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Abstract 

Cold-formed steel framing sheathed with wood structural panels is a common method of 

construction for wall, roof and floor systems in cold-formed steel structures.  Since wood 

structural panels are attached with screws at relatively close spacing, a certain amount of 

composite behavior will be present.  However, the benefit of composite behavior of this system 

is currently not being taken advantage of in the design of these structural systems.  While 

composite effects are present, they are not yet being accounted for in design due to a lack of 

statistical data. To determine the amount of composite action taking place in these systems, the 

slip modulus between steel and wood is required. The slip modulus reflects the amount of shear 

force able to be transferred through the screw connection, to either member of the composite 

system. This thesis presents the results of a study conducted to determine values of the slip 

modulus for varying thicknesses of cold-formed steel and plywood sheathing. Push tests were 

conducted and the slip moduli were determined based on ISO 6891 and ASTM D1761. 

Compared with data from a previous preliminary study performed by others, the values 

determined from these tests for the slip modulus were deemed reasonable. The determination of 

the slip modulus will lead to the ability to calculate a composite factor. Determination of a 

composite factor will allow cold-formed steel wood structural panel construction to become 

more economical due to the available increase in bending strength. 
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Introduction Chapter 1 - 

Cold-formed steel wood structural panel construction (CFSWSPC) is the use of cold-

formed steel members sheathed with wood structural panels and attached using screws. Cold-

formed steel members have been used in building construction since the 1850s, however it has 

only been widely used in buildings since the 1940s (Yu, 2000). Cold-formed steel and wood 

structural panels are already being used together widely in building construction, however 

CFSWSPC is not being used as a composite material. Further study must be completed in order 

to more accurately understand the composite behavior of the material and produce design 

guidelines allowing engineers to design for the composite behavior.  

 

The use of cold-formed steel in building construction has many advantages over similarly 

designed timber framing systems: 

 

 High strength and stiffness  

 Low transportation costs due to the ability of cold-formed steel to interlock and save 

freight space  

 Uniform material properties allow for more economical design and fewer issues at the 

time of construction due to poor material quality 

 Environmentally conscious: while plywood comes from renewable sources, steel is 

continually recyclable with no degradation in performance, from product to product 

(AISI, 2012) 

 

Cold-formed steel construction is most typically used for repetitive member systems such 

as floor joists, roof joists, roof rafters and wall studs. In each of these structural systems 

sheathing is normally attached to the cold-formed steel members. In many cases the sheathing is 

wood structural panels.  Because this sheathing is already being attached, the cold-formed steel 

members and the sheathing may act in a composite manner to resist bending. If this is the case, 

more strength is actually available in the structural system than what is currently being designed 

for.  
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When the wood structural panel and cold-formed steel joist are connected, the screw 

connection will resist the horizontal shear force between the members when bending is present. 

When the entire horizontal shear load is not able to be transferred through the connection, due to 

gaps between the materials or connection spacing, this is called slip. The extent to which this slip 

occurs can be related with a value called the slip modulus. The slip modulus can be used to 

calculate the shear flow coefficient, the effective composite bending stiffness, and ultimately the 

composite factor for CFSWSPC. Obtaining the slip modulus for CFSWSPC will allow the design 

of the system to be more economical. Accounting for composite action will allow for the 

possibility of smaller member sizes or greater strength for the system.  
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Background Chapter 2 - 

As previously mentioned, CFSWSPC is typically used in a repetitive member assembly 

such as a floor, roof or wall application. The Standard Guide for Evaluating System Effects in 

Repetitive-Member Wood Assemblies (ASTM, 2003) defines a timber-timber composite structure 

(TTCS) repetitive member assembly as a system in which a transverse load-distributing element 

connects three or more members. This definition can also be applied to CFSWSPC. In the case of 

CFSWSPC the transverse load-distributing element is the wood structural panel, which is one of 

the most commonly used load distributing elements for most low-rise buildings in North 

America according to Rosowsky, et al. (2004) in Partial Factor Approach to Repetitive-Member 

System Factors. The member used in this case is a cold-formed steel member. 

 

According to ASTM D6555-03, Standard Guide for Evaluating System Effects in 

Repetitive Member Wood Assemblies, “The apparent stiffness and strength of repetitive member 

wood assemblies is generally greater than the stiffness and strength of the members in the 

assembly acting alone. The enhanced performance is a result of load sharing, partial composite 

action and residual capacity obtained through the joining of members with sheathing or cladding, 

or by connections directly.” (ASTM, 2003) 

 

ASTM D6555-03 (2003) defines “composite action” of TTCS as “interaction of two or 

more connected wood members that increases the effective section properties over that 

determined for the individual members.” To simplify, as stated previously, the addition of the 

sheathing as a member increases the section properties because the system is then able to be 

designed as a t-beam, and not a simple joist. Figure 2-1 shows an illustration of cold-formed steel 

members in a repetitive member system attached to wood structural panel (plywood, in this case) 

and the effective t-beam created by the two members. Effective t-beams with partial composite 

action can be modeled by numerous structural analysis formulations which include the finite 

difference method, the finite element method, the direct stiffness method and the exact analytical 

model. The direct stiffness method is used in this thesis.  
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Figure 2-1 CFSWSPC Effective T-Beam 

 

A joist that is sheathed with plywood does not act simply as a beam carrying the loads. 

The plywood sheathing acts along with the joist and forms a composite t-beam (see Figure 2-1). 

The t-beam is comprised of the cold-formed steel member as the web and the plywood sheathing 

as the flange. To resist bending in the composite member, the plywood acts as the compression 

flange and the bottom of the cold-formed steel member acts as the tension flange. However, due 

to the non-rigid connection between the dissimilar elements of the CFSWSPC, full composite 

action may not exist, and thus should not be assumed. Full composite action occurs when the two 

elements being attached act as if they are one solid element, even if they have different material 

properties. In order to have full composite action, the connection between the two elements must 

be completely rigid, thus for CFSWSPC only partial composite action takes place. Partial 

composite action is a condition in which full composite action is not able to be used or 

developed. The slip modulus is the measure of the shear flow that is able to be transferred 

through the connection. The connection and possibility of gaps between the joist and sheathing 

creates the non-rigid connection in which slip must be accounted for. This non-rigid connection 

can be accounted for using a slip modulus. 

 

The slip modulus is a value reflective of the stiffness of a connection between two 

materials. When members are in bending, the composite action results in increased flexural 

rigidity by increasing the effective moment of inertia of the cross section of the composite 
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members. Composite action decreases as the rigidity of the connection between the cold formed 

steel and the sheathing decrease.  

