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CHAPTER 1
INTRODUCTION

In industrial management systems, such as inventory and
production control, many of the mathematical models are governed
by ordindary differentlal equations with two-point or multipoint
boundary-eonditions. Usually they appear in nonlinear forms.
There 1s no general method for solving problems of this type
neither analytically nor numerically. One of the most frequently
used methods to obtain solutions for these problems is the trial-
and-error method which is very tedious and inefficient,

The quasilinearization technique which was first developed
by Bellman and Kalaba [1], is a powerful tool for solving
boundary-value problems. It has been applied by many analysts to
many different fields. Kenneth and McG11ll [ 2] have used this
technique to solve the boundary value problem resulting from the
application of the Pontryagin maximum principle. Rameker, Smith,
and Murrill [3] showed that quasilinearization can be used to deter-
mine model parameters including a dead time. Schulz [4] used this
technique to estimate the parameters of a pulse transfer function.
To investigate how this method behaved on a complex engineering
problem, Leondes and Paine [ 5] applied the quasilinearization
technique to find the trajectory that minimizes the convective
heating in a space vehicle, Lewallen [6] modified the
quasilinearization method in order to handle terminal conditions

which are general functions of the problem variables rather than



specific values of the variables. Lee [?] has given a detailed
description of the applications of quasilinearization to
parameter estimation problems as well as optimization problems.
He also combined quasilinearization with calculus of varliations,
Pontryagin's maximum principle, invariant imbedding, and

dynamic programming.

'Recently. Shah [8] applied the quasllinearization technique
to an industrial management system which deals with the
advertisement, inventory, and production of a particular chemical
product. In this work, the technique will be used for the
simultaneous optimization of the control and system parameters

of production planning and inventory control systems,

1-1 QUASILINEARIZATION

The quasilinearization technique is essentially a generalized
Newton-Raphson formula for functional equations. In this
technique, the nonlinear differential equations are solved
recursively by a series of linear differential equations. The
linear equation 1s obtained by applying the Taylor's series
expansion with the second and higher order terms omitted.

These linearized differentlial equatlions can be solved
easlly on the modern digital computer with the use of the
superposition principle [9].

The main advantage of this technique is that if the procedure
converges, it converges quadratically to the solution of the

original equation.



1-2  OPTIMIZATION PROBLEM WITH PARAMETERS

The development of a model for a glven system has become
important in all fields of engineering. The forms of the
differential equations describing various systems often are fairly
well documented; however, values qf the parameters are usuzally
speclific for each system. These parameters generally cannot be
measured directly but must be determined from experimental input-
output records. Thus, parameter estimation is actually a
combination of experimental work with mathematical analysis.,
Usually an effective mathematical technique can often reduce the
requirements for the experimental work,

The parameter estimation problem can be considered as a
boundary;value problem and thus can be solved computationally by
the use of the quasilinearization technique.

In this thesls, quasilinearization is used to determine the
optimal control variables and the optimal values of the parameters
in the differential equations which govern industrial management

systems.,



CHAPTER 2
CALCULUS OF VARIATIONS WITH UNKNOWN PARAMETERS

2-1 INTRODUCTION

The idea of calculus of variations was developed as far back
as the 18th century. Later, 1t was further developed by
Bliss [10], Bolza [11], Constantin [12] and many other mathema-
ticlans, The caleculus of variations is a mathematical concept
which may best be described as a general theory of extreme values.

The term "unknown parameters”" used here, 1s considered as a
set of constant variables which appear in a system of differential
equations, If these differential equations are the representation
of an optimization model, then these unknown parameters must be
defined before any actlon can be taken.

Generally speaking, the estimation of these unknown parameters
is difficult. The usual procedure for designing such a model is
to choose several parameters, optimize the system under these
different choices, and then select the most promising combination.
In Lee's paper [13], a new approach fof the determination of
parameters was proposed. It employs the classical calculus of
variations and considers the unknown parameters as additional
state variables, After optimizing thié new system, these
parameters are defined. In the next section, the variational

equations which essentially follow Lee's algorithm are outlined,



2-2 VARIATIONAL EQUATIONS

Let us consider an optimization problem with parameters.

Find the function
u(t)
and the set of constant parameters

ﬂ-lp a2. pe ey aq

such that the set of functions
xl(t)v Y Xn(t)
governed by the differential equations

xi(t) = fi(xl, soey xn' al' ceey aql t, u)
i-= 1; 2 ssey N (2"1)

and the end conditions

hj(tO’ xl(to)' poey xn(to)l tf! xl(tf)! se xn(tf)l

al. ev ey aq) (2-2)

J=1| ....p521‘1+2
which minimize a function of the form
J = S(tol xl(to)' ceoy xn(to): tf' Xl(tf)’

ssoy xn(tf)' ali so0ey aq)

by
*Jtofo(xl(t)' ceeyp Xn(t)' all es oy aqv u, t)dt (2-3)



where x represents %%.

The variables xl(t), e xn(t) are the state variables
and the variable u(t) 1s the control variable, The problem
formulated above is known as the problem of Bolza except for the
presence of the unknown constant parameters. However, this
difference can be eliminated if we consider the constant

parameters as functions of t and treat them as state wvariables.

Let

da,(t)

—'%E—= 0. k=l| 2’ eanyg Q§ (2-’4')
and let xn+1{t)' Xn+2(t)' §id y xn+q(t) denote al(t). az(t),
. ne g aq(t) respectively.

Now‘let us introduce the set of Lagrange multipliers

litt)p 1= 1. 2y eveyg Ny esoy (H¢Q)
and the set of constant multipliers:

VJ M ,j: 1, 2. sesey D
Define the function

-y — N=q .
F(t, x, X, u, ) = ¢ xi(x - f (ty u, x)) 4+ £ (x, u, t)
i=1 i i (o]
(2-5) -

G(too E(to)n tf! E(tf)) = g(tol E(to)| tf! E(tf)

D s o
# JEIVJ hj(tO’ x(to)v tf' X(tf))
(2-6)



where X, X, and ) represent X

ee e N
1’ 9 n"‘q

1'
s respectively.

seoyg X H i ev ey ;{

neq 1’

The Euler-Lagrange equations are

The equation

n+q oF

o - 730
§ i2x,

n+q

neq
2F 2F

- (F- £ x,z—)dt =+ 2——-—dx]
[ 1 ie 1 @xi i

i

Fx)dt +

i=1, n+q

n+q 2F J
: —— dxi
] -@xl

-t-dG:O

t
o

n4q

s and

(2-7)

(2-8)

(2=9)

must be satisfied at to and tf
This simply means that all thelr corresponding

dto. and dtf.

for any choice of dx(to), dx(tf).

coefficients must equal to zero,

n4q DF
[-F* z %y e—xi]
N+4q 2F
F-z x %Tq]
1
2G _ ®F
@xi & ’axl .
o
a6 5 28
DXy ts Xy

2G
+ 2% . = 0
to O
2
s -0 (2-10)
t or t
£ T
= 0
=0 (2-11)



Equation (2-9) or equations (2-10) and (2-11) are known as
transversality condition.

By solving equations (1), (7), and (8), the stationary
point of the original problem can be obtalned. Notice that
originally we have (n4q) equations with (n+q) unknown x's plus one
unknown u., After reformulating the original problem, we have
2(n4+q) + 1 equations with (n+q) unknown x's, (n+q) unknown A's
and one unknown u, there is a total of 2(n+q)sl unknowns., By the
use of transversality condition and plus the originsl given
conditions we have exact 2(neq) conditions for the 2(n+q) dif-
ferential equations. These conditions are not all given at one

point. The above system will always be a boundary-value problem.



CHAPTER 3

QUASILINEARIZATION AND BOUNDARY-VALUE PROBLEMS

3-1  INTRODUCTION

The quasilinearization technique, as mentioned before, is
essentially a generallzed Newton-Raphson method for functional
equations, However, the quasilinearization technique is able to
obtain the functional solutions while the Newton-Raphson Method
ls generally used for obtaining fixed values or roots. Therefore,
both the computational and theoretical aspects are much more
complicated.,

This technique not only linearizes the nonlinear equation,
it also provides a sequence of functlions whlch converge rapidly
to the true solution of the original nonlinear equation,

In earlier times, the preferred procedure for solving the
nonlinear boundary-value problem was to simplify so as to obtain
linear functional equations., Another attempt has been made is
to transform all computational equations to initial value problems
for ordinary differential equations, either linear or nonlinear,
The theory of dynamic programming and invariant imbedding achieve
this in a number of ways through the introduction of new state
variable and the use of semigroup properties in space, time, and.
structure. Quasilinearization achieves this objective by
comblning linear approximation techniques with the capabilities

of the digital computer in various adroit fashions. The
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approximations are caréfully constructed to yleld rapid
convergence, and monotonicity as well, in many cases,

This chapter 1s concerned with the procedure of solving a
two-point nonlinear boundary-value problem. Since most of the
work deals with the numerical soluﬁion, a brief description of
the initial-value problem and its solution will be given'in
section 2« The boundary-value problem is also included in this
section. The superposition principle ls explained in section 3.

At last the quasilinearization technique will be explained,
3-2 INITIAL-VALUE AND BOUNDARY-VALUE PROBLEM

Inltial-value problems are those in which all conditions are
glven at one point. This particular point can be the initial
or final point of the entire interval,

In numerical approaches, the values of the dependent
variables are calculated at discrete values of.the independent
variable, In other words, the dependent variables are calculated
step by step with a very small division of the independent
variable as the step size: There are various numerical integra-
tion methods available for obtaining the solution. For detailed
description of these methods, readers are referred to Ralston
[15] and Tompkin [16].

All the numerical integration methods require the complete
set of 1nitial conditions. Knowing the initial values of all the
variables, then it is able to calculate values of the variables

at the next grid point. Thus, only the ilnitial-value problem is
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suited for these integration methods. Boundary-value problems

are those in which the necessary conditions are not given at

one point

Thé numerical integration method is useless unless all the
necessary conditions are given at one point eilther at the initial
or at the final point. In order to find‘the solution of a
boundary-value problem, some missing conditions have to be
assumed., But when faced with a nonlinear or very complex problem,
it is very difficult to find the solution in this fashion, This
situation 1s generally known as the boundary value difficulty.

3-3 SUPERPOSITION PRINCIPLE

The superposition principle states the additive property
of the solution of a linear ordinary differential equation., To
explain this property, one may consider a system of linear

differential equations.,

dxi n , .
—?z 8.0 o z ai Xi 1= 1| y ssep N (3"1)
n=1
with boundary conditions
X (t ) = xo K=1, «eey 8 <n (3-2)
k' 0" " 'k -
and
x {6 ) = o r = s+l n (3-3)
rrt’ T “r = v REES
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The general solution of Equation (3-1), stated by the
superposition principle can be written as
- .
X, (t) = x, 4(t) 4 JEIAJ Xp,1,3¢8)
1 =1, 2, eeey n (3-4)

Where xp,i(t) stands for the particular solution of xi(t)
which can be integrated by using any arbitrarily assumed initial
conditions for Eq. (3-1). Where Xn,1, 3 stands for the
homogeneous solution of the wvariable Xy The subscript J stands
for the jth set of homogeneous solution of X, The homogeneous
solution is obtained by integrating Eq. (3=1) in the homogeneous
form which is obtained by setting all the constant terms equal

to zero, The homogeneous form of Eq. (3-1l) can be written as

ux - g a x 1=1, essp n (3-5)

In order to solve Eq. (3-5) for the homogeneous solutions,
any n sets of initial conditions can be used provided they are
non=-trivial, |

The expression AJ is the integration constant, which can be
obtained by substituting the boundary conditions (3-2) and (3-3)
into Eq. (3-4). Once all the Aj's are known, the solution for
xi(t) 1s completely known at every grid point..

If appropriate initial conditlons are chosen for the

particular and homogeneous solutions which satlisfy the gilven

boundary conditions, then the number of the required sets of
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homogeneous solutlons can be reduced.

It is important to note that the particular and homogeneous
solutions can be obtained numerically. The superposition
principle actually transforms the above linear boundary-value
problem into a linear initial-value problem.

For more detailled discussion about the superposition
principle and the reduction of homogeneous sets, the reader is

referred to Ince [9] and Lee [7].

3-4  QUASILINEARIZATION

To explain how the quasilinearization technique works,
the generalized Newton-Raphson method for differential equations
wlll be discussed first., Consider the nonlinear differential
equation

'%% = f(x(t), t) and x(ty) = o (3-8)

The function f can be expanded around the function xo(t)

by the use of the Taylor series

f(x(t), t) = f(xo(t)l t) + (x(t) - Xo(t))fxo(xo(t)! t)
(3-9)

with the second - and higher-order terms omitted. The expression
fxo represents partial differentiation of the function f with
respect to xy. Combining Egs. (3-8) and (3-9) and rearranging

terms, the following equation is obtained:



14

o

5 = Pxg(Xo(t)s BIX(E) 4 £x (), £) = £y (x,(t), £)x,(t)

(3-10)

Notice that xo(t) are known functions of t. Eq. (3=10) is a
linear differential equation with variable coefficlents. This

is the algorithm which‘quasilinearization employes to linearize

nonlinear equations.

Now let us consider a general nonlinear system

&%

= (X, t) (3-11)

where X and T are m-dimensional vectors with components Xqs x2,

sesny xm and ’ f p eesy fm respectively.

3 2
If we choose a set of initial approximations for X0 Xpo

veey X and denote them as xl,O' XZ,O' sesy X Eq. (3-11)

m,o'
can be linearized by the use of the followlng vector equation

X _F(E, 1) = T(Xy t) + J(X)(X = %) (3-12)

where Xo s an m-dimensional vector with components X, 0* x2 0°
? ?

seey X e The Jacobl matrix J(X_) is defined by
| ]
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3 \
ot  fy . 2Ty
?2%1,0 °%2,0 2Xn,0
oty pfp  mf
?X,0 ?2%2,0 2%n,0

J(X) = | (3-13)

oty Ty 2ty

L‘lego 'ax2|0 'oxmyo )

Assume the boundary conditions for Eq. (3=11l) are

Ii(to) = X H i= lp 29 ssey P <N

(3-14)

xj(tf) = X H J = p+1, sesy I

By the use of superposition principle, linearized Eq. (3-12)
can be solved easlily with known Eo functions and the conditions
given above, The solution we get is an improved set of solutions.
Let this improved solution be Eﬁ Which can be used as a new
initial approximation. A new improved solution 22 can now be
obtained, If thlis procedure is éontinued. the following recur-=
rence relation is obtained:

dx

—RL _ T(Xy t) + J(X) (Xpyq - Xp) (3-15) °

where J(in) is the Jacobi matrix defined as
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r ~
@fl efl o000 Qfl
/axl'n raxz'n raxm’n
exl,n ""’xz,n ’axm,n

J(X ) = . (3-16)
n ]

? Ty 2ty CR
@xlm @xa’n @xm,n )

N

From the computational standpoint, quasilinearization

has two important properties, namely monotone convergence and
quadratic convergence, The monotone convergence property
depends on the property of the function T,

This technique also has its difficulties. One main difficulty
is caused by the use of superposition principle. When the
superposition principle 1is applied, a set of algebraic equations
must be solved when finding the integration constants. Thus
11l-conditioned equations can make the superposition principle
useless., Another main difficulty is the convergence problem.

