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IMTRODUCTION

Stop watoh time study is the most commonly used method of

measuring work In Industry today. Time study is used to deter-

mine the time required by a qualified and well trained person

working at a normal pace to do a specified task.^ The time

required to perform the elements of an operation may be expected

to vary slightly from cycle to cycle. In work measurement, the

determination of an acceptable time value to be assigned to an

activity is often based on average task or cycle time obtained

from timing several cycles of the activity with a stop watch.

In the early years of time study practice, 15 or 20 readings

were thought to be sufficient, but without any substantiation.

Time study is a sampling process; consequently the greater the

number of cycles timed, the more nearly the results will be

representative of the activity being measured. Idealistically,

It would be desirable to time a very large number of cycles, but

due to economic factors, this is not feasible.

In the past few years, several mathematical procedures have

been suggested for determining the number of cycles to be ob-

served in a stop watch time study in order to accurately estimate

the true average task or cycle tlme.2»3»4»5,6,7 These various

1. Barnes, R. M,, Motion and Time Study . New York, Wew York:
John Wiley and ^ons. Inc., 4th edition, 1968.

2. Mundel, M. W., Motion and Time Btudy . Englewood Cliffs,
New Jersey; Prentice Hall, Inc . , 1960.



n«thodB differ to some dogree; ho««v«r, each utlllx«s ttatlBtloal

methods as an aid In the determination of the niunber of oycles,

N, to study in arriving at a satisfaotory estimate of the true

average time, ^ , required for completion of the task* Usually*

a sawll saaiple of observations, n, are made* and saaQ>le mean and

•ample Tarianoe are oaloulated; substituting these values in the

given formula for determining N', the estimate of N, the total

number of observations to be made in order to provide the desired

oonfidenoe level on the estimate of ^i Is determined. All of the

foxnnulae are of the form»

I •

8
Ao

'

ehere M' s population aiean,

<7 a population standard deviation,

A » oonfidenoe interval constant, and

k s an acoeptance per oent of m^ •

9* ladler, 0., Motion and Tirae ?tudy . Hew York; MoOra»-Hlll
Book Co., Inc., 1955.

4. Ilebel, B. W,, Motion and Time Study . Homewood, Illinois:
Mohard D. Ir'srln, Inc., "Revised Edition, 1958.

5. Radlcins, A. P., "Caloulatins? the Required Number of Time
Study Readings Using Moving Ranges." Unpublished paper,
Purdue University.

6. Allderige, J, H,, "Statiatioal Procedures in ''top Watoh V^ork
Measurements.** The Journal of Industrial ^:np:ineering .

July-August, 1956, Vol. VII, No. 4, pp. 154-163.

7. Llfson, K. A., "Number of Observations for a rtatistical
Average." Time ^tudy Enpilneer and Time rtudy Engineering .

Vol. 6, August, 1951, pp. 247-24^7
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whereas N*, the estimate of N, may be determined by the foimiula

' »• - FA °xl
^

where X = estimate of population mean

*^x = estimate of population standard deviation

Each of the above formulae was derived under the assumption

that either the population of elemental time values are normally

distributed or the sample means are approximately normally dis-

tributed. In the area of work measurement, a number of Investi-

gations have been conducted on the distribution characteristics

of time study data in order to verify the validity of some of the

assumptions underlying the methods of determining the niimber of

observations to record.® Recently a number of investigations^* •'•^

have been conducted to compare several methods for determining

IK* and to test by a process of simulation, their reliability and

superiority.

8. Lehrer, R. H., and Moder, J, J,, "Mathematical Character-
istics of Performance Times." Time and Motion Ftudy .

October, 1955, Vol. 4.

9. Pchrader, a. P., "A Critical Analysis of the Reliability and
Relative "superiority of the Various Methods Recommended
for Use in Deteraiining the Number of Cycles to Record
During a Time Study." Unpublished Doctoral Thesis, Uni-
versity of Illinois, 1960,

10. Hioks, C. R,, and Young, H. H., "A Comparison of Several
Methods for Determining the Number of Readings in a Time
Ptudy." The Journal of Industrial Engineering . Vol. XII,
No. 2, March-April, 1962, pp. 93-96.