 

Similar to CFSWSPC, timber-concrete composite structures use timber members as the 

joist and concrete as the transverse load distribution element. Many aspects of timber-concrete 

composite structures are similar to that of CFSWSPC.  Stresses that develop at the interface of 

the two composite materials can be expected to result in slip in both composite constructions. 

The slip modulus is a value that allows the slip to be taken into account in design while accepting 

that some composite action does occur in a composite assembly such as timber-concrete 

composite structures or CFSWSPC. Connectors for Timber-Lightweight Concrete Composite 

Structures by Steinberg, et. al. (2003), defined the slip modulus as the initial stiffness of the 

composite material.  The initial stiffness is the quotient of the load at 40% of the estimated 

ultimate load and the accompanying slip at that moment, in accordance to the International 

Organization for Standardization (ISO) 6891.  

 

In order to determine the magnitude of the partial composite action taking place, the slip 

modulus must be determined. For CFSWSPC the additional stiffness and strength of the 

composite structure is not currently being accounted for in design. In the same way as the TTCS 

described above, CFSWSPC can gain stiffness and strength in a repetitive member system by 

partial composite action obtained through the joining of the members with sheathing. 

 

This thesis determines a lower bound for the slip moduli for CFSWSPC in order allow 

designers to account for the aforementioned increase in stiffness and strength through composite 

action between the cold formed steel and wood structural panel sheathing. 
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Literature Review Chapter 3 - 

In order to fully understand the behavior of CFSWSPC, it is necessary to look at other 

types of composite materials and their behaviors. While the materials may be different, many of 

the mechanisms and behaviors are very similar. These help to verify data found from the testing 

of CFSWSPC. Additionally, it is important to fully understand the completed studies with this 

same composite material. This understanding enables further progress in the study of CFSWSPC. 

 

 Timber-Lightweight Concrete Composite Structures 

Timber-concrete composite is another relatively new composite construction method 

being used. Those designing timber-concrete composite have also had to address the issue of slip 

modulus and composite action. In the study Connectors for Timber-Lightweight Concrete 

Composite Structures by Steinberg, et al. (2003) timber members are connected to a concrete 

slab such that when the composite is subject to bending forces due to gravity loads the timber 

member is in tension and the concrete is in compression. The Steinberg study attempts to 

determine the best possible connector for the composite structure.  

 

Steinberg’s study is comprised of 4x10 timber joists, spaced at 24” on center, overlaid 

with ¾” timber plywood which is used as the formwork for the 2” thick lightweight concrete slab 

which is installed on top and connected with screws at a 45 degree angles. The nature of timber-

concrete composite structures differs from CFSWSPC in that the screw connecting the elements 

is primarily loaded in tension rather than shear. The tensile load makes the 45 degree connection 

more efficient and results in about twice the stiffness and load capacity as screws installed at a 

normal direction to the face of the concrete. 

 

The materials were set up for testing such that the concrete layer was sheathed on either 

side by timber plywood as well as the timber joist. The materials were then connected by two 

screws, varying in size and type, on either side, as shown in Figure 3-1 and Figure 3-2. The 

specimens were tested using a push-out test; load was placed on the specimen at the top of the 

concrete portion of the specimen and the specimen was supported only by the timber joists. 
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Figure 3-1 Timber-Lightweight Concrete Composite Test Set-up, with permission of ASCE 

 

In accordance to the ISO 6891, the load was applied at a rate of 1mm per minute and first 

increased to 40% of the ultimate load, followed by a relief of the load to 10% of the ultimate 

load, and finished by loading to failure, as shown in Figure 3-2. The ultimate load was defined as 

the load at which the materials had slipped 15mm or the load at which the member failed by 

another mechanism prior to 15mm of slip occurring. The determination of failure at 15mm of 

slip is also in accordance with ISO 6891. Each series of tests consisted of four specimens. The 

first specimen was tested in order to determine the ultimate load by which the test procedure for 

the final three specimens was able to be designed. 
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Figure 3-2 Loading Curve 

 

 Steinberg, et al. determines the slip modulus using the quotient of the load at 40% of the 

estimated load and the accompanying measurement of slip, as shown in Equation 3-1 and in 

accordance with ISO 6891. 

 

Equation 3-1 Slip Modulus 

  
     

    
 

 

Where:  

  K = Slip Modulus (lb/in) 

  Pu = Ultimate Load (lb) 

  v0.4 = measured slip at 40% Pu (in) 

 

This study is a good example of how to determine the slip modulus of a composite 

material. While different conclusions are being derived from the results of the experiments 

performed, the ultimate goal is the same: to determine the slip modulus of the composite 
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material. In examining the methods that the slip modulus is determined for other composite 

materials, this may validate the methods for which the slip modulus of CFSWSPC is determined. 

 

From the slip modulus value calculated, the shear bond coefficient is then determined. 

The shear bond coefficient represents the amount of shear force able to be transferred from one 

part of the composite member through the connection to the other part of the composite member. 

The calculation for the shear modulus is shown in Equation 3-2. 

 

Equation 3-2 Shear Modulus 

  
 

  
       

   

 

 

Where: 

   γ = shear bond coefficient 

   s = spacing of connectors (in) 

   ES = Modulus of Elasticity of sheathing (psi) 

   AS = Area of sheathing (in
2
) 

   K = slip modulus (lb/in) 

   L = length of member (in) 

 

 The use of the shear bond coefficient allows for the effective bending stiffness of the 

overall composite to be calculated. This takes into account the original stiffness of each 

individual material, the slip that occurs at the interface of the composite materials and the 

composite action that takes place due to the connection(s). The effective stiffness calculation is 

shown in Equation 3-3. 

 

Equation 3-3 Effective Stiffness 

                    
             

  

 

Where: 

  (EI)eff = effective stiffness of composite (lbin
2
) 
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  ESIS = bending stiffness of sheathing (lbin
2
) 

  γ = shear bond coefficient 

  ESAS = axial stiffness of sheathing (lb) 

  a1 = distance between sheathing centroid and CFSWSPC centroid (in) 

  EJIJ = bending stiffness of joist (lbin
2
) 

  EJAJ = axial stiffness of joist (lb) 

  a2 = distance between joist centroid and CFSWSPC centroid (in) 

 

The effective stiffness is then used to calculate the total bending stress in the timber 

member of the composite system. 

