuits are called series-parallel circuits.

Any circuit obtainable ty substituting a known series-parallel circuit

for any contact of a known series-parallel circuit is also defined to

be series-parallel. Any circuit not so obtainable is called a non-

series-parallel or bridge circuit (5, 13). In every circuit,

series-parallel or bridge, independent contacts are represented by

distinct circuit variables, identically behaving contacts by the same

circuit variable, and oppositely behaving contacts by a variable and
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its conipleraent.

The switching function of any given series-parallel circuit can

be written without difficulty, for the switching function is simply a

mathematical statement of the various series and parallel connections.

For example, with the following circuit one can associate the switching

function,

f = (a n b n c) \j ["(a u b u c) n xj.

Figure 13.

In the case of the bridge circuit, the "and" and "or" relationships

of the various paths through the circuit are often less evident than they

are in the series-parallel case, Ifowever, one can still write a siri.tching

function for the bridge circuit hy first tracing all possible paths through

it. For example, the bridge circuit of figure I'l' provides four possible

paths between the terminals t, and t,. These are just the same paths

as are provided by the series-paralled circuit of figure 13 so that

the function f is also the function of this bridge.

Figure 1^.
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It should be observed that whereas the given bridge realizes the

same switching function as does the series-parallel circuit, it does

so with two fewer contacts.

The general class of circuits which has n variables x^, x^, , . »$ ^
and also their n complements is called a combinational circuit. One

can always write a switching function f (x^, Xg, . . ., x^) for such a

combinational circuit, using only the operations "H", "U". and " ' ".

To complete the mathematical ^'stem of combinational switching cir-

cuits, the relation of inclusion is introduced. Let f-j^ (x]_, x^, . . ., x^)

and f_ (x,, X,, . . ., x^) be sxri-tching functions associated with two-

terminal combinational circuits s-, and Sg. If s^^ is never closed unless

Sp is also closed, it shall be said that s^^ is included in Sg. Rather

it means that the ability of
&l

to close a path between its terminals

for certain combinations of relays operated is possessed also l^ s-, so

that Sp includes the circuit closing ability of s^.

If s, is included in this sense in S2, then for every combination

that makes f, = 1, f must be 1 also. However, one may well have f2 = 1

for some combinations for \diich f-, = 0. When f, and f are related

in this way, one writes f-, = fp or fg = fi reading the symbols "fi is

equal to or less than f2" and "f2 is equal to or greater than f^", respec-

tively. This terminology is of course suggested by the resemblance of

our notation to that of ordinary arithmetic. It implies in particular

that = 0,0=1, and 1 = 1. These statements are all weaker than is

necessary since in fact = 0, 1=1, and 0<1. Where 0<1 means "0

is less than 1", Indeed, the weaker statements are often more useful

than the stronger ones.

Now the basic properties of the relation « = •• will be established.
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Here f , g, h are arbitrary switching functions of the same circuit vari-

ables X,, Xg, . . •> x^.

The Universal Bounds Property: For all f , = f = 1.

This is immediate from the definition of a switching function.

The Reflexive Property: For all f , f = f

.

Since, in fact, f = f , the weaker statement, f = f , is certainly true.

The Antigymmetric Property: If f = g and g = f , then f = g.

The antigyrametric property indicates that the relation = can never

hold ^lumetrically between non^equivalent switching functions. The

proof follows from the fact thet g = 1 for each combination that makes

f = 1 and also f = 1 for each combination that makes g = 1. Thus f and

g take on the value 1 for exactly the same combinations of values of

the circuit variables. Hence, th^ are also both zero for the same

combinations and therefore, having equal values for all combinations,

they are in fact equal functions.

The Transitive Property: If f = g and g = h, then f = h.

Indeed, since g = 1 for each combination such that f = 1, and

h = 1 for each combination such that g = 1, one has also h = 1 for

each combination such that f = 1,

The Consistency Principle: For all f and g, f = g if and only if
»

f n g = f . For all f and g, f = g if and only if f U g = g.

Each of these is in fact two statements of the physical situation.
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In the first case suppose f = g. Then iff = 0, ffl g = f becomes

simply 0=0. If on the other hand f = 1, then g = 1 also since f = g,

and hence f O g = f becomes 1 = 1. Thus when f ^ g, one concludes

f /^ g = f always. Next suppose f H g = f for all combinations of

values of the circuit variables. Then for every combination such that

f = 1, one must also have g = 1 in order to have f O g = f, i.e.,

1 n g = 1, here. Thus f - g. One may verify the second principle

in a similar fashion.

It should be noted that for given switching functions f and g, one

need not necessarily have either f = g or g = f . That is f and g are,

in such a case, not comparable. The functions f = (x H y) U (x' O 7'

)

and g = (x n y' ) U (x' n y) provide an example. Since neither of these

functions is identically zero and since they are never simultaneously 1,

neither can be equal to or less than the other in the sense defined above.

\Vhat has been done is to show that by interpreting 0, 1, Vj , O i

', =, and = as indicated in prededing sections, and hy comparing the

properties of section 3 with the theorems of section 1, one sees that

the set of all switching functions of n circuit variables can be

interpreted as a Boolean algebra.

Since sxd.tching functions take on only the values and 1, they

provide a very special example of a Boolean algebra. It is worthwhile

to reflect on how natural the postvilates set up for the algebra of switch-

ing circuits appear to be, yet how th^ differ from those of the more

familiar algebra of real and complex numbers. This will help to empha-

size that there are algebras other than the familiar one. Also one

must properly select and understand the basic postulates of the particular

algebra he is wjrking with in order to better understand the mathematics.
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This report concerns an introductory treatment of a Boolean algebra.

Two different sets of postulates for the algebra are presented. The first

set of postulates is given in terras of the operations of union and inter-

section. A Boolean algebra is defined as a special type of lattice in

the second set of postulates. The report also includes an application

of a Boolean algebra to elementary two-state switching circuits.

In the first section a Boolean algebra is defined by stating postu-

lates concerning the operations of a Boolean algebra. Subsequently,

theorems are developed which relate to these operations of a Boolean

algebra and which concern particular elements of a Boolean algebra.

The specific properties treated are those which are used later in the

representation of tw>-state switching circuits by a Boolean algebra.

The second section is also a treatment of a Boolean algebra. An

ordering relation, an ordered set, least upper bounds, and greatest

lower bounds are defined in this section. From these definitions certain

properties of ordered sets, least upper bounds, and greatest lower bounds

are introduced. A lattice is defined as an ordered set in which each

pair of elements has a least upper bound and a greatest lower bound.

A general lattice and two special lattices are discussed. A Boolean

algebra is a special type of lattice, a complemented distributive lattice.

In concluding the report it is shown that two-state switching circuits

can be represented by a Boolean algebra. An analogy is drawn between

the postulational development of a Boolean algebra and a system of two-

state switching circuits. Certain restrictions are placed on the circuits

so that systems of two-state switching circuits can be given as an

application of a Boolean algebra. Finally, certain results concerning

the application of a Boolean algebra to a system of two-state switching

circuits are indicated.