In his Investigation, Dr. Pchrader poaed a question,

Given sample size n and coefficient of variation V ao/ij,, what

would be the distribution of sample sizes required In a time

•tudy? Certainly N* must have a statistical distribution. Thus,

the purpose of this Investigation la to investigate the dlstrl-

botlon of N', sample sizes required in a time study, and to

calculate the parameters for the distribution of K* , making use

of the simulated data obtained by Dr. Schrader in his investi-

gation. However, in this investigation, only formulae 1, 2, and

3 in Dr. i^ohrader's thesis are considered.

Table 1, List of formulae for determining M*

.

Designation Fonaula Author

[-

AC/jnj^'^) ' (EX)''^

IX
Vundel

< 39.S^(nEX'**) - iLX)''^

EX
iriebel

14
t

42,6^(nEX'^) - {L%)^

EX
-] Hiebel

Note: "ubscripts on N* are used later on in discussions to
Identify a particular N in relation to a given formula.
All formulae are developed for use with a preliminary
sample size n of 16, and are based on 95 per cent con-
fidence on plus or minus 5 per cent precision of
estimate.



AlALYTIO APPROACH

Before going Into the Investigation of the distribution of

V*» it was proposed to compare the simulated average values

I' of N' and the expected theoretical average values of H' for a

given value of sample size n and coefficient of variation V. The

theoretical average value of N* was calculated as shown below. ^^

^x is used as an estimator of o and

* 1«1 n (3)

Hence as In (2), and substituting C for -g- , we have

N' « C2

"

Itoder the assumption that sampling Is done from a normal popu-

lation. It can be shown that °jj and X are Independent random

variables. Thus, taking expectations

(4)

E{M*) » C^ E X
L X J

2

4

n2 (n - 1) 2

L(x + ^ -^. )8J

C2 (n - 1) ^2 g|-(j ^ ^ _^ j-2|

c2hL^LJdo^l g| ,
(-2) (X - ^.) 6(X - ^)^ > ...

n ^ C 11 21

11. Chaddha, R. L., "DeterMnatlon of the Total Sample Slse from
a Preliminary Small Pampie." Unpublished paper, Kansas
State University, 1962.
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a
and n«gleoting higher power teraa of ( ),

2 3 °^

a i2But froa (1), 5 a C^ p-l

Hence, E(n' ) 4 I [(1
- ^) (1 + ^ )"30^

1 3c^
(6)

Equation (6) Indicates that N' Is a biased estimator of N for

finite n, and on the average, underestimates K. It Is, however,

an aflymptotlcally unbiased estimator of N. Prom (6) It could be

•••n that for a given n, E(h' ) Inoreases as V increases, and for

* given V, E(n' ) increases as n Increases.

Using (6), the expected theoretical values of IT* were cal-

culated for the three formulae under consideration, for a sample

ice of n = 16 and coefficient of variation V « 0.25. Table 2

compares the values of n', the average n{ based on 1000 simula-

tions, with that of the theoretical expected values of E(MM.

In the Appendix, a larger table (Table 9) is Included showing

the expected values for the average N* for various values of

sample alee n ( « 2(1)16(2)32) and coefficient of variation V

( « 0.15(0.06)0.40). It can be aeen from Table 2 that all of the

three values of N' compare well with E(N'), and that N' from

simulated sampling is lets than E(N* ) in all cases as would be

Indicated from (6).



Table 2. Average sample size.

TT'Formula : E(n' ) : N

IX 94.848 92.461

Wg 91.080 68.825

%* 107.570 105.570

A similar procedure was followed for calculating expected

standard deviation of N\ and these standard deviations were

compared with the standard deviations obtained by simulation.

In order to evaluate the standard deviation of N , the following

formulae^^ for the variances were used:

U) Var ^(x)]* [-|fij] Var(xi), <'=')

where gCx^) is the density function of the random variable xj

with mean m^.

2
r m-, -] rVar(X,) Var(X«) 2Cov(Xi,3U)n

(b) Var(Xi/X2) A [-^J [ g
^

* —g-^
, J^

^
J (8)

= variance of the ratio of two random variables.

From (4), we have.

