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Abstract 

Italian ryegrass (Lolium perenne L. ssp. multiflorum (Lam.) Husnot), one of the problem 

weeds of the US, evolved resistance to multiple herbicides including glyphosate due to selection 

in Arkansas (AR). Glyphosate is a 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) 

inhibitor and amplification of EPSPS gene, the molecular target of glyphosate confers resistance 

to this herbicide in several weed species, including Italian ryegrass from AR. The objective of this 

study was to determine the expression of EPSPS gene and protein as well as distribution of EPSPS 

copies on the genome of glyphosate-resistant Italian ryegrass (ARR) using a known susceptible 

Italian ryegrass (ARS) from AR. EPSPS gene copies and expression of ARR and ARS were 

determined using quantitative PCR with appropriate endogenous controls. EPSPS protein 

expression was determined using Western blot analysis. Fluorescence in situ hybridization (FISH) 

was performed on somatic metaphase chromosomes to determine the location of EPSPS copies. 

Based on qPCR analysis, ARR plants showed a wide range of 12 to 118 EPSPS copies compared 

to a single copy in ARS. EPSPS gene expression correlated with the gene copy number in both 

ARR and ARS. Individuals with high EPSPS copies showed high protein expression in Western 

blot analysis. FISH analysis showed presence of brighter EPSPS signals, distributed randomly 

throughout the genome of ARR individuals compared to a faint signal in ARS plants. Random 

distribution of EPSPS copies was previously reported in glyphosate-resistant Palmer amaranth. 

Overall, the results of this study will help understand the origin and mechanism of EPSPS gene 

amplification in Italian ryegrass. 
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Chapter 1 - Review of Literature 

 Italian Ryegrass – Habitat, Biology & Reproduction 

Italian ryegrass (Lolium perenne L. ssp. multiflorum (Lam.) Husnot) belongs to the family 

Poaceae. It is native to Southern Europe and the continent of Africa. It was introduced throughout 

the world including the United States as a forage grass aiding to its high palatability and nutritious 

value as animal feed (Lamp et al., 1990). It is a cool season annual grass, which prefers to grow in 

moist surroundings (Romani et al., 2002). Italian ryegrass can also occur as a biennial or perennial 

depending on the climatic and seasonal variations. Grass species usually exhibit high phenotypic 

plasticity and they readily adapt to their environment (Casler and Duncan, 2003). Italian ryegrass 

can be found growing in pastures, roadsides, crop fields and open fields. This species grows 

generally in areas with high rainfall and soils with high to medium fertility. Extreme growth 

conditions like drought and excessive moisture do not favor the establishment of this species. 

Italian ryegrass grows best in soils with an optimum pH ranging from 6-7 and up to 8. This species 

is also well adapted to grow in a wide range of soil types and can tolerate occasional flooding in 

well-drained soils (http://www.cabi.org/isc/datasheet/31165, Accessed February 3rd, 2017). Italian 

ryegrass cannot persist in hot and dry weather and also to freezing temperatures (Beddows, 1973). 

 Italian ryegrass is a diploid (2n=14) (Beddows, 1973) and grows to about 3 feet tall and 

stems grow as individual stalks or tillers and have rounded to flattened appearance (Figure 1.1). 

Italian ryegrass has a fine fibrous-adventitious root system and can grow over 3 feet even on non-

irrigated sites. Leaf blades are dark green with flat and hairless upper surface. It has small well-

developed auricle with white and membranous ligule, leaves have a length of up to 40 cm and 

width of about 5-12 mm (Lamp et al., 2001). The inflorescence consists of a spike of about 30 cm 

length and spikelets are arranged alternate, stalkless and produce about 10 to 20 florets. Italian 

http://www.cabi.org/isc/datasheet/31165
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ryegrass can be distinguished from other ryegrass species by their needlelike awns and a higher 

number of florets clustered per spikelet (Lamp et al., 2001). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Morphology of Italian ryegrass plant. Italian ryegrass plant with tillers (A). 

Structure of the Italian ryegrass stem (B). Inflorescence of Italian ryegrass (C). 

 

Italian ryegrass is self-incompatible, hence an obligate outcrosser and seeds are usually dispersed 

by animals and the wind due to their flattened structure (Kannenberg and Allard, 1967). Italian 

ryegrass exhibits a self-incompatibility system (SZ), similar to perennial ryegrass, which is 

(A) (B) 

(C) 
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governed by two alleles. Selfing is prevented to avoid inbreeding depression when both alleles 

controlling the gametophytic incompatibility are matched to those in style (Fearon et al., 1983). 

Flowering usually occurs from April through September and reproduction occurs solely through 

seed. Ryegrass species can also spread through tillering (Najda, 2004). This species can also grow 

in relatively high salt stress conditions as opposed to perennial ryegrass (Marcar, 1987). Italian 

ryegrass is a highly competitive species and can produce huge quantities of seed in a short time. A 

single Italian ryegrass plant can produce up to 45,000 seed 

(http://www.deltafarmpress.com/soybeans/italian-ryegrass-nearly-perfect-winter-weed, Accessed 

February 3rd, 2017). Italian ryegrass seed is large, lack well-defined dormancy mechanisms and 

can germinate at varying temperatures (Thompson and Grime, 1979). Under controlled conditions, 

i.e. 10 oC and 95% relative humidity, Italian ryegrass seed can maintain viability for up to 5 years 

(Rutledge and McLendon, 1998). It can readily hybridize with perennial ryegrass (Lolium perenne 

L.) and the offspring are hard to distinguish from perennial ryegrass (Carey, 1995). Hybrids 

between Italian ryegrass and perennial ryegrass are capable of interbreeding. It has also been 

shown that Italian ryegrass can produce fertile hybrids with both Lolium sp and Festuca sp (Jacobs 

et al., 2008). This ability to outcross with a variety of different species allows it to pass its genetic 

background and produce high heterotic individuals.    

   

 Italian Ryegrass – Impact on Agriculture 

Italian ryegrass is primarily grown as a forage grass throughout the temperate regions of North, 

South America, New Zealand, Japan and Europe (Rios et al., 2015) but persists as a weed in many 

grain crops and orchards. The characteristics such as adaptability to diverse environments, the 

ability to outcross with other forage species, quick growth rate and high seed production toughen 

http://www.deltafarmpress.com/soybeans/italian-ryegrass-nearly-perfect-winter-weed
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its position as a prominent weed in several cropping systems. It is a problem weed especially in 

winter wheat (Triticum aestivum L.) in the US and can reduce the wheat yield significantly (Stone 

et al., 1999). Italian ryegrass and winter wheat have similar maturity stages, which interfere with 

the harvest (Rex and Worsham, 1987). The perseverance of Italian ryegrass at harvest can cause 

contamination of crop grain and severe price dockage in net returns (Justice et al., 1994). Weeds 

are generally considered to be less effective at utilizing the available nutrients but highly efficient 

in removing nutrients from the soil (Vengris et al., 1955). It has been documented that Italian 

ryegrass has twice the net uptake of NO3
- and K+ than wheat in greenhouse conditions (Rex and 

Worsham, 1987). Yield losses of up to 4100 kg/ha were reported in wheat when competiting with 

Italian ryegrass density at 93 plants/m2 (Appleby et al., 1976). Similarly, Italian ryegrass when 

present at a density of 10 plants/m2 in competition with wheat can reduce the yield by 4.2% (Rex 

and Worsham, 1987). One study has reported that Italian ryegrass competes for more below ground 

resources with wheat than showing above ground interference due to the presence of fine fibrous 

roots (Martin et al., 1998). Winter wheat populations received 68% less sunlight due to the greater 

leaf area indices of Italian ryegrass in the top canopy (Hashem et al., 1998).  

Significant reduction of corn yield was reported when in competition with Italian ryegrass. 

Importantly, herbicide-resistant populations of Italian ryegrass can reduce the yield of corn (Zea 

mays L.) even more than the susceptible ryegrass populations (Nandula, 2014). Competition of 

Italian ryegrass with major row crops like corn, cotton (Gossypium hirsutum L.), and soybean 

(Glycine max (L.) Merr.) resulted in 65, 85 and 37% yield losses, respectively 

(https://ag.purdue.edu/btny/weedscience/Documents/50737_12_TA_FactSheet_ItalianRyegrass_

V3_LR.pdf, Accessed February 6th, 2017). Italian ryegrass densities of 600 to 1000 plants m-1 per 

a row of broccoli (Brassica oleracea var. Italica) resulted in 100% yield loss (Bell, 1995). Apart 
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from direct interference, Italian ryegrass can also disturb the ecosystem by harboring pathogens 

that can infect crop species, such as Pythium arrhenomanes (causes root rot disease in sugarcane 

(Saccharum officinarum (L.)) (Dissanayake et al., 1997), and Pseudomonas glumae and 

Pseudomonas plantarii (important pathogens of rice) (Miyagawa et al., 1988). 

 Glyphosate – Development and Mode of Action 

Glyphosate [N-(phosphonomethyl) glycine] is the most extensively used broad spectrum herbicide 

worldwide. It is considered as an environmentally and toxicologically safe compound (Giesy et 

al., 2000).  Glyphosate as a compound was first developed in 1950 by Swiss chemist Dr. Henri 

Martin at Cilag AG pharmaceuticals (Franz et al., 1997). Cilag became part of the Johnson and 

Johnson in 1959 and in the later years, glyphosate ended up in the Inorganic Division of Monsanto 

(Nandula, 2010). Dr. John E. Franz and his team synthesized a more potent form of glyphosate 

and in 1970, herbicidal properties of glyphosate were tested on perennial weed species in the 

greenhouse (Franz et al., 1997). Later in 1971, Monsanto Inc. first released the commercial 

formulation of glyphosate under the trade name Roundup® for weed control (Baird et al., 1971).  

