ONLINE BILL PAYMENT SYSTEM

by

VENKATA SRI VATSAV REDDY KONREDDY

B. Tech., Jawaharlal Nehru Technological University, 2007

A REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
2009
Approved by:

Major Professor
Dr. Daniel Andresen

Abstract

Keeping track of paper bills is always difficult and there is always a chance of missing
bill payment dates. Online Bill Payment application is an interactive, effective and secure
website designed for customers to manage all their bills. The main objective of this application is
to help customers to receive, view and pay all the bills from one personalized, secure website

there by eliminating the need of paper bills.

Once customers register in the website, they can add various company accounts. The
information is verified with the company and the accounts are added. After the customers add the
company accounts they can receive notifications about new bills, payments and payment
reminders. All the information dealing with sensitive data is passed through a Secure Socket

Layer for the sake of security.

This website follows MVC architecture. Struts is used to develop the application. Well
established and well proven design patterns like Business Delegate, Data Access Object, and
Transfer Object are used to simplify the maintenance of the application. For the communication
between the website and companies, web services are used. Apache Axis2 serves as the web
services container and Apache Rampart is used to secure the information flow between the web
services. Tiles, JSP, HTML, CSS and JavaScript are used to provide a rich user interface. A part
from these, Java Mail is used to send emails and concepts like one way hashing, certificates, key

store’s, and encryption are implemented for the sake of security.

The overall system is tested using unit testing, manual testing and performance testing
techniques. Automated test cases are written whenever possible to ensure correctness of the
functions. Manual testing further ensures that the application is working as expected. The system
is subjected to different loads and the corresponding behavior is observed at different loads. The
unit and manual testing revealed that the functionality of each module in the system is behaving
as expected for both valid and invalid inputs. Performance testing revealed that the website

works fine even when the server is subjected to huge loads.

Table of Contents

S 0 T 0T =TSSP v
S 0 I o] [PPSR Vi
ACKNOWIEAGEMENTS ...ttt bbb vii
CHAPTER 1 - INEFOTQUCTIONouviieiii sttt ettt 1
Y o] {72 [0 o SRRSO 1
1.2 ODJECHIVE ...ttt bbb bbbt b et r s 1
1.3 Salient Features OF the WEDSITEoiieiie e 2
1.4 DOCUMENT OVEIVIBW ...ttt sttt bbbt b e b et et e et abenbeereanes 2
CHAPTER 2 - ReIAtEA WOTK.....c.viiiiiiiiiiiieieiee ettt 3
2.1 TOOIS aNd TECNANOIOGIESc.viiiiieiieieee ettt 3
00 OB N TS PRR 3
2.0.2 SETULS ..ottt b e a e b e e e R e n e R e bt e n e nn e ne e 3

2. 1.3 SHIULS THIES .ottt bbbttt sbe bbb e renneas 3
2.1 4 WWED SBIVICES ...oeeuveiiieiieeie et sttt e sttt et e et e st e st e nbeaneesteeteaneeaneenbeeneenneenen 4
2.1.5 DESIGN PAIEIMNS ...ttt ettt sb bbb eneas 4
2.1.6 ONE Way HaShINGcccoeiiiiiiiece ettt ettt nas 5
2.1.7 HTTPS ProtOCOL.......oiuiiiiiiiiiciee ettt nneas 5
2.1.8 WED SEIVICES SECUNLYveiiieiieiieieie ettt 5
CHAPTER 3 - Design and IMplementation.............cooeiiiiiirinieiese s 7
3.1 SYSEM ATCNITECIUIE.......vivieie ettt et et e e st e e steeaeesreesreenee e 7
3.1.1 Struts MV C AFCHITECIUIE ...t 7
TN I 1YL=« IS Y (o= OSSR 8
3.1.3 Securing the data uSiNg RAMPAITcccoiiiiiiiieee e 8

A O O T B IT: Vo [U PP 8
R O T B - To = PSSP 10
3.3.1 Class Diagram for Login MOQUIEccciiiiiiiiiiee e 10
3.3.2 Configuring an account with company module ... 11

3.4 Database DIAGIAMciviiiiie ittt et sa et e et e e e be e sbee st e e s beeebeesaeeanes 15

3.0 SCIEEN SNOTS. ...ttt e e et e e e et e e e e e e e e e et e e e e e e e ————aaae e e e ——— 16

CHAPTER 4 - TESHING . .cueetiiieieieie sttt sttt sttt sense st neeneaneneas 20
A1 UNIETESTING ettt bbbt et bbb 20
4.2 PerformancCe TESTING ...cc.ueueiie ettt sttt e e sb et re e beeneeeneenrs 22

4.2.1 System ConfiQUIAtION:eoiiiieiicce e e e nee s 23
A.2.2 TESEPIAN ...ttt bbbt bbb e ere s 23
4.2.3 Test ReSUItS & EVAIULIONooviiiiiiiie e 24
4.2.3. 1 HOME PAGE ..ottt 24
4.2.3.2 LOQIN MELNOM.........cciiiice ettt 25
4.2.3.3 Configuring @n CCOUNT:........ccceiiuiiieieeie et sre e sraesreenee s 27

CHAPTER 5 - Conclusions and FULUIe WOTKcccoiieiiiieiie e 29
T8 A 0 Tod 1115 o] o OSSP 29
5.2 ProDIEMS FACEU........cuviiiieeiiiec bbbttt bbb sreeneas 29
5.3 FULUIE WOTK ...ttt bbbkt et e e nb bbb e nbeane s 29

L E 1= =] 0TSSR 30

List of Figures

Figure 3-1 Customer Use Case DIagramccceiueiieieiieie e e e see e see e sre e e e nae e nns 9
Figure 3-2 Company Use Case DIAGIaMccciuerieriiiiriiieiieieie ettt 9
Figure 3-3 Class Diagram for Login MOQUIEccooiiiiiiiiiecce e 10
Figure 3-4 Class Diagram for Configuring an Account Moduleccccoevieiiiiiiccc e 12
Figure 3-5 Class Diagram for Registration Moduleccccviiiiiiicic e 13
Figure 3-6 Class Diagram for Payment MOdUIE ... 14
Figure 3-7 ENCrypted XML Data.........ccooviiiieieieiieiie ettt 14
Figure 3-8 Databhase DIagramc.ccveiuiiieieeie et e e e e sreenesreesnaeee s 15
FIQUIE 3-9 HOME PAJEceeiieeieee ettt st e e be et e e e sraesteeneeneenneente s 16
Figure 3-10 RegISIration PAgEoiiiiiiiieieieie ittt 16
FIQUIE 3-11 LOGIN PAJE ..ottt bbbttt 17
Figure 3-12 Home page after 1ogging iN........ccoooiiiiieiicc e 17
Figure 3-13 Company SeleCtion PAgE.........c.ciiveiuiiiieiieiicc et 18
Figure 3-14 VIeW BillS PAGE........coiiiiiiiiiieee e 18
Figure 3-15 PaymMent SUCCESS PAGEccuuiuiriiieieieiie sttt 19
Figure 4-1 JUNIE teStS iN ECHIPSE....viiuieitieee ettt este e 22
Figure 4-2 Summary graph for the NOMe PAgEccoeiiiie i 24
Figure 4-3 Summary graph for login page over HTTPS ..o 26
Figure 4-4 Summary graph for 1ogin page over HTTP ..o 26

List of Tables

Table 4-1 System ConfIGUIALIONcocoveiiieiicc e ee e 23
Table 4-2 Summary table for NOME PAGE.......cveiiiiiii s 25
Table 4-3 Summary table for login page over HTTPS ..o 25
Table 4-4 Summary table for login page over HTTP ... 25
Table 4-5 Summary table for configuring an acCcouNt PAgE..........ccceevverieiieerieiiese e 27
Table 4-6 Summary table Homepage over Wireless NEtWOrkcocovvreiinieiienenc s 27
Table 4-7 Summary table for Login page over wWireless NetWork............ccoovvvvveienencnenenesenn 27
Table 4-8 Summary table for configuring an account over wireless network..............c.cccceueeneee. 28

Vi

Acknowledgements

I would like to thank my Major Professor Dr. Daniel Andresen for his constant help,

encouragement and guidance throughout the project.