 

 Timber-Timber Composite Structures 

Timber-timber composite structures have been highly investigated and designed. Many of 

the methods of construction and design of TTCS are similar to CFSWSPC, therefore the 

mechanisms by which TTCS is designed can be applied to CFSWSPC. It is for this reason of 

transference that a thorough study of TTCS is necessary in order to understand some of the 

possible behavior and design considerations necessary for CFSWSPC. 

 

In the more traditional TTCS the behavior of repetitive member systems has been 

investigated much more extensively. Many tests have been conducted to determine the stiffness 

added to timber joists by attaching timber sheathing. In Light-Frame Wall and Floor Systems, 

(1989) Sherwood attempts to understand the composite behavior of TTCS using various methods 

of subflooring as well as various methods of connections. Sherwood cites a 13 percent increase 

in stiffness was noted when plywood subfloor was nailed to timber joists. 

 

Sherwood compared different thicknesses and types of sheathing, sizes and grades of 

joists, spans and spacing, with the deflection and two-way action of repetitive member systems. 

Sherwood determined from his studies that it is the axial stiffness of the sheathing that adds the 

strength and stiffness to the repetitive member system. When the sheathing is rigidly fastened to 

the joists with no gaps, full composite action takes place. When no connection between the joists 

and the sheathing occurs the two materials act completely independently. In typical construction 
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the connections are not able to be completely rigid, for constructability there must be spacing 

between connections and thus the actual case is somewhere between the two extremes.  

  

According to Sherwood, when using nail or screw fasteners, the degree to which the 

fastener resists slip is dependent on its ability to resist pullout/slip and spacing of the fasteners. 

The actual relationship between the lateral load and the slip is nonlinear, however for the ranges 

of design loads the relationship between the lateral load and the slip has been simplified to a 

linear relationship, as shown in Equation 3-4. This is allowed because the joists, which carry the 

majority of the load, do behave linearly, and the overall composite structure behaves in a nearly 

linear manner. When the relationship between lateral load and slip is simplified to linear, the 

interlayer stiffness of the mechanical fasteners can be calculated as follows: 

 

Equation 3-4 Mechanical Fastener Interlayer Stiffness 

  
 

 
 

 

Where: 

 S = interlayer stiffness (lb/in/in) 

k= nail stiffness (lb/in), also known as the load/slip ratio, or how much load the 

member is able to withstand per inch of slip 

 s = spacing between fasteners (in) 

 

In “First-Order Reliability Analysis of Wood Structural Systems,” by W. M. Bulleit and 

W. F. Liu (1995), timber-timber composite structures are analyzed. Timber sheathing of 5/8” 

thickness attached with 8d common nails at 8” on center to timber joists are studied as floor and 

roof systems. The layout and setup of the repetitive member, composite structures are shown in 

Figure 3-3. Two-way action, partial composite action, and other irregularity effects dealing 

specifically with the non-uniform nature of timber material were taken into account. Computer 

simulation, BSAF, and an approximate method, the beam-spring method, were used to analyze 

the lifetime behavior of said wood floor and roof systems, from initial load to failure. The 
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computer analysis itself is less applicable to the study of CFSWSPC than the method of 

accounting for partial composite action of the repetitive member system.  

 

Figure 3-3 Typical Wood System Layout, with permission of ASCE 

 

The Bulleit study determines system factors, Ψ, for load and resistance factor design 

(LRFD) and analyzes a number of system factors and how they affect the system factor, Ψ. The 

main system factor that applies is the effect of the sheathing and connectors. The values of the 

system factor vary so slightly for different thicknesses of sheathing, the sheathing thickness is 

found to not be a contributing factor to the variation of the system factor. The stiffness of the 

connectors does affect the system factor slightly, however this amount is so small compared to 

the stiffness itself that it is found to be insignificant.  

 

The consequences of these determinations are important to the study of CFSWSPC 

because only one thickness of sheathing per thickness of cold-formed steel and one type of 

connector used in both the Bulleit study and the current study of CFSWSPC. Based on this the 

slip modulus determined shall be valid no matter the thickness of sheathing used or the rigidity 

of the connector. 

 

 The article, Partial Factor Approach to Repetitive-Member System Factors by David 

Rosowsky and G. Yu (2004), outlines the current procedures outlined in the National Design 

Specification (NDS) for designing a repetitive-member system. According to Rosowsky, within 

the NDS the repetitive use factor of 1.15 accounts for load-sharing as well as partial composite T 

or I-beam action within a repetitive-member system.  
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While it is appropriate for the repetitive member factor to be applied to increase the 

allowable bending stress of dimensional lumber, the current repetitive member factor is based 

only on simple statistical model. The statistical model is based on the increase of load-carrying 

capacity and stiffness when multiple joists are attached together by a transverse load distributing 

element, such as plywood sheathing. Further study and testing needs to be completed to more 

fully comprehend the partial composite action of the joist and sheathing system. Part of the 

analysis of the system requires the calculation of a Partial Composite Action Factor (PCA 

Factor). The PCA factor as defined by Rosowsky is merely a ratio of the maximum stress in the 

timber joist by itself to the maximum stress in the partial composite section of the effective t-

beam created by the joist and sheathing. The PCA Factor is defined as shown in Equation 3-5. 

 

Equation 3-5 Partial Composite Factor 

     
      

                       
 

 

Where:  

 KPCA = partial composite factor 

 E = modulus of elasticity (psi) 

 I = moment of inertia (in
4
) 

 h = distance from the centroid of the member to the sheathing (in)  

 hs = height of the stud (in) 

 

Cold-Formed Steel Wood Structural Panel Composite 

In Repetitive Member Factor Study for Cold-Formed Steel Framing Systems, Scott 

Clayton (2010) outlines the characteristics of a Repetitive Member Assembly of Cold form steel 

framing system. While Clayton’s report focuses on the repetitive member factor and its use with 

cold-formed steel, he also outlines the composite behavior present in CFSWSPC systems and 

compares CFSWSPC to TTCS.  
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In order for Clayton to determine the repetitive member factor, the composite factor must 

be determined. It was assumed that the screw connection between the cold-formed steel stud and 

the sheathing provided full composite action. This assumption allows the transformed area 

method to be used to calculate the member strength, much like when calculating the strength of a 

reinforced concrete beam.  

 

In the study by Clayton, it was also assumed that the full flange width of the effective t-

beam was able to be utilized and that the steel stud was solid, with no holes punched in the web. 