If the initial approximation is too far fromthe true solution,
the problem will not converge,

For more detailled discussion, the reader 1s referred to

Lee [7].
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CHAPTER &4
OPTIMAL PRODUCTION PLANNING PROBLEM WITH UNKNOWN PARAMETERS

In this chapter, a management system with unknown parameters
will be solved. It deals with the advertisement, inventory, and
production planning of a particular chemical product. This model
has six state variables, one control variable and two parameters.
Most of these variables and parameters appear nonlinearly in the
system equations., Usually, a large dimensional and nonlinear
model can seldom be solved analytically. Thus, an efficlent
numerical method has to be used to solve this model. Throughout
this chapter, quasilinearization 1s used to find the optimal

solution of this model combined with the caleculus of variations

L1 DEVELOPMENT OF THE MODEL

A firm prodﬁces a chemical product and sells it in a market
which can absorb a certain amount of the product per unit of
time, If the firm advertises, the rate of sales will increase
at a rate proportional to the rate of advertising. The relation
between advertisement and sales which may expressed using the
diffussion model developed by Telchroew [1?] is discussed first
as follows,

Consider a group of people in which only certain member
possesses a particular piece of information. Suppose that the

total number of persons in the group remains constant and that

the diffusion of information only occurs through personal
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contact, Each person in the group has the same "contact
coefficient" in‘any unit of time; this coefficient is a fixed .
pure number, In a contact, the contactee recelves the
information only if he does not already have it; otherwise the

contact is a waste,

Let M(0) = number of informed people in the group at
time 0.
N = total number of people in the group.
C° = contact coefficient; the number of contacts
made by one informed person per unit time.
M{t) = number of informed persons in the group at

time t,

ﬂ%ﬁl = proportion of informed persons in the group

at time t.

l - E%El proportion of uninformed persons in the group

"

at time t.

CGM(t)dt contacts made during a time interval dt,

i

The increase in the total number of informed people during
a short interval of time dt is obtained by multiplying the
number of contacts by the proportion of uninformed persons,
since only contacts with uninformed group members leads to an

increase in informed members:
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amM(t) = C M(t) dt (1 — ﬂ%&l) (4-1)

This is the differential equation

L) _ com(t)(1 - M(£)/N) (4-2)

Suppose the firm can increase the number of contacts by
advertising., This simply means that advertisement may increase
the contact coefficient. Let A(t) represent the increase of

contact by advertisement at time t. Thus,

dMLE) _ (o, 4 ACE)) M(E) (1 = M(£)/N) (4-3)

If each imformed person buys Cq units of the firm's product

and if S(t) represents the sale at time t, then

8t - ch(t) (4-4)

Let Cq = 1, and substitute for M(t) in Eq. (4=3),

L28) _ s(8) (g + A(t)) (1 - (B (4-5)

The rate of change of the firm's inventory, I(t), is given

by
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LI _ () - s(t) (4-6)

where p(t) = production rate at time t.

The manufacturing process of the product is shown schematically

in Fig. A. There are two chemical reactors in which the

following reactions take place

A —p B ——p C

Both these reactions are first order. The component B is
the desired product and C is a waste product. Assume that A
and C have unlimited market at fixed price and B is the new
product described above. Furthermore, to protect against
fluctuations in demand, an inventory will be assumed for B,
Of course, there is a cost associated with the inventory.

Let Xy ¥q and Xo9 yz represent the concentration of A and

B in reactor 1 and 2 respectively.

Let
Vi = volume of chemical reactor i; i=1, 2,
q = flow rate ,
K,y = reaction rate constant of the first reaction

in reactor i .

reaction rate constant of the second reaction

-
o’
s

1l

in reactor i »
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Gae Gy = frequency constants of the first and second
reactions, respectively,
Ea' Ep = activation energies of the first and second
reactions, respectively,
R = ‘gas constant,
Ti = temperature in reactor i (4-8)

The kinetics of the reactions for Xy in reactor 1 can now be

written as

Q%X =X + V) Kyy X (4-9)
or
q(xo - xl) - Vl Kgy X = 0 (4=10)

at steady state., Under unsteady state situations, we have

d.xl 4
Vg =% - ®) - Vg Bay % S

similarly, For yl in reactor 1, we have

qQ¥y=a Y, + Vy Kp1¥y - V5 Kap1 X (4=12)

or

a(yg = ¥y1) = V3 Koy ¥+ Vg Kgg Xp = 0 b=13)
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at steady state. Under unsteady state, we have

Vi g = alyg = yp) = Vp Ky ¥y 4 VaKgy By (R4

with similar treatment, the kinetlecs of the reactions in the

second reactor can be written as

dx
2 L}
Vz T'E- = Q(Xl - x2) - Vl Ka2 Xl (LI’ 15)
and
v, e 416
2q = ¥y = ¥p) -V Ky ¥y + Vo Kgp Xp t3=de)
The reaction rate constants are defined as

E, By

K1 = G, exp(= ﬁ@;) s Ky = Gy exp(- RT,
(4-17)

E Eb)'

a
=G s SRes.e— s — ——
Koo = G expl RTz) »  Kypp = Gy exn( FT,

Since only B product has inventory, the producﬁion rate

p(t) in Eq. (4=6) is equal to
p(t) = q yz(t) (4-18)

Substitute this into Eq. (6), we have
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LLE) gy (t) - s(t) (4-19)

Now, this model is completely defined by Equations (5), (11),
(14), (15), (16), and (19). There are six state variables, X1

I, and S; and three control variables, T T,y and A,

.Vl- xz! yzv 2
In this particular chemical reaction the temperature in
the reactors pla&s a very important roll. In Shah's thesis [8],
he solved this problem by obtaining optimal control temperature
profile which is a function of t. The control of temperature
usually is difficult. In this development, the temperature will
be considered as a constant parameter, whose optimal value is to be
decided.
The unknown parameters can be treated as additional state
variables, and since these state variables are constant with

respect to time, they can be described by the differential

equations

dr
- 0 {4-20)

3

— 0 (4=21)

Equations (5), (11), (14), (15), (16), (19), (20) and
(21) now govern the system. Instead of having three control

variables, we have one control variable and two parameters,
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The objective of the firm for this production is

tf
profit =L5‘ [revenue of B 4 revenue of A 4 revenue of C =
to
inventory _ advertisement
cost cost =
manufacturin
cost %] at (4=22)

If we define

i

profit per unit sale of B »

)

C2 = profit per unit sale of A,

03 = profit per unit sale of C,

CI = 1inventory cost per unit product of B,

CA = advertisement cost,

CT = cost of changing per degree of temperature,
Im = 1deal quantity of inventory,

T1m = the temperature of raw material,

then, the profit function can be expressed mathematically as

t

f :
J =‘dy; [Cl§k§ + Cpaxy 4+ C3a(1l = x5 = y,) = Cy(I) - I)
o

2

2 2
- cafs%at - ¢ [(T) - T,(0) 4 (7,(0) - T_(0))°]

(4=23)
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The management in this particular system is concerned with

the problem of selecting one control variable and two parameters

such that the above function J is maximized,

b2 DEFINITION OF THE PROBLEM

Maximize the function

t
o

(o]

)2

- CuA slat - CT{?Tlm - Tlto)jz + [Tl(o) - Tz(o)]f}

subject to the constraints of

=i

1]

slln»
o

1 Kal x1

Ve Kpp Y1+ Vp Kp X

v

d

T = Uxp = %) =V
dyl

'Tt_= Q(yo - yl) -
dx2

=gE = q(X1 - xz) -
dyz

If

S
S(C_ + A1 - =)

-V

2 Kap *2

2 Kpp Yo+ Vo Ko X,

(4-24)

(4=-25)

(4-26)

(4=27)

(4-28)

(4-29)

(4=-30)
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1 .
aT
sl e L.32
aE = ° (4=32)
with boundary conditions
0 0
x, (tg) = %y y,(tg) =¥
X (tn) = x2 vyt ) =y0 It =1 (4-33)
2' 9’ < "2 BrUgr < g £f =
0 0
I(tg) =1 S (to) =8

given for the above differential equations,

4-3 FORMULATION OF THE PROBLEM

In this problem, we wish to find the optimal value of state
variables, control variable and parameters, This problem is the
Bolza's problem, which 1s in the same form as we have discussed
in Chapter 2. This problem willlbe solved by the use of calculus
of variations with the help of quasilinearization,

Equations (25) through (32) can be rewritten as

By
. q T RT
fog = Vlfxo"xl) +Gge Txy=0 (4-34)
_ Fa
. q RTq ~ BTy
v, - v;(yo = ¥) # Gye yq = Gge X, =0 (4=35)
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a
. q ~ RT,
iz - VE(X1 - xz) + Ge Xp = 0 (4=-36)
Ep _la
. a ~ RT, BT
¥, = v;(yl - yz) + Ge Vo = G e X, = 0 (4=37)
I -q y2 4+ 3 =0 (4=38)
' S
S = (CiS+ AS)(1 - ) =0 (4-39)
here %. stands for -1
where X, stands for —=.

Introduce Lagrange multipliers, li' i=1, 2, ssesy 8; and
constant multipliers ej, J=1, 2, esoay 7y 8nd define the

following functions

Eg
. q ) ~ RTq
Eb Ea
- - F =
afe kz(yl - %%(YO - yl) + Gbe 1Y1 - Gae 1x1)
o a
= h3(x2 - vz(xl - x2) + G,e 2x2)
Eb Ea
¢ q _ ~ RT, - RT,
+ )‘h(yz v—;(yl yz) + Gbe v, G e xz)

+ (8 - (C s 4 aS) (A = 2))

LS l?(Tl) o+ )\8(T2) + Clcqs L. Czq X2

#Ca(l= x5 - yp) - (1, - D% - ¢ a%?) (4-40)
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and
%

6 = [oy(x)(0) = 29) 4 0,(y,(0) - ¥9) 4 0,(x,(0) - x)
+ 0,(y.(0) ~ ¥0) 4 6,(1(0) = 1°) 4 o (T(t.) - I%)
i 2 5 6 £

* 97(5(0) -s% - cT[(T1m - T1(0))2

2
# (13(0) = 100" ] - (4-t1)

The Euler-Lagrange equations (2-7) and (2-8),

4 2F _ 2F _,
dtfaxi faxi
PF

'_1'.1=0

can now be applied to equation (40). The following Lagrange

equations are obtained:
E

a
dx A A - RT4
e = q(f,-i- - vg) # (A = A T (4=b2)
E
ax . X A S
"a-t‘f = Q(V—f - V_Z) + A Gye 211 (4-43)
| da o
A - ﬁj"z' ,
— 2+ (gm0 A alc, - o) (L-lily)
E
b
ar, oy ~ RT,
<t = 9 v-?: + AyGoe - q(C3 + A5) (4=L5)
dx
= = 2 cp I - 26 I (4-46)
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o
}‘
o
8
o
n
>¢'
o

qE = Cfy v Ay = B kg = Ahyg #—5
ZASK :
6 2 -
+ —— - 2C, A°S | (4=b47)
Eg Eb
dx T RT7 Eg " BTy E
= X.G e ( YAy = A,) & A G, e {—=
1%a 2734 2 1% P
E, (4-48)
da ~ RT, E
8 2, ‘a
=T = X LCge (R’I‘ 2)(k3 - 3\4)
Eb 2
~ WD, E
2(__Db i
2
| ”F
Applying Eq. (2-8), 5 = 0, we get
A
peme (=% (4-50)

Since Eq. (50) gives explicit expression of the control
variable A, thus A can be eliminated in all the performance

equations. As results, Eq. (30) and (47) become:

Cc 32 Ské hé Szké

ds c
- C S - e e e e ceescm—mame (L"-Sl)
at c N CAN ECR ECANE
dhg Wk 20,80 g  Shg? '
— = C.C_ 4 A_ = C ), — o (4=52)
E 17°q 5 c"6 T ZCLN * TN * 2
A 2C,N

Now the sixteen equations, Eqa (25), (26), (27), (28), (29),
(31): (32)’ (L2), (43)a (44)! (“5): (46}' (#8), (49}! (51) and



31

(52) represent the system. We have only 7 boundary conditions
given by Eq. (33). The additional 9 boundary conditions can be
obtained by applying the transversality condition, Eq. (2-10)
and (2-11)

At t = to, apply

ie,

G __2F __ _ o (4-53)

and

2 ? ~2E__o : (L-54)

The results of Eq. (53) and (54) are two initial conditions:

o [Tlm - 1(0)] - 2¢q [T1(0) - T2(0)] = A,(0)

2 CT[Tl(o) - T4(0) ] = Ag(0) (4-55)

At t = t., apply Eq. (2-11), the results are 7 final

conditions

kl(tf) = 0

Az(tf) = 0
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AB(tf) = 0
Ay(te) = 0
A(ta) = 0
k?(tf) = 0
r\glts) = 0 (4-56)

Eq. (55) and (56) give a total of 9 conditions. The
whole system is a two-polint boundary-value problem.
Assume the case that the final inventory is not given, all

we need to do is adding one more condition to Eq. (56). Namely
Agltp) = 0 (4-57)

The resulting system is still a two-point boundary=value

problem.,

L-l4 QUASILINEARIZATION

Since most of the equations are nonlinear, we are going
to linearlze these equations using the same procedure described
in Chapter 3, Let the vector Z represent the state variables

Z = (xl! yl’ X, o V.o 1y S Tlr th )klr 3\-29 }\-3' A-q,v

& 2
k5, ké, X?. 18)
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and let the vector function T denote the corresponding differen-
tial equations., The original nonlinear system can be

represented as
& ‘
=Tz, ¢ (4-58)

After linearization, the recurrence relations are

dZ
=2t = (%) + I(F) (Zyy - By (4=59)

Where J(Z,) is the Jacobi matrix. For clear understanding,

the elements of this matrixare given in below

Rt -E
1 q a
55{ - - '\?I - G, exp(ﬁz—-)
nf E -E
2 a a
=5 = = G_ Z, = eXp(sm—
or, -
;523: = Ga exp(ﬁ—)
2f -
-] q
%2, " Vp - Gy, explggz-)
21 E -5 E =F
, 2 a g, b b
—E . G 7 exXp(=—=) = G, Z.—= exp(=—2)
?T3_
Rz, = V.