Var(NM s Varfc^—i] or,

Var(N') s c*Vur\-J^\
L X

^

= C*Var(V'^) (9)

12. Kendall, M. 0., and Stuart, A., Advanced Theory of
Statistics . New York: Hafner Publishing Co., 1958.
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where v' la the taniple coefficient of variation. For a tanpl*

from a norjnal population with coefficient of variation V, it can

be shown^' that

Var(v'^) ^ -—(* * V2)

Hence, using (7), we have

Var(H') X c*(5^f^(* > V8)
n n

Therefore,

Standard devlatlon(N* ) « g(g-^) (cv)^ [-^ -|- J (10)

Prom equation (10) we can say that for a given n, varlanoe(H )

inoreaaea aa V increaaea and also, for a given V, var(N')

deoreaaea aa n increaaea.

Using (10), the expected values for standard deviations of

H* for the three foimrulae under consideration were calculated for

a sample size of n s 16 and coefficient of variation V x 0.25.

In Table 3, the values of standard deviation from simulated data

and the expected values of standard deviation of N are shown.

In the Appendix, a larger table (Table 10) is Included, showing

the expected values for standard deviations of N]^ for various

values of sample size n (=2(1)16(2)32) and coefficient of vari-

ation V (=0.15(0.05)0.40). It can be seen from Table 3 that all

the three values of simulated standard deviations compare well

with the theoretical standard deviations.

13* Chaddha, R. L., o£. clt ., p. 5.



Pormula
•

«
• devlatlon(N'

)

:

t
•

FroB Sohrad«r's
•Inulated data

i 35.156 35,000

"i 33.764 33.440

•5 39.875 39.630

The results tabulated in Tables 2 and 3 indicate that the

•iiBUlated results provide relatively accurate estimators for the

parameters of the distribution of N', except for the alight bias

in the case of N*. To make further analysis of the formulae and

to gain an insight into the characteristics of the distribution

of V'» hif^er moments of n' were calculated. In this section, to

be more general, the assumption that sampling was done from a

normal population was not made; however, it was assumed that X,

sample mean has a normal distribution. Under this assumption,

first, second, third and fourth moments for N* were derived thus:

From this assumption, it can be shown^^ that the sample variance

2 „ /£?-> 2

X n-l '^n-l

or denoting v « n-l,

ol
- 'i-)x^ , (11)

14. Praser, D. A. S., Statistics : An Introduction . New York:
John Alley and Pons, Inc., T960.
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where x.^ with v = n-1 degrees of freedom Is defined as

Prom the properties of ohi-square distribution^^, it can further

be shown that, the first four moments, aroxmd aero, for <^ are

"!'= o«

2

3 «2

• - P^(v-«^g)(v^^4)(Y-^^6)

(13)

(14)

(15)

(16)

Prom (4) N* = C^ ["="] (17)

a. '

Hence e(n' )= C^El^g-]^
= C2

o« 33

1 +
n |j.

J

or ^{(n')=E(n') == C^ -^ [l + I
V2"

and m^(n') = E(n')^ = C* ^x^(o|) ^gd/x^)

(18)

r4 4 (v^-g) 1 fn 10 o^n
V kt* L n M.*^ J

15. Kendall, 0£. clt. , p. 7.
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or m.j^(h' ) * ^ (v^-2)
1 * 10 o^~\ (19)

therefore* m,o(1T*)» second moment around mean

•\2
i- (.;)8

or. u (N*) = C<-4 P^~^(l * ¥ V2) - (1 -^ ? ^2)1 (20)

In a similar fashion, ^%^^ ) ^^^ ^a^^ ^ were derived.

6
.'(N').C«-^i2±^4^^

T^

8

1+21 a2-]
(21)

; (H* ) . c8 -^ (vt-2)(Y-»4)(vt-6)

4 ^^ »
Q

36 o 1 /^^\

from which ^,(N ) and v-^iK ) were calculated. For the special
3 4

case of V 8 0.25, and n a 16, the values of M-g, ^-, and p> for
<s 3 4

(V ) must be calculated by using the above equations, for all of

the three formulae* The moments ^^» M-., and m-^ are used to
2 3 4

give an indication of the type of distribution of N*. The type

of Pearson ouirve to be used is determined* by the size of p,

,

3 , and k where

2

(23)a T

and

P2

\i Pg >3)2

4(4 o^ - 3 bJ (^ s. - S o - 6)0.
(24)

16. Elderton, W. P., Frequency Curves and Correlation . London,
Great Britain: Cambridge University Press, 1938.
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If k 1« negative, this will Indicate that type I curve will be

used; If k Is greater than zero but less than 1, type IV curve

will be used, and If k Is greater than 1, type VI curve will be

used.