The full flange width was taken conservatively at 16 inches in order to limit the flange width, 

and thus its strength. An illustration of the effective t-beam is shown in Figure 3-4. Conversely, 

the assumption that the web of the cold-formed steel member is solid is not conservative, 

however the effect of holes punched in the web is negligible in bending. 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 Composite Section of Clayton CFS Stud and Wood Structural Panel 

 

The transformed area method was used to determine the composite action effects by 

Clayton. The area of the sheathing is transformed to an equivalent area of cold-formed steel 

using a ratio of the moduli of elasticity. The transformed area method is used so that the 

composite t-beam can be analyzed as if it is one material. The neutral axis is calculated, and then 

used to determine the maximum moment of the composite section. The composite factor is the 

ratio of the maximum moment of the composite section to that of the non-composite member. 

 

16” 

SCREW ATTACHMENT 

WOOD STRUCTURAL 

PANEL 

COLD-FORMED STEEL 

STUD 
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The composite factor is determined by Clayton to be 1.27 when using 6” deep, 1.625” 

wide, 33mil cold-formed steel members attached to ½” OSB sheathing with a 24/0 span rating 

with #8 steel screws. This means that 27% of additional strength is due to the composite action in 

the member. While calculations were done to ensure that the screws were able to transfer the 

maximum shear force in the member, it has been shown in TTCS that full composite action is not 

plausible in reality. It is reasonable to assume that this is also the case for CFSWSPC. While the 

screws may be able to transfer the full shear force, they may also slip. In order to adjust the 

composite factor for the reality that full composite action does not take place, the slip modulus of 

CFSWSPC must be determined.  

 

Matsen Ford Design Associates conducted a preliminary test to find the slip modulus of 

CFSWSPC, The Study of Slip Modulus for Cold Form Steel-Timber Composite Floor Structures 

(Chan, et al., 2009). The purpose of the investigation was to determine the slip modulus so that 

design for floor vibration when using CFSWSPC could be more accurate.  

 

The Matsen Ford Design Associates study investigated a variety of different connection 

types and connection spacing. The two connection types examined were mechanical connectors 

and mechanical connectors with glue. The three different connector spacings evaluated were a 

single connector, two connectors with 6” spacing, and two connectors with 12” spacing. 

Materials for each test, including joist, plywood, and connector information are given in  

Table 3-1. 
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Table 3-1 Tables of Materials for TTCS and CFSWSPC 

Materials for Tests (2x4 Joist/Plywood) 

Materials Description 

Joist 1 1/2” x 3 1/2” 

Plywood 3/4” thick 

Nails 25 mm dia. ardox spiral 

Glue LePage PL400 subfloor & deck adhesive 

 

Materials for Tests (Cold Formed C-Joist/Plywood) 

Materials Description 

Plywood 3/4” thick 

Cold Formed C-Joist Back-to-back cold-formed c-joist 

Screws Self-drilling screw, square socket 

Wafer head, TEKS style 3 

#10 – 24 x 1 1/4”, 0.470” head 

23/32” thread length 

Glue LePage PL400 subfloor & deck adhesive 

 

Two series of tests were conducted in “The Slip Modulus of Cold Formed Steel-Timber 

Composite Floor Structures.” The first series was conducted with timber-timber composite 

structures. Using timber joist members and plywood sheathing, this test series was conducted in 

order to validate the lab procedure and ensure the values produced were similar to those already 

being used. The second test was using CFSWSPC. Using cold-formed steel joists and plywood 

sheathing, this test series was conducted to determine a slip modulus to be used for the design of 

floor vibration. 

 

Matsen Ford Design Associates used the pull out test was used to determine the slip 

modulus. The materials were set up such that the slip condition of the joist and plywood would 

be simulated at the interface of the two composite materials. The joist material was connected to 

the plywood using the given number of fasteners and glue, depending upon the test set. The set-

up of the TTCS is shown in Figure 3-5 and the set-up of the CFSWSPC is shown in Figure 3-6. 
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Figure 3-5 TTCS Test Set-up 

 

In the Matsen Ford Design Associates study the TTCS specimen was fabricated by 

nailing 3/4” plywood with at 2x4 joist. For the nailed type connection, 25mm diameter nails 

were simply hammered in. For the nailed and glue type connection, a 1/4” bead of glue was 

applied to the surface of the plywood and joist and held in place and allowed to dry for three 

days prior to testing.  

 

3” 

3” 

6” 

17” 

1 1/2” 

7” 

3/4” PLYWOOD, 4” WIDE 

0.10” DIA. ARDOX SPIRAL 

NAILS, 2” LONG 

1 1/2” X 3 1/2” SPRUCE 

¼” STEEL PLATE, 2” WIDE 

¼” STEEL PLATE, 2” WIDE 

HOLES TO ATTACH 

TRANSDUCER 



18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6 CFSWSPC Test Set-up 

 

The CFSWSPC specimen in the Matsen Ford Design Associates study was fabricated by 

drilling screws through the 3/4” plywood into cold-formed c-joists. Self-tapping screws, #10 

size, with square sockets and a 0.47” diameter were screwed in using an electric drill. For the 

screwed type connection, only the screws were applied. For the screw and glue type connection, 

a 1/4” bead of glue was applied to the surface of the 3/4” plywood and 5/8” cold-formed steel 
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joist (MC460) and allowed to dry for three days before testing. The materials for each test series 

are shown in Table 3-1.  

 

 In the Matsen Ford Design Associates study the load was applied in accordance with 

ISO 6891, as shown in Figure 3-7 (from concrete-timber composite section). The load was 

applied at a constant rate of motion of 1.0 mm/min (0.0394 in/min). The test procedure was also 

based on ISO 6891 as well as ASTM D 1761 and was conducted as follows:  

 

Step 1) Conduct a preliminary test to determine *Pmax 

*Pmax is defined as the load corresponding to the failure of the specimen or a 15 mm slip 

Step 2) Estimate *Pest based on Pmax 

*Pest is the estimated failure load based on Pmax obtained from the preliminary test 

Step 3) Apply load according to ISO 6891 until failure (load application curve shown in 

Figure 3-7) 

i) Apply load until it reaches 0.4xPest 

ii) Maintain load for 30 s 

iii) Relieve load from 0.4xPest to 0.1xPest 

iv) Maintain load for 30 s 

v) Increase load to 70% Pest 

vi) Increase load until failure 

Step 4) Compare Pmax and Pest 

If the difference between Pmax and Pest is less than 20%, go to step 6. Otherwise, Step 5 

Step 5) Re-estimate Pest and redo Step 3 to 4 

Step 6) Plot the load and deformation curve 

Step 7) Determine the slip modulus 

Step 8) Compare the slip modulus with the value established in the ATC Vibration 

Design Guide to validate the experimental setup and approach 
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Figure 3-7 Load Application Curve 

 

 The slip was measured using a transducer during testing by Matsen Ford Design 

Associates. The transducer was attached to the side of the test specimen such that the 

measurement did not account for deformation of the individual materials themselves. As the test 

progressed, the slip was continuously measured. 

