

ONLINE BILL PAYMENT SYSTEM

by

VENKATA SRI VATSAV REDDY KONREDDY

B. Tech., Jawaharlal Nehru Technological University, 2007

A REPORT

submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2009

Approved by:

Major Professor

Dr. Daniel Andresen

Abstract

Keeping track of paper bills is always difficult and there is always a chance of missing

bill payment dates. Online Bill Payment application is an interactive, effective and secure

website designed for customers to manage all their bills. The main objective of this application is

to help customers to receive, view and pay all the bills from one personalized, secure website

there by eliminating the need of paper bills.

Once customers register in the website, they can add various company accounts. The

information is verified with the company and the accounts are added. After the customers add the

company accounts they can receive notifications about new bills, payments and payment

reminders. All the information dealing with sensitive data is passed through a Secure Socket

Layer for the sake of security.

This website follows MVC architecture. Struts is used to develop the application. Well

established and well proven design patterns like Business Delegate, Data Access Object, and

Transfer Object are used to simplify the maintenance of the application. For the communication

between the website and companies, web services are used. Apache Axis2 serves as the web

services container and Apache Rampart is used to secure the information flow between the web

services. Tiles, JSP, HTML, CSS and JavaScript are used to provide a rich user interface. A part

from these, Java Mail is used to send emails and concepts like one way hashing, certificates, key

store’s, and encryption are implemented for the sake of security.

The overall system is tested using unit testing, manual testing and performance testing

techniques. Automated test cases are written whenever possible to ensure correctness of the

functions. Manual testing further ensures that the application is working as expected. The system

is subjected to different loads and the corresponding behavior is observed at different loads. The

unit and manual testing revealed that the functionality of each module in the system is behaving

as expected for both valid and invalid inputs. Performance testing revealed that the website

works fine even when the server is subjected to huge loads.