 The molecular formula for glyphosate is C3H8NO5P. The chemical structure of glyphosate 

is comprised of one basic amino group and three ionizable acidic sites (Figure 1.2). Acidic 

formulation of glyphosate has a high water solubility of 15,700 mg/L in pH 7 water at 25o C. 

Detailed molecular and crystal structure of glyphosate was reviewed in 1979 (Knuuttila and 

Knuuttila, 1979). Glyphosate is an inhibitor of EPSPS (5-enolpyruvylshikimate-3-phosphate 

synthase) enzyme, which plays a crucial role in catalyzing the transfer of enolpyruvyl moiety of 

phosphoenolpyruvate (PEP) to S3P (shikimate-3-phosphate) in the shikimic acid pathway. This 

pathway is crucial for the synthesis of essential aromatic amino acids like tryptophan, 

phenylalanine, and tyrosine (Amrhein et al., 1980; Duke and Powles, 2008). These amino acids 
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will be ultimately used for the production of key hormones and plant metabolites including 

flavonoids and lignins (Dill, 2005). About 20% of fixed carbon is passed through the shikimate 

pathway in plants and the EPSPS enzyme is present only in plants, bacteria and fungi but not 

animals (Alibhai and Stallings, 2001; Kishore and Shah, 1988). This quality makes it less toxic to 

non-target species.  The complete interaction of glyphosate with EPSPS enzyme in atomic detail 

is well understood (Schönbrunn et al., 2001). Glyphosate competitively binds to the binding site 

of PEP and forms a stable EPSPS:S3P complex, which inhibits the Shikimic acid pathway resulting 

in plant mortality (Duke and Powles, 2008). Glyphosate is a non-volatile compound and it has a 

short half-life in soil due to microbial degradation (Duke and Powles, 2008; Giesy et al., 2000) 

and also a slow acting herbicide (Baylis, 2000). 

 

Figure 1.2 Structure of glyphosate with one basic amino site (purple) and three acidic sites 

(red).  

Glyphosate is a phloem-mobile herbicide that can diffuse through leaf cuticle and 

accumulate in the meristematic regions of the plant. The rate and efficiency of translocation depend 

on the environmental factors as well as plant species (Caseley and Coupland, 1985). Some species 

like sugarbeet (Beta vulgaris subsp. vulgaris) has a rapid translocation of glyphosate i.e. herbicide 

moves out of the plant before it starts its activity thereby limiting its efficiency (Geiger et al., 
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1999). Inhibition of EPSPS enzyme by glyphosate leads to accumulation of Shikimic acid, which 

can be used as a method to determine glyphosate toxicity (Shaner et al., 2005; Singh and Shaner, 

1998). Generally, grasses are more susceptible to glyphosate injury than broad-leaved weeds but 

species-specific tolerance is not uncommon (Baylis, 2000). Some weed species such as field 

bindweed (Convolvulus arvensis L.) and birdsfoot trefoil (Lotus corniculatus L.) are naturally 

tolerant to glyphosate (Boerboom et al., 1990; DeGennaro and Weller, 1984). Other species like 

common lambsquarters (Chenopodium album L.), velvetleaf (Abutilon theophrasti Medik.) and 

wild buckwheat (Polygonum convolvulus L.) have become increasingly difficult to control with 

glyphosate (Owen and Zelaya, 2005). 

 Glyphosate –Resistant Crops and Weeds 

The introduction of glyphosate-resistant soybean, in 1996 marked the beginning of glyphosate-

resistant (GR) crop technology. In the same year Roundup® Ready corn and soybean varieties 

were also released for planting in the U.S. Currently, we have six different GR crops commercially 

available, i.e. soybeans, corn, cotton, canola (Brassica napus L.), alfalfa (Medicago sativa L.) and 

sugar beet (Beta vulgaris L.) (Green, 2016) (Figure 1.3. Biotechnological and tissue culture 

strategies were tried for developing GR crops (Duke and Powles, 2008). Some of the approaches 

include overexpression of the native EPSPS gene, detoxification of glyphosate molecule in the 

plant by introducing glyphosate oxidase (GOX) gene. These methods were not very successful 

either due to poor growth of plants or insufficient level of glyphosate tolerance (Dill, 2005). To 

date, the most successful method of development of GR crops was through the transgenic insertion 

of CP4 gene of Agrobacterium sp., which encodes for an insensitive form of EPSPS (Padgette et 

al., 1996). The CP4 gene coupled with an altered promoter in the genome of GR crops showed 

high levels of glyphosate resistance. A commercial variety of GR maize was developed through 
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site-directed mutagenesis which resulted in a missense mutation that showed acceptable levels of 

glyphosate resistance (Lebrun et al., 2003).   

 

 

Figure 1.3 Commercial transgenic crop traits introduced between 1995 and 2009. Image 

adapted from Green, 2016. 

GR crop technology has immensely benefited glyphosate sales by increasing the area of 

application. This technology was deemed to be one of the fastest adopted technologies, especially 

in the U.S., GR trait technology alone represents more than half of the total biotech crop market. 

Glyphosate use rate per crop, as well as the number of applications per acre, have rapidly increased 

since the introduction of GR crops (Benbrook, 2016). Out of the 120 million ha of GM crops grown 

worldwide, ~80% include GR technology. By 2002, the number of herbicides used on 10% of U.S. 

soybean reduced to just glyphosate from 11 modes of action of herbicides previously used (Duke 

and Powles, 2009). About 56% of total glyphosate used globally (~8.6 billion kg) is applied in GR 
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crops (Benbrook, 2016). Wide adoption of GR crops coupled with glyphosate use has 

revolutionized the agricultural practices in the U.S. (Green, 2016). 

In 1994, after 20 years of glyphosate use, there were no reports of the evolution of GR 

weeds (Powles, 2008). However, upon introduction of GR crops in 1996, glyphosate use increased 

significantly (Figure 1.4). Initial cell and tissue culture studies on several plant species had shown 

that it is unlikely for the weed species to develop glyphosate resistance under field conditions as it 

was very hard to get reproducible GR regenerates that are overexpressing EPSPS to tolerate field 

used dose of glyphosate. Also, the unique chemical structure of glyphosate, its metabolism route 

and poor residual activity of glyphosate in the soil also supported this hypothesis (Bradshaw et al., 

1997). Nonetheless, the first case of glyphosate resistance was reported in a rigid ryegrass (Lolium 

rigidum Gaudin) population from the orchards of Australia, which showed 7-11 fold resistance 

compared to a known susceptible population (Powles et al., 1998). Currently, there are 17 monocot 

and 20 dicot species that are resistant to glyphosate in 26 countries (Heap, 2017). Several species 

of Conyza and Lolium have evolved glyphosate resistance in many scenarios such as vineyard, 

orchard and even roadsides due to persistent use of glyphosate (Powles, 2008). Due to the intensive 

and extensive use of glyphosate in Australia, large areas of crop land have been infested with GR 

rigid ryegrass (Preston, 2007). As of 2016 at least 678, 102 sites for glyphosate-resistant annual 

ryegrass (Lolium rigidum Gaudin) and barnyard grass (Echinochloa cruss-galli (L.) Beauv.) were 

reported in Australia alone, which determines the severity of the problem (glyphosate resistance 

org, 2016).  



10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Use of glyphosate in corn and soybean cropping systems and evolution of 

resistant weeds in this scenario. Image adapted from Benbrook, 2016. 
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Some of the examples of important GR weeds include jungle rice (Echinochloa colona L. 

Link) (Goh et al., 2016), hairy fleabane (Conyza bonariensis (L.) Cronq.) (Dinelli et al., 2008; 

Urbano et al., 2007), horseweed (Conyza canadensis (L.) Cronq.) (Koger and Reddy, 2005; 

Mueller et al., 2003) (VanGessel, 2001; Zelaya et al., 2004), rigid ryegrass (Lolium rigidum 

Gaudin) (Feng et al., 1999; Lorraine-Colwill et al., 2002; Powles et al., 1998; Pratley et al., 1999; 

Wakelin and Preston, 2006; Yu et al., 2007), Italian ryegrass (Lolium perenne L. ssp. multiflorum 

(Lam.) Husnot) (Jasieniuk et al., 2008; Nandula et al., 2008; Perez-Jones et al., 2007; Perez-Jones 

et al., 2005; Perez et al., 2004; Perez and Kogan, 2003; Salas et al., 2012), Palmer amaranth 

(Amaranthus palmeri S. Wats.) (Culpepper et al., 2006; Gaines et al., 2011; Norsworthy et al., 

2008; Steckel et al., 2008), Kochia (Kochia scoparia (L.) Schrad.) (Beckie et al., 2013; Jugulam 

et al., 2014; Kumar et al., 2014; Waite et al., 2013; Wiersma et al., 2015) and Common waterhemp 

(Amaranthus rudis Sauer) (Legleiter et al., 2008; Patzoldt et al., 2002). More recently two 

populations of GR ripgut brome (Bromus diandrus Roth) that were at least 5 fold more resistant 

to glyphosate than susceptible plants were reported in pastures of southern Australia (Malone et 

al., 2016). GR Italian ryegrass was found in 9 countries globally with the highest number of cases 

being reported in the U.S. (Heap, 2017). Several populations of GR Italian ryegrass were reported 

in the U.S. (Jasieniuk et al., 2008; Nandula et al., 2007; Nandula et al., 2008; Ngo et al., 2017; 

Perez-Jones et al., 2005; Salas et al., 2012). 