 

 The slip modulus was calculated by Matsen Ford Design Associates as the quotient of the 

load at 40% of the estimated ultimate load and the accompanying slip, as given in Equation 3-6. 

This value is then normalized in order to determine a value able to be compared to the ATC 

Design guide. The value is normalized by dividing the previous value by the total length of the 

specimen and the number of screws installed, as shown in Equation 3-7. 

 

Equation 3-6 Slip Modulus 
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Equation 3-7 Normalized Slip Modulus 

   
 
     

    
 

  
 

 

 Where: 

  K = slip modulus (lb/in) 

  KN = normalized slip modulus (lb/in/in) 

  Pu = ultimate load (lb) 

  v0.4 = measured slip at 40% of Pu (in) 

n = number of screws  

  s = spacing of screws (in) 

 

The results of the test by Matsen Ford Design Associates produced two design values for 

CFSWSPC, using the lower bounds of each of the connection types. The design value of the slip 

modulus using only screw connection is 650 lb/in/in. The design value of the slip modulus using 

screw and glue connection is 1100 lb/in/in. 

 

The sample size of the Matsen Ford Design Associates study was three samples per 

connection type per test series. Due to the small sample size, irregularities from the materials or 

the fabrication may significantly alter the data and conclusions of the study. Further investigation 

is needed in order to validate the values calculated for the slip modulus of CFSWSPC.  
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Test Plan and Procedure Chapter 4 - 

 Test Plan 

The study of the slip modulus of CFSWSPC was comprised of four test series. All series 

were using cold-formed steel joists with plywood sheathing and two screws, spaced at 12”, on 

each side of the member. Table 4-1 shows the different combinations of materials for each 

CFSWSPC test series. 43 mil cold-formed steel studs were not available at the time of this study. 

 

Table 4-1 Test Series 

Series Test Combinations   

 Steel Thickness Plywood Thickness Screw Size 

T1 33 mil (20ga) 1/2” #10 

T2 54 mil (16ga) 1/2” #10 

T3 68 mil (14ga) 1/2” #10 

T4 97 mil (12ga) 23/32” #10 

 

The CFSWSPC was tested using variation in the cold-formed steel thickness and 

plywood thickness; however the connection type and spacing remained constant. Materials for 

the tests can be found in Table 4-2. The connection method and spacing chosen to test is based 

upon “The Study of Slip Modulus for Cold Form Steel – Timber Composite Floor Structures 

(Chan, 2009).” 12 inch screw spacing is the normal spacing used for roof, floor and wall 

sheathing for members not located at a sheathing panel joint. Thus, to imitate most typical 

construction methods this test is limited to the use of two connectors with 12” spacing. 
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Table 4-2 Materials for Tests 

Materials Description 

Cold Formed C-Joist 33 mil, 43 mil, 54 mil, 97 mil 

Plywood 23/32”, 1/2” thick 

Screws #10 self-drilling, self-tapping 

TEKS 5, 1 7/16”, Phillips Flat 

Head 

 

 

The plywood thickness was changed for test T4 four to imitate typical construction 

practices. While it is still possible that a design for a roof rafter or load bearing wall that calls for 

1/2” plywood to be attached to 97 mil cold-formed steel, it is more likely that the plywood 

thickness would be increased. Each test series was run a minimum of three times to obtain 

significant data. Materials for Experiment are given in Table 4-2. 

 

 Apparatus 

Pull out tests were used to determine the slip modulus of CFSWSPC. The apparatus used for the 

test are shown in Table 4-3 and Figures 4-1 through 4-4. 

 

Table 4-3 Test Apparatus 

Apparatus Description 

MTS Machine  Machine can apply loads up to 55 kips. It 

operates at either a constant stroke or 

constant force and has an accuracy of +/- 1% 

when calibrated. Last calibrated 3-21-11. See 

Figure 4-1 

Loading plate 1.25” steel plate to distribute the load evenly 

to the cross section of the specimen from the 

MTS Machine. See Figure 4-2 

Screws with washers and 

angle plate 

Fabricated to aid in the measurement of slip 

such that they did not affect the material 

performance. See Figure 4-3 

Transducer  Schaevitz DC-EC 2000 LVDT. The 

transducer measures the slip between the 

cold formed steel and plywood during the 

test. It has a sensitivity of 0.001”. See Figure 

4-4 
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Figure 4-1 MTS Testing Machine 

 

 

Figure 4-2 Loading Plate 
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Figure 4-3 Screws with Washers and Angle Plate 

 

 

Figure 4-4 Transducer 
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 Experimental Procedure 

The plywood is typically produced in four foot by eight foot sheets, thus the first step of 

the procedure was to cut the plywood into six inch by twenty four inch pieces. The steel also was 

cut into two foot sections. The components are measured and marked for assembly. Specimens 

are assembled using two pieces of plywood and one steel section. Two self-screwing, self-

tapping screws are used to attach each piece of plywood to each side of the steel member, as 

shown in Figure 4-5. The transducer must be attached to the steel and the plywood, so a small 

hole is drilled in the steel for the insertion of a bolt and a small angle iron is attached using a 

small screw to the plywood. All screws are installed using a hand held drill.  

 

                    

Figure 4-5 Test Specimen Set-up 

 

Before beginning a test the transducer must be set to zero and the MTS machine must be 

adjusted such that the specimen is secured but not loaded on the machine. This ensures that the 
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slip reading has a reference value of zero rather than an alternate number and allows for easy 

measurements during the loading phase. The specimen is then loaded using a constant 

displacement of 0.0394 in/min (1 mm/min). 

 

 For each series one initial specimen is loaded to failure to determine the ultimate load for 

the rest of the test series. This test procedure was based on ISO 6891 and ASTM D1761. The 

procedure is as follows: 

 

1) Conduct a preliminary test to determine the ultimate load in order to set up the 

proceeding tests. The ultimate load, Pu, is defined as the load corresponding to 

specimen failure or 15mm of slip. 