I would also like to thank Dr. Torben Amtoft and Dr. Mitchell Neilsen for serving in my

committee and for their valuable cooperation during the project.

Finally, I wish to thank my family and friends for all their support and encouragement.

vii

CHAPTER 1 - Introduction

Online Bill Payment website provides an effective, interactive and secure solution for
customers to manage all their bills. Customers need not keep track of all the paper bills once they
register on the website and add the company accounts. Customers will receive emails once a new
bill is posted to the account or when a payment is due or when the payment is made.

In order to keep the sensitive data safely, the website uses SSL for the data transmission.
The website provides a good User Interface to encourage the customers to use the website. The
website is built using the J2EE technologies and also enough care is taken to support scalability
and low maintenance.

Web services are used to communicate between bill payment website and the companies.

Security is also implemented in the web services so that the data is transmitted securely.

1.1 Motivation

To implement the online bill payment website lot of technologies must be used. In order
to differentiate this website from others in the market, the website must be built effectively.
While designing an application of this type, it gives a lot of scope to learn various new
technologies and new concepts. The software development life cycle can be put into practice
while developing the application. The main motivation for designing this application comes from

the idea that I could learn a lot of new technologies and concepts during development phases.

1.2 Objective

The main objective of the project is to build an effective and secure web site. The website
must be implemented using J2EE technologies and struts frame work. Design patterns must be
used to simplify the maintenance of the application.

Another objective is to secure the data by providing SSL layer for data transmission. The
interaction between the website and the companies is through web services. It is also required to
provide the security to the web services.

Another objective is to send notifications to customer via emails whenever a new bill is

posted to the account or a payment is processed.

Another objective is to store the passwords in encrypted format.

The last objective is to provide a good user interface to the customer to encourage using
the web site.

Various technologies like JSP’s, JDBC, Java Mail, Struts Framework, Struts Tiles, web
services, design patterns must be used and security concepts like SSL, certificates, one way

hashing must be implemented.

1.3 Salient Features of the Website
The website provides the following features:
e Users can register in the website and login to their account
e Users can browse the various companies to configure the account with the company
e Users can configure the company accounts
e Users can view the current pending bills and make payments
e Users can view the payment history
e Reset password feature which allows to reset the password if a user forgets their
password and an email will be sent to them
e Users can receive emails when a new bill is posted and when a payment is processed

e Passwords are encrypted

1.4 Document Overview
The first part of the document describes the features, motivation and objectives of
website. Chapter 2 explains the technologies and tools used in the project. Chapter 3 gives the
general system architecture and implementation details of the website. The screen shots of the
project are shown in the next section. Chapter 4 gives the testing results and chapter 5 gives the
conclusion along with problems faced and future work. The last section has various references
that are used while designing this application.

CHAPTER 2 - Related Work

2.1 Tools and Technologies

2.1.1 J2EE
The J2EE platform is a collection of related technology specifications that describe
required API’s and policies. It aims to simplify the design and implementation of enterprise
applications. J2EE provides vast API’s which can be re used while developing an application.
| have used the following technologies in J2EE.

e JSP: Java Server Pages technology is used to create dynamic web content. It is a simple,
yet powerful technology for creating and maintaining dynamic-content web pages. JSP
technology separates the user interface from content generation, enabling designers to
change the overall page layout without altering the underlying dynamic content.

o JDBC: The Java Database Connectivity API provides a standard way to access relational
databases from the application.

e JavaMail: JavaMail API provides a platform-independent and protocol-independent
framework to build mail and messaging applications. JavaMail supports different
protocols like SMTP, POP3 and IMAP.

2.1.2 Struts
Apache Struts is an open source framework for building J2EE web applications. Struts
provide the basic infrastructure for implementing MVC (Model View Controller) thereby
allowing the separation of business logic and data of the application from the presentation of data

to the user.

2.1.3 Struts Tiles
Struts Tiles is a template mechanism which allows the presentation layer to be composed

from various independent web page components.

2.1.4 Web Services

Web services are web based applications that use open, XML-based standards and

transport protocols to exchange data with calling clients [1]. Web services are based on a set of
standards like SOAP, WSDL and UDDI.

SOAP: SOAP is a protocol by which a remote client can invoke the functionality
implemented by the web service. SOAP usually uses XML as its message format. SOAP
is platform independent and also language independent.

WSDL: WSDL is used to define metadata describing the web service. WSDL is used
both by developers and clients. Developers use WSDL to define the web service and
clients use WSDL to invoke the web service by learning about the arguments and the way
to call the web service.

UDDI: Web services are published over the internet using UDDI. Clients can use UDDI

to find information about the web services.

2.1.5 Design Patterns

A Design pattern is a reusable solution to a commonly occurring problem in software

design. Design patterns can speed up the development process by providing tested, proven

development paradigms. | have used Model View Controller pattern, Delegate Pattern, Data

Access Object pattern and Transfer Object pattern.

MVC Pattern: The application is designed based on the MVC pattern. The Model
represents enterprise data and the business rules that govern access to and updates if this
data. The View renders the enterprise data through the model and specifies how the data
should be presented to the client. The controller selects the appropriate view based on the
user interactions and the outcome of the model actions. A change in any one of the layer
doesn’t affect the other layers.

Delegate Pattern: Delegate pattern helps to reduce coupling between the presentation tier
and business services. Delegate objects are used for the sake of accessing the business
logic which resides in another layer, typically a DAO [6].

DAO Pattern: DAO pattern separates a data resource’s client interface from its data
access mechanisms. It allows data access mechanisms to change independently of the
code that uses the data [7].

e Transfer Object Pattern: Transfer object is used to reduce the number of network calls
and network overhead. When a client requests some attribute values, instead of making
many remote calls to get the values, a single remote method invocation can be made

using a transfer object [8].

2.1.6 One Way Hashing
It is not a good idea to store the passwords or other sensitive information in the database
in plain text format. Instead the passwords and other sensitive information can be encrypted and
then stored in the database. Passwords are encrypted using one way hash algorithms because it
would be impossible to guess the password by seeing the encrypted data and there is no way the

password can be decrypted. | have used SHA algorithm to encrypt the password.

2.1.7 HTTPS Protocol

HTTPS is used to secure the sensitive data from hackers during transmission. HTTPS is a
combination of the HTTP along with SSL/TLS protocol to provide encryption and secure
information [12]. HTTPS creates a secure channel over a network. A server certificate is used
when HTTPS is implemented. Usually this certificate must be verified by a certificate authority.
For testing purposes a key store is generated using the java key tool. When a client requests the
page, a certificate would be presented to the client. If the client accepts the certificate then the
secure channel would be created and all the information would be passed over the secure

channel.

2.1.8 Web Services Security

By default, the data communication between the web services is not encrypted. It is
always a good idea to encrypt the data. In other words the SOAP data needs to be secured. | have
used Apache Rampart to implement the security for the web services. After implementing the
web services security, when two web services communicate they exchange certificates. A web
service WS1 encrypts the data that needs to be sent to other web service WS2 using the WS2
public key and WS2 would decrypt using its private key and vice versa. So the data is always
sent in an encrypted format. Rampart provides the implementation details of the public and

private keys, certificates needed for the security.

In addition to the above technologies HTML, CSS and JavaScript are used to design the

application.

CHAPTER 3 - Design and Implementation

3.1 System Architecture

3.1.1 Struts MVC Architecture

The System is built based on MVC architecture. Struts provides the infrastructure for
implementing the application using MVC. The Model, View and Controller components are
separated and each component is independent of the other. It encourages the reusability of the
code. In struts, the ActionServlet class acts as the controller. The jsp files are present in the view
layer and the business logic related to the application is present in the model layer.

The struts-config.xml contains all the information about the Action Classes, Action
Forms, Action Mappings and Action Forwards. When a client makes a request the Action Servlet
calls the corresponding action class by using the struts-config.xml file. After the control reaches
the Action Class then the necessary operations that reside in the model layer will be called and
after getting back the response the action class will notify the container to forward the client to a
particular view.

Since the layers are independent to each other, a change in one layer doesn’t affect the
other layers. So even if some logic needs to be changed at some point it can be done very easily
without affecting the other parts of the application.