=
no
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Q
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=
n




07, v,
@f E =B
@zlo = 219 Gy bz e"p(hzb
<9 RZ? 7
or -E
10 q b
= =— & G, expl )
@zlo A b RZ7
22, v,
2r E
T = (Zyq - %) ,)Gy —3
8 ‘?‘8
af ~E
11 a a
— = e 4 G_ eXp(==)
ar -E
11 a
+ = G_ exp(gs—)
@le a RZ
a1 -E
iz q b
= = + G_ exp(=—)
2,
@le
- pf
13 _ _
@2 - 2 Cy
Zz
G U U L
Rf
14
HZ,. =+

35



Zyy  LcZg  2gZyy

= = C - o+ +
¢~ TN N C, N2
-} E
a a
= Gq explgg) —5(Z = Z1o)
7 RZs

~-E E
b b

G exp( ) === Z

b

7 RZ% lO_

Eg 2 ~Eqa
= Gazl(-——) exp(ﬁ—z—)(zg - Zlo)

2
RZ? 7
- a) exp( Ea)(z - Z.,)
BZ% 10
+ G2, (““3)2 exp(ﬁi" %10
RZS v
i
o+ szz exp(—— Eb 10
Rz, RZ
7
Ea) (e -E,
= G 2. ( exp(==2)
a“l ‘pgz Hif
T
G Z (E ) (= ~"a L) G, ( ) ( 2
= - exp + exp
a1 RZ? HZ, Rzg RZ?
(z ) G Fa (-Ea)
= 277 = 2y5) G, "E eXpl—=
RZg RZg
Ey, -E,
= 30y (= 2) exp(R?B)
8
Eq 2 'Ea
= Gg24 (EEE) eXp(ﬁﬁg)(zll = 2y ,)
I g (H 8) exp( Ea) (Z - B )
12

%3 Rzg Heg
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E =K
—iP Ex et z,

+ G Z, (
2Eb Ey,
+ G 2 ) exp(—2) Z
b 4 Rzg RZg “12
et Es -E,
16

— o (3 ( ) exp(=s )
2%16 _ GZ(E) (=) , 6 z,(22 (D) (4-60)
— = exp o+ exp({== -
@7, a3 RZB Rig bl 28 Rig

For those elements which do not appear in above are all
ual to zero.,

Eqe. (59) 1s a set of linear ordinary differential equations
d with boundary conditions given by Eq. (33), (55), and (56).
is problem can now be solved by the iterative procedure
scribed earlier.,

Since six fixed 1initlal conditions are given, if the initial
nditions for the particular and homogeneous solutions are
osen to satisfy these glven initial conditions, we can reduce
e required homogeneous solutions from 16 sets to 10 sets.,

e general solution can be represented by

t) (4-61)

After obtaining the solutions of the 8 state variables and
-agrange multipliers, Eq. (24) and (50) can be solved for the

it and the control variable A.
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b5 NUMERICAL ASPECTS

This problem was divided into five sub-problems for
different values of the constants and initial conditions. The
objective was to test the convergence and to investigate the

other numerical aspects under different situations.

Problem A

The following values were assigned for the various

parameters

G 0 11

a = 535 x 10 per minute N = 100

Gb = 0,461 x 1018 per minute C =1

E, = 18000 cal./mole Cp = 0.001 $/%

E = 30000 cal,/mole CA = $0.01

R = 2 cal.,/mole %K C, = $5.0

qQ = 60 gal./min. 02 = 03 = $0.0

Vl = V2 = 12 gallons Cq = 1,0

I, = 10 gallons CI = 1.0 §$/gal.,

o

At = 0,02 Yolty) = 0.43
The boundary conditions were

11(0) = 0.53 ’ YI(O) = 0.43 ’ 12(0) = 0-53

yo(0) = 0,43, I(0) = 1.0 , I(1) = 10,0

S(0) = 0.1



It should be emphasized that problem A was
which had finalrcondition on the inventory.

Since most of the equations are nonlinear,
approxiﬁations were required. The various sets

approximations used for this problem are listed

Problem B

The same parameters used in problem A were

Except that the final inventory was removed.
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the only problem

hence initlal

of initisl
in Table 1.

used here,

Different sets of initial approximations used are given

in Table 2.

Problem C

Some of the parameters were changed. They are listed in

below
Cp = 0.0005 $/°k
Cp = $.0.0002
Im = 20 gallons

The boundary conditions are

xl(o) = 0.53 , yl(o)
yl(O) = 0.43 , I(0)

I
[@4]

0.43 ’ x2(0) = 0¢53
S(0) = 0.1
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A 1list of initial approximations is shown in Table 3.

Problem D

The problem ls the same as problem C, except that

CA = 0,01

and S(0) = 1.0 I(0) = 15

Three different initial approximations were used for this

problem. They are listed in Table 4.

Problem E

The only difference between problem E and D is in the
initial conditions. In this problem

i

I(0) = 12 S(0) = 0.1

All other values remain thé same as in problem D. The
values of the initial approximation used are given in Table 5.

The initilal values used for the particular and homogeneous
solutions are given in Table 6.

Problems A, B, and C were exactly the same as the first three
problems in Chapter 5 of Shah's thesis [8]. The purpose of this

is to compare thé results under different situations, namely, to

consider temperature as a function of t against as a constant
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parameter, The comparison of the results 1s gliven in a latter

section.

=6 COMPUTATIONAL ASPECTS

By using the initial values given in Table 6. and the initial
approximations given in Tables 1 through 5, the system can be
solved numerically. A set of particular solutions and 10 sets of
homogeneous solutions were obtained by the Runge-Kutta
integration method,

Ten integration constants were obtained after the
calculation of particular and homogeneous solutions, and the _
substitution of the boundary conditions. In order to solve these
ten integration constants on the computer, the subroutine DGELG,
which is a double-preclisioned subroutine programmed for solving
simultaneous linear algebralc equations, was used.

.“U81ng these integration constants, the general solutions
for all 16 variables can be obtained by Eq. (61). By using
Eq. (50), #alues of advertisement at all grid points were obtained.

For simplicity the following approximation was used to

calculate the total profit
tf ,

0

- €A% b e [Ty - 1100002 4 (14(0) - T,(00)7]
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Since the temperature greatly influences the performance
equations, at the first few 1lteratlons, a too high or too low
temperature may cause exponential overflow on the computer.,
Hence a-limit was set for the temperature to insure convergence

300° < T, T, < 370°

This 1limit was used for all five problems

At first, problem A was solved on the computer using single=-
precislion scheme. But the solutlions converged very slowly
after the convergence had already taken place., For the
quasilinearization technique, owing to the use of the Newton-
Raphson type of linearization formula, the convergence should be
quadratic if the convergence exlsts. After changing to double-
preclsion scheme on the computer, this slow convergence did not
exist any more. One explanation for this situation is due to
the highly nonlinear terms in the performance equations. These
terms may cause the problem to be unstable, and thus make the
solution fluctuate.

The computer program used for solving these five sub-problems
1s given in Appendix 1. It consists of a main program with three
subroutines. The subroutine RUNGK which is essentially the
Runge~Kutta method, was first written in a very general form.

It can handle a set of differential equations of any number.
But later on, it was found that this integration subroutine

required too much execution time. After modifying this RUNGK



43

routine, the total computer time requlred decreased by half.
All the five problems were solved on the IBM-360-50 using

double preclsion accuracy. The computer time required for each

problem using FORTRAN 4, G level complier is approximately 20

minutes for 11 iéerations.

L7 RESULTS

The results of all the sub-problems from A to E are given

separately in the following pages,

Problem A

All the three initial approximations listed in Table 1
converged to the optimal solution.

The convergence rates of the six state variables and one
control variable for problem 1A are shown in Fig. 1 through 7,
The optimal profiles of Lagrange multipliers are shown in Fig, 8
to 10. Table 7 gives the convergence rate of Tl, T2, S(tf) and
profit. In Table 8, convergencelrate of A(t) 1s given. The
profit of this problem was $80.,062,

Generally speaking, there 1is no convergence difficulty
encountered in this problem. The initial approximations used for
problem 14, 24, and 34 were quite arbitrary and far different
from one to another.

A comparison of the optimal profiles and the convergence

rate of A(0) with Shah's [8] results are given in Tables 9 and 10.
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Although the profit we got in the present method is a little
higher than Shah's result, it was simply caused by the accuracy
used on the computer. Shah used 100 grid points and single
precision. In our case, 50 grid points and double precision were
used, To clear this doubt, the results were recalculated using
100 grid points and single preclision. The profit we got was
79.67, compared with Shah's 79.75 or about 0.07 less. In Table
10, the convergence rate is a little faster in our case which is

the result of double precision accuracy.

Pfoblem B

All the five initial approximations given in Table 2
converged to the optimal solution. No convergence difficulty
exlsted, It seems that any reasonable guess will make this
problem converge.

The optimal proflles of the state variables and the control
variable are shown in Figs. 11 and 12, In Table 11, the
convergence rate of Tl’ T2, I(tf). S(tf), and profit J are given.
Table 12 shows the convergence rate of A(t).

The total profit of this problem is $96.09 which is also
more than what Shah had. In his results, the profit was $95.79.
This 1s also caused by the accuracy uséd on the computer,

Since Shah did not give any convergence figure of the
variables for this problem, no comparison can be given except

the profit.,
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Problem C

Among the four initial approximations, only 1C and 3C
converged to the optimal solution.

Figs. 13 to 18 show the convergence rates of the six state
variables and one control variable. In Table 13, the convergence
rate of Tl' T, I(te), S(tf), and J are given, Table 14 gives
the convergence rate of A(t).

In this problem, C, changed from $#0.01 to $0.0002 and Cp
changed from $0.001 to $0.0005, both of them decreased a lot.
These changes actually put more welght on the cost of the
inventory. Since Ilm = 20 and I(0) = 8, the process tends to
increase the inventory by decreasing the sales. This 1s the
reason why there are negative sales shown in Fig. 20. These
negative sales, of course, are caused by having negative advertise-
ment which is unreasonable in real situations.

Although the optimal solution for this problem 1s unreason-
able, but it did converge rapidly in 7 iterations, This is
merely another proof of the powerfulness of quasilinearization,
In Shah's thesis, this problem did not converge using two
different initial approximations. He also tried to change the
1nitiél values of sales. For all of the cases he tried, the
Newton-Raphson convergence difficulty was encountered in the
first iteration.

Problem 2C did not converge because too low temperatures
were obtained in first iteration. After using the limits to set

them at 3000, the temperatures still did not go up.
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In problem 3C, the initial inventory, I(0) was increased
from 8 to 15, It was hoped that this change could avoid the
negatlve sales. Unfortunately, there were still negative sales

and advertisement existing.

Problem D

Three initial approximations were used for this problem.
Only the flrst one did not converge. 2D and 3D converged in 9
lterations,

The convergence rates of the state and control variables are
shown in Figs. 19 to 24, Tables15and 16 show the convergence
rates of T,, T2, I(tf), S(tf), J, and A(t).

The 6onvergence rate of this problem is slow as far as the
number of iterations is concerned. It was probably caused by
the small value of CT which made the temperature fluctuate.,

Problem 1D encountered the same difficulty which happened

in problem 2C.

Problem E

The three initial approximations used for this problem are
glven 1in Table 5, All of them converged to the optimal solution.,-

The optimal profiles of this problem are shown in Figs. 25
and 26. Table 17 shows the convergence rate of Tl' Tz. I(tf),
S(tf), and J. The convergence rate of A(t) is given in Table 8,

The convergence rate of this problem is about the same as
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in problem D. An average of 10 iterations is required for the

convergence of the three problems.

One Interesting fact which can be found 1n Tgble 17 is the

convergence rate of Tz. At the first iteration, T2 had the
value of =800.97., In spite of the highly nonlinear nature of

T2 and a value far off from the true solution, it finally

converged to the optimal solution.,
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4.8 DISCUSSION

The results of all the problems indicate that considering
temperature as a constant parameter 1ls superior to considering
it as a function of t. There are mainly two advantages for the
present method. First, to maintain the temperature at a fixed
constant wvalue is much easler than to control it according to a
fixed function of t. Besides this, the loss of profit using
the present approach is negligible. Fig. 27 shows a comparison
of optimal profiles of the temperatures under the two different
approaches., Shah had the optimal temperature ranging approxi-
mately from 365° at (to) to 340° at (tf). For the present
method, both Tl and T2 were around 3600. Second, no convergence
difficulty existed in general. Since temperature is a constant
parameter and can be considered as additional state variable,
the Newton-Raphson convergence difficulty which Shah had in
finding T1 and T2 did not occur in our case.

Comparing the optimal solutions of all the problems, it
was observed that the values of parameters CA' CI’ and CT did
influence the solution. Generally speaking, when CA = 0,01,
reasonable curves were obtalned for the advertisement. 4 small
value of cA caused advertisement to be elther negative or
discontinuous, As for CI' a relatively high value of this
parameter made the process tend to maintain the inventory as

close to Im as possible., This tendency caused the solution to

have negative sales as well as negative advertisement. The
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influences of CT can be observed in problems D and E. Both of
these two problems have slow convergence rate, It was mainly

because of the unstability of the model caused by small value

of CTG

Another interesting fact is the relationshlp among I(0),
S(0), and A(t). The appearance of large amount advertisement
at the begining is caused by small S(0) and large I(0). While
negative advertisement is usually caused by large S(0) and small
1(0).

In general, convergence was obtained in 6 to 7 iterations
for the first three problems. 8 to 9 iterations for the last
two problems. The accuracy required for convergence was three
digits after the decimal point for most of the problems. The
convergence rate was almost independent of the cholce of initial

approximation for the values used in thls work.
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Table 7. Convergence Rates ole, T2, S(tf), and J,
problem 1A

ITER. o 1 2 3 4 5 6 7
Ty 340.0 396,03 366.76 361.99 359.74 359.23 359.21 359.21
T, 340.0 297.52 467,61 363.58 360.99 360.34 360.30 360.30

S(tf) 1.0 34,61 33.38 35.25 34.87 34,76 34,76 34.76
58.518 65.395 81.430 80.364 80.074 B80.062 80,062

J -
Table 8, Convergence Rates of A(t) in problem 1A

TIME ITER. 1 2 3 b 5 6 7
0.0 214,10 320,74 382.28 371.90 368.92 1368.78 368,78
0.2 4,71 4.75 4,63 4,67 4,67 4,67 b,67
04 1,49 1.74 1.70 1,71 1.72 1.72 L7 2
Osb 0.48 0.69 0.68 0.68 0.68 0.68 0.68
0.8 0.11 0.22 0.22 0.22 0.22 0.22 0.22
1.0 0.00 0,00 0.00 0,00 0,00 0.00 0,00

Table 9. A comparison of the optimal profiles of problem A with
Shah's results

J o 1y(0)  Ty(tp) T,0)  Tolty) A(0)  Altg)

Shah's 79.75 362.4 340,.0 365 .7 340,0 370.4  0.00
Prob. A 80.06 359.21 359.21 360.30 360.30 368,78 0,00




Table 10. A Comparison of the Convergence Rate of
A(0) in problem A with Shah's result
ITER. Shah's Y oy : 3
1 260 .40 214,10 84, 48 611.86
2 358.80 320,74 428,15 376.78
3 366.40 382.28 372.18 384,36
4 370.60 371.90 369.01 370.69
5 369.90 368.92 368.78 368.82
6 370.50 368,78 368,78 368.78
7 370.30 368.78 368,78 368,78
8 370.40 368.78 368,78 368.78
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Table 11. gggv‘?fgiﬁcgrlgit:i:; cIiszl. ’I‘z, I(tf), S(tf).
ITER: 0 1 2 3 4 5 6 ?
T4 345.0 413.90 366.14 361,64 359.78 359.45 359.44 359,44
T, 345.0 456,82 367.73 363.15 361.29 360.95 360.93 360.93
I(tf) 2.0 - 3.02 2435 2¢55 2.49 2.48 2.48 2.48
S(tp) 2.0 85.68 49.91 48,79 48,47 48,43 4B.43 48,43
J - 147.77 96,43 97.38  96.24 96,10 96.09  96.09
Table 12. Convergence Rate of A(t) in problem B
— ' g 3 b 5 6 7
Time
0.0 463.81 483.21 495,83 481.38  479.41  479.36 479,36
0.2 L,28 4,98 4,97 5.00 5.00 5.00 5.00
0.4 1.43 2.13 2el? 2.13 2k} 2.13 2.13
0.6 0.54 1.10 1.09 1.09 1.10 1.10 1.10
0.8 0.16 0.50 0,50 0.50 0.50 0.50 0.50
1.0 0,00 0.00 0.00 0.00 0.00 0,00

0.00
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Table 13. Convergence Rates qul. TE’ I(te), S(tf),
and J, in problem 1lC

) 1 2 3 4 5 6 7

I(te)
s(t,)
J

330.0 519.12 363.39 360.83 360.05 360.00 360.00 360,00

© 330.0 628.79 364.70 361.84 360.52 360.34 360.34 360,34
3 13.77 5¢24 3.80 3.77 3677 3477 3.77

X 28.87 67.35 81l.36 82.64 82,67 82,67 82,67

- 47,924 110.533 113.843 113,495 113.459113,458 113,458
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CHAPTER 5
A MORE COMPLICATED PRODUCTION PLANNING PROBLEM

In this chapter, a more complicated problem is solved.
In addition to the system discussed in Chapter 4, the problem
has one more unknow parameter., Before, the volume of the reactor
is a fixed constant. But in here, it is considered as an unknown

parameter whose optimal value is to be defined.

531 DEVELOPMENT OF THE MODEL

The same manufacturing process used in the previous chapter
is used here. The only change is having one reactor instead of
two.

Because the only change is the number of reactor, the
equations remain essentially the same as in Chapter 4 except
that Eqs. (4-27) and (4-28) for reactor 2 should be eliminated.

Now the system is represented by the equations

Ea
dxl . ﬁTi
Vl F = q‘xo - Xl) - V]_Gae xl (5-1)
Ep _a
dy - BT, RT
1 1
V, F = alyg = ¥9) = VqG.e 1y, 4 V,G e x,  (5-2)
ar
EE = q y’z - 8 (5"'3)
ds
G =8+ -5 | - (5-4)



9k

aT

1
2t =0 (5-5)

with the boundary condltions

% () = 2y v (b)) = ¥5 (5-6)

0 0 '
I(ty) = I s(ty) = 8 (5-7)

In Chapter 4, we considered temperature as a constant
parameter. In this chapter, we shall also consider the volume
of the reactor as a constant parameter. This can be done, as
before, by considering Vl as additional state variable. Since

it is a constant parameter we have the differential equation

dVl
45 = 0 (5-8)

In addition to this, a cost function for the reactor must
also be included in the objective function. The following cost

function 1s assumed for the reactor

' s
g(vl) = al + a2v1 '!"ajvl (5"'9)

Now, the objective function becomes
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. )
J =~5; [Clcqs + Coa Xy 4 qu(l - X - yl) - CI(Im - I)
0
- C,A%s%) at
- ¢ [r, -7T.(0) 1° - &(v.) (5-10)
Cp Y T M2 1

5-2 DEFINITION OF THE PROBLEM

Find the values of A(t), T, and V; such that the following

function is maximized

t

f
J =‘5; _ECICqS + Cqul * 03q(1 - X - yl) - CI(Im - 1)2
0
2.2
- C,A"S 1 dt
- g [T, - T1(0)] Z - &(v)) (5-11)

Ssubject to the constraints of

_ Fa
. BT
X = é% (xg = X9) = Gge lxl (5-12)
_ B - La
yl = Vl (yo = yl) - Gbe yl 4 Gae xl (5"13)
I=qy, -8 (5-14)
S = (CS 4+ AS) [1 - 2 (5-15)
T = 0 (5-16)
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Vl =0 (5-17)
with the initial conditions
0 0
Xy (ty) = xp y1(tg) = ¥4
0 ' 0 (5"'18)
I(to) = I S(to) = S

5-3 FORMULATION OF THE PROBLEM

This problem can also be solved by the calculus of variations.
The procedure for obtaining the solution remains essentially the
same, |
Introduce the Lagrange multipliers, Air 1 =14 20 e0ny 6,
and constant multipliers, ej. J =1, 20 ecey 4, and define the

following functions
E

_ “a
RT
[ q 1
F=[A(x) - v;(xo - X;) + Gge X;)
_ _Za
. - , BT, RTy
o+ kz(yl Vl(yo ‘Vl) . Gbe .Yl = Gae xl)

2
CeS 'ASEJ
N N

" xq(é - C,S = AS +
+ l5(Tl)
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+ C1CoS # Coax) 4 C3a(l = x) = yy) - Cp(I, - 1)2

q
- CAAZSZJ (5=-19)
and
0 0 0
G = [al(xl(to) - xl) * ez(yl(to) = yl) * QB(I(tO) -1 )

(5=-20)

Applying the Euler-Lagrange equations, the following Lagrange

equations are obtalned

_fa
dx, q T,
TIc = "1‘1}; + (A - "2) G, e + q(C2 - c3) (5=-21)
E
dx —Y
z2_s 9 RTq _ _ -
=+ = Xy T + A Ge Aga - Csq (5-22)
da
—— - -
== = £ cI(Im I) (5=23)
da 2C .S\
b c My
—a-E- = Clcq L AB - Cck“’ Alu + —N_-
2AS\ ), 2
+ —F— - 2C,A"S (5-24)
_Za o
dx BT, E = RT, E
5 _ - 1.8 1. °b
ge = (A = A,)G.e (RTz)xl + LG e (RTz)yl (5-25)
i 1

da A.q A
b A Me 24
T = Tz %0 T F) * Tzl - vy) (5-26)

3 1



95

Using Eq. (2—8)2;% = 0, we have

A
o e 1 ) (5-27)

Eliminating the A's in Egs. (15) and (24), we get

2 2
ds CeS SAy AL STAL
== = C 8 = g - - ' (5-28)
at ¢ N C,N ~ 2, 2CAN?.
2 2
da A 2C .S\ SA
L 4 c Al 4
= 00 % k. o= T Ay o= + + {5-29)
dt lq 3 el 2, N N mg@

Now the Equations (12), (13), (14), (16), (17), (21), (=2z2),
(23)s (25), (26), (28) and (29) represent the system. For these
12 differential equations, only 4 conditlons sregiven. Again
the transversality condition is used to obtain the other 8
conditions.

At t = to, using

G F _ o0 and G__ _ F) =0

—

T,(0) T v (0) ~ TV(0

we have

2 CT|:T1m - Tl(O)] = x5(o)

-La,+ 2a3V1(O)] = 1,,(0) (5-30)
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At t = tf
ll(tf) = 0 lu(tf) =0
lz(tf) = 0 ks(tf) =0
A5(tg) = 0 Ag(te) = 0 (5-31)

Egs. (30) and (31) give 8 conditions. As a results, we

have 12 differential equations with 12 boundary conditions.

5=4 QUASILINEARIZATION

Once again, let us define Z as a vector which has components

xl' y.o» I, S, T1| Vlv Al' )tzi l3: 14: 150 and l6| and T as the

1
vector function which has the corresponding differential equations
as its components.

The 12 equations can be written as
¥ - T(Z t) | (5-32)

The linearized form of Eg. (32) written in the recurrence

relation is

dt T 'n n ntdl - “n (5=33)



The elements of the Jacobl matrix J(Eh) are listed in the

following
mfl
@zl

40f1

g
P Zg

]

[}

S
|>
n

~E

=q
VI - Gy exp(RZ

=E E
-Z,G_ explzss) (—=)
1Y exp RZS)(RZ§
-q(xo - Zl)/zg
=-E
a
Gg eXP(ﬁg;)

-q
S - exp( )
Zé b

-Z, Gy exp( )( LA G,

-alyy - 2,)/2¢

q

-1

o, - 24 Co  Zp 22y
N TN P

Al ¢, N
2
Zy 1 34
CE = I, 2CAN2
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d
H;
~J

3
N
-\J

| )
Hy
~J

o
N
os}

]

n

Zsg
-E, E
b b
Zo G, exp( ) (—s3)
8 b RZ 2
RZs
2§
q ~E

2
_ ZLeZ10 210

+
N 2
2C,N
1
210 X2y ZyZqg
ComTNT TNt T2
A CAN

-E, E,
(Z, - 2g)G, exp(ﬁ@ﬂ@)

5
=F E
By =B
Zo Gy exp(gz—)(—s)
8 b RZ5" "pgz?
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nf E
—2L - (2, - 23)z, G, exp (= ey a)(' i)
V) 25 7 8°71 st st 5 stz
+ ZgZ, Gy exp(-Eb)c 252 » Ebz)
A st g RZ
rafll E E
—== = 2. G exp(=2)(—=)
%:Z? 1l "a RZS RZ?
2f = =
mZ, = % Ca OX0(gz "o 2) * 2y Gy explgg ) (—> Ebz)
8 5 5 5 RZg
?T12 % 4
@2y zg
?f1p %8 4
PZy zE
?f1p _ =2Z,q(xy - Z7) -2Zgalyy - Z,)
S Z
2Ty, alxp - 24)
°ay zg
@fy,  alyg - 2))
o Zg zg

The elements which do not a
all equal to zero,

The same procedure used in
linear equations is used here.

are given, the general solution

_ 8
= & £E) » %
n=1

& zH.m

Z(t) .

ppeal in the above equations are

Chapter 4 for solving these
Since four initial conditions
can be written as

(t) (5-34)



d=5

This problem 1s divided into 9 problems.

NUMERICAL ASPECTS

100

The constants

and the -boundary conditions used in each problem is described as

following

Problem A

The following values were assumed for the varlous parameters

Ga = 0.535 x 1011 per minute
Gb = 0,461 x 1018 per minute
E, = 18000 cal./mole

E, = 30000 cal./mole

R = 2 cal./mole %

q = 60 gal,/min.

Im = 10 gallons

T~ 340 %K

At = 0,02

x,(ty) =0.53

Yoltg) = 0.43

The initial conditions were

xl(O) =

0.43,

0.53, y1(0) =

C
c
C
C
C
c

I(0) = 1,0,

= 100

c = 1

1= = 5

2 = 0-0

3 = 0.,0055667

0

p= 0.001 $/°K

AT = $ 0.01
=$7

q = 1

i = 1.0 $/gal.

S(0) = 0.1
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The various sets of initial approximations used for this

problem are listed in Table 19.

Problem B

This problem 1s essentially the same as problem A, except

the cost function of Vl is changed. All the parameters remain

the same, except that

a3 = 0.,0075667

Two sets of initial approximations used for this problem

areglven in Table 20,

Problem C
This problem is the modification of problem B. The only

parameter which differs from B is

a3 = 0.,0065667

The initlal approximations used for this problem is given
in Table Z21.
Problem D

Thls problem has one more given condition, namely, the final

inventory,
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In addition to this, the values of two parameters are
changed. All the other parameters remain the same as in problem

A, The two parameters changed are

and

I =15

The boundary conditions are

xl(o)
I(t,)

0.53 y1(0) = 0.43 I(0) = 1.0 (0) = 0.1
10

Two sets of initial approximations are tried for this

problem., They are exactly the same as in problem B,

Problem E

The only difference between this problem and problem D is

the initial condition of inventory.

I(0) = 7

The initlal approximations used for this problem are shown

in Table 22.
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Problem F

In this problem, some of the parameters were changed.

For clear understanding, all of them are listed in the following

G, = 0.535 x 101 per min, N = 100

G, = 0.461 x 1018 per min. ¢, =1

E, = 18000 cal./mole Cp = 0.0005 /%
E = 30000 cal./mole CA = $. 0,01

R = 2 cal./mole %K cy = $.7.0

q = 60 gal,/min. Cz'= 03 = $.0.0
I =5 eal. C, = 1.0

Ty = 340 %K - Cr = 1.0 $/gal.
AT = 0.02 Xg = 053

8, = 5 Yo = 0.43

a2 = 0.0

agy = 0.0055667

The given conditions are
x1(0) = 0.53 yl(o) = 0.43 I(0) =5 8(0) = 0.1

The initial approximations used for this problem is given
in Table 23.
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Problem G

The differences between problems G and F are the values of

Im and I(0), the other numerical values remain the same.

Im = 15, I(0) =7
Four sets of initial approximation were used for this

problem which are given in Table 24,

Problem H

In this problem, the only change is

All other parameters are same as used in problem F,

Table 25 shows the initial approximations used for this

problem,

5-6 COMPUTATIONAL ASPECTS

Basically, the same procedure used in Chapter 4 is used
here, The double precision accuracy and the same limits for
temperatures were also used in this problen.

At first, a model which has two reactors were solved.

But the problems never did converge. When two reactors are in

the system, there 1s a tendency to have very large volume for one
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reactor and very small volume for the other, This tendency
shows that under this new condition, only one reactor is needed.
Another difficulty encountered when solving this problem is

the choice of the cost function for V.. Too high or too low a

|

cost makes the value of V., unreasonable, or even negative,

1
Usually the process tends to make use of a very small reactor and
meanﬁhile to have a high temperature. This situatlion can cause
exponentlial overflow on the computer. Several different cost
functions were tried until the one which gave satisfactory
results was found,

After finding all the solutions of the 12 variables, the

following approximated formula was used to calculate the total

profit.
1 2
s g~ tfo[clcqs + Ca%; 4 Cyall = x) = yg) = Cp(I =~ I)
- c,a%%] ¢
, .
- Cp [Ty, - Tl(o)] - g(vy) (5-35)

5=7 RESULTS

The results obtained for all the problems are discussed

in the following pages.

Problem A

Except for set 24, all the other four sets of initial
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approximations converged to the optimal solution.

Figs. 28 through 32 showed the convergence rate of Xqr Y10
I, 8, and A, Fig. 33 and Fig. 34 gave the optimal profiles of
the six.Lagrange multiplliers. The convergence rates of Tl' Vl'

I(t S(tf) and J are given in Table 26, Table 27 gives the

f)’
convergence rate of A(t).