 

 Italian Ryegrass – Herbicide Resistance and Management 

According to Weed Science Society of America (WSSA), herbicide resistance is defined as “the 

inherited ability of the plant to survive and reproduce following exposure to a dose of herbicide 

normally lethal to the wild type”. Traditionally, acetyl-CoA carboxylase (ACCase), or acetolactate 
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synthase (ALS)-inhibitors have been used to control Italian ryegrass. Most of the herbicides 

belonging to these two classes were registered for use in several cropping systems. Extensive and 

intensive use of these herbicides resulted in the selection of Italian ryegrass populations resistant 

these compounds. In 1987, the first case of diclofop-methyl (an ACCase-inhibitor)-resistant Italian 

ryegrass population was reported in wheat field of Oregon (Charles and Appleby, 1989). In the 

following year i.e. 1990, diclofop-methyl- resistant populations were identified in both North and 

South Carolina (Heap, 2017). To date, Italian rye grass has developed resistance to five herbicide 

sites-of-action: acetyl-CoA carboxylase (ACCase), acetolactate synthase (ALS), EPSPS synthase-

, glutamine synthetase (GS)-inhibitors, and long chain fatty acid inhibitors in the U.S. It is not 

uncommon to find Italian ryegrass resistant to multiple sites of action of herbicides in the U.S.  

Glyphosate has been used as a viable option since its release in 1974 to control Italian 

ryegrass infestations in roadsides, vineyards and orchards (Nandula, 2014). The first case of GR 

Italian ryegrass was found in the Chilean orchards of San Bernardo and Oliver in 2003. Later, the 

first case of GR Italian ryegrass in the US was reported in the orchards of Oregon (Perez-Jones et 

al., 2005).  The introduction of GR crops in 1996 accelerated the use of glyphosate worldwide. 

The rapid adoption of GR crops like soybean, corn, canola and cotton encouraged farmers to spray 

glyphosate as a single weed control option. As a result, GR Italian ryegrass populations were found 

in at least 7 states in the US and 12 countries globally (Heap, 2017).  

Italian ryegrass infestation severely hinders the pre-plant burndown operations especially 

in reduced or no-tillage situations (Nandula, 2014). Use of herbicide mixtures and herbicide 

application at the right phenological stage can possibly give better control of GR Italian ryegrass 

(Christoffoleti et al., 2005). Herbicides like atrazine were used to control Italian ryegrass 

infestations in wheat aiding to its selectivity. Wheat has much lesser accumulation and persistence 
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of atrazine in the plant due to higher activity of herbicide detoxifying enzymes like glutathione S-

transferase (GST) (Del Buono et al., 2011). More recently, one study has reported soil-applied 

pyroxasulfone had good control of Italian ryegrass in winter wheat (Hulting et al., 2012). 

Herbicides like clomazone, pyroxasulfone, and S-metolachlor provide growers with residual 

control and application in November maximizes the control of GR Italian ryegrass (Bond et al., 

2014). Herbicide rotation with different modes-of-action and other integrated weed management 

approaches can help in delay evolution of resistance.  

 

 Mechanism of Glyphosate Resistance in Italian Ryegrass 

 

Mechanism of resistance in weeds can be broadly classified into target-site and non-target-site-

based. Target-site resistance can be due to an altered target-site of the herbicide, which can occur 

due to a mutation in the target gene resulting in a change in its amino acid sequence (substitution, 

or deletion) or as a result of overexpression of the target enzyme (gene amplification or changes 

in promoter binding site) (Powles and Yu, 2010). On the other hand, non-target-site resistance can 

be as a result of decreased absorption/translocation or metabolism of herbicide (Délye, 2013) 

(Yuan et al., 2007). This mechanism can occur either in one or many combinations (Powles and 

Yu, 2010).  

Both target site- and non-target site-based resistance to glyphosate have been documented 

in many GR weeds (Sammons and Gaines, 2014). Glyphosate resistance in Lolium rigidum Gaudin 

was shown to be inherited as a nuclear encoded single semi-dominant or incompletely dominant 

trait (Lorraine-Colwill et al., 2002; Lorraine-Colwill et al., 2001). Nuclear-encoded resistance can 

spread rapidly as it can be passed on both via seed and pollen (Mithila and Godar, 2013). 

Translocation of glyphosate is substantially reduced in GR giant ragweed (Ambrosia trifida L.) 
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compared to susceptible due to rapid necrosis and also reduced translocation of herbicide from 

mature leaves to meristematic regions (Robertson, 2010). There are several studies that have 

shown reduced foliar uptake and translocation as a mechanism of glyphosate resistance in Italian 

ryegrass (González-Torralva et al., 2012; Michitte et al., 2007; Nandula et al., 2008; Perez-Jones 

et al., 2007; Perez et al., 2004). Also, it has been shown that GR Johnson grass (Sorghum halepense 

(L.) Pers.) at 19 degrees C and Lolium rigidum at 9 degrees C exhibit more susceptibility as 

opposed to 30 degrees C and 19 degrees C respectively (Vila-Aiub et al., 2013). 

The first case of target-site-resistance to glyphosate was reported in goose grass (Eleusine 

indica (L.) Gaertn.) which had a mutation in EPSPS gene resulting in proline -106-Serine 

substitution (Baerson et al., 2002). This population was 2-4 fold resistant to glyphosate compared 

to a susceptible population (Baerson et al., 2002). Later, a proline to alanine and threonine 

substitutions at amino acid position 106 were also identified in Lolium species (Lolium rigidum 

Gaudin, Lolium perenne L. ssp. multiflorum (Lam.) Husnot) and goose grass (Eleusine indica (L.) 

Gaertn.) (Kaundun et al., 2008; Powles and Yu, 2010). Six species were reported to have a 

mutation in EPSPS gene endowing resistance to glyphosate (Sammons and Gaines, 2014). Several 

populations of GR Italian ryegrass were shown to have mutations in EPSPS gene conferring 

resistance to glyphosate (González-Torralva et al., 2012; Jasieniuk et al., 2008; Perez-Jones et al., 

2007). Another important mechanism of target site-based resistance to glyphosate is due to 

amplification of EPSPS gene, which is discussed in detail in the next section. 

 

 Gene Amplification as a Mechanism of Glyphosate Resistance 

Gene amplification is a mechanism through which a part of genomic region gets duplicated 

resulting in increased copies of the same gene. The role of gene duplication in driving evolution 
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and speciation has been well documented in many studies (Kondrashov, 2012; Kubo et al., 2015; 

Ohno, 2013; Taylor et al., 2001; Zhang, 2003). Gene duplications can arise through several events, 

namely, via a) unequal crossing over between two homologous sister chromatids, b) retroposition 

or c) chromosomal duplication (Zhang, 2003) (Figure 1.5). Unequal crossing over between two 

homologous sister chromatids results in tandem gene duplication. Depending on the recombination 

region, the duplicated product may contain one to several genes and are generally believed to be 

linked (Zhang, 2003). This recombination can give rise to even deletions or inversions of cross 

over region (Hurles, 2004). During retrotransposition the mature RNA is reverse transcribed to 

cDNA (complementary DNA) and gets integrated randomly into the genome, this commonly 

results in  duplicated genes, which lack introns and contain poly-A tails. Gene duplication through 

retrotransposition results in unlinked genes (Hurles, 2004; Zhang, 2003).   One exception to this 

might be possible if duplicated genes are present in a single operon (Zhang, 2003).  Most of the 

duplicated genes that arise through such retrotransposition lack expression due to random 

integration of genes in the genome that lack a driving promoter but an insertion downstream of a 

promoter construct can result in stable expression (Zhang, 2003). Another important mechanism 

of gene duplication is chromosomal or segmental duplication, it is believed to occur due to the 

disjunction between daughter chromosomes or more precisely due to increase in duplication 

breakpoints at replication termination sites (Hurles, 2004; Zhang, 2003). The exact mechanism of 

such kind of duplication is unclear but is mainly attributed to non-homologous recombination 

events (Hurles, 2004).  

It is now widely accepted that application of pesticides and insecticides over a period of 

time  promotes adaptive duplication of genes or enzymes (Devonshire and Field, 1991; Gaines et 

al., 2011; Jugulam et al., 2014; Powles, 2010; Terriere, 1983). Bass and Field (2011) documented 
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that for three families of detoxifying enzymes (esterases, glutathione S-transferases and 

cytochrome P450 monooxygenases), gene amplification of the structural gene is the reason for 

enhanced metabolism of many insecticides (Bass and Field, 2011). This has been well studied in 

case of insect species like  Myzus persicae, Schizaphis graminum, Nilaparvata lugens, Culex 

pipiens, Culex quinquefasciatus, Culex tarsalis and Culex tritaeniorhynchus (Bass and Field, 

2011). Two  duplicated genes, EF4 and FE4 were found to be amplified in insecticide resistant 

peach potato aphid (Myzus persicae) populations with an increase of upto four fold in gene copies 

as compared to the wild aphids (Field et al., 1999). Fluoroscent in situ hybridization (FISH) 

analysis of the EF4 gene linked the amplification of this gene to a chromosomal translocation at a 

single heterozygous location (Blackman et al., 1995). Studies on Organophosphate resistant culex 

pipens mosquitoes have shown that amplification of either single or allelic pairs of esterase genes 

can result in resistance (Buckingham et al., 2005; Hemingway, 2000). Esterase genes such as  Est-

3, Est-2 or allelic pairs of genes (estα2–estβ2, estα 4–estβ4, estα5–estβ5, estα8–estβ8) are 

responsible for insecticide resistance (Buckingham et al., 2005; Hemingway, 2000). One of the 

most common allele attributed to insecticide resistance is estα2–estβ2 coamplicon which is present 

in most of the insect-resistant species and is believed to confer a fitness advantage over other allelic 

groups (Hemingway, 2000).      