The overall performance and ease of use would be increased if MV C architecture is used.
But in order to further improve the maintenance of the application, business logic needs to be
refined. The way the business logic is written and the way to access the business logic needs to
be enhanced. This is the reason to use design patterns. Design patterns provide an elegant and
well proved solution approach.

The general flow of the control in the application is as follows:

The ActionServlet class forwards the control to the appropriate action class. From the
action class the business logic will be accessed by using a Delegate Class. The Delegate class
will call the DAOFactory class and get the appropriate DAOImpl object. The
DatabaseDAOFactory class contains the method to create a database connection and methods to
get the DAOImpl objects. The DAOImpl class contains the business logic. In the future if some
other developer wants a different method implementation then it would be enough to implement

the DAO Interface and provide a method implementation. Also if the underlying relational
database needs to be changed then it would be enough to change it in the DatabaseDAOFactory

class. So the code is loosely coupled which improves reusability and efficiency.

3.1.2 Web Services
Some functions call Web services. By using Axis-2, the Stub and CallBackHandler
classes are generated automatically. So when a web service needs to be called then the Stub is

initialized and called to get a response object from the web service.

3.1.3 Securing the data using Rampart
By using Rampart the data is encrypted and sent to the web service. All the incoming
messages are decrypted. Rampart support is added to both server and client.

The system architecture is shown in the following figure.

3.2 Use Case Diagrams

The Use case Diagram describes the system functionality from an external observer’s
view. It shows who can do what. The following are the use case diagrams for my application.
The first one shows the customer and the second use case shows the company activities.

The customer can perform various activities like Register or setup an account with the
website, Login, update the profile, browse the list of companies, configure accounts with the
company, view the current bills and payment history and logout.

The company can perform activities like verifying the user accounts, sending bills to

customers and processing customer payments.

Register
Login
Update Profile

Browse Companies

Configure Accounts

Customer
View Current Bills
Pay Bills
View Payment History
Logout
Figure 3-1 Customer Use Case Diagram
Verify User Accounts
Send Bills

Company

Process Payments

Figure 3-2 Company Use Case Diagram

3.3 Class Diagrams

Below are the class diagrams that show the various classes that | have used. The general

design that I have used for designing the classes is that for each module, there will be

i. A Form class which extends from ActionForm class provided by Struts framework

ii. An Action class which extends DispatchAction class provided by Struts framework

iii. A DAO interface which has the methods related to the module
iv. A DAOImpl class which implements DAO

v. A VO class which has the attributes related to the module

vi. A Delegate class which has the required method and which returns the same method

implementation present in DAOImpl class

There are some modules for which one of the above classes is not present. But overall |

tried to follow a similar structure whenever possible so as to promote reuse and flexibility.

3.3.1 Class Diagram for Login Module

I will explain the flow by using one of the modules as an example. Consider the login

module.

«Java Class»
3 LoginAction

@ validateUser ()

@ logout ()

@ resetPassword ()
@ updatePassword ()

«Java Class»

3 Loginvo
o userName : String
o password : String
= exists : boolean
o email : String
o oldPassword : String
o newPassword : String
@ getEmail ()
@ setEmail ()
© getOldPassword ()
® setOldPassword ()
© getNewPassword (
@ setNewPassword (
© getUserName ()
® setUserName ()
© getPassword ()
@ setPassword ()
@ isExists ()
@ setExists ()

)
)

«Java Class»
© MailMessage

©° getPasswordMessage ()
<° getWelcomeMessage ()
& getBillNotifyMessage (

&° getPaymentMessage ()
&° getAddeBillMessage ()

«Java Class»
© Success

o message : String
@ getMessage ()
@ setMessage ()

«Java Class»

@ LoginForm
% serialVersionUID : long
o userName : String
= password : String
o email : String
o oldPassword : String
o newPassword : String
© getPassword ()
@ getUserName ()
@ setPassword ()
@ setUserName ()
@ getOldPassword ()
o setOldPassword ()
© getNewPassword (
@ setNewPassword (
© getEmail ()
@ setEmail ()

)
)

«Java Class»
@ Mmail

©° sendMail ()

«Java Class»
© Error

o message : String
@ getMessage ()
® setMessage ()

«Java Class»
 LoginDelegate

@° validateUser ()

o° resetPassword ()

< updatePassword

& resetDetails «User

«Java Interface»
€ LoginDAO

o validateUser ()

o resetPassword ()
@ updatePassword ()
@ resetDetails ()

«Java Class»

@ LoginDAOImpl «wuse»

«Override» validateUser ()
«Override» updatePassword ()
«Override» resetPassword ()
«Override» resetDetails ()

pppp

«Java Class»
(3 EncryptPassword

@ encryptPassword (

<«Java Class»

(3 DAOFactory
% DATABASE : int
& getLoginDAO ()
& getRegisterUserDAO ()
&' getCompaniesDAO ()
& getAddeBillsDAO ()
& getViewBilsDAO ()
& getHistoryDAO ()
& getPaymentDAO ()
<° getDAOFactory ()

«Java Class»
(3 DatabaseDAOFactory
7 DRIVER : String
% DBURL : String
&° createConnection ()
@. getLoginDAO ()
@. getRegisterUserDAO ()
@. getCompaniesDAO ()
@. getAddeBillsDAO ()
@. getViewBillsDAO ()
@. getHistoryDAO ()
@. getPaymentDAO ()

«Java Class»
(3 RandomPassword

< generatePassword (

Figure 3-3 Class Diagram for Login Module

10

«Java Class»
© Constants
% loainSuccess : String
$F loginFail : String
% redistrationsuccess : String
% redistrationfail : String
%F configSuccess : String
% logout : String
% invalidSession : String
% resetDetailsFail : String
% resetPasswordSuccess : String
% resetPasswordFail : String
%F updatePasswordFail : String
% updatePasswordSuccess : String
% updateDetailsFail : Stiina
% paymentFail : String
% addeBillSuccess : String
% addeBilFail : String
% updateProfileSuccess : String
%7 updateProfileFail : String
& getUpdateprofilesuccess ()
&° getUpdateprofilefail ()
o getAddebillsuccess ()
©° getAddehillfail ()

@ getPaymentfail ()

&° getUpdatepasswordfail ()

@° getUpdatepasswordsuccess ()
&° getUpdatedetailsfail

&° getResetdetailsfail ()

@° getResetpasswordsuccess ()
©° getResetpasswordfail ()

&° getlnvalidsession

&° getloginsuccess ()

& getloainfail (

©° getReaqistrationsuccess

& getReaqistrationfail

@ getConfigsuccess ()

@ getlogout ()

The control first reaches the LoginAction class and then the validateUser method of the
LoginAction class is called. The LoginForm is sent along with the method call. The attributes of
login form are retrieved and set to a LoginVO object. Then the validateUser method in the
LoginDelegate class is called by passing the LoginVO object. The validateUser method in
LoginDelegate class in turn calls the getLoginDAOImpl method of DatabaseDAOFactory class.
This method returns an implementation of the LoginDAO interface. The logic related to
validating the user is present in the LoginDAOImpl class which is the implementation of
LoginDAO interface. After the validateUser method in LoginDelegate class gets the
implementation it returns the result to the LoginAction class. Depending on the result the action
class will send a ForwardAction object to the container which matches the action forwards

defined in the struts-config.xml file and redirects to an appropriate view.

3.3.2 Configuring an account with company module

The overall flow is similar to the above described flow but in addition the business logic
deals with interacting with the web services. The classes VerifyAccountStub,
VerifyAccountResponse, VerifyAccountCallBackHandler are auto generated by the axis2 plug-
in.

The next class diagrams show the user registration module and also the payment in the
company module.

| have used some more classes like Success, Error, and Constants. These classes contain
the message strings that need to be displayed to the user depending on an action. The Mail class
contains the logic to send an email to the customer at the specified email address during
registration process. The MailMessage class contains the mail body strings that need to be sent to
the customer depending on the situation. The Encryptpassword class contains the method to
encrypt the password using SHA algorithm. The GeneratePassword class contains the method to

auto generate a password.