 iii

Table of Contents

List of Figures ... v

List of Tables ... vi

Acknowledgements ... vii

CHAPTER 1 - Introduction .. 1

1.1 Motivation ... 1

1.2 Objective ... 1

1.3 Salient Features of the Website .. 2

1.4 Document Overview ... 2

CHAPTER 2 - Related Work .. 3

2.1 Tools and Technologies .. 3

2.1.1 J2EE ... 3

2.1.2 Struts .. 3

2.1.3 Struts Tiles ... 3

2.1.4 Web Services ... 4

2.1.5 Design Patterns .. 4

2.1.6 One Way Hashing .. 5

2.1.7 HTTPS Protocol ... 5

2.1.8 Web Services Security ... 5

CHAPTER 3 - Design and Implementation.. 7

3.1 System Architecture .. 7

3.1.1 Struts MVC Architecture ... 7

3.1.2 Web Services ... 8

3.1.3 Securing the data using Rampart ... 8

3.2 Use Case Diagrams ... 8

3.3 Class Diagrams ... 10

3.3.1 Class Diagram for Login Module .. 10

3.3.2 Configuring an account with company module ... 11

3.4 Database Diagram ... 15

 iv

3.5 Screen Shots .. 16

CHAPTER 4 - Testing .. 20

4.1 Unit Testing .. 20

4.2 Performance Testing ... 22

4.2.1 System Configuration: ... 23

4.2.2 Test Plan ... 23

4.2.3 Test Results & Evaluation ... 24

4.2.3.1 Home Page .. 24

4.2.3.2 Login Method.. 25

4.2.3.3 Configuring an account: .. 27

CHAPTER 5 - Conclusions and Future Work .. 29

5.1 Conclusion .. 29

5.2 Problems Faced ... 29

5.3 Future Work .. 29

References ... 30

 v

List of Figures

Figure 3-1 Customer Use Case Diagram .. 9

Figure 3-2 Company Use Case Diagram .. 9

Figure 3-3 Class Diagram for Login Module ... 10

Figure 3-4 Class Diagram for Configuring an Account Module .. 12

Figure 3-5 Class Diagram for Registration Module ... 13

Figure 3-6 Class Diagram for Payment Module ... 14

Figure 3-7 Encrypted XML Data .. 14

Figure 3-8 Database Diagram ... 15

Figure 3-9 Home Page .. 16

Figure 3-10 Registration Page .. 16

Figure 3-11 Login Page .. 17

Figure 3-12 Home page after logging in ... 17

Figure 3-13 Company Selection Page... 18

Figure 3-14 View Bills Page ... 18

Figure 3-15 Payment Success Page .. 19

Figure 4-1 JUnit tests in eclipse .. 22

Figure 4-2 Summary graph for the home page ... 24

Figure 4-3 Summary graph for login page over HTTPS .. 26

Figure 4-4 Summary graph for login page over HTTP... 26

 vi

List of Tables

Table 4-1 System Configuration ... 23

Table 4-2 Summary table for home page .. 25

Table 4-3 Summary table for login page over HTTPS ... 25

Table 4-4 Summary table for login page over HTTP ... 25

Table 4-5 Summary table for configuring an account page .. 27

Table 4-6 Summary table Homepage over wireless network ... 27

Table 4-7 Summary table for Login page over wireless network ... 27

Table 4-8 Summary table for configuring an account over wireless network 28

 vii

Acknowledgements

I would like to thank my Major Professor Dr. Daniel Andresen for his constant help,

encouragement and guidance throughout the project.

I would also like to thank Dr. Torben Amtoft and Dr. Mitchell Neilsen for serving in my

committee and for their valuable cooperation during the project.

Finally, I wish to thank my family and friends for all their support and encouragement.

 1

CHAPTER 1 - Introduction

Online Bill Payment website provides an effective, interactive and secure solution for

customers to manage all their bills. Customers need not keep track of all the paper bills once they

register on the website and add the company accounts. Customers will receive emails once a new

bill is posted to the account or when a payment is due or when the payment is made.

In order to keep the sensitive data safely, the website uses SSL for the data transmission.

The website provides a good User Interface to encourage the customers to use the website. The

website is built using the J2EE technologies and also enough care is taken to support scalability

and low maintenance.

Web services are used to communicate between bill payment website and the companies.

Security is also implemented in the web services so that the data is transmitted securely.

1.1 Motivation

To implement the online bill payment website lot of technologies must be used. In order

to differentiate this website from others in the market, the website must be built effectively.

While designing an application of this type, it gives a lot of scope to learn various new

technologies and new concepts. The software development life cycle can be put into practice

while developing the application. The main motivation for designing this application comes from

the idea that I could learn a lot of new technologies and concepts during development phases.

1.2 Objective

The main objective of the project is to build an effective and secure web site. The website

must be implemented using J2EE technologies and struts frame work. Design patterns must be

used to simplify the maintenance of the application.

Another objective is to secure the data by providing SSL layer for data transmission. The

interaction between the website and the companies is through web services. It is also required to

provide the security to the web services.

Another objective is to send notifications to customer via emails whenever a new bill is

posted to the account or a payment is processed.

 2

Another objective is to store the passwords in encrypted format.

The last objective is to provide a good user interface to the customer to encourage using

the web site.

Various technologies like JSP’s, JDBC, Java Mail, Struts Framework, Struts Tiles, web

services, design patterns must be used and security concepts like SSL, certificates, one way

hashing must be implemented.

1.3 Salient Features of the Website

The website provides the following features:

 Users can register in the website and login to their account

 Users can browse the various companies to configure the account with the company

 Users can configure the company accounts

 Users can view the current pending bills and make payments

 Users can view the payment history

 Reset password feature which allows to reset the password if a user forgets their

password and an email will be sent to them

 Users can receive emails when a new bill is posted and when a payment is processed

 Passwords are encrypted

1.4 Document Overview

The first part of the document describes the features, motivation and objectives of

website. Chapter 2 explains the technologies and tools used in the project. Chapter 3 gives the

general system architecture and implementation details of the website. The screen shots of the

project are shown in the next section. Chapter 4 gives the testing results and chapter 5 gives the

conclusion along with problems faced and future work. The last section has various references

that are used while designing this application.

 3

CHAPTER 2 - Related Work

2.1 Tools and Technologies

2.1.1 J2EE

The J2EE platform is a collection of related technology specifications that describe

required API’s and policies. It aims to simplify the design and implementation of enterprise

applications. J2EE provides vast API’s which can be re used while developing an application.

I have used the following technologies in J2EE.

 JSP: Java Server Pages technology is used to create dynamic web content. It is a simple,

yet powerful technology for creating and maintaining dynamic-content web pages. JSP

technology separates the user interface from content generation, enabling designers to

change the overall page layout without altering the underlying dynamic content.

 JDBC: The Java Database Connectivity API provides a standard way to access relational

databases from the application.