2) Estimate the load at which failure will occur in the future specimens, Pest, based upon 

the ultimate load, Pu 

3) Apply load according to ISO 6891 as follows: 

i. Apply load until it reaches 0.4*Pest 

ii. Maintain load for 30 seconds 

iii. Relieve load from 0.4*Pest to 0.1*Pest 

iv. Maintain load for 30 seconds 

v. Increase load to 0.7*Pest 

vi. Increase load until failure 

4) Compare the ultimate load, Pu, to the estimated load, Pest. The ultimate load is the 

load at which failure occurs. Failure may occur by a number of different mechanisms, 

however screw shear and screw tilting were the only two observed in this study. 

Screw tilting failure is determined to be at a tilting or slip value of 15mm or 0.591in. 

If the difference between Pu and Pest is more than 20%, the test must be thrown out 

and a new specimen must be tested. If the difference is less than 20% continue to step 

5.  

5) Plot the load and displacement curve 

6) Determine the slip modulus 
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The use of 15mm as a benchmark for tilting failure of the specimen was used previously 

by Chan, et al (2009) in the preliminary study to determine the slip modulus of CFSWSPC and 

governed by ISO 6891. This value seems reasonable, for if even half an inch of slip occurs in a 

composite member, the deflection will cause much greater stresses on nearby elements within the 

structure. 

 

The load curve as described in step 3 above is shown in Figure 4-6. In Figure 4-6: step 3i 

is shown from time 0 to 2, step 3ii is shown from time 2 to 3, step 3iii is shown from time 3 to 

4.5, step 3iv is shown from time 4.5 to 5.5, step 3v and 3vi are continuous and shown from time 

5.5 to 10. 

 

 

Figure 4-6 Loading Curve 

  

Slip Measurement 

A transducer (see Table 4-3) was attached to the side of each specimen in order to 

measure the slip between the two materials. Slip was measured through the entirety of the test, 

from when the initial load was applied through failure. Mechanisms of failure were either screw 
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shear or screw tilting. The failure mechanism for each specimen is shown in Table 5-1. Data was 

recorded every 0.001 inches of slip. 
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 Test Results Chapter 5 - 

 Test Data 

The data collected has been compiled for use in Table 5-1. Figures 5-1 through 5-4 show 

the load vs. displacement curve of each specimen, grouped by test series. 

 

Table 5-1 Test Results 

 

 

Test 

Series

Steel 

Gauge

Plywood 

Thickness

Specimen 

Code

Maximum 

Force 

Maximum 

Slip 40% Pu

Slip at 40% 

Pu Failure Mechanism

ga (mil) in lb in lb in

20 (33) 1/2" 20A 1986 0.4625 845 0.1290 Screw Tilting

20 (33) 1/2" 20B 2052 0.6006 845 0.0816 Screw Tilting

20 (33) 1/2" 20C 1708 0.6055 845 0.1010 Screw Tilting

16 (54) 1/2" 16A 2488 0.6019 1084 0.0352 Screw Tilting

16 (54) 1/2" 16B 2657 0.5099 1084 0.0383 Screw Tilting

16 (54) 1/2" 16C 2570 0.6006 1084 0.0259 Screw Tilting

14 (68) 1/2" 14A 2483 0.6051 1127 0.0808 Screw Tilting

14 (68) 1/2" 14B 2865 0.6039 1127 0.0464 Screw Tilting

14 (68) 1/2" 14C 2971 0.6046 1127 0.0361 Screw Tilting

12 (97) 23/32" 12A 3393 0.2110 1354 0.0322 Screw Shear

12 (97) 23/32" 12B 3936 0.3979 1354 0.0324 Screw Shear

12 (97) 23/32" 12C 3294 0.8922 1354 0.0463 Screw Shear

4

1

2

3
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Figure 5-1 Test Series 1 Force vs. Displacement 

 

Figure 5-2 Test Series 2 Force vs. Displacement 
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Figure 5-3 Test Series 3 Force vs. Displacement 

 

Figure 5-4 Test Series 4 Force vs. Displacement 
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Conclusion Chapter 6 - 

 Discussion of Results 

The maximum load for each specimen generally increased as the thickness of the cold-

formed steel joists increased. The maximum slip also generally increased with exceptions in the 

97 mil steel tests (test series 4). This is likely due to the brittle and sudden nature of the screw 

shear failure that took place for test series 4. Test series 1, 2 and 3 had screw tilting failure 

mechanisms, and thus were slower, more predictable failures. 

 

The sharp decline at the end of each of the force vs. displacement curves of the 97 mil 

specimens in Figure 5-4 is due to the failure mechanism of screw shear. The failure was so rapid 

that the testing apparatus was still taking data during the failure and after the composite materials 

had likely collapsed. The remaining tests shown in Figures 5-1 through 5-3 all had much less 

sudden curves, thus indicating the slow, predictable failure as mentioned previously. 

 

The most common mode of failure was screw tilting. This occurred either when the 

screws were no longer effective in attaching the plywood and the steel or when the slip between 

the two materials was measured by the transducer as 15mm. Figures 6-1 and 6-2 show screw 

tilting failures. Figure 6-1 shows that all four screws connecting the plywood to the cold-formed 

steel are rotated due to the load; in this case the specimen was considered failed because the slip 

had reached 15mm. Figure 6-2 gives an up close look at the angle of the screw. Note that the 

screws were originally installed at a 90 degree angle to the face of the plywood. 
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Figure 6-1 Screw Tilting Failures 

  

 

Figure 6-2 Screw Tilting Failure, Close Up 



35 

 

 

The mode of failure for each specimen in test series T4 was screw shear. The change in 

the mechanism of failure can likely be attributed to the greater thickness of plywood and cold-

formed steel. The materials were able to prevent the screws from tilting as they did in the series 

T1 through T3 tests, and thus the screw ultimately failed in shear. Figure 6-3 shows the inside of 

the plywood, where a cold formed steel joist was attached, prior to screw shear failure. This 

shows the screw bearing deformation of the plywood, and while some deformation was present, 

the amount of tilting was extremely small compared with that of the tilting failures shown in 

Figures 6-1 and 6-2. Figure 6-4 shows the opposite side of the cold-formed steel stud. The stud 

shown was previously attached to the plywood shown in Figure 6-3 and shows the screw still in 

the cold-formed steel stud on the opposite half of the screw shear failure. 

 

 

Figure 6-3 Screw Shear Failure 
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Figure 6-4 Screw Shear Failure 

 

The results found in this study appear reasonable, in comparison with the previous 

preliminary study by Matsen Ford Design Associates. This study expanded the scope of research 

to multiple thicknesses of cold-formed steel studs, and thus some variation was expected in 

comparison to the preliminary study’s results.  