 Earlier, it has been reported that cell suspension cultures of tobacco under continuous 

glyphosate selection showed amplification of EPSPS gene resulting in resistance to glyphosate 

(Widholm et al., 2001). However, the natural evolution of glyphosate resistance via EPSPS gene 

amplification  has been documented in seven weed species as a result of continuous selection. 

Examples of the GR weed species with gene amplification as mechanism of resistance include 

Palmer amaranth (Amaranthus palmeri S. Wats.) (Culpepper et al., 2006; Gaines et al., 2011; 
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Ribeiro et al., 2014), Spiny amaranth (Amaranthus spinosus L.) (Nandula et al., 2014), Common 

waterhemp (Amaranthus tamariscinus auct. non Nutt.) (Chatham et al., 2015), Ripgut brome 

(Bromus diandrus Roth) (Malone et al., 2016), Kochia (Kochia scoparia (L.) Schrad.) (Jugulam 

et al., 2014; Wiersma et al., 2015), Italian ryegrass (Lolium multiflorum ) (Salas et al., 2012; Salas 

et al., 2015) and Goose grass (Eleusine indica) (Chen et al., 2015). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Most frequently reported possible mechanisms of gene duplication or gene 

amplification. Image adapted from Zhang, 2003. 

Tandem amplification of chromosomal region containing EPSPS gene copies in GR K. 

scoparia has been reported recently suggesting a possible role of unequal crossing over in gene 

duplication (Jugulam et al., 2014). In GR A. palmeri the mechanism for gene duplication was 
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shown to be possibly due to transposon-mediated mechanism (Gaines et al., 2010). Another study 

by this group reported that the gene duplication might arise due to DNA transposon-mediated 

replication showing the involvement of miniature inverted-repeat transposable elements (MITEs) 

next to EPSPS gene copies in Palmer amaranth showing the involvement of miniature inverted-

repeat transposable elements (MITEs) next to EPSPS gene copies (Gaines et al., 2013).  

More recently, physical mapping of distribution of amplified EPSPS gene copies on GR A. 

rudis suggested that the amplified copies in resistant individuals were present closer to the 

pericentromeric region of two homologous chromosomes. Additionally, some GR individuals also 

had an extra chromosome with EPSPS copies (Dillon et al., 2016). They proposed the 

pericentromeric localization of EPSPS copies may involve segmental duplication and/or followed 

by other mechanisms of gene duplication (Dillon et al., 2016).  

Studies on rodents and humans with anti-cancer drugs like methotrexate in culture have 

shown that the resistance to these drugs endowed by gene amplification dissipated once the 

selection pressure was removed (Gressel, 2015; Sharma and Schimke, 1994). General opinion is 

that in real-time, resistance dissipation might take longer in case of weeds and insects as opposed 

to bacteria (Gressel, 2015). Any alteration to target-site either as a result of gene mutation or 

amplification may incur fitness cost in the organism. However, there are no studies, especially in 

the case of gene duplication to prove this scenario. This is due to the complications involved in 

studying of copy-number variants and also due to the well agreed on belief that duplications lead 

to novel functions which outweigh the  short-term implications like fitness penalties (Kondrashov, 

2012). However, no fitness penalty has been reported in GR A. palmeri conferring resistance via  

EPSPS gene amplification (Vila-Aiub et al., 2014).   
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Previous studies elucidating the target-site resistance to glyphosate in Italian ryegrass 

suggest that the mechanism is either due to mutations or amplification of EPSPS gene. In this 

dissertation, a population of GR Italian ryegrass from Arkansas was used. This population showed 

7-19 fold more resistance to glyphosate compared to a known susceptible population. The 

resistance to glyphosate was determined by EPSPS gene amplification (Salas et al., 2012; Salas et 

al., 2015). Furthermore, no difference in 14C glyphosate uptake or translocation was found between 

GR and susceptible plants (Salas et al., 2015). EPSPS gene sequencing results showed no mutation 

associated with resistance to glyphosate in this population. The GR Italian ryegrass individuals 

had EPSPS gene copy numbers ranging between 11 to 151 compared to susceptible plants, which 

had a single copy of EPSPS (Salas et al., 2015). A minimum number of EPSPS gene copies to 

survive the field dose of glyphosate was found out to be 10. EPSPS copy number, enzyme activity, 

the level of  glyphosate resistance were all positively correlated (Salas et al., 2012; Salas et al., 

2015). However, no information is available on the location of amplified EPSPS copies on the 

genome of Italian ryegrass. Such information  would help understand the initial event contributing 

to gene amplification and also potential rapid increase in EPSPS copies thereby increase in 

glyphosate resistance. Therefore, the main objective of this research is to physically map the 

distribution of amplified EPSPS gene copies on the genome of GR Italian ryegrass as well as to 

determine the relationship between EPSPS gene copies, EPSPS gene expression and EPSPS 

protein expression. 
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Chapter 2 - Determination of Genomic Copy Number, Protein 

Expression and Physical Mapping of EPSPS Gene in Glyphosate-

Resistant Italian Ryegrass  

 Abstract 

Italian ryegrass (Lolium perenne L. ssp. multiflorum (Lam.) Husnot), one of the problem weeds of 

the US, evolved resistance to multiple herbicides including glyphosate due to selection in Arkansas 

(AR). Glyphosate is a 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitor and 

amplification of EPSPS gene, the molecular target of this herbicide contributes to resistance in 

several weed species, including Italian ryegrass population from AR. The objective of this study 

was to determine the expression of EPSPS gene and protein as well as distribution of EPSPS copies 

on the genome of glyphosate-resistant Italian ryegrass (ARR) using a known susceptible Italian 

ryegrass (ARS) from AR. EPSPS gene copies and expression of ARR and ARS were determined 

using quantitative PCR with appropriate endogenous controls. EPSPS protein expression was 

determined using Western blot analysis. Fluorescence in situ hybridization (FISH) was performed 

on somatic metaphase chromosomes to determine the location of EPSPS copies. Based on the 

qPCR analysis, ARR plants showed 12 to 118 EPSPS copies compared to a single copy in ARS. 

EPSPS gene expression correlated with the gene copy number in both ARR and ARS. Individuals 

with high EPSPS copies showed high protein expression in Western blot analysis. FISH analysis 

showed the presence of brighter EPSPS signals, distributed randomly throughout the genome of 

ARR individuals compared to a faint signal in ARS plants. The random distribution of EPSPS 

copies was previously reported in glyphosate-resistant Palmer amaranth. Overall, the results of 



37 

this study will help understand the origin and mechanism of EPSPS gene amplification in Italian 

ryegrass. 

 

 Introduction 

Italian ryegrass is a monocot weed native to Southern Europe, which was introduced throughout 

the world including the United States as a forage grass. It is a self-incompatible species and does 

cross with cultivated annual ryegrass and other ryegrass species (Jacobs et al. 2008). Italian 

ryegrass has excellent palatability and seedling vigor. Recently, it has been reported that this 

species has potential to be a good source for biofuel production (Yasuda et al. 2015). Despite the 

useful characteristics of the ryegrass in certain aspects its position in the field as a noxious weed 

far outweighs the benefits. Italian ryegrass is allelopathic and is shown to inhibit the growth of 

other species in the proximity (Ferreira 2011). Italian ryegrass has been reported to show 

interference with many crops affecting their growth by outcompeting them for resources (Liebl & 

Worsham 1987; Stone et al. 1998; Nandula 2014). Italian ryegrass populations if left uncontrolled 

in the field can cause substantial yield losses to crops and they can also harbor certain plant 

pathogens that can infect crop species (Ikley et al. 2015). Traditionally Acetyl-CoA Carboxylase 

(ACCase) herbicides like diclofop-methyl, quizalofop, clodinofop etc. and Acetolactate Synthase 

(ALS) inhibitors like chlorosulfuron, iodosulfuron-methyl etc. were used for the control of 

ryegrass populations. Extensive use of these herbicides selected for Italian ryegrass populations 

resistant to these herbicides. 

Since the introduction of glyphosate in 1974, as a non-selective herbicide it was widely 

used to control many grass and broadleaf weeds mainly due to its efficacy and low mammalian 

toxicity (Henderson et al. 2010). Later in 1996, the development of glyphosate-resistant (GR) 

crops further intensified the use of glyphosate (Powles 2008). Glyphosate belongs to the chemical 
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family of glycine and is a 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitor. 

EPSPS enzyme is required for the regulation of shikimate pathway in plants which in turn is 

responsible for producing essential aromatic amino acids (Maeda & Dudareva 2012). Glyphosate 

shares structural similarity with phosphoenol pyruvate and therefore blocks the substrate binding 

site of EPSPS enzyme.  Intensive use of glyphosate over the past two decades resulted in the 

evolution of glyphosate resistance in a number of weed species, including Italian ryegrass. First 

case of GR Italian ryegrass was reported in 2001 in Chilean fruit and orchards (Perez & Kogan 

2003).  In the United States, GR Italian ryegrass biotype was first reported in 2004 in the orchards 

of Oregon (Perez-Jones et al. 2005) . Till today, GR Italian ryegrass populations with multiple 

herbicide resistance have been reported in 9 countries.  