11

«Java Class»
(3 CompaniesAction

o erorl : Error o
o configureAccount ()

«Java Class»
(© CompaniesForm

o accountNumber ; String
o agree ; String

o lastName : String

@ getLastName ()

o setlastName ()

@ getAccounthumber ()
o setAccounthumber ()
@ getAgree ()

o setAgree ()

«Java Class»
© VerifyAccountResponse
¥ MY_QNANE : Qliame:
¢ local_return : String

¢ |ocal_retunTracker : boolean

& generatePrefiy ()

o get_retun ()

o set_retun ()

& isReadeiMTOMAwWare
© getOMElement ()

o serialize ()

o serialize ()

@ witeAttribute ()

@ wiiteAttribute ()

@ wiiteQNameAttribute ()
@ wiiteQName ()

@ wiiteQNames ()

@ registerPrefix ()

o getPulParser ()

Figure 3-4 Class Diagram for Configuring an Account Module

«Java Class»
(Success
o message : String

@ getMessage ()
@ setMessage ()

«Java Class»
(CompaniesvV0

o accountNumber ; String
o lastName : String

o loginid : String

o bilDate : Stiing

o emailD : String

o firstName : String

o getFirstName ()

@ setFirstName ()

o getEmailD ()

@ setEmailD ()

© getAccountNumber ()
@ setAccountNumber ()
o getLastName ()

@ setlastName ()

o getLoginid ()

o setloginld ()

o getBilDate ()

o setBilDate ()

«Java Class»

© VerifyAccountCallbackHandler |

o clientData : Object

& VerifyAccountCalbackHandler ()
& VerifyAccountCallbackHandler ()
@ getClientData ()

o receiveResultverifyAccount ()
@ receiveErnarverifyAccount ()

«usen

«Java Class»
® Factory

& parse (7)'

«Java Interface»
(1) CompaniesDADl

«Java Class»
@ Frror

o message | Stiing 7‘ = fiqueAccount ()
S D) o configureAccount (

o verifyAccount
@ setMessage () "fy ()'

o opNameArray : QName
) getUnioueSuff (|

@ populateAxisService ()
@ populateFaults ()

& VerifyAccountStub ()
& VerifyAccountStub ()
& VerifyAccountStub ()
& VerifyAccountStub ()
& VerifyAccountStub ()
o verifyAccount ()

o startverifyAccount ()

@ getEnvelopeNamespaces ()
@ optimizeContent {)
@ toOM ()

@ toOM ()

@ toEnvelope ()

@ toEnvelope ()

«lsen
@ fromOM ()

12

«wse»
«Java Class»
(3 DAOFactory
«Java Class» T
(3 CompaniesDelegate | «tise»
& confiqureAccount ()
& verifyAccount ()
MR «Java Class»
(3 MailMessage
Java Classr
| (DatabaseDAOFactory
{ «Java Class»
ey (© GenerateDate
«lige v {
«Java Class» —
(3 CompaniesDAOImpl o formatDate
DB ADD ACCOUNT FALL : int
i DB ADD ACCOUNT SUCCESS : int «Java Cla_sls"
@ configureAccount () | OMai
@ verifyAccount () & sendMal () |
Java Class»
(3 VerifyAccountStub
o faultExceptionNameMap : HashMap I
o faultExceptionClassNameMap : HashMap «Java Class»
\ © Factory
o faultMessageMap : HashMap |
| g o 3 i
o’ counter : int & parse ()

«use»

«Java Class»
(3 Constants

«Java Class»
(® VerifyAccount

& MY_QNAME : QName

¢ localAccounthNumber : String

o localAccounthumberTracker : boolean
o localLastName : Stiing

¢ localLastNameTracker : boolean
4 localSSN : String

o localSSNTracker : boclean

o localAddressl : String

¢ localAddress1Tracker : boolean
¢ localAddress2 : String

o localAddress2Tracker : boolean
& generatePrefix ()

o getAccountNumber ()

@ setAccountNumber ()

o getLastName ()

o setlastName ()

@ getSSN ()

@ setSSN ()

@ getAddressl ()

o setAddress1 ()

o getAddress2 ()

@ setAddress2 ()

& isReaderMTOMAWare ()

o getOMElement ()

o seriaize ()

© seriaize ()

@ witeAttribute ()

@ witeAttribute ()

@ wiiteQNameAttribute ()

@ wiiteQName ()

@ writeQNames ()

@ registerPrefix ()

o getPulParser ()

«sen

«Java Class»
(3 ExtensionMapper

¢ getTygeObiegt (

«Java Class»
(3 RegisterUserAction

© registerUser ()

«Java Clas»
(3 RegisterUserv0

o firsthame : String
o lastName : String
o SSN : String

o addressi : String
o address2 : String
o state : String

o zipCode : String

o phone : String

o emal : String

o loginID : String

o password : String

o confimPassword ; String

o getFirsthame ()
@ setFirstName ()
o getLastName ()
@ setlastName ()
o getsSsN ()

@ setSSN ()

@ getAddress ()
@ setAddress1 ()
o getAddress2 ()
o setAddress2 ()
o getState ()

o setState ()

@ getZipCode ()
o setZipCode ()
o getPhone ()

@ setPhone ()

o getEmai ()

o setEmail ()

@ getLoginD ()
@ setloginD ()
@ getPassword ()
o setPassword ()
o getConfimPassword ()
@ setConfimPassword ()

«Java Class»
(3 Success

o message : String
@ getMessage ()
o setMessage ()

«Java Class»
(3 RegisterUserForm

o firsthame : String
o lastName : String
o SSN : String

o addressi : String
o address2 : String
o state : String

o zipCode : Stiing
o phone : String

o emal ! String

o loginID : String

o password : String

o confimPassword ; String

o getFirsthame ()
© setFirstName ()
o getLastName ()
@ setlastName ()
o getssN ()

@ setSSN ()

@ getAddress ()
@ setAddress1 ()
o getAddress2 ()
o setAddress2 ()
o getState ()

o setState ()

@ getZipCode ()
o setZipCode ()
o getPhone ()

@ setPhone ()

@ getEmai ()

o setEmail ()

@ getloginD ()
@ setloginD ()
@ getPassword ()
o setPassword ()
o getConfimPassword ()
@ setConfimPassword ()

«Java Class»
3 Error

o n{esgage : String |
® getMessage ()
o setMessage ()

«Java Class»

| (3 RegisterUserDelegate

[& reqisterUser ()

«Java Class»
(© DAOFactory

& DATABASE :int
¢ getlognDAO ()

& getRegisterUserDAO ()

& getCompaniesDAO ()
& getAddeBilsDAO ()
& getViewsilsDAO ()
& getHistoryDAO ()

&' getPaymentDAO ()
& getDAOFactory ()

«isen

«Java Class»
(3 DatabaseDAOFactory

| ¥ DRIVER : String

@ updateUser ()
& getUserDetalls ()
«use»
«Java Interface»
 RegisterUserDAD
"o registerUser ()
@ UpdateUser ()
@ getUserDetalls ()
«sen
«Java Class»
(3 RegisterUserDAOImpl awser
§F DB UPDATE FAILURE : int
i DB UPDATE succEss:int | ¥

@ «Override» registerUser ()
@ «Override» updateUser ()
@ «Override» getUserDetalls ()

«Java Class»
O Mail

@ sendMal ()

Java Class»
(3 MailMessage

@' getPasswordMessage ()
& getWelcomeMessage ()
o getBillNotifyMessage ()
& getPavmentMessage ()
& getAddeBilMessage ()

¥ DBURL : String

& createConnection)
@ getLoginDAO ()

@ getRegisterUseiDAO ()
@ getCompaniesDAO ()
@ getAddeBilsDAO ()

@ getViewBilsDAO ()

@ getHistoryDAO ()

@ getPaymentDAO ()

«Java Class»

(EncryptPassword

¢ encryprassWord (‘) ‘

Figure 3-5 Class Diagram for Registration Module

13

«Java Class»

(3 Constants
§ loginSuccess : String
¥ loginFail : String
§F registrationsuccess : String
§F registrationfal : String
4 configSuccess : String
% logout : String
& invalidSession : String
4 resetDetalFal : Sting

§F resetPasswordSuccess : String

8 resetPasswordral : String
§ updatePasswordFail : String

§f updatePasswordSuccess : String

& updateDetalisFail ; String
§ pavmentFail : String

§ addeBilSuccess : String
§F addeBilFai : String

& updateProfileSuccess : String
8 updateProfieFail : String

& getUpdateprofilesuccess ()
& getUpdateprofiefai ()

& getAddebilsuccess ()

o getaddebilfal ()

o getPavmentfal (

& getUpdatepasswordfal ()

& getUpdatepasswordsuccess

& getUpdatedetaisfai ()
o getResetdetalsfal ()
& getResetpasswordsuccess ()
& getResetpasswordfai ()
& getlnvalidsession ()

o getloginsuccess ()

& getloginfai ()

' getRegistrationsuccess ()
& getRedistrationfai ()

© getConfigsuccess (

@ getlogout

«Java Class» «Java Class»

G Payment (3 ExecuteQuery
4 con : Connection
By {)- a pstmt : PreparedStatement «Java Class»
@ execute () (DAOFactory
©F DATABASE : int
P getDAOFactory ()
«use» .