For the formulae under consideration, B. , , and k values

were calculated. Ihie to their similar nature and due to the fact

that when calculating 3^, and 0q, the Cs cancel out, and hence

As, 0., 3 , and k values were Identical for three formulae:

Q^ « 0.498304, pg « 3.829524

and k « 2.56876

which shows that Pearson type VI curve might be used to describe

the distribution of N*, for the special condition when V s 0*25

and n s 16.

Pearson type VI curve, which has beta distribution Is

defined as **2 -a
y « yo(x « a) x" 1 • s x < oo (26)

where

q. , q^ B constants defined In terms of ^^ and 3^

y^ s a constant dependent upon q^ and qg.

Assuming a beta distribution and making use of the simulated

data and properties of beta distribution, the following distribu-

tion constants were calculated:

qi * 731.971 qg s 722.066

This was found difficult to handle on a computer; hence the whole

distribution was scaled down by 10, and the new constants for the

curve were:

q^ m 67,794 qg a 58.670
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Still this presented a problem in using a computer to fit a curve

for the distribution of N' the procedure for which is described

in the discunsion on Curve Flttingt

Hence, it was felt by the writer that a ganma distribution

(Pearson type V curve) which bears some similarity to beta dis-

tribution should be tried. Oaama distribution is defined as

y = C x^ e"**^ x>0 (26)

where a and b are constants and

|(a»l)

CURVE PITTIWO

Having made a decision about a possible probability distri-

bution of N', it was desired to calculate the theoretical fre-

quencies for various values of H' and compare these with those

frequencies obtained by simulation in Dr. Sohrader's thesis. The

range of the variable »' varied from to 260. Since It is not

practical, for goodness of fit purposes, to calculate the fre-

quencies at every integer value of the variable n', the range of

the variable was divided Into a number of olass intervals.

However, in the literature only rules of thumb are found as to

the choice of the number and lengths of the class intervals.

One author suggests grouping of 8 to 22 whereas one paper^'''

17. Mann, H, B., and Wald, A., "On the Choice of the Number of
Class Intervals in the Application of the Chi-square
Test," Annals of Mathematical ItaU^stlos, Vol. XIII,
Ho. 3, September, 1942, pp. 306-317.
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suggests a procedure by which the lengths of the class intervals

are determined so that the probability of each class iinder null

h/pothesis is equal to l/k where k Is th^ number of class inter-

vals. It was decided to group the variable n' such that olast

intervals are 0-10, 11-20, 21-30, etc. Under these class inter-

vals the siaiulated results from Dr. Sohrader's thesis were taken

and the frequencies for H* were df>teraiined for each class interval

and for each formula.

To determine the theoretical frequencies for each class

Interval, the properties of the proposed curve were made use of:

for a ganuna distribution with parameters (a) and (b), it can be

shown that

' a ^- 1
>«•« " -T"" (27)

Variance = *-^ (28)

b2

Substituting the values of mean and variance for n! In (27) and

(28), a and b were calculated. Then the distribution of N-j^ can

be written as

. . lbi!l,,, ,• e-W
(Ni )

(a+1)
^

v[> (29)

This equation must integrate to 1 between limits NJ^ s: and

Hi «B oo. Also the total area vinder this curve must equal 1000,

which was the total number of simulations. To calculate the

frequency between any class interval, say n| s 121 to h{ a 130,

the following procedure was followed: (m|)* e"^^l was integrated
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from N^ s to 300, at whloh point the curve almost oolnoides

with Vi axis, to represent the total area (A300) and in turn

1000 observations. Next, the same function was integrated from

Hi « to 130, and this area (130) calculated. Integration is

again repeated for limits n]^ s to 121, and this area (A121)

also calculated. Then (A130 * A121) represents the area between

I^ 121 to 130; and (A130 - A121)/(A300) represents the fraction

of the area under the class interval V^. * ^^^ ^^ ^^0* ^^^ ^^*

quantity (A130 - A121)(1000)/(A300) represents the theoretical

frequency or total number of observations in the class interval

H]^ s 121 and n| s ISO. By a similar process, theoretical fre-

quencies were calculated for each class interval for m{.

In a similar manner, making use of the respective values for

mean and variance from simulated data, expected frequencies for

the class intervals were calculated for R2 and H3.