Mechanisms of resistance to herbicides can broadly be grouped into two categories: a) 

target site resistance where the target is altered, thus the herbicide will not have toxic effect; b) 

non-target resistance, primarily mediated by metabolism of herbicides (Ma et al. 2013); or 

impaired uptake/translocation, and/or avoidance (Bowler et al. 1992). Non-target-site resistance is 

much more complex than target site based and can involve many genes and can result in cross-

resistance to several herbicides (Délye 2013). There were several reports of target site resistance 

with a mutation in EPSPS gene leading to Pro106Ser substitution resulting in 5 fold resistance in 

Italian ryegrass compared to susceptible populations (Jasieniuk et al. 2008; González-Torralva et 

al. 2012; Perez-Jones et al. 2007). GR Italian ryegrass populations with impaired translocation 

were also reported recently (González-Torralva et al. 2012). Another important and novel 

mechanism of glyphosate resistance reported in five GR species so far is, target gene amplification 

or duplication (Sammons and Gaines, 2014) where a single copy of EPSPS gene is amplified 

resulting in the production of multiple copies of this gene. The increase in EPSPS copies also 
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showed a positive correlation to the level of glyphosate resistance in Italian ryegrass (Salas et al. 

2012), kochia (Jugulam et al. 2014) and common waterhemp (Dillon et al. 2016). 

Previously, the importance of gene duplication as a prominent event driving evolution has 

been reported in many instances (Soukup 1974; Taylor & Raes 2004; Kubo et al. 2015). Gene 

duplications can arise through several events namely unequal crossing over between two 

homologous sister chromatids, retroposition or chromosomal duplication (Zhang 2003). Tandem 

amplification of the chromosomal region containing EPSPS gene copies in GR kochia has been 

reported recently suggesting a possible role of unequal crossing over resulting in gene duplication 

(Jugulam et al. 2014). On the other hand, in GR A. palmeri, a possible role of transposons in 

mediating EPSPS gene amplification was reported  (Gaines et al. 2010). Subsequently, it was also 

suggested that in A. palmeri the gene duplication might have resulted due to DNA transposon-

mediated replication with the involvement of miniature inverted-repeat transposable elements 

(MITEs) adjacent to EPSPS gene (Gaines et al. 2013). However, no fitness penalty has been 

reported for GR A. palmeri populations endowed through EPSPS gene amplification (Vila-Aiub 

et al. 2014). Fitness costs associated with gene amplification is important to study as it would 

determine the time for penetrance of the resistant trait in the individuals and also the persistence 

of glyphosate resistance in the population which could have long-term implications for the 

sustainable use of glyphosate (Giacomini et al. 2014).  

EPSPS gene amplification resulting in the evolution of resistance to glyphosate in Italian 

ryegrass populations from Arkansas (ARR) was previously reported (Salas et al. 2015; Salas et al. 

2012). The ARR populations showed a 7-19 fold resistance (with up to 25 EPSPS copies) to 

glyphosate compared to a known susceptible population (ARS) with a single copy. Furthermore, 

a positive correlation between enzyme activity, copy number and level of glyphosate resistance 
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was also found (Salas et al. 2015). However the mechanism of EPSPS gene duplication in this 

weed species is elusive. Currently, there are several molecular cytogenetic techniques available to 

study the basis of gene amplification in herbicide resistant weed species. Some of the techniques 

that can be employed are fluorescence in situ hybridization (FISH), and high-resolution FISH on 

stretched DNA (fiber-FISH). These techniques help in visualizing the physical location of 

amplified genes or small DNA fragments of interest on chromosomes by using multi-colored 

probes. Here in this research, the FISH technique was used to illustrate the location and distribution 

of amplified EPSPS copies on the chromosome of ARR Italian ryegrass. These insights will help 

understand the basis of gene amplification in the evolution of glyphosate resistance in this species.   

 Research Hypothesis and Objectives 

This research was conducted based on the hypothesis that EPSPS gene amplification in ARR 

Italian ryegrass may have evolved as a result of unequal crossing over  or transposon-mediated 

mechanism. The overall objective of this dissertation is to determine the distribution of EPSPS 

copies in ARR Italian ryegrass as an initial step to uncover the mechanism of EPSPS gene 

amplification.  

The specific objectives of this study were, using a known Italian ryegrass population susceptible 

to glyphosate from AR (ARS) to determine: 

1. the EPSPS gene copy number in the ARR Italian ryegrass. 

2. the level of EPSPS gene expression in ARR Italian ryegrass. 

3. whether EPSPS gene expression is translated to EPSPS protein expression. 

4. the distribution of duplicated EPSPS gene copies on the genome of ARR Italian ryegrass.    
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 Materials and Methods 

 Plant Material and Growth Conditions 

ARS and ARR Italian ryegrass seed were obtained from AR and used in this research. The ARR 

seed were collected from a field in Desha County, AR. The seeds were treated with discriminating 

dose of glyphosate and survivors were bulked in the greenhouse (Salas et al., 2012). Bulked seed 

were germinated on moist filter paper in small Petri dishes at room temperature in dark room. After 

establishing 2-3 cm roots, seedlings were transferred to individual pots (4 cm x 4 cm) containing 

Miracle-Gro potting mix (Scotts Miracle-Gro Company, Marysville, OH, USA) and grown in 

greenhouse with appropriate growth conditions (temperature of 25/20 ºC with photoperiod 16/8 h 

light day/night and light intensity of 250 µmol m-2 s-1 supplemented by sodium vapor lamps). 

Relative humidity in the greenhouse was maintained at around 65%. Plants were fertilized with 

Miracle-Gro water-soluble all-purpose plant food (Scotts Miracle-Gro Company., OH) every two 

weeks. A total of 23 ARS and 60 ARR plants were grown until one tiller stage and tillers were 

separated to make one clone for each plant respectively.   

 Herbicide treatment 

When ARS and ARR plants started tillering (Fig. 1), one vegetative clone was made for each 

individual plant by separating the tillers and grown in separate pots (4 cm x4 cm). A total of 23 

ARS and 60 ARR Italian ryegrass clones derived from separate ARS and ARR plants were treated 

with a discriminating dose (1X) of glyphosate along with appropriate adjuvant (Roundup 

Weathermax ® @ 840 g ae ha−1 in 2% (v/v) ammonium sulfate (AMS)) at three-leaf stage. The 

herbicide was applied using  a track sprayer (Research Track Sprayer, Generation III, De Vries 

Manufacturing., MN) equipped with a flat-fan nozzle tip (80015LP TeeJet tip, Spraying Systems 

Co., IL) delivering 168 L ha-1 at 222 kPa in a single run at 4.8 km h-1. An untreated check of 3-4 
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plants of both ARS and ARR were included. Sprayed plants were maintained at the same growth 

conditions as mentioned above. Plants were assessed for percent survival 28 days after treatment 

(DAT). 

 

 Genomic DNA extraction and sequencing 

EPSPS gene was sequenced to check for any non-synonymous amino acid changes that may confer 

resistance to glyphosate in the Italian ryegrass populations. Fresh leaf tissue (~100 mg) was 

collected in 50 ml falcon tubes, flash frozen in liquid nitrogen and stored at -80 oC for genomic 

DNA extraction. Genomic DNA was extracted using Qiagen DNEasy Plant Mini Kit (Qiagen Inc., 

CA) following the manufacturer’s provided protocol. DNA quantification was done using a Nano 

Drop 1000 spectrophotometer (Thermoscientific., DE). Genomic DNA was amplified in a 50 µl 

reaction using a Forward primer EPSPS LOLF2 (5’-AGAGCTGTAGTCGTTGGCTGT-3’) and 

reverse primer EPSPS LOLR2 (5’-TAGGTCGCTCCCTCATTCTTG-3’), which amplifies a 350 

bp fragment. This fragment would cover the previously reported Proline 106 amino acid position 

on the EPSPS, which is reported to endow glyphosate resistance. The reaction mixture contains 25 

µl Taq 2X Master mix (Promega., WI), 10 µl nuclease free water 5 µl of each primer (5 µM) and 

5 µl of genomic DNA. Reaction conditions for the Polymerase Chain Reaction (PCR) include an 

initial denaturation step of 95 oC for 3 min followed by an additional denaturation step at 95 oC 

for 30 sec (40 cycles), primer annealing step at 56 oC for 45 sec, product elongation step at 72 oC 

for 1 min and a final elongation step at 72 oC for 5 min . PCR was set up in a thermocycler (Biorad., 

CA). The amplified PCR product was analyzed on a 0.8% agarose gel with ethidium bromide 

staining and a 100 bp ladder (MidSci., MO) as a marker. DNA bands were visualized in a UV 

Transilluminator (Fotodyne Inc., WI). PCR product was purified using QIAquick PCR purification 
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kit (Qiagen Inc., CA) following the manufacturer guidelines. Samples were sequenced at the DNA 

sequencing and genotyping facility in the Plant Pathology department at Kansas State University. 

Sequence chromatograms were analyzed using SnapGene software (GSL Biotech LLC., IL) and 

sequences were aligned using Multalin software (Corpet, 1988). 

 Total RNA isolation and cDNA Synthesis 

Fresh leaf tissue (50-100 mg) was collected from the same above plants in 50 ml falcon tubes and 

flash frozen in liquid nitrogen and stored at -80 oC until RNA extraction. Tissue was homogenized 

using a pre-chilled/flash frozen mortar and pestle and transferred to 2 ml pre-chilled Eppendorf 

tubes. RNA was extracted using TRIzol reagent method (Invitrogen., MA) following the 

manufacturer’s protocol with few modifications. Isolated RNA was analyzed on a 0.8% agarose 

gel and Nano drop spectrophotometer. Starting concentration of 1 µg of RNA was used for cDNA 

synthesis. cDNA was synthesized using a RevertAid First Strand cDNA Synthesis Kit (Thermo 

Scientific., MA) following manufacturer’s recommendations. The final product is about 20 µl and 

was diluted 5 times with nuclease free water (+80 µl) for direct use in gene expression studies.  