«Lse»

«Java Class» 3y
(3 GenerateReceipt «Java Class»
(3 DatabaseDAOFactory

& getReceipthurber () ¥ DRIVER : String

«Java Class»

(GenerateDate ¥ DBURL : String
P & createConnection ()
rmatDate ()

Figure 3-6 Class Diagram for Payment Module

The following screenshot shows the encrypted XML request and XML response in web
services

Llsix]

File Edt Mavigate Search Project Tomcat Run ‘Window Help

Ics- | REBB|$-0-%- |EHEG- B 5|0

i %5 Debug |§) Java >

E‘_wProblems(@ Javadoc[@; Declaration fE Cansole‘(d‘ 'Search (&?& Servers [ETCPllPMnnitor XN ® 7 :’| gyvee :
I : lgliCmnpanyWebServicep‘sevvices!\fevifyAccount.VerifyAccounthtpSoapl2Endpoint.f ZI Time of request: 9:51.21.660 PM &
Request: localhost:8092 Response: localhost:8090 ,"‘“—‘“j
Size: 2851 (3103) bytes b 1 Size: 2500 (2799) bytes A
‘Header: POST [CompanyWebService/services/VerifyAccount. YerifyAccountHttpSoap12Endpoint/ HTTR{1.1 Header: HTTP{1.1 200 OK &
<?xml version="1.0" encoding="http://vvw.w3d.org/2003/05/s0ap-envelope”?> Al|<?xml version="1.0" encoding="http://www.w3.org/2003/05/soap-envelope”?> All o
<soapenv:Envelope xmlns:soapenv="http://wuw.w3d.org/2003/05/s0ap-envelope” : <soapenv:Envelope xmlns:soapenv="http://wuw.w3.ory/2003/05/s0ap-envelope” : o=
<soapenv:Header xmlns:wsa="http://www.u3.org/2005/08/addressing"> <soapenv:Header xmlns:wsa="http://www.uw3.org/2005/08/addressing”> =
<wsse:Security soapenvimustUnderstand="true" xwlns:wsse="http://docs.oasis ||<wsse:Security soapenvimustUnderstand="true" xwmlns:wsse="http://docs.oasis 8
<xenc:EncryptedKey Id="EncKeyId-urn:uuid:3FCCE4F9E243D352D3125955308165344 <xenc:EncryptedKey Id="EncKeyId-urn:uuid:9D4FD73017242E2722125955308179244
<xenc:EncryptionMethod Algorithw="http://www.w3.org/2001/04/xmlencrsa-1_5 <xenc:EncryptionMethod Algorithw="http://www.w3.org/2001/04/xmlencrsa-1_5 E
<ds:KeyInfo xmlns:ds="http://wuw.uw3.org/2000/09/xmldsigf"> <ds:KeyInfo xmlns:ds="http://wuw.w3.org/2000/09/xmldsigf">
<wsse:SecurityTokenReference> <usse:SecurityTokenReference>
<ds:X508Data> <ds:X509Data>
<ds:X509IssuerSerial> <ds:X509IssuerSerial>
<ds:X509IssuerNane>CN=Sample Service,OU=Rampart,O=Apache,L=Colombo,3T=Vest: ||<ds:X509IssuerName>CN=Sample Client,OU=Rampart,O=Apache,L=Colombo,3T=leste:
<ds:X5095erialNunber>1187603713</ds: X5095er ialNudoer> <ds:X5098erialNunber>1187603652</ds: X5095er ialNunber>
</ds:X509Issuerserial> </ds:X509Issuerserial>
</ds:X509Data> </ds:X509Data>
</wsse:3JecurityTokenReference> </wsse:SecurityTokenReference>
</ds:KeyInfo> </ds:KeyInfo>
<xenc:CipherData> <xenc:CipherData>
<xenc:CipherValue>GODKFQCknSEn] zQv+Sk¥yXiJupnuahyzpXaall3xv31zBJ2 63Nk9Kgin2| <xenc:CipherValue>EADEASmYUIpzOeF Yix+68GUCOKNM]IS/ +/ aF CyLKPDaCVNgdnS 6JgZ24kh
</xenc:CipherData> </xenc:CipherData>
<xenc:ReferencelList> <xenc:Referencelist>
<xenc:DataReference URI="#EncDatald-19644011"/> <xenc:DataReference URI="#EncDatald-1133335"/>
</xenc:Referencelist> </xenc:Referencelist>
</xenc:EncryptedKey> ~d|</xenc:EncryptedKey>
</wsse:Security> <wssell:SignatureConfirmation wsu:Id="SigConf-22472173" xmlns:wssell="http
<wsa:To>http://localhost: 8092/ CompanylehService/services/Verifyiccount . Ver </wsse:Security> |
<wsa:MessageID>urn:uuid: 75E1ES8F61C33D72301259553082102</ wsa: Nessage ID> <wsa:Actionrurn:verifyiccountResponse</wsa: Action> |
<wsa:lActionrurn:verifyldccount</wsa:Action> <wsa:RelatesTo>urn:uuid: 75E1E58F61C33D72301259553082102</ wsa: RelatesTo>
</soapenv:Header> </soapenv:Header>
<soapenv:Body> <soapenv:Body>
<xenc:EncryptedData Id="EncDatald-19644011" Type="http://www.w3.org/2001/0 <xenc:EncryptedData Id="EncDatald-1133335" Type="http://www.w3.org/2001/04,
<xenc:EncryptionMethod Algorithm="http://wuw.w3.org/2001/04/xmlencfacs128- <xenc:EncryptionMethod Algorithm="http://wuw.w3.org/2001/04/xmlencfacs128-
<ds:KeyInfo xmlns:ds="http://wuw.w3.ory/2000/09/xmldsigh"> <ds:KeyInfo xmlns:ds="http://wuw.w3.ory/2000/09/xnldsigh">
<wsse:SecurityTokenReference xmlns:wsse="http://docs.oasis-open.org/wss/200 <wsse:SecurityTokenReference xmlns:wsse="http://docs.oasis-open.org/wss/200
<wsse:Reference URI="#EncKeyId-urn:uuid:3FCCE4F9E243D352D3125955308165344" <wsse:Reference URI="#EncKeyId-urn:uuid:9D4FD73017242E2722125955308179244"
< | » < | »
| 0° NN

Figure 3-7 Encrypted XML Data

14

User_Info

J First_Mame
_I Last_Marne
| s

_I User_ID
_I Zipcode
_| Ermail_ID
_I Phone
| state

Payment_History

J User_ID
_I Company_ID

3.4 Database Diagram

User_Login
j User_ID
_I Password
J Reset

Company_Info
j Company_I0
J Company _Mame

User_Accounts

J User_ID
J Company _ID
_I Account_Mumber

J Bil_Date

_I Account_Mumber J Arnount

_I Payment_Date

_I Arnounk

User_Account_5Status

J User_ID
_?I Cornpany_ID
_@I Account_Mumber

_I Active

Figure 3-8 Database Diagram

User_Info table contains all the information about the users.

User_Login contains all the information about the user login details.

Payment_History contains all the information about the payments of users.
Company_Info contains the information about the company.

User_Accounts contains all the information about the bills of the user.
User_Account_Status contains the information the user accounts and whether the user is

a verified user or not.