 JavaMail: JavaMail API provides a platform-independent and protocol-independent

framework to build mail and messaging applications. JavaMail supports different

protocols like SMTP, POP3 and IMAP.

2.1.2 Struts

Apache Struts is an open source framework for building J2EE web applications. Struts

provide the basic infrastructure for implementing MVC (Model View Controller) thereby

allowing the separation of business logic and data of the application from the presentation of data

to the user.

2.1.3 Struts Tiles

Struts Tiles is a template mechanism which allows the presentation layer to be composed

from various independent web page components.

 4

2.1.4 Web Services

Web services are web based applications that use open, XML-based standards and

transport protocols to exchange data with calling clients [1]. Web services are based on a set of

standards like SOAP, WSDL and UDDI.

 SOAP: SOAP is a protocol by which a remote client can invoke the functionality

implemented by the web service. SOAP usually uses XML as its message format. SOAP

is platform independent and also language independent.

 WSDL: WSDL is used to define metadata describing the web service. WSDL is used

both by developers and clients. Developers use WSDL to define the web service and

clients use WSDL to invoke the web service by learning about the arguments and the way

to call the web service.

 UDDI: Web services are published over the internet using UDDI. Clients can use UDDI

to find information about the web services.

2.1.5 Design Patterns

A Design pattern is a reusable solution to a commonly occurring problem in software

design. Design patterns can speed up the development process by providing tested, proven

development paradigms. I have used Model View Controller pattern, Delegate Pattern, Data

Access Object pattern and Transfer Object pattern.

 MVC Pattern: The application is designed based on the MVC pattern. The Model

represents enterprise data and the business rules that govern access to and updates if this

data. The View renders the enterprise data through the model and specifies how the data

should be presented to the client. The controller selects the appropriate view based on the

user interactions and the outcome of the model actions. A change in any one of the layer

doesn’t affect the other layers.

 Delegate Pattern: Delegate pattern helps to reduce coupling between the presentation tier

and business services. Delegate objects are used for the sake of accessing the business

logic which resides in another layer, typically a DAO [6].

 DAO Pattern: DAO pattern separates a data resource’s client interface from its data

access mechanisms. It allows data access mechanisms to change independently of the

code that uses the data [7].

 5

 Transfer Object Pattern: Transfer object is used to reduce the number of network calls

and network overhead. When a client requests some attribute values, instead of making

many remote calls to get the values, a single remote method invocation can be made

using a transfer object [8].

2.1.6 One Way Hashing

It is not a good idea to store the passwords or other sensitive information in the database

in plain text format. Instead the passwords and other sensitive information can be encrypted and

then stored in the database. Passwords are encrypted using one way hash algorithms because it

would be impossible to guess the password by seeing the encrypted data and there is no way the

password can be decrypted. I have used SHA algorithm to encrypt the password.

2.1.7 HTTPS Protocol

HTTPS is used to secure the sensitive data from hackers during transmission. HTTPS is a

combination of the HTTP along with SSL/TLS protocol to provide encryption and secure

information [12]. HTTPS creates a secure channel over a network. A server certificate is used

when HTTPS is implemented. Usually this certificate must be verified by a certificate authority.

For testing purposes a key store is generated using the java key tool. When a client requests the

page, a certificate would be presented to the client. If the client accepts the certificate then the

secure channel would be created and all the information would be passed over the secure

channel.

2.1.8 Web Services Security

By default, the data communication between the web services is not encrypted. It is

always a good idea to encrypt the data. In other words the SOAP data needs to be secured. I have

used Apache Rampart to implement the security for the web services. After implementing the

web services security, when two web services communicate they exchange certificates. A web

service WS1 encrypts the data that needs to be sent to other web service WS2 using the WS2

public key and WS2 would decrypt using its private key and vice versa. So the data is always

sent in an encrypted format. Rampart provides the implementation details of the public and

private keys, certificates needed for the security.

 6

In addition to the above technologies HTML, CSS and JavaScript are used to design the

application.

 7

CHAPTER 3 - Design and Implementation

3.1 System Architecture

3.1.1 Struts MVC Architecture

The System is built based on MVC architecture. Struts provides the infrastructure for

implementing the application using MVC. The Model, View and Controller components are

separated and each component is independent of the other. It encourages the reusability of the

code. In struts, the ActionServlet class acts as the controller. The jsp files are present in the view

layer and the business logic related to the application is present in the model layer.