 EPSPS gene amplification and expression 

Real-time quantitative PCR was used to determine the relative genomic copy number and gene 

expression between the ARS and ARR Italian ryegrass. Genomic DNA (gDNA) was isolated as 

described above.  gDNA was used for EPSPS copy number determination in a Quantitative PCR 

(StepOnePlusTM real-time detection system, Thermo Fisher Scientific) using β-tubulin (Godar et 

al., 2015) as a reference gene. Diluted cDNA was used for EPSPS expression studies with actin as 

an endogenous control. Reaction volume is set at 14 µl which includes 8 µl of Power SYBR Green 

(Life Technologies corp., NY), 2 µl of each primer (5 mMol) and 2 µl of genomic DNA normalized 

to 20 ng/µl or 2 µl diluted cDNA as described previously in cDNA synthesis method. At least three 
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replicates were used for each individual plant. Reaction conditions were initial denaturation at 94 

oC for 10 min followed by denaturation at 94 oC for 15 seconds and annealing at 60 oC for 30 sec 

repeated for 39 cycles. Melt curve profile was included at the end of the cycle to determine the 

specificity of the reaction. Single curves were generated for both the EPSPS and β-tubulin primers. 

Primers used for determining the EPSPS copy number were EPSPS LOLF (5’-

CTGATGGCTGCTCCTTTAGCTC-3’) and EPSPS LOLR (5’-

CCCAGCTATCAGAATGCTCTGC-3’) (Salas et al. 2012) that will amplify a 136 bp fragment, 

Beta Tub F(5’-ATGTGGGATGCCAAGAACATGATGTG-3’) and Beta Tub R (5’-

TCCACTCCACAAAGTAGGAAGAGTTCT-3’) that will amplify a fragment of 157 bp. 

Additionally, for determining the EPSPS gene expression actin was used as an endogenous control 

instead of  β-tubulin for its stable gene expression. Primer sequences for actin are LM Actin F (5’-

CTGACTGAGGCACCCCTGAA-3’) and LM Actin R (5’-

GCTGACACCATCACCAGAATCCAAC-3’) that will amplify a fragment of 168 bp. Both copy 

number and gene expression were determined using the manufacturer provided Real-time PCR 

system software version 2.3 (Applied Biosystems., MA). 

 Statistical analysis 

The relative fold in copy number and gene expression between the ARS and ARR plants was 

determined by the comparative Ct method (as 2-∆ct) where △Ct = [Ct target gene − Ct reference 

gene]. β-tubulin and actin were used as endogenous controls (reference gene) for normalizing the 

copy number and gene expression data. At least one glyphosate susceptible sample is used as a 

calibrator sample to represent 1x copy number or gene expression. Gene copy number and 

expression data were analyzed using one-way ANOVA in SigmaPlot (version 12.3). Means were 
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separated using Fisher’s LSD (p < 0.05) and standard errors (SE) were calculated based on three 

technical replicates (n = 3). 

 Leaf-Protein Extraction, SDS-PAGE, and Western Blotting 

Fresh leaf tissue (2 g) from ARS and ARR Italian ryegrass was homogenized in liquid nitrogen 

and added to 20 mL extraction buffer (50mM  Tris-HCl, pH 8 , 50 mM  NaCl, 1mM EDTA, 1 mM 

MgCl2 and 0.038 g PMSF, 1 tablet of Pierce Protease Inhibitor (Thermoscientific), 1g insoluble 

PVPP). Both the protein extraction and purification procedures employed here were developed 

with minor modifications to the existing methods (Wang et al., 2006, Wu et al., 2014). 

Homogenized leaf tissue samples were centrifuged at 4 °C, 10 min, 16000 rpm (Beckman J2-HC 

centrifuge., USA) and the supernatant was collected. The resulting supernatant (20 ml) was split 

into two tubes of 10 ml each. One ml of 100% Trichloro acetic acid (TCA) was added to each 10 

ml supernatant tubes and incubated for 60 min at 4 °C. After incubation, the tubes were centrifuged 

again at 4 °C for 10 min at 16000 rpm. The resulting supernatant was carefully discarded without 

removing the pellet. Pellet was resuspended in 2 ml of 100% methanol by vortexing vigorously 

for 60 seconds. Tubes were centrifuged again at conditions (4 °C, 10 min, 16000 rpm). The 

resulting supernatant was discarded and the pellet was washed with 2 ml of 80% acetone by 

vortexing vigorously. Tubes were centrifuged again at conditions (4 °C, 10 min, 16000 rpm) and 

resulting supernatant was discarded. The remaining pellet was completely air dried to remove the 

remaining traces of acetone. After air drying, the pellet was suspended in 2 ml phenol (equilibrated 

with Tris-HCL, pH 8.0, Sigma-Aldrich) by vortexing vigorously. Tubes were centrifuged at the 

following conditions (4 °C, 10 min, 16000 rpm) and the supernatant was collected. Protein 

precipitation was done by incubating samples overnight at -20 °C after adding 2 mL ammonium 

acetate (0.1 M in methanol). Samples were subjected to one final centrifugation at 4 °C for 10 min 
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at 16000 rpm and supernatant was discarded. Pellet was washed twice once with methanol (100%) 

followed by acetone (80%) and finally air dried. Samples were re-suspended in 200 µL SDS- 

Sample buffer and protein concentration was measured using the manufacturer’s protocol (RED 

660TM Protein Assay., G-Biosciences).  

 Protein samples were resolved by SDS gel electrophoresis. Samples were incubated at 90-

95 °C for 5-7 minutes. At least 50 µg total protein was resolved on an 11% polyacrylamide gel 

running at 120 V for 90 min. Samples on the SDS gel were transferred to polyvinylidene difluoride 

(PVDF) membrane (Millipore) by resolving them at 150 V for 60 min or at 30 V overnight (4 °C) 

preferably. 5% non-fat dry milk was used for blocking the PVDF membrane by gentle stirring at 

room temperature for 30 min. The membrane was washed at least three times in TBST buffer. The 

membrane was incubated with EPSPS primary antibody (Monsanto., MO) at a dilution of 1:000. 

After several washes in TBST buffer, the membrane was incubated with donkey anti-rabbit HRP 

conjugated polyclonal antibody (Jackson Immuno Research Laboratories Inc., dilution 1:50,000) 

at room temperature for 60 min. After three more washes, the membrane was exposed to HRP 

(Horse-radish peroxidase) substrate solution (LuminataTM., Millipore) to produce fluorescence. 

Bands were visualized using a G-BOX image detector from Syngene. 

 Fluorescence in situ hybridization (FISH) procedure 

 FISH was performed by nitrous oxide-enzymatic maceration method described in the 

protocol ( Kato, 1999; Kato et al., 2004, 2006). The procedure is divided into three sections, which 

are explained below 
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 Somatic metaphase spread preparation from young roots 

Newly formed 1 cm long root tips (3-5 tips) were excised from germinated seeds of ARS and ARR 

grown on moist filter paper and also young plants grown in soil. The root tips were immediately 

placed in a moist 1.5 ml microcentrifuge tube with a hole punched to its cap and placed on ice until 

nitrous oxide treatment. The root tips were treated in a pressurized nitrous oxide chamber for 2.5 

hours to arrest chromosomes at metaphase stage. The root tips were fixed in ice-cold 90% glacial 

acetic acid for 20 min and transferred to 70% ethanol and stored at -20 oC until use. Suspension 

dropping method as described by Kato (1999) was used to prepared somatic metaphase 

chromosome spreads with few modifications. The fixed root tips were washed with ice-cold 1X 

HCl buffer (pH 4.0) or 1X citric acid buffer (pH 4.0) dried on filter paper and opaque (actively 

dividing) region of about 2 mm is excised with its root cap separated. The actively dividing region 

of the root tip was treated with 20 µl enzyme solution (4% cellulose Onuzuka R-10 (Yakult., 

Tokyo), 1% pectolyase Y23) in Kcl buffer (pH 4.0) for 40-45 min in water bath at 37 oC. The 

enzyme mixture was transferred on to the ice and treated with 500ul ice cold 1X TE buffer for 5 

min. TE buffer was carefully removed and washed 3 times with 100% ice-cold ethanol solution. 

The mixture was centrifuged briefly to remove any liquid content. 30 µl of freshly prepared 90% 

glacial acetic acid and 10% methanol were added to the reaction in a microcentrifuge tube. Root 

sections were homogenized gently with a dissecting needle 6 µl of the solution was dropped onto 

labeled microscope slides in a humid chamber and chromatin to slide was crosslinked with a UV 

crosslinker (GE Healthcare Bio-Sciences., MA).  
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 EPSPS probe preparation for FISH analysis 

Primers were designed with OligoAnalyzer 3.1 (https://www.idtdna.com/calc/analyzer) using 

Italian ryegrass sequence information from Genbank (Accession number: DQ153168.2) (National 

Center for Biotechnology Information., MD). Both forward primer EPSPS LOLF1 (5’-

TGCAGCCCATCAAGGAGATCT-3’) and reverse primer EPSPS LOLR2 (5’-

ACGAAGGTGCTTAGCACGTCAAA-3’) were designed to amplify a 1255 bp fragment of 

EPSPS gene. Genomic DNA was extracted by Qiagen DNEasy Plant Mini Kit (Qiagen Inc., CA) 

from susceptible Italian ryegrass population which was used as a template. The PCR product was 

purified using QIAquick PCR purification kit (Qiagen Inc., CA) following the manufacturer 

guidelines. PCR product was gel extracted using the Qiagen Gel Extraction kit (Qiagen Inc., CA) 

and was re-amplified using the same primers as before. The final cleaned PCR product was 

sequenced at the DNA sequencing and genotyping facility at Kansas State University. After 

confirming the EPSPS gene sequence, PCR product was cloned using a TOPO XL PCR cloning 

kit (Invitrogen., MA) following the manufacturer recommendations. Several (3-4) PCR products 

were tested and the best reactions were pooled to use as a FISH EPSPS gene probe. 