15

3.5 Screen Shots

e Bill Pay - Mozilla Firefox -8 x|
File Edt View History Bookmarks Tools Help
@_ (&) 74y | L [hetp:ifiocalhost:a08ajweboninesill - | IGl-] cecqie p

2| Most visited P Getting Started 3 Latest Headlines L1 Webmail | <¥* Freesports | (&) Cricinfo | *3) Gmail | *3 orkut | © greatandhra | @ Eenadu | 94 Andhraviles | [Manhattan Weather | | sampletitle || Online Bil Pay

=N

Online Bill Payment System

Welcome
November 28, 2009 ‘Welcome to online bill pay, the best solution to manage your bills easily and effectively
We are trying to add
New Customer Existing Customers
November 27, 2009
New online bill payment
wobehte iatnchod:. New Users..Please register Returning
Read more to access the services Customers. Please login to

access the services
Registration is easy and
simple

Contact Us | Terms of Use | Trademarks | Privacy Statement

[1Done

Iostart| M @ 7 > @ collaboration Suite: Inbo..

RSy 12:55PM

Java EE - Eclipse | @ online Bill Pay - Mozill... (] Java EE - CompanyWeb... | [T Documents

Figure 3-9 Home Page

refos =18 x|

Fle Edt Wew History Bookmarks Tools Help

@—' (d) I_ ‘httD:iﬂn(alhnst:ﬁﬂﬂEiWEhOnhneBllUmEnu‘dDTmEthDd=rEg\stErLlser < - |

4 Gmail

Registration Page - Mo:

- | Google pel

2§ orkut | @ greatandhra Eenadu | 9 Andhravilas | Manhattan Weather | | sampletide | Online il Pay

2| Most visited P Getting Started Latest Headlines [webmail | %= Freesports | [Cricinfo

_ Registration Form

Hovember 28, 2009

We are trying to add

more companies... Login information
Read mare

November 27, 2009 *Qememes ||
Mewi online bill payment = Password: I—
wehsite launched ’
Read mare = Confirm Pwd: |

Personal Information

= First name: I—
= Last name: I—
*8SN: I—

= Email: I—
*Telephone: I—

Dang
Lrstart| @ & > @) colaborstion Sute:... | [72va EE - webonin... |[{@ registration Pag... | 8] Java EE - Company... | [ocuments | & unitled - paint | £ mysat queryBrow... ||« B [®yde t2zem

Figure 3-10 Registration Page

16

) Login Page - Mozilla Firefox =8|
Fle Edit View History Bookmarks Tools Help

> C £ | L | httpiftocalhost:a088/webonlineBiljmenu.do7method=loginPage % - Qe

2 orkut ¢ Esnadu | 94 Andhravilas | [Manhattan Weather | sample title

£ Most visted P Getting Started . Latest Headlines [Webmail | *%* Freesports \ L&) Cricinfo \ 23 Gmail 10 greatandhra Online Bill Pay

Login Form

November 28, 2009

We are trying to add

more companies Login
Read more

November 27, 2009 *Username: |newtest
New online bill payment - .
website launched Password: [eeed|
Read mare
Forgot password | Register Now

Contact Us | Terms of Use | Trademarks | Privacy Statement

’VDone
Sostart| B @ 7 > @) Collaboration Suite: Inb... | 8] Java EE - Eclpse |[@ Login Page - MozillaF... (@] 3ava EE - CompanyWeb... | [Documents | Untitled - Paint [« B Ty 1256pm

Figure 3-11 Login Page
Home Page - Mozilla Firefox =18
File Edit ‘iew History Bookmarks Tools Help
rRE——— ; e 7 - | |Gl o

& -c < alC
-" Gmail

£ Most Visited ’Getting Started o Latest Headlines [Webmail

10 greatandhra | @ Eenadu | 9 Andhravilas ‘ ﬂ Manhattan Weather | | sampletitle Online Bill Pay

Remember Never for This Site Mot Now X

<% Freesports | (¢ Cricinfo "l Orkut

' Do you want Firefox to remember this password?

Home Page

Welcome to Online Bill Pay.

Contact Us | Terms of Use | Trademarks | Privacy Statement

Done
Jostart| B @ 7 > @) Collaboration Suite: Inb. . Java EE - Eclipse |[@ tome Page - Mozilla ... (@} Java EE - Companyweb... | | Documents | 1 untitled - Paint [« B TRl 1257pm

Figure 3-12 Home page after logging in

17

%) add eBill - Mozilla Firefox

=18(x|

File Edt View History Bookmarks Tools Help

@_v £ | L | hetpifiocalhost:a088/webonlinefiljmenu.do7method=addeBil v - Gl s

£ Most Visted P Getting Started . Latest Headlines [Webmail | 8¢ Fveasports‘ (&J cricinfo | * Gmail | *§ Orkut‘) gveatandhra‘ {

Please select a company to configure an account

Contact Us | Terms of Use | Trademarks | Privacy Statement

Done
Crstart| B @ > @) Colaboration Suite: Inb... | [Java EE - Eclipse |[@ add eBill - Mozilla Fir... (@] Java EE - CompanyWeb... | [Documents | i untitled - Paint

Figure 3-13 Company Selection Page

[« B TRy 1257pm

il

v Bills - Mozilla Firefox (&) x|
File Edit ‘iew History Bookmarks Tools Help
@—' 4 [L] [httpsiocan Oniineillviewbills. dozmethod=bilDetails %7 - |Gl P

£ Most Visited ’ Getting Started :':' Freesports | % Cricinfo -" Gmail "l Orkut

. Latest Headlines [Webmail

View/Pay Bills

Account Number | Company Name ‘ Bill Amount | Bill Date | Pay

ol L accountno Electricity 432.34 20091123||Pay|

Contact Us | Terms of Use | Trademarks | Privacy Statement

10 greatandhra ‘ e Eenadu 1 94 andhravilas ‘ m Manhattan Weather | sampletitle | |

Online Bill Pay

Done

Jostart| B @ 7 2 @ Collaboration Suite:

Figure 3-14 View Bills Page

18

18] Java EE - WebOnin... | [@ view/Pay Bills - ... @) Java EE - Company... | | Documents | 1 ntitled - Paint | # mysoL query brow... |[« B [&y t20pm

=

Most Visited P Getting Started 5 Latest Headlines [Webmail | <8+ Freesports \ L% Cricinfo

2§ cmail

*3 orkut | © grestandhra | 5 Eenadu | 4 Andhravilas | J Manhattan Weather | | sample title | Online Bill Pay

Remember Never for This Site Mot Now X

! Do you want Firefox to remember this password?

Payment Success

Your transaction has been successful. Receipt number for the transaction is : Fjpz0tpL

An Email has been sent you with receipt number.

click here to go back to home page.

Contact Us | Terms of Use | Trademarks | Privacy Statement

Figure 3-15 Payment Success Page

19

CHAPTER 4 - Testing

4.1 Unit Testing

Unit Testing is a method where each individual part of the software like a class, a method
or a module is tested with various possible inputs to ensure the correctness of the software. Unit
testing is very important because it gives the developers an opportunity to verify the functionality
of all the individual functions before integrating them.

| have used JUnit framework to perform unit testing. JUnit is a unit testing framework for
the Java Programming language. Test cases need to be created in order to test the application. To
create a test case in JUnit the testing class must extend the TestCase class. JUnit is integrated in
eclipse. All the test cases can be included in a test suite so that they can be executed at a time. |
have tested all the possible methods using JUnit. For the rest of the methods and functionality, |
have performed manual testing. Following are the methods which were tested using JUnit
framework.

All the methods are called from the action class using the corresponding delegate class.
So I wrote a test for each delegate class to observe the outcome.

i. AddeBillsDelegateTest: AddeBillsDelegate class has a method to verify whether a
customer has an account configured with some company. | used three test cases for the
method, one with valid input and two with invalid inputs.

ii. HistoryDelegateTest: HistoryDelegate class has a method to get the payment history
details of the user. | used two test cases one with a valid input and another with an invalid
input.

iii. LoginDelegateTest: LoginDelegate class has methods to validate a user, update password
and reset password. | used three test cases for each of the methods, one with valid input
and two with invalid inputs.

iv. PaymentDelegateTest: PaymentDelegate class has method that allows the customer to
pay the current bill. This method calls the web service corresponding to the company
associated with the bill. I used three test cases for the method one with valid input and

two with invalid inputs like a negative bill amount and an invalid user.