 

 Implications for Practice 

In order for the slip modulus to be useful, it must be shown that effective bending 

stiffness of the CFSWSPC is greater than the bending stiffness of the cold-formed steel joist 

alone. In order to calculate the effective bending stiffness of the composite material, the 

normalized slip modulus and the shear bond coefficient must be calculated for each test series. 

Calculations of these values are to follow. 

 

The slip modulus was calculated for each test specimen. The slip modulus is equal to the 

quotient of forty percent of the ultimate load and the corresponding amount of slip at that load, as 

shown in Equation 6-1. The slip modulus then must be normalized. A normalized slip modulus 

will reflect the composite action for one screw connection, per inch of sheathing, as shown in 

Equation 6-2. In order to normalize the slip modulus the original value must be divided by both 
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the number of connections per specimen and the vertical spacing between the screws, in this case 

12 inches. Table 6-1 shows the values for the slip modulus and normalized slip modulus for each 

specimen. 

 

Equation 6-1 Slip Modulus 

  
     

    
 

 

Equation 6-2 Normalized Slip Modulus 

   
 
     

    
 

  
 

 Where: 

  K= slip modulus (lb/in) 

  KN = normalized slip modulus (lb/in/in) 

  Pu = ultimate load (lb) 

  v0.4 = measured slip at 40% of Pu (in) 

n = number of screws  

   s = spacing of screws (in)  

 

 



38 

 

Table 6-1 Slip Modulus Calculations 

 

 

When examining the slip modulus values in Table 6-1, Test 14A appears inconsistent 

with the other values within test series 3. Test 14A also appears inconsistent with trend that as 

the thickness of the cold-formed steel increases, the slip modulus increases. While the value of 

the maximum load was still within the required 20% of the estimated ultimate load, this test will 

be thrown out because of the high variation. During testing the specimen seemed to perform 

similarly to the other two within the series; however more slip occurred early within the test than 

in tests 14B and 14C. The large amount of slip that was present when 40% of the ultimate load 

was applied is the cause for the smaller normalized slip modulus value. 

 

The value of the slip modulus affects the extent to which full composite action is 

designed for. A higher slip modulus results in a larger composite factor, and thus allows for more 

composite action to be designed for.  

 

 Recommendations 

The statistics for the normalized slip modulus are shown in Table 6-2, using a 95%, two 

tailed probability. 

Test 

Series

Specimen 

Code

Slip 

Modulus

Normalized 

Slip 

Modulus

lb/in lb/in/in

20A 6549 136.4

20B 10353 215.7

20C 8364 174.3

16A 30809 641.9

16B 28315 589.9

16C 41871 872.3

14A 13944 290.5

14B 24283 505.9

14C 31211 650.2

12A 42046 876.0

12B 41787 870.6

12C 29242 609.2

2

1

3

4
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Table 6-2 Normalized Slip Modulus Statistical Data 

Test Series Standard 

Deviation, σ 

Mean Median Confidence 

Interval 

Coefficient 

of Variation 

1 32.38 175.4 174.3 137 – 214 0.185 

2 122.7 701.4 641.9 557 – 846 0.175 

3 147.8 482.2 505.9 307 – 657  0.307 

4 124.5 785.3 870.6 638 – 932  .159 

 

 

From these tests with #10 screws spaced at 12” on center, the following nominal slip 

modulus values are recommended: 

 140 lb/in/in for 33 mil cold-formed steel with 1/2" plywood sheathing 

 560 lb/in/in for 54 mil cold-formed steel with 1/2” plywood sheathing 

 640 lb/in/in for 97 mil cold-formed steel with 23/32” plywood sheathing 

 

These recommended values are based on the lower bound of the 95%, two tailed 

probability confidence intervals. The confidence interval is the range of values with which 95% 

of tests will fit into. The values recommended are nominal values and will need a safety factor 

applied for design applications. 

 

640 lb/in/in is the recommended slip modulus for the 97 mil test series and 560 lb/in/in is 

the recommended slip modulus for the 54 mil test series, rather than 650 lb/in/in as previously 

recommended in the Matsen Ford Design Associates study due to slightly lower results. The 

results for the 33 mil test series were significantly lower than those recommended in “The Study 

of Slip Modulus for Cold Formed Steel-Timber Composite Floor Structures (Chan et al., 2009).” 

 

In order to provide accurate recommendations for test series 3, further study is 

recommended. Using a 95% two-tailed probability the confidence interval is 307 to 657 and the 

coefficient of variation is twice as large as the other tests; this appears to be unreliable and no 

recommendation will be given. Due to the small number of samples and high variation in the test 
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data, a high standard deviation was recorded in the calculation of the slip modulus, and thus a 

lack of reliability of the values present. 

 

Based on these recommended values for the slip modulus, some calculations must be 

completed in order to prove that the use of the slip modulus is warranted in design. If the 

effective bending stiffness of the CFSWSPC is significantly greater than that of the cold-formed 

steel joist alone, such that it will make a difference in design, it will be warranted to use the slip 

modulus to increase the available strength in design. 

 

The shear bond coefficient is used to determine the effective bending stiffness of the 

composite material. The effective bending stiffness will show the relative amount of stiffness 

increase from the composite action of the CFSWSPC compared to the stiffness of the cold-

formed steel joist alone. The value of the shear bond coefficient relates the amount of shear force 

able to be transferred through the connection. The shear bond coefficient is dependent upon the 

slip modulus, determined from individual tests, the length of the member, the modulus of 

elasticity of the sheathing, the area of the sheathing and the spacing of the connectors, as shown 

in Equation 6-3. Values of the shear bond coefficient are shown in Tables 6-3, 6-4 and 6-5. 

 

Equation 6-3 Shear Bond Coefficient 

  
 

  
       

   

 

 

  Where: 

   γ = shear bond coefficient 

   s = spacing of connectors (in) 

   ES = Modulus of Elasticity of sheathing (psi) 

   AS = Area of sheathing (in
2
) 

   K = slip modulus (lb/in) 

   L = length of member (in) 
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Table 6-3 Test Series 1 Shear Bond Coefficient 

 

 

Table 6-4 Test Series 2 Shear Bond Coefficient 

 

 

Table 6-5 Test Series 4 Shear Bond Coefficient 

 

 

The shear bond coefficient is used to determine the effective stiffness of the composite. 