Due to the repetitive nature of the calculations, a digital

computer, IBM 1620, was used.

RESULTS AND DISCUSS I01

In order to test the hypothesis that N* has a gaana distri-

bution, the theoretical frequencies for the class intervals were

computed for each of the three formulae, as described in the

section on Curve Fitting. Since this test is concerned with the

agreement between the distribution of a set of sample values and

a theoretical distribution, we call it a test for goodness of

fit.
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Attempts have been made to find test statistics whose

sampling distribution does not depend upon either the explicit

form of, or the value of certain parameters In, the distribution

of the population. Such tests have been called non-parametrie

or distrlbutlon-free teats. Probably the most widely used of

such tests Is the chl-square test. However, an alternative dis-

tribution-free test for goodnsis of fit, called Kolmogorov-

Smirnov test for goodness of fit, waa suggested by Kolmogorov

and Srairnov, and some evidenoe^®*^^ was presented indicating that

when it is applicable it may be better all-round test than the

chl-square test. This test, denoted as d-test, can be explained

briefly as follows:

Suppose that a population is thought to have some specified

distribution function, say PqCx). That is, for any specified

value of X, the value of PqCx) is the proportion of indivlduali

in the population having measurements less than or equal to x.

The cumulative step-function of a random sample of N observations

is expected to be fairly close to this specified distribution

function. If it is not close enough, this is evidence that the

hypothetical distribution is not the correct one.

If Po(x) is the population cumulative distribution, and

Sjj(x) the observed cumulative step-function of a sample N, then

the d-test Involves the determination of d s maximum Po(x) -

18. Slegel, Sidney, Nonparametric Statistics For the Behavioral
Sciences . New York: McGraw-Hill Book Company, Inc., 1956.

19. Massey, Prank J., Jr., "The Kolmogorov-Smlrnov Test for
Goodness of Pit," Journal of American Statistical Associ-
ation, Vol. 46, No. 253, March, 1951, pp. 68-78.
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S]f(x), calculation of d/H and comparing this value with the tabu*

lated crltioal value dcy(H) for a desired level of signlfioanoe, a .

Grouping observations into class intervals tends to lower

the value of d. for grouped data, therefore, the appropriate

d (N) values and henoe signifioanoe levels are different than

those tabulated. However, for large sampleu, grouping usually

will cause little change in the appropriate significance levels.^

As an exaoqple of the application of this test of goodness

of fit, the procedure followed by the writer is explained: The

cuBulative frequencies, along with individual frequencies in

class intervals, obtained by Dr. Sohrader's siuulatlon are re-

corded in Tables 4, 6, and 6, respectively for the three formulae

under consideration. The same tables also include the calculated

theoretical frequencies for the respective formulae. Referring

to Table 4, the maxigum deviation in the absolute frequencies,

which occurs at class interval 6C, is 30.569 which represents a

difference in the proportion of 30.569/1000 « 0.050669. The 6

per cent significant point as taken from standard tables is

1.36/ lOCO 1.36/31.263 « 0.043. The observed value of d/H it

less than the critical value; so we would accept, at the 5 per

cent level of significance, the hypothesis that the population

distribution was that recorded in Table 4.

By similar procedures, the hypothesis that N2 and N3 , re-

spectively follow gamma distribution were accepted at 5 per cent

80. Massey, o£. oit., p. 16.
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Table 4. ComparisorI of observed and theoretical frequencies for
faau (a » 5. 978; b = 0.0755.)

Upper ! t t Cumulative frequency t

boundary 1 J to upper bovindary of t

of class
intsrval tObserTedrTbeoretlcals""

class Absolute
differenceObserved : Theoretical:

300 0.028 1000 1000.000 0.000
260 0.582 1000 999.972 0.028
240 0.635 1000 999.590 0.410
230 1.042 999 996.956 0.045
220 1.689 998 997.913 0.087
210 2.702 997 996.224 0.776
200 4.262 996 993.522 2.478
190 6.616 988 989.260 1.260
180 10.091 983 982.644 0.356
170 15.092 970 972.553 2.553
160 22.079 956 957.461 1.461
150 tt 81.503 939 935.382 3.618
140 •1 48.683 910 903.879 6.121
130 •0 68.610 859 860.196 1.196
120 64 75.672 799 801.686 2.566
110 101 93.364 736 725.914 9.086
100 131 109.088 634 632.550 1.450
90 117 119.261 603 523.462 20.463
60 104 119.997 386 404.201 8.201
70 91 108.642 282 284.204 2.204
60 70 85.231 191 175.662 16.338
30 •1 64.975 121 90.431 30.569*
40 8f 26.497 40 35.456 4.544
30 U 7.964 11 8.959 2.041
20 0.995 0.995 0.996
10 0.000 0.000 0.000

Maximum absolut e difference s 30.5691

Hano e d/N 30. 569/1000 « .030569
Critical value for d/N at 5 per cent significant level

'

1.36/ 1000 « 1.36/31.