20

V. RegisterUserDelegateTest: RegisterUserDelegate class has methods to register a user,
update the user profile and get the user details. | used three test cases for all the methods,
one with valid input and two with invalid inputs.

vi. ViewBillsDelegateTest: ViewBillsDelegate has a method to get the current bills of the

user. | have used the same inputs that were used in the HistoryDelegateTest.

Apart from these methods there were some things that needed some manual testing. The
passwords are encrypted using one way hash algorithm and then stored in the database. After a
registration task or after updating/reset the password, | manually checked the database to confirm
that the passwords in the database are in an encrypted form. Also a mail will be sent to the user
in the following scenarios:

i. When a user registers in the website

ii. When a user resets the password
iii. When a user configures an account with a company
iv. ~ When a new bill is generated

V. When a payment is made

In all the above cases | made sure that the email is sent to the users at the address
associated with their account.

Also | have manually verified all the action forwards in the Struts action classes. | made
sure that the action forwards are behaving in the expected manner. Along with the action
forwards | made sure that the tiles corresponding to the action forward are being called.

| also made sure that the data communication between web services is always in an

encrypted form.

21

{3 Java b - Eclpse

Fie Edt Mavigate Seatch Project Tomcah Run Window Hefp

Jei- 0 C IR 5-0-Q-1G-6- 887 [0]3]0 06 Edm b
E_\ Markers (ﬂ Properties ﬂ% Servers (ﬁ Data Source Explorer (h Snippets (E Cansole (@u Progress W Seatch (El_ TCP/IP Monitor HU Lt &3 nﬂ Eﬂ ‘ % o i "
Finished after 16,139 seconds

hns 110 Bes:) e 0 I
EH Test for e ksu repart, bilpay. deleqatetest [Runner: JUnit 4] (16,155 5) = Falure Trace =

EEH et ke report bilpay delegatetest, AddeBilDelegateTast (0,461 <)
[E test¥erfybacount (0,461 5)
EIH el ksu.report bilpay delegatetest, LogrDeleqateTest (0,061)
O tesldtelse (00775)
[E testrasatPassword (0,017 5)
[E testupdatePassward (0027 5)
EEH eou ksu.report bilpay delegatetest, Payment DelegateTast 15,462 5)
e 154
EEH et keu.report bilpay delegatetest, HistorvDelegateTest (0,036 5)
[E testiaatPaymentHistary (0036)
EIH el ks report bilpay delegatetest, ViewdileDelegateTest (0,037 <)
o bl (0067)
E-"EH et ksu.report bilpay delegatetest, Reqister lserDeleqateTast (0,076)
[E testReqisterlser (0,090 5]
[E testlpdatellser (0,021 5)
ol testeetlserDetels (0,007

Figure 4-1 JUnit tests in eclipse

4.2 Performance Testing

Performance testing is defined as the technical investigation done to determine or validate
the speed, scalability, and/or stability characteristics of the web application under test [18]. A
scenario is simulated where in many clients access the web application at a time. The number of
clients trying to access the web site can be increased gradually and the effects are observed. By
performance testing we can find the maximum number of users that can access the web
application at some point of time. Also the efficiency of the server can be found out. With the
help of these observations the application can be further tuned to increase the performance.

I have used Apache JMeter to test the performance of the website.

22

4.2.1 System Configuration:

| have used a system with following configuration for testing the application

System Configuration

Number of Processors 1

RAM 1GB

Processor Type 586

Processor Speed 2 GHz

OS Name Windows Vista SP1

Table 4-1 System Configuration

4.2.2 Test Plan
| have tested three pages in my application.
e The Home page using HTTP protocol
e Login page, by passing login credentials to the login page using HTTPS protocol
e Configuring an account with a company using HTTPS protocol, this involves

communicating with the web services.

Each test is run using 50 users sending requests 200 times on a local machine. That was
the maximum load that my system could handle. Whenever 1 try to increase the number of users
or the loop count I am getting a “Java.lang. OutOfMemoryError-dumping heap space” exception.
So | have limited the number of users to a maximum of 50 and the loop count to 200. When |
tried to run the tests on a network using K-State wireless network, | have observed that the

number of users that can access are 50 and the loop count is about 100.

23

4.2.3 Test Results & Evaluation

4.2.3.1 Home Page

The following are the test results:

Graph Results

Name: ’Graph Results

Comments:
Write results to file / Read from file

Filename ! l \ Browse... |LogDisplayOnhz: [| Errors [| Successes

Graphs to Display | | Data [v] Average Median Deviation [v] Throughput

143 ms

Oms (] i l [»
No of Samples 10000 Latest Sample 3 Average 72
Deviation 60 Throughput 25,727 .885/minute Median 67
<] li [

Figure 4-2 Summary graph for the home page
It can be observed that the throughput is very high and response time is very low. HTTP
protocol is used while calling this web page. It doesn’t involve any encryption. Also the page
doesn’t involve any communication with the database. So there is no additional overhead other
than retrieving the page. The performance may decrease if the number of samples is increased
but very often my system crashes by giving a Java.lang.OutOfMemoryError. The same results on
a summary report can be observed below.

24

Summary Report

EName: ISummaw Report

;:CommerIts

Write resulits to file / Read from file

(

Filename ’ [Browse... | LogDisplayOnhy: [| Errors [| Successes Configure
Lahel # Samples Average in [NEYS Std. Dev. Error % Throughput KBisec Avg. Byteg
HTTP Requ... 10000 72 1 719 60.12 0.00% 428 8isec 3267.49 7803
TOTAL 10000 72 1 719 60.12 0.00% 428 .8/sec 3267.49 7803

Table 4-2 Summary table for home page

4.2.3.2 Login Method

The following are the test results:

Summary Report

iName: |Summary Report

?jComments:

Write results to file / Read from file

Filename ' | Browse... | LogDisplay Onhz: [|Errors [| Successes Configure
Label # Samples Average Min hax Std. Dev. Errar % Throughput KBisec Avg. Byted
Login page 10000 414 4 2085 326.88 0.00% 110.5/sec 815.93 7562
TOTAL 10000 414 4 2055 326.88 0.00% 110.5/sec 81593 7562

Table 4-3 Summary table for login page over HTTPS

Verifying the user details involves connecting to the database and also applying a one

way hash algorithm to the password. This affects the response and throughput time. Since the

data is sent using HTTPS protocol, the response time would be a bit high. This can be reflected

in the below screenshots. The below screenshot shows the same test using HTTP protocol

Summary Report

Name: [Summary Report

|Comments:

Write results to file / Read from file

Filename ’

] | Browse... | LogDisplay Onhz: [|Errors [| Successes Configure
Label # Samples Average Min [NEYS Std. Dev. Error % Throughput KBisec Avg. Byteg
Login page 10000 221 3 1665 208.02 0.00% 1893.0/sec 1255.80 6664
TOTAL 10000 221 3 1665 208.02 0.00% 183.0/sec 1255.80 6664

Table 4-4 Summary table for login page over HTTP

25

The same results can be observed in the following graphs:

Graph Results

fName: |Graph Results
Comments:

VWrite results to file f Read from file
Filename [

] I Browse...