The struts-config.xml contains all the information about the Action Classes, Action

Forms, Action Mappings and Action Forwards. When a client makes a request the Action Servlet

calls the corresponding action class by using the struts-config.xml file. After the control reaches

the Action Class then the necessary operations that reside in the model layer will be called and

after getting back the response the action class will notify the container to forward the client to a

particular view.

Since the layers are independent to each other, a change in one layer doesn’t affect the

other layers. So even if some logic needs to be changed at some point it can be done very easily

without affecting the other parts of the application.

The overall performance and ease of use would be increased if MVC architecture is used.

But in order to further improve the maintenance of the application, business logic needs to be

refined. The way the business logic is written and the way to access the business logic needs to

be enhanced. This is the reason to use design patterns. Design patterns provide an elegant and

well proved solution approach.

The general flow of the control in the application is as follows:

The ActionServlet class forwards the control to the appropriate action class. From the

action class the business logic will be accessed by using a Delegate Class. The Delegate class

will call the DAOFactory class and get the appropriate DAOImpl object. The

DatabaseDAOFactory class contains the method to create a database connection and methods to

get the DAOImpl objects. The DAOImpl class contains the business logic. In the future if some

other developer wants a different method implementation then it would be enough to implement

 8

the DAO Interface and provide a method implementation. Also if the underlying relational

database needs to be changed then it would be enough to change it in the DatabaseDAOFactory

class. So the code is loosely coupled which improves reusability and efficiency.

3.1.2 Web Services

Some functions call Web services. By using Axis-2, the Stub and CallBackHandler

classes are generated automatically. So when a web service needs to be called then the Stub is

initialized and called to get a response object from the web service.

3.1.3 Securing the data using Rampart

By using Rampart the data is encrypted and sent to the web service. All the incoming

messages are decrypted. Rampart support is added to both server and client.

The system architecture is shown in the following figure.

3.2 Use Case Diagrams

The Use case Diagram describes the system functionality from an external observer’s

view. It shows who can do what. The following are the use case diagrams for my application.

The first one shows the customer and the second use case shows the company activities.

The customer can perform various activities like Register or setup an account with the

website, Login, update the profile, browse the list of companies, configure accounts with the

company, view the current bills and payment history and logout.

The company can perform activities like verifying the user accounts, sending bills to

customers and processing customer payments.

 9

Figure 3-1 Customer Use Case Diagram

Figure 3-2 Company Use Case Diagram

 10

3.3 Class Diagrams

Below are the class diagrams that show the various classes that I have used. The general

design that I have used for designing the classes is that for each module, there will be

i. A Form class which extends from ActionForm class provided by Struts framework

ii. An Action class which extends DispatchAction class provided by Struts framework

iii. A DAO interface which has the methods related to the module

iv. A DAOImpl class which implements DAO

v. A VO class which has the attributes related to the module

vi. A Delegate class which has the required method and which returns the same method

implementation present in DAOImpl class

There are some modules for which one of the above classes is not present. But overall I

tried to follow a similar structure whenever possible so as to promote reuse and flexibility.

3.3.1 Class Diagram for Login Module

I will explain the flow by using one of the modules as an example. Consider the login

module.

Figure 3-3 Class Diagram for Login Module

 11

The control first reaches the LoginAction class and then the validateUser method of the

LoginAction class is called. The LoginForm is sent along with the method call. The attributes of

login form are retrieved and set to a LoginVO object. Then the validateUser method in the

LoginDelegate class is called by passing the LoginVO object. The validateUser method in

LoginDelegate class in turn calls the getLoginDAOImpl method of DatabaseDAOFactory class.

This method returns an implementation of the LoginDAO interface. The logic related to

validating the user is present in the LoginDAOImpl class which is the implementation of

LoginDAO interface. After the validateUser method in LoginDelegate class gets the

implementation it returns the result to the LoginAction class. Depending on the result the action

class will send a ForwardAction object to the container which matches the action forwards

defined in the struts-config.xml file and redirects to an appropriate view.

3.3.2 Configuring an account with company module

The overall flow is similar to the above described flow but in addition the business logic

deals with interacting with the web services. The classes VerifyAccountStub,

VerifyAccountResponse, VerifyAccountCallBackHandler are auto generated by the axis2 plug-

in.

The next class diagrams show the user registration module and also the payment in the

company module.