,

*

623 - 0.043.
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Table 5. Comparison of observed and theoretloal frequenoies for
»2- ^^ aaima (a = 6.059; b » 0.0796.)

Upper '• t : Cumulative frequency
boundary 1 : to upper boiandary of
of class
Interval :0bserved:

olass ! Absolute
: differencerheoretlcal: Observed :Theoretical

900 0.035 1000 1000.000 0.000
250 0.227 1000 999.965 0,035
240 0.387 1000 999.741 0.259
230 1 0.659 1000 999.354 0.646
S20 1 1.108 999 998.695 0.305
810 1 1.839 998 997.587 0.413
200 1 3.007 997 996.748 1.252
190 • 4.837 996 992.741 3.259
180 10 7.645 988 987.904 0.096
170 It 11.843 978 980.259 2.259
160 u 17.940 966 968.416 2.416
150 14 25.497 948 950.476 2.476
140 41 38.017 934 923.979 10.021
190 4t 52.753 893 885.962 7.038
120 M 70.404 844 833.209 10.021
110 •8 89.732 778 762.805 15.195
100 133 108.223 653 673.073 20.073
90 188 122.013 650 564.850 14.850
80 114 126.456 422 442.837 0.837
70 108 117.646 308 316.381 8.381
60 70 94.825 200 198.735 1.265
60 Of 62.608 130 103.910 26.090*
40 S4 30.764 47 41.302 5.698
90 U 9.366 13 10.538 2.462
20 1.172 1.172 1.172
10 0.000 0.000 0.000

Kaxlmum absolute value s 26.09
Renoe d/N = 0.02609
Critloal value for d/N at 5 per cent significant level a

\

'fc, - . . . _ .1

0.043.
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Tabl* 6. Comparison of obterrad and theoretical frequencies for
mm (a « 6.»086; b s 0.0672.)

Upp«r 1 t J Cumulative frequency :

boundary I t t to upper boundary of i

of class J t t class t Absolute
Interval : Observed : Theoretical

:'

Observed ! Theoretical: difference

300 9 0.014 1000 1000.000 0.000
260 1 1.432 998 999.986 1.986
340 1 2.178 997 998.554 1.554
2S0 • 3.273 996 996.376 0.376
890 9 4.859 994 993.103 0.897
SIO 9 7.119 985 988.244 3.244
200 § 10.278 976 991.125 6.125
190 14 14.602 968 970,847 2.847
180 IT 20.377 954 956.245 2.245
170 19 27.876 937 935.868 1.132
160 44 37.287 918 907.999 10.008
150 •9 48.623 874 870.705 3.296
140 99 61.590 815 822.099 7.082
190 98 75.444 780 760.499 19.508
leo 100 68.873 697 685.048 11.952
110 113 99.972 997 596.175 0.896
100 106 106.399 464 496.203 16.909
90 91 105.840 379 389.804 10.804
60 97 96.769 288 283.964 4.036
70 ii 79.406 201 187.195 13.805
60 79 56.442 140 107.789 32.211*
50 49 S2.860 67 51.347 15.653
40 14 14.239 21 18.467 2.513
50 7 3.825 7 4.246 2.752
20 0.423 0.423 0.423
10 0.000 0.000 0.000

Maximum absolute difference « 32.211
Hence d/N « 0.032211
Critical value for d/N at 5 per cent sigDlfioant level »

0.043.

significant level.

Thus there is evidence, based upon the above simulated data

for fox*mulae 1, 2, and 3, to indicate and suggest that tha dis-

tribution of n' follows a gaiHHi distribution.
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FUKTUKH RESULTS

The rctulti In th« last section did not rejeot the hypoth-

esls of gasMi distribution for H. , Kg, and N^. To extend further

the confirmation of finding the distribution of H , the procedure

followed was applied for the two foznnulae^^ N^ and n|q suggested

by Dr. Sohrader in his thesis. Using the Kolmogorov-Smimov

test, the hypothesis that Nq has a gasMa distribution was accepted

at 5 per cent level of significance. A similar conclusion also

mis reached in the case of n{q.