0 ms

No of Samples
Deviation

<

770 ms

Graphs to Display Data Average Median Deviation [v] Throughput

LogDisplay Onhz: [|Errors | | Successes

Configure

7 ra

4]
10000

326

Latest Sample 7

Throughput 6,629.321/minute
Iit

Average 414
Median 345

Figure 4-3 Summary graph for login page over HTTPS

Graph Results

Name: [Graph Results

Comments:
Vyrite results to file / Read from file
Filename | I I Browse... LogDisplayOnh: | |Errors | | Successes Configure
Graphs to Display Data Average i D [+] Throughput
455 ms : : :
R
0 ms ER

No of Samples 10000 Latest Sample &
Deviation 208 Throughput

<«

Average 221
11,577.424iminute Median 169
1}

Figure 4-4 Summary graph for login page over HTTP

26

4.2.3.3 Configuring an account:

The test results are as follows

Summary Report

Name: |Su

mmary Report

jF(:omments;

Write results to file / Read from file

|

Filename ‘ l Browse... LogDisplay Only: [| Errors [| Successes Configure
Lahel # Samples Average hin hax Std. Dev. Error % Throughput KBfsec Avg. Byteg
canfigure p... 10 2592 2286 2825 147 .93 0.00% 23.1/min 315 8359
TOTAL 10 2592 2286 2825 147.93 0.00% 23.1/min 315 8359
Table 4-5 Summary table for configuring an account page
The main reason for the low throughput and high response time for the above test case is
that the xml data used to communicate has to be marshaled and un-marshaled before using. Also
the data is being encrypted and decrypted. So along with the data transfer between two servers
there is also an additional overhead associated with marshalling/un-marshalling and encrypting
and decrypting the data. | have used HTTPS protocol which induces an additional over head
along with the factors above.
The following are the test results when these tests are performed over a network.
Summary Report
Name: |Summarv Repart
Comments:
Write results to file / Read from file
Filename | | | Browse... LogDisplay Only: [| Errors [| Successes
Lahel # Samples Average hdin hlax Std. Dev. Error % Throughput KBisec Ay, Bytes
HTTF Reqguest a000 601 3 21001 47446 24.78% 58.45/zec 366.67 62475
TOTAL a000 601 3 21001 47446 24.78% 58.45/zec 366.67 62475
Table 4-6 Summary table Homepage over wireless network
Summary Report
MName: |Summary Report
Comments:
Write results to file / Read from file
Filename | | | Browse... LogDisplay Only: [| Errors [| Successes
Label # Samples Average hdin (LY Std. Dev. Errar % Throughput KBlzec Awiy. Bytes
Lodin 5000 619 17 2236 143.48 0.00% 78.%sec F43.84 84320
TOTAL a000 619 17 2236 143.48 0.00% T8.2zec G43.84 g432.0

Table 4-7 Summary table for Login page over wireless network

27

Summary Report

MName: |Summary Report

| [comments:
Write results to file / Read from file

Filename | | | Browse... LogDisplay Only: [| Errors [|Successes
| Lahel # Samples Average hin [LEYS Std. Dev. Errar % Throughput KBizec Aviy. Bytes
HTTP Request 10 2700 2335 3857 42798 0.00% 22.2Imin 3.02 8359.0
JTOTAL 10 2700 2335 3857 42798 0.00% 22.2Imin 3.02 8359.0

Table 4-8 Summary table for configuring an account over wireless network
Over a wireless network, the performance might have been decreased due to the factors
like network usage at the testing time and also my system configuration. It can be observed that
the login page has more throughput than the home page. Ideally the login page should take more
time because it uses HTTPS protocol and involves hashing the password and communicating
with the database but due to the factors like network usage at the testing time the home page has
a less throughput. I think that the overall performance can be increased by improving the system

configuration or using multiple servers instead of one.

28

CHAPTER 5 - Conclusions and Future Work

5.1 Conclusion
By implementing the Online Bill Payment website, | have gained a lot of experience on
various technologies like Struts, Tiles, Servlets, Web services, Design Patterns, Java Mail API,
XML, HTML, CSS, and Java Script. In addition | also gained experience on security concepts

like one way hashing algorithms, SSL encryption, certificates, web services security.

5.2 Problems Faced
1. The main problem was learning the security concepts and learning how to implement them
using java.
2. While implementing web services security using rampart module, | faced a lot of problems

with some jar file dependencies.

5.3 Future Work

The present application is scalable and can be easily improved without much hassle. The
use of struts and design patterns makes it easier to add more functionality in the future. The
present application has all the basic features including security that a bill payment website needs.
| think the following features can be added in the future:

1. Communication between the web services using HTTPS protocol instead of HTTP.

2. Add more companies to the bill payment website.

3. Implementing the payment methods. Giving an option to the user to select from various
payment methods.

4. Provide auto payment options.

5. Use Maven to build the application.

29

References

[1] The Java EE 5 Tutorial,
http://java.sun.com/javaee/5/docs/tutorial/doc

[2] Apache Struts,
http://struts.apache.org/1.x/index.html

[3] Struts Tiles,
http://struts.apache.org/1.x/struts-tiles/index.html

[4] Struts Taglib,
http://struts.apache.org/1.x/struts-taglib/index.html

[5] Web Services Tutorial
http://www.w3schools.com/webservices/default.asp

[6] Core J2EE Patterns — Business Delegate

http://java.sun.com/blueprints/corej2eepatterns/Patterns/BusinessDelegate.html

[7] Core J2EE Patterns — Data Access Object

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

[8] Core J2EE Patterns — Transfer Object
http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html

[9] Core J2EE Patterns: Best Practices and Design Strategies, Second Edition by Deepak Alur,
John Crupi, Dan Malks

30

http://java.sun.com/javaee/5/docs/tutorial/doc
http://struts.apache.org/1.x/index.html
http://struts.apache.org/1.x/struts-tiles/index.html
http://struts.apache.org/1.x/struts-taglib/index.html
http://www.w3schools.com/webservices/default.asp
http://java.sun.com/blueprints/corej2eepatterns/Patterns/BusinessDelegate.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html

[10] Cryptographic hash function
http://en.wikipedia.org/wiki/Cryptographic hash function

[11] Hashing Concepts and the Java Programming Language

http://www.serve.net/buz/hash.adt/java.000.html

[12] HTTP Secure
http://en.wikipedia.org/wiki/HTTP Secure

[13] Web Services Security
http://www.ibm.com/developerworks/library/specification/ws-secure/

[14] Tomcat and SSL

http://tomcat.apache.org/tomcat-3.3-doc/tomcat-ssl-howto.html

[15] Implementing Web Services Security with Apache Rampart
http://sacrosanctblood.blogspot.com/2007/03/step-by-step-tutorial-to-use-rampart.html

[16] Testing with JUnit
http://java.sun.com/developer/Books/javaprogramming/ant/ant chap04.pdf

[17] JUnit Testing in Eclipse
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643

[18] Performance Testing Guidance for Web Applications
HTTP://msdn.microsoft.com/en-us/library/bb924375.aspx

[19] Performance Testing with JMeter

http://blogs.atlassian.com/developer/2008/10/performance testing with jmete.html

31

http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://www.serve.net/buz/hash.adt/java.000.html
http://en.wikipedia.org/wiki/HTTP_Secure
http://www.ibm.com/developerworks/library/specification/ws-secure/
http://tomcat.apache.org/tomcat-3.3-doc/tomcat-ssl-howto.html
http://tomcat.apache.org/tomcat-3.3-doc/tomcat-ssl-howto.html
http://sacrosanctblood.blogspot.com/2007/03/step-by-step-tutorial-to-use-rampart.html
http://java.sun.com/developer/Books/javaprogramming/ant/ant_chap04.pdf
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://www.tutorialized.com/tutorial/Junit-testing-in-Eclipse/10643
http://msdn.microsoft.com/en-us/library/bb924375.aspx
http://blogs.atlassian.com/developer/2008/10/performance_testing_with_jmete.html

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Salient Features of the Website
	1.4 Document Overview

	Related Work
	2.1 Tools and Technologies
	2.1.1 J2EE
	2.1.2 Struts
	2.1.3 Struts Tiles
	2.1.4 Web Services
	2.1.5 Design Patterns
	2.1.6 One Way Hashing
	2.1.7 HTTPS Protocol
	2.1.8 Web Services Security

	Design and Implementation
	3.1 System Architecture
	3.1.1 Struts MVC Architecture
	3.1.2 Web Services
	3.1.3 Securing the data using Rampart

	3.2 Use Case Diagrams
	3.3 Class Diagrams
	3.3.1 Class Diagram for Login Module
	3.3.2 Configuring an account with company module

	3.4 Database Diagram
	3.5 Screen Shots

	Testing
	4.1 Unit Testing
	4.2 Performance Testing
	4.2.1 System Configuration:
	4.2.2 Test Plan
	4.2.3 Test Results & Evaluation
	4.2.3.1 Home Page
	4.2.3.2 Login Method
	4.2.3.3 Configuring an account:

	Conclusions and Future Work
	5.1 Conclusion
	5.2 Problems Faced
	5.3 Future Work

	References