This takes into account both the axial stiffness and bending stiffness of each of the materials that 

the composite is composed of, the shear bond coefficient, and the size of each of the composite 

components through the distance between the centroid of each individual member and the overall 

Reference

K= 140 lb/in/in

s= 12 in

EsAs= 5533333 lb (NDS 2005, Table M9.2-2)

L= 120 in

γ= 0.003

Test Series 1

Shear Bond Coefficient

Reference

K= 560 lb/in/in

s= 12 in

EsAs= 5533333 lb (NDS 2005, Table M9.2-2)

L= 120 in

γ= 0.012

Test Series 2

Shear Bond Coefficient

Reference

K= 640 lb/in/in

s= 12 in

EsAs= 7800000 lb (NDS 2005, Table M9.2-2)

L= 120 in

γ= 0.010

Test Series 4

Shear Bond Coefficient
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composite centroid. If the shear bond coefficient increases the effective stiffness of the 

composite also increases.  

 

The effective stiffness is calculated using Equation 6-4. Ultimately, the effective stiffness 

is the measure of whether there is a benefit to considering the composite action of CFSWSPC. 

Tables 6-6, 6-7 and 6-8 show the calculations for effective stiffness for each test series.  

 

Equation 6-4 Effective Stiffness 

                    
             

  

 

 Where: 

  (EI)eff = effective stiffness of composite (lb*in
2
) 

  ESIS = bending stiffness of sheathing (lb*in
2
) 

  γ = shear bond coefficient 

  ESAS = axial stiffness of sheathing (lb) 

  a1 = distance between sheathing centroid and CFSWSPC centroid (in) 

  EJIJ = bending stiffness of joist (lb*in
2
) 

  EJAJ = axial stiffness of joist (lb) 

  a2 = distance between joist centroid and CFSWSPC centroid (in) 

 

Table 6-6 Test Series 1 Effective Stiffness 

 

Reference

EsIs= 166666.7 lb*in2
(NDS 2005, Table M9.2-2)

γ= 0.003067

EsAs= 5533333 lb (NDS 2005, Table M9.2-2)

a1= 1.44802 in

EJIJ= 51910000 lb*in2
(AISI CFS Design Manual 2008)

EJAJ= 9976000 lb (AISI CFS Design Manual 2008)

a2= 1.80198 in

(EI)eff 8.45E+07 lb*in2

*Assuming 16" spacing of joists

Test Series 1

Effective Stiffness
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Table 6-7 Test Series 2 Effective Stiffness 

 

 

Table 6-8 Test Series 4 Effective Stiffness 

 

 

The effective bending stiffness of the composite member compared to the bending 

stiffness of the cold-formed steel member alone (EJIJ) is notably larger. For example, for test 

series 4, the effective stiffness of the cold-formed steel member alone is only 1.39x10
8 

lb*in
2
, 

while the composite CFSWSPC is much higher at 2.21x10
8
 lb*in

2
. The bending stiffness of the 

CFSWSPC is 1.59 times greater than the individual cold-formed steel member alone. The 

Reference

EsIs= 166666.7 lb*in2
(NDS 2005, Table M9.2-2)

γ= 0.012155

EsAs= 5533333 lb (NDS 2005, Table M9.2-2)

a1= 1.835774 in

EJIJ= 82940000 lb*in2
(AISI CFS Design Manual 2008)

EJAJ= 16124000 lb (AISI CFS Design Manual 2008)

a2= 1.414226 in

(EI)eff 1.16E+08 lb*in2

*Assuming 16" spacing of joists

Test Series 2

Effective Stiffness

Reference

EsIs= 166666.7 lb*in2
(NDS 2005, Table M9.2-2)

γ= 0.009878

EsAs= 5533333 lb (NDS 2005, Table M9.2-2)

a1= 1.542179 in

EJIJ= 1.39E+08 lb*in2
(AISI CFS Design Manual 2008)

EJAJ= 28014000 lb (AISI CFS Design Manual 2008)

a2= 1.707821 in

(EI)eff 2.21E+08 lb*in2

*Assuming 16" spacing of joists

Test Series 4

Effective Stiffness
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bending stiffness of the cold-formed steel member is currently all that is used in design. It can be 

seen then that CFSWSPC systems are much more economical than a design based on the CFS 

member alone. 

 

 Conclusion 

Recommended values for the slip modulus are 140 lb/in/in for 33 mil cold-formed steel, 

560 lb/in/in for 54 mil cold-formed steel and 640 lb/in/in for 97 mil cold-formed steel.  

 

The bending stiffness is increased by an average factor of 1.54 when comparing the 

composite member to the cold-formed steel member alone. This is a significant increase and 

warrants the values of the slip modulus to be used to increase the strength of the system in 

bending. While full composite action is not present, the values of the slip moduli indicates that 

shear forces are transferred through the connection and thus the partial composite action is 

significant. Through these tests and in conjunction with the previous study conducted by Matsen 

Ford Design Associates, it is clear that it is appropriate to use the composite action to improve 

the accuracy of the design of CFSWSPC.  

 

 Limitations 

The limitations of this study are as follows.  

 Each of the materials was only supplied from one source. While all the materials 

are standardized, it is possible that a difference of storage conditions at each of 

the sources could affect the results.  

 This study’s intent was only to check strength parameters. The effects of 

vibrations have not been taken into account. The effects of vibrations could be 

critical in floor systems, especially if they are made lighter due to the increase in 

strength available for the CFSWSPC.  

 This thesis only used one loading rate to determine the slip modulus. Different 

rates of loading may yield different results.  

 Only one screw spacing (12”) was tested. Further tests using smaller spacing may 

yield higher slip modulus values. 
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 The number of tests per test series was small. In order to narrow the confidence 

interval, more tests must be performed. A more narrow confidence interval would 

likely increase the lower bound and allow for a larger slip modulus value to be 

recommended.  

 

 Recommendations for Further Research 

Further study should be conducted to support the values that have been recommended for 

the slip modulus. Additionally, expanding the variables of similar experiments to determine their 

effects on the slip modulus is suggested. Other possible variables to study further include, but are 

not limited to, sheathing thickness, cold-formed steel thickness, loading rate, screw type, screw 

size, screw spacing. Ultimately, further study would confirm a method for determining the slip 

modulus of a given CFSWSPC construction type. 

 

Further study should also include developing a method for determining the effective 

flange width of the t-beam that is assumed in CFSWSPC. Currently, the entire flange width is 

used, but this assumption needs to be verified. 

 

Based upon slip modulus values, a composite factor must be developed for design. The 

composite factor will allow for standardization in design and an increase of available strength in 

cold-formed steel wood structural panel systems. Increasing this strength of the system will 

allow the weight of the system to decrease, which may cause vibration issues for floor system 

design. Analysis of the vibration of the lighter weight floor system should be conducted.  
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