Howeyer, when the above results In Tables 4, 5, and 6 were

subjected to the chl-square test, the conclusions drawn were

Biixed. For ir[, the calculated chl-square, after appropriate sub-

grouping, was 31.557. The degrees of freedom were 17. At 5 per

cent level of significance, x? ,
.is 27.6871. Therefore, at

17(0.05)

6 per cent significant level, we would reject the hypothesis that

1^ follows gtaai distribution. But ^17(0 oi)
" 33»*087, which

might make us accept the hypothesis at 1 per cent level of

,. [42.6 7^^^^^- <^^>^
*• "L

—

ix J

^, r239.064(RQ)
»io-l 5r

-p259.064(ge) -i

L 5c J

where Rg is the average range of a subgroup slse of 8.

Note: Both formulae were developed for use with a preliminary
saaple else n of 16, and were based on 95 per cent
confidence on plus or minus 6 per cent precision of
estimate.
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Ignifloano*. Th« larg« oaloulated chi-tquar* valut waa par-

tially due to th« faot that at olaaa Interval 50, the expected

alue of frequency waa 56 whereaa the obaerved value waa 61, thla

alone contributing a ehi-aquare value of 12.319. The aaae trend

alao waa noticed in the oaae of Kg and I3.

However, by applying the chi-aquare test to N^ and HJ^q,

respectively, it waa found that the hypotheaia would be accepted

at 5 per cent level of aignifioance in both caaea. Table 7 givea

a aummary of reaulta of ohi-aquare teata conducted on n{, Mg, V3,

Kg, and ^1.0'

Table 7. SuBsaary of reaulta of ehi-aq^are teat for goodneta of
fit for diatributiona of h{, Hg* ^s» ^i* •»*

''io*

i : t Tabulated :

i I t ohi-aq\iare :

t t t at :

i I : 5 per cent t Deciaion
: Degreea of : Calculated 1 aignifioant : about

Pornrula t freedom : chi-aquare t level ; hypothea i

a

"i 17 31.567 27.587 Reject

'i 16 29.640 26.296 Rejeet

»i 19 42.412 30.143 Reject

K 21 25.200 32.670 Accept

^10 21 27.669 32.670 Aocept

Thla procedure of determining the diatribution of N* waa

aubjected to another application. The data from Hioka and

Young82, for a method using Hi[, were taken and for these data and

22. Hioka, 0£. clt., p. 3.
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class InterTals, theoretical frequencies were calculated. These

results were subjected to Kolmogorov-PmirnoT and ohl-square

tests. The hypothesis was accepted in both the tests at 5 per

cent level of significance. Table 8 shows the comparison of the

calculated theoretical and simulated individual frequencies in

the class intervals obtained by Hicks and Young. Further, the

calculated ohi-square value was 7.805 compared to the tabulated

ahi-square value, with 9 degrees of freedom » 16.919 at 5 per

cent level of significance.

Table 8. Comparison of observed and theoretical frequencies for
m{ (Hick and Young data /a « 8.268; b n 0.06617)

•

Upper • *

t : t OuiBulative frequency :

boundary : 1t i to upper boundary of :

of class t 1\ J, class t Absolute
interval rObservedi(Theoretical:" Observed : Theoretical: difference

314 0.159 600 500.000 0.000
269 1 0.233 500 499.841 0.159
264 0.738 499 499.608 0.608
239 X 2.210 499 498.870 0.130
214 9 6.190 498 496.660 1.340
189 11 15.949 489 490.470 1.470
164 36 36.865 478 474.521 3.479
139 73 73.510 442 437.656 4.354
114 121 118.554 369 364.146 4.854
•9 145 137.550 248 245.592 2.408
•4 84 89.982 103 108.042 5.042*
9t 10 18.060 19 18.060 0.940
14 0.000 0.000 0.000

Maximum absolute difference s 5.042
Hence d/N « 5.042/500 s 0.010084
Critical value for d/K at 5 per cent significant level