 Chromosome, probe DNA denaturation and hybridization 

 Probe cocktail was prepared in 2X SSC-1X TE buffer with recommended concentration 

(Kato et al., 2006) at a volume of 5 µl for each slide. All the reactions were performed at low light 

conditions. Five µl of probe mixture with DNA concentration greater than 250 ng/µl was used for 

labeling by nick translation with dig-11-dUTP; 5 µl of denatured salmon sperm DNA (140 ng/µl, 

2XSSC, 1X TE) was added to the center of the slide and sealed with a 22 x 22 mm coverslip. The 

chromosomes and probe DNA cocktail were denatured by heating in a water bath at 100 oC for 5 

min. Coverslips were removed and 5 µl of pre-chilled probe cocktail was pipetted onto the slides 
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and sealed with a coverslip. Slides were stored in a humid chamber at 55 oC for hybridization 

overnight. Slides were washed in a Coplin jar with 2X SSC for 5 min. Coverslips were removed 

and washed for another 20 min in 2X SSC at 55 oC. Slides were counterstained in Vectashield 

antifade solution with 4’,6-diamidino-2-phenylindole (DAPI). They can be stored at 4 oC for short 

term storage or -20 oC for longer storage. Probe signals on the chromosome were visualized using 

a Zeiss Axioplan 2 microscope fixed with a cooled CCD camera Cool SNAP HQ2 (Photometrics) 

and AxioVision 4.8 software (Zeiss). The final contrast of the images was processed using Adobe 

Photoshop CS5 software (Adobe Systems Incorporated, CA) package. 

 Results 

 Whole-Plant Response to Glyphosate 

A total of 23 ARS and 60 ARR clones were treated with glyphosate. Results showed that there 

were no survivors of ARS individuals treated with glyphosate indicating a homogenous glyphosate 

susceptible population (Figure 2.1 A). On the other hand, the response of ARR plants showed a 

variation in the level of resistance to glyphosate indicating that this population was segregating for 

glyphosate resistance and susceptibility (Figure 2.1 B). Out of the 60 ARR plants treated with 1X 

glyphosate dose, only 24 plants survived (Table 2.1). 
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Figure 2.1 Response of ARS (A) and ARR (B) Italian ryegrass populations to glyphosate 

[840 g ae ha−1 in 2% (v/v) ammonium sulfate (AMS)] application 28 days after treatment 

(DAT).  

 

 

Table 2.1 The percent survival of ARS and ARR Italian ryegrass populations from 

Arkansas, 28 days after treatment (DAT) with glyphosate [840 g ae ha−1 in 2% (v/v) 

ammonium sulfate (AMS)]. 

                                      Glyphosate (840 g ae ha−1)   28 DAT 

Populations              Total # of plants treated           Alive            Dead       %survival 

       

      ARS                            23                                          0                   23               0 

      ARR                           60                                          24                 36              40 

 

 EPSPS Gene Sequencing 

Previously, a point mutation at amino acid position Proline 106 causing a single amino acid 

substitution from proline to serine/threonine/leucine and alanine has been reported to endow 

glyphosate resistance in Italian ryegrass by preventing binding of glyphosate to target (González-

Torralva et al., 2012; Jasieniuk et al., 2008; Perez-Jones et al., 2007). Italian ryegrass EPSPS gene 

covering the known mutations at P106 was sequenced to assess if such mutations are present in 
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ARR populations resulting in glyphosate resistance. The sequences are also checked for amino 

acid position 102 for the presence of TIPS (Threonine 102 Isoleucine + Proline 106 Serine) 

mutation, which is reported to endow >2000 fold glyphosate resistance in E.indica (Yu et al. 2015). 

None of the ARR plants sequenced showed any substitution at the amino acid position 106 (Figure 

2.2). This confirms that the basis of glyphosate resistance in these populations is not due to 

mutations in the target site. 

 

Figure 2.2 EPSPS gene sequences of Italian ryegrass covering the previously reported 

Proline 106 amino acid position. Glyphosate susceptible plants were marked in red (S1, S2) 

and glyphosate resistant plants were marked in black. Amino bases highlighted in yellow 

represent the wild type/no mutation (CCA-proline, ACT-threonine) at amino acid position 

106 and 102 respectively. 13R5 is the control i.e. known Italian ryegrass biotype with single 

base pair change at amino acid position 106 (ACA- Threonine).  

 

 EPSPS Genomic Copy Number and Gene Expression Analysis 

Seventeen ARR plants that survived the treatment of 1X glyphosate were tested for EPSPS 

genomic copy number along with 2 ARS individuals. The relative EPSPS:β-tubulin genomic copy 

number was determined with an ARS plant as a control. Both the susceptible plants (S2.2, S2.1) 

showed a relative EPSPS:β-tubulin copy number around one (0.99 and 1.17) but for simplicity, 
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the values were rounded to 1 with the rest of the samples being normalized to this control sample 

(Figure 2.3). The relative EPSPS:β-tubulin gene copy number for resistant plants ranged between 

12.8 and 118.2 (Table 2.2). Based on the number of EPSPS copies possessed, the ARR plants were 

grouped into three categories, i.e. plants that had low (LR with 10-20); medium (MR with 20-40) 

and high (HR with >40) EPSPS copies. The non-survivors of ARR populations had <10 EPSPS 

copies, which is not sufficient to bestow resistance to glyphosate at a field used dose. 

 Similarly, the 17 ARR plants used for EPSPS genomic copy number analysis were also 

tested for relative EPSPS:actin gene expression. Additionally, the two ARS (S1, S2) were also 

used as controls and two other plants that failed to survive the 1X glyphosate were also used to 

check for EPSPS gene expression (Figure 2.4).  Actin was used as an endogenous control in this 

study because of its stable expression. Both the susceptible plants (S1, S2) showed a relative 

EPSPS:actin cDNA transcript abundance around one (0.99 and 1.07) but for simplicity, the values 

were rounded to 1 with the rest of the samples being normalized to this control sample. The relative 

EPSPS:actin cDNA transcript abundance for resistant plants ranged between 12.4 and 205.0 

(Table 2.2). Relative EPSPS copy number and gene expression between individuals differ 

significantly (p < 0.01) (Table 2.2). 

 Further analysis of EPSPS:β-tubulin genomic copy number and EPSPS:actin cDNA 

transcript abundance indicate a strong positive correlation (Figure 2.5) with a coefficient of 

correlation close to 1 (r = 0.832463). These results indicate that relative EPSPS:actin cDNA 

transcript abundance increased with an increase in EPSPS:β-tubulin genomic copy number. 
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Table 2.2 Summary statistics of ARS and ARR susceptible Italian ryegrass individuals and 

their respective relative EPSPS: β-tubulin gene copy number and relative EPSPS: actin 

gene expression. The values in the parenthesis indicate the standard error of means (n=3). 

Means followed by the same letter in the same column are equal at 1% level (LSD). NA 

stands for missing data. 

 Biotypes Relative EPSPS Copy 

Number 

Relative EPSPS Gene 

Expression 

Susceptible 
S1 1.177 (0.103)m 1.080 (0.332)m 

S2 1.000 (0.060)m 1.000 (0.107)m 

Resistant 

LR1 12.821 (2.754)jklm 59.064 (14.944)de 

LR2 17.015 (3.059)ijkl 35.427 (4.974)fghi 

LR3 18.677 (4.485)hijk 12.583 (2.249)klm 

MR1 22.405 (2.500)ghij 12.443 (0.845)klm 

MR2 24.506 (5.703)ghij 30.882 (7.651)ghij 

MR3 24.959 (1.528)fghij 16.428 (1.595)jkl 

MR4 28.123 (5.029)fghi 63.496 (14.036)d 

MR5 29.482 (5.946)fghi 28.933 (8.674)hij 

MR6 31.862 (2.263)efgh 44.742 (11.316)efg 

MR7 35.825 (6.797)defg 17.917 (0.968)jk 

MR8 39.391 (7.603)cdef 24.076 (8.424)ijk 

HR1 44.784 (3.214)cde 121.647 (13.307)b 

HR2 48.047 (16.473)cd 48.963 (9.268)ef 

HR3 48.220 (1.940)cd 29.556 (3.013)hij 

HR4 51.215 (10.899)c 43.140 (8.598)fgh 

HR5 67.957 (13.437)b 81.567 (10.770)c 

HR6 118.243 (17.402)a 205.057 (7.253)a 
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Figure 2.3 Bar chart showing the relative EPSPS gene copies in Italian ryegrass. The x-axis 

represents the individual plants of ARS and ARR populations and Y-axis represents the 

relative EPSPS genomic copy number. Error bars represent the standard error of means. S 

represents glyphosate susceptible individuals and LR, MR, HR represent ARR plants with 

low (10-20), medium (20-40) and high (>40) EPSPS copies. 
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Figure 2.4 Bar chart showing the relative EPSPS gene expression in ARS and ARR Italian 

ryegrass. X- axis represent the individual plants and Y-axis represents the relative EPSPS 

transcript abundance. Error bars represent the standard error of means. S represents 

glyphosate susceptible and LR, MR, HR represent glyphosate-resistant transcript plants.  
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Figure 2.5 Scatter plot shows the relationship between relative EPSPS gene copy number 

(X-axis) and relative EPSPS transcript abundance (Y-axis). r is the correlation coefficient. 