I have used some more classes like Success, Error, and Constants. These classes contain

the message strings that need to be displayed to the user depending on an action. The Mail class

contains the logic to send an email to the customer at the specified email address during

registration process. The MailMessage class contains the mail body strings that need to be sent to

the customer depending on the situation. The Encryptpassword class contains the method to

encrypt the password using SHA algorithm. The GeneratePassword class contains the method to

auto generate a password.

 12

Figure 3-4 Class Diagram for Configuring an Account Module

 13

Figure 3-5 Class Diagram for Registration Module

 14

Figure 3-6 Class Diagram for Payment Module

The following screenshot shows the encrypted XML request and XML response in web

services

Figure 3-7 Encrypted XML Data

 15

3.4 Database Diagram

Figure 3-8 Database Diagram

 User_Info table contains all the information about the users.

 User_Login contains all the information about the user login details.

 Payment_History contains all the information about the payments of users.

 Company_Info contains the information about the company.

 User_Accounts contains all the information about the bills of the user.

 User_Account_Status contains the information the user accounts and whether the user is

a verified user or not.

 16

3.5 Screen Shots

Figure 3-9 Home Page

Figure 3-10 Registration Page

 17

Figure 3-11 Login Page

Figure 3-12 Home page after logging in

 18

Figure 3-13 Company Selection Page

Figure 3-14 View Bills Page

 19

Figure 3-15 Payment Success Page

 20

CHAPTER 4 - Testing

4.1 Unit Testing

Unit Testing is a method where each individual part of the software like a class, a method

or a module is tested with various possible inputs to ensure the correctness of the software. Unit

testing is very important because it gives the developers an opportunity to verify the functionality

of all the individual functions before integrating them.

I have used JUnit framework to perform unit testing. JUnit is a unit testing framework for

the Java Programming language. Test cases need to be created in order to test the application. To

create a test case in JUnit the testing class must extend the TestCase class. JUnit is integrated in

eclipse. All the test cases can be included in a test suite so that they can be executed at a time. I

have tested all the possible methods using JUnit. For the rest of the methods and functionality, I

have performed manual testing. Following are the methods which were tested using JUnit

framework.

All the methods are called from the action class using the corresponding delegate class.

So I wrote a test for each delegate class to observe the outcome.

i. AddeBillsDelegateTest: AddeBillsDelegate class has a method to verify whether a

customer has an account configured with some company. I used three test cases for the

method, one with valid input and two with invalid inputs.

ii. HistoryDelegateTest: HistoryDelegate class has a method to get the payment history

details of the user. I used two test cases one with a valid input and another with an invalid

input.

iii. LoginDelegateTest: LoginDelegate class has methods to validate a user, update password

and reset password. I used three test cases for each of the methods, one with valid input

and two with invalid inputs.

iv. PaymentDelegateTest: PaymentDelegate class has method that allows the customer to

pay the current bill. This method calls the web service corresponding to the company

associated with the bill. I used three test cases for the method one with valid input and

two with invalid inputs like a negative bill amount and an invalid user.

 21

v. RegisterUserDelegateTest: RegisterUserDelegate class has methods to register a user,

update the user profile and get the user details. I used three test cases for all the methods,

one with valid input and two with invalid inputs.

vi. ViewBillsDelegateTest: ViewBillsDelegate has a method to get the current bills of the

user. I have used the same inputs that were used in the HistoryDelegateTest.

Apart from these methods there were some things that needed some manual testing. The

passwords are encrypted using one way hash algorithm and then stored in the database. After a

registration task or after updating/reset the password, I manually checked the database to confirm

that the passwords in the database are in an encrypted form. Also a mail will be sent to the user

in the following scenarios:

i. When a user registers in the website

ii. When a user resets the password

iii. When a user configures an account with a company

iv. When a new bill is generated

v. When a payment is made

In all the above cases I made sure that the email is sent to the users at the address

associated with their account.

Also I have manually verified all the action forwards in the Struts action classes. I made

sure that the action forwards are behaving in the expected manner. Along with the action

forwards I made sure that the tiles corresponding to the action forward are being called.

I also made sure that the data communication between web services is always in an

encrypted form.

 22

Figure 4-1 JUnit tests in eclipse

4.2 Performance Testing

Performance testing is defined as the technical investigation done to determine or validate

the speed, scalability, and/or stability characteristics of the web application under test [18]. A

scenario is simulated where in many clients access the web application at a time. The number of

clients trying to access the web site can be increased gradually and the effects are observed. By

performance testing we can find the maximum number of users that can access the web

application at some point of time. Also the efficiency of the server can be found out. With the

help of these observations the application can be further tuned to increase the performance.

