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Abstract 

Since their commercial introduction in 2005, DNA sequencing technologies have become 

widely available and are now cost-effective tools for determining the genetic characteristics of 

organisms. While the biomedical applications of DNA sequencing are apparent, these 

technologies have been applied to many other research areas. One such area is community 

ecology, in which DNA sequence data are used to identify the presence and abundance of 

microscopic organisms that inhabit an environment. This is currently an active area of research, 

since it is generally believed that a change in the composition of microscopic species in a 

geographic area may signal a change in the overall health of the environment. 

An overview of  DNA pyrosequencing, as implemented by the Roche/Life Science 454 

platform, is presented and aspects of the process that can introduce variability in data are 

identified.  Four ecological data sets that were generated by the 454 platform are used for 

illustration.  Characteristics of these data include high dimensionality, a large proportion of zeros 

(usually in excess of 90%), and nonzero values that are strongly right-skewed.  

A nonparametric method to standardize these data is presented and effects of 

standardization on outliers and skewness are examined.  Traditional statistical methods for 

analyzing macroscopic species abundance data are discussed, and the applicability of these 

methods to microscopic species data is examined.  One objective that receives focus is the 

classification of microscopic species as either rare or common species.  This is an important 

distinction since there is much evidence to suggest that the biological and environmental 

mechanisms that govern common species are distinctly different than the mechanisms that 

govern rare species. This indicates that the abundance patterns for common and rare species may 

follow different probability models, and the suitability of the Pareto distribution for rare species 

is examined. Techniques for classifying macroscopic species are shown to be ill-suited for 

microscopic species, and an alternative technique is presented.  Recognizing that the structure of 

the data is similar to that of financial applications (such as insurance claims and the distribution 

of wealth), the Gini index and other statistics based on the Lorenz curve are explored as potential 

test statistics for distinguishing rare versus common species.  
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widely available and are now cost-effective tools for determining the genetic characteristics of 
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technologies have been applied to many other research areas. One such area is community 

ecology, in which DNA sequence data are used to identify the presence and abundance of 

microscopic organisms that inhabit an environment. This is currently an active area of research, 

since it is generally believed that a change in the composition of microscopic species in a 

geographic area may signal a change in the overall health of the environment. 

An overview of  DNA pyrosequencing, as implemented by the Roche/Life Science 454 

platform, is presented and aspects of the process that can introduce variability in data are 

identified.  Four ecological data sets that were generated by the 454 platform are used for 

illustration.  Characteristics of these data include high dimensionality, a large proportion of zeros 

(usually in excess of 90%), and nonzero values that are strongly right-skewed.  

A nonparametric method to standardize these data is presented and effects of 

standardization on outliers and skewness are examined.  Traditional statistical methods for 

analyzing macroscopic species abundance data are discussed, and the applicability of these 

methods to microscopic species data are? examined.  One objective that receives focus is the 

classification of microscopic species as either rare or common species.  This is an important 

distinction since there is much evidence to suggest that the biological and environmental 

mechanisms that govern common species are distinctly different than the mechanisms that 

govern rare species. This indicates that the abundance patterns for common and rare species may 

follow different probability models, and the suitability of the Pareto distribution for rare species 

is examined. Techniques for classifying macroscopic species are shown to be ill-suited for 

microscopic species, and an alternative technique is presented.  Recognizing that the structure of 

the data is similar to that of financial applications (such as insurance claims and the distribution 

of wealth), the Gini index and other statistics based on the Lorenz curve are explored as potential 

test statistics for distinguishing rare versus common species.  
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Chapter 1. Introduction 

1.1. Background of the Application 
This research involves statistical methods development for the analysis of data from 

pyrosequencing technology. This technology, described in more detail later, allows for the study 

of species composition at the microscopic level and is one of the new high-throughput 

technologies to emerge in recent years.  The research considered here is based on a premise that 

statistical methods development for pyrosequencing experiments will follow a similar path to 

those developed (and in progress) for other recent high-throughput technologies. One of these is 

the technology associated with high-throughput gene expression experiments using microarrays. 

Microarrays measure the expression of thousands of genes simultaneously and are used to 

determine which genes are activated by certain stimuli (i.e., treatment conditions). