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CHAPTER I

INTRODUCTION

1. THE CONCEPT OF OPTIMIZATION

In recent years, chemical engineers have become increasingly concerned

with the problems of choosing the design and operating variables of chemical

plants such that some performance criteria are optimized. The intensive

competition in the industry in general and in the chemical process industry

in particular necessitates the improvement of technologies, since even

marginal savings in production costs may be of vital importance in this com-

petitive community. The act of optimization is essentially that of designing

the most economical system of equipment and obtaining the best performance

either under given conditions or subjected to certain restrictions.

A single optimization problem corresponds to the seeking of the extreme

value of a function by differential calculus. But it is often the case that

the optimal problems in engineering and industry cannot be solved by direct

applications of conventional methods of optimization. Various schemes more

sophisticated than the conventional methods have been proposed. Among them

are the maximum principle, and dynamic programming.

2. THE FEATURES OF DYNAMIC PROGRAMMING

Dynamic programming provides a powerful tool for solving multistage

decision processes, which arise in various fields. It is based upon the

principle of optimality and employs the techniques of invariant imbedding

[l, 2j. The concept upon which the dynamic programming technique is based

is a new and versatile mathematical tool for the treatment of many novel and

interesting problems.



Because of the simplicity and versatility of the principle of optimality,

the method of dynamic programming can be used to deal with a process for

which the transformation or transition at each stage is too complex to be

expressed explicitly and analytically. Application of this principle also

guarantees that the decision made at each stage is the best one in light of

the entire process. While the number of stages in a process may be numerous,

a small number of decisions are usually involved at each stage, and, with the

aid of modern computers, one can often easily solve a multistage decision

problem by using dynamic programming. A continuous process can also be

optimized using dynamic programming by treating the process as one with a

large number of infinitesimal stages.

3. THE APPLICATIONS OF DYNAMIC PROGRAMMING

Dynamic programming has been applied extensively to solve various

practical and theoretical problems. Aris [3J has written a book dealing

specifically with chemical reactor design. He has also written two other

books related to the applications of dynamic programming [4, 5J. Roberts

L 6 J has made optimal catalyst replacement studies. Aris et al. L7J studied

optimum crosscurrent extraction. Rudd [8j has investigated a reliability

problem in chemical system design and the optimal allocation of limited

resources. A model for the optimization of countercurrent flow processes

has been developed by Dranoff et al. L9J. Mitten and Nemhauser [lo] applied

the dynamic programming technique to determine the optimal design of a process

consisting of a sequence of heterogeneous stages. Optimization methods

applicable for processes with bypass and recycle streams have also been

developed [ll].



4. THE ALGORITHM OF DYNAMIC PROGRAMMING AND THE PRINCIPLE OF OPTIMALITY

The essential notions of dynamic programming are linked to a serial

structure. It is of the nature of serial optimization. Its cornerstone is

the principle of optimality founded by Bellman [lj. It states that "An

optimal policy has the property that whatever the initial state and initial

decisions are, the remaining decisions must constitute an optimal policy

with regard to the state resulting from the first decision."

The mathematical transliteration of this principle yields a new class

of functional equations, and the mathematical viewpoint developed in treating

these problems enables us to approach some classical as well as new problems.

5. THE INVERSE PRINCIPLE OF OPTIMALITY

If we stipulate the output x of the sequential process of Fig. 1, but

not the input x + , then there is an inverse principle of optimality for

such a process, provided the stage transformation may be inverted. The

inverse of the transformation at stage n can be written as

x = T (x : ) , n = 1, 2,..., N-l .

n^l n n n

The inverse principle is stated as follows L5J:

In a sequential process, the optimal policy for a fixed final and free

initial state has the property that whatever the final state and decision may

be, the proceeding decisions constitute an optimal policy with respect to the

state resulting from them.

6. MULTISTAGE DECISION PROCESSES

A typical multistage stagewise process is shown in Fig. 1 where x is a

state vector which represents the state variables from stage n, and is a

vector which stands for the decision variables in stage n. Note that the
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stages have been numbered in the backward direction. They can equally well

be numbered in the forward manner, which ever is more convenient.

If these stages are series of continuous flow stirred tank reactors

(CSTR system), then the state variables may be concentrations of the various

species--reactants and/or products. Decision variables of a CSTR system may

be the temperature and pressure of the reaction mixture, but the specifica-

tion of a decision variable is quite arbitrary. It could be the flow rate

or equivalently the residence time of each stage.

The function of each stage is to transform the state variables from the

input state to the output state. This transformation can generally be

expressed as

x = T (X ,. ; 9 ) , n = N, N-l,..., 2, 1 . (1)
n n n+l n

Equation (1) is in vector form. If there are s state variables and one

decision variable, equation (1) can be written as

i,n i,n l,n+l 2, n+l s,n+l n
(2)

X 1 y <-)*••) S

n = N, . . . , 2, 1 .

The objective of optimization is to seek a set of admissible values

of 9 , 9 ,..., 9 so that a desired performance criterion or a return func-

tion which is usually called an objective function is maximized (or mini-

mized). The characteristic feature of a multistage decision process is that

there is an interval profit or return associated with each stage of the pro-

cess and the objective function can be expressed as the summation of the

interval profits



s(x„n ; e
N
,..., g

l
) = 2 gn

(x
n+1

; e
n

) . (3)

n=N

The value of the objective function depends on the initial state and a

sequence of decisions 6N , . . . , 9.. If we represent the maximum return function

by f
N
(x

N+1
), then

f
N
U

N+l
) " f

N
(x
i,N+T

X
2,N+l , ••• , X

s,N+l
}

= max S(x
N+1

; ©
N

, . . . , 0^

1

= max 2 g (x
, ,

; ) . (4)
_ _ M n n+l' n

n-N
n

Thus, in general, f (x
. , ) is the maximum return obtainable from the opera-

° n n+ l

tion of an n-stage process if an optimal policy is followed starting with

the initial state x . ,

.

n+l

If there is one decision variable in each stage, equation (4) expresses

an N-dimensional optimization problem because this problem must be optimized

with respect to all the N decision variables. The dynamic programming

technique treats this problem as N one-dimensional problems. For a one-

stage process, equation (4) becomes

f (x ) = max g (x ; )

which is the simplest optimization problem among the sequence of problems

for n = 1, 2,..., N. The other members of this sequence can be obtained by

writing equation (4) in the form:

f (x ) = max max ... max [g (x + ; ) + . . . + g (x ; )] (5)qq _ n n i n izi
n n-1 1



or

f (x . , ) = max g (x , ,
; 9 ) + max . . . max g ,

(x ; ,

)

n n+ l „ °n n+l n „ n-1 n n-101 e . 0.
n n-1 1

+ "... + g^V V' • C6)

The expression

max ... max [g , (x ; .) + ... + g. (x .; 0,)]
°n-l n n-1 °1 2 1

n-1 1

stands for the maximum return (the objective function) from an (n-1) -stage

process with initial stage x . Hence, we can also write

f , (x ) = max ... max [g ,
(x ; ,)+...+ g.(x_; 0,)] (7)

n-1 n n-1 n n-1 1 2 1
, 0.

n-1 1

Thus, equation (6) can be simplified to

f (x . .) = max [g (x
. ,; ) + f . (x )]

n n+l °n n+l n n-1 n

n

(8)

or

f (x , .) = max [g (x .. ; ) + f . (T(x ,
.

; ))] .
n n+l „ °n n+l n n-1 n+l n

n

This is the so-called functional equation of dynamic programming. It gives

a recursion relationship between an N stage process and an N-1 stage process.

The solution of the functional equation yields the value of the maximum

return and the corresponding optimal policy, which belongs to the set j0 j.

If we consider the process with stages numbered in the forward order

(see Fig. 2), the transformation equation is usually in the form of

x = T (x . ; ) , n = 1, 2,..., N ,n n n-1 n ' ' ' '



CD

CD

c
CD

CD

CD

en
• »»

i L.
z CDX JD
CL>

o Z
E
=3^^

-*= c
CO

T "D
z V-
X o

O
Stage N-l

«4—

^~ _r*

«VA
zt CO
x> to

1
<wo

1 o
i

*-

^?t Q.x[
0) CD

4-
o>
O

(O •—

-,
1 1c • «»
X

E
CNl'

t

X —
CD
o>
O CVJ
4-

oo
'CL

CO >*
4—

I

X <
a>

n •

4- CVJ
co

t o>
olX LL



and the objective of maximum return function is

f
N
(x }

= maX S(X
0'

9
1'

G
2
,, •• , 9

N
}

N

= max 2 8n<Vi ; ) .

1

9
n

Therefore, the functional equation can be written as

f
N
(x

Q
) = maxf gl

(x ; 0^ + fj^VJ *

9
1

Another form for expressing the transformation equation is

n mn . n-1 n x

x = T (x ; 9 ) , n = 1, 2,..., N

and the objective or maximum return function is

f
N
(x°) = max S(x°;

1
,

2
,...,

N
)

N
i

v _n. n-1 n N= max 2. G (x ; )

so that the functional equation takes the form

f (x ) - max j G (x ; ) + f (x ) j .y
Another way of interpreting the principle of optimality is imbedding

a smaller system into a bigger system as shown in Fig. 3. The functional

equation is of the form

The superscripts denote the stage number. The power of n is represented
by putting n outside of the parenthesis.
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f . (x ) = max g. (x ; 0.

)

1 o ^1 o 1

f (x ) = max g.(x ; 9.) + f . (T. (x ; 0. )

)

2 o °l o 1 1 1 o 1
6
1.

and in general

f
N
(x
o

) = max
[ 8l

(x
o ; 9

L
) + ^(^(^S a^))}

9
1

Generally speaking, the evaluation of the functional equation seldom

appears in an analytical form. Instead, the equation is evaluated by

numerical methods on a high speed computer.

7. THE ADVANTAGES AND DISADVANTAGES OF DYNAMIC PROGRAMMING

Dynamic programming provides a new tool for solving problems which were

formerly considered too complicated to be solved. It can be applied to a

series of stages which have different operating and state variables at each

stage. Furthermore, by the use of the principle of optimality, a chemical

process can be separated into different segments (subprocesses) and each seg-

ment can be optimized by a different technique. Another important feature of

dynamic programming lies in its ability to handle any kind of constraints.

Many types of constraints cause trouble when other techniques are used [l2j.

The principle disadvantage of dynamic programming is the problem of high

dimensionality. Since we imbed a whole family of decisions, enormous time

and space are required, and the available memory in a modern computer still

limits the use of the dynamic programming technique to systems of several

variables. This is the so-called "curse of dimensionality" [l]. Any reduc-

tion in dimensionality achieved by the use of mathematical knowledge will
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save tremendously in computational cost.

Another disadvantage of dynamic programming is that in using it to

optimize continuous processes it leads to a set of partial differential

equations. However, it is often possible to convert this set of partial

differential equations into a system of finite difference equations. Thus,

the method of dynamic programming can be used to optimize continuous pro-

cesses [4j.

A third disadvantage of dynamic programming is that it cannot be applied

easily to processes in which the optimum conditions at any stage can be

disturbed by conditions at a following stage. This is a rather serious

limitation if we consider the various feedback and countercurrent operations

which are often employed in the chemical and petroleum industries [l2J.

8. THE OBJECTIVES AND SCOPE OF THIS WORK

In this work, a comprehensive study of the theories and applications of

dynamic programming together with some techniques for reducing dimensionality

are presented. The wide applicability of dynamic programming in optimizing

multistage decision processes is illustrated by using it to optimize several

process engineering problems.
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CHAPTER II

GENERAL DESCRIPTIONS AND APPLICATIONS TO SIMPLE PROCESSES

1. COMPUTATIONAL SCHEME FOR THE FUNCTIONAL EQUATION [l].

As stated in Chapter I, the functional equation is of the form

f (x
,

, ) = max f g (x
, , ; 9 ) + f , (x ) } .

n n+ l ( n n + l n n-1 n J

y
n

for an n-stage process starting with an initial state x + as shown in Fig.

1 (backward numbering system) in Chapter I.

The significance of the functional equation is that the optimal decision

at stage n is so chosen that the sum of f , (x ) and g (x ,

• ) is maxi-& n-1 n &n n+l' n

mized. Since the states of the intermediate stages are unknown before the

problem is completely solved, the functional equation cannot become immedi-

ately useful in solving an n-stage optimization problem. The so-called

imbedding technique is carried out in two steps to establish the recurrence

relationships. The first step is to construct a table for each stage relat-

ing the corresponding optimal decision to the objective function for various

values of the state variable entering each stage. The second step is to

determine the optimal policy for the whole process by means of the table

entry technique utilizing all the optimal tables constructed [2].

In constructing the optimal tables, the computation is initiated with

the last stage, proceeding backwards to the initial stage. In each step of

tabulation, the stage for which the optimal table is to be tabulated is

regarded as the initial stage. For example, if we are constructing the

optimal table for stage n, it is taken as the initial stage, whereas all

the downstream stages are included in an (n-1) -stage process for which the
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4
capacities of only about 3.2 x 10 locations, three-dimensional problems can-

not be solved routinely. This is known as the dimensionality difficulty of

the dynamic programming approach.

It is worthwhile to mention that there is also a functional equation of

the form L 3

J

f (x ._ ) = max g (x
, ,

; ) • f , (x ) .

n n+1 [ °n n+ l n n-1 n J

n

A simple example of its use is to divide a distance i into n parts in

such a way that the product of the n parts is a maximum. In this case, we

let f (c) be the maximum attainable product, x be the length of the first sub-

division, and (l-x) be the length of the remaining (n-1) parts. Then, the

functional equation takes the form [4J

£ U) = max f
xf A£-x) ) .

n _ ., * J n-1 J

^ x ^ £

2. ILLUSTRATIVE PROBLEMS IN ENGINEERING

EXAMPLE 1, ALLOCATION OF PRODUCTION LEVEL.

Let us consider a typical linear programming problem in which N grades

of paper are produced on a paper machine. Due to the restrictions on the

raw materials, not more than a. tons of grade i can be produced in a week.

Let

x. = number of tons of grade i produced in the week

b. = number of hours required to produce a ton of grade i

P. = net profit per ton of grade i.

The problem in hand can be stated as

=£x. t^ a.
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N

2 b.x.;< c = total production hours

i-l
X X

N

max S = max P(x .,..., x..) - max 2 P x. .

1 N ._, i l
i-l

We shall consider this problem as an N-stage process with one decision

variable at each stage. According to the notion of dynamic programming, we

define a maximum return function

f (c) = maximum return obtainable from the N-stage process with

so that

c production hours per week.

N

f..(c) = max P(x, ,..., xM ) = max 2 p.x.
N r >.

1' N r . 1 1

K) (
x
i)

1_1

where f x \ indicates a series of decision variables x.,..., x...
i iJ IN
For ease of discussion, let us change the inequality constraint to the

following equality constraint.

N

2 b.x. = c .

i-l "
X

This is a typical allocation problem [l]. Many other types of alloca-

tion problems can be found in any book treating dynamic programming [5, 6J.

We wish to allocate the total of c working hours to produce N-different

grades of papers in an optimal way.

For a one-stage process, i.e. only one grade of paper is produced, the

maximum return becomes

f. (c) = max P.x, = P, r—
1 0<x

1
-^a

1

11 l b
l



18

with -'- ~ C a, .V l

For a two-stage process, the maximum return f„(c) is written as

f
2
(c) = max [P

2
x
2

+ f
L
(c - b^)] .

£ x
2
^ a

2

It is understood that whatever the amount of c which has already been allo-

cated to the second stage, the remaining amount c - b x must be used in an

optimal way for the remaining one-stage process.

Extending this notion, we see that whatever the amount of c which has

already been allocated to the N-th stage for an N-stage process, the remain-

ing amount c - b^t must be allocated in the optimal way for the remaining

(N-l) -stage process.

Thus, the maximum return for an N-stage process is

f
N
(c) = max P^ + f (c - b^) .

0^x
N
^a

N

It can be seen that this algorithm can be extended to the multidimen-

sional case.

For illustration, let us consider the case of N = 2 and

x
x
^ 500, x

2
<C 250 , (1)

0.2 x
i

+ 0.4 x
2
^:140 , (2)

P(x , x
2

) = 20 x
l

+ 45 x
2

. (3)

Equation (2) can be written as

x
x

+ 2x
2
^ 700 = c . (4)
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(5)

Note that a
x

= 500, a
2

= 250, b. = 1, b
2

= 2, P
;

= 20 and P
2

= 45.

The maximum return for a one-stage process can be rewritten as

f ( c ) = max p . x ( c ) .

0^x
1
4a

1

Due to the constraint on x. , the maximum return is

f (c) = p ~ = 20c , c ^a
i

= 500 (6)

f (c) = 20 a - 10,000 , c ^ a
L

= 500 . (7)

The optimal table with a grid value of c = 100 is given in Table 1.

The maximum return for a two stage process is

f
2
(c) = max [p

2
x
2
(c) + f (c - b^c))] . (8)

0--x
2
^a

2

We define

r
2
(c) = p 2

x
2
(c) + f

L
(c - b

2
x
2
(c)) , (9)

then it follows that

f (c) = max r (c) . (10)

X
2

Values of r (c) with c = 100 is given in Table 2.

It is seen that f_(c) = 2250 for c = 100. In a like manner, we can

find fAc) for other grid values of c, and the optimal table for the two-

stage process is tabulated in Table 3.

It is concluded that the maximum return for the two-stage process will

be $15,250/week with an optimal allocation of production hours to produce

200 and 250 tons per week of grades 1 and 2 paper respectively. This



TABLE 1

OPTIMAL TABLE (ONE STAGE PROCESS)

c x
l

~ G
l

p
l
x
l

f
l
(c)

hr/week ton/week $/week $/week

100 100 2,000 2,000

200 200 4,000 4,000

300 300 6,000 6,000

400 400 8,000 8,000

500 500 10,000 10,000

600 500 10,000 10,000

700 500 10,000 10,000
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TABLE 2

VALUES OF r (c) FOR TWO STAGE PROCESS

c b
2
x
2

• X
2
= 9

2
v 2 2

£
l
(c "b

2
X
2

} r
2
(c)

hr/week hr/week ton/week $/week $/week $/week

100 2,000 2,000

100 20 10 450 1,600 2,050

100 40 20 900 1,200 2,100

100 60 30 1,350 800 2,150

100 80 40 1,800 400 2,200

100 100 50 2,250 2,250

TABLE 3

OPTIMAL TABLE (TWO STAGE PROCESS)

c X
2

= 9
2 P

2
x
2

£
l(
c-b

2
x
2

) f
2
(c)

hr/week ton/week $/week $/week $/week

100 50 2,250 2,250

200 100 4,500 4,500

300 150 6,750 6,750

400 200 9,000 9,000

500 250 11,250 11,250

600 250 11,250 2 ,000 13,250

700 250 11,250 4 ,000 15,250
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example is essentially that given by Lee [7].

EXAMPLE 2. DIRECTED NETWORK PROBLEM

(a) Both ends fixed (boundary value problem)

In Fig. 1, the circles represent the nodes, and the numbers on the

lines connecting nodes denote the distance between the nodes. Suppose that

the problem is to look for the minimum length or the shortest path starting

from left to right.

According to the classical method, all possibilities must be enumerated,

But the enumeration of all the possibilities would be prohibitive for a large

size problem. We work backwards employing the dynamic programming approach

in the following.

Stage III

path distance

1 1

2 10

There is no choice of path for each initial state.

Stage II (III)

path distance

1 6+1=7

2 7+10 = 17

3 10+1 = 11

4 9+10 = 19

Paths 2 and 4 are eliminated from our consideration.
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maximum values of the objective function denoted as f ,LT (x
, ,

; 9 )J areJ n-1 n n + l n

already obtained and tabulated. By means of the functional equation and the

optimal table of stage (n-1), we can obtain the optimal decision at stage n

for each possible value of the state variable entering that stage. The

decisions so obtained and the corresponding value of f (x . , ) are listed in
n n+l

the table, which in turn is used to construct the optimal table for the

preceding stage.

For comparison, we consider the computing time required for both the

method of exhaustive search and dynamic programming. For a process with both

N
ends free, there are N(M) possible paths if there are N stages with M grid

points of the state variable at each stage. Assuming that it takes approxi-

-4
mately 10 seconds to compute one path, then the total computing time would

9
be 5 x 10 years in the former case (N = 20, M = 10). But in the latter

2
case, the number of computations is (2N-1)M and it takes only 1 second and

hence tremendous saving in computing time is obtained.

It may be noted that because we can compute the values of f (x ) for

only a finite number of admissible values of x .., the methods of interpola-

tion or extrapolation must be used to obtain the values of f (x ..) for thoser n n + l

values of x ., which fall between two neighboring values of x ., listed in
n+ l n+l

the optimal table.

The above computational procedure is only applicable to a one-dimen-

sional multistage decision process, but this scheme can be extended to the

multidimensional case. It is seen that the storage requirement of a computer

increases exponentially with the dimensionality of the initial state varia-

bles. Usually, the storage requirement of a problem is about (100) where s

is the number of state variables. Since current computers have fast memory
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Stage I (II 6* III)

path distance

1 7+7 = 14

2 6+11 = 17

We see that the minimum distance is 14 with the path 7 <-6 —I,

(b) Both ends free

We shall find the minimum distance starting from left to right by means

of dynamic programming (Fig. 2).

Stage III

path distance

1 1

2 4

3 10

4 3

Paths 2 and 3 are eliminated from our consideration.

Stage II(& III)

path distance

1 6+1=7

2 7+3 = 10

3 10+1 = 11

4 9+3 = 12

Paths 2 and 4 are rejected.
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Stage I (II & III)

path distance

1 7+7 = 14

2 6+11 = 17

3 4+7 = 11

4 1+11 = 12 .

We see that the minimum distance is 12 corresponding to the path 4—-6—"1.

(c) If the final state is fixed, it becomes a final value problem, whereas

if the initial state is specified, it becomes an initial value problem. The

computational scheme is essentially the same as that of cases (a) and (b).

EXAMPLE 3. ALLOCATION OF REACTOR VOLUMES IN A CSTR SYSTEM

Let us consider a liquid-phase chemical reaction between two immiscible

reactants A and B. The reaction mechanism is

A + B ~C + D

where C is miscible with A and D is miscible with B. The overall kinetics

is assumed to be

" r
A V dt

kC
A °B

*

It is assumed that there is complete mixing in each reactor and that the

rate is controlled by the chemical reaction only. In the above equation

C and C are the concentrations of A and B in the completely mixed system.

The reaction is carried out in a sequence of three stirred tank reactors

connected in series with equimolar feed of A and B flowing either cocur-

rently or countercurrently to achieve a prescribed degree of conversion.

The process flow diagram is shown in Fig. la for the cocurrent flow system
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and in Fig. lb for the countercurrent flow system. The volume of stage n

(the nth reactor) can be obtained from the material balance as follows:

F._(x. - x. )
n _ AO A A

n
' r
A

.
F
AO

(X
A - X

A
-1)

kC A .C D .(l-x")(l-x")Ai Bi A B

with C. . and C„. defined as
Ai Bi

c. - '«
1 F

A0
F
B0

C
A0

C
B0

F
B0

1 F
A0 Iss

C
A0

C
B0

where

F._ = feed rate of A based on the inlet condition, lb-mole/sec.
AO

F Dr.
= feed rate of B based on the inlet condition, lb-mole/sec.

BU

3
k - specific rate constant, ft /sec. lb-mole,

3
C._ : initial concentration of reactant A, lb-mole/ft ,AO

3
Cnr. : initial concentration of reactant B, lb-mole/ft ,BU

x : degree of conversion of reactant A,

x : degree of conversion of reactant B.
D

For isothermal operation,
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F
AO

kC
Ai

C
Bi

is a constant.

For simplicity, we shall consider the case for which

V ,
,

Ai Bi

and

F = F
A0

f
B0

'

Furthermore, since pure A and pure B are fed to the system, we can

write

x" = x" (12a)
A B

for the cocurrent system, and the equation

x. + x n = final conversion = V (12b)
A B

holds for each stage in the case of countercurrent flow. Hence equation

(11) can be rewritten as

n n-1
X A " X A

V
n

= -A *—
(13a)

(1 - xV
A

for cocurrent flow and

n n-1

V
n

= £ ^ — (13b)

(l-x?)U-V+ x""
1

)
A A

for countercurrent flow.
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The objective is to minimize the total reactor volume for a prescribed

degree of conversion of reactant A by proper choices of conversion at stages

1 and 2 or equivalently by proper allocations of the reactor volume to indi-

vidual reactors. That is,

3

min. S = min. 2 V , n=l,2,3.
n=l

We define conversion of reactant A at stage n-1 as the state variable,

x. , and the conversion of reactant A at the exit of stage n as the deci-

sion variable , i.e.

xj = e
n

. (14)

Thus equation (13a) for the cocurrent system can be rewritten as

9° - x""
1

V" = g^x"" 1
;
0°) = ^ , n = 1, 2, 3 . (15a)

v i — W )

and the objective function becomes

3

min S = min 2 V

n=l

3
= min 2 g (x"~ ;

g")
, n = 1, 2, 3 . (16a)

•9n ? n=l
l 1

Similarly, equation (13b) for the countercurrent system becomes

n n-1
i

e ' x
i„n .n-1 n 1 Mc . ,

V = g (x ; G )
= —

,
(15b)

1 1 d-en)(i->+ x" S

n = 1, 2, 3 .

and the objective function takes the form
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3

min S = min 2 V

n=l

3

= min 2 g
2
(x" ;

©")
, n = 1, 2, 3 . (16b)

ie
n;n=l

Therefore, the functional equations of dynamic programming are as

fol lows

:

(A) Cocurrent system.

q3 2

2 f 11 2 3
f (x - min

i
r-r = min g (x ; )11

9
3' (i-eV

e
3

l l

(l-Y)
2

for a one-stage process including stage 3 (the third reactor),

1 ("12 2
f (x ) = min < g (x ; )

+ f,(x.)

2
- x

1

1 2 (-mini r—r + f (x )]

2 (1-0^)^ L L

for a two-stage process including stage 2 (the second reactor) and

stage 3,

f
3
(x

t
) - min

j
g^x ; ) + f (x )

- min
j

t—t + f (x )

1 ' (1-0 )

L
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for a three-stage process including all reactors.

It is worth noting that

x
L

= ,

3 - 3 - Vx - e - F

.

(B) Countercurrent system.

2 2 3
f (x ) - min g

2
< x

i
'* e )

e
1

°
3

-*l- min
1 (l-9

3
)(l-f + x^)

V - x^

(l-V)U- V + x^)

for a one-stage process including stage 3 (the third reactor),

1 r 12 2
f
2
(x

1
) = min * g 2

{kX
l'

t 6 }
+ f

l
(x

l
)

9
2 -x 1

f 1 2
|in + f ( X )

j
2 ' (i-e )(i-y+ xj) '

for a two-stage process including stage 2 (the second reactor) and

stage 3,
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f (x )- min g (x ; ) + f
2
(x

l
)

1

- mi

e

r q
1

l /

nj a + f (x )

1
(
(1 -T)(l-0 )

for a three-stage process including all reactors.

The block diagram representing these functional relationships is given

in Fig. 2.

COMPUTATION AND RESULTS

The computations have been performed on an IBM 1620 computer. The

computer symbols and program are given in Tables 1 and 2, and the computer

flow diagram is shown in Fig. 3. For purposes of illustration optimal tables

are given in Tables 3a, 3b, and 3c for the cocurrent system and Tables 4a,

4b, and 4c for the countercurrent system for a coarse grid. More exact

values of the optimal reactor volume for each stage in both cases are listed

in Table 5. The optimal total reactor volume is plotted as a function of

the conversion of reactant A in Fig. 4.

It can be concluded that:

(1) The optimal volume of each stage is the same regardless of the conver-

sion of reactant A in the countercurrent reaction system. The small

variations in reactor volume allocation are due to the discretization

error incurred by choosing a finite number of grid prints for computa-

tion.

(2) For the same degree of conversion of reactant A, the countercurrent flow

reaction scheme is more economical than the cocurrent flow reaction

scheme if we reglect the cost of separators for the countercurrent flow
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Symbo l

DELX1

DELX2

DELT1

DELT2

FC

F1X12

F2X11

G1X10

G2X11

G3X12

SG2F1

TH1

TH2

Xll

X12

TABLE 1

PROGRAM SYMBOLS AND EXPLANATIONS

Explanations

1
increment of x.

,

increment of x.

,

increment of ,

increment of ,

final conversion of reactant A,

minimum volume for one-stage process,

minimum volume for two-stage process,

volume of stage 1,

volume of stage 2,

volume of stage 3,

sum of the volumes of stages 2 and 3,

conversion of reactant A at the outlet

of stage 1,

conversion of reactant A at the outlet

of stage 2,

conversion of reactant A at the inlet

of stage 2,

conversion of reactant A at the inlet

of stage 3,

Ax

Ax

A0

A9
2

Y

fjUj)

f
2
(xj)

g(x°; )

g(x|;
2

)

g(x
2

;

3
)

12 2
g(x|; ) + f^xp

9



37

OPTIMIZATION OF REACTOR
TABLE
VOLUME

2 A

WITH TWO PHASE RFACTIO'v (COCURRENT)

1

12

1 1

23

24
2 5

22
21

32

33
34

3]

D I
'•'

FCR
FOR
PKA
TAL

X12
G3X
FIX
P U N

CON
CAL
nr
xi ]

n~
TH2
G2X
SG2
IF
F2X
PUN
IF'(

F2X
PUN
CON
con
C *l

DO
TUl
ti]

SGI
IF(

F3X
PUN
IF(
F^X
PUN
CCN

E N
rM

MA
MA
D

C.
1 1

( I

12

12
CH
T I

C.
21

(J
2?
( I

1 1

Fl

( I

1]

CH
F2
I 1

CH
TI

TI

C.
31

(J
XI
F2
J-
10
CH
F3
10

CH
TI

SI

SI

T(

T (

1 ,

G3
I

)
=

( I

( I

1

NU
F2

J

)
=

I

1
=

(J
(J

-J
(J

1

XI

(J

1

Mil

NU
^3

J

)
=

(

(J

2 )

_ r

1

XI

=s
l

NU

OM XT 2 (

ON C-2X1

9F8.3)
b F 1

1 . 4 )

F r , X 3 2 (

X12 ( I )

= 2,21
X 1 2 ( I - 1

)=( FC-X
)=G3X32
?»X12( I

XI 1 (J)
= 2»21
X 1 1 ( J - 1

=J»21
TH2( 1-1

, I ) = ( T H

, I )=G2X
)23,23»
)=SG2F1
2 »X1 1 (

J

1 (J )-SG
)=SG2F]
2 , X ] 3 ( J

F

F

XT

= 2*21
Tin < j-i
J) =TH1

(

) = G 1 X 1

32,32 ,3

G 1 F 2 ( J )

2.TH1 {

J

C-SG1F2
G ] F 2 ( J )

2.TH1 (

J

F

2 1) » X 1 1 ( 2 1 ) » TH2 ( 2 1 ) » TH1 ( 2 1 ) »G3X 1 2 ( 2 1 ) » F 1 X 1 2 ( 2 1

)

3 ( 2 3 ,21 ) »SG2F1 ( 2 3 ,21 ) ,F2X3 3 (23 ) ,G3X1 ( 21 ) ,5G1F2 (21')

1 ),XU (1 ) ,TH2 ( 1 ),TH1 (] ), HE LX2,OFLXl,^fr LT 2, nFLTl

3+DFLX2
12 ( I ) ) / ( ( l.-FC }*< l.-PC) )

( I )

), G 3X12(1), F 1 X 1 2 ( I )

)+DFLXl

)+HFLT2
?( I )-Xll ( J) ) / ( 1 «-TH2( I ) )/ ( 1 «-TH2( I )

J

1 1 ( J, I )+Fl XI 2 ( I )

24
( J, I )

) ,Tm2( I ) ,G2X11 (J, I ) , FIX 12 I I ),F2X11(J)
2F1 ( J, I ) )22,2 2,2b
( J, I )

) , T H 2 ( I ). , G 2 X 1 1 ( J , I ) , F 1 X 1 2 ( I ) , F 2 X 1 1 ( J )

)+n r LTl
J ) / ( ( 1 .-TH1 ( J) )*( 1 .-TH1 ( J ) ) )

( JJ+F2X11 (J)

3

) ,G1X1 v. { J) ,F2X11 ( J) ,f-3X10

( J) ) 31 ,31 ,34

) ,G3 X10( J) ,F2X3 1 (J) »F3X10
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Fig. 3. Computer flow diagram



TABLE 3a

OPTLMAL TABLE (ONE STAGE COCURRENT PROCESS
WITH THE FINAL CONVERSION, ( = 0.2)

39

2 3
f
i
u

i>

0.3125 0.3125

0.2969 0.2969

0.2813 0.2813

0.2656 0.2656

0.2500 0.2500

0.2344 0.2344

0.2188 0.2188

0.2031 0.2031

0.1875 0.1875

0.1719 0.1719

0.1563 0.1563

0.1406 0.1406

0.1250 0.1250

0.1094 0.1094

0.0938 0.0938

0.0781 0.0781

0.0625 0.0625

0.0469 0.0469

0.0313 0.0313

0.0156 0.0156

0.0000 0.0000

3 - a 2
x. - 8

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200



TABLE 3b

OPTIMAL TABLE (TWO STAGE COCURRENT PROCESS
WITH THE FINAL CONVERSION, Y = 0.2)

40

1
x
l

2 ^ 2x = 9 g(x
L

; ) f
i
(
*i>

f
2 <«i>

0.00 0.40 0.1389 0.1389 0.2778

0.01 0.11 0.1387 0.1236 0.2623

0.02 0.11 0.1233 0.1236 0.2469

0.03 0.12 0.1232 0.1087 0.2319

0.04 0.12 0.1082 0.1087 0.2169

0.05 0.13 0.1082 0.0941 0.2023

0.06 0.13 0.0936 0.0941 0.1876

0.07 0.14 0.0936 0.0798 . 0.1733

0.08 0.14 0.0793 0.0798 0.1591

0.09 0.15 0.0793 0.0658 0.1451

0.10 0.15 0.0654 0.0658 0.1311

0.11 0.16 0.0654 0.0521 0.1175

0.12 0.16 0.0518 0.0521 0.1038

0.13 0.17 0.0518 0.0387 0.0905

0.14 0.17 0.0385 0.0387 0.0771

0.15 0.18 0.0385 0.0255 0.0640

0.16 0.18 0.0254 0.0255 0.0509

0.17 0.19 0.0255 0.0126 0.0381

0.18 0.19 0.0126 0.0126 0.0252

0.19 0.20 0.0193 0.0000 0.0193

0.20 0.20 0.0000 0.0000 0.0000
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TABLE 4a

OPTIMAL TABLE (ONE STAGE COUNTERCURRENT PROCESS
WITH THE FINAL CONVERSION, > = 0.2)

42

2 3
g(x^; e

J
) £

i
(K

i
2)

0.3125 0.3125

0.2932 0.2932

0.2744 0.2744

0.2560 0.2560

0.2381 0.2381

0.2206 0.2206

0.2035 0.2035

0.1868 0.1868

0.1705 0.1705

0.1545 0.1545

0.1389 0.1389

0.1236 0.1236

0.1087 0.1087

0.0941 0.0941

0.0798 0.0798

0.0658 0.0658

0.0521 0.0521

0.0387 0.0387

0.0255 0.0255

0.0126 0.0126

0.0000 0.0000

3 - a3x
l

- e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20



TABLE 4b

OPTIMAL TABLE (TWO STAGE COUNTERCURRENT PROCESS
WITH THE FINAL CONVERSION, V =0.2)

43

1
x

l

2 ^2
x = g(x|; 9

1
) £

i
(x

i'
f
2
(x|)

0.00 0.10 0.1389 0.1389 0.2778

0.01 0.11 0.1387 0.1236 0.2623 .

0.02 0.11 0.1233 0.1236 0.2469

0.03 0.12 0.1232 0.1087 0.2319

0.04 0.12 0.1082 0.1087 0.2169

0.05 0.13 0.1082 0.0941 0.2023

0.06 0.13 0.0936 0.0941 0.1876

0.07 0.14 0.0936 0.0798 0.1733

0.08 0.14 0.0793 0.0798 0.1591

0.09 0.15 0.793 0.0658 0.1451

0.10 0.15 0.0654 0.0658 0.1311

0.11 0.16 0.0654 0.0521 0.1175

0.12 0.16 0.0518 0.0521 0.1038

0.13 0.17 0.0518 0.0387 0.0905

0.14 0.17 0.0385 0.0387 0.0771

0.15 0.18 0.0385 0.0255 0.0640

0.16 0.18 0.0254 0.0255 0.0509

0.17 0.19 0.0126 0.0255 0.0381

0.18 0.19 0.0126 0.0126 0.0252

0.19 0.20 0.0126 0.0000 0.0126

0.20 0.20 0.0000 0.0000 0.0000
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TABLE 5

OPTIMAL REACTOR VOLUMES

(1) Cocurrent system

Volume

ft
3

Conversion, %

45

Total

20

40

80

95

0.0865 0.0897 0.0931 0.2693

0.2427 0.2638 0.2833 0.7898

1.775 2.235 2.700 6.710

0.947 16.000 20.000 46.947

(2) Countercurrent system

Volume

ft
3

Conversion, %

V
3

Total

20

40

80

95

99

0.0890 0.0894 0.0890 0.2674

0.2535 0.2538 0.2535 0.7607

1.610 1.590 1.610 9.810

6.076 6.043 6.076 18.195

20.482 20.062 20.482 61.026
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Countercurrent

system

cocurrent
system

0.2 0.4 0.6 0.8 1.0

Conversion of reactant A , mole fraction

Fig. 4. Optimal total reactor volume

vs conversion for two continuous flow

stirred tank reactor systems.
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reaction scheme because the former requires less reactor volume to

achieve the same degree of conversion. As seen in Fig. 5, a consider-

able difference in the optimal total reactor volumes between the two

systems occurs, especially at high conversions.

(3) In the cocurrent flow reaction scheme, the volume ratios of stages 2 and

3 to stage 1 are comparable with those given in Ref. 2 for the case of a

second order irreversible reaction. For comparison, the numerical

values are listed in Table 6. It can be seen that the differences

become greater as the conversion increases because a slight increase in

conversion requires a large increase in reactor volume at a higher con-

version. Since finite numbers of grid points are chosen for computa-

tion, considerable interpolation is required, especially at higher

conversions. The optimal volume ratios vs. conversion of reactant A

for both cases are plotted in Fig. 6.

A comparison of the optimal and non-optimal values for four cases are

given in Table 7.
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02 0.4 0.6 Q8 1.0
*

Conversion of reoctant A, mole fraction

Fig. 5. Difference in the optimum total volume

between the cocurrent and countercurrent

systems.



TABLE 6

RATIOS OF INDIVIDUAL OPTIMAL REACTOR
VOLUMES FOR THE COCURRENT SYSTEM

49

Conversion, 7.

V /V
2 1 This Study Ref [2]'

20

40

80

95

1.037

1.087

1.259

1.462

1.037

1.085

1.256

1.450

Conversion, %

V /V
3 1 This Study Ref [2j

:

20

40

80

95

1.076

1.167

1.520

1.852

0.175

1.170

1.523

1.956

Obtained by interpolation of the results of the Lagrangian mul
tiplier solution given in Ref. [2J.
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volume.
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TABLE 7

COMPARISON OF OPTIMAL AND NON-OPTIMAL VALUES

(1) Cocurrent System

Conver- „ 1 _ 1 2 _ n 2 V 1 V2 V3 Total
sion, %

Case X
l

" 6 X
l

" 9
ft3 f t 3 ft 3 ft 3

40

95

Optimal 0.168 0.298 0.2471 0.2638 0.2833 0.7898

N°n "
. 0.162 0.294 0.2307 0.2539 0.3056 0.7902

optimal

Optimal 0.740 0.900 10.947 16.000 20.000 46.947

N°"~
,

0.730 0.890 10.014 13.223 24.000 47.237
optimal

(2) Countercurrent System

Conver- _ 1 _ n l 2 _ Jl V 1 V2 V3 Total
_ Case x. - 9 x. - 9 _ ^ _.q r o _.q

sion, % 11 ftJ ftJ ft-5 ft J

40

95

Optimal 0.132 0.268 0.2535 0.2538 0.2535 0.7607

N° n "
. 0.124 0.276 0.2359 0.2900 0.2359 0.7618

optimal

Optimal 0.233 0.717 6.076 6.043 6.076 18.195

N°"~
,

0.224 0.726 5.773 6.688 5.773 18.233
optimal
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NOMENCLATURE

b. : Numbers of hours required to produce a ton of grade i, -

—

c : Total production hours, hr.

N : Number of mbles of reactant A, 16-mole .

P^ : Net profit per ton of grade i, —3:—
.

i
r ° ton

n fcJ u ^ a 16-mole
-r : Reaction rate based on reactant A, r .

ft. sec

3
V : Reactor volume, ft
X

x. : Conversion of reactant A at the exit of stage n .

x. : Number of tons of grade i produced in a week, r .

$
S = P : Maximum return or net profit, 7" .

Greek Letters

9 : Conversion of reactant A at the inlet of stage n .

i : Final conversion of reactant A .
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CHAPTER III

OPTIMIZATION OF A MULTI EFFECT MULTISTAGE EVAPORATION
SYSTEM BY DYNAMIC PROGRAMMING

The optimization of a multieffect multistage evaporator system with a

nominal capacity of 50 MM gallons per day is considered here [l, 2J.

There are 23 stages each in the first effect and second effect, and

22 stages in the third effect. The production of distillate in each stage is

achieved by adiabatic flash vaporization such that the temperature of the

flashing brine decreases as it cascades down stage by stage. A portion of the

flashing brine from each effect is recycled back through the condenser tubes

on which water vapor is condensing, so that the make-up feed and the recycle

brine are preheated prior to mixing. The make-up feed together with the

recycle brine in the first effect is finally heated to the maximum flashing

temperature by a shell and tube brine heater with low pressure steam from an

adjacent power plant. The diagram of the process is shown in Fig. 1.

The maximum brine temperature is limited by scale formation and the

lower temperature end is slightly higher than the temperature of the make-up

feed because a certain temperature difference for heat transfer must be

maintained for heating the make-up and recycle brine.

This scheme is more efficient thermodynamically than recycling the

blowdown from the last effect directly to the first effect, because the

mixing streams are at the same temperature and the concentration differ-

ences between the mixing streams are reduced as the whole system is divided

into three effects. The free energy decrease due to mixing, the thermo-

dynamic irreversibility, is thus reduced.

Furthermore, the heat recovery becomes more efficient as the number of
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stages used for flashing and preheating increases; inter-effect recycling

makes it possible to add more stages per temperature gradient. Theoreti-

cally, the larger the number of stages, the higher the performance ratio

(ratio of distillate production to steam consumption), but the number of

stages cannot be increased without limit because a certain pressure gradient

should be maintained for the flow of the flashing brine.

The optimization involves the following factors:

(1) number of total stages

(2) total temperature differences (temperature differences between the

flashing and recycle brine)

(3) number of stages allocated to each effect

(A) exit temperature and concentration of each effect

(5) allocation of distillate production in each effect

(6) brine velocities of various concentrations which affect the overall heat

transfer coefficients of heater and condenser tubes.

We shall, however, take only the role of the total temperature differ-

ences and exit brine temperatures of each effect into account.

In this problem, the temperatures of the flashing brine is chosen as the

state variable and the recycle ratio of each effect as the decision variable.

The ratio of energy input to the make-up feed, q/F, is taken as the para-

meter. For clarity, performance and cost equations of this process are

listed in Table 1 (see Appendices I and II for derivation).

1. STATEMENT OF PROBLEM

We shall employ dynamic programming to perform the optimization. The

following conditions and assumptions are made in formulating this
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optimization problem:

(1) Equal distillate production for each effect.

(2) Equal temperature drops of the flashing brine in each stage of the heat

recovery section of each effect.

(3) Equal boiling point elevations for each stage such that the temperature

profiles of the flashing brine and distillate are parallel.

(4) The temperature difference between the flashing and recycle brine is

constant for the heat recovery section of each effect.

From the performance and cost equations given in Table 1, the following

items and relations which are necessary for developing the functional rela-

tionships of dynamic programming are obtained.

2C
x
q

(1) The steam cost is -~ \"

FA
S

(2) The fixed charge cost for the brine heater (see equation (3)) is

1.92 C (1+0
1

) ,~
) In (24.4 + 9 ~ - In (24.4)

B 0.96 FU+0 )

where 9 is the recycle ratio of the first effect which is related to

the maximum brine and first blowdown temperatures x. and x. as given

in equation (1) by taking material and energy balances for the first

effect.

1065 + 4.986x| - 5.594x°
= -

5.748(x° - x|)

(3) The fixed charge cost for the condenser tubes in the heat recovery

section of the first effect is
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76.8C (l+9 )) 0.96 (1+9
1
)( 1065-0. 608xh- § (5.7489+5.594))

3 v IF >
i

(U.) f—3 (5.7489
1
+5.594)-0.96(l+9

1
)(1512.5-0.608x,

1
+459.89

1
)}

1 avi. F 1 ;

It should be noted that x is eliminated so that the fixed charge cost

is expressed as a function of x. and

(4) The fixed charge cost for the condenser tubes in the heat recovery

section of the second effect is

76.l6C,(l+9
2
)fo.952(l+9

2
)(1065-0.608x?) - §(5.6859

2
+4.594)

>

3
J;

1 F_ '„

(U ) (~a(5,6859 2
+4.594)-0.952(l+9

2
)(l432.5-0.608xf+454.89

2
)}

2 avi. F 1 >

2
where 9 is the recycle ratio of the second effect. The recycle ratio

1 2
is related to the first and second blowdown temperatures x and x as

given in equation (7) of Table 1. Equation (7), which is obtained from

the material and energy balances around the second effect, is

2
1065 + 3.986x

2
- 4.594xJ

e =

5.685(xJ - x7)

(5) The fixed charge cost for the condenser tubes in the heat recovery

section of the third effect is

75.2C_(l+0
3
)(o.94(l+9

3
)(lO65-O.6O8x?) - -5(5.589

3+3.594)l
3

^
1 F_ i

(U_) (~a(5.5893+3.594)-0.94(l+93 )(l452.5-0.608x3+446.493 )]
3 av[ F \ J

3
where 9 is the recycle ratio of the third effect, which is related to

2 3
the second and final blowdown temperatures x. and x. as given in equa-

tion (11). By taking material and energy balances around the third

effect, equation (11) is obtained as
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, 1065 + 2.986x
3

- 3.594xf
qJ = i L

2 3
5.58(x^ - xp

(6) The fixed charge cost for the condenser tubes in the heat rejection

section of the third effect is

7.52C
3
(l+0

3
)

(u») (i + -^^ u+e3
)x

3
- i^S£ (l+e

3
)(T +4>)

3 av| q 1 q F J

With these cost functions in hand, we can write the unit production

cost for each stage, which, in the language of dynamic programming, is the

so-called return function as

G
1
(xj;0

1
) = eq. (2) + eq, (3) + eq. (4)

2 2 2
G*(x[;9 ) = eq. (8)

G
3
(x

3
;0

3
) = eq. (12) + eq. (13)

The fixed charge costs for the condenser tubes in the heat rejection sec-

tions of the first and second effects and the recycle costs for each effect

are not included in the optimization because

(1) the determination of the optimal tube area for the heat rejection

section involves decisions in memory.

(2) the total recycle cost is not only approximately constant but is of

minor significance to the total production cost (see Appendix II).

Therefore the cost items in Table I which are excluded from the present

consideration will be added to the optimal production cost after the

optimization has been carried out.

Now, let us consider the problem in more detail so that it will enable
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us to choose the computational ranges of variables.

First of all, we may observe that in computing G (x ;9 ), the steam

cost is constant for a given q/F and the fixed charge cost for the brine

heater is nearly proportional to 9 . Furthermore, from the relation of the

energy input to the brine heater,

q/F = (l+9
l
)(C ) At. .^

p av 1

With a given q/F, the larger the value is, the smaller the temperature

rise through the heater At , and the larger the fixed charge cost for the

condenser tubes. It is obvious that At directly affects the average tempera-

ture difference for heat transfer of the condenser tubes in the heat recovery

section of the first effect.

In the derivation in Appendix II, we have shown that the condenser tube

areas are approximately equal to

q | (X )

a = ,

" - 6 n av _ . _ -

n (U ) At (U ) At
n " i

» ** J

n av n n av n

and we also have the formula

§ = (1 + r )(C ) At . n = 1, 2, 3
F n p av n '

where r is replaced by 9 in this formulation,
n

For a given q/F, t— is an approximately linear function of 9 and so
n

is A
n#

With q/F fixed, G (x.;9 ) is approximately a linear function of 9

since the fixed charge cost for the condenser tubes takes on the major part

111 222of the variable cost in G (x ;9 ). It is also true of G (x ;9 ) and

3, 3 3
G (x ;9 ) because they contain only the fixed charge cost for the condenser
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tubes.

From the above considerations, it is intuitively seen that the smaller

the 's, the smaller the unit production cost.

If we consider the limiting case where 9 goes to zero, the process

turns out to be unfeasible.

Actually, from the material and energy balance

| x (X) = F(1+9)(C ) (x° - x?)
2 av p av 1 1

for a one stage process, we see that the magnitude of 9 is approximately

2.36 as follows

| (1000) = F(l+9)(0.96)(250-95)

9 = 2.36 .

F F
For a three stage process, this is still true because — becomes t>

and x - x becomes approximately ~(x -x. ) and thus the magnitudes of 9

remain approximately 2.36. It does not mean that 9 must always take on

this value, one of the 9 can take on a value much smaller than 2.36, but

the other two 9 will become larger at the expense of its reduction.

Since

q. F(1+9
1
)(C ) <:i

(x°-x
1

1
) - | OO^1 pflll 61 av

q
2

= F(l+9
2
)(C)

f2
(x;-x2) =

f
(A^ .

q_ F(1+9
3
)(C )._(x?-x?) = | i\)^3 p f3 1 1 6 3 av

and
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(X.) < i\) < (\)
1 av 2 av 3 av

we can see that

q
l < q2 < q3

and hence

1^1 2 2 3
x. - x. ^. x. - x. <^ y., - x.

for approximately equal , n = 1, 2, 3. This observation suggests the

choices

1.1.0 3,
X

l
" K

l
<

3 1
" X

l '

1 2:1,0 3
X
l

" X
l

'

3 1
" X

l »

2 3.1,0 3
NX

l
" X

l ^3 1
" X

l *

According to the dynamic programming algorithm [Ref„ 3J, the functional

equations are written as:

(1) For a one-stage process including only the first stage (see Fig. 2)

f (x ) = mi

9
1

n jVuJje
1

)]

(2) For a two-stage process including the first and second stages (see Fig.

2)

f_(xf)= min G
2
(x

2
;0

2
) + f . (xh

9

(3) For a three stage process including all the stages (see Fig. 2)
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1

e
2

>
1

Stage 2 x
1

1 >
Stage 1

(2nd ejffect) (1st effect)

X?

1

3
3

1

e
2

f
3

Stage 3
*f.

Stage 2 x'
1

,

Stage 1

(1st effect)(3rd effect) (2nd ejffect)

Fig. 2. Schematic diagram showing the numbering

of stages used for the imbedding scheme.
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f
3
(x^) = rain G

3
(x

3
;9

3
) + f

2
(x

l
) *

e
3

2. COMPUTATIONAL SCHEME

The computational procedure is summarized below:

(A) Computation of f . (x )

(1) Choose x° = 250, q/F =26.7

(2) Choose ten grid points for x. with increment 0.3

x* = 201.7 ~ 204.4
1

(3) Computate for each path

G^xJ-.G
1

)

(4) Set f.(x ) equal to G (x. ;9 ) corresponding to each x. .

2
(B) Computation of f (x.

)

2 1

(1) Choose x^ = 148.8, q/F = 26.7

2 2 2
(2) Compute G (x ;9 ) for each path connecting

x^ = 148.8 to xj = 201.7—204.4 .

1 2 12
(3) Add the previously calculated f . (x. ) to G (x ;9 ) and find11 1

£
2

(
*l>

2 2
(4) Compute £Ax ) by varying x with increment 0.3 for the range

148.8 ^x* < 151.5 .
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3
(C) Computation of f

3<0

(1) Choose x^ = 90, q/F = 26.7

3 3 3 3 2"
(2) Compute G (x ;9 ) for each path connecting x. - 90 to x. -

148.8 — 151.5 .

2 3 3 3 3
(3) Add the previously calculated f (x ) to G (x ;9 ) and find f (x )

3 3
(4) Compute f

q
(x, ) by varying x with increment 0.5 for the range

90 <x? < 94.5 .

l

Repeat this computational procedure by varying q/F with increment 0.3

for 26.7 <: q/F ^ 27.9. The computational paths are shown in Fig. 3. The

computer flow diagram is shown in Fig. 4 and the computer symbols and program

are given in Tables 2a and 2b.

3. RESULTS AND DISCUSSION

The computations were carried out on an IBM 1620 computer, and the

optimal tables are shown in Tables 3, 4 and 5. It is noted that for each

q/F, the production cost becomes lower and lower as the final blowdown

temperature x. goes down.

From the temperature profiles for the heat rejection section of the

third effect, it is seen that (Fig. 5)

At + At. At
_3l 3w__3r + 2

or At. . > 4

where At = temperature drop of the flashing brine across the heat
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Read C,,C2 ,C3

As»UB»Uiav»U2aN

U3aviTF , VF

et

xV=250
x|= 201.7

Calc. x]

ax] =0.3

Punch

g (x|;e')

fiCXJ)

Calc. ,

G't*! i G 1

).

fi(x|)

Calc. 9

G2 (X?:G2)

Calc.

G2 (x 2 ;e
2

)

+ f,(*|)

Punch *N

xf , e2 x| , f ,(x|

Punch

X
| y0 i X| ii2(X,)

G^txf ; e?),f3(x
r

Fig. 4. Computer flow diagram.
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TABLE 2a

EXPLANATION OF COMPUTER PROGRAM SYMBOLS

Symbol Explanation

CI unit steam cost, C

C2 unit fixed charge cost, brine heater, C

C3 unit fixed charge cost, condenser tubes, C

F1X1 maximum return function, one-stage process, f . (x.

)

2
F2X2 maximum return function, two-stage process, f^tx,

)

3
F3X3 maximum return function, three-stage process, f^(x.

)

111
G1X1 return function, stage 1, G (x. ;9 )

2 2 2
G2X2 return function, stage 2, G (x ;0 )

3 3 3
G3X3 return function, stage 3, G (x. ;9 )

QDF ratio of the energy input to the make-up feed, q/F

RMS latent heat of the live steam, >,/v s

SG12 sum of the return function of stage 2 and the maximum return func-

2 2 2 1
tion of the one-stage system, G (x. ;9 )

+ f (x )

SG23 sura of the return function of stage 3 and the maximum return func-

3 3 3 2
tion of the two-stage system, G (x ;0 )

+ f (x )
1 i. l

TF temperature of the make-up feed, T„
r

TH1 ratio of the recycle brine in the first stage to the make-up feed,

TH2 ratio of the recycle brine in the second stage to the make-up

feed, 9
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TABLE 2a (Cont'd)

Symbol

TH3

UB

U1AV

U2AV

U3AV

XI

X2

X3

Explanation

ratio of the recycle brine in the third stage to the make-up

feed,

overall heat transfer coefficient of the heater tubes, U

average overall heat transfer coefficient of the condenser tubes,

the first stage, (U,

)

1 av

average overall heat transfer coefficient of the condenser tubes,

the second stage, (U_)
2 av

average overall heat transfer coefficient of the condenser tubes,

the third stage, (IL)
av

blowdown temperature, the first stage, x
1

blowdown temperature, the second stage, x,
i

blowdown temperature, the third stage, x_
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OPTIMIZATION CF THE
TABLE 2R

MULT I FLASH EVAPCRAT

I

:N process

DIMENSION
DIMENSION
DIMENSION

1 FORMAT <6X»
1 2 FOP MAT ( 1

H

1 3 FORMAT ( 1 H

RFAD ] >C1»
R F A D 1 » I ) 2 A

PRINT 1»C1
PRINT 1»U2
CALC.TH1 (J
XG = 25 •

XI ( 1 )=201.
DO 1] J=2,
XI

(

J)=X1 (J

TH1 ( J) = ( ] t

G 1 X ] ( J ) = 2 .

1 TH1 { J) ) ) )
-

2.-.608*X]

(

3) + 5.<^9A )-.

FIX] ( J ) = G

1

PUNCH 12-»X

1 1 CONTINUE
CALC.TH2(K
X2( 1)=148.
DO 21 K=2»
X2(K)=X2(<
DO 22 J = 2»
TH? (K»J)= (

G ? X 2 { K » J ) =

1 X? ( K )
) -onF

24. 594)-. 95
S G 1 2 ( K » J ) =

IF( J-2)23,
23 1-2X2 (K ) =SG

PUNCH 13»X
24 IF(F2X2C<)
26 F2X2(K)=SG

PUNCH 13,X
22 CONTINUE
2 1 CONTINUE

Xl( 11 ) *x

F-2X2( 1 1 )

G3X3( 1 1

»

6E10.4)
2F10.2»2
3F1 v .2»F
r? ,C3 ,RM
V 9 U Q

- A V * T

>C2»r?»R
AV-»U3AV«
) ,G1X1 (J

4

11
-1 )+.3
65. +4. 98
*C] *QHF/
LOG (24.4
J) )-ODF*
96* ( 1 .+T
X] ( J)
1 ( J L*TH1

2 ( 1 1 ) * X 3 ( 1 1

*F3X3( 1 1 ) »T

11 ) »SG12( 11

X»2E] 2.6)
1 1 .5.2F12.6
S»UB»U1 AV
F,QDF
MS»UB»U1AV
TF,OHF
)

)tGlXl<ll)»FlXl(ll)»THl(ll)
H2( 11*11) »TH3( 1 1 • 1 1 ) »G2X2( 11»11)
11) , 5G2 3 (11*11)

6* XI ( J) -5 .5
RMS+1.92*C2
) ) /UB+76-.8*
( 5 # 7A8*TH! (

HKJ) )*-( 15-1

94*X-)/( c>.748*(X0-Xl(J) ))

*( 1 .+TH1 ( J

)

)*(L0G(24.4+QDF/( .96*( 1.+
C^* ( ] .+TH1 (J) )*( .96*( 1 .+TH] (J) )* ( inf k

J ) +5. 5 94) )/UlAV/(4] .*QDF* ( 5 • 748*TH1 (J

2.5-.6G8*Xl (J)+4 50.p*TH1 (J) )

)

( J ) , G 1 X 1 C J ) » F. I X 1 ( J

)

»J) F2X2( K )

11
-1 ) +

I 1

1 065
76. 1

*( 5.
2*( 1

G2X?
23,2
12 (K.

2( K)

-SGI
12(K
2( K)

.3

O 8 ^ * X 2 ( K ) - 4

*( 1 .+TH2 ( K ,

TH2 (K»J)+4.
2 ( K » J ) ) * ( } A

>+FlXK J)

.
c 9 4* X 1 (J) ) / ( 5 . 68 5* ( X 1 ( J ) -X 2 ( K ) ) )

J) )*{ .952* ( l.+TH2(K»J) ) *( 1065 .-.608*
594) ) /U2AV/ (41.*QDF*(5.685*TH2(K»J)+
32.5-.608*X2(K)+454.8*TH2<K»J) ) )

.+3.

685*
.+TH
(K»J
4

»J)
»TH2
2(K»
J)
»TH2( K»J) »X1 (J)»G2X2(K»J)»F1X1(J) »F2X2(K)

( K» J ) »X1 ( J)
J) )22, 22, 26

G2X2(K»J)»F1X1(J) . F 2 X 2 ( K

)
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(Cont'd)

CALC.TH3(L»K)»F3X3(L)
X ->

( 1 ) = 8 9 • 5
~~ 31 L = 2 .» 1

1

X^ ( L )=X3 ( L-l ) +. e
>

DO 3? < = 2 » 11
TH3(l»K) = (1^65.+?.986*X3(L)-3. c>9/4-X2(K) )/(5.58*(X2(<)-XML) ) )

G3X3( L »K) =75,2*C3*( 1 . + TH3 ( L »K ) )* ( . 94* ( 1 . + TH3 ( L»K ) )* ( 1 065 . -. 60 8*X

3

1 ( L) )-QDF* (5*58*TH3( L»K)+3-594) ) /U3AV/ ( 41 ,*QDF* ( 5.58*TH3 (LtK) 3.594
2)-.94*< l.+TH3*L»K) ) * ( 1352'- 5~. 608*X3 ( L ) +446.4*TH3 ( L »K) ) )+7.52*C3*

(

31 .+TH3(L»K) ) /U3AV/( 1 .+] .88*QDF*( 1 . +TH3 ( L »K ) )*X3 ( L ) -1 . 88*QDF* ( 1 .+

4TH3 (I »K)..).*< TFU. ) )

SG23(L»K) =G3X3(L»K)+F2X2(K)
IF( K -2.) 33 » 33 1 34

3? F^X3(L)=SG?3(L»K)
PUNCH 13»X3(.U »TH3(L»K) »X2(K.) »G3X3(L»KJ »F2X2(K) »F3X3(L)

^U IF(F3X3(L)-SG23(L»K) ) 32,32 * 36

36 F3X3(L)=SG23(L»K)
PUNCH 13»X3( L) »TH3(L»K) »X2 (K) »G3X3(L»K) »F2X2(K) »F3X3(L)

.32 CONTINUE
31 CONTINUE

END
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TABLE 3

ONE STAGE OPTIMAL TABLE

(xj[ = 250, q/F = 26.7) (xj = 250, q/F = 27.0)

1
x

l
e
1

G^xJjO
1

)

x 105

f
l(

xj)

x 105

1
X

l
e

l

x 105

fl (x])

x 105

°F lb/lb $/lb $/lb °F lb/lb $/lb $/lb

201.7 2.42 1.69001 1.69001 201.7 2.42 1.70145 1.70145

202.0 2.44 1.69194 1.69194 202.0 2.44 1.70334 1.70334

202.3 2.46 1.69391 1.69391 202.3 2.46 1.70525 1.70525

202.6 2.48 1.69591 1.69591 202.6 2.48 1.70720 1.70720

202.9 2.50 1.69794 1.69794 202.9 2.50 1.70919 1.70919

203.2 2.52 1.70002 1.70002 203.2 2.52 1.71121 1.71121

203.5 2.54 1.70213 1.70213 203.5 2.54 1.71326 1.71326

203.8 2.57 1.70427 1.70427 203.8 2.57 1.71535 1.71535

204.1 2.59 1.70646 1.70646 204.1 2.59 1.71748 1.71748

204.4 2.61 1.70868 1.70868 204.4 2.61 1.71965 1.71965



TABLE 3 (Cont'd)

ONE STAGE OPTIMAL TABLE

(x° = 250, q/F = 27.3) (xj = 250, q/F = 27.6)

1
x
l

e
l

G^xJjO
1

)

x 105 x 105

1
X
l

e
l

G
I
(xJ;0

1
)

x 105 x 10

°F lb/lb $/lb $/lb °F lb/lb $/lb $/lb

201.7 2,42 1.71307 1.71307 201.7 2.42 1.72484 1.7248

202.0 2.44 1.71491 1.71491 202.0 2.44 1.72664 1.7266

202.3 2.46 1.71677 1.71677 202.3 2.46 1.72846 1.7284

202.6 2.48 1.71868 1.71868 202.6 2.48 1.73032 1.7303

202.9 2.50 1.72061 1.72061 202.9 2.50 1.73220 1.7322

203.2 2.52 1.72258 1.72258 203.2 2.52 1.73412 1.7341

203.5 2.54 1.72458 1.72458 203.5 2.54 1.73608 1.7360

203.8 2.57 1.72662 1.72662 203.8 2.57 1.73807 1.7380

20A. 1 2.59 1.72870 1.72870 204.1 2.59 1.74009 1.7400

204.4 2.61 1.73081 1.73081 204.4 2.61 1.74215 1.7421



TABLE 3 (Cont'd)

ONE STAGE OPTIMAL TABLE

(x° 250, q/F = 27.9)

78

e
1

G
1
(xj;0

1
) fijUj)

x 105 x 105

lb/lb $/lb $/lb

2.42 1.73677 1.73677

2.44 1.73852 1.73852

2.46 1.74030 1.74030

2.48 1.74211 1.74211

2.50 1.74395 1.74395

2.52 1.74583 1.74583

2.54 1.74774 1.74774

2.57 1.74968 1.74968

2.59 1.75165 1.75165

2.61 1.75366 1.75366

201.7

202.0

202.3

202.6

202.9

203.2

203.5

203.8

204.1

204.4



TABLE 4

TWO STAGE OPTIMAL TABLE

q/F = 26.7

79

2
X e

2

2 2 2

x 10

1
X

x 10
5

£
2
(x

2
,

x 10
5

°F lb/lb $/lb °F $/lb $/lb

148.8 2.43 2.7190 201.7 1.69000 1.96191

149.1 2.45 2.7368 201.7 1.69000 1.96370

149.4 2.44 2.7354 202.0 1.69194 1.96549

149.7 2.46 2.7536 202.0 1.69194 1.96730

150.0 2.46 2.7522 202.3 1.69391 1.96913

150.3 2.48 2.7706 202.3 1.69391 1.97097

150.6 2.48 2.7692 202.6 1.69591 1.97283

150.9 2.50 2.7878 202.6 1.67591 1.97470

151.2 2.50 2.7864 202.9 1.69794 1.97659

151.5 2.52 2.8054 202.9 1.69794 1.97849



TABLE 4 (Cont'd)

TWO STAGE OPTIMAL TABLE

q/F = 27.0

80

2
X
l

e
2

2 2 2

6
x 10

1
X
l

x 10
5

f
2
(x

2
)

x 10
3

°F lb/lb $/lb °F $/lb $/lb

148.8 2.43 2.6638 201.7 1.70145 1.96784

149.1 2.45 2.6812 201.7 1.70145 1.96958

149.4 2.44 2.6798 202.0 1.70334 1.97133

149.7 2.46 2.6975 202.0 1.70334 1.97309

150.0 2.46 2.6961 202.3 1.70525 1.97487

150.3 2.48 2.7140 202.3 1.70525 1.97666

150.6 2.48 2.7127 202.6 1.70720 1.97848

150.9 2.50 2.7309 202.6 1.70720 1.98030

151.2 2.50 2.7295 202.9 1.70919 1.98214

151.5 2.52 2.7480 202.9 1.70919 1.98399



TABLE 4 (Cont'd)

TWO STAGE OPTIMAL TABLE

q/F = 27.3

81

2
X

l
o
2

2 2 2
U[;Q )

x 10
6

1
X
l

£l (xJ)

x 10
5

£
2

(

*l>

x 10
5

°F lb/lb $/lb °F $/lb $/lb

148.8 2.43 2.6106 201.7 1.71307 1.97413

149.1 2.45 2.6275 201.7 1.71307 1.97582

149.4 2.45 2.6275 202.0 1.71491 1.97753

149.7 2.46 2.6434 202.0 1.71491 1.97925

150.0 2.46 2.6421 202.3 1.71677 1.98099

150.3 2.48 2.6595 202.3 1.71677 1.98273

150.6 2.48 2.6582 202.6 1.71868 1.98450

150.9 2.50 2.6759 202.6 1.71868 1.98627

151.2 2.50 2.6796 202.9 1.72061 1.98897

151.5 2.52 2.6926 202.9 1.72061 1.98987



TABLE 4 (Cont'd)

TWO STAGE OPTIMAL TABLE

q/F = 27.6

82

2
X
l

e
2

2 2 2
G U.\Q )

1

6
x 10

1
X

l
x 10

5

f
2 (xf)

x 10

°F lb/lb $/lb °F $/lb $/lb

148.8 2.43 2.5592 201.7 1.72484 1.98077

149.1 2.45 2.5758 201.7 1.72484 1.98242

144.4 2.44 2.5745 202.0 1.72484 1.98404

149.7 2.46 2.5912 202.0 1.72664 1.98577

150.0 2.46 2.5900 202.3 1.72846 1.98746

150.3 2.48 2.6070 202.3 1.72846 1.98916

150.6 2.48 2.6057 202.6 1.73032 1.99089

150.9 2.50 2.6230 202.6 1.73032 1.99262

151.2 2.52 2.6405 202.6 1.73032 1.99437

152.5 2.52 2.6392 202.9 1.73220 1.99613



TABLE 4 (Cont'd)

TWO STAGE OPTIMAL TABLE

q/F = 27.9

83

2
X

l
e
2

2 2 2
G^(x^;e^)

6
x 10

1
X
l

£l (xJ)

x 10
5

£
2
(X 1»

x 10
5

°F lb/lb $/lb °F $/lb $/lb

148.8 2.43 2.5097 201.7 1.73677 1.98774

149.1 2.45 2.5422 201.7 1.73677 1.99099

149.4 2.44 2.5245 202.0 1.73852 1.99098

149.7 2.46 2.5409 202.0 1.73852 1.99262

150.0 2.46 2.5396 202.3 1.74030 1.99427

150.3 2.48 2.5563 202.3 1.74030 1.99593

150.6 2.48 2.5550 202.6 1.74211 1.99762

150.9 2.50 2.5718 202.6 1.74030 1.99930

151.2 2.52 2.5890 202.6 1.74211 2.00101

151.5 2.52 2.5877 202.9 1.74395 2.00273



TABLE 5

THREE STAGE OPTIMAL TABLE

q/F 26.7

84

3
e
3

3 3 3
G
J
(x^;0

J
)

x 10

2
X
l

f
2
(x*)

x 10
5

f
3
uj)

x 10
5

°F lb/lb $/lb °F $/lb $/lb

90.0 2.43 3.1013 148.8 1.96191 2.27205

90.5 2.46 3.1260 148.8 1.96191 2.27451

91.0 2.47 3.1343 149.1 1.96370 2.27713

91.5 2.48 3.1432 149.4 1.96549 2.27981

92.0 2.48 3.1524 149.7 1.96730 2.28255

92.5 2.49 3.1619 150.0 1.96913 2.28532

93.0 2.50 3.1715 150.3 1.97097 2.28812

93.5 2.52 3.1813 150.6 1.97283 2.29096

94.0 2.53 3.1912 150.9 1.97470 2.29382

94.5 2.54 3.2012 151.2 1.97659 2.29672
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THREE STAGE OPTIMAL TABLE
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q/F = 27.0

3
X

l
e
3

3 3 3
G
J
(x^;9

J
)

6
x 10

2
X
l

f
2 («J)

x 10
5

f
3«J)

x 10

°F lb/lb $/lb °F $/lb $/lb

90.0 2.43 3.0379 148.8 1.96784 2.27163

90.5 2.46 3.0618 148.8 1.96784 2.27403

91.0 2.47 3.0699 149.1 1.96958 2.27657

91.5 2.48 3.0963 149.4 1.97133 2.27919

92.0 2.48 3.0875 199.7 1.97309 2.28185

92.5 2.49 3.0967 150.0 1.97487 2.28455

93.0 2.50 3.1061 150.3 1.97666 2.28728

93.5 2.52 3.1156 150.6 1.97848 2.29004

94.0 2.53 3.1438 150.9 1.98030 2.29283

94.5 2.59 3.1350 151.2 1.98214 2.29565
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THREE STAGE OPTIMAL TABLE

q/F = 27.3

86

3
x
l

e
3

3 3 3
G
J
(x^;GT)

6
x 10

2
X
l

£
2 («J)

x 10
5

x 10
5

°F lb/lb $/lb °F $/lb $/lb

90.0 2.43 2.9768 148.8 1.97413 2.27181

90.5 2.46 3.0001 148.8 1.97413 2.27414

91.0 2.47 3.0079 149.1 1.97582 2.27662

91.5 2.48 3.0163 149.4 1.97753 2.27917

92.0 2.48 3.0251 149.7 1.97925 2.28176

92.5 2.49 3.0340 150.0 1.98099 2.28434

93.0 2,50 3.0431 150.3 1.98273 2.28705

93.5 2.52 3.0524 150.6 1.98450 2.28775

94.0 2.53 3.0618 150.9 1.98627 2.29296

94.5 2.54 3.0713 151.2 1.98807 2.29521
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THREE STAGE OPTIMAL TABLE

q/F = 27.6

87

3
X
l

e
3

3 3 3
G
J
(x^;e

J
)

6
x 10

2
X

l

f
2
(x

l>

x 10
5

f
3
(x

3
)

x 10

°F lb/lb $/lb °F $/lb $/lb

90.0 2.43 2.9179 148.8 1.98077 2.27256

90.5 2.46 2.9405 148.8 1.98077 2.27483

91.0 2.47 2.9482 149.1 1.98242 2.27725

91.5 2.48 2.9564 149.4 1.98409 2.27973

92.0 2.48 2.9649 149.7 1.98577 2.28226

92.5 2.49 2.9736 150.0 1.98746 2.28482

93.0 2.50 2.9829 150.3 1.98916 2.28741

93.5 2.52 2.9915 150.6 1.99089 2.29004

94.0 2.53 3.0006 150.9 1.99262 2.29268

94.5 2.54 3.0099 151.2 1.99437 2.29536
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TABLE 5 (Cont'd)

THREE STAGE OPTIMAL TABLE

Conclusion:

(1) Optimal path

q/F 27.9

3
x

l
e
3

3 3 3
G
J
(x^;e

J
)

x 10

2
X
l

f
2 («J)

x 10
5

£
3
(x

3
)

x 10

°F lb/lb $/lb °F $/lb $/lb

90.0 2.43 2.8611 148.8 1.98774 2.27385

90.5 2.46 2.8831 148.8 1.98774 2.27606

91.0 2.47 2.8906 149.1 1.98936 2.27892

91.5 2.48 2.8985 149.4 1.99098 2.28084

92.0 2.48 2.9068 149.7 1.99262 2.28330

92.5 2.49 2.9153 150.0 1.99427 2.28580

93.0 2.50 2.9239 150.3 1.99593 2.28833

93.5 2.52 2.9327 150.6 1.99762 2.29089

94.0 2.53 2.9416 150.9 1.99930 2.29397

94.5 2.54 2.9506 151.2 2.00101 2.29608

9' a
2

, V e
3

,

250.0, 2.42, 201.7, 2.45, 149.1, 2.47, 91.0

(2) q/F = 27.1

(3) Optimal production cost: $2.27654/lb distillate
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rejection section.

At = temperature difference between the spent and make-up brine.

For this reason, if a make-up feed of 85 F is used, the flashing brine

temperature should be at least 89 F. Actually, from the mechanical point of

view, there is a restriction on the final blowdown temperature because there

is a limitation to the highest vacuum maintainable.

From the computed results we can see that, for a final blowdown tempera-

ture, x. , below 91 F, the production cost is strictly monotonically decreas-

ing, but this does not necessarily guarantee that the production cost is

really decreasing because we have not included the pumping cost of the coolant

in this study. If we take an energy balance for the heat rejection section

of the third effect, the following approximate relationship holds.

F(l+r_)(C ),_At_ = F(l+r )(C )_At . .

3 p f3 3r c p F 3j

Since (C )
f
. = (C ) and r» is of the magnitude of 2.5, we have, by taking

At. = 8 and At .
= 4

3r 3j

8(l+r_) = (1+r )4
3 c

r = 2r + 1 = 6 .
c 3

where r is the ratio of the coolant and make-up feed. It is seen that a
c

large quantity of coolant is required and hence, there is an increase in the

pumping cost as the blowdown temperature decreases which we did not take into

account.

It is concluded that the decrease in production cost by lowering the

final blowdown temperature does not necessarily compensate for the increase

due to the pumping cost of the coolant. Therefore, it would probably be
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better that the final blowdown temperature be fixed at 91 F or slightly above

this.

In Fig. 6 a plot of the production cost vs q/F is given using the final

blowdown temperature x. as a parameter. It is seen that there is a minimum

point corresponding to each final blowdown temperature and that it shifts in

the direction of decreasing q/F as the final blowdown temperature decreases.

From Fig. 7, It can be seen that the optimal value of q/F is located at a

point approximately equal to 27.1 and that the corresponding optimal produc-

tion cost is equal to $2.27654 x 10 /lb. It is to be noted that there is a

minor error involved in this estimation due to the discretization of the grid

points which is inherent in dynamic programming. A value more accurate than

this for the optimal production cost can be obtained by linear interpolation.

Since the production cost curve is so flat, this interpolation was not

carried out here.

Finally, we add the general expenses and administrative expenditures of

3
$0,172/10 gallons so that the optimal value of the total production cost,

3 3
$0.3993/10 gallons, or approximately $0.4/10 gallons at q/F of 27.1, can be

obtained.

In Fig. 8, the production costs are plotted against the final blowdown

temperatures at the computed optimal value of q/F = 27.0, which is closest

to the true optimal value of q/F =27.1. It shows that the production cost

is approximately a linear function of the final blowdown temperature for a

given q/F. This is consistent with the fact that for a given heat input to

the system, the lower the final blowdown temperature, the better the heat

economy and the lower the production cost. In Fig. 8, a plot of the produc-

2 1
tion cost vs. the second blowdown temperature x is also given with x
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to the make-up feed with the final blowdown

temperature xf as parameter.
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and x fixed in the optimal path of 201.7 F and 91.0 F respectively. The

optimal production costs in both plots agree with each other.

In Table 6, comparison of the production cost among cases with optimal

and non-optimal policies is given. The optimal production cost is equal to

3
$0.2273/10 gallon. There is another case which gives the same value due to

the truncation error.
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TABLE 6

COMPARISON OF THE PRODUCTION COST AMONG THE CASES
WITH OPTIMAL AND NON-OPTIMAL POLICIES

q/F X
l

9
1 1

x
l

e
2 2

X
l

e
3 3

X
l

Production
cost

Results of the optimal po 1 i cy by D. P.

27.1 250 2.42 201.7 2.45 149.1 2.47 91.0 0.2273

Results o f the non-optimal policy by P. P.

27.0 250 2.44 202.0 2.44 149.4 2.48 91.5 0.2277

27.0 250 2.46 202.3 2.46 150.0 2.49 92.5 0.2281

27.0 250 2.42 201.7 2.46 149.4 2.48 91.5 0.2275

27.0 250 2.42 201.7 2.43 148.8 2.48 91.0 0.2273+

27.0 250 2.44 202.0 2.44 149.4 2.48 91.5 0.2276

27.0 250 2.44 202.0 2.48 150.0 2.49 92.5 0.2281

Results of simuilation

X
l

e
1 1

X
l

e
2 2

X
l

e
3 3

X
l

Production
cost ($/103

gallon)

26.4 250 2.441 202.0 2.523 150.6 2.613 95.2 0.2417

31.0 250 2.585 204.0 2.481 152.0 2.350 91.6 0.2453

31.0 250 2.585 204.0 2.481 152.0 2.369 92.0 0.2419

This is due to the truncation error in the computer printing.
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NOMENCLATURE

c Unit steam cost,

f (x ) Maximum return function, one-stage process,

lb.

c
9

Unit fixed charge cost, brine heater, —r*

ft ,hr.

c_ Unit fixed charge cost, condenser tubes, —
^

ft ,hr.

c^ Unit pumping cost,
jjgj£

1 $

lb

2 $
f (x ) Maximum return function, two-stage process, rr

3 $
f (x ) Maximum return function, three-stage process, rr-

11 $G(x ;9 ) Return function, stage 1, rr

2 2 2 $
G (x ;0 ) Return function, stage 2, rr-

3 3 3 $
G (x ;8 ) Return function, stage 3, T7"

~t ' Ratio of the energy input to the make-up feed, ~
r i b

o
T Temperature of the make-up feed, F

RTII
U Overall heat transfer coefficient of the heater tubes, —

r

f t -hr

(U ) Overall heat transfer coefficient of the condenser BTU
n av

tubes, subscript n is the stage number, .2
,r ° ft .hr

x Blowdown temperature of the first stage, F

x Blowdown temperature of the second stage, F



x_ Blowdown temperature of the third stage, F

Greek Letters

Latent heat of process steam,
BTU
lb

Ratio of the recycle brine to the make-up feed, Lb

superscript is the stage number, lb

98
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CHAPTER IV

REFINEMENT OF SOLUTIONS AND REDUCTION IN DIMENSIONALITY

As stated in Chapter I, the main disadvantage of dynamic programming

is the dimensionality difficulty which occurs as the number of state vari-

ables increases. Various schemes have been proposed to overcome the dimen-

sionality difficulty [l, 2, 3, 4j. Most of them essentially trade computer

time for computer memory. One way of reducing the memory requirement is to

increase the interval size, or to decrease the number of grid points. But

the discretization error will be magnified and hence there results a solution

which is not very accurate. Either linear interpolation or extrapolation must

be used to refine the solution for the case in which the transformation func-

tions are almost linear or only approximate solutions are desired. Further-

more, iteration can also be used to obtain more accurate results.

In this chapter, a more sophisticated interpolation technique, namely

the polynomial approximation, and several methods for reducing the dimen-

sionality of a process such as the use of the Lagrangian multipliers, the

ratio of state variables and the method of continuous independent variable

are presented.

1. POLYNOMIAL APPROXIMATION

Instead of listing a table of grid points for the state variables, the

table which represents the maximum return function fN . (x) is correlated

into a polynomial during the computations [2j. Thus each polynomial stands

for a maximum return function, f (x), for n = 1,..., N. In the present

approach, we shall use the least-square method and represent the optimal

table by means of orthogonal Legendre polynomials
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f (x) = 2 a„ P^(x) . (1)
n

K=Q
Kn K

The function f (x) is a polynomial of degree R, and P„(x) is a polynomial

of degree K on the interval [-1, 1J.

From the orthogonal properties of these polynomials

1 f k f j

P. (x) P.(x) dx =

-1 J
1-2.
2k+l k =

j

one is able to obtain

.1

~-l

a. = ~^-
f f (x) P, (x)dx . (2)

kn 2 J , n k

The integration on the right of equation (2) may be performed by use of

Gaussian quadrature

r
1

f (x) P. (x)dx = 2 b.f (x.) P. (x.)
tl

n k
;=1 J n J k J

(3)

which is exact when f (x) P, (x) is a polynomial of degree 2s-l, and the x.'s

are the zeros of the Legendre polynomial of degree s and the b.'s are the

Christoffel numbers (weights). For this functional approximation and inte-

gration the optimum grid spacing is not equidistant and we require the

storage of R+l coefficients [4],

Now, we consider the system with the following functional equations

f . ( c ) = max g ( c ; G

)

1
9

f
N
(c) = maxfg(c;e) + f

N_ 1
(T(c;0))j (4)

y
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where c is the initial state and T(c;9) is the transformation equation.

In order to obtain f (x.) we must first evaluate f,(x.) for
n j 1 j

x , x ,..., x , the zeros of the Legendre polynomial of degree s. We

evaluate f.(x.) as usual for a one-stage process by the proper choice of 0;

with the value of f.(x ) obtained, we evaluate f.(x) for any value of x in

the range of (-1, 1). The b. and P, (x.) are found from tables or the

Legendre polynomial recursion equations. Then a, . is found for k = 1 » * » • • •

»

R. Once the a, are known, we can evaluate f (x) for any x within (-1, 1).

In such a manner, f , (x) is curve fitted from the values of the f.(x.) terms.
1 1 J

For the two-stage process, we evaluate f (x.) by equation (4). The
' J

choice of the 9 that maximizes the right hand side of equation (4) trans-

forms the state of the system from x. into (x. + Ax.). Since the new state
J j J

x. + Ax. will, in general, not be a zero of the Legendre polynomial of

degree s, the term f (x. + Ax.) can be evaluated from the coefficients a, ,

1 J J k , i

which were developed from the one-stage process. The coefficients a^ ,

k = 0, 1,..., R can be obtained from equation (3) as soon as f (x.) are

evaluated. From a, _ and equation (1), f (x) is found for general values of

x. Again, f (x) is curve fitted from f (x.). In this manner, we develop

f (x). It is noted that the Legendre polynomials P, (x.) and the coefficient

b. can be calculated independently of f (x.) [5].
J " 3

The following is an outline of this scheme applied to the optimum

allocation of residence time in a continuous stirred tank reactor system.

Let us consider an isothermal first order reversible reaction

A _ '. B

k
2
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carried out in a sequence of three CSTR's as shown in Fig. 1.

We take

k. = forward reaction rate - 1.19, min

k = backward reaction rate = 0.02, min

3
c = equilibrium concentration of B = 0.95, lb-mole/ft

3
r = final concentration of B = 0.9, lb-mole/ft .

Our objective is to minimize the total residence time by proper choice of

, n = 1, 2 (0_ is fixed since the final concentration of B is given),
n j

According to [6], the least total holding time required for an N-stage

process is

f , \ - N r.
C
e " Vl ,l/N -,

1 2 e

where c . is the initial concentration of B. We shall consider the case
IN 1

c +
= 0, and perform the approximation by use of a Legendre polynomial of

degree 3.

Then it takes the form

f (c) = Z a, P, (c)
n , __ kn k

k-0

since the interval of c is ^ c ^0.9, we have to transform the interval

of integration by the formula (7)

- (b-a)x + b + a
c — — -~ -- " - -

2

in which -1 ^ x ^ 1, and a <C c ^ b. In this case a = 0, b = 0.9, so that

- 0.9x + 0.9 _ _ /c/ ...
c _ _ = o.45(x+l)
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or

= c - 0.45
X " 0.45

The corresponding polynomials

P
Q
(x) = 1

P
L
(x) = X

P
2
(x) = i (3x

2
+ 1)

P
3
(x) = ~ (5x

3
- 3x)

are transformed into functions of c.

Since we take K = 3, s = 4 will give an exact formulation. Starting

with a one stage process, we write

f
l
(C

2
)

=

k
!

()

a
k,l

P
k
(c

2
)

3

f (c) = 2 a, P. (c) .
n . __ Kn k

k-0

Since the interval of c is <i c t~0.9, we have to transform the inter-

val of integration by the formula (7)

_ (b-a)x + b + a
c ~

in which -1 < x £?1, and a ^£ c < b. In our case a = 0, b = 0.9, so that

• 0.9x + 0.9 . A /c/ ...
c _ _ 0.45(x+l)

or
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= c - 0.45
X

0.45

The procedure is:

1. Find the roots x. and weights b. of the Legendre polynomial of degree

4 from a mathematical table (j = 1, 2, 3, 4).

c - 0.45
2. Transform P

R
(x) to P

R
(c ) by x = r-77— for k = 0, 1, 2, 3.

3. Evaluate P, (c„.

)

k 2j

c . = 0.45(x. + 1) .

4. Evaluate f . (c_, )

.

l Zj

5. Replace b by 0.45b. for change in interval from -1< x <1 to
J J

$ c
2 ^ 0.9.

6. Evaluate a by

V = a
P.f

l

b
j

£
l
(c

2j
)W '

k-0. 1. 2. S .

7. Find f. (c ) for any value of c_.

For a two-stage process, we can proceed in the same manner.

Since the functional equation is of the form

f
2
(c

3
) = minj"g(c

3
; 9^ + f^c^j

9
2

or

f„(c„J ;: min fg(c_.; o .) + f,(c-. + Ac..))
( 3j' 2j 1 3j 3j J2 3j %

we have to choose the optimal value of 9_. corresponding to c_ so that
zj j j

f (c ) are obtained for j = 1, 2, 3, 4.
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It should be noted that the first and second label of the subscript

are the stage and grid point number (root number of the Legendre polynomial)

respectively.

2. LAGRANGIAN MULTIPLIERS

Lagrangian multipliers have been extensively used for the optimization

of non-linear functions with some types of constraints. Aris [8j used the

technique to consider constraints in dynamic programming problems. Kuo and

Rubin L9j applied the method to determine inlet conditions of a process in

order to extremize characteristics of the chemical reactions and simultane-

ously meet certain constraints such as specified product yield or tempera-

ture.

Let a function f(x, ..... x ) be minimized subject to the constraintsIn J

g.(x,,..., x ) = 0, j = 1, . , . , m ra < n „ (5)
j 1 n J >»

Then, it is required to find the minima of

M
f (x,,..., x ) + 2 >\ .g.(x, ,. .., x ) (6)

1 n ._, 11 1 n
j-1

where \. are called Lagrangian multipliers. This involves setting the
J

partial derivatives of this function equal to zero, but this in itself is

not a sufficient condition for a relative minimum. For example, in the case

of f(x , x ) = xx, the origin is neither a minimum nor a maximum and is

called a saddle point. In any case, setting the partial derivatives of

this function equal to zero is a necessary condition for a stationary value

of the function. The sufficient conditions for relative maxima and minima

involve, in addition to the first partial derivative being zero, the
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inequalities in the second order derivatives.

When the variables are constrained by inequalities rather than by

equations, or by both types, then the Lagrange method cannot be directly

applied. However, an appreciable extension has been developed by Kuhn and

Tucker [lo].

For the case of handling inequality constraints, such as T , < T < T& M J min^ ^ max
2

we introduce so-called slack variables and let u = (T - T . )(T - T) >j 0,
min max

when T = T . or T u = 0. This is suggested by Valentine [ll],
min max J

Next, we will consider the formal application of the Lagrangian mul-

tipliers in the dynamic programming formulation. Suppose we wish to maxi-
N

mize a sum of N functions 2 g (x ) of the n positive variables x.,..., x._,
°n n r IN

1

subject to restrictions such as

N

Z k (x ) < k , ra = 1,..., M . (7)
_, mn n "*» m

n-1

Then the maximum we obtain will be a function of the set of quantities k ,m

and we write

N

max 2 gn
(x

n
) = f

M
(klf ..., k

N
) . (8)

If we make an allocation x KI then the remaining allocations x., ,,..., x,
N N-1 1

are subject to

N-1

2 k (x ) = K - k M (xM ) . (9)
mn n m mN N

n=l

N-1

The maximum of 2 g (x ) subject to these restrictions is
n n J
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f
N-l
U

l " k
lN

(X
N

) '••• , Si " k
MN

(X
N
)}

Thus writing

N N-l

2 g (x ) = g M (x M ) + 2 g (x )

. n n °N N n n

and applying the principle of optimality, we have

£
N
(K

1
,,, *» K

M
)

= maX '" 8N
(X

N
)

+ f
N-l

(K
l

" k
lM

(X
N

) ' ,,,,

VW 11
•

(10)

This is a typical dynamic programming formulation but its dimensionality is

M and the storage requirements increase exponentially with M,

If we modify the objective function to

N N

2 g (x ) -A 2 k (x ) (11)
. n n M . Mn n

we can solve the problem for fixed XM and consider only the first (M-l)

restrictions in equation (7). Thus we can write

N

fM (K , ..., k ^ ) = max [2 [g (x ) -

A

MkM (x ))}] (12)
N 1 M-l /V M ^ n n M Mn n J

1

and its dimensions are only (M-l). When it has been solved, we have only to

find the \ which satisfies the condition in (6). In general, we can

eliminate the (M-l) restrictions by introducing Lagrangian multipliers and

write

N N

f
N
(K

l
K
L ; Vl'""V = maX

I
[gn

(V " JV.'V 1 U3)

We now have dimension L but must look for the set of (M-L) Lagrangian
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multipliers that satisfy the last (M-L) restrictions. This is in effect,

exchanging computer memory for time.

In regard to the physical significance of the Lagrangian multiplier,

one may consider it the operating cost per unit volume for the CSTR sequence

when one considers the optimal allocation of the reactor volume or equiva-

lently of the residence (or holding) time with restriction on the total

volume [6].

A Lagrangian multiplier may also be interpreted as the relative cost

or cost ratio when one considers the allocation of a limited resource, an

illustrative example using a Lagrangian multiplier will be presented in

Chapter VI for the solvent allocated to the cross-current extraction system

with a recycle loop.

3. RATIOS OF STATE VARIABLES

If the transformation functions of the state variables are homogeneous

in nature and are linear with respect to each other, this linear property

simplifies the problem in that the ratio of two state variables may be used

as a new state variable. This reduces the dimensionality difficulty in that

it results in a reduction in the number of state variables [8 J.

As an illustration, let us consider an isothermal first order con-

secutive reaction,

k = 0.1 k = 0.1
A— ~R— -S,

carried out in a series of N CSTR as shown in Fig. 2. If we define

x. = concentration of species A at stage n

x = concentration of species R at stage n

then the reaction rates of A and R are
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I
n

\ - 1
n

(-r.) - k.x,
A 11

, n. _ , n . n
<-r

R
>- k

2
x
2

- klx
L

The material balance of each species at stage n is

n+1 _ n . . n.„n
vx. - vx, + (-r.)V

1 1 A

or

and

or

xj
+1

= xj + O.lxJ e" (14)

n+1 _ n , , n.„n
vx

2
- vx

2
+ (~r

R
)V

n+ l _ n ._ , n _ , n.-n ,,r\
x
2

x o (0 « lx 2 " 0'lxj)9 • (15)

where

3
v - volumetric flow rate, ft /sec.

The production of R for a definite feed condition is to be maximized by

choosing optimal decisions 9 , n = 1, 2,..., N. This is a two-dimensional

problem which not only requires a complex computational scheme but also

demands a great deal of computer memory. However, the problem can be

simplified by defining a new state variable

n

x" = -A- (16)
3 n

X
l

because of the linear transformation equations involved.
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Dividing equation (15) by equation (14)

x x + (O.lx - O.lx )

x x (i + o. le )

"
3

1 + 0.19"

or

x"
n

(i + o.ie
n

) + o.ie
n

x" = -^
. (17)

3
i + o.i©

n

This equation gives a functional relation for determining the output

n n+1
ratio x„ at any stage in terms of the feed ratio x_

Since the production of R is to be maximized, the objective function is

1 N+l _ « , n n+1,
, 1Q ,x - x - l> (x

2
- x_ ) (18)

and the maximum return function is

. , N+l N+l. . y , n n+l, ,,_,
f M (x. , x„ ) - max 2. (x_ - x ) . (19)
N 1 2 ,

i , 2 2

(e
n

j

L

Because of the linear nature of the equations, we can write

N+l N+l

N+l N+l _ N+l \ *J .V X
1 »

X
2

} ~ X
l

n
N+l* N+l'

X
l

X
l

- x
]L

g(x
3

) . (19)

Applying the dynamic programming algorithm, we have
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- , N+l N+l, _ f, N N+l, , , N N.l
N
(X

1 '

X
2

) maX
1 2 ' X

2
}

N-1
(X

1'
X
2

}
/

N

(20)

- max

N N+l N

N+lf
X
2 "

X
2

X
l . N-l ")

X
l I

"
N+l " N+l 8 ^ X

3 'J »

9
N X

l
X
l

and the functional equation becomes

N N N
0.19 -O.lQx

g (x ) - max + N 8 N-l
(x

3
) '* (21)

N l
1 + 0.10 1 + 0.10

'

Equation (21) can be solved recursively in conjunction with equation (17).

It is worth noting that there is "the menace of an expanding grid" as

Bellman stated if the ratio of two state variables is greater than one. In

this case, one can define an inverse ratio of two state variables which is

less than one.

Therefore, one can write

- , N+l N+l, _ N+l , N+l. . N+l, , N+l, ...,
f
N
(x. , x ) - x. g(x

3
) - x_ h(x^ ) (22)

where

N+l

N+l ^2
X
3 N+l

X
l

and

N+l

N+l m
X
JX

4 N+l
'

X
2

In this way one can use which ever ratio is suitable, and all the functions
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can be tabulated in the finite range between zero and one [l2J.

4. DYNAMIC PROGRAMMING WITH CONTINUOUS INDEPENDENT VARIABLE

(STATE INCREMENT DYNAMIC PROGRAMMING)

A useful technique in reducing the high speed memory requirements needed

to solve optimization problems by dynamic programming has been developed by

Larson [l3J. This new computational procedure is called dynamic programming

with continuous independent variable, or state increment dynamic programming.

It is based on the iterative application of Bellman's principle of optimality,

It differs from the conventional method in the choice of the time interval

of control. Instead of using a fixed interval, the new procedure determines

the time interval as the minimum time required for at least one of the state

variables to change by one increment. As a consequence of this choice of

interval, the next state for any given control is known to be within a small

neighborhood of the point at which control is applied. By using this result,

it is possible to compute optimal control in units called blocks that cover

a relatively long time interval but a small distance along each state

variable. By using only one or two high speed memory locations per state in

the block, it is possible to compute the optimal control throughout the

block. Specialized computations near the boundaries of the block allow the

optimal trajectories to pass from block to block.

This technique has been applied in a computer program which calculates

minimum fuel trajectories for supersonic (Mach 3) aircraft under a variety

of conditions and constraints. The basic program can be used both for a

detailed evaluation of an aircraft design and for real-time control of an

aircraft.
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A. General problem.

Let us consider the non-autonomous system of the form

~ = g(x, 0, t) (23)

x = s dimensional state variable

= r dimensional control variable

t = independent variable

g = s dimensional vector function.

Equation (23) is a set of non-linear time varying differential equations.

The system equations can be written as

x(t+At) = x(t) + g(x(t), 0(t*t)At . (24)

where At is a small incremental independent variable.

The cost function S is to be minimized by proper choice of a set of

admissible control variables u.

The cost function is given as

n
T

s(x(t
Q

), g , t
Q

) =
J

^(x(r), e(r),7)dr (25)

fc

t„ = initial time

T = final time

y = dummy variable of integration

£ = loss function.

B. The principle of optimality

We define

T

f(x,t) = min [f £<x<T) f GO-), T)dr] (26)

9(T) € u t

t ^ 7- £T
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The admissible control function that achieves this minimum is called the

optimal control and is denoted as 9(x,t). Invoking the principle of opti-

mality, we write

f(x,t) = min [Ax,0,t)At + f(x) + g(x,0,t) t, t + At)] (27)

C. The example of supersonic flight.

The notion of dynamic programming with a continuous independent vari-

able can best be presented by considering a simple, physical example. The

problem under consideration is that of calculating the optimal control of

the altitude of a supersonic air transport flying at a constant velocity.

The altitude h and the flight path angle d define the state and control

variables respectively, and the system equation can be written as

~ = g(h,c< ,t) = v sino^ (28)

which becomes

dx— = g(x,0,t) = v sin (29)

upon introduction of the above defined state and control variables.

Where v is the magnitude of the constant velocity vector, the cost

function is the total fuel consumed, so that the loss function becomes

^(x,e,t) = ~ = W
F
(x,6,w,t) (30)

where W = weight of aircraft plus fuel

W = fuel flow per unit time.
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D. The concept of a continuous independent variable.

In the conventional dynamic programming the state variable and the

independent variable, in this case time, are quantized according to the

following.

The state variable, altitude, is divided into uniform increments,

Sh, over a finite range ^ h <C ^S . Therefore, the state variable, x,

assumes the form

x =
j Sh, j = 0, 1,..., N (31)

so that

P = N£h.

The independent variable is also quantized into uniform increments,

St. At every point on the h-t plane, the control variable, U, assumes

values of the set of admissible controls given by

( (1) (2) (k)]
U -

[ u ,u ,...,u
J

. (32)

In the continuous independent variable concept, the increments, St,

are not fixed but are determined by

St = ——*- (33)
v sin u

Equation (33) then allows St to vary over a wide range dependent upon

the control variable, U,
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CHAPTER V

THE K-TH BEST POLICY

It is natural that, whenever possible, the optimal policy should be

used. However, it is of importance to set up the best alternative to the

optimal policy for the immediate adoption in case that the optimal policy

is inaccessible. Furthermore, a knowledge of the structure of the optimal

and suboptimal, i.e., second best, third best,..., policies will give us a

better understanding of the process. The determination of suboptimal poli-

cies also has significance in connection with sensitivity analysis in the

numerical solution of an optimization problem. To solve a problem numeri-

cally, finite difference approximation is used together with digital com-

puters. Because of the limited memory capacities of computers, we are

often forced to use coarse grids of variables. Under this circumstance, a

study of the neighborhood of the optimal policy can facilitate the evaluation

of the meaningfulness of the solution. Thus a significant difference between

the optimal and suboptimal policies may tell us that the approximation is too

crude. If the suboptimal policies differ slightly from the optimal policy,

we are assured that the solution is reliable.

Based on the principle of optimality, Bellman and Kalaba [lj presented

an elegant method to obtain the suboptimal policies. Recently, Fan et al.

L 2 J developed a detailed computational technique, which may be employed in

applying the above-mentioned method to practical problems. In this chapter,

the detailed computational technique is presented and illustrated by a

simple directed network problem. An example in the optimal design of a

multistage process with parallel redundancy is worked out in detail to show
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how such a technique can be applied to practical problems.

1. THE ALGORITHM

For a multistage decision process (see Fig. 1 in Chapter I) in which

the state of the process stream is transformed at each stage by the decision

made at that stage, a typical optimization problem is to determine the deci-

sion at each stage, subject to certain constraints, so that the objective

function which is the performance criterion of the process, is maximized.

The k-th best policy is defined as the sequence of decisions which gives

the objective function a value which is smaller than all those values given

by 1st, 2nd,..., (k-l)-th best policies, but is at least as great as the

values of the objective functions given by all other suboptimal policies,

i.e. (k+l)-th, (k+2)-th,....

The algorithm given below can be used to determine the first k best

policies, all at a time, for the processes with a finite difference of

admissible decisions at each stage,

We define:

I 9 j
= the set of admissible decisions

p (x,0 ) = the return function at stage n with the state of the enter-rn ' n °

ing stream x and the decision
n

N

f.. - 2 p (x,0 ) - the objective lunction for an N-stage process
N ,

rn n J or
n-1

T(x,0 ) = transformation of the state x resulting from the decision
n °

n

Max, f r ] = the k-th largest value of the quantities r , s = 1, 2,...
s
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(k)
f " (x) = the value of the objective function for an n-stage process

when the k-th best policy is followed and the state of the

stream entering the initial stage is x.

f1,J = Max, f f
(l

J(T(x,fl )) + P (x,9 )
}n 1 I n-1 s n s J

s J

To determine the optimal and suboptimal policies all at a time, we make

a straightforward extension of the principle of optimality as follows [2j:

"The k-th best policy has the property that, whatever the initial state

and decision are, the remaining decisions must be one of these sequences of

decisions which will constitute the first k best policies with regard to the

state resulting from the initial decision."

Thus, the decision at each stage in a process following the k-th best

policy can be determined one by one, starting from the last stage. If we

consider a certain stage at which a decision is to be made as the initial

stage, it follows from the above-stated principle that only the first k best

policies for the remaining part of the process need to be considered in

determining the decision at the stage under consideration.

The construction of optimal tables follow the procedures stated in

Section 1 of Chapter II.

Since the decision at stage n for the k-th best policy is that which

(k) (k)gives f (x), it is required to find the f (x) from all possible values
n n

of the objective function. The following is a convenient way to carry it

out:

(1) Compute f
i »^

(2) Construct the following ordered array
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[f'" j
]

-

= 1,1
n

=2,1
n

=3,1

= 1,2
n

2.2
n

=3,2

n

f
1 ' 3

. .
n

f
3,3
n ' *

(3) f (x) is then determined as the k-th largest element in [f J,
n n

i.e., f ' (x) = Max, \ f * \. This can be conveniently carried out
n . .k( n )

as follows: Let [f ':M be the remaining ordered array obtained
El • Cv

by eliminating from [f ' J
J all those elements which constitute

,(1), , ,(2), ,
*(k-l),

x TUf (x), f (x),..., f (x). Then
n n n

f (x)
n

Max j
elements <*^

To determine the maximum elements in [f
, J. the first elements of each

n,k

row in [f ;KJ
j is compared until the row whose first element is f '

.

2. A MULTISTAGE PROCESS WITH PARALLEL REDUNDANCY

The following example shows the application of the algorithm to the

optimal design of a multistage process with parallel redundancy [2J. Fig.

1 shows a multistage process in which a primary raw material is reacted with

a secondary specie in the initial stage to produce an intermediate product

which is then fed to the next stage and reacted with another secondary specie
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and so on through the entire process. Suppose that the secondary species

are all quite unstable and cannot be stored and, therefore, must be produced

upon demand by special reactions. All the intermediate products are also

assumed to be unstable. Then it is clear that if a secondary specie is not

available on time at any stage, the entire process will fail.

Such a failure is a stochastic phenomenon and, therefore, can be con-

sidered from a probabilistic point of view. The probability that the n-th

secondary specie will be available on time is called the reliability of

stage n and represented by R . The reliability of the whole process, R, is

the probability that all the N secondary species are available on time and

thus

N

R = ir R

n=l °

If the process which produces a certain secondary specie fails fre-

quently, it would be desirable to produce more than one batch of that specie

to increase the probability that it will be available on time. The produc-

tion of more than one batch to reduce the effects of failure is named the

parallel redundancy.

Suppose that b batches of the n-th secondary specie are prepared.

Since only one batch is needed, (b - 1) batches are reduntant. The proba-
n

bn
bility that all b batches will fail is equal to ( 1 - R ) . Hence, the

n ^ n
b

probability that at least one batch will succeed is [l - (1 - R ) J which

is by definition the reliability of stage n with its redundancies. Thus,

the reliability of the entire process with redundancy can be represented by
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N b

R = 7T [l - (1 - R )
"] (1)

-i n
n-1

Since b ^ 1 and R ^ 1, it can be shown that
n n~-

b

[l - (1 - R ) "J > R

which indicates that the reliability of the process is increased by the use

of the parallel redundancy.

Let P be the unit price of the final product. The expected return for

the system is then expressed by P R. Let C be the construction cost of one
g n

reactor for the production of the n-th secondary specie (the cost is properly

distributed over the life of the process), and be the operating cost.

Then, the net profit of the entire process, P, is

N

P = P R - 2 (C + )b (2)
g _, n n n

n-1

The optimal parallel redundancy is the design which maximizes P given

in equation (2). Rudd [3] has applied the method of dynamic programming in

the optimal design of such a process. Now let us use the algorithm des-

cribed in Section 1 to find the first four best designs, all at a time.

For the sake of definiteness, we will consider a three-stage process

with the following data:

C
n n

R
n

for one batch

Stage 3 0.1 0.1 1/3

Stage 2 0.5 0.5 1/2

Stage 1 0.5 0.5 3/4

The unit price associated with the final product, P , is 10 units. Now,
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if P in equation (2) is considered as the objective function, R in equation

(1) as the state variable which is denoted by x, and b as decision, the fol
' n

lowing relations can be obtained:

f ,J = max.
j
lOx - b

] , b = 1, 2,... (3)

1

b
i

Xl = x
2

[l - (p
L
] (4)

f!,'
j = max.

{
fj(x

2
) - b

2 )
b
2

= 1, 2,... (5)

b
2

J

b

X
2

= X
3 ^ ' (

2
} 1

(6)

f*»j a max (f
2
(x

3
) - 0.2 • b

3 J
, b

3
= 1, 2,... (7)

2 N 7 N
x
3

= x
4

[l - (j)
J

J
= 1 - (p

J
(8)

Here x is the reliability of the process consisting of stage n and all

upstream stages. Since the primary specie is assumed to be always available,

\ = 1.

For the one-stage process consisting of stage 1 only, we have

f[
k) U) . f{'

k

This can be readily obtained and therefore the construction of the ordered

array of f
' J is not necessary. A portion of the numerical results is

given in Table 5.

For the two-stage process including stage 1 and stage 2, all values of

f
' J are calculated from equation (5) for each possible values of x„. The
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TABLE 5

X
2

f^ (x
2

> b
l

f
l

(X
2

} b
1 2

b
l

0.65 4.093 2 3.875 3.398 3

0.70 4.562 2 4.250 3.890 3

0.75 5.031 2 4.625 4.382 3

0.80 5.500 2 5.000 4.875 3

0.85 5.968 2 5.375 5.367 3

0.90 6.437 2 5.859 3 5.750 1

TABLE 6

X
3

f
2

(x
3

) b
2

X
2

*
i

A2). .

f
2

(x
3

) b
2

X
2

i

0.90 2.382 3 0.7875 1 2.327 2 0.6750 1

0.95 2.792 3 0.8312 1 2.679 2 0.7125 1

1.00 3.202 3 0.8750 1 3.031 2 0.7500 1

* (i

)

i represents the number i in f (T(x, )), which is involved in
n-1

computing f (x).
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corresponding f~ array is then constructed. For example, the ordered array

for x_ = 0.9 is

. .

. ...

2.382 2.062 . . .

2.327 1.906 . . .

1.909

(k)
The values of f_ (x_) for x - 0.9 are then obtained from the above

(k)
array. Similarly, we can find f (x ) for all other values of x . A part

of the results is shown in Table 6.

The construction of the table for the three-stage process is similar to

that for the two-stage process. However, for the three-stage process it

suffices to construct only for x, = 1. The numerical results are given in

Table 7. The first four highest profits for the whole process are repre-

(k)
sented by those f (x/) > k - 1, 2, 3, 4 listed in Table 7. The correspond-

ing optimal and suboptimal policies are then determined by the table entry

technique utilizing Tables 5 through 7. For example, the optimal policy is

obtained as follows:

Starting from Table 7, we find f* (x,) = 1.322 with b
3

= 7, x = 0.9414

and i - 1, By means of linear interpolation, the values of b , x_ and i for

x_ = 0.9414 can be obtained from Table 6. The results are

b
2

3 , x = 0.8237 , i = 1

Similarly, from Table 5 we find b. = 2. The optimal and suboptimal policies

thus obtained are summarized in Table 8.
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TABLE 7

f
3

(x
4

) b
3

x
3

1 1.322

2 1.282

2 1.282

3 1.218

4 1.212

7 0.9414

6 0.9122

8 0.9609

7 0.9414

6 0.9122

TABLE 8

Profit
Policies

b
i

b
2

b
3

1-st highest = 1.322

2-nd highest = 1.282
2 2 6

2 3 8

3-rd highest =1.218 2 2 7

4-th highest = 1.212 2 2 6
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NOMENCLATURE

the set of admissible decisions,
s

f , the optimal value of the return function for the (n-1) stages.
n-1 r

(k)
f the value of the return function for an n-stage process in the

kth best policy.

f return function for an N-stage process.

P return function of the whole process.

P unit price of the final product.

P (x, ) return of stage n with a state x and a decision .

n ' n & n

R reliability of stage n.

T(x: ) transformation of the state x by the decision .
n ' n
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CHAPTER VI

OPTIMIZATION OF COMPLEX MULTISTAGE PROCESSES BY

THE DYNAMIC PROGRAMMING TECHNIQUE

In this chapter, an application of the dynamic programming technique to

the optimization of geometrically complex multistage processes is presented.

Based on the dynamic programming technique, Mitten and Nemhauser [lj,

and Aris L2J have presented several schemes for the optimization of certain

types of geometrically complex processes. Aris, Nemhauser and Wilde [4j

presented a method for formulating cyclic and branching problems. Compara-

tive advantages and disadvantages of both methods are discussed in Ref. [ 5 J

.

1. COMPLEX MULTISTAGE PROCESSES

Since a multistage process is made up by a number of stages, its features

are solely determined by the types of stages of which it is composed and the

way in which the stages are linked [5J.

A stage is a unit consisting of at least one input and one output

stream. The quantities of an input or output stream of a deterministic pro-

cess are uniquely expressed by a state vector x and each stage is associated

with a decision vector 9 where the subscript n is the label for the stage.

The state vector of the output streams from a stage is a function of the

state vector of the input streams and the decision vector of that stage. As

mentioned in the previous chapters, the functional relationship can be

expressed in vector form as

x = T (x . ; ) .
n n n-1 n

where T (x , ; ) is the transformation function, x , and x are the input
n n-1 n n-1 n
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and output state vectors of stage n respectively.

Stages can be conveniently classified according to the numbers of input

and output streams associated with them. A stage with,// input streams and

V output streams will be called a (//,l)) stage. Fig. 1 shows four basic

types of stages, that is, (1,1), stage, (1,2) stage, (2,1) stage and (2,2)

stage, which are also given the names of linking stage, separating stage,

combining stage and complex stage, respectively L5J.

A geometrically complex process can be decomposed into a primary main

process and one or more than one primary side processes. The primary main

process can be any combination of stages with the following properties.

(1) All of the stages are connected in series.

(2) All of the streams connecting these stages flow in the same

direction.

(3) The initial stage of this combination must be one of the initial

stages of the whole process, which will be called the global

initial stages.

(4) The final stage of this combination must be one of the final

stages of the whole process, which will be called the global final

stages.

In selecting a primary main process of any process, it is desirable to

include in it as many stages as possible. Stages outside the primary main

process may be conveniently combined into several primary side processes.

A primary side process may have one or more junctions with the primary main

process. A side process connected to the main process by its final stream

only will be called a parallel side process. A side process which has at

least one of its initial streams linked to the main process will be called a
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subordinate side process or simply a subprocess.

Both the main and side processes will be denoted by the labels of their

initial and final streams. For example, the complex process shown in Fig. 2

may be decomposed into a main process (Od, 9, 4£, 7), a parallel side process

(0,3, 9) and a subprocess (4S, 11).

It may be noted that a main process or a side process can have several

initial and/or final streams. An initial stream of a main process or a side

process will be called a global initial stream if it is also an initial

stream of the whole process, or will be called a local initial stream if it

is not an initial stream of the whole process. Similarly, a final stream

will be called a global final stream if it is also a final stream of the

entire process. Otherwise it is called a local final stream.

The process shown in Fig. 2 consists of two primary side processes which

are themselves of the type of a simple process, that is, a process being

solely composed of (1,1) stages. A primary side process may itself be

geometrically a very complex process. Such a complex primary side process

can be further decomposed into a secondary main process and one or several

secondary side processes. A secondary main process is chosen to be a serial

process. A secondary main process selected from a primary parallel side

process should have a global initial stream as its initial stream and one of

the local initial streams of the primary main process as its final stream.

A secondary main process selected from a primary subprocess should have one

of the local final streams of the primary main process as its initial stream,

and a global final stream, if it has one, as its final stream. For instance,

the process shown in Fig. 3 has a complex primary subprocess (2(3, 10) which

can be decomposed into a secondary main process (2^, 11, 9^6, 10) and a
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secondary subprocess (9^;

, 11).

It is observed that any complex process can be eventually decomposed

into several main processes and side processes of different ranks, all of

them being serial processes [6j.

2. A MULTISTAGE OPTIMIZATION PROBLEM

When a process is to be optimized, each stage is associated with a

return function which is a function of the input state vectors and the deci-

sion vector. The sum of the return functions over all stages is called the

objective function, that is, if the return function of stage n is

r(x .; 9 ), the objective function of the process is 2 r(x .; 9 ). It
n-1 n J v n-1 n

n

can be seen that when all of the transformation functions are given, the

objective function of the process can be expressed as a function of the

global initial states and the decision vector at each stage.

The optimization problem is to find the value of the decision vector at

each stage so as to maximize the objective function. All of the transforma-

tion functions are given, whereas the global initial states and final states

may be either fixed or free.

Since the global initial and final states play an important role in the

optimization problem, it is convenient to define a "maximum return function,"

(MRF) which stands for the total return of a process as a function of its

global initial and final states. For example, if a process of N stages has

an initial state x^ and a final state x. lV its MRF is written as
N

f
N

-)

f(x_,xM ) = Max 2 r(x . ;9 ) , n = 1, 2,..., N (2)
N 9 ! n=l

n-1 n j

n

with
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initial state = x

final state = x.,
N

where x_ and x are considered as parameters.

Once the MRF of a process has been obtained, an optimization problem

with any kind of boundary conditions can be readily solved. For instance,

the maximum return of a process with given initial state and free final state

can be written as

f(x ,x
N

) = Max f(x
Q
,x

N
)

X
N

with

x = a given value

where the single bar over x indicates that this particular value of x is

obtained by maximizing the MRF with respect to the parameter x ; the double

bar over x indicates that it is a specified value.

It is important to check the degree of freedom of an optimization

problem. When both the global initial and final states are free, the degrees

of freedom are equal to the sum of the global initial variables and the

decision variables over all stages. When some or all of the initial and

final states are specified the degree of freedom is decreased by the number

of the specified state variables.

If a process has D decision variables at stage n, S global initial
n l

state variables ans S final state variables, then the highest degree of
r

freedom is (2 D + S T ), and the MRF is a function of (

S

T + S^) variables,
n I IF

n

It may happen that the number (2D + S ) is smaller than the number
n

(S T
+ S_,). For such cases, the MRF can only be a function (2 D + S T )IF J n I
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variables; hence we must arbitrarily assign (S - 2 D ) final state variables
F n

n

as dependent variables. The MRF will then be written as f(x , x x ), in

which x denotes the initial state variables; x„ represents those final

state variables which are considered as independent, and x , separated from
F

x T and x by a vertical bar, stands for those final state variables which
I t

are considered as dependent. For example, a one-stage process with D = 1,

S - S = 2 will have its MRF written as f(x. ., x , x
1 r 0,10,21,1 x

1>2
), in

which the first subscript of x represents the label of the stream whereas

the second subscript denotes the label of a component of a state vector.

3. PRINCIPLE OF OPTIMALITY AND FUNCTIONAL EQUATIONS

Since this chapter is for the purpose of extending the principle of

optimality to deal with geometrically complex processes, a careful considera-

tion of the original version of this principle will be helpful.

The principle is based on an implicit assumption that the maximum

return of a process is a function of its initial state only. It is important

to note that the principle of optimality was originally formulated for a

simple sequential process. The final state of such a process is either

specified in the problem or can be readily determined by maximizing the

return of the final stage with respect to the state of the input stream of

this stage, since the final state does not have any effect on other stages.

Making use of this property, Bellman formulated the dynamic programming

algorithm which can be represented by the following functional equation

f(x . ) = Max [r(x ,; © ) + f(x )] (3)
n-1 n-1 n n

y
n

where x and x represent the input and output of stage n, respectively;
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represents the decision of stage n; f(x ) is the MRF of the downstream
n r ° n

subprocess (n,N), that is, the subprocess consisting of all the stages down-

stream to stage n, whereas f (x ) is the MRF of the resulting process

(n-l,N). As explained earlier, the MRF of a simple process can be expressed

as a function of its initial state only.

Equation (3) can be interpreted as absorbing (imbedding) the MRF of

the downstream subprocess (n,N) into the MRF of the resulting process

(n-l,N). The variable x is an intermediate state variable of the resulting

process (n-l,N) and hence must be matched when f(x ) is imbedded intor n

f(x ,). The decision variable 9 is an independent variable and must be so
n-1 n r

chosen that f (x , ) be maximum with respect to x . . Thus during the process
n-1 r n-1

of imbedding, all the intermediate state variables must be matched, whereas

all the independent variables, except those which are used as parameters for

the resulting MRF, must be so chosen that the resulting MRF is maximized.

When the functional equation is interpreted in this manner, its extension

to dealing with a complex process will be a straightforward matter.

Now let us consider any serial process obtained from the decomposition

of a complex process. If the serial process has a local final stream, the

value of this local state will affect the return of its downstream subpro-

cesses. Since such a local final state cannot be determined in the same way

as that of the global final state of a simple process, it must be so chosen

that the sum of the return from this serial process and the return from its

downstream subprocess be maximum. A convenient way to overcome this diffi-

culty is to express the MRF in terms of the initial and final states. Since

the final state is considered as a variable, its effect on the return of its

downstream subprocess can be taken into account when its value is to be fixed.
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Equation (3) can then be modified to the following forms for different

types of stages.

(a) for (1,1) stages,

f(x ,, x_) = Max fr(x , ; 9 ) + f (x , x_)
n-1 F _ l n-1 n n F

9
n

where x represents the local final state

(4)

(b) for (1,2) stages,

f(x ., x_,, x_J = Max ) r(x .; 9 ) + f(x ,,x„,)
n-1 Frv Fp { n-1 n nK Fo<

n (5)

+ f(x ,x_)[

where x and x a are the local final states of downstream subprocess (n^,
rc\ t p

F*0 and (n^, F/3), respectively.

(c) for (2,1) stages,

(1) if none of the input streams of stage n is one of the

local final streams of the downstream subprocess:

f (x, ,,x. ,x r ) = Max f
r(x ;x. ..,9 )

(n-l)pT (n-l)3 f F [ (n-l)oT (n-l)/V n

n . (6)

+ f(VV}

(2) if one of the input streams of stage n, say stream (n-l)jS,

is one of the local final streams of the downstream sub-

process:

f(*<n-lwV
=

.

"" f
r(X

(n-lW
;X

(n-l)p'
e
n

)

n
,X

(n-l)/3 (7)
+ f(V*(n-l)0'VJ

where the downstream subprocess is labelled by (n, (n-l)^,F'

)

(d) for (2,2) stages
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(1) if none of the input streams of stage n is one of the local

final streams of the downstream subprocess:

f(x
(n-l*'

X
(n-l)£'

XF*'V
= M^ f

r(x
(n-lW

!X
(n-l)3' n

)
+

(8)

f (x ,,x_ ) + f (x ,x_ J t

n,o< Fc< njB Fp )

(2) if one of the input streams of stage n, say x >~, is one

of the local final streams of a downstream subprocess, say

subprocess (n£, (n-l)p,F'/3)

fU
(n-lU'

XF^XF.|5 ) " "" (
r(x

(n-lM
;X
(n-ir

9
n

)
+

9
n'

X
(n-l)^

(9)

f(X
ncA

,X
Fo\

) " f(x
n

(3

1,X
(n-l)

/

3
,X

F'
(
3

)

j

It can be seen that the functional equation is nothing more than

absorbing (imbedding) the MRF's of the downstream subprocesses into the

MRF of the process resulting from connecting the stage under consideration,

the stage n, to all of its downstream stages. During the process of absorb-

ing, the decision variable and the input states of the stage under considera-

tion are considered as independent variables, which, except for those which

are used as parameters, must be so chosen that the resulting MRF be maximum.

Those initial and final states of the downstream subprocesses which become

the intermediate states of the resulting process must be matched.

When the functional equation is applied to a global final stage of the

type of (1,1) stage, it becomes

(1) if the output x is free

e
n

f(x ,,x ) = Max fr(x . ;9 ) (10)
n-1* n ( n-1 n

j



145

(2) if the output x is fixed

f(x ,,x ) = Max [r(x -.0 )| (11)
n-1 n [ n-1 n )

y
n

with x specified.

When the functional equation is applied to local final states, it

reduces to a form similar to equation (11), except that the outputs be

considered as parameters. It is implicitly assumed in equations (10) and

(11) that the number of the decision variables at stage n is larger than

the number of its output state variables. If this is not true, the degree

of freedom must be checked carefully as discussed before, and equations (10)

and (11) must be changed accordingly.

Relations similar to equations (10) and (11) can also be written for

the final stages which are not of the type of (1,1) stage.

4. PROCEDURES FOR OPTIMIZING COMPLEX PROCESSES

The optimal policy for a geometrically complex process may be obtained

by the following procedures.

(1) Decompose the process into several main processes and side pro-

cesses of different ranks as discussed in Section 1.

(2) Apply the functional equations given in the previous section to

each stage to obtain the optimal decisions as functions of the

initial and final states. The order of obtaining the MRF's for

the side and main processes is in reverse to that of decomposing

the process. In other words, the side process of the highest rank,

is considered first. The MRF of a subprocess is absorbed by the

main process of the same rank, and the MRF of a main process is
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absorbed by the side process of the next lower rank. For example,

the MRF of a secondary main process is absorbed by a primary side

process. It may be noted that the MRF of a parallel side process

is not absorbed by the aforementioned functional equations, but

will be combined into the MRF of the main process by

f(xW x
I0»

xFol»V
=
*? 1

f (x
H»

X
Fc<»

X
n

)
+ f(xl^ XF^ X

n
)

J
U2)

n

where (l^Fc^n) is the main process and (Ip?,F,3,n) is a parallel

side process.

A parallel side process with a global initial stream as its initial

stream can be converted into a subordinate side process, if it is of the

type of simple process, and its transformation equation can be inverted [4J.

This procedure will reduce the time of computation.

If a main or a side process has a portion which is itself of a type of

simple process, the time of computation may be reduced by obtaining the MRF

for this portion first and then determining its end conditions by an equation

similar to equation (12). For example, the MRF for the subprocess (Oo(, 2) in

Fig. 2 can be obtained first and then combined with the MRF of subprocess

(2, 9, 7, 11) to obtain the MRF of subprocess (0d,9,7,ll) as

f(x
Q

,,x
9
,x

?
,x

11
) = Max f(x

Q
^x

2
) + f (x

2
,x

g
,x

7
,xu )

j . (13)

X
2

'

(3) Eventually we obtain the MRF of the whole process with some fixed

or chosen values of the global final states, depending on whether

the final states are specified in the problem or not. The initial

states can then be chosen so that the total return is maximum.

These values of the initial states are then used to obtain the
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optimal decisions which have been expressed as functions of the

global initial states. If the global initial states are specified

in the problem, the decisions of the global initial states are

determined by

f(x
x
,x

F
) = Max jr(x ;0 ) + f(x ,x

F )j
e
i

with

x = x = a given value.

EXAMPLE 1. A PROCESS WITH FEED BACK LOOPS

Let us consider the process with two staggered feedback loops shown in

Fig. 4. For simplicity, we shall assume that all of the state and decision

vectors are one-dimensional. The process can be decomposed into a main pro-

cess (0,b,d,8j§, 11£, 12) and two subprocesses (8(2, b) and (11/3, d).

The MRF of the subprocess (llfi,d) can be obtained by the following

equations.

f(x ,x.) = r(x ;0.) (14)
c d c d

f(x 1l0 ,x.) = Max f r(x lt -,0 ) + f(x ,x.)) (15)
11? d ( 11(3 c c* d J

c

Similarly, we may find f(x Q ,x ), f(x .,x,), f(x ,x ), and f(x ,x.). If
OC\ 1U op D D I / *f

the global final state is free, we have

£(xlw,I
12

) = M«(r(x
lw!

9
12))

(16)

9
12

The MRF of the whole process can then be obtained by the following equations



148

4
C\J

—

X
O

X
tr-

oyX
a> CJ

*t
00

oX
s<

\

\
r

«0.

X
k.

1

1 '

*<
k

a CD

X
<

X
i

LOo
X

1

4

i

X
i

-Q <fr

i

ro

X
.

X rO

1

CVJ

X
*

CVJ

"3

X
,

—

Q.
O
O

O
O
•a
CD

e
a>
u>
en
a
-t-
c/>

o

CO
if)

CDO
O

<

5!



149

f(X
!0»

X
d'

X
12

)
=

f
X
['^lO^li*

+ f(X
lU'

X
12

)
+ f(x

ll
(̂

X
d

)

)
U7)

11

f(X
8 cA'

X
d
X
12

)
= Max

|
£(x

8o^ X 10
)

+ £(x
iO'

X
d'

X
12

)

j
U8)

X
10

f(x
7
,x

b
,x

d
,x

12
) = Max[r(x

7
;O

g
) + f(x

8
p,x

b
) + f (x

8^
f xd

,x
12 )} (19)

e
8

f(x
5
,x

b
,x

d
,x

12
) = Max [f(x

5
,x

7
> + f (x

7
,x

b
,x

d>
x
12 >

|

(20)

X
7

f(x
A
,x

b
,x

12
) = Max jr(x

4
,x

d
,9

5
) + f(x

5
»x ,x

d>
x

)J
(21)

f(x
2
,x

b
,x

12
) = Max ff(x ,x^) + f (x

4
,x

b
,x

12 )

]

(22)

x
4

f(x
]

.,x
12

) = Max fr(x
I
,x

b
,0

2
) + f (x

2
,x
b

,x~
12

)
J

(23)

e
2
,X

b

f(x
Q
,x

12
) = Max j"r(x

o
;0

1
) + fCx^x^)] (24)

6
1

EXAMPLE 2. A STAGEWISE CROSS-CURRENT EXTRACTION PROCESS

Let us consider the cross-current extraction process with recycle as

shown in Fig. 5 [8, 9J. The process consists of 3 equilibrium stages through

which a solvent containing a solute passes. The solvent is fed to the system

at a flow rate of q. The solute is extracted from the solvent by the addition

of wash water at each stage. The solvent and wash water are assumed immis-

cible. A portion of the solvent from the last extractor is fed back to the

first extractor at a flow rate r. Thus, the solvent flows from stage to

stage at a rate, q+ r. The problem is to maximize the objective function which

is the net profit per unit time by suitable choices of flow rates of wash

water, w , w , and w_.
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S' =^q(x -x
3

) -
/

S(w
1

+ w
2

+ w
3

)

= ^{(q+ r)x
ml

- rx
3

- qx
3 ]

-^ + ^ * w^

= c^(q+r) (x . - x_) - /?<w. + w + w_)
ml 3 '12 3

where
qx

Q
rx.

x ,
- a

ml .

and where cK and
fi

are unit prices of the solute and wash water respectively,

Basing the return on the unit price of the solute, we can rewrite this as

S =
dT

= q(x0"X
3

) " X(W
1

+ W
2

+ V
= (q + r)(x . - x_) - \^ w

i

+ wo
+ wo>^ ml 3 1 2 3

where

is the dimensionless price ratio of the wash water and solute. Note that

the unit of S becomes weight per unit time according to this definition

since

s = SI = $ lb. _ lb.

<\ time $ time

The state variable is the concentration of solute x, based on the weight

fraction. The decision variable at each stage is the flow rate of wash

water w.

The phase equilibrium relation is given by [8],

y = h(x) = a + bx + ex
2

+ dx
3

+ ex
4

+ fx
5

(25)

with
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a = 0.00099,
b = 1.7971,
c = 35.196,
d = -633.84,
e = 3371.3,
f = -5916.0.

First we let w = 9 and rewrite the objective function (or the maximum return
n n J

function) as

Max S = f(x^, x.) = Max f (q + r)(x ,
- x ) - \9 }3 r , ( ^ n-1 n n )

I
e
ni

,
3

s
= Max < 2 r(x , ; 9 )

Kl '
« n " 1 n

'

where r(x ; 9 ) is the return function of stage n, which stands for the
n — 1 n

net profit per unit time at stage n based on the unit price of solute and

hence it has units of weight per unit time. Applying a generalized version

of the dynamic programming algorithm given in this chapter, we can write the

functional equation as follows:

(1) for a one stage process including stage 3 (the third extractor)

with a branching point downstream

f(x
2
,x

3
) = Max [ r(x

2
; 9

3
)

J
9
3

(2) for a two stage process including stage 2 (the second extractor)

with a branching point downstream

f(x
L
,x

3
) = Max (r(x

x
; 9

2
) + f(x

2
»x

3 )j
6
2

(3) for a three stage process including all stages (all extractors)

with a branching point and a combining point
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f(x ,X
3

} ~ MaX
(
r(x

o»
x3* 9 l

)
+ f(x

1
» x

3
)

'

9
i

We shall consider the case with

q - 1
-—

^ min.

= !
lb.

min.

X
Q

= 0.05

x
6

= 0.2

We shall use y to designate the concentration of wash water flowing out of

each extractor. The concentration in the fresh wash water is negligible.

The return function r(x ; 9 ) of stage 3 is

r(x
2

;
3

) = (q + r)(x
2

- x
3

> - \& . (26)

From the material balance of stage 3 (the third extractor) we have

(q + r)(x
2

- x
3

) =
3y3 9

or

(q + r)(x - x )

e = ^ i_ (27)
3 y3

Substitution of equation (27) and the equilibrium relation equation (25)

into equation (26), gives

r(x
2

; 9
3
)= (q+r)(x

2
-x

3)fl
- ^yj

- nt vf, 0.05 ")

" 2(X
2 "Vl 1 - MxTTf-

3

Similarly, the return function r(x. ; 0_) of stage 2 (the second extractor)
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is

r(V V = 2(x
i

- V l " hoo

and the return function r(x_,x_,9.) of stage 1 (the first extractor) is
u j i

r(x
Q
,x

3
,9

1
) = qx

Q
+ rx

3
- (q + r) x

l
- Q

l

x + x - 2x - 0.059

0.05(x + x - 2x )

x + x - 2x - =—X X
3 1 h(x,

)

= (0.2 + * - 2x,) 1
-fl^

h(x.)

RESULTS AND CONCLUSION. The computations have been performed on an I.B.M.

1620 computer. Each time, a value of the final exit concentration, x_ is

read in as a parameter as shown in the functional relations developed.

A sketch of the grid points of the state variables employed in computa-

tion and the computer flow diagram are shown in Figs. 6 and 7 respectively.

The computer symbols and program are given in Tables 1 and 2.

The optimal values, the state variables and return functions obtained

are as follows;

x
Q

= 0.1215, x
x

= 0.081, x
2

= 0.058, x = 0.043

r(x_; 9.) = 0.01552 —*-
,

2 3 min.
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'Start V-^ *]£_
Punch

Calc.

h(Xi)

»

Set

X, =0.072

Sfunch X2X>
/h(X2),r(X2 = e3

),]

\^(X2 ,X3 )

Set
X?=0.050

0.001

Calc. X2 ,

r(X,:02),

KX,-e^tf,(^

(
End

y

Punch, X^X,;

• 'to

Punch XM X2>
h(X,)/(X, !

. G2 i

Set
X?=Q05p
^Xo=0.001

Calc. X 2 ,

hfX^rOfe:©
3
)

f(X2> X 3 )

X,=X,fAX,

aX, *0X)0l

Fig.7 Computer flow diagram for the cross-

current extraction process with recycle.
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Symbol

XI

X2

X3

HX1

HX2

HX3

RX2T3

RX1T2

RX3T1

F1X2

F2X1

SR2F1

SMRF

TABLE 1

EXPLANATION OF PROGRAM SYMBOLS

Explanation

weight fraction of raffinate at the exit of stage 1, x

weight fraction of raffinate at the exit of stage 2, x_

weight fraction of raffinate at the exit of stage 3, x_

phase equilibrium function for stage 1, h(x )

phase equilibrium function for stage 2, h(x )

phase equilibrium function for stage 3, h(x„)

return function of stage 3, r(x ; 0_)

return function of stage 2, r(x ; )

return function of stage 1, r(x » x^, 0.)

maximum return function for a one stage process, f(x , x )

maximum return function for a two stage process, f(x , x_)

sum of the return function of stage 2 and the maximum return

function of stage 3, r(x ; ) + f(x , x_)

maximum return function for a three stage process, f(x_, x_)
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CROSSCURRENT
TAPLF 2

FXTRACTI: ITm RECYCLE

11

18
19
2

17
16

22
23
24

21

DIMFNM
DIMENSI
FORMAT

(

FORMAT

(

FORMAT (

READ 1»

A = . ( 009
B= 1.797
C=35.19
D=-633.
E=3371 .

F=-5916
HX3=A+B
PUMCH 2

CALC.F1
X2( 1 ) = .

DO 11 J

X2

(

J)=X
hX2 (J)=
R X 2 T 3 ( J

F1X2( J)
PUNCH 3

CCN.7 I NU
CALC.F2
XI ( 1 )=.

DO 16 <

XI (K)=X
HX1 (K)=
DO 17 J

RX1 T? (K

SR2FHK
IF( J-2)
F 2 X 1 { K )

IF(SR2F
F2X1 (K

)

PUNCH 3

COMTINU
CCNTINU
CALC.SM
DO 21 K

RX3T1 (K

SR1F2(K
IF(K-2)
SMRF=SR
IFtSRIF
SMRF=SR
PUNCH 3

CCNTINU
END

ON
ON
6X
6X
6X
X3
9

1

6

84
3

• i

*X3
,HX
X2(
049
= 2.
2( J

a+'b

)=2
= RX
,X2
E

XI (

071
= 2»
1 (K

A + B
= 2»
»J )

J )

18,
=SR
1 (K
= SR
»X1
F

F

RF
= 2f
)= (

)=R
22.
1F2
2<K
1F2
»X3
F

X1(15),X?(15),HX1(]5),HX2(15),RX2T3(1 5 ),F 1X2(15)
F2X1 ( 15) »SR2FK15»15) >SR1F2(15) »RX 1 T2 ( 1 5 * 15 ) »RX3T] (15)

.F8.3)
,F1 1.5 )

,2F8.3,4F11.5

)

+C*X3#*2 + D#X^**3 + F#X3**4 + F*X':}*#5

3

J)

15
- 1 ) + • 1

*X2( J )+C*X2 ( J )**2+D*X2

(

J )**3+t*X2 ( J)**4+F*X2 ( J ) **5
.*(X2( J)-X3)*( 1.-.05/HX3

)

2T3( J)
(J),X3»HX2(J),RX?T3(J)»F1X2(J)

K )

15

-D+.001
*X1(K)+C*X1(K)**2+D*X1(K)**3+E*X1(K)**4+F*X1(<)**5
15

=2.*(X1(K)-X2(J) )*( l.-.0 5/HX2( J)

)

= RX1T2 ( < , J )+FlX2 ( J

)

18,19
2F1(K»J)
, J) -F2X1 ( K ) ) 17,17,20
2F1 (K,J )

(<),X2(J),HX1(K),RX1T2(<*J),F1X2(J),F2X1(K)

15

• 2+X3-2.*Xl(K) )*<l.-.05/HXKK) )

X3T1(K)+F2X1(K)
22,23
(K)
)-SMRF )2 1 ,2 1 ,24
(K)

,X1(K),RX3T1(K),F?X1(K) ,SMRF
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r( Xl ; 9
2

) = 0.02886 g*- ,

7(x , x
3

,
0l

) = 0.05647 gjj- ,

f(x„, x ) = 0.01552 —'
' min,

lb.
f(x,, x-) = 0.04439

min.

lb.
f(x_, x-) = 0.10086

0' 3 ' min.

The optimal value of the decision variable at the first extractor is

_ r(x , x , )

© = —*—£—*-

h( Xl ) - \

= 0.05647
0.16512 - 0.05

= 0.491 -^-
min.

Similarly, we have

O
= 0.343 —*-

2 min.

and

iL = 0.290 ~^~
3 min.

It must be understood that there are small errors in these results due

to discretization.

We see that the allocation of wash water is in the decreasing order as

indicated in Refs. [9J and L5j. The small differences among the optimal

values obtained from this problem and those given in Refs. L9j and L 5 J are

due to the slight differences in phase equilibrium relationship and the



160

differences in the errors due to the discretization. The optimal values of

and the maximum return functions of Refs. [9] and L 5 J , and from this study

are given in Table 3.

The optimal results and the best results corresponding to each final

exit concentration x are listed in Table 4. Some non-optimal results are

also shown in Table 5 for comparison. It is clear that the profit based on

unit price of the solute in each non-optimal case is smaller than the

optimal value of 0.10086 --'-- corresponding to the value of x_ at 0.043,r min. r 3

as given in Table 3.
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Optimal
values

Case

TABLE 3

COMPARISON OF OPTIMAL VALUES

e
l

6
2

6
3

RMF

lb. lb. lb. lb.

min. min. min. min.

0.518 0.335 0.274 0.1018

0.610 0.440 0.420 0.0974

0.491 0.343 0.290 0.1009

Ref. 9

Ref. 5

this study



162

00
CD

(N

CO

2
O
i-i

HZ
w
uz
o
c_>

H
H-l

b
O
co
W

w
CO
<

CD

CD

CO
X CM

o
o ~*
X X
M-l

CO
X CM

• C

-• e

x

M-l

O
t—

l

X

CO
CO
CO

CM
CO

CO
r-

1

CO

o

O CO^ o
CO CO

on
CM

O
CT>

CM

CO
X CM

CM
X

CO

o
1—

t

X

-ui

CM

—i 4J

X I*

CO
X
+ CM

4-»

c
o
•M
u
U
<a

O

c
o

4J
u

M

c
o
•H
•u

u
oa

u

on
CO

vO
oo

•

o>

on
o

On
CO

COm

vO
.-i

o
•

o

CO
nO
CO

oo
COm

o
o

CO
vO
CO

CO
CM
m

COm
o

m
co

ON

m
o

CM

o

CM
m
co

o
•—I

m
•

o

oo
o

co

CO

CO

CO

*o ^
o on
m -4-

*m vo
co co
o o

o vO
CM

m
ON vO

CM

CO
CM
CO

*
CO ON
CO CO
CO >*

CO
CM

co

CM

CO
CO
CO

co

CM
CO
o

ON
t—

I

CO
•

o

co

m
o

CM
ON

m
•—i

vO CO CO ON CO m ON CM CO CM
r^ CM vO o vt CO I—

1

m co i—

i

CM CO CO <r •* >tf m m m vO

NO r^ co ON o e-l CM CO >j- m
CO CO CO CO >tf -tf <f <r <r <ro o o o o o o o o o

*—

i

CM CO <f m vO r» co ON om m m m m m m m m nO
o o o o o o O o o o

*m nO vO r^ co ON o 1—1 CM CM
r-» r- r>> r- r^ r-» co co CO coo O o o O o o o o o

*o m o m o m o m O m
00 00 ON ON o o -^ pH CM CM
r-t !-* pM i—

•

CM CM CM <M CM CM

W
4J
—

I

3
W
0)

<d

E

4J
o.o



163

--I CM 1 •

« o • c

O X -< sH co

CO

CO

4J
*

CD

CM

CO
CD

m
w
-J
co

CO
HJ
CO
W

H
CM
o

I

zO2

CM

CM

CO CO m •—

i

1 * i—

i

r^ co (T>

• c <t <t .—

•

CO

21

1

r-H —

i

r-4 —

<

o o O O
• • • •

o ft o o

• vo m CO 1—

1

• c r^ vO CO <t
Z) •H CM CM CM CM
-H e • • • •

o o o O
c
o

• 1-1 \0 CO I—

1

CO
4J 4J m m m m
3 o o o o o

id • • • •

M o o o o
U-l

CD
• Oh

x"

CM
CD

C
o
•HU
CJ

«

CD

CO

CD

CO
X
+ CM

C
o

• -f-l

U 4J

* O

M

CO
CO
o

CM
<to

CO
o

o

CO

o
o
co
o

m
CO
o

co
CO
o

o

vl-

vO
O

m
<r
o

m i—

I

r- o
• i—

*

vO o> 1—1

c r^ rv vO m
H CM CM CM CM
E O o O o

• M3 CO 1—

1

CO
c CO CM co cr>

H co CO CO CM
s • • • •

co

o

cr> CM o\ r-
• <* <t <t m
c cr> CO —

i

•—I

H m m vO vO
E o o O O

o CM •—

I

cr>

CO r-t CM <tm m m in
• • • •

o o o o

o o o m
—

1

CM ON CM
CM CM I—

I

CM



164

References:

1. Mitten, L. G. , and G. L. Nemhauser, "Multistage Optimization," Chem.

Engg. Prog., 59, No. 1, 52 (1963).

2. Nemhauser, G. L. , "Introduction to Dynamic Programming," John Wiley &

Sons, New York, 1966.

3. Aris, R. , "Discrete Dynamic Programming," Blaisdell Publishing Co., New

York, 1964.

4. Aris, R. , G. L. Nemhauser, and D. Wilde, "Optimization of Cyclic and

Branching Systems by Serial Procedures," A.l.Ch.E. Journal, H), 913

(1964).

5. Fan, L. T. , and C. S. Wang, "The Discrete Maximum Principle," John

Wiley, New York, 1964.

6. Fan, L. T. , "The Continuous Maximum Principle," John Wiley & Sons,

New York, 1966.

7. Bellman, R. , "Dynamic Programming," Princeton Univ. Press, New Jersey,

1957.

8. Lee, E. S. , "Optimization by a Gradient Technique," I.E.C. Fundamentals,

Vol. 3, No. 4, Nov. 1964.

9. Rosen, E. M. , "Further Comments on the Paper, 'Optimum Cross Current

Extraction with Product Recycle.'"



165

APPENDICES



166

APPENDIX I

ANALYSIS, DESIGN, AND SIMULATION OF A MULTIEFFECT,
MULTISTAGE EVAPORATOR SYSTEM

Water administrators throughout the world are greatly concerned about

supplementing water supplies as the demands for fresh water increase year by

year. For many years, fresh water has been obtained from salt water by flash

evaporation due to the comparative lower cost of converting sea water into

potable water by means of large capacity flash evaporators. More water is

needed than can be provided by the natural sources of supply and it seems

likely that the desalination of sea water is turning out to be a must. As a

consequence, much recent effort has been directed to the development of

desalting plants with the purpose of producing large quantities of fresh

water at low costs. It is anticipated that multieffect multistage (MEMS)

flash evaporator systems can economically provide fresh water to areas with

large population. This study is essentially concerned with the design and

simulation of a multieffect multistage flash evaporation system with a nominal

capacity of 50 MM (50 million) gallons per day. The process model is similar

to that of the proposed pilot plant at Millstone (1).

The outstanding feature of this process which distinguishes it from other

Elash evaporation processes is that a portion of the flashing brine stream

from each effect is recycled back to the inlet of that effect. This scheme

Ls more efficient thermodynamically than recycling the spent brine from the

Last effect directly to the first effect. The recycle stream is passed through

:ondenser tube bundles on which water vapor is condensing in order to preheat

:he recycle brine prior to mixing it with the brine stream coming from the

previous effect. Since heat recovery becomes more efficient as the number of
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stages used for flashing and preheating increases, inter-effect recycling

makes it possible to add more stages per temperature gradient as pressure

difference increases.

There are many design variables to consider and many ways to carry out

the simulation. The number of stages, total temperature difference (tempera-

ture difference between the flashing and recycle brine), blowdown temperature

or concentration at the outlet of each effect, allocation of number of stages

in each effect, and selection of brine velocities are all important, but the

most important factors are the first two. In this simulation study, we chose

a 68 stage model with 23 stages in the first and the second effects and 22

stages in the third effect.

Two models of the system a "micro stage model" and a "macro stage model"

are used. In the micro stage model the performance of each stage within the

heat recovery section of each effect is considered, while in the macro stage

model the performance of each heat recovery section is considered as a unit.

In both models, we treat each heat rejection section as a unit even though we

assume that there are 3 stages in the heat rejection section of the first and

second effects and 2 stages in the third. Since each heat rejection section

also acts as a brine heater for the next effect, it is much more convenient

to treat them as a whole unit. In both models, we assume equal distillate

production for each effect (this automatically fixes the blowdown concentra-

tion of each effect). In the former, we examine the effect of changing the

total temperature difference and the blowdown temperature for each effect,

while in the latter we fix the blowdown temperature and study the effect of

changing the total temperature difference.
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1. PROCESS DESCRIPTION

Assume that the MEMS plant is located on the coast about 50 feet above

:he sea level. The sea water is usually pumped from the ocean via forebays or

sumps. It passes through the heat rejection section of the third effect and

ts pH value is adjusted by adding sulfuric acid. Then it goes to the

leaerator system where the dissolved oxygen and nitrogen (inert gases) and a

small amount of carbon dioxide are removed. The pretreated raw feed is

leated by passage through the condenser tubes of the heat recovery section

>f the third effect and all of the stages of the second and the first effects,

t is finally heated to the desired flashing temperature by a shell and tube

irine heater with low pressure steam from an adjacent power plant. Before

:ntering the flashing chamber of the first effect, the heated feed is mixed

rith the recycle brine from the outlet of the same effect. The recycle brine

s heated to the same temperature as the heated feed by passing it through

he brine heater also. Under these circumstances, the mixing streams are at

he same temperature and the concentration differences are reduced because

he whole system has been divided into three effects. The free energy de-

reases due to mixing, that is, the thermodynamic irreversibility has thus

een reduced. The flashing brine then cascades from stage to stage as a

esult of the pressure differential maintained. In each stage, a portion of

he water flashes from the brine solution. It is condensed on the condenser

ubes via demisters and is caught in troughs. The distillate also cascades

rom stage to stage and is finally pumped to the storage tanks as product

rora the lowest pressure end, i.e., the last stage of the third effect. The

rine in excess of that required for recycle in the third effect is pumped

ut of the system and discharged to the ocean as a blowdown. A schematic

iagram of the process is shown in Figs. 1 and 2.
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Length or Stage number

"ig. 2. Temperature profiles of the multi-effect

multi-stage flash evaporator system ( The

micro stage model ) .
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2. FORMULATION OF THE DESIGN EQUATIONS ACCORDING TO THE MICROSTAGE MODEL

By making an analysis of the process, the design equations for the simu-

lation study may be developed. In this simulation study a 68 stage, 50

million gallons per day plant is investigated. It is assumed that the salt

water fed to the system contains 3.5 weight per cent salt and that the con-

centrated brine leaving the system (blowdown) contains 7 weight per cent

salt. This information is presented together with other numerical data in

Table 7.

(A) Material and Energy Balances for the nth Stage of the Heat Recovery

Section of the First Effect . From Fig. 3, we may develop the following mate-

*
rial and energy balance relationships. A distillate material balance gives

n _ n-1
:

2
x*2 " + AW"

, (1)

where Aw depends on the energy balance

(FU^) - 4"IK-l
>H T- 1

= AWV (KIT) - X
"

2
j(C")a T^ , (2)

where

o.
T- = temperature of flashing brine ( F),

AW = amount of water vapor formed (lb/hr),

H = enthalpy of water vapor relative to liquid to F
v

(BTU/lb)
y

o.
(C )

f
= heat capacity of flashing brine (BTU/lb F)

r = ratio of the recycle brine in the first effect to

the make-up feed (lb/lb),

x = amount of distillate (lb/hr).

All superscripts denote stage numbers. A complete list of nomenclature
is given in Table 2 on page 200.
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F( Ur,)-X
n

2
''

3

Wn
A H°v

F(ltr,)- X£

Fig. 3. Block diagram for the flashing brine

at the n-th stage , heat recovery section

of the first effect.

Condenser tube

F(ltr.) F( Itr,)

Flashing chamber

(a) Stream flow

( b) Temperature profiles

Fig. 4. Block diagram for the operation of the

n-th stage, heat recovery section of the

first effect.
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Equation (2) can be simplified if we put

n — 1 n
(C )-, = (C ),., = (C )., = average heat capacity of the

p fl p fl p fl r j

flashing brine in the first effect (BTU/lb°F)"

Then we have,

23
(C )„ + r, ((T

J
)

1 p fi + (r
2:

vC
p

}
fl (C )_ + (l+2r. )(C

23
) •

(c ) = 1 = E_I I 2 Ik
K

p fl 2 2(l+r
L

)

where

(C ) = heat capacity of the make-up feed (BTU/lb°F),

23
(C ) = heat capacity of the flashing brine at stage 23

P (BTU/lb°F).

According to the Bechtel Corporation (3) s heat capacities of brine at various

concentrations can be expressed as

C = 1-c (3)
P

in which c is the concentration of the brine in weight fraction. The

enthalpy of water vapor can be written as

H
n

= (C )„ x" + A" (M
v p W 1

where

(C )„ = 1.0 = heat capacity of distillate (BTU/lb°F),
p W J

x = temperature of distillate ( F),

X = latent heat of vaporization (BTU/lb).

Thus, equation (2) becomes
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{F(l +r) - x"-M(C ) fl iT 1
= AvAx" X") +{F(l+r.) - x""

1
- AW

n
)

1
1 i. p r 1 I 1 I £.

(C )., T" (5)
p fl f

Solving for Aw gives

F(l+r.) - x""
1

(C ).,(T"
l

- T")
AW" = & 2 ELli_J L. (6)

Xn + (x? - (C ) f
T")

1 p fl f

Substituting equation (6) into equation (1), we have (see Fig. 4)

n-K _ . ,„n-l

n
x„ = x

n _ L
(F(l+ri ) - x^ )(C )

fl
(Tj- -lj)

(7)
2 2 N n , . n , . ^n

A + (x, - (C ),. T.)
1 p fl f

The temperature of the distillate in each stage x. depends upon the

pressure that is maintained in that stage. The temperature difference

_n _ n-1 n , .

- x - x (8)

depends on the difference in pressure that is maintained. Noting that

n-1 = n-1 + A
n-1

l
f

x
i

c
bpe »

T° = x
n

+ At°l
i

X
l

C
BPE '

we have

T""
1

_ T
n = e

n
+ At""

1
- At" .

f f BPE BPE
*

According to reference (3), the boiling point elevation of the flashing

brine at each stage is approximately equal to 2 F. Thus, we put

At
BPE

= At
BPE " 2 -
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Furthermore, since the term x - (C )
f
,T

f
is negligibly small compared with

X i
equation (7) can be simplified further to obtain

. (FU+r.) - x""
1

} (C ),. e"
x" = x""

1
+

l- 2 P fl
(9)

2 2 xn

with x_ - 0.

An energy balance for the flash chamber of the nth stage gives

" " X2 iCp\\ + (Fd + r
l
)-x

2
}(C

p
)

£1
T
£

-xn(C )w xJ -<f(l*r ) -x!|)CC ) T
£

,

or

," - x- 1
xj"

1
(F(l+V - .;-' ) (C )

fl
(x- 1 At£)

, n-l, A ..n. . n-1 n
- (x + AW ) (x - e )

j«»-i' -«r
1 - Arf, > (c

p
)
fi
ur

l - 9n+A
«m>'

The above expression may be further simplified to give

," = X- 1 8" (m+V - X- 1
} (C

p
,
fl

(8" 4t£ - At"
BpE

,

+ AW" ((C
p

)

£1 <xJ
+ A C

"

BpE)-xJ) .

Since

At""
1

= At"
BPE BPE

and the last term is negligibly small, we can write
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q
n

= x""
1

e
n
+{F(i+r) - x^Mcc ) fl

e
n

. (10)n 2 v
1 2 ' p £1

For the fluid inside the condenser tubes we have the following energy

balance

q
n

= F(l+r.) (C ) , (x""
1

- x") (11)^
1 p rl 3 3

with

where x_ = temperature of recycle brine ( F),

T
f

= maximum brine temperature ( F),

At = temperature rise by passage through the brine heater
1

(°F),

(C ) = heat capacity of recycle brine (BTU/lb°F).

(C ) , is calculated as
P rl

(C ) + r.(C
23

),.
p F 1 p fl

p rl l r
l

The condenser tube area needed for each stage may be determined from the

equation

n , .n , n , A n

.

, . _

,

q = U A (At ) (12)H L.M.T.D.

where

U - overall heat transfer coefficient at stage n

(BTU/ft 2hr),

(At ) = logarithmic mean temperature difference for heat
transfer at stage n(°F),
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, n n. . n n-l N n-1 n
(x - x_) - (x, - x_ ) x» - x_

(At
n

) n
= _i 3 1 3_ = _J 3_

L.M.T.D. n n n n

o

X
l

" X
3 a

X
l

" X
3

n n-1 n n-1
X

l
" X

3
X

l
" X

3

Combining equations (10) and (11), we have

. 9
n
(F(l + ri )(C ),, + x"

_1
(l - (C )__))

3 3 F(l+r, )(C ) ,

l ;

1 p rl

From equations (8), (11), (12) and (13), we can obtain

n F(l+r
t
)(C ) . x" - x"

A
n _ g_ _ 1 p rl - 1 3

A - 3 B £n r
n n n n-1

U
n 9 U x

l
" x

3
n n

X
l

" X
3

F(l+r,)(C ) , in — ~-
1 p rl n n-1

X
l

" X
3

F(l+r. )(C )
,

1 p rl f. . n-1 n n. , n-1 n n-l."\ ,- c .= v. i£ n ( - e - x_) - in (x, - - x. )J (15)
..n N

1 3 1 3 '

Taking u = (U. ) as the average overall heat transfer coefficient for the
1 av a

condenser tubes in the first effect, and combining equations (14) and (15),

we obtain

F(l+r.)(C ) . , . .

n
{F(l+r.)(C ).. +x"~ L

(l-(C ) f ,
))

A
n m 1 E_rl ^n{

n-l_
Q
n n-1 + 1 p_fl 2 p_fl_

)

(U.)
3

F(l+r. )(C )
,1 av 1 p rl

- in (x""
1

- e" - x^"
1
)) , n = 1, 2, . . ., 20 (16)



178

(B) Cost Equations for the Brine Heater and the Heat Recovery Section of the

First Effect . In the following, we shall consider the unit production cost

F
in dollars per pound of distillate term by term. The total production is -r

so that each cost item is divided by F/2 to give the unit production cost in

dollars per pound of distillate.

(a) Steam cost. The amount of steam consumed, S is

_ F(l^
1
)(C

p
)

rl
At

1

The steam cost in dollars per pound of distillate produced, (x, ) is

C.F(l+r. )(C ) ,
At, 2C.(l+r.)(C ) . At,

(x ) = -i 1 E-£i l=__i 1 E_£l—I (17)VVs F. v
Kl7)

where

X = latent heat of steam (BTU/lb)
s

C. - unit steam cost ($/lb)

(b) Fixed charge cost for the brine heater. The amount of heat transferred

in the brine heater, q , is
D

qB
= Kl*r

l
>CC

p
)
rl

Atl - V B
At

UM>T>D>

where

*
All unit cost items are from (3).
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A „ (T -250+At) - (T -250) At,
At

L.M.T.D. = -S- 1 S l

T -250+At, T -250+At,
p _s 1 g

_s 1
' T -250

€n ' T -250
s s

T - temperature of the steam.

In case steam of 40 psi is used, T = 274.4 F andr s

At
l

At
L.M.T.D. 24.4 + At.

*" 24.4

Using the above equations, the heat transfer area in the brine heater, A ,

becomes

F(l+r. )(C ) .At, F(l+r.)(C ) .

A R
=

A,
P = „

P {ln(24.4+A tl )-ln(24,4))

U
B 24.4+At

and the fixed charge cost for the brine heater per pound of distillate

produced, (x, ) , is written as

C F(l+r )(C )

(x
4

)
R

=
p

2~LL (£n(24.4 + At
x

) - -£n(24.4))

2
U
B

or

2C (1+r )(C )

(x.) D
= —*

J-

E-£i {^n(24.4 + At.) - £n(24.4)) (18)
4 B U

B
1

2
where C is the unit fixed charge cost for the brine heater ($/ft hr).

(c) Fixed charge cost for the condenser tubes.

From equation (16), the fixed charge cost for the condenser tubes per



180

r i

pound of distillate product, (x, ) , becomes

C.F(l+r.)(C > n

(x
n

) = -^ *-^ (Mx"" 1-^ 11
" 1

+ 9 x (F(l+r )(C )*Vcl F ,„ ,
l
en

l
x
l

w x
3 F(l+r,)(C ) .

* *• 1
M

p^fl

I ( Vav l P rl

+ x^U-CC ) fl )» -In Cx^-e^x"" 1
))2 p 11 ' 1 J '

2C_(l+r. )(C ) , . ,
,

_n

(x
n

) = — P-^1 ^nfx^W' 1 + x {F(l+r )(C )CVcl (U,) l l l 3 F(l + r,)(C ) ,

X lMi V p fl
1 av 1 p rl

+ x^U-CC ) f1 ))} - *n (x?-
l
-e
n-«;- 1

)) (19)
2 p fl ' 1 3 '

2
where C_ is the unit fixed charge cost for the condenser tubes ($/ft hr).

(d) Cost of recycle for the first effect. The cost of recycle which we wish

to consider results because of the pressure differences created in order to

produce flashing at each stage. In order to recycle some of the brine which

leaves stage 23, we must increase its pressure to that of the brine stream

flowing from the brine heater to the first stage. The work that must be done

to accomplish this, W , is
r
l

AP
1 144\ = Fr

l
X T X

3600 x 550
HP "hr -

where

•3

P = density of the flashing brine = 62.5 (lb/ft )

Ap
i

= po- p
i-

F = vapor pressure of brine entering stage one at T
f

(psi),

The vapor pressure of the brine leaving stage 23, P., is calculated by an

empirical formula [4], that is,
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|\, n ^ 9 x 3660 , ,.P - exp (14.07 - — (psi)
5(x~ - 32) + 1989

We can write the cost of recycle, (x. ) , as
4 rl

C. Fr.(P
rt

- P, ) x 144 2C.r,(P - P, ) x 144

(x.) =- 4 l ° l- = ^-i-fi » (20)
- x 62.5 x 550 x 3600 x 0.85 62.5 x 550 x 3600 x 0.85

where C, is the unit pumping cost including the electric power and deprecia-

tion cost for the pumps and the correction factor 0.85, which accounts for

the efficiency of the pumps, is taken from reference (3),

For the heat recovery section of the first effect, the accumulated cost

n *
per pound of distillate produced, x, , is

x4
= (x

4>s
+

(Vb + (x
4

}
cl'

n = 1, 2, . . ., 20

or

2C-(l+r.)(C )
, ,

. ,
q"

x? = (x, ) + (x, >_ + 3
M|

E-Ji
(^n (

n-1 n n-1
4 4s 4B (U.) I>,'1 3 Iprl

1 av r

{F(l+r.)(C ) f ,
+ x""

l
(l - (C )_,)}) - *n(x""

l
-e

n
-x!;"

1

)) (21)
1

1 p fl 2 p fl '' 1 3 *

n = 1, . . ., 20.

(C) Material and Energy Balances and Cost Equations for the Heat Rejection

Section of the First Effect . The heat rejection section of the first effect

also acts as the brine heater for the second effect. In this study, the

The cost of recycle for the first effect will be included when the
cost of the heat rejection section of the first effect is considered.
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temperature of the brine leaving the flash chamber of the last stage of the

heat rejection section is assumed to be equal to the temperature of the feed

stream which enters the heat recovery section, that is,

20 23 23
X
3

= V = X
l

2

An energy balance around the heat rejection section of the first effect

gives (see Fig. 5)

F(l*r
1
)(C

p
)
fl (xf

A t
2

pE
- ,»> = {F(C

p
)
F

+ Fr^^Juf - xf >

According to reference (3)

(C )_ = 0.965
P F

46 3
and (C "),_ = 1 - 0.035 x -J

= 1 - 0.0525 = 0.9475
p t2 2

23
Solving for x , we have

20 20
„ on (l+r,)(C ) f1

(x, + 2 - x,)
x
2 3 = x

20 _ 1 p fl 1 3__ (22)
3 3 0.965 + r„ x 0.9475

J

The amount of distillate produced in the heat rejection section of the

first effect is given by

,
)m*V - *2°> (Vfi< T

f - T
f
3)

(AW).. =
lj (A) .

.

J avlj

or

[FU+r.) - xf](C )
fl

(x
2° + 2 - x

20
)

(AW) = * ? P fl l 3— (23)
ll 20 20J 1098.3 - 0.3055(x^ + x* + 2)

where the formula for A is obtained by curve fitting the steam table
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A = 1098.3 - 0.611 x
x

Thus

20 20
1098.3 - 0.6ll(x, + 2) + 1098.3 - 0.611 x^

<*>avlj
= l

2
~

20 20
= 1098.3 - 0.3055(x^ + 2 + x* )

The heat transfer area required for the condenser tubes of the heat

rejection section of the first effect is

20 20
q, . F(l+r.)(C )-.(x, + 2 - x,)

A = ILl = 1 E_XL_i 3_ (4tt

lj (U, ) (At) ,. (II) (At) ..
K ** }

1 av avlj 1 av avlj

where (At) , . is evaluated as follows
avlj

,21 20, . , 23 23,
(x - x ) + (x - x )

A t = —i 2 1 2—
avlj 2

From Fig. 7-a, we see that

20 , _ 20
X T y — v

21 = 20 1 3
X

l
x
l 3

Using the above equation together with the assumption that

23 _ 20
X

l " X
3 " 2

we obtain

3(xf - x", 2U?° - «?> - 8

At
aylj

= —3 1 _J 3 <25)

Substitution of equation (25) into equation (24) yields
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20 20
6 F(l+r. )(C ).

1
(x, + 2 - x,)

1 p fl 1 3

,„ j 20 23, . _, 20 20, y

(U
l

}
av^

3(x
3 " x

3
} 2(x

l
" x

3
} ~ 8 i

Hence, the unit production cost is obtained as

20 20
6 FC.U+r. )<C >-.<x, + 2 - x,)

, , _ 3 1 p £1 1 3
(x. ).

|(n.) {3<xf -*" + nJ» -xf) - 8}
2 1 av k 3 3 1 3

20 20
12C_(l+ ri )(C >-,(x, + 2 - x,)

_ 3 1 p fl 1 3.

,„ , /,, 20 23, . _, 20 20, Q \(U, ) {3(x_ - x_ )
+ 2(x, - x. ) - 8j

1 av l 3 3 1 3

(26)

(D) Material and Energy Balances and Cost Equations for the Heat Recovery

Section of the Second Effect . Using Fig. 6, we can carry out an analysis for

the heat recovery section of the second effect. Equations analogous to those

obtained for the first effect can be derived. The temperature of distillate,

x , may still be determined from equation (8), that is,

x" = x""
1

- 9
n

, n = 24,..., 43 (27)

with

23 _ 20
X
l " X

3
_ 2

where we take At as 2 F.
brfc.

The amount of distillate can be determined from

„-i K + V - «r
l

K>f2 e
"

x" = x''
_i + - *-±±— . n = 24,..., 43 (28)

2 2 xn

with

x
2

-
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which is analogous to equation (9) for the first effect expect that F is

replaced by — F as -r of the make-up feed has been flahsed out in the previous

effect. It should also be noted that the amount of distillate refers only

to the distillate formed after entering the second effect. As a matter of

fact, the distillate produced in the first effect just gives up its sensible

heat when it cascades down the subsequent effects, and it does not affect the

quantity of water that is flashed from the brine.

By using a procedure similar to that used to obtain equation (14), we

can obtain the recursive equation for x_ as

n-l *
F<6

+ r
2
)(Vf2

+ xr (l -
(V£2>

+
I'

9
'

x '- a x - = c--- s a—-- - (29)
3 3 F(0.965 + r

2
x 0.9475)

n = 24, ... , 43.

Similarly, the heat transfer area for the condenser tubes that is required at

each stage may be obtained by analogy. The equation which corresponds to

equation (16) for the first effect is

F(0.965 + r_ x 0.9475)
, , , ,

An _ 2 r. . n-l _n n. n-l _n n-l.'i
A — x (ln(x -0 -x )-ln(x -0 -x )J

2 av

F(0.965 + r_ x 0.9475) , ,_ 2 ( f
n-l n n-l

UT)
x l

ln
l*i "

e 'x
3

2 av

(F(| + r.)(C ).. + x"
_1

(l-(C )._) + fj9
n

. . , ,
+ — ELl2 2 p_J2 6_L_ _ ln(x

n-l.
9
n n-l

F(0.965 + r
2

x 0.9475) >
ilUX

l
W X

3 )J {^ )

n = 24 , . . . , 43

n 2C3Multiplication of A by —=— gives the fixed charge cost. The recycle cost i!
r

obtained by using exactly the same procedure as that used for the first
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effect. We obtain

2 x C
4

x r
2
x 144(P -P )

(x
A

}
r2 62.5 x 550 x 3600 x 0.85

(3U

where

o w m 9 x 3660
P - exp 14.07 -
2 ^ * *~' 43

5(x^ - 32) + 1989

Thus, the unit production cost x, becomes

_, 2C_(0.965 + r. x 0.9475) / , . .

n _ 23 . 3 2 I . n-1 _n n-1
X
4 " x

4
+

UC) l
ln

l
x
l

"6 "x
3

2 av

fF(^r )(C ) +x
n " 1

(l-(C ) + — I Q
n

(

fV
6

r
2 p

J
f2 2

U
J

p f2 6 j

*

F(0.965 + r x 0.9475)
^ , , n-1 _n n-l.^j

J
~ ln(x

l
"9 "x

3 >

J

n = 24,. .. y 43 , (32)

where

x. - x. + (x. ). . + (x. ) , .
4 4 4 lj 4 rl

which are the accumulated cost up through stage 20, the cost of the condenser

tube area for the heat rejection section of the first effect, and the cost of

recycle in the first effect, respectively.

(E) Material and Energy Balances and Cost Equations for the Heat Rejection

Section of the Second Effect . The heat rejection section of the second

effect also acts as the brine heater for the third effect. As before, we

assume that the operation is such that

x
43 . T

46 = 46
X
3 f

X
l

£
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An energy balance for the heat rejection section of the second effect gives

F(f + r.HC ) f9
(T^

3
-Tf ) + f(x?

3
-x?

6
) = (F(C >_ + Fr (C

68
)
fJ(xf-xf)6 2pf2ff 611 *pF 3p f3 J 3 3

The following approximate form of this equation will be used here.

FUT
2
HC

p
)
£2Cxf 2 - x*

3
) = {F(C

p
)
F

Fr
3
(C^)

£3
)(x«-x^6

)

According to (3)

(C )_ = 0.965
p F

and

(C
68

),_ = 0.930.
P f3

46
Solving for x_ , we have

46 _ 43
(1+r

2
)(Vf2 (4

3 + 2 - X
3
3)

X
3

X
3 " 0.965 + r

3
x 0.93 '

l * }

The production of distillate in the heat rejection section of the second

effect may be calculated as follows:

(F(f
+ r_) -xf}(C )£2(Tf

- T*
6

)

(AW) = 2 2 2 p f2 f f_
2j (A) ..

av2j

Since

(A) . = 1098.3 - 0.3055(xt
3 + 2 + x^

3
)

av^j l j

we obtain

(F(| + r_) - x^
3
}(C ) f9 (x^

3
+ 2 - x^

3
)

(AW) = —* 2 2 P
4f

1 55-J- (34)
J 1098.3 - 0.3055(x^

J
+ 2 + x^ )
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The heat transfer area required for the condenser tubes of the heat

rejection section of the second effect is

A3 43
q,. F(l+r_)(C ) f9 (x/ + 2 - x_

J
)

A = J2J = 2 p f2 1 3_H
2j (U_) (At) _. (U_) (At) _.J 2 av av2j 2 av av2j

where (see Fig. 7b)

_, 43 46. , _, 43 43,
3(x» - x- )

+ 2(x - x_ ) - 8

(At) .. = r—

*

(36)
av2j 6

Substitution of equation (36) into equation (35) yields

43 43

a
_ 6F(l+r

2
)(C

p
)
f2

(x
1

+ 2 - x
3

)

2 i ' (U
2

)
av(3(xf-xf)

+2(xf-x*
3
)-8}

Hence, the unit production cost will be

43 43
12C_(l+r )(C ), (x, + 2 - xl

J
)

(x }
= 3 2 P f2 1 3

4 21 r 43 46 43 43 ^H ZJ
(U.) (3(x, - x^°) + 2(x, - x^

J
) - 8}

2 av (
3 3 1 3 J

(F) Material and Energy Balances and Cost Equations for the Heat Recovery

Section of the Third Effect . Using Fig. 8 and an analysis which is analogous

to that used in Sections (A) and (D), equations which describe the heat

recovery section of the third effect can be obtained. Equation (8) for the

temperature of the distillate may still be used, that is,

x" = x""
1

-
n

, n=47,...,66 (38)
l 1

where

46 - 43
x. - x_ - 2.0
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The amount of distillate can be determined from

2 . , n-1
. [F(f r.) - x

r ' _1
](C >„ 9"

x" = x""
1 *-^ 3 2 p f3

n = 47,..., 66, (39)
2 2 >n ' '

A

46
with x = 0.

which is analogous to equation (9) for the first effect except that F is

2 1
replaced by — F as — of the make-up feed has been flahsed in the previous

two effects. Again, note that the amount of distillate refers only to the

new distillate which is obtained after entry of the flashing brine to the

third effect.

By using a procedure similar to that used to obtain equations (14) and

(26), we can obtain

. {F(f + r.)(C )__ + x"
_1

(l-(C )..) + £ ) e
1

n _ n-1 3 3 p f3 2 p f3 3
(

,

X
3

X
3 F(0.965 + r

3
x 0.930)

'
'

K W)

n = 47, ... , 66,

46
with x» calculated from equation (33).

The heat transfer area, A , may be obtained by using a procedure like

that used to obtain equation (16). It is given by

F(0. 965+^x0. 93) , ,
„n n-1

A" 3 f. , n-1 _n n n-1-0 -x )!

3 av

F(0.965+r_x0.93 , _ . .

(i f
n_1 Qn n_1~ U n X
L

~Q "x
3(U_)

3 av

n-1,, ,„ s v u. F\ n n(F(^ + r.)(C )_, + x"
_1

(l-(C ),,) + ^}e
+ 3 3 p f3 2 p f3 3

J

F(0.965 + r
3

x 0.93)
'

- ln(x - - x
)J , n = 47,..., 66, (41)
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2C
3

Multiplication of A by —r— gives the fixed charge cost. The recycle cost
r

is obtained by using exactly the same procedure as that used for the first

effect. We obtain

2 x C, x r. x 144 x {?-¥-)
U
4 r3 62.5 x 550 x 3600 x 0.85 '

Where

f .. __ 9 x 3660 ) . ..... 2,
P - exp ( 14.07 - 77 J in (lb/m ).

5(x^ - 32) + 1989

We are now able to write the accumulated unit production cost as

46
,

2C
3
(0 - 965 + r

3 ' °- 93)
f, , n-1 n n,

x
4

= x
4

*
nj- lln(x

l
-9 -x

3
>

3 av

- ln(x"
_1

- e" - x^"
1

)} , n = 47,..., 66 (43)

where

x, - x. + (x. ) .
+ (x. )

4 4 4 2j 4 r2

which are the accumulated cost up through stage 43, the cost of the condenser

tube area for the heat rejection section of the second effect, and the cost

of recycle in the second effect, respectively.

(G) Material and Energy Balances and Cost Equations for the Heat Rejection

Section of the Third Effect . We again assume that the operation is such that

66 m 68 = 68
X
3

X
f

X
l

Z

An energy balance for the heat rejection section of the third effect gives
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q
3

.
- F<5 r

3
)(C

p
)
f3

(T
£

-T
f

) +
3< Xl - x

x
)

The following approximate form of this equation will be used.

,3
.

= F(l+r
3
)(C

p
)
f3(xf 2 - ««)

The production of distillate in the heat rejection section of the third

effect may be calculated from the equations

fF(|+ r.) - xf}(C >
f.(lf - T*

8
)

(AW ) = ^ 3 2 p f3 f f_
1 W)

3j (X) ,.av3j

Since

U) ,. = 1098.3 - 0.3055 (xf
6

+ 2 + x^
6

)
av3j 1 3

we can obtain

(F(|+ r.) - xf }(C )„(xf + 2 - xf)
3 3 2 ' p f3 1 3

(AW) = v/r T7 — (44)
JJ 1098.3 - 0.3055(x° + 2 + x° )

The heat transfer area required by the condenser tubes of the heat

rejection section of the third effect is

q,. FU+r,)(C )..(x^
6

+ 2 - x^
6

)

A = J3j m 3 p_J3 1 3_ 4A
3j (U,) (At) .. (U,) (At) ,.J 3 av av3j 3 av av3j

From Fig. 7c, we have
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66 66

67 66 66
X

l f
X
3 66

x
l

" x
3

X
l 2 "

" X
3 »

X
l " T

F
X
3

T
F '

(x*
7

- xf) (,f
8

- T ) x?
6

4
6

- 2T - 6

(At) ,. = -i 3 r » SL.J 3
.

F
(46)

av3j 2 4

where Tp
= temperature of the make-up feed.

Substituting equation (46) into equation (45), we obtain

4F(l+r_)(C )„(x*
6

+ 2 - x*
6

)

A = ., . ,

3 P ,

f3
,

1 3_
3j

(IL) (xf xf - 2T_ - 6)
3 av 1 3 F

Again, multiplication of A by 2C /F yields
•^ J -^

8C,(l+r,)(C )„(x*
6

+ 2 - x*
6

)

(x }
= _i 3 P £3 1 3__ (4y)

4 3j
(U,) (x*

6
+ xf - 2Tp - 6)

3 av 1 3 F

Since the final stage of the third effect is under vacuum, pumping work

is required for discharging the distillate and blowdown, the minimum pumping

head required is,

P P
AP = atm - 3

e ?

in which P stands for the atmospheric pressure. The pumping cost is

2C, x (14.7 - P~) x 144
( x ) = —

_

^
i (48 1

4'DC 62.5 x 550 x 3600 x 0.85

Since the plant is assumed to be located 50 feet above sea level, the

theoretical pumping head required is
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AP P - 14.7
__H + 50 = ——p + 50 = AH

Q
+ 50 (49)

where the first term is the head difference which should be overcome in order

to pump the make-up feed to the point corresponds to the maximum brine tem-

perature. A correction factor of 1.18 should be attached to that to take

account of the pumping efficiency. (---- = 1.18).
0. 85

Therefore, the pumping cost is written as

2C. x 1.18(AH + 50)
4

(X
4

}
FP 550 x 3600

(50)

The fixed charge cost for the structure for 50 x 10 gallons/day is

7 1 6 6
unit structure cost = —rr x 10 = 0.0676 x 10 ($/stage),

total structure cost = 0.0676 x 68 x 10 ($)

or

capital charged cost = 0.0676 x 68 x 10 x 9.4 x 10~ ($/hr)

= 43.2 ($/hr)

where 9.4 x 10 is the capital charge constant based on the plant life of

20 years. Hence

<V St
——r- '4u"7,w

'f
l

(9/ibj (si)

62.4 x 5 x 10 (62.4)(5)(10 )

7.48 x 24

We are now able to write the accumulated cost as

68 _ 66 . , . . . . .

x
4 " x

4
+ (x

4
)

3j
(Vdc (Vr3 '

where x, is the accumulated cost for 66 stages, (x, )„. is the cost of con-
4 ° 4 3j

denser tube area for the heat rejection section of the third effect, (x,

)

is the cost required to discharge the distillate and blowdown, and (x, ) „ is
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the cost of recycle in the third effect. In addition to this, we must con-

sider the pumping cost of the feed, (x. ) , and the cost of the structure,
H re

<x
4 >

str . Chat ts,

<Vt
=

'T
+

(Vfp +
(Vstr (52)

The above cost is in dollars per pound* In units of dollars per 1000 gallons

we can write

(x
4

)
T

x 10
3

x 62.4
C
T

=
7748

The above mentioned cost items include only the in-plant operating and

capital charge cost. Additional cost items should be included to calculate

the total production cost. They are obtained from Ref. (3) and are listed

in Table 1.

The design equations are presented in table form in Table 3.

3. RESULTS OF THE SIMULATION ACCORDING TO THE MICRO STAGE MODEL.

The simulation was carried out for two sets of variables on an IBM 1620

computer. The ranges of variables are listed in Table 4. For the first

simulation study, the set of variables that was used is

At. = 8.00°F
,

1

e
ln

= 2.00°F ,

2n
= 2.17°F ,

3n
= 2.38°F .

For the second simulation study the set of variables is

* n
We assumed equal 9 for each stage within an effect.
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TABLE 1

DIRECT AND FIXED PRODUCTION COST AND GENERAL EXPENSES

Chemicals for pretreatment $0,027

Supplies & Maintenance materials $0,018

Labor $0,038

General & Administrative Overhead $0,011

Taxes & Insurance $0,073

Interest on working capital $0,005

3
Total per 10 gallons $0,172
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TABLE 2

NOMENCLATURE (THE MICROSTAGE MODEL)

C unit steam cost $/lb

2
C unit fixed charge cost for the brine heater $/ft hr

2
C« unit fixed charge cost for the condenser tubes $/ft hr

C, unit pumping cost $/H.P. hr

(C ) f
heat capacity of the flashing brine, the first effect BTU/lb F

(C ) heat capacity of the flashing brine, the second effect BTU/lb F

(C ) heat capacity of recycle brine, the first effect BTU/lb F

F amount of make-up feed lb/hr

2
P initial flashing pressure lb/in

2
P. blowdown pressure of the first effect lb/in

1

2
P blowdown pressure of the second effect lb/in

2
P final blowdown pressure lb/in

r ratio of recycle brine in the first effect to the
make-up feed lb/ lb

r ratio of recycle brine in the second effect to the
make-up feed lb/ lb

r_ ratio of recycle brine in the third effect to the
make-up feed lb/ lb

U overall heat transfer coefficient of the brine
heater BTU/ft hr°F

(U. ) average overall heat transfer coefficient of the
condenser tubes, the first effect BTU/ft hr F

(U_) average overall heat transfer coefficient of the „

condenser tubes, the second effect BTU/ft hr F

(U_) average overall heat transfer coefficient of the
condenser tubes, the third effect BTU/ft hr F

AH pumping head required for the make-up feed ft
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TABLE 2 (Cont'd)

At temperature rise through the brine heater F

At boiling point elevation of the flashing brine F

x. temperature of distillate F

x
?

amount of distillate lb/hr

x_ temperature of recycle brine F

x, unit production cost $/lb

v latent heat of steam BTU/lb
As

temperature drop of distillate at each stage F
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TABLE 4

UNIT COSTS USED IN THIS STUDY

1. Steam cost

Steam cost = $0.25/1000 lb

-4
or c

i

= $2.5 x 10 /lb

2. Fixed charge cost for the brine heater

2
Unit price of the brine heater - $4/ft

c
2

= 4 x 9.4 x 10" = $3.76 x 10
_5

/ft
2

hr

3. Fixed charge cost for the condenser tubes

2
Unit price of the condenser tubes - $2.55/ft

c
3

= 2.55 x 9.4 x 10~6 = $2,397 x 10
_5

/ft
2

hr

4. Pumping cost

Unit price of pumps = $85/HP

-6 -4
Pump depreciation cost = 85 x 9.4 x 10 = $8 x 10 /HP hr

Power cost = 0.69C/KWH = $5.2 x 10~3/HP hr

-3
c, - pump depreciation + power cost = $6.0 x 10 /HP hr

• -6
9.4 x 10 is the proportionality constant of depreciation based on

the plant life of 20 years with 90Z stream days and an annual interest of
47..
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TABLE 5

RANGE OF VARIABLES (THE MACROSTAGE MODEL)

Variable name Unit Range

1. Temperature of flashing brine F 87 < T < 274.

A

2. Temperature of distillate °F 85 < x, < 272.4

3. Temperature of recycle brine F 85 < x^ / 272.4

4. Temperature difference between
the flashing and recycle brine
(before flashing) °F 2 < At < 15

5. Concentration of the flashing brine wt.% 3.5 < C
f
< 7.0

6. Temperature drop of the distillate

7. Temperature drop of the distillate
in each stage in the second effect

8. Temperature drop of the distillate
in each stage in the third effect

°F 9
1

<^
n

X
l

•

n
" X

3

°F °2 <
n

X
l

"

n
- X

3

°F •; < n
X

l

n
X
3
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At = 9.00°F
,

e
1 " = 1.85°F ,

2n
= 2.17°F

,

G
3" = 2.48°F .

The computer flow diagram is given in Fig. 9, and the computer program

symbols and the computer program are listed in Table 6. The results for

both cases are tabulated in Table 7. Since it takes time to repeat the

computation, the macro stage model was used for the subsequent simulation

studies.

It should be pointed out that the determination of the recycle ratio

Eor each effect is achieved by an iteration procedure. For a fixed range of

flashing temperature and for a fixed distillate production, the recycle ratio

Decomes a dependent variable so that it can be evaluated by an iterative

procedure for the conditions chosen. In this study, a value of the recycle

ratio was assumed and the total distillate production for that effect was

F
:alculated until a distillate production of t was obtained.

4. FORMULATION OF THE DESIGN EQUATIONS ACCORDING TO THE MACRO STAGE MODEL.

In this section, we will consider the design equations for the macro-

stage system. The only difference between the macro-stage and micro-stage

system is that in the former we consider the performance of the heat recovery

section as a whole unit, while in the latter we go into more detail by con-

sidering the performance at each stage within the heat recovery section. The

>asis of the formulation is a 50 million gallon per day plant. It is assumed

:hat the salt water fed to the system contains 3.5 weight per cent salt and

:hat the concentrated brine leaving the system (blowdown) contains 7 weight

>er cent salt. This information is presented together with other numerical
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A. EXPLANATION OF PROGRAMMING SYMBOLS

(THE MICROSTAGE MODEL)
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Symbol Explanation

BHACT fixed charge cost for the brine heater

CI unit steam cost

C2 unit fixed charge cost for the brine heater

C3 unit fixed charge cost for the condenser tubes

CA unit pumping cost

CPF1 average heat capacity of the flashing brine, the first effect

CPF2 average heat capacity of the flashing brine, the second effect

CPF3 average heat capacity of the flashing brine, the third effect

CPR1 heat capacity of recycle brine, the first effect

DCCT pumping cost for the distillate and blowdown

DELHO pumping head for the make-up feed

DELT1 temperature rise through the brine heater

FD amount of make-up feed

FT temperature of make-up feed

FBCT1 cost of recycle, the first effect

FBCT2 cost of recycle, the second effect

FBCT3 cost of recycle, the third effect

FPCT pumping cost for the make-up feed

HFT maximum brine temperature

HJCT1 fixed charge cost for the condenser tubes, heat rejection section,

the second effect
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TABLE 6 (Cont'd)

HJCT2 fixed charge cost for the condenser tubes, heat rejection section,

the second effect

HJCT3 fixed charge cost for the condenser tubes, heat rejection section,

the third effect

PO initial flashing pressure

PI blowdown pressure, the first effect

P2 blowdown pressure, the second effect

P3 blowdown pressure, the third effect

Rl ratio of recycle brine in the first effect to the make-up feed

R2 ratio of recycle brine in the second effect to the make-up feed

R3 ratio of recycle brine in the third effect to the make-up feed

STMCT steam cost

STRCT structure cost

THIN temperature drop of the distillate in each stage, heat recovery

section, the first effect

TH2N temperature drop of the distillate in each stage, heat recovery

section, the second effect

TH3N temperature drop of the distillate in each stage, heat recovery

section, the third effect

TLWP1 total distillate production in the first effect

TLWP2 total distillate production in the second effect

TLWP3 total distillate production in the third effect

UB overall heat transfer coefficient of the brine heater

UIAV average overall heat transfer coefficient of the condenser tubes,

the first effect
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TABLE 6 (Cont'd)

U2AV average overall heat transfer coefficient of the condenser tubes,

the second effect

U3AV average overall heat transfer coefficient of the condenser tubes,

the third effect

UPCT unit production cost

XI temperature of distillate

X2 amount of distillate

X3 temperature of recycle brine

X4 unit production cost (lb basis)

X4BH production cost due to the brine heater
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SIMULATION OV TIIE MJLTIFLASII EVAPORATION PROCESS (THE MTCROSTAGE IfODEL)
_B # SIMUW

DIMENSION Xl<7O),X2(70)»X3(70),X4(7O)
101 FCRMAT(6X,6Elu.4)
16 FCKMAT(2X,7F1U.3)
26 FORMAT ( 2X,7E10. 4

)

27 FCRMAT(F10.3,E10.4)
60 FCRMAT(2E10.4)

READ 101,FD»CPF1»CPR1»U1AV,U2AV»U3AV
READ 101 ,C1,C2»C3»C4,CPF2»CPF3
READ 101 ,UB»RMS,DELHCPO,HFT,FT
READ lol,THlN»TH2N»TH3N»DELTl
CALCXl { I )

XI (

1

)=248.C
DC 11 1=2,21

11 Xl( I )=X1 (
1-1 J-TH1N

PUNCH 16. (XI ( I ) »I = 1 ,21 )

CAL»X2( I ) »X3( I )

X2( 1 )=0.U
X3( 1)=HFT -DELT1
Rl=2.4

22 DC 21 1=2,21
X2(I)=X2(I-1 )+(FD*( l.+Rl)-X2(I-l)) *CPFl*THlN/( 1098. 3-. 611 *X KM)

21 X3( I )=X3( I-1)-(FD*(1.+R1)*CPF1+X2( I-1»*(.1.-CPF1) )*TH1N/(FD*(1.+R1)
1*CPR1)
^T|_WP1 = X2<21) + FD*( 1.+R1 )*CPF1*(X1< 21 ) +2 .-X3 < 2 1 ) ) / ( 1098 . 3-. 305 5* ( X

1

1(21 )+X3(21 )+2. ) )

IF (TLWP1-FD/6. ) 31*32,32
31 Rl=Rl+.ul

GC TC 22
32 PUNCH 26, (X2( I ) , 1 = 1 ,21 )

PUNCH 16, (X3( I ) ,1 = 1,21 )

PUNCH 27, Rl, TLWP1
CALCXM I )

STMCT=2.*C1* ( 1.+R1 )*DELT1*CPR1/RMS
bHACT=(LCG(24.4+DELT1 ) -LOG (24.4) )* ( 1.+R1 ) *2 .*C2*CPR 1/UB
X4bH=STMCT+BHACT
X4( 1 )=X4BH

DC 41 1=2,21
41 X4(I)=X4(I-1)+2.*C3*(1.+R1)*CPR1*( LCG(X1( 1-1 )-THlN-X3( I ) )-LCG(XK I

1-1)-TH1N-X3(I-1)))/U1AV
PUNCH 46, (X4( I ) , 1=1,21 )
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(CONTINUED)

C CALC(XKI) 1=25.44
XI (24>=X3(21 )-2.
DC 12 1=25.44

12 X 1 ( I )=X1 ( 1-1 )-TH2N
PUNCH 16* (XI ( I ) , 1=24.44)

C CALC.X2 ( I ) »X3( I )

X2 (24)=U.C
R2=2.2

24 X3(24)=X3(21)-(1.+R1)*CPF1*( XI ( 2 1 )+2.-X3 ( 21 ) ) / ( • 965+R2*.9475

)

DC 23 I=25»44
X2 ( I )= X2< 1-1 ) + <FD*< 5./6.+R2 )- X2< 1-1 ) ) *CPF2*TH2N/ ( 1098 • 3-. 6 1 1*X 1

1(1))
2 3 X3< I )=X3( I-1)-(FD*( 5 . /6.+R2 ) *CPF2+X2 (

1-1 )*< l.-CPF2)+ FD/6. )*Th2N/
1 ( F D*( .965+R2*.9475) )

, TLWP2=X2(44) +FD*(l.+R2)*CPF2*(Xl(44)+2.-X3(44))/(l098.3-»3055*(Xl
l(44)+X3(44) + 2« ) )

IF(TLWP2-FD/6. ) 33.34,34
33 R2=R2+«C1

GC TC 24
34 PUNCH 26»(X2(I)» 1=24*44)

PUNCH 16. (X3( I )> 1=24.44)
PUNCH 27,R2*TLWP2

C CAL.X4U)
HJCT1=12.*C3*( 1.+R1)*CPF1* (XK21)+2.-X3(21)>/(3.*(X3(21)-X3(24)> +
12.*(XK21)-X3(21))-8.)/UlAV
P1=EXP( 14.0 7-9. *3660./ (5.*(X3(21)-32.)+1989.))
FBCT1=2.*C4*R1*144.*(PG-P1 )/62.5/5 50,/36 00./.85
X4(24)=X4(21 )+HJCTl + FBCTl
DC 42 1=25.44

42 X4(I)=X4(I-1)+2.*C3*(.96 5+R2*.9 47 5 )*(LCG(XK I -1 ) -TH2N-X3 ( I

)

)-LCG
1 (XI ( 1-1 )-TH2N-X3( 1-1 ) ) )/U2AV
PUNCH 26. (X4( I ) , I =24.44)

0- CALC.Xl(I) I=48»67
X1(47)=X3(44 )-2.
DC 13 I=48»67

13 Xl( I )=X1( I-D-TH3N
PUNCH 16. (XI ( I ) .1=47.67 )

C CAL.X2( I ) »X3( I ) 1=47.67
|

X2(47)=G.U
R3=2.2

51 X3(47)=X3(44)-( l.+R2)*CPF2*(Xl(44)+2.-X3(44) )/( .965+R3*.9 30)
DC 52 1=48.67
X2< I )=X2( 1-1 ) + (FD*( 2./3.+R3)-X2 ( J-l) ) *CPF3*TH3N/ ( 1098. 3~. 61 l*Xl ( I )

1)

52 X3( I )=X3( I-l)-(FD*(2./3.+R3)*CPF3+X2( 1-1 )*( 1 .-CPF3 ) +FD/3 • )*TH3N/
1(FD*( .965+R3*.930)

)

t^TLWP3=X2(67)+FD*( 1 . + R3 ) *CPF3* ( X 1 ( 6 7 ) +2 .-X3 ( 6 7 ) )/<l098.3-.30 55*<Xl
1(67 )+X3(67)+2. ) )

IF (TLWP3-FD/6. ) 53.54.54
53 R3=R3+.01

GC TC 51
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(CONTINUED)

54 PUNCH 26. (X2( I

)

.1=47.67)
PUNCH 16. (X3( I ) 1=47*67)
PUNCH 27. R3 .TLWP3
CALC.X4U) 1=47.67
HJCT2 = 12.*C3*(l.+R2)*CPF2MXl<^)+^.-X3(44))/<3.*<X3U4)-X3(47)) +

12.* (XI (44 )-X3<44) )-8. )/U2AV
P2=EXP< 14.u7-9.*36 60./(5.*(X3(44)-:>2.)+1989.))
FBCT2=2.*C4*R2*144.*(Pl-P2)/62.5/5 5O./36 00./.85
X'+ (47)=X4(44)+HJCT2 + FBCT2
DC 43 1=48.67

43 X4( I )=X4( I-1)+2.*C3*(.96 5+R?*.93)* (LOG (XI ( 1-1 )-TH3N-X3( I ) )-LCG(Xl
1(1-1 )-TH3N-X3( 1-1 ) ) ) /U3AV
PUNCH 26. (X4( I ) ,1=47.67)
HJCT3 = 8.*C3*(l.+R3)*CPF3*(XK67) + 2«>-X3(67))/(Xl(67>+X3(67)-2.*FT-

16, ) /U3AV
P3=EXP( 14.u7-9«*3660./ ( 5«* ( X3 (67 ) -32 • )+1989 • )

)

KBCT3=2.*C4*R3*144.* (P2-P3 )/62.5/550./36 00./.85
DCCT=2»*C4*144.*( 14 • 7-P 3 ) /62 • 5/ 5 5o • / 3600. / ,85
X4(69)=X4(67 ) +H JCT 3+FBCT3+DCC

T

CALC.UPCT
F?CT =2.*C4*1.18*(DELH0+5O, )/550./3600.
STR CT =43.2*7 ,48*2 4./ (62.4* 5. E7

)

UPCT=(X4(69)+FPCT+STRCT )*l.E3*62.4/7.48
PUNCH 60.X4(69) »UPCT
END
DATA
•3476E 08 .9590E 00 .9590E 00 .5150E 03 .5100E 03 .5050E 03
•25U0E-03 .3760E-04 .2397E-04 .6oU0E-02 .9485E 00 .9310E 00
•5371t u3 .9289E 03 .348UE 02 .2962E 02 .2500E 03 .850OE 02
•2oOOE Ul .2170E 01 .2380E 01 .8uoOt 01
.1850E 01 .2170E 01 .2480E 01 .9000E 01
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RESULTS OF SIMULATION (THE MICROSTAGE MODEL)
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Total number of effects

Total number of stages

Total production

Maximum brine temperature

Sea water temperature

Sea water concentration

Blow down brine concentration

Sea water make-up

3

68

17,380 Mlb/hr = 50. MMGPD

250.0 °F

85.0 °F

3.50 wt. %

7.00 wt. %

34,760 Mlb/hr

Case I: At. = 8.0 °F, e" = 2.0 °F e" = 2.17 °F e" = 2.38 °F112 .j

Effect No. of Production Recycle Blowdown Blowdown Recycle Brine
No. Stages Mlb/hr Bri ne, Mlb/hr Mlb/hr Temp. °F Cone. wt. %

1 23 5795 88986 28967 201.967 4.20

2 23 5799 92114 23173 150.638 5.25

3 22 5796 94896 17380 95.214 7.00
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TABLE 7 (Cont'd)

Effect Stage Flashing Distillate Recycle-make-
No. No. Brine Temp. °F up Brine

Temp. °F Temp. °F

Distillate Accumulated
Mlb/hr Unit Produc-

tion Cost
$/lb x 10 5 .

Brine 242 1.483
Heater 250

1 1 248.000 246.000 240.000 250.3 1.496

2 246.000 244.000 237.999 499.9 1 . 509

3 244.000 242.000 235.999 748.6 1.522

4 242.000 240.000 233.998 996.5 1.535

5 240.000 238.000 231.998 1243.0 1.548

6 238.000 236.000 229.997 1489.0 1.561

7 236.000 234.000 227.996 1735.0 1.573

8 234.000 232.000 225.995 1979.0 1.586

9 232.000 230.000 223.993 2223.0 1.599

10 230.000 228.000 221.992 2466.0 1.612

11 228.000 226.000 219.990 2709.0 1.625

12 226.000 224.000 217.988 2950.0 1.638

13 224.000 222.000 215.986 3191.0 1.651

14 222.000 220.000 213.984 3431.0 1.664

15 220.000 218.000 211.982 3670.0 1.676

16 218.000 216.000 209.070 3908.0 1.689

17 216.000 214.000 207.976 4146.0 1.702

18 214.000 212.000 205.974 4382.0 1.715

19 212.000 210.000 203.971 4618.0 1.728

20 210.000 208.000 201.967 4854.0 1.741
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TABLE 7 (Cont'd)

Heat rejection section

21

22

23 201.967 199.967 194.078 5795.0 1.872



TABLE 7 (Cont'd)

223

Effect Stage Flashing Distillate Reeye Le-make- Distillate Accumulated
No. No. Brine Temp. °F up Brine Mlb/hr Unit Produc-

Temp. F Temp. °F tion Cost
$/lb x 10 5

2 24 199.797 197.797 191.911 254.9 1.887

25 197.627 195.627 189.745 509.0 1.902

26 195.457 193.457 187.577 762.2 1.917

27 193.287 191.287 185.410 1014.0 1.932

28 191.117 189.117 183.242 1266.0 1.947

29 188.947 186.947 181.074 1516.0 1.962

30 186.777 184.777 178.906 1766.0 1.977

31 184.607 182.607 176.738 2015.0 1.992

32 182.437 180.437 174.569 2263.0 2.007

33 180.267 178.267 172.401 2510.0 2.022

34 178.097 176.097 170.232 2756.0 2.037

35 175.927 173.927 168.062 3002.0 2.052

36 173.757 171.757 165.893 3246.0 2.067

37 171.587 169.587 163.723 3490.0 2.082

38 169.417 167.417 161.553 3733.0 2.098

39 167.247 165.247 159.383 3975.0 2.113

40 165.077 163.077 157.213 4217.0 2.128

41 162.907 160.907 155.042 4457.0 2.143

42 160.737 158.737 152.871 4697.0 2.158

43 158.567 156.567 150.700 4936.0 2.173

Heat rej ection section

44

45
I

1
1

I

' 1

1
i

'
<

46 150 ,700 198 ,700 142 ,927 57<)9.0 2.:165
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TABLE 7 (Cont'd)

Effect Stage
No . No

.

Flas
Bri

Temp

hing
ne

. °F

Distillate
Temp. °F

Recycle -make-
up Brine
Temp. °F

Distillate
Mlb/hr

Accumulated
Unit Produc-
tion Cost
$/lb x 10 5

3 47 146.320 146.320 140.552 259.3 2.283

48 145.940 143.940 138.178 517.6 2.300

49 143.560 141.560 135.803 775.0 2.318

50 141.180 139.180 133.427 1031.0 2.336

51 138.800 136.800 131.051 1287.0 2.353

52 136.420 134.420 128.675 1541.0 2.371

53 134.040 132.040 126.299 1795.0 2.389

54 131.660 129.660 123.922 2048.0 2.407

55 129.280 127.280 121.545 2300.0 2.424

56 126.900 124.900 119.168 2551.0 2.442

57 124.520 122.520 116.790 2801.0 2.460

58 122.140 120.140 114.412 3050.0 2.478

59 119.760 117.760 112.033 3298.0 2.496

60 117.380 115.380 109.654 3546.0 2.514

61 115.000 113.000 107.275 3792.0 2.532

62 112.620 110.620 104.896 4038.0 2.549

63 110.240 108.240 102.516 4283.0 2.567

64 107.860 105.860 100.136 4527.0 2.585

65 105.480 103.480 97.755 4770.0 2.603

66 103.100 101.100 95.374 5012.0 2.621

Heat rej ection section

67
'

J
' i. \

68 95.374 93.374 85.000 5796.0 2.707

unit productic>n cost 0. 2J>16 $/10
3
gallon
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TABLE 7 (Cont'd)

Case II: At^ = 9 °F g" = 1.85 °F e!J = 2.17 °F e" = 2.48 °F

Effect No. of Production Recycle Blowdown Blowdown Recycle brine
No. Stages Mlb/hr Brine. Mlb/hr Mlb/hr Temp. °F Cone, wt. %

1 23 5808 93504 28967 203,972 4.20

2 23 5800 86205 23173 150,962 5.25

3 22 5799 84467 17380 81,588 7.00'

Effect Stage Flashing Distillate Recycle-make-
No. No. Brine Temp. °F up Brine

Temp. °F Temp. °F

Distillate Accumulated
Mlb/hr Unit Produc

tion Cost
$/lb x 10 J

Brine .._ 241 __. 1.739
Heater 250

1 1 248.150 246.150 239.150 241.3 1.749

2 246.300 244.300 237.299 481.9 1.759

3 244.450 242.450 235.449 721.8 1.769

4 242.600 240.600 233.599 961.0 1.779

5 240.750 238.750 231.748 1199.0 1.790

6 238.900 236.900 229.897 1437.0 1.800

7 237.050 235.050 228.046 1674.0 1.810

8 235.200 233.250 226.195 1910.0 1.820

9 233.350 231.350 224.344 2145.0 1.830

10 231.500 229.500 222.493 2380.0 1.840

11 229.650 227.650 220.641 2614.0 1.851

12 227.800 225.800 218.790 2848.0 1.861
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TABLE 7 (Cont'd)

Effect Stage Flashing Distillate Recycle-make-
No. No. Brine Temp. °F up Brine

Temp. °F Temp. °F

Distillate Accumulated
Mlb/hr Unit Produc-

tion Cost
$/lb x 10

3

13 225 .950 223 .950

14 224.100 222.100

15 222.250 220.250

16 220.400 218.400

17 218.550 216.550

18 216.700 214.700

19 214.850 212.850

20 213.000 211.000

Heat rej ection sec tion

21

22
1

23 203. 972 201 ,972

216.938

215.086

213.234

211.382

209.530

207.677

205.825

203.972

3081.0

3313.0

3544.0

3774.0

4004.0

4234.0

4462.0

4690.0

1.871

1.881

1.891

1.901

1.911

1.922

1.932

1.942

194.446 5798.0 2.072

24 201.802 199.802 192.279 247.2 2.083

25 199.632 197.732 190.113 493.5 2.093

26 197.462 '195.462 187.946 739.1 2.104

27 195.292 193.292 185.778 983.7 2.115

28 193.122 191.122 183.611 1227.0 2.126

29 190.952 188.952 181.443 1470.0 2.136

30 188.782 186.782 179.275 1712.0 2.147

31 186.612 184.612 177.107 1954.0 2.158

32 184.442 132.442 174.939 2194.0 2.169

33 182.272 180.272 172.770 2434.0 2.180
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Effect Stage Flashing Distillate Recycle-make-
No. No. Brine Temp. F up Brine

Temp. °F Temp. °F

Distillate Accumulated
Mlb/hr Unit Produc-

tion Cost,.

$/lb x 10

34 180 .102 178 .102

35 177.932 175.932

36 175.762 173.762

37 173.592 161.592

38 171.422 169.422

39 169.252 167.252

40 167.082 165.082

41 164.912 162.912

42 162.742 160.742

43 160.572 158.572

Heat rej ection sec tion

44

45
1

46 151 ,071 149 ,071

170.601

168.432

166.263

164.093

161.923

159.753

157.583

155.413

153.242

151.071

2673.0

2911.0

3148.0

3384.0

3620.0

3855.0

4089.0

4322.0

4554.0

4786.0

2.191

2.201

2.212

2.223

2.234

2.245

2.255

2.266

2.277

2.288

141.430 5796.0
I

2.374

47 148.591 146.591 138.956 253.5 2.386

48 146.111 144.111 136.482 506.1 2.398

49 143.631 141,631 134.008 757.7 2.411

50 141.151 139.151 131.533 1008.0 2.423

51 138.671 136.671 129.058 1258.0 2.435

52 136.191 134.191 126.582 1506.0 2.448

53 133.711 131.711 124.106 1754.0 2.460

54 131.231 129.231 121.630 2001.0 2.472

55 128.751 126.751 119.153 2247.0 2.485
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Effect Stage Flashing Distillate Recycle-make-
No. No. Brine Temp. F up Brine

Temp. °F Temp. F

Distillate
Mlb/hr

Accumulated
Unit Produc
tion Cost
$/lb x 105

2492.0 2.497 .

2736.0 2.509

2980.0 2.522

3222.0 2.534

3463.0 2.547

3704.0 2.559

3944.0 2.572

4182.0 2.584

4420.0 2.596

4657.0 2.609

4894.0 2.621

56 126 .271 124 .271

57 123.791 121.791

58 121.311 119.311

59 118.831 116.831

60 116.351 114.351

61 113.871 111.871

62 111.391 109.391

63 108.911 106.911

64 106.431 104.431

65 103.951 101.951

66 101.471 99.471

Heat rej ection section

67
i

i

68 91. 887 89. 887

116.676

114.199

111.721

109.243

106.765

104.286

101.807

99.327

96.847

94.367

91.887

\

85.00 5803.0 2.735

Unit Production cost : 0.2539 $/10 gallon
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data in Table 7.

(A) Design Equations for the First Effect . In this section only the design

equations for the brine heater (bht) and the heat recovery section are given.

The design equations for the heat rejection section are included in part (B).

An energy balance for the first effect (refer to Fig. 10) gives

F(l+r.)(C.) x. = £ (H .) + F(| + r.)(C ).. x. (53)
1 plavO 6 vlav 6 1 pfll

where F = amount of make-up feed,

x = temperature of flashing brine ( F)

(H ) = average enthalpy of water vapor in the first effect
relative to liquid at 0°F

H = 1065 + 0.392x (BTU/lb) (an empirical formula obtained by

curve fitting the steam table).

(H ,)
vl av

1065 + 0.392x
Q

+ 1065 + 0.392x

= 1065 + 0.196(x
1

+ x
Q

)

r = ratio of the recycle brine in the first effect to the
make-up feed

(C ) + r.(C ) f ,

= P *
l P fl

pi av 1+r

(C ) = heat capacity of the make-up feed,

(C )
f

. = heat capacity of the flashing brine at the exit of the

first effect.

Simplifying and rewriting equation (53), we obtain

< (Vf + Wfl^O =
6*1065

+ °- l96(x + V> +
(

6
+ r

l
HVflX

l

Solving for r. , we have
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1065 + 0.196(xn + x. ) + 5(C )_x. - 6(C )_ x

r = 9 i P, £1 -
1 p F

(5A)
1 6(C >-.(xn - x.)

VJ '

p fl 1

For the steam that is used in the brine heater, the steam cost in

dollars per pound of distillate product, (x, ) , is

2C.(l+r. )(C ) At.
. . _ 1 1 p av 1
(x. ) - —c

4 s xA s

2C. {(C )_ + r. (C )-.}At
1

( X/ ) = —

1

P F
N

1 P fl
i- (55)

4 s X s

(See equation (17) in the micro-stage model.)

The fixed charge cost for the brine heater, (x.) , is (see equation (18) in

the micro-stage model)

2C (1+r )(C )

(x
4

)
R

= —^ i &±-£V
(in(24.4 + A t^ - ln(24.4)}

B

2C {(C ) + r (C ) }

(x,)_ = — P—

~

P {ln(24.4 + At.) - ln(24.4)) (56)
4 B U

B
1

The rate of heat transfer for the condenser tubes of the heat recovery

section of the first effect is

q. = F(l+r. )(C .) (x. - x. - At. )
^lr 1 pi av 1 1

The heat transfer area, A , is given by

q lr

lr (U. ) (At, )
1 av lr av

where
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WAt
i

(At - 2) + (At - 2 - J~~ -)

(A t )
= i i 6V

v
lr av 2

41 At - x +x - 80_

Hence, the fixed charge cost, (x, ) , is

S^Vf + Wfl^W^l'= _^ t^—z 1—

E

^Vcl _ 4lAt. - x +x. - 80

f(U.) (
* %~± )

2 1 av 40

80C„{(C ) + r.(C ),.}(x -x -Ar)
(x }

= 3 ELl 1 p fl J
1 L_ (57)VVcl (U.) (4lAt. - x +x. -80)

1 av 1 1

The recycle cost for the first effect, (x, ) . is (see equation (20) for

the micro-stage model)

2C.r. x 144(P -P.

)

, v _ 4__1 1 .COXU
4 rl 62.5 x 550 x 3600 x 0.85 *

where

> = exp (14 07 -
9 x 366°

1
exp <^- u/

5(X - 32) + 1989

(B) Design Equations for the Second Effect . Making an energy balance for

the second effect (refer to Fig. 11), we have

F(
f

+ V (V«*"l
=

6
(H
v2'av

+ F(
3

+ r
2
)(C

p
)
f2

X
2

(59)

Since
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| (C ) + r_(C )

(r ) = § p_ii ? g_f2
(C
p2

>
av 5 .

6
r
2

(H _) = 1065 + 0.196(x. + x_)
v2 av 12

Equation (59) may be rewritten as

1065 + 0.196(x +x )

\ (C )._ + r.(C ),_x. = 7 + (- + r_)(C ) x.
6 p £1 2 p £2 1 6 32pf2 2

Hence r~ is obtained as

1065 + 0.196(x +x_) + 4(C )_x_ - 5(C )..x.

r = L_2 p £2 2 p_ii_l (60)r
2 6(C ),_(x -x_)

' lb0 '

p £2 1 2

The value of At is obtained by making an energy balance for the heat rejec-

tion section of the first effect. We can write

q. . = F(l+r. )(C .) At.
lj 1 plav 1

" F«Vf + Wfl>At
l

We also have

«lj
= F

(
(C

p
,
F
+r

2
(C

p
) £2>

At
2

Hence

(C ) + r.(C ),.

At = —^ 1 P fl
At . (61)C

2 (C )_ + r_(C )

C
l

' KOU
p F 2 p f2

The heat transfer area for the condenser tubes in the heat rejection

section of the first effect, A , is given by
1 J
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A
lj (U.) (At) ,.

1 av avlj

From equation (25) in the micro-stage model, we note that At , the average

temperature difference for heat transfer, is

-, 20 23, . _, 20 20,
3(x - x ) + 2(x - x ) - 8

A t = 2 => i ±
avlj 6

3At
2

+ 2(At - 2) - 8

3At + 2At - 12

The fixed charge cost for the condenser tubes of the heat rejection section

of the first effect, (x, ),., can thus be written as
4 lj

12C,{(C )_, + r.(C ) f1
}At

(x ) = 3 p_F 1 p fl J

1 (62)VVlj (U.) (3A to + 2At, - 12) '
lDZ;

J
1 av 2 1

The rate of heat transfer for the condenser tubes of the heat recovery

section of the second effect is

«2r
= F «6 * r

2
HV«v *iK-W

" ''fS'fl
+ r

2
(C

p
)

£2
+
I)

<ltr lt 2-At 2
)

•

For the condenser tubes the fixed charge cost (x, ) _ is° 4 c2

C_F[| (C )_, + r (C )-. + £](x -x -At.)
, v _ 3 6 p fl 2 p f2 6 12 2

4c2 _. 4lAt - x +x - 80

I (lV (
—

—

-nr
1 >

2 2 av 40

80C,[f(C ) + r_(C ),. + £](x -x -At )

. . _ 3 6 p fl 2 p f2 6 12 2 ,,.,
lVc2 (U.) (4lAt - x + x. - 80)

"
'

V0J '

2 av 2 12
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The recycle cost for the second effect, (x, ) is (see equation (32) in the

micro -stage model)

2C.r, x 144(P.-P_)
(x ) = ±-£ i—

£

(64)
4 r2 62,5 x 550 x 3600 x 0.85

where

P
9 x 3660

2
" 6XP

t
14 - 07 " 5(x„ - 32) ? 1989 1

(C) Design Equations for the Third Effect . An energy balance for the third

effect (refer to Fig, 12) gives

F(f + r.)(C _) x_ = | (H _) + F(^ + r.)(C )..x_ (65)
3 3 p3 av 2 6 v3 av 2 3 p f3 3

Since

(C „)

|(C ) fo
+ r_(C )

_ 3 P f2 3 p f3

p3 av . 2 +
3

r
3

and

(H _) = 1065 + 0.196(x o + x_),
v3 av 2 3

equation (65) can be written as

1065+0. 196(x +x )

(l
(C

P
}
f2

+ r
3
(C
p

}
f3lK2

=
6

+
(I

+ r
3
)(C

P
)
f3

X
3

Solving for r_, one obtains

1065+0.196(x
2
+x

3
) * 3(C

p
)
f3

»
3
-»<C

D
)

f2
«
2

r
3 6(C >„ (,, -«,)

(66)

p 13 2 3
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The value of At_ is obtained by making an energy balance around the heat

rejection section of the second effect. One can write two equations

«2J

= F[
f (Vfl

+ r
2

(Vf2
+

6
] At

2

«2j
= F[Vf + r

3
<C
p'f3

J At
3

which when combined gives

|(C ) + r (C ).. + {
At = ^ p fl 2 p f2 6 A

3 (C )_ + r,(C )_,
C
2

*

p F 3 p fj

The fixed charge cost for the condenser tubes of the heat rejection section

of the second effect, (x.)„., is
4 2j'

.
12C3ff (y £1

+ r
2
(c
p

)
£2

+
i>

At
;

( x ) = ^-^ tL_i-i = fc_±^: Z Z. (AC)VX
4

;

2j (U. ) (3At„ + 2At - 12) *
V °° ;

J 2 av 3 2

The rate of heat transfer for the condenser tubes of the heat recovery

section of the third effect, q. , is

q. = F{(| + r.)(C .) + ^-}(x - x_ - At.)
^3r l 3 3 p3 av 3 } 2 3 3

= F(f(C )., + r,(C )„ + hix - x. - At)3pf2 3pf3 3 2 3 3

The fixed charge cost, (x, ) , is

C,F(|(C ),. + r_(C ) + ^)(x -x -At.)
( \ - 3 3 p f2 3 p f3 3 2 3 3U4c3

'

4lAt - x +x - 80
£(U,) (

~

—

)
2 3 av 40

80C (|(C ) + r,(C )„ + ^)(x_-x -At_)
(x ) = 3 3 P f2 3 P f3 1 1—2 1- (69)*Vc3 (IL) (4lAt. - x + x. - 80)

lby;

J av 3 I 3
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The fixed charge cost for the condenser tubes of the heat rejection section

of the third effect, (x. )„., is
4 3j

8C_(|(C ) + r.(C )._ + ±}At
(x ) = 3-3 EL f2 3 pf3 V 3

(
.

*V3j (U_) (At + 2(x.-T_) - 8)
WU;

J 3 av^ 3 3 F ;

where from equation (47) in the microstage model, we see that

x*
6

+ xf - 2T - 6 = <x*
6

+ 2 - xf ) * 2(xf - T-) - 6
1 3 F 1 3 3 F

= A t _ + 2(x, - T_) - 8 .

3 3 F

Note that x is the blowdown temperature of the third effect.

The recycle cost for the third effect, (x, ) .-, is [see equation (44)J

2C r x 144(P -P )

4 r3 ' 62.5 x 550 x 3600 x 0.85

where

o - J,/ m 9 x 3660 )

P
3

- exp (14.07 - _
32) ; l9g9 J

3

The dumping cost for the distillate and spent brine, (x, ) , is [see

equation (48) for the microstage model]

2C
4

x 144(14.7 - P
3

)

(X
4

)
DC 52.5 x 550 x 3600 x 0.85

(72)

The structure cost, (x,) , is [see equation (51) for the microstage model J

(
= 43.2 x 7.48 x 24

^Vstr 62.4 x 5 x 107
'

The pumping cost for the make-up feed, (x, ) , is [see equation (50) for the
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micro-stage model]

144
2C

4
x 1.18f(P - 14.7)^+ 50}

(x ) = 2 » \L±^L (74)^ X
4

;

FP 550 x 3600

In summary, the total cost is the sum of the individual costs, which

are

(1) the steam cost, equation (55)

(2) the fixed charge cost for the brine heater, equation (56)

(3) the fixed charge cost for the condenser tubes of each effect,

equations (57), (62), (63), (68), (69), and (70).

(4) the recycle cost for each effect, equations (58), (64), and (71)

(5) the pumping cost for the make-up feed, equation (74)

(6) the pumping cost for the distillate and blowdown, equation (72)

(7) the structure cost, equation (73).

In addition to these costs, the general and administrative costs listed in

Table 1 must be considered.

5. SIMULATION ACCORDING TO THE MACRO-STAGE MODEL

The simulation was carried out on the IBM 1620 computer. The design

equations are listed in Table 8. The ranges of variables are shown in Table

9. The computer program symbols and computer program are put in Tables 10

and 11. The results are shown in Tables 12, 13 and 14.

6. DISCUSSION OF RESULTS

Comparison of results by both models are shown in Table 13. From this,

we see that there is good agreement. The minor differences might be attrib-

uted to the temperature differences for heat transfer used for each case. It

is also seen that the recycle ratios of each effect based on the amount of
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TABLE 9

RANGE OF VARIABLES
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1. Maximum temperature of flashing

brine

2. Minimum temperature of flashing

3. intermediate blowdown temperature

4. total temperature difference

between the flashing brine and

recycle brine

(T
f

) max < Ts (steam

temperature)

(T
f

) min > T (temperature

of make-up feed)

(T-) max > x , x > (T.) min

2 < At < 15, n=l, 2, 3
n

In this section, we fix (T )max at 250°F and (T
f
)min at 95. 2 -^91 . 2°F.

The intermediate temperatures are chosen such that the temperature interval

is greater the previous one each time.
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Start
Read(CP)fl1(CR)ri

UB,(U|W(U2)av>
(Ityovgi *2»X3

nchX2, Calc. R2>
At2,R3^t3

mil

ReadCi,C2,C3,
C4,^s>(Cp)f2,(Cp)f3
Tf , Pp> P3

Punch
U.P.C.T

Fig. 13. Computer flow diagrame ( the macro

stage mode! ) .



TABLE 10

EXPLANATION OF PROGRAM SYMBOLS

(THE MACROSTAGE MODEL)
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Symbo

1

Explanation

BHACT fixed charge cost for the brine heater

CI unit steam cost

C2 unit fixed charge cost for the brine heater

C3 unit fixed charge cost for the condenser tubes

C4 unit pumping cost

CPF heat capacity of the make-up feed

CPF1 heat capacity of the flashing brine, the first effect

CPF2 heat capacity of the flashing brine, the second effect

CPF3 heat capacity of the flashing brine, the third effect

DCCT pumping cost for the distillate and blowdown

DELT1 temperature rise through the brine heater

DELT2 temperature difference between the flashing and recycle brine,

the second effect

DELT3 temperature difference between the flashing and recycle brine,

the third effect

F1X0 unit production cost due to the first effect

F2X1 unit production cost due to the second and third effect

FBCT1 recycling cost, the first effect

FBCT2 recycling cost, the second effect

FBCT3 recycling cost, the third effect

FPCT pumping cost for the make-up feed
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TABLE 10 (Cont'd)

FT temperature of make-up feed

P0 initial flashing pressure

PI blowdown pressure, the first effect

P2 blowdown pressure, the second effect

P3 blowdown pressure, the third effect

Rl ratio of recycle brine in the first effect to the make-up feed

R2 ratio of recycle brine in the second effect to the make-up feed

R3 ratio of recycle brine in the third effect to the make-up feed

RMS latent heat of steam

STMCT steam cost

STRCT structure cost

TAC1R fixed charge cost for the condenser tubes, heat recovery section,

the first effect

TAC1J fixed charge cost for the condenser tubes, heat rejection section,

the first effect

TAC2R fixed charge cost for the condenser tubes, heat recovery section,

the second effect

TAC2J fixed charge cost for the condenser tubes, heat rejection section,

the second effect

TAC3R fixed charge cost for the condenser tubes, heat recovery section,

the third effect

TAC3J fixed charge cost for the condenser tubes, heat rejection section,

the third effect

U1AV average overall heat transfer coefficient of the condenser tubes,

the first effect



250

TABLE 10 (Cont'd)

U2AV average overall heat transfer coefficient of the condenser tubes,

the second effect

U3AV average overall heat transfer coefficient of the condenser tubes,

the third effect

UB overall heat transfer coefficient of the brine heater

UPCT unit production cost

X0 maximum brine temperature

XI blowdown temperature, the first effect

X2 blowdown temperature, the second effect

X3 blowdown temperature, the third effect
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TABLE 11

SIiriJLVTION OF THE MULTIFLASII EVArOIATION PROCESS (THE MCROSTAGE MODEL)

21 FCRMAT(6X,6E10.4)
51 FCRMATI1H 3F1C.3»2X»E11.5)
52 FCRMATC1H 5F 10 .

3

»2X E 1 0.4

)

53 FORMAT! 1H Ell. 4)
READ 21» CPF,CPF1 ,UB»U1AV»U2AV»U3AV
READ 21 »X0,C1*C2»C3»C4
READ 21 RMS*CPF2»CPF3.FT»P0
READ 21 ,DELT1»X1*X2»X3
PRINT 21»CPF,CPF1,UB»U1AV»U2AV»U3AV
PRINT 21,X0,CltC2,C3,C4
PRINT 21tRMS»CPF2»CPF3»FTtP0
PRINT 21,DELT1*X1.X2»X3
CALC.F1X0

12 Rl= ( 106 5. + .196*(X0 + X1 ) +5 .*CPF 1*X1-6.*CPF*X0 ) /

(

6.*CPF1* ( X0-X1 ) )

STMCT=2.*C1*(CPF+CPF1*R1 )*DELT1/RMS
BHACT=2.*C2*(CPF+CPF1*R1 ) * ( LOG ( 24. 4+DELT 1 ) -LOG (24.4) )/UB
TAC1R=80.*C3*(CPF+CPF1*R1)*(X0-X1-DELT1 ) /Ul Av/ ( 4 1 .*DELT 1-XO+X 1-

180. )

P1=EXP( 14.07-9.*3660./<5.*(Xl-32. )+1989. )

)

FBCT1=2.*C4*R1*144.*(P0-P1 )/62.5/5 5U./36 00./.85
F1X0=STMCT+BHACT+TAC1RtFBCT1
PUNCH 51tXl.DELTltRltFlX0
CALC.F2X1
R2= ( 106 5.+.196*(X1+X2)+4.*CPF2*X2-5.*CPF1*X1 ) / ( 6.*CPF2* ( X1-X2 )

)

DEL'2=(CPF+CPF1*R1 )*DELTl/ (CPF+CPF2*R2

)

R3=+1065.+.196*(X2+X3)+3.*CPF3*X3-4.*CPF2*X2)/(6.*CPF3*(X2-X3 )

)

DELT3=( 5.*CPFl/6.+CPF2*R2+l./6. ) *DELT2/ ( CPF+CPF3*R3

)

' TAC1J=12.*C3*(CPF+CPF1*R1 )*DELTl/UlAV/(3.*DELT2+2.*DELTl-12.)
TAC2R=80.*C3*(5.*CPFl/6.+CPF2*R2+l./6. ) *

(

X1-X2-DELT2 ) /U2AV/ ( 41 .*

1DELT2-X1+X2-80.

)

v TAC2J= 12.*C3*(5.*CPFl/6.+CPF2*R2+l./6. ) *DELT2/U2AV/ ( 3 .*DELT3 +

12.*DELT2-12.

)

TAC3R=80.*C3*(2.*CPF2/3.+CPF3*R3+l./3. ) * ( X2-X3-DELT3 ) /U3AV/ ( 41 .

l*DELT3-X2 +X3-80. )

TAC3J=8.*C3*(2.*CPF2/3.+CPF3*R3+l./3. ) *DELT3/U3AV/ ( DEL T 3+2.* ( X3
l-FT)-8.

)
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( CONTINUED)

P2 = EXP( 14 • 7-9. *3 660./ (5.*<X2-32.)+198 9.) )

FBCT2=2.*C4*R2*144.* (P1-P2 )/62.5/5bO./36 00./.85
P3 = EXP( 14. 7-9.*

3

660./ (5.*(X3-32.)+1989.) )

FBC T 3=2. *C4*R3* 144. *(P2-P3)/ 62.5/550./ 36 00./. 85
DCCT=2.*C4*144.*( 14. 7-P3 ) /62 • 5/ 550 ./3600. /«85
F?CT=2.*C4*1.18*((P0-14.7)*144./62.5+50.)/550./36 00.
STRCT=43.2*7.48*24./(62.4*5.F7)
F2X1=TACU+TAC2R+TAC2J+TAC3R+TAC3J+FBCT2+FBCT3+DCCT+FPCT+STRCT
PUNCH 52»X2»R2»DELT2»R3»DELT3»F2X1
UPCT=(F1X0+F2X1 )*62.4*l.E3/7.48
PUNCH 53»UPCT
DELTl=DELTl+.05
IF (DELT1-8.5) 12»12»15

03

15 blvK
END
DATA
.9650E 00 •9580E 00 •5371E 03 .5150E 3 •5100E 03 .5050E C

.2500E 03 •2500E--03 •376CE--C4 •2397E--04 .6000E-02
•9289E 03 •9475E 00 •9300E 00 •8500E 02 .2982E 02
.6000E 01 •2060E 03 .1530E 03 •9400E 02
.7000E 01 •2040E 03 •1520E 3 •92uOE 02
.8000E 01 •2020E 03 •1506E 03 •9520E 02
•9000E 01 •2040E 03 •1520E 03 •9160E 02
.1000E 02 •1980E 03 .i450E 03 •9uuuE 02
•1200E 02 •1960E 03 •1460E 03 •9200E 02
• 1300E 02 •2040E 03 •1440E 03 •9250E 02
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TABLE 12

SIMULATION RESULTS (THE MACROSTAGE MODEL)

At
l

X
l

X
2

X
3

r
l

r
2

r
3

°F °F °F °F lb/lb lb/lb lb/lb

8 202.0 150.6 95.2 2.441 2.523 2.613

9 204.0 152.0 91.6 2.585 2.481 2.350

6 206.0 153.0 94.0 2.742 2.417 2.417

10 198.0 145.0 90.0 2.187 2.433 2.647

12 196.0 146.0 92.0 2.074 2.626 2.604

13 204.0 144.0 91.5 2.585 2.057 2.866

Unit Cost

Lb $/10
3

gallon

0.2417

0.2453

0.2562

0.2457

0.2541

0.2833



TABLE 13

COMPARISON OF RESULTS
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THE MACROSTAGE MODEL

At
l

X
l

X
2

fc

l

lb/lb

"2

lb/lb

L
3

lb/lb

Unit Cost

$/10 gallon

8 202.0 150.6 95.2 2.441 2.523 2.613

9 204.0 152.0 91.6 2.585 2.481 2.350

0.2417

0.2453

THE MICROSTAGE MODEL

At, (T )k

f
;
23

(T
f

}
46

(T
f

)
68 1

lb/lb

2

lb/lb

v
3

lb/lb

Unit Cost

$/10 gallon

8 201.967 150.638 95,214 2.54 2.60 2.66

9 203.972 150.962 91.588 2.69 2.48 2.43

0.2491

0.2511
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make-up feed according to the macrostage model are lower than those by the

microstage model. The macrostage model also gave lower unit production

costs.

As we mentioned in Section 1, the cost figures calculated are only the

sum of the in-plant operation and capital charge costs. Additional cost

items listed in Table 1 should be incorporated to make up the unit production

cost, and thus the unit production cost becomes 0.42 — 0.43 $ per 1000 gal-

lons. According to Ref. (3) the best unit production cost reported for a

plant of 50 MM gallon per day with a single effect multistage model is

0.449 $ per 1000 gallons. The cost difference might be due to the thermo-

dynamic advantage of the multieffect multistage model; however, we did not

calculate the cost due to friction losses in the condenser tubes and chan-

nels. These are known to be of minor importance in the evaluation of cost

functions.

The simulation results by varying At. in the range of 7.0^-8.0 F with

fixed values for x. = 204 F, x„ = 152 F, x = 92 F according to the macro-

stage model are shown in Table 14.
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TABLE 14

CALCULATION RESULTS BY THE MACROSTAGE MODEL

x
1
=204°F x

2
=152°F x

3
=92°F

At
l

r
i

f
l

{V r
2

At
2

r
3

At
3

f
2

(V Unit C° St

°F lb/lb $/lb x 10"5 lb/lb °F lb/lb °F $/lb x 10" 5 $/!Q
3

gallon

7.00 2.585 1.694 2.481 7.264 2.369 7.603 1.244 . 0.24511

7.05 2.585 1.699 2.481 7.316 2.369 7.657 1.234 0.24472

7.10 2.585 1.704 2.481 7.368 2.369 7.711 1.225 0.24436

7.15 2.585 1.709 2.481 7.420 2.369 7.765 1.215 0.24403

7.20 2.585 1.715 2.481 7.472 2.369 7.820 1.206 0.24373

7.25 2.585 1.720 2.481 7.524 2.369 7.864 1.198 0.24345

7.30 2.585 1.726 2.481 7.575 2.369 7.928 1.189 0.24320

7.35 2.585 1.731 2.481 7.627 2.369 7.983 1.181 0.24298

7.40 2.585 1.737 2.481 7.679 2.369 8.037 1.163 0.24277

7.45 2.585 1.743 2.481 7.731 2.369 8.091 1.165 0.24259

7.50 2.585 1.649 2.481 7.783 2.369 8.146 1.157 0.24243

7.55 2.585 1.755 2.481 7.835 2.369 8.200 1.149 0.24230

7.60 2.585 1.761 2.481 7.886 2.369 8.254 1.142 0.24218

7.65 2.585 1.767 2.481 7.939 2.369 8.309 1.135 0.24208

7.70 2.585 1.773 2.481 7.991 2.369 8.363 1.127 0.24200

7.75 2.585 1.779 2.481 8.042 2.369 8.417 1.120 0.24194

7.80 2,585 1.786 2.481 8.094 2.369 8.471 1.114 0.24190

7.85 2.585 1.792 2.481 8.146 2.369 8.526 1.107 0.24188

7.90 2.585 1.798 2.481 8.198 2.369 8.580 1.101 0.24187

7.95 2.585 1.805 2.481 8.250 2.369 8.634 1.094 0.24188

8.00 2.585 1.811 2.481 8.302 2.369 8.689 1.088 0.24191
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TABLE 14 (Cont'd)

At
l

r
i

f
i

(V r
2

At
2

r
3

At
3

£
2

(Xl ) Unit Cost

°F lb/lb $/lb x 10"'3 lb/lb °F lb/lb °F $/lb x 10" 5 $/10
3

gallon

8.05 2.585 1.818 2.481 8.354 2.369 8.743 1.082 0.24195

8.10 2.585 1.825 2.481 8.406 2.369 8.796 1.076 0.24200

8.15 2.585 1.831 2.481 8.458 2.369 8.852 1.080 0.24292

8.20 2.585 1.838 2.481 8.509 2.369 8.906 1.064 0.24216

8.25 2.585 1.845 2.481 8.561 2.369 8.960 1.059 0.24226

8.30 2.585 1.852 2.481 8.613 2.369 9.015 1.053 0.24236

8.35 2.585 1.866 2.481 8.716 2.369 9.069 1.048 0.24249

8.40 2.585 1.866 2.481 8.717 2.369 9.123 1.042 0.24263

8.45 2.585 1.873 2.481 8.769 2.369 9.177 1.037 0.24278

8.50 2.585 1.880 2.481 8.821 2.369 9.232 1.032 0.24294
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APPENDIX II

OPTIMIZATION OF THE MULTI-EFFECT, MULTI-STAGE

EVAPORATION PROCESS BY THE MAXIMUM PRINCIPLE

We shall employ the design equations obtained by the macro-stage model

in Appendix I to carry out the optimization of the multiflash evaporation

process by means of a discrete form of the maximum principle [ 1 J.
The

reason we use this model is that it is simpler in its form than the micro-

stage model. Since we assumed equal temperature drops for the flashing

brine in each stage and also that the temperature differences between the

flashing brine and the recycle brine are equal all the way through the heat

recovery section of each effect, we can treat the process as a stage-wise

one-dimensional decision process and apply the discrete maximum principle,

to optimize it. In the formulation of the discrete maximum principle we

choose the temperatures of the flashing brine at the exit of each effect as

state variables and the ratios of the recycle brine in each effect to the

make up feed as decision variables. The optimization problem is defined so

that the first stage is the combination of the brine heater and the heat

recovery section of the first effect, the second stage is just the heat

recovery section of the second effect, and the third stage is the third effect

itself. The reason why the heat rejection sections of the first two effects

are excluded is that they involve two different At's of the adjacent effects.

This leads to a "process with decisions in memory" £l) in evaluating the

cost equations. However, by excluding these two sections from our optimiza-

tion study, the problem is reduced to the standard type without memory.
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1. STATEMENT OF THE PROBLEM

It should be noted that equal distillate production is assumed for each

effect in this formulation. Then it follows that the blowdown concentrations

are

(C,) 1U = 0.042,
f lb

(C
f

)
2b

= 0.0525,

(C.J-, = 0.07.
1 Jb

The heat capacities of the flashing brine corresponding to these concentra-

tions are

(C )_. 0.958,
P fl

(C ) = 0.9475,

(C ),. = 0.93.
P f3

An energy balance around the brine heater and first effect (see Fig. 1) gives

q F(C
p

)
f
tr

2
Fr

2
(C

p
)
r2

tr
2

= fc^-At^)
(f

r^KC^)^, (1)

where x = t
f

q + F(l+r_)(C _) tr = F(l+r.)(C _) x.
2 p2 av 2 2 p2 av 1

Solving for At = x - tr , we obtain

At = x - tr = ^ (2)
2

x
l

cr
2 F(l+r.)(C _)

K4L)

2 p2 av

In the same manner it can be shown that

At = ^ (3)
3 F(l+r_)(C _)

K:i)

3 p3 av
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and that

At
!

=
FUT.MCp.) <4)

1
r
l av

Since, the magnitudes of the recycle ratios are known from the previous

simulation, we can assign approximate values to the average heat capacities

without knowing the exact values of the recycle ratio

(CPl )
av

= 0.96,

(Cp
2

)

flv
= 0.952,

(Cp_) = 0.94.r3 av

Note that equations (2), (3), and (4) all contain the factor ^, and for this

reason we will choose ~ as a parameter in our optimization study.
F

2. OPTIMAL SOLUTION BY THE DISCRETE MAXIMUM PRINCIPLE

According to the algorithm of the discrete maximum principle (lj, we

define the temperature of the flashing brine as the state variable x. with a

transformation equation at each stage of the form

x" = T
n

(x?"
l

5 eV
i I

where is the recycle ratio which is the decision to be made at each stage,

Using the notation introduced here, equation (54) in Appendix I becomes

. 1065 + 0.196(x° + x
1

) + 5 x 0.958xj" - 6 x 0.965x°
= : (5)

6 x 0.958 (x° - xj)

All superscripts stand for the stage number.
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Solving this equation for x gives

1 = t 1
^ ° q 1

^ = (5.748 9
1

+ 5.594)x° - 1065
X

l
L *V e ;

r
l (6)

5.748 + 4.986

Similarly, equation (60) becomes

1065 + 0.196U
1

+ x?) + 4 x 0.9475xf - 5 x 0.958xj"

9 = ~ (7)

6 x 0.9475(xJ - xp

which may be rewritten as

9 ?19 (5.685 9
2

+ 4.594)x[ - 1065
x^ = T

Z
(x|; 9

Z
) = r (8)

5.685 9 + 3.986

From equation (66), we can obtain

_3 1065 + 0.196(x? + x?) + 3 x 0.93x
3

- 4 x 0.9475xf
9 ill 1

(9)

6 x 0.93(x^ - x
3

)

3
by introducing the new notation. Solving equation (9) for x. gives

, , , (5.58
3

+ 3.594)xf - 1065
x^ = ITU*, 9

J
) = r * (10)

5.58 9 + 2.986

We shall introduce a new state variable x_ for the accumulated unit

production cost. We shall show that the accumulated unit production cost

can be written in the form

x - x + G (x ; 9 ), x - n - 1, 2, 3. (11)
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3
n n-1 3

It is obvious that 2 G (x ; 9 ) = x . Thus the problem is transformed
n-1

into the standard form in which a sequence of 9 , n = 1, 2, 3 is to be chosen

3
so as to minimize the objective function x_ for a process described by

equations (6), (8), and (10).

The terms which comprise the cost functions, G (x ; 9 ), n = 1, 2, 3,

have been derived in Appendix I. In this optimization study, G (x. ; 9 ) is

comprised of the steam cost, the fixed charge cost for the brine heater, and

the fixed charge cost for the condenser tubes of the heat recovery section of

the first effect. The steam cost is obtained from equation (55) of Appendix

I as

2C q
(V S = FX" (12)

s

The fixed charge cost for the brine heater is obtained by rewriting equation

(56) as

1 92C (

l

+9 )

B

The fixed charge cost for the condenser tubes of the heat recovery section of

the first effect is obtained by substituting equation (6) into equation (57).

This gives

80C
3
(l+9

1

)0.96fxJ -

(5.7489
1

+ 5.594)x° - 1065

5.7489
1

+ 4.986 F(l+9
1
)0.96

(x.

)

t ,, n (5.748 9 + 5.594)x, - 1065 .

(U.)
f ^ -x° +

:
& -80]

SV
F(l+e )0.96 5.748 9 + 4.986
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. t 10b5 - 0.b08 x
|

80C x 0.96(1+0 ) :

\ J

5.748 + 4.986 F(l+0 )0.96

r ,

,

1065 - 0.608 x? x

<VJ P— i
" - 8°

1 F(l+© )0.96 5.748 + 4.986 '

76.8C
3
(1+0

1
)|O.96(1+0

1
)(1O65 - 0.608x° - ^(5.7480* + 4.986)

j

^a(5.7480
1
+4.986) - 0.96( 1+0

1
) (1463. 9-0. 608x° J

r 1
(U. ) i ^(5.7480* +4. 986) - 0.96( 1+0*) (1463. 9-0. 6O8x"+459.80~)

1 avl

(14)

We will not include the recycle cost in this optimization study because the

total recycle cost itself is small compared to the total production cost.

In addition to this, the pressure

AP. - I

=
< Pn - P

, >
+

< P
,

~ Po>
+ #0 - Po>total 1 12 2 3

= AP, + AP^ + Apo12 3

is almost constant since the total temperature range of the flashing process

can only be varied a few degrees Fahrenheit. Thus, an increase in one Ap

will decrease the other two APs. It is also intuitively seen that the recycle

cost for each effect itself cannot vary much.

As mentioned earlier, the production cost due to the fixed charge costs

for the condenser tubes in the heat rejection sections of the first and the

second effects are excluded from our consideration. Since there are only 6

of the 68 stages in these sections the optimal unit production cost will not

be influenced very much in case they are not taken into account. Since they

involve decisions in memory as will be shown below, they complicate the

optimization problem.

Rewriting equation (62) in Appendix I for the fixed charge cost for the

condenser tubes in the heat rejection section of the first effect we have



after substituting equations (2) and (4) into equation (62)
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4 lj

12C

U.) f1 av
(

3 F

3g i£L

F(l+e
2
)0.952 F(1+0

1
)O.96

- 12

(x.)..
4 lj

12C.

(U. )
L av

O.952U+0
2

) O.96(l+0
1

)

12F 1

q

(15)

A similar expression can be obtained for the heat rejection section of the

second effect by substituting equations (2) and (3) into equation (68) of

Appendix I. One obtains

12C,

(x
4

}

2j
:u_) f —

2 av
to. 94(1+G

3
) 0.952(l+9

2
)

12F 1

q

(16)

Equations (15) and (16) each contain two decision variables and because of

this they can't be included in cost functions of the form G (x ; ). In

order to include equations (15) and (16) a new state variable would have to

be introduced (1). However, in this study equations (15) and (16) will be

added in after the optimal solution has been found.

From equations (12), (13), and (14) we thus obtain

G
1
(x°; 9

1
) = (x.) + (x.)_ + (x.) .

1 4 s 4 B 4 cl
(17)

2 1 2
In this optimization study, G (x. ; 9 ) is the fixed charge cost for the

1

condenser tubes in the heat recovery section of the second effect. Sub-

stituting equations (2) and (8) into equation (63) in Appendix I we obtain
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(5.685 9
2

+ 4.594) x[ 1065

80CLU+9 )fI0.952jx|

„2, 1 2
3

5.685 e
2

+ 3.986 F(l+Q
2
)0.952

G (x ; e r
-

f (5.685 9 + 4.594)x7 - 1065
)

x, + = - 80(U„)
2 av

F(l+9
2
)0.952

l
5.685 9

2
3.986

which can be simplified to give

2 12
G^(xJ; 9 ) =

(

76.16C (l+9
2
)fo.952( l+9

2
)( 1065-0. 608xJ) -^(5. 6859

2
+3. 986) j (18)

U_) (~a(5.6859 2
+3.986)-0.952(l+9

2
)(1383.9-0.608x}+454.89

2
))

2 av{ F 1 J

3 2 3
G (x ; 9 ) represents the fixed charge cost for the condenser tubes in

both the heat recovery and heat rejection sections of the third effect. From

equation (69) in Appendix I, the fixed charge cost for the condenser tubes in

the heat recovery section of third effect is obtained by substituting equations

(3) and (10) for x
3

and At

_ r n 5.58 9
3

+ 3.594)x? - 1065
80C„(1 + 9 )

(x,)

. 94 x . 1 _ ^
5.58 9 + 2.986 F(l + 9 )0.94

4 ° 3
t ,, (5.58 9

3
+ 3.594)x

2
- 1065 ^

(iV f
41a . 2 + 1 _ 80

|flV
[ F(l + 0)0. 94 5.58 9 + 2.986

On simplification, it becomes

75.2C
3
(l+9

3
)(o.94(l+9

3
)(1065-0.608x

2
) - ^(5.589

3
+2.986)j

(U.) f

4~a(5.5893+ 2. 986 )-0.94(l+9
3
)( 1303. 9-0. 608x

2
+446.49

3
)}

3 av( F 1 J

By substituting equations (3) and (10) into equation (70) in Appendix 1, the

fixed charge cost for the condenser tubes in the heat rejection section of

the third effect is obtained as
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8C„(1 + 9
3
)0.94

, , .

3
F(l + 9

3
)0.94

(x, )
4 3j

r 2f(5.58
3

+ 3.594(x^ - 1065}
(U

3
}
av S + 3 "

(2T
F

+ 8)
J { F(l + 0)0. 94 5.58 + 2.986

8C
3

, . 2FJ15.8 9 + 3.594)x, - 1065 F(2T_ + 8) ->

(U_)
f

i ~ + -^ & *- E
aVl

0.94(1 + 9 ) q(5.58 9 + 2.986 q

On further simplification, it becomes

7.52C (1 + 9
3
)(5.58 9

3
+ 2.986)

(U_) [(5.58 © + 2.986) + ~f(5.58 9 + 3.594) x? - 1065}o.94(l + 9 )
3 av q l 1 *

- 0.94(1 + 9
3

) - (2T_ + 8H5.58 9
3

- 2.986)]
q F

Thus, we can write

G
3
(xf; 9

3
= (x.) . + (x.)_.

1 4 c3 4 3

j

Now we observe that our cost equations have the standard form of the discrete

maximum principle.

x° =

1 _ , _1, 1.
X
2

" X
2 1' »

2 1 . 2, 1 2.
X
2

" x
2

(aC
l»

9 )s

3 2 . _3, 2 3>
C

2
" X

2
(X

1' '

and

3

Min. S = Min. 2 G
n
(xJ ;

n
) = Min. x

3

n=l
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A block diagram for the process is shown in Fig. 2.

The procedure for solving such an optimization problem by the discrete

maximum principle is to introduce adjoint vectors z and Hamiltonian functions

H such that

H
n

= I z%? n- 1, 2, 3,

i=l

i
"

n^I » n - 1, 2, 3,; i - 1, 2.

ax.
i

Then,

„1 11,11 11 1 „1, ft l NH -«!*!+ «2 *2
Z
l
X

l

+ Z
2

G (X
1

;
G }

„2 _ 2 2 , 2 2 _
H - z

x
x
L

+ z
2

x
2

- z

H = z

It is obvious that

2 2 , 2 r 1 , _2, 1 2.\

1
x
i

z
2 l

x
2

G (X1» 9 V

3 3 3 f 2 . .3, 2 _3.1

1
X

l
Z
2
X
2

~ Z
l

X
l

Z
2l

X
2

G (X
1

; 9 }
t

1 = ^H
2

2 _ 2H^ 3 _Z
2 ~

1
Z
2 .2 Z

2
l »

2>x
2

dx
2

4 = o.

Hence, we can write
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(5.748 9
1

+ 5.594)x° - 1065, 2C.q
H .

x
x
L
+ x

2
- z.j

j J+ F5
-

1.92C (1 + 9
1

)

+ £

5.7 4.9 * \

fln(24.4 + 9 r~) - ln(24.4)}
U
B 0.96F(1 + (

76.8C
3
(l+G

1
){o.96(l+9

1
)(1065-0.608x°) - •|(5.7480 1+4. 986)}

(U.) (~£(5.7480 1
+4.986) - 0.96( 1+0

1
) ( 1463. 9-0. 6O8x?+459.80

1
)}

1 av( F 1 J

(21)

(5.685
2 + 4.594)x!

u2 - 2 2 . 1 . _2, 1 2. 2f __Ji 1H - z x + x + G (x ; ) - z
1 l L

5.685 + 3.986
;

76.l6C o (l+0
2
)(o.952(l+0

2
)(lO65-O.6O8xJ) - %5.6850 2+3.986)}

+ x
l + 3 1 1 F L

(U_) f~fl(5.6850 2+3.986)-O.952(l+0
2
)(1383.9-O.6O8xf+454.80

2
)j

2 avl F 1 J

J. 3 3 + 2 + A 2 ... 3f
3.58e3 ^3.594)x^- L065

FT - z x + x + G (x ; ) = z r
J1 l z l l

' 5.58 e
J + 2.986

75.2C (l+0
3
)(o.94(l+0

3
)(lO65-O.6O8x

2
) - ^(5.580

3
+2.986

)

}

+ x
^ + 2. i i

—

(U_) (~a(5.5803+2.986)-O.94(l+03 )(13O3.9-O.6O8x 2
+446.40

3
)}

3 avl F 1 '

7.52C (1 +
3
)(5.58

3
+ 2.986)

___ _•<_ __^ . _ - _ -

(U.) !(5.580
3
+2.986) + — f(5. 580

3+
3. 594)x

2
-1065) 0. 94( 1+0

3 av' q I 1 J

0.94 - (1 + )2T_ + 8X5.58 - 2.986)}
q F J

3
>

(23)
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3. COMPUTATIONAL SCHEME

A computational procedure which might be used to obtain the optimal

values for the process, if the decision variable is not constrained or the

optimal value is in the interior of the admissible range of the decision

variable, is as follows:

3
1. Assume a value for x

2>H
3

2. Differentiate equation (23) to obtain —r , If the decision variable is

ae
3

3H
3

not constrained, we must have —r - (24)

2>e
J

2 3
3. Determine x and 9 by solving equations (10) and (24) simultaneously.

3 2
This might be done by assuming an initial value for , finding x from

>H
3

equation (10), evaluating —- , and then using the method of steepest descent
do

J

in the form

3
~3 _3 , , „oH I _3 . ,new = 9 old - K

—

r|9 old
»9

J

3
to find a better value of 9 .

2 ^FT 9 ^
4. Evaluate z = —- using the obtained values of x and 9 and substitute

ix

it into equation (22).

5. Use the ~r = 0, relation (25)

1 2
and equation (8) to determine x. and 9 by solving these equations

simultaneously as in step 3.

2
1 ^ H 1 9

6. Evaluate z = —- for the obtained values of x and 9 ; and substitute
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it into equation (21),

7. Use equation (6) and the relation —r = (26)

oe 1

to determine x and by solving these equations simultaneously as in step

(3),

8. Compare the computed value of x with the given value of x. . The above

procedure is repeated until the calculated value of x is approximately

equal to the given value.

It is recalled that the plant we are considering has the capacity of

50 MM gallons of distillate per day so that every cost item should be based

on this capacity.

In Ref. (2) and Ref. (3) the values q/F = 20.6 and 33.7, respectively

were used. The system under investigation here is closer to the case given

in Ref. (2). Based on these previous studies a reasonable range of the

parameter, q/F, and the decision variables to be used in the computation is

1) q/F = 22~28

2) 9
P

= 2.0-2.6.

The range of the decision variables is taken intuitively from the simulation

results and review of Ref. (2).

In principle, smaller values of 9 are desired.

Because

At" = q

F(i + e
n
)(c )

pn av

If p is given, we can see that the smaller the values of 9 , the
r

larger the value of At , and thus less condenser tube area is needed for

each effect so that the production cost is reduced. But 9 can't be too
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small because a certain amount of recycle brine is needed for each effect in

order to increase the heat capacity of the flashing brine stream so that for

a given production of distillate the total temperature drop of the flashing

brine satisfies the conditions

3) x° = 250°F

x^ = 90~95°F

The maximum brine temperature x is fixed at about 250 F from the point

of view of scale-formation. The blowdown temperature cannot be too high or

too low. In case it is too high, heat waste becomes appreciable and in case

it is too low, the condenser tube area in the heat rejection section and the

pumping cost for the coolant increase. In view of this the blowdown tempera-

ture x. should be taken as 90—95 F in this study.

It is also noted that the computational procedure stated earlier is only

valid for the case in which the optimal decision is interior to the set of

admissible decisions. If the optimal decision lies on the boundary of the

3
set the necessary condition for x to be a minimum is

H - minimum

where n denotes only those stages where the optimal decision lies on the

boundary of the set.
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This work shows how the method of dynamic programming can be used to

optimize chemical processing systems by treating several examples.

The principle of optimality and the functional equation which consti-

tutes the basic algorithm of the method of dynamic programming are presented.

The computational scheme for the functional equation and the table entry

procedure are given in detail followed by some simple examples. The optimal

allocation of back-mix reactor volumes for a two phase, second order reaction

system is considered for both countercurrent and co-current flow. The

results show that the countercurrent flow scheme is more economical than the

co-current flow scheme especially at higher conversions.

The optimization of a multieffect, multistage evaporator system with a

nominal capacity of 20 MM gallons per day of distillate is considered.

Using the cost estimating procedures recommended by the Office of Saline

Water, an optimal unit production cost of AOC per 1000 gallons was obtained.

This particular study serves to illustrate the applicability of dynamic pro-

gramming to the optimization of a multistage decision process whose first

appearance seems to be complex.

The refinement of solutions and the reduction in dimensionality are

discussed. Since the discretization errors are inherent with the method of

dynamic programming, one or another method of interpolation or extrapolation

should be used to refine the solutions. Furthermore, the methods that can

be used to obtain a reduction in dimensionality are described fully because

of the exponential increase in computer memory that occurs with an increase

in the number of state variables. Often the successful application of the

dynamic programming technique is obstructed by the dimensionality problem.

The k-th best policy is also given to illustrate how to find suboptimal



policies which are the best alternatives to the optimal policy. The appli-

cation of the k-th best method is illustrated by several simple examples and

the optimization of a multistage decision process with parallel redundancy.

The optimization procedure for treating complex multistage decision processes

is also given and some examples are treated in order to illustrate the

technique for optimizing nonsequential, geometrically complex processes.

The transformation and cost equations for both a microstage and a macro-

stage model of a multieffect, multistage flash evaporation system are devel-

oped and compared. Due to the simplicity of the macrostage model, the design

equations for the macrostage model are used for the dynamic programming

optimization. Results of simulation studies which were made using both the

microstage and the macrostage models are presented.