I have used Apache JMeter to test the performance of the website.

 23

4.2.1 System Configuration:

I have used a system with following configuration for testing the application

System Configuration

Number of Processors 1

RAM 1 GB

Processor Type 586

Processor Speed 2 GHZ

OS Name Windows Vista SP1

Table 4-1 System Configuration

4.2.2 Test Plan

I have tested three pages in my application.

 The Home page using HTTP protocol

 Login page, by passing login credentials to the login page using HTTPS protocol

 Configuring an account with a company using HTTPS protocol, this involves

communicating with the web services.

Each test is run using 50 users sending requests 200 times on a local machine. That was

the maximum load that my system could handle. Whenever I try to increase the number of users

or the loop count I am getting a “Java.lang.OutOfMemoryError-dumping heap space” exception.

So I have limited the number of users to a maximum of 50 and the loop count to 200. When I

tried to run the tests on a network using K-State wireless network, I have observed that the

number of users that can access are 50 and the loop count is about 100.

 24

4.2.3 Test Results & Evaluation

4.2.3.1 Home Page

The following are the test results:

Figure 4-2 Summary graph for the home page

It can be observed that the throughput is very high and response time is very low. HTTP

protocol is used while calling this web page. It doesn’t involve any encryption. Also the page

doesn’t involve any communication with the database. So there is no additional overhead other

than retrieving the page. The performance may decrease if the number of samples is increased

but very often my system crashes by giving a Java.lang.OutOfMemoryError. The same results on

a summary report can be observed below.

 25

Table 4-2 Summary table for home page

4.2.3.2 Login Method

The following are the test results:

Table 4-3 Summary table for login page over HTTPS

Verifying the user details involves connecting to the database and also applying a one

way hash algorithm to the password. This affects the response and throughput time. Since the

data is sent using HTTPS protocol, the response time would be a bit high. This can be reflected

in the below screenshots. The below screenshot shows the same test using HTTP protocol

Table 4-4 Summary table for login page over HTTP

 26

The same results can be observed in the following graphs:

Figure 4-3 Summary graph for login page over HTTPS

Figure 4-4 Summary graph for login page over HTTP

 27

4.2.3.3 Configuring an account:

The test results are as follows

Table 4-5 Summary table for configuring an account page

The main reason for the low throughput and high response time for the above test case is

that the xml data used to communicate has to be marshaled and un-marshaled before using. Also

the data is being encrypted and decrypted. So along with the data transfer between two servers

there is also an additional overhead associated with marshalling/un-marshalling and encrypting

and decrypting the data. I have used HTTPS protocol which induces an additional over head

along with the factors above.

The following are the test results when these tests are performed over a network.

Table 4-6 Summary table Homepage over wireless network

Table 4-7 Summary table for Login page over wireless network

 28

Table 4-8 Summary table for configuring an account over wireless network

Over a wireless network, the performance might have been decreased due to the factors

like network usage at the testing time and also my system configuration. It can be observed that

the login page has more throughput than the home page. Ideally the login page should take more

time because it uses HTTPS protocol and involves hashing the password and communicating

with the database but due to the factors like network usage at the testing time the home page has

a less throughput. I think that the overall performance can be increased by improving the system

configuration or using multiple servers instead of one.

 29

CHAPTER 5 - Conclusions and Future Work

5.1 Conclusion

By implementing the Online Bill Payment website, I have gained a lot of experience on

various technologies like Struts, Tiles, Servlets, Web services, Design Patterns, Java Mail API,

XML, HTML, CSS, and Java Script. In addition I also gained experience on security concepts

like one way hashing algorithms, SSL encryption, certificates, web services security.

5.2 Problems Faced

1. The main problem was learning the security concepts and learning how to implement them

using java.

2. While implementing web services security using rampart module, I faced a lot of problems

with some jar file dependencies.

5.3 Future Work

The present application is scalable and can be easily improved without much hassle. The

use of struts and design patterns makes it easier to add more functionality in the future. The

present application has all the basic features including security that a bill payment website needs.

I think the following features can be added in the future:

1. Communication between the web services using HTTPS protocol instead of HTTP.

2. Add more companies to the bill payment website.

3. Implementing the payment methods. Giving an option to the user to select from various

payment methods.