For problem 24, the first iteration gave a high temperature.
After using the 1limit to hold down the temperature to 3?00, the
other value still remained the same which make the system
inconsistent. In second iteration, the value of the Lagrange
multipliers became extremely large. In 6th iteration, exponential
overflow occured on the computer,

Generally speaking, convergence tobk place in 6 to 7

iterations with three digits accuracy after the decimal point.

Problem B

Both of the two ilnitial approximations listed in Table
20 did not converge. Apparently the change of a3 made the

system unstable. Negative values were obtained for V1 which made
the concentration of ¥q too highe. Once this high value was

established, it never lowered down even after ten iterations.

Problem C

Problem C also has the unstability problem which occured in

the previous problem. For the four sets of initial
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approximations, only 3C converged to optimal solution.

The convergence rates of xl(t). yl(t). I(t), and S(t) were
given in Tables 28 through 31, The convergence rates Tl’ Vs A(0)
and J were given in Tables 32.

Although the sets of values used in 2C and 3C are very close
to each other, problem 2C did not converge even after 15 itera-
tions., The value of Vl osclillated between minus and plus values
during these iterations. The convergence interval of this problem
is very narrow; narrow intervals are also the reason why 1C and

4C did not converge.

Problem D

The same sets of initial approximations used in problem B
were used here. Only 1D converged to optimal solution. The
optimal profiles were shown in Fig. 35. The convergence rates of

Tl' V.o S(tf), A(0), and J were given in Tablé 33,

1
Since the final inventory is fixed at 10 gallons, the
process tried to reduce the amount of sale in the beginning.
This situation explains why there was negative advertisement in
the beginning.

For problem 2D, a negative value‘of -67 was obtained for vy
in the second iteration. This made the value of Xq has the value
of 380 in the 4th iteration which caused overflow on the

computer.
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Problem E

Among the five sets of initial approximations, 1lE and 3E
did not.converge. For 4E and 5E, convergence was obtained in
6 iterations. Problem 2E took about 15 iterations which is
very slow compared with 4E and 5E.

The convergence rate of the state varliables in problem 4E
were shown in Fig. 36-39. Table 34 and 35 gave the convergence
rate of the parameters, profit and A(t).

Apparently, problems l1Eand 3E were outside the convergence
interval. Problem 2E was very close to the margin of this
interval which made the convergence rate slow.

In problem D, the advertisement was negative., After raising

I(0) to 7 in this problem, negative advertisement did not exist

any more.

Problem F

For this problem, 1F converged to the optimal solution,but
2F did not,

The convergence rate of the state variables in problem 1F
are given in Figs. 40-43, Table 36 and 37 showed the convergence
rate of Tl’ Vl, I(tf). S(tf). J and A(O).

Problem ZF encountered the same difficulty which happened
to problem Z2A.

This problem is also very unstable. One common phenomenon

which can be seen in each of the convergence figures is that the
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optimal solution is very close to the solution obtained in the
first iteration. This 1s simply caused by the unstability of

the problem.

Problem G

Only problem 2G converged to the optimal solution. The
convergence rates of state variables, parameters, and advertisement
are given in Figs.44 to 47 and Tables 38, 39.

The convergence interval for this problem is very small,
Notice that the differences between 1G and 2G are the values of
ll(t) and kz(t). Since problem 2G converged extremely fast in
4 iterations, the only explanation for the reason that 1G, 3G,

and 4G did not converge is the small convergence interval.

Problem H

Out of the five sets of initial approximations, 2H and 5H
converged to the optimal solution,

The convergence rate of the‘state variables, parameters, and
advertisement are given in Figs. 48 to 51 and Tables 40, 41,

Generally speaking, for ZH and 5H, convergence was
obtained in 6 iterations for three digits accuracy after the
- decimal point.

For both 1H and 4H, a very high temperature was obtained in
the first few ilterations. This high temperature droped sharply

later on and caused exponential overflow immediately. Problem
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3H haed & very small value for Vl in iteration 5 which also

immediately caused overflow on the computer,

5=8 DISCUSSION

All the results showed that no severe difficulty existed
in this problem. However considering Vl as an unknown parameter
does make the problem more unstable,

Since V., appears in Equations (5-12) and (5-13) as the

p &
denominator of the first term, the value of Vi has strong
influences over the changing rate of xl and yl. Small or
negative values of V1 usually make the concentrations of xl an¢
yl unreasonable,

The value of Vl obtained for all the problems 1s around 22
gallons which is very close to the sum of reactors 1 and 2 in the
previous chapter, These results suggest that having one big
reactor is sufficient for the system,

In this problem, a3 is a critical parameter. Even a small
change of this parameter may cause the system to become unstable
which can be seen in problems B and C. Another critical value is
the initial inventory, I(0). The combination of I(0) and Im
determines the amount of advertising. A large value of Im and
small value of I(0) tend to reduce the‘sale by having negative
advertisement, When the value of I(0) is very close to Im. the

process tends to have large amount of advertisement in the

beginning to bring up the sales. It caused negative inventory
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at the end even when the advertisement is almost equal to zero.
This situation can be observed in problem 1F,

The solutions obtained for problems 4, C, F, and H have
negativé inventory. The solution of problem D has negative
advertisement. These negative inventory and advertisement are
unreasonable in real situations,

The convergence interval of this problem is very small.,
The two-phase method which Mehrotra [18] has applied to a
similar problem may eliminate the convergence difficulty

encountered in this problem.
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Homogeneous solutions

1

PII.
F,H

Initial values used for particular and homogeneous solution
for

P.I.
for
E,G

Table 25.8.

P.I.
for
A, B,
C,D
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Table 26 Convergence Rates ale. Vyr I(tf),
S(tf). and J, problem™5A

ITER. 0 1 2 3 L 5 6 7

Tl 355.0 403.44 365.84 362.38 360.88 360.44 360.63 360,63
vy 20,0 35.27 21.68 21.03 20.65 20.60 20.60 20.60
I(te) 3.0 =1.37 =0.57 =0.75 =0.79 =0.80 -0.80 -0.80
S(ts) 3.0 60.64 53.74 53.20 53.05 53.03 53.03 53.03
J - 173.41 147,90 145,30 144,54 144 44 344 44 144 44

Table 27 Convergence Rate of A(t), problem 54

ITER.
1 2 9 4 5 6 7

TIME

0.0 618,98 564,86 539.65 531.60 530.42 530.40 530.40
0.2 4,72 5.04 5,08 5,09 5.10 5.10 5,10
0.4 1.85 2+ 22 2. 24 2425 2.25 2.25 2.25
0.6 0.87 1.19 1,20 1.21 1.4 1.21 Y 21
0.8 037 0.56 Q57 0.57 0.57 0.57 0.57

1.0 0.00 0.00 0.00 0,00 0.00 0.00 0.00
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Table 34 Convergence Ratesofiﬁn Vis S(tf), and
J, problem 4E

ITER. 0 1 2 3 b 5 6
T, 345.0 355.52 361.02 359.84 360,04 360.03 360.03
Vl 10,0 41,68 25:0% 20.86 2223 22.35 28235
S(tf) 1540 62.46  L2.,47 44,63 44,53 44,53  L4,53
J - 148,72 90.06 100.24 99.47  99.44 99,44

Table 35. Convergence Rate of A(t), in problem LE

ITER.

1 2 3 4 5 6

TIME
0.0 982,39 Ll 04 514,23 517,26 517.34 517.34
Gs2 L,74 4,43 4,63 4,65 4,65 4,65
0.4 1.48 p 1.87 1.89 1.89 1,89
0.6 0.55 0.85 0.91 0.92 0.92 0.92
0.8 0.19 0.38 0.40 0.41 0.41 0.41
1.0 0,00 0.00 0.00 0.00 0.00 0,00
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Table 38. Convergence Rates of T., Vq, I(tf).

126

S(tf), and J, probleleG
ITER. 0 1 2 3 4 5
Ty 370,00 362.71 360.67 360.79 360.83 360.83
vy 9,00 14,04 18.95 20.20 20.31 20,31
I(tf) 4,00 3.56 4,03 4,06 4,06 4,06
s(ts) 30.00 45,41 53,96 54,03 54,03 54,03
J - 109,52 110.22 110.25 110,23 110,23
Table 39. Convergence Rate of A(0), problem 2G
ITER
i 2 3 4 5
TIME
0.0 492,12 638 .38 638.33 638,49 638,50
0.2 3.97 4,85 4,85 4,85 4.85
0.4 1.97 2:13 2513 2.13 2.13
0,6 1,16 1.15 1.15 1.15 1«15
0.8 0.61 0.55 0.55 0.55 0.55
1.0 0.00 0.00 0.00 0.00 0.00




Table 40, Convergence Ratesoflﬁ} Vi» I(tf).

S(tf). and J, problem™ 2H
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ITER 0 1 2 3 4 5 6 7

T,  345.0 346.22 358.39 361.74 360.95 360.61 360.60 360.60
vy 15.0 60.83 17.41 27.41 18.38 18.97 19.00 19,00
I(t,) 3.0 0,91 =5.27 =3.39 =3.39 =3.41 -3.41 -3.M
S(tp) 20,0 46,44 59,06 59.18 58.98 58.93 58.93  58.93

J -  115.96 147,58 147,79 148,86 148,50 148.50 148,50

Table 41. Convergence Rate of A(t), problem 2H
— ITER

_— 1 2 3 L 5 6 7
0.0 1689.52 1077.35 1195.87 1186.12 1183.06 1182,98 1182.98
0.2 4.35 3.92 L,14 4,16 4,16 4,16 4,16
0ok 2,06 1.54 1.69 1.70 1.70 1,50 1.70
0.6 1.33 0.81 0.89 0.90 0.90 0.90 0.90
0.8 0.86 0.41 0. 44 0. 4b 0.4l 0.4 0.4k
1.0 0.00 0,00 0.00 0.00 0,00 0.00 0.00
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CHAPTER 6
CONCLUSION

Thé examples solved in this thesis show that quasilineariza-
tion is an effective tool for obtalning numerical solutions of
industrial management problem, It also shows that this
technique is equally effective for the simultaneous optimization
of the\control varlables and the unknown parameters. The results
show that the addition of unknown parameters in the problem
does not significantly increase the amount of computation,

The convergence rate of the problem solved in Chapter 4
was found very rapid. Choosing the correct initial approximation
was not difficult. Convergence was obtained with most of the
initial guesses., Notice that some of the initial approximations
used are very poor and would not be used with a little engineering
judgement.

In Chapter 5, with the addition of the volume of the
reactor as an unknown parameter, the problem becomes more
unstable. Among all the 29 1initial approximations used, only 13
of them converged to the true solution. Since the parameter
space for this particular problem in which convergence wili
occur is rather narrow, convergence difficulty exists. This can
be seen especially in problem B, C, and G,

The quasilinearization technique has a main disadvantage

which is the small convergence interval., Convergence only occurs

when the initial guess is near the true solution. The method of
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steepest decent, on the other hand, is known to work very well
in regions far removed from the true solution but very poorly in
areas near the solution. We can use the method of steepest
descent at the begining and then switch to quasilinearization
when better appréximations are obtained. By the proper use of
these two methods, the convergence region should be increased,
Recently, Mehrotra [18] has used the two phase method of
quasilinearization to enlarge the convergence interval of a
production planning problem. Other techniques such as
perturbation [19] and gradient technique [20] can also be used to

improve the convergence.
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APPENDIX 1

COMPUTER PROGRAM USED IN CHAPTER &4
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THIS PROGRAM SCOLVES A SET OF 16 LCIFF. ECQUATIONS TWO-POINT
SPLIT TYPE USING THE SUPERPOSITICN PRINCIPLE AND RUNGE~-
KUTTA TECHNIQUE

IMPLICIT REAL#*B(A-H,0-2)
CIMENSION Z{16y 51)9X(16)4FF(16y 51),ZN(16y 51)3J1(16,16),

1 B(16},2P(16y 51),2ZH{1041€y 51)4ZFCL16)4RZ(16)4RM{4,16),F(16)

2y AL105),ADVIS51)
DOLBLE PRECISION J1
CCMVMON ZNyJ1yRM,RZ4ByDTyMyN

REAC IN CATA

REAC(1+,9C5) GA,GB,EA,EByR4Q4V1,V2
REAC(1,900) AIMyAN,CCyCT,T1IM,X0,Y0,DT
REAC(1,9C0) CC,C1,C2,C3,CI,CA

ECFC CHECK

WRITE(3,945) GA,GBsEAEB4RsQyV1,V2
WRITE(3,950) AIMyAN,CCoCTsT1MyX0,Y0,07
WRITE(3,955) CQ,Cl,C2,C3,CI,CA

NG=0C

¥=16
IGC=1./DT+1
EPS=0.CCCQOCO1

INITIAL APPRCXIMATICN

€0 10 J=1,1IGD
2(14J)=0.53
Z{Zv\]'=0043
2(32,4)=0.53
I(4,J1=0.43

2(5,J) =18,

Zley,J)=1C,
Z{7,+J)=350.
Z2{8,J1=35C.
Z{Q’J)="So
Z{1C,J)=-10.
I(11,4)=-5.,
I{12,J)=-15.
2(12,4)=-5,
Z(14,d)=-1.
2(15,41=0.
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Z(1€4J)=0,

10 CCONTINUE

15 CCATINUE
WRITE(3,910) (Jy(2(14J)41=1,10),J=1,1G0,10)
WRITE(3,511)(J,(2(T1,J)yI=11416),4J=1,1GC,10)
€0 50 J=1,1GD
CC 20 I=14M

20 X{I)=2(1,J)
CALL FFUNC(GA,GB+EA,EB+RyCyV1yV2,AIV,AN,CC,CQ4C1,C2,C3,C1+CA,
1 XCyY0y XoF)
DC 30 I=1,M™

3C FF(I4J)=F(I)