 

 EPSPS protein expression 

EPSPS protein quantity was determined using immunoblotting assay. Three ARR plants (LR1, 

HR4, HR6) with varying EPSPS copy number and gene expression were chosen along with an 

ARS for comparison (S1). The plants selected for this study had a relative EPSPS:β-tubulin 

genomic copy number of ~ 1.17 (S1), 12.82 (LR1), 51.21 (HR4) and 118.24 (HR6), respectively. 

Also, these plants (S1, LR1, HR4, HR6) had a relative EPSPS:actin cDNA transcript abundance 

of ~ 1.07, 43.14, 59.06 and 205.05, respectively. Fifty µg total soluble protein resolved on 11% 
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polyacrylamide gel showed differences among the samples (Figure 2.6). EPSPS protein had a size 

of approximately 45.6 kDa. Susceptible sample (S1) appeared to be the faintest band whereas 

resistant sample with high EPSPS gene expression (HR6-205.05) appeared to be the brightest band 

(Figure 2.6). Other resistant samples (LR1 and HR4) showed subtle differences between the 

intensity of the band, however, HR4 having an EPSPS gene expression of 59.06 appeared to have 

more band intensity than LR with EPSPS gene expression of 43.14. Overall, these results indicate 

that the EPSPS gene expression was translated to EPSPS protein expression.   

 

  

Figure 2.6 EPSPS protein expression in GR Italian ryegrass. S1 is glyphosate susceptible; 

LR3, MR2 and HR6 are glyphosate-resistant plants. M represents the Marker (ladder). 

Copy # represents the relative EPSPS:β-tubulin copy number in green. Gene exp represents 

the relative EPSPS:actin gene expression. Approximate size of the EPSPS protein is around 

50 kDA (Kilo-daltons). 

 

 Distribution of amplified EPSPS gene copies on genome of Italian ryegrass 

Distribution of amplified copies of EPSPS gene on the genome of Italian ryegrass plants was 

assessed using FISH. The ARR plants with  varying relative EPSPS: β-tubulin genomic copy 
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number (MR3 ~ 25, HR4 ~ 51 and HR6 ~ 118) and an ARS plant (S1~1) was used as a control for 

comparison. Somatic metaphase spreads of these samples revealed only two EPSPS signals on the 

susceptible whereas resistant Italian ryegrass plant with relative EPSPS: β-tubulin genomic copy 

number (HR6 ~ 118) showed several bright EPSPS signals dispersed throughout the genome on 

all chromosomes (Figure 2.7). The other two resistant individuals (HR4 ~ 51, MR3~ 25) also 

showed bright EPSPS signals distributed throughout the genome of Italian ryegrass plants but the 

signals were lesser in number compared to HR6 [Figure 2.7 (B, C, D)]. It is important to note that 

it is hard to distinguish between the background and the actual EPSPS signals. Nonetheless, the 

results of FISH analysis still show a clear difference in EPSPS signal strength between the 

glyphosate-susceptible (S1), and -resistant (MR3, HR3 and HR6) Italian ryegrass. Also, these 

results show that the amplified EPSPS copies are not located at the telomeric region as in K. 

scoparia (Jugulam et al., 2014) nor they were present at the pericentric regions of two homologous 

chromosomes in as in glyphosate-resistant A. tuberculatus (Dillon et al., 2016). Instead, the EPSPS 

signals in glyphosate-resistant Italian ryegrass are randomly distributed throughout the genome as 

seen in glyphosate resistant A.palmeri, which is likely mediated by transposable elements (Gaines 

et al., 2010, 2013).  
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Figure 2.7 Fluorescence in situ hybridization (FISH) mapping of EPSPS gene on somatic 

metaphase chromosomes of Italian ryegrass.  Image A shows a glyphosate susceptible 

Italian ryegrass (S1). Images B, C and D illustrate glyphosate-resistant Italian ryegrass 

individuals with 25, 51, and 118 EPSPS gene copies, respectively. Bright pink signals 

represent the physical location of amplified EPSPS copies. 

 Discussion 

EPSPS gene copy number and gene expression analyses, indicate that the glyphosate resistance in 

ARR Italian ryegrass is conferred as as a result of increased EPSPS copy number and expression 

as previously reported (Salas et al. 2012). Previously, several studies have shown EPSPS gene 

amplification as the mechanism of glyphosate resistance in a variety of weed species. Some 

examples include A. palmeri, K. scoparia, A.tuberculatus, L. multiflorum (Dillon et al., 2016; 

Gaines et al., 2011; Ribeiro et al., 2014; Chatham et al., 2015; Jugulam et al., 2014; Wiersma et 

al., 2015; Salas et al., 2012; Salas et al., 2015). Salas et al (2012) found that GR Italian ryegrass 

requires at least 10 copies to survive field recommended dose (840 g ae/ha) of glyphosate. But in 
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the case of GR A. palmeri, A.tuberculatus and K. scoparia, at least 30-50, >3, >3 copies of EPSPS 

were needed, respectively, to survive the same dose of glyphosate (Gaines et al., 2010; Chatham 

et al., 2015; Jugulam et al., 2014). The data of EPSPS genomic copy number and response to 

glyphosate treatment in this study suggest that the Italian ryegrass individuals with less than 12 

copies did not survive the 1X dose of glyphosate, which is in agreement with previous reports 

(Salas et al., 2012; Salas et al., 2015). Hence, GR Italian ryegrass falls in between GR 

A.tuberculatus, K. scoparia and GR A. palmeri, thus needs to have a minimum threshold of EPSPS 

copies (10 copies) to withstand the field recommended dose of glyphosate.   

 Both relative EPSPS gene copy number and gene expression showed a strong correlation 

indicating that the amplified copies were translated to cDNA transcripts. Some of the GR Italian 

ryegrass individuals with low copy number (LR1 ~ 13 copies) showed 5 times more EPSPS gene 

expression (~ 59 cDNA transcripts), while other individuals with relatively high copy number 

(HR3 ~ 48, MR7 ~ 36 copies) showed a similar or lower gene expression (HR3 ~ 30, MR7 ~ 18 

cDNA transcripts) respectively) (Table 2.2). This is possibly because gene copy number vs gene 

expression at different cellular conditions may or may not correlate for the same gene (Bussey et 

al., 2006). However, for the most part, a strong correlation between genomic copy number and 

gene expression or herbicide response (in this case) can suggest that the gene is subjected to 

selection pressure (Bussey et al., 2006). 

 Our study on EPSPS protein expression determined that the EPSPS gene expression is 

translated into functional protein. Because the EPSPS gene copy number and gene expression 

show a strong correlation and EPSPS protein expression, which is the actual measure of increased 

EPSPS enzyme activity, there can also be an additive effect with additional EPSPS copies. This 

additive effect of increased EPSPS copies was also reported in GR A. palmeri (Gaines et al., 2010).  
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 FISH analysis on somatic metaphase spreads of ARS and ARR Italian ryegrass revealed 

the presence of amplified EPSPS copies distributed throughout the genome (Figure 2.7) similar to 

GR A. palmeri population from Georgia (Gaines et al., 2010). These authors reported that the likely 

mechanism of gene amplification in GR A. palmeri  is by miniature inverted-repeat transposable 

elements (MITES) associated with EPSPS copies (Gaines et al., 2010; Gaines et al., 2013). This 

is in contrast with the results of FISH analysis on GR K. scoparia from Kansas where the amplified 

EPSPS copies are arranged in tandem in the telomeric regions on one chromosome pair, likely 

because of  unequal crossing over of homologous chromosomes (Jugulam et al., 2014). Recent 

FISH study on GR common A.tuberculatus revealed that the amplified EPSPS copies were present 

in the pericentric region in one chromosome pair and in an additional chromosome (2n=33) 

harboring several EPSPS copies (Dillon et al., 2016). However this study suggested that the 

presence of an additional chromosome is not due to interspecific hybridization from GR A. palmeri 

but due to an initial event of unequal crossover followed by other mechanisms of gene 

amplification, such as chromosomal rearrangement or centromere-specific segmental duplication 

(Dillon et al., 2016). 

 It would be an interesting question to answer whether the gene amplification in GR Italian 

ryegrass has evolved as a result of one or more mechanisms of gene amplification. Also, this 

information would be valuable to understand whether glyphosate resistance through gene 

amplification occurred independently or spread via pollen from different locations. Insights from 

this study can also be used to better understand gene amplification as a mechanism for crop 

improvement in glyphosate-resistant crops.     

As discussed earlier in chapter-1, glyphosate is a valuable tool to manage weeds. But due 

to a widespread increase in the number of GR weeds, management of weeds particularly in fields 
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with glyphosate-tolerant crops has become challenging. Although several mechanisms for 

glyphosate resistance in weeds were reported, gene amplification seems to be the most prevalent 

mechanism for glyphosate resistance in weeds. Therefore, knowledge on the basis of gene 

amplification in the evolution of glyphosate resistance will provide us with valuable insights for 

managing this weed. Also, this is the first report to show the physical mapping of amplified EPSPS 

copies in the genome of Italian ryegrass. Such valuable information could help us manage the 

herbicide as well as weed better in the near future. 
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