« 1.36/ 600 » 1.36/22.361
0.06082.
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F\irth«r, th« simulated rtaultt for Ni[» Vg, tuid N^ w«r« tub-

j«ot«d to another procedure for deteroinlng the distribution,

oalled the method of moments .^^ This analysis Indicated that the

distribution of V* Bight follow a Pearson type IV curve, thereby

throwing clouds on justification that N* has a pumtk distribution

or a Pearson type V curre.

tmiURT AID CONCLUSION

In determining the distribution of N*, an analytical approach

was used which indicated that a Pearson type VI curye xaight be

fitted. However, due to the difficulty in using the eosqputer for

fitting a beta distribution, the gamma distribution (Pearson type

V curve) was tried for the distribution of V*. KolmogoroW'Smimov

test results indicated that, at 5 per cent significant level, the

hypothesis that >' has a gaasia distribution would be accepted.

However, when the above hypothesis was subjected to the chl-

square test, the conclusions reached were mixed and varied.

Further, another procedure for determining the distribution of

I*, vis., method of moments, indicated that M* ml^t follow a

Pearson type IV curve. These facts caused the writer to believe

that even though there is evidence to show that H has a gaana

distribution, it cannot be said forcefully. It is therefore

suggested that more research coupled with analysis could possibly

lead to a stronger conclusion about the distribution of If *
•

23. Elderton, 22» clt .. p. 11,
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stop watch study la the most coimnonly used method of measur-

ing work In Industry today. The time required to perform the

elements of an operation may be expected to vary slightly from

cycle to cycle. In work measurement, the determination of an

acceptable time value to be assigned to an activity often is

based on average task or cycle time obtained from timing several

cycles of the activity with a stop watch.

In the past few years, several mathematical formulae have

been suggested for deteinnining N, the number of cycles to be ob-

served in a stop watch time study in order to accurately estimate

the true average task or cycle time. Usually, a small sample of

observations, n, are made and sample mean X and sample variance

ga^ are calculated; substituting these values in the given formula

for determining n', the estimate of N, the total number of obser-

vations to be made in order to provide the desired confidence

level on the estimate of population mean is determined. All of

the formulae are of the form, N = (A ^^^/kX)^, where A is the

confidence interval constant and k it an acceptance percentage of

population mean (usually 5 per cent).

Recently Dr. Schrader conducted an investigation to compare

several methods for determining N* and to test by a process of

simulation, their reliability and relative superiority. In his

investigation, he raised a question, given sample size n and

coefficient of variation V which is the ratio between population

standard deviation and population mean, what would be the dis-

tribution of n'? The purpose of this investigation was to
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investigate the distribution of N' and to calculate the parameters

for the distribution of N', making use of the simulated data ob-

tained by Dr. Schrader in his investigation.

Before going into the investigation of the distribution of

n', the simulated average values N' of n' were compared with the

expected theoretical average values E(H ) for the three formulae

considered. In all three oases the values of N* compared well

with E(N ), A similar comparison was made, and a similar conclu-

sion reached in the case of standard deviations also. This indi-

cated that simulated results provide relatively accurate esti-

mators for the parameters of the distribution of n' .

Further analysis was made, and higher moments for N* were

calculated. The second, third, and fourth moments were used to

give an indication of the type of distribution of If', For the

special case of n « 16 and V = 0,25, it was fovmd that a beta

distribution (Pearson type VI curve) might be used to describe

the distribution of N*, However, due to the trouble experienced

by the writer in using a computer to fit a beta distribution, it

was decided to try a gamma distribution (Pearson type V curve)

which bears some similarity to beta distribution.

The results of curve fitting showed that the hypothesis

that N' follows a gamma distribution was accepted in all cases,

at 5 per cent level of significance, under Kolmogorov-Smimov

goodness of fit test. However, chi-square test rejected the same

hypothesis at 5 per cent significant level; but would hav«

accepted at 1 per cent significant level.
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Another set of data simulated by Hick and Young was sub-

jected to the above procedure. The results in this case indi-

cated that the hypothesis that n' follows a gamma distribution

would be accepted under both the tests at 5 per cent significant

level.

Another method suggested by Elderton, and called method of

moments for determining the distribution of N', indicated that

the distribution of N' might be described by a Pearson type IV

curve, .

The above facts cause the writer to believe that even though

there is evidence to show that N has a gamma distribution, it

cannot be said forcefully.