50 CCNTINUE

PARTICULAR SCLUTICN

MVH=C
IN{1,1)=0.53
IN(2,1)=0,43
IN(3,1)=0.53
ZN(4,1)=0.43
IN(5,1)=12,
lNl6’1’=COI
CO &0 I=7,M

6C ZIN(I,41)=0.0

5C0 CONTINUE
00 2CC N=1,1GD
AT1=DEXP(-EA/(R*Z{7,N)))*CA
BT1=DEXP{-EB/(R*Z(T7,N)))*CB
ATZ=DEXP(-EA/(R*Z{3,N)))*CA
BT2=DEXP(—-EB/(R*Z(8,N)))*CB
ATL1=EA/(R*Z(T+N)*Z(T,N))
BT11=EB/{R¥Z(T7,N)*2(T7,N))
ATz2=EA/(R*Z(84N}I*Z(8,N))
BT22=EB/ (R¥Z (B,N)*Z(8,N))
J1(1s1)==Q/VIi-AT1
JI(Ls7)==2(1,N)*AT1*AT11
J1(z,2)==Q/V1-BT1
J1(2,1)=AT1
JI(2,7)=Z(14N)*ATL*AT11-2(2,N)*BT1%*BT11
J1(2,1)=Q/Vv2
J1(3,3)=-Q/V2-AT2
J1(3,8)==Z(3,N)*AT2%AT22
J1(4,2)=Q/V2
J1(4,43)=AT2
J1(4,4)==-C/V2-8BT2
JI(4,B)=Z(3,N)*AT2%AT22-72(44N)*¥BT2¥3T22
J1(5,4)=C
J115,6)=-1.
J1(E46)=CCH+Z(14,N)/(CAXAN)=2,%CC *2(6,N)/AN=-Z(6,N)%Z2(14,N)/
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1 (CA®RANFAN)
J1(€414)=Z(64N)/(CAXAN)I=0.5/CA-05%Z16yNI*Z(64N)/(CA*ANXAN)
JLI(9,7T)=(Z(94yN)=Z(LC,yN))*AT1*AT11
J1(G6,9)=C/VL+AT1l
J1(9,10)==AT1
J1(S,11)==-Q/V2
JI1(10+7)=2(10,N)*BT1%BT11
J1(10,10)=Q/V1+BT1
JI1(1C,12)==Q/V2
JL(1198)={Z{11,N)=2Z(12,N))*AT2*AT22
J1(11,11)=C/V2+AT2
J1(11,12)==AT2
J1(12,8)=Z(12,0N)*BT2*BT22
J1(12+,12)=C/V2+BT2
J1(12,13)=-Q
J1{13,5)==2.%*C1l
J1{1446)=2.%CC*¥Z(144N)/AN+Z(14,N)*Z(144N)*0.5/(CA*ANEAN)
J1(14,13)=1.
J1(14514)==CC-2(144N)/(CAZAN)+2.%CC*Z(64N)/AN+Z(64N)*Z(14,4N)

1 Z7{CA*AN%*AN)

J1(1541)=(2(94N)=2(10,N)}#AT1*ATI11
J1(15+2)=Z(10,N)*BT1%BT11
JI015:7)=1Z(94yN)=Z(10sN))FATLI*ATI1*(ATLL1=2./Z(T,N))I¥RZ{1,N)+

1 Z(104N)*BT1I*Z(2,N)*BT11*(BT11-2./2Z(7,4N))
J1(1549)=2(1N)*AT1%AT11
J1I(15,10)==Z{1,N)*ATL*AT11+Z2{2,N)*BTL1*BT11
JI(1653)=(Z(11+N)-Z(12,N))*AT2%AT22
J1(16441=2(12,N)*BT2%BT22
J1(1648)=(Z{114N)=Z(124yN))I*Z(34N)*AT22%AT2%(AT22-2./2(8,N))+
1 ZU12N)*Z(44N)*BT2%BT22%(BT22-2./2Z(8,4N))
JL(16911)1=2(3,N)*AT2%AT22
J1{16412)==Z(3,N)*AT2¥AT22+2Z(4,N)%*BT2%BT22
[FINH.NE.O) GC TO 110
BO1)==(J1(1, 1)*Z(14N)+JL(1,7)%Z(T74N))I+FF(1,N)
Bl2)==(J1(2,2)%2(2yN)+JL(241)%2(LyN)+JL{2,7)%Z(T,N))+FF(2,N)
BU3)==(J1(3, 1)*¥Z(1yN)+J1(2,3)%Z(3,N}+JL(3,B)%Z(ByN)I+FF(3,N)
Bla)==(JL1(4y2)%Z(2,N)+J1(4,3)%Z(3,N)+J1(4,44)% {4 ,N)+J1(4,8)%*

1 ZLE4NY)+FF(4,4N)
BIS)==(J1(5,4)%Z(4,N)+J1(5,6)%2(6,N))+FF(5,N)
BUE)==(JL16,6)%Z{E/NI+JL(E414)%Z2(144N))+FF(64N)

B(7)=0.0
B(8)=0.0
BUS)I==(Jd1(9, TV4Z(7,N)+JL(S49}*Z(F4NI+JL(F,10)*Z(10,N)+

1 JI(9y11)*Z(11,N))I+FF(9,N)
BIL1C)==(JL(LO,7)*Z(7,N)+J1{10,10)%Z(104N)+J2(10,12)%2{12,N))+

1 FF{10,4N)
BO11)==(J1(1148)%Z(8y,N)+J1(11,411)%Z(L1y4N}+J1(11,12)%Z(12,N))+

1 FFI11,N)

Bl12)==(J1(12,3)%Z(8,N)+J1(12, 12)*1(12 NY+JL1(12,13)%Z2(13,N))+

L FF{124N)
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BIL3)==(JL(13,45)%Z(5,N))+FF(13,N)
Bl14)==(J1(14,6)%Z(6yN)+J1(14,13)%Z(13,N)+J1(14,14)%Z(144N))+
1 FF(144N)
BO15)Y==(J1(1541)*%Z(1L4yN)+J1(15,2)%2Z(2yN)+JL1(15,7)%Z(TyN)+J1(15,9)
1 ¥2(9yNI+J1(15,10)%Z(104N))+FF(15,N)
BI1E)==(J1(1643)%Z2(34N}+J1(16,4)%2(4,N)+J1(1648)*%Z(B,N)+J1(16,11)]
1 #Z(114NY+JL(164512)%Z(124N))+FF(164N)
GC TO 120
110 0O 115 I=14M
115 B(1)=0.0
120 CCNTINUE
CALL RUNGK
2C0 CONTINUE
IF(MH.NE.O) GO TO 300
DC 220 J=1,IGD
00 220 I=1,.M
ZP(14J)=IN(I,J)
22C CCNTINUE

HOMOGENEOUS SOLUTION

MH=1
CO 230 I=1,M
230 IN(I41)=C.C
IN(7,1)=1.,
GO TC 5CoO0
3C0 CCNTINUE
CO 250 J=1,IGD
DG 350 I=1,M
350 ZH(NH.I,J)=ZN‘!'J)
GO TO (420+430,440,450446C,47C,480,490,501,510),MH
420 VE=2
CO 425 I=1,M
425 IN(1,1)=0.0

Zqufl’zln
GC T0 500
43C MH=3

CO 435 [=1,M
435 IN(1,1)=0.0

Zqu'1’=1-

GO T0 5CO
440 MEH=4

DC 445 1=14M
445 IN(1,1)=0.0

450 MH=5
BC 455 1=1,M
455 IN(I[,1)=0.C
IN(1ls1)=1.
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460

465

470

475

480

485

490

495

501

505

510

520

53C

550

570

580

GO TO 5CO
ME=E

DO 465 I=14M
IN(I,+1)=0.0
IN(12,1)=1.
GC T0 500
ME=7 :
CO 475 I=1sM
IN(I,1)=0.0
INI13,1)=1.
GO TO 5GC
ME=8

0C 485 I=1,.M
IN(I,1)=0.0
IN(1441)=1.
GO TO 500
MH=9

DC 495 I=14M
IN{I,1)=0.0
IN(15,1})=1.
GO 70 5CO
#H=10

CC 505 I=1,M
ZN{I]].)”0.0
IN(164s1)=1.
GC TO0 500
CCANTINUE

BOUNCARY CONDITION

DC 520 I=9,M

ZFC{1)=0.0

CO 550 J=1,10

CC 530 [=9,16

I1=1-8

JI(TI,J)=2H(J,1,IGD}
J1(94J)=2%CT*{ZF(Jy8431)=Ze%ZFE(JyT41))=ZH{Js15,1)
JI{1C,J)=2.%CT* (ZH(JpTsLl}=2ZH(J38,1})=ZH(J516,+1)
D0 570 [=9,16

1I=1-8

B{II)=ZFC{I)-2ZP(I,IGL)

BIS)I=ZP (15,1 )=2.%CT*{ZP{8,1)=2.%2P(T7,1)+T1M)
B(1C)=2ZP( 1641 )1=2.*%CT*(ZP{7412)-2IP(8,1))

CC 580 J=1,10

DC 580 I=1,10

[I=(J=-1)*10+1

ACTITY=J111,0)

CALL DGELG(B,A310414EPS,IER)

CENERAL SOLUTION
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DC 62C J=1,IGD

CC €20 [I=1,M

§=C.0

DC 610 L=1,10
610 S=S+B(L)*ZH(L+I1,J)
620 IN(I4J)=2P(1,J)+S

PRINT OQUT SOLUTIONS

NC=NO+1
WRITE(3,912) NC
NRITE[3'915)in(ZP'I,J’|I=1th)!J=13IGD!10)
WRITE(3,911) (Jy(ZP(I1,4J)sI=11,16),J=1,1G0,10)
CC €30 L=1,10
WRITE(3,4920) Ly(Jy{ZH{L I 4J)s1=1,10),4J=1,1GD,10)
630 WRITE(3,911) {(J,{ZH(L,I4J)sI=11,16)4J=1,I1GD,10)
WRITE(3,925) (B(I),I=1,10)
WRITE(3,4930) (Jy{ZN(T14J),I=1,10),J=1,IGLC)
WRITE(35911) (Je(ZIN(IsJ)yI=11416)4J=1,1IGE)
CC 635 J=1,1GC
635 ADVIJI=ZN(14,4J)*(IN(6J)—AN)/ (2. %CAXANXIN(64J))
WRITE(3,940) (J,ADVI(J),J=1,1GD)

CALCULATE CBJ

OBJ==CT#((TIM=ZN(T741) )% %24 (ZIN(T7,1)=-2ZN(8B,1))%*%x2)
CC 640 J=1,IGC
CBJU=0BJ+(C1*CC*IN(6yJ)+C2*Q*IN(3,J)+C3%C*(1—-IN(3,J)-IN(4,J))
1 =CI*(AIM=IN(54J) ) %%2-CA%((ZN(144J)*(ZN(6yJ)=AN)%0,.5)/
2 (CA*AN) )*%2) %DT
640 CCANTINUE
WRITE(3,935) 0BJ
IFINO.EQ.13) GO TO 1111
CC €50 J=1,IGC
DC €50 I=1,M
650 Z(I,4J)=IN(I,4J)

SET LIMITS

IF(Z(741).LT.3CC.) Z(7,1)=3C0.
IF(Z(841).LT.300.) Z(8,1)=300.
[IF(Z(7,1).GT.37Cs) Z(7,1)=370.
IF(Z(8+1).GT«37C.) Z2(8,1)=370.
OC é60 J=1,I1GC
Z(7,4)=2(7,1)

66C Z(E4J)=21(8,1)
GC 70 15

FORMAT STATEMENT
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900 FCRNMAT(BF10.3)

9C5 FCRMAT(2D10.3,6F10.3)

910 FORMATI(' STARTING APPROXINATION'///»
1 2X,'GD" 37Xy "2Z1"y10X,%22"',10X,"237,10X,"'2Z4",10X,*2Z5%,10X,'26",
2 1CXy"Z7",10X,4"28" y10X4'25"410X,'Z10"4//4(14,10F12.5))

911 FORMATU/7/+2Xs'CGDY 3 TXs"Z11%y 9X,'212%y S9Xy'213%y 9Xy'214", 9X,
1 *215%, 9X4'216'4//41144,6F12.5))

912 FORMAT(1H1,'NC. CF ITERATICN=',12)

915 FORMAT(////77/+' PARTICULAR SOLU's//,
1 2Xy"'GDY 97Xy *Z1%,10X,%22%310Xy*Z3%,10X,"24',10X,"'25',10X,'26"',
2 1CXy"27'510X,728"410X,"2G",10X,'210"4//,+,(14,10F12.5))

92C FORMAT(/////7+* HOMOGENEOLS SCLU'sI12,//,
1 2X3'GD s Xy "Z1" 10X, ' 22, 10X %237 ,10X4*Z24",10X,"Z5%,10X,'26",
2 1CXy"Z7*'410X,*Z8" 410X 'LG"y10X,'210"y//4(14,10F12.5))

925 FORNMAT(////y ' INTEGRATION CONSTANT',//,(10012.4))

930 FORMAT(/////777s ¥ GENERAL SOLUTION',//,
L 2Xy GO " 97X "Z1"' 410X ,"22",10X4"23%,10X,'24",10X,'25,10X,'26",
2 1CXs"ZT7',10X,"28"y10X4*'29%,10X,'210",//4+(14,10F12.5))

935 FORMAT(///+* O B J ="4F13.6,/20(1H*))}

940 FORVMATI(///4+" ADVERTISMENT'y/,(14,5X4F12.51}))

945 FCRMAT(1HO+"GA+GB+sEALEByRyQyV1,4V2',//,2C010.3,6F10+3,//)

950 FORMAT(IHOy"AIMsANGCCoCT9TLIMyX0»YCyDT*y//48F10.54/7/)

955 FCRMAT(1HO,*'CCyC14C2,C34CI4CA'y//48F1Ca54/7)

970 FCRMAT(8F10.5)

1111 CCNTINUE
STCP
ENC



OO0 0

162

SUBROUTINE FFUNC(GA,GByEAZEByR,QyV1,V2,AIM,AN,CC,CQ4C1,4C2,C3,
1 CIsCAyX04Y0y2Z4+F)

THIS SUBROUTINE CALCULATES THE FUNCTIONAL VALUE OF THE
16 CIFFERENTIAL EQUATIONS

IMPLICIT REAL*8(A-H,0-1)
DIMENSION 2(16),F(16)
AT1=DEXP(-EA/(R*Z(7 )))*CA
BT1=DEXP(-EB/(R*Z(7 )))*GB
AT2=DEXP(-EA/{R*¥Z(8 )))*CA
BTZ2=DEXP(-EB/(R*Z(8 )))*GB
FI1)=Q/V1*(X0-Z(1))-ATL*Z(1)
F{2)=Q/V1*(Y0-Z(2))-BT1*Z(2)+AT1*Z(1)
F(3)=Q/V2*(Z(1)-2(3))-AT2%*Z(3}
Fl4)=Q/V2%(Z(2)=-2(4))-BT2*Z(4)+AT2%Z2(3)
FI5)=Q0%2(4)-21(6)
FIE)=(AN=Z(6))*(CC*Z(6)+Z(14)*({2(6)=-AN)}/{2.*CA*AN))/AN
F(7)=0.0
F{g8)=0.0 :
FIS)=Q*(Z(9)/V1-Z(11)/V2)+(Z(9)-72(10))*AT1
FI1C)=Q*(Z(10)/V1-2(12)/Vv2)+Z(10)*BT1
FU11)=Z(11)*Q/V2+(Z2(11)-2(12))*AT2+Q*(C2-C3)
F(12)=2(12)%Q/V2+Z(12)%BT2-Q*(C3+2(13))
F(13)=2.%CI*(AIM=-Z(5))
FU14)=C1*CQ+Z(13)-CC*Z(14)-2(14)*2[14)/(2.%CA*AN)+2,%CC*2(6)%
1 Z(14)/AN+Z216)*2(14)%2(14)/(2.*CAXAN®AN)