4. Provide auto payment options.

5. Use Maven to build the application.

 30

References

[1] The Java EE 5 Tutorial,

 http://java.sun.com/javaee/5/docs/tutorial/doc

[2] Apache Struts,

 http://struts.apache.org/1.x/index.html

[3] Struts Tiles,

 http://struts.apache.org/1.x/struts-tiles/index.html

[4] Struts Taglib,

 http://struts.apache.org/1.x/struts-taglib/index.html

[5] Web Services Tutorial

 http://www.w3schools.com/webservices/default.asp

[6] Core J2EE Patterns – Business Delegate

 http://java.sun.com/blueprints/corej2eepatterns/Patterns/BusinessDelegate.html

[7] Core J2EE Patterns – Data Access Object

 http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

[8] Core J2EE Patterns – Transfer Object

 http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html

[9] Core J2EE Patterns: Best Practices and Design Strategies, Second Edition by Deepak Alur,

John Crupi, Dan Malks

http://java.sun.com/javaee/5/docs/tutorial/doc
http://struts.apache.org/1.x/index.html
http://struts.apache.org/1.x/struts-tiles/index.html
http://struts.apache.org/1.x/struts-taglib/index.html
http://www.w3schools.com/webservices/default.asp
http://java.sun.com/blueprints/corej2eepatterns/Patterns/BusinessDelegate.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html

 31

[10] Cryptographic hash function

 http://en.wikipedia.org/wiki/Cryptographic_hash_function

[11] Hashing Concepts and the Java Programming Language

 http://www.serve.net/buz/hash.adt/java.000.html

[12] HTTP Secure

 http://en.wikipedia.org/wiki/HTTP_Secure

[13] Web Services Security

 http://www.ibm.com/developerworks/library/specification/ws-secure/

[14] Tomcat and SSL

 http://tomcat.apache.org/tomcat-3.3-doc/tomcat-ssl-howto.html

[15] Implementing Web Services Security with Apache Rampart

 http://sacrosanctblood.blogspot.com/2007/03/step-by-step-tutorial-to-use-rampart.html

[16] Testing with JUnit

 http://java.sun.com/developer/Books/javaprogramming/ant/ant_chap04.pdf

[17] JUnit Testing in Eclipse

 http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643

[18] Performance Testing Guidance for Web Applications

 HTTP://msdn.microsoft.com/en-us/library/bb924375.aspx

[19] Performance Testing with JMeter

 http://blogs.atlassian.com/developer/2008/10/performance_testing_with_jmete.html

http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://www.serve.net/buz/hash.adt/java.000.html
http://en.wikipedia.org/wiki/HTTP_Secure
http://www.ibm.com/developerworks/library/specification/ws-secure/
http://tomcat.apache.org/tomcat-3.3-doc/tomcat-ssl-howto.html
http://tomcat.apache.org/tomcat-3.3-doc/tomcat-ssl-howto.html
http://sacrosanctblood.blogspot.com/2007/03/step-by-step-tutorial-to-use-rampart.html
http://java.sun.com/developer/Books/javaprogramming/ant/ant_chap04.pdf
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://msdn.microsoft.com/en-us/library/bb924375.aspx
http://blogs.atlassian.com/developer/2008/10/performance_testing_with_jmete.html

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Salient Features of the Website
	1.4 Document Overview

	Related Work
	2.1 Tools and Technologies
	2.1.1 J2EE
	2.1.2 Struts
	2.1.3 Struts Tiles
	2.1.4 Web Services
	2.1.5 Design Patterns
	2.1.6 One Way Hashing
	2.1.7 HTTPS Protocol
	2.1.8 Web Services Security

	Design and Implementation
	3.1 System Architecture
	3.1.1 Struts MVC Architecture
	3.1.2 Web Services
	3.1.3 Securing the data using Rampart

	3.2 Use Case Diagrams
	3.3 Class Diagrams
	3.3.1 Class Diagram for Login Module
	3.3.2 Configuring an account with company module

	3.4 Database Diagram
	3.5 Screen Shots

	Testing
	4.1 Unit Testing
	4.2 Performance Testing
	4.2.1 System Configuration:
	4.2.2 Test Plan
	4.2.3 Test Results & Evaluation
	4.2.3.1 Home Page
	4.2.3.2 Login Method
	4.2.3.3 Configuring an account:

	Conclusions and Future Work
	5.1 Conclusion
	5.2 Problems Faced
	5.3 Future Work

	References