FOL5)=ATL1*Z(1)*(EA/(R¥Z(TI*Z(T)))I*(Z(9)-Z(10))+Z(10)*BT1%Z(2)*EB

1 Z(RXZ(T)%Z(T7))
FU16)=12(11)-2(12))*AT2*Z(3)*EA/(R*Z(8)*2(8))+2(12)%2(4)*BT2
1 *EB/(R*2(8)*Z(8))

RETURN

ENC
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SUBROUTINE RUNGK

RUNGE-KUTTA

THIS SUBROUTINE IS USED TC INTEGRATE 16 LINEARIZED
ECLATIONS SIMULTANEOUSLY

IMPLICIT REAL*8(A-H,0-2)
DIVENSION ZN(164y 51)4J1(1€+16)4RM(4416)+RZ(16),B(16)

' DOLBLE PRECISICN J1

COMMON ZNyJ1sRM4RZsB+DTsMeN

CO 10 MM=1,M

RZ{MM)=ZN(MM,yN)

DO 4C L=1,4

RMILy1)=(J1(1,1)%RZ(1)+JL(L,T)*RZ(T7)+B(1))%DT
RVILe2)=1{J1(242)%R2(2)4J1(2,1)%RZ(1)+JL(2,T)*RZ(T)+B(2))*DT
RMILy3)=(J1(3,1)*%RZ(1)+J11(3,3)*%RZ(3)+J1(3,8)%RZ(8)+B(3))*DT
RMILy4)=(J1(452)*%RZ(2)+J1(4,3)%R2(3)+J1(4,4)*RZ(4)+J1(4,8)%*
1 R2(8)+B(4))*CT
RMILS5)=(J1(5,4)*%RZ(4)+J1(5,6)*%RZ(6)+B(5))*DT
RMILy6)=(JL(66)*RZ(6I+JL(6414)*RZ(14)+B(6))%DT

RM{L,7)=0.0

RM(L!8)=OOO
RMIL+9)=(J1(9,T)*RZ(T7T)+J1(9,9)%RZ(9)+J1(9,10)*RZ(10)+
1 J1(9,11)*%RZ(11)+B(9))*DT
RMIL,10)=(J1(10,7)*%¥RZ(7T)I+J1(10,10)1%RZ(10)+J1(10,12)*RZ(12)+
1 B{10))*CT
RMILy11)=(J1(11,8)%RZ(B}+J1{11,11)%RZ(11)+J1(11,12)%RZ(12)+
1 B(11))*DT
RM(L,12)=(J1(12,8)*%RZ(8)+J1(12,12)%RZ(12)4J1(12,13)*RZ(13)+
1 B(12))*DT

RM{L,13)=(J1(13,5)%RZ(5)+8(13))*DT
RM{Ls14)=(J1(14,6)%RZ(6)+J1{14,13)%RZ{13)+J1(14,14)*RZ(14)+
1 B(14))*DT
RMIL,15)=(J1(15,1)%RZ(1)+JL(15,2)%RZ(2)+J1(15,7)%RZ(T)+

1 JI(15,9)%RZ(9)+J1(15,10)%RZ(10)+B(15))*DT
RM{Ly16)=1J1(16,3)%RZ(3)+J1(16,4)*R2Z(4)+J1(16,8)%RZ(8)+

1 JI(16411)*%RZ(11)+J1(16,12)%RZ(12)+B(16))*CT

AAA=0-5

IF(L.EQ.3) AAA=1,

DO 40 MM=1,M

RZ(MM)=ZN(MM,N)+AAAXRM(L,MM)

CCNTINUE

0C 50 I=1,M
INCIoN+L)=ZN(TyNI+(RM{L14I)+2.%RM(2,1)+2.%RM(3,]1)+RM(4,1)) /6.
RETURN

END
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SUBRCUTINE CGELG

PURPOSE
TO SOLVE A GENERAL SYSTEM CF SIMULTANEOUS LINEAR EQUATIONS.

CALL DGELG(R,AyMyN,EPS,TER)}

CESCRIPTION CF PARAMETERS
R -~ DOUBLE PRECISION M BY N RIGHT HAND SIDE MATRIX
{DESTROYED)« ON RETURN R CONTAINS THE SOLUTIONS
OF THE ECUATIONS.

A - DOUBLE PRECISION M BY M CCEFFICIENT MATRIX
(DESTROYED) .

M - THE NUMBER GF ECUATICNS IN THE SYSTEM.

N - THE NUMBER OF RIGHT HAND SIDE VECTORS.,

EPS = SINGLE PRECISION INPUT CCNSTANT WHICH IS USED AS
RELATIVE TCLERANCE FOR TEST ON LOSS OF
SIGNIFICANCE. '

IER = RESULTING ERROR PARAMETER CODED AS FOLLOWS
[IER=0 - NC ERRCR,

TER==1 - NC RESULT BECAUSE OF M LESS THAN 1 OR
PIVOT ELEMENT AT ANY ELIMINATION STEP
ECUAL TO 0,

IER=K = WARNING CUE TO PCSSIBLE LOSS OF SIGNIFI-
CANCE INDICATED AT ELIMINATION STEP K+l,
WHFERE PIVOT ELEMENT WAS LESS THAN OR
EQUAL TO THE INTERNAL TOLERANCE EPS TIMES
ABSOLUTELY GREATEST ELEMENT OF MATRIX A.

REMARKS
INPUT MATRICES R ANC A ARE ASSUMEC TO BE STORED COLUMNWISE
IN M*N RESP. M*M SUCCESSIVE STORAGE LOCATIONS. CN RETURN
SOLUTION MATRIX R IS STOREC COLUMNWISE TOO.
THE PROCEDURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M IS
GREATER THAN © AND PIVOT ELEMENTS AT ALL ELIMINATION STEPS
ARE DIFFERENT FRUM C. HOWEVER WARNING IER=K = IF GIVEN -
INDICATES POSSIBLE LOSS OF SIGNIFICANCE. IN CASE OF A WELL
SCALED MATRIX A AND APPRCPRIATE TCLERANCE EPS, IER=K MAY BE
INTERPRETED THAT MATRIX A FAS THE RANK K. NO WARNING IS
GIVEN IN CASE M=1.

SUBROUTINES AND FUNCTICN SUBPROGRAMS REGUIRED
NCNE

METHOD

SOLUTION IS CONE BY MEANS OF GAUSS-ELIMINATION WITH
COMPLETE PIVUTING.

.l..""...I..lI....'."...........'I..'.I'......-...."....l....
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SUBROUTINE DGELG(RsA,VMyN,EPS,IER)

DINMENSION A(1),R(1)
DOLBLE PRECISION RyA,PIV,TB,TOL.PIVI,CABS,+EPS
IF(M)23,23,1

SEARCH FOR GREATEST ELEMENT IN MATRIX A
[ER=0 '

PIV=0.D0

MM=NEM

NM=N#&M

CO 3 L=1,MM

TB=CABS(A(L))

IF(TB-PIV)3,3,2

PIV=T8

1=L

CCNTINUE

TOL=EPS%PIV |
A(I) IS PIVOT ELEMENT. PIV CONTAINS THE ABSOLUTE VALUE OF A(I).

START ELIMINATION LCOP
LST=1
cC 17 K=1!M

TEST ON SINGULARITY

IFI(PIV)23,23,4

IFIIER)T7T45,7

IF{PIV-TCL)6,6,7

IER=K-1

PIVI=1.CO/A(])

J=(I-1)/M

I=]-J%M=-K

J=J+1-K

I+K IS RCW-INDEX, J+K COLUMN-INDEX OF PIVOT ELEMENT

PIVOT ROW REDUCTION AND RCW INTERCHANGE IN RIGHT HAND SIDE R
CO 8 L=K'NH'M

LL=L+1

TB=PIVI*RI(LL)

R{LL)=R({L)

RIL}=TB

IS ELIMINATION TERMINATED
IF(K-M)9,18,18

CCLULMN INTERCHANGE IN MATRIX A
LEND=LST+M-K
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11

12

13

14

15

16

17

18
19

[F(J)12,12,410
II=J%M

CO 11 L=LST,LEND
TB=A(L)

LL=L+II
Al(L)=A(LL)
A(LL)=TB

RCh INTERCHANGE AND PIVCT ROW RECUCTION IN MATRIX A

CC 13 L=LSTyMVN,M
LL=L+I

CTB=PIVI*A(LL)

A{LL)=AL(L)
A{L)=TB

SAVE COLUMN INTERCHANGE INFORMATION
A(LST)=J

ELEVMENT REDUCTION AND NEXT PIVOT SEARCH
PIv=0.D0

LST=LST+1

J=C

CC 16 II=LST,LENC
PIVI=—-A(IT)

[ST=11+M

J=J+1

LL=L=-J
A(L)=A(L)+PIVI*A(LL)
TB=CABS (A(L))
IF{TB-PIV)15,15,14
PIv=T8B

I=L

CCATINUE

DC 16 L=KyNM,M

LL=L+J
RILL)=R(LL)+PIVI*RI(L)
LST=LST+M

ENC OF ELIMINATIGN LCOP

BACK SUBSTITUTION AND BACK INTERCHANGE
IF(V=-1)23,22,19

[ST=MM+M

LST=M+]

DC 21 I=2,M

I1I=LST-1

IST=IST-LST

L=IST—-M

L=A(L)+,.5D0C

166
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21
22

23

CO 21 J=IT,NM,M
IB=R(J)

LL=J

LL=LL+1
TB=TB-A(K)*R{LL)
K=J+L

RUJ)I=R(K)
R(K)=TB

RETLURN

ERRCR RETURN
IER=-1
RETLRN

ENC
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APPENDIX 2

COMPUTER PROGRAM USED IN CHAPTER 5
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THESIS,PRCBLEM 2

ONE REACTOR ONLY

THEIS PROCRAM SCLVES A SET OF 12 DIFF, EQULATIONS TWO-POINT
SPLIT TYPE USING THE SUPERPOSITICN PRINCIPLE AND RUNGE-
KUTTA TECHNIQUE

IMPLICIT REAL*8(A-H,0-2)
DINVENSION Z{12y 51),X(12),FF(12, 51),42ZN(12y 51},+J1(12412),

1 B(12)4y2ZP(12, 51)4ZH(084y12, 51),ZFC(16)4RZ(12),RM(4,12),F(12)

221196}, A0V (51}
ODOLBLE PRECISION J1
COVMNON ZNyJ1+RMyRZ4ByDTyMyN

REAC IN CATA

REAC(1+9C5) GA,GB,EALEB4R,Q
REAC(149C0O0) AIMsAN4JCCyCTyT1IMX0sY0,DT
REAC(1,9CC) CC4C1,C24C3,CI,CA
READ(1,901) AC+Al.A2,8C:B1,4B2

ECHC CHECK

WRITE(3,545) GA,GB,EA,EB4R,Q,V]1,V2
WRITE(3,950) AIM,AN,CCHsCT»T1IM,X0,Y0,DT
WRITE(3,955) CC,C1,C2,C3,CI,CA
WRITE(3,560) AO,Al,A2,BC,81,B2

NO=C

M=12
IGC=1./0T+1
EP$=0.0000001

INITIAL APPROXIMATION

b0 10 J=1,I1GD
Z2(1,J)=0.43
Z124J)=0.53
Z{3,41=340.
Z{‘ilJ}:lO-
Zl5,U)=4,
Z(6|J’=£fn
217,3)=-20.
ZIE'J}=”4C|
2(G,J1=C.0
2{10,J)=-0.1
2(11,4)=0.C
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2(12,J)=0.0
10 CCNTINUE
15 CCNTINUE
NO=NO+1
WRITE(3,912) NO
WRITE(3,910) (J,(Z(14J),1=1,10),J=1,1GC,10)
WRITE(3,911)(Js(Z(14J)sI=11y M),J=1,1IGD,y10)
CC 50 J=1,1GD
DC 20 I=14M
20 X(I)=Z(1,4J)
CALL FFUNC(GAsGB/+EAJEByRyC AIMyAN,CC+CQ,4C1,C2,C3,CI+CA,
1 XC,Y¥0, X,F)
DO 30 I=1,M
30 FF(I.J)=F(])
50 CCANTINUE

PARTICULAR SOLUTICN

MH=0
IN(1,1)=0.53
IN(251)=0.43
IN(3,1)=0.0
ZN(4'1’=000
IN(S,1)=T.,
IN(€,1)=0,1
CO 60 I=7,M

6C ZIN(141)=0.0

50C CONTINUE
L0 2C2 N=1,1GD
AT1=DEXP{—-EA/ (R*Z(3,N)))*CA
BT1=DEXP(-EB/(R*Z(3,N)))*CB
AT11=EA/(R*¥Z(3,N)*¥Z(3,N))
BT11=EB/(R*¥Z[3,N)*Z{3,N))
Vi=Z1{4,N)
viz=vi*yl
J1(1,1)=-Q/V1-AT1l
J1(143)==2Z(1,N)*ATL*ATL11
J1{1:4)==-Q%(X0=Z(1,N))/V12
J1(2,1)=AT1
J1(2,2)=-Q/V1-BT1
JL(2:3)=—2(2yN)*BT1%*BT114+Z2(1,N)*AT1%AT11
J1(2,4)=-0%({YC-2(2,N))/V1Z2
J1(5,2)=Q
J1(5,6)==1,
J1(E,6)=CC=2.%Z(64yNYACC/AN+Z (L2, N)/(CAXAN)I=2(64N)*Z(12,N)/
1 (CAXAN®AN)
JIt6412)=216 NI/ (CA®AN) =L o/ (2.%CA)=Z(64NYRZ (64N} /(2. %CAXAN¥AN)
JU(T743)=(Z(7T,N)=2(B,N))*AT1%AT1]
JIt7,4)==2(74,N)%xCQ/V12
J1(7,7)=CQ/VL+AT1
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J1{(7,8)=—-AT1
J1(8,3)=2(8,N)*BTL*BT11
J1(844)=—2(8y,N)*C/V12
J1(E48)=Q/V1+BT1
J1{8,11)=-0
J1{941)={Z{(T4N)-Z(8,N)})*AT1*AT11
J11(9,2)=Z18,N)*BTL*BT11
J1(G43)=(Z{TyN)=Z(BsNII*2Z{1,N)RATL*ATLLI*{AT11~-2./Z(3,N))+
1 ZiesN)*Z{ZrN)*BTI*BTII*(ETlle-/Z(31N),
J1(G,7)=Z(1,N)*AT1*AT11
J119,48)==Z(1 ¢N)*AT1*AT11+2(2,N)*BTL*BT11
J1{10,1)==2Z(7,N)*Q/V12
J1I{10,2)==Z(8,N)*C/V12
JI(1C,4)=(ZE ToNIB{XO=Z{L 4N I +2{B yNYIX[YO=Z(2,N)))*Q*(=-2.)/(V1%EV12)
J1{10, 7)=Q*( X0=2{1,N))/V12
J1{10,8)=C*{Y0-Z(2,N))/V12Z
J1(11,45)==2.%C]
J1{12:6)=2%CC*Z(12,N)/AN+Z (12 ,N)*Z(12,N)/[2.#CA*AN*AN)
Ji(12,11)=1.
J1{12,12)==CC-Z2(12N)/(CA*AN) 42, 2CC*Z{6N)/AN+Z(E64N)*Z[12,N)/
1 (CAERANZAN)
IFI{MH.NE.QO) GO TG 110
Bll)==(J1(ly L) %*Z(14N)+JL1(1s3)%Z(3,N)+JL(Ly4)%Z(4sN))+FF{14N)
BU2)==(J1{2,1)%Z(1,N})+J2(2,2)%2(2,N)+J1(2,3)%Z(3, NJ+J1{2,4)*
1 Z{44N))+FF{24N)
B(3)=0.0
B{4)=0.0
BUS)==(J1(5421%Z(2,N)+JL(S46)%Z2{E,N)Y+FF(S,N)
BUE)==(JL(6:06)%Z(6N)+JL(E412)%Z({12sN))I+FF(6,N)
BUT)==(JLUTy3)%Z(3yN)+J1(T94) 22 (44N} +IL(T3T7)*Z(TyN)I+J1(T,8)%
1 Z(8yN))+FFIT,4N) _
BIEY==(J1(By3)*Z{3yN)+JL(E34)}*Z(4,N)+J1(B,8)%Z(8,N)+J1(8,11)%
1 ZUL114N))I+FF(8,4N)
BUG)=—{JY {9, L) *Z(L N)+J1(G,2)%Z(2,N)+J1(9,3)%Z(3,N)+J1(9,7)%
1 Z{TeN)I+JL{9:8)%Z(ByN)I+FF{94N)
Bl1O)==(J1(10,1)1%Z(LyN)+J1(1042)%2(2,N)+J1(10,4)%Z(4,N)+J1(10,7)%
1 2(74N)+J1(10,8)*%Z(84N))+FF{10,N)
Bl11l)==Jl(1Ls5)%2Z(54N)+FF(11,4N)
BU12)=—=(J1(12,6)%Z(6 4N} +J1(12,12)%2(12,N)+J1(12,11)%Z(11,N))+
1 FF(12,N)
GO T0 120
110 CO 115 I=14M ¥
115 B(I1)=0.0
120 CCNTINUE
CALL RUNGK
200 CCNTINUE
IFIMH.NE.Q) GC TO 300
£ 220 J=1,IGD
CO 220 I=1,M
IPII D) =ZN(T1,4J)
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350
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420
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440
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CONTINUE
WRITE(3,915)(J,(ZP(1,J)41=1,10),J=1,1GD,10)
WRITE(3,911) (J,(ZP(I,4J)4I=11y M)},4J=1,IGC,10)

HFONCGENEGUS SOLUTION

MH=1

CO 230 I=1,M

IN(I,1)=0.0

IN(3,1)=1.

GC 70 500

CCNTINUE

CO 350 J=1,IGC

00 350 I=1,M

ZF‘FH|10J1=ZN‘11J)
WRITE(3,920)MFy (Jy {ZHIMKE,y14J),1=1,1C)4J=1,1GD,10)
hR[TE(3'911} ‘Jv(ZH(MHQI!J]yIzlls M)1J=111G0g10)
GC TO (420,430,4404,450,46C+470,480,4550) 4VMH

VE=2

IN{3,1)=0.0

ZNI4'1)=100

GO 10 500

ME=13

IN(4411=0.0

ZN{7,1)=1.0

CO 70 500

MH=4

EN(741)=0.0

IN(8s1)=1.0C

GG TO 500

ME=5

IN(B,1)=0.C

IN(G9,1)=1.C

GC TC 500

MH=€

IN{9,1)=0.0

IN(1C+1)=1.0

GC 1O 5C0
MH=T
IN(10,41)=
IN(11,1)=
GC T0 500
MH=8
IN(11+41)=C.0
IN(12,1)=1.0
GC TO 5CO
CCNTINUE

0.0
1.0

BCUNCARY CCNDITICN
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o000

OO0

562

563

570

580

610
620

635

640

650

CO 563 J=1,8

CC 562 1=7,12

[1=1-6

J1(II4J)=2ZH{J,1,1IGD)
J1(74J)=2.%CT*Zh(J,3,1)+ZF[Jy9,41)
J1(8,J)=2.%A2%7ZH(Jy4,1)+2F(J,410,1)
CO S70 I=7,12

I=1-6

BIII)= -ZP(1,IGD)
B(7)=2.*%CT*(T1IM-ZP(3,1))=-2P(9,1)
B(B)=-A1l-2.%A2%2P(441)-2ZP(10,41)
LC 580 J=1,8

DO 580 I=1,8

[I=(J-1)%*8+]

ACII)=J1(1,4)

CALL DGELG(ByA, 8,1,EPS, IER)
WRITE(3,925) (8(I},I=1, 8)

GENERAL SOLUTION

L0 620 J=1,I1GD

CO €20 I=1.M

$S=C.0

DO €610 L=1,8
S=S4B(L)*ZH(L+1,J)
IN(I4J)=ZP(14J)+S

PRINT OUT SOLUTICNS

HR!TE(31930) (Jv(ZN!I!J)!I=1110)!J=11150)
WRITE(3,911) (Jy(ZN(I4J),I=11, M),J=1,1IGC)

DO &35 J=1,1G0

ACVIJI=ZIN(12,J)*%(IN(64J)=AN) /(2. %CAXAN¥IN(6,J))

WRITE(3,94C) (J,ACVIJ),J=1,1GD)
CALCULATE 0BJ

CBJ==CT* (TIM=ZN(3,1))%*%*2

1 —(ACH+ALXZIN{ 44,1)+A2%IN( 441)%IN( 441))

CO 640 J=1,1GD
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CBJ=0BJ+{CI*CC*IN(64JI+C2¥Q*¥IN(1,J)+C3%Q*(1.~IN(1,J)=-IN(2,J))

1 =CI*(AIM=ZN(S5,J))*%x2-CA¥ADVI(J)**2%IN(6,J)%%2)*DT

CCANTINUE

WRITE(3,935) (0BJ
IFINOD.EQ.17) GO TO 1111
CO €50 J=1,IGD

CC €50 I=1,M
Z([vJ)=ZN(loJ,

SET LIMITS
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lF[Zl3' 1).LT.3C0,) 2(3'1)33000
IF(Z2(3,41).GT4390.) Z(3,1)=390.
CO €60 J=1,1GD
2(2,J)=72(3,1)
66C CONTINUE
D0 €61 J=1,1GD
IF(Z(1yJ)elTe04) Z(1,4)=0.0
661 IF(Z(24J).GT.1.) Z(2,5J)=1.
GO T0 15

FORMAT STATEMENT

900 FCRFAT(8F10.3)

901 FCORMATI(BF10.6)

905 FORMAT(2D010.3,6F10.3)

910 FORMAT(' STARTING APPROXINATION'///,
1 2Xy°GD* yTXy*'Z1',10X,*22"y10X,"'23',10Xy'Z4"',10Xy"'25"%,10X,"'26",
2 1CXy'Z7"410X,%Z8",10X,*2S5",10X,'2Z10'y//4(14,10F12.5))

911 FORMATU(///+2Xs "GO 9TXy"Z11%y 9X4'212%4//,
1 (I4,2F12.5))

912 FORMAT(1H1,'NO. CF ITERATICN=",12)

915 FORNAT(////7/+* PARTICULAR SOLU',//,
L 2Xo"GD g 7Xe "Z1%y10X, 722" y10Xy*23%,10X,"24',10X,"25%',10X,"'26",
2 10X,"27"410X,'Z8" 410X, '2G5*',10X,"210"'4//,114,10F12.5))

920 FORMATI(////7/+" HOMOGENEOLS SOLU' 412477,
1 2Xo'GD "y TXy*Z1',10X,"22%,10X,%23",10X,"24%,10X,'25",10X%X,"26"',
2 10Xy "27% 910Xy "'ZB" 410Xy '25"310X4*'210%'y//4(14410F12.5))

925 FORMAT(///7/7y ' INTEGRATION CONSTANT',//,(10012.4))

930 FORMAT(////777/+ * GENERAL SOLUTICN',//,
1 2Xe"GDY 9y 7Xy"Z1" 410X ,°Z2'y10Xy*23",10Xy'24"410X4"'25',10X4'26",
2 1CXy'27',10X,"'28",10X,'29%,10X,%2Z10",/7,(14,10F12.5))

935 FORMAT(///+* O B J =',F13.6,/2C(1H%*))

940 FCRMATI(///," ACVERTISNMENT's/4(1445X4F12.5))

945 FCRMAT(1HO,'GA+GBJEALEByR+QyV1,V2'4//32C10.3,6F10.3,//)

950 FORMAT({1HOs'AIMsANGCC+CT9yTIM,X0sY0OsDT "/ /+8FL1054/7)

955 FCRMAT(1HO4'CC,C1,C2,C3,4CI4CA',//,8F10.5,//)

960 FCRMAT(1HC,*"AC,Al,A2,BC4B14B2"+//+8F10.6,//)

1111 STCP
ENC
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SUBROUTINE FFUNCI(GAGB+EA,EB4R4Q, AIM,AN,CC,CQ4C1,C2,C3,

1 CI,CA1X0|Y0'Z'F)

THIS SUBROUT INE CALCULATES THE FUNCTIONAL VALUE OF THE
12 CIFFERENTIAL ECUATIONS

IMPLICIT REAL¥8(A-H,0-2)
DIMENSION Z(12),F(12)

V1=2(4)

AT1=DEXP(-EA/(R*Z(3)))%*GA

BT1=DEXP (~EB/ (R*Z(3)))%GB

F(1)=Q/V1#(X0-2Z(1))-AT1%Z(1)
F(2)=Q/V1%(Y0-Z(2))-BT1*Z(2)+AT1%Z(1)

F(3)=0.0

F(4)=0.0

F{5)=Q%2(2)-216)

FU6)=(AN=-Z(6) )% (CCHZI6)+Z(12)%(Z(6)-AN) /(2. *CA*AN) ) /AN
FUT)=Z(T7)%Q/V1+(Z(T)-2(8))*AT1+C*(C2-C3)
F8)=Z(8)%Q/V1+Z(8)*BT1-Q*(2(11)-C3)

FIS)=(Z(T7)=-Z(8))*AT1*Z{1)*EA/(R¥Z2(31%Z2(3))+2(8)*BT1*Z(2)*EB/

1 (R¥Z2(3)%Z2(3))
FIIC)=Z (1) *Q*(X0—-Z({1))/V1#%2+Z2(B)*Q*(Y0-2Z(2))/V1%**2
FU11)=2.*%CI*(AIM-2(5))

FU12)=C1*CQ+Z{11)-CC*Z(12)-2(12)%Z(12)/(2.%CA%AN)+2.%CC*Z(6)%*

1 Z(12)/AN+Z(6)*Z2(12)*%Z(12)/(2.%CA*AN®AN)
RETURN
ENC
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SUBROUTINE RUNGK

RUNGE-KUTTA

THIS.SUBROUTINE IS USED TC INTEGRATE 12 LINEARIZED
ECUATIONS SIMULTANEOUSLY

IMPLICIT REAL*8(A-H,0-2)

DIVENSION ZN(12, 51),J1(12,12),RM(4,12),RZ(12),B(12)

DOUBLE PRECISION J1

COMMON ZN+sJ1sRMyRZ4B+DTsMyN

DO 10 MM=1,M

RZ(MM)I=ZN(MM,yN)

DO 40 L=1,4

RMILy 1)={J1(L1ls1)*RZ{1I+JL(1,3)*RZ(3)+JL(1,4)%RZ(4)+B(1))*DT
RMIL2)=(J1(2,1)1%RZ(1)+J1(2,2)FRZ(2)4+JL(2,3)%RZ(3)+J1(2,4)%
1 RZ{4)+B(2))*DT '

RM{L,3)=0.0

RN(L,‘!):O-O

RMIL:5)=(J1(5,42)%RZ(2)4J1(5,6)%RZ(6)+B(5))*DT
RMILy6)={J1{6,46)%¥RZ(6)+JI1(6,4,12)%RZ(12)+B(6))*DT
RMILy7T)=(JL(Te3)#RZ(3)+JL(T34)*RZ(4)I+JL(ToT)%*RZ(TI+J1(T,8)%RZ(8)
1 +8(7))*DT
RMILy8)=(J1(843)*%RZ(3)+JL1(8,4)*RZ(4)+J1(8,8)*%RZ(8)+J1(8,11)*RZ(11)
1 +B(8))*DT
RMIL9)=(J1(941)%RZ(1)+J1(9,2)%RZ(2)+J1(9,3)*RZ(3)+J1(9,7)%
1 RZ(T)+J1{(9,8)%RZ(B)+B(9))*DT
RMIL,10)=(J1(10,1)*RZ(1)+J1(10+2)%RZ(2)+J1(1044)%RZ(4)+J1(1C,7)
1 *RZ(7)+J1(10,8)*RZ(BI+B(10))*DT
RMIL,y11)=(J1(11+5)*%RZ(5)+B(11))*0T
RMILy12)=(J1{12,6)*%¥RZ(6)+J1(12,11)*%RZ(11L)+J1(12,412)%
1 RZ(12)+B(12))*DT

AAA=0.5 ‘

[F(L.EQ.?'} AAA=1.

00 40 MM=1,M

RZ(MM)=ZN(MMyN)+AAAXRM(L,VMM)

CONTINUE

DO 50 I=1,M .
INCToN+L)=ZNCT o N)+(RM(L1, 1) +2.%RM( 2,1 )+2.*%RM(3,]1)+RM(4,1)) /6,
RETLURN

END
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ABSTRACT

In recent years, various techniques have been developed for
seeking optimal design and operating policies of dynamic
industrial management systems. However, each of these technlques
has its own drawbacks. Methods such as calculus of variations
and maximum principle are usually limited by the boundary-value
difficulty in obtaining numerical solutions. Quasilinearization
has been shown to be an effective tool for handling boundary-
value problem. Thus the combined use of calculus of variations
and quasllinearization'can avoid this difficulty in seeking the
numerical solutions of optimlization problems.

The purpose of this thesis is to show that the quasi-
linearization technique can be used to find solutions of large
dimensional optimization problems with the presence of unknown
parameters. First, a complex production planning, advertising,
and inventory system was optimized. In this problem, the
temperatures in the chemical reactors are considered as the
unknown parameters. Then a similar problem was solved with both
the temperature and the volume of the reactor as the unknown
parameters.,

The results of the first problem indicate that considering
temperature as a constant parameter is superior to considering
it as a function of time. In practical applications, constant
temperature is much easier to maintain than variable temperature.

Furthermore, the results in this work show that the increasing



profit due to the use of variable temperature is very small.

The results obtained for the second problem indicate that only one
.of the two reactors which was used in the first problem is needed.
Having one bilg reactor whose volume ls approximally equal to the
sum of the two reactors produces approximately the same results

as that of using two separate reaétors. For both of the two
problems, the additional unknown parameters do not significantly

increase the amount of computation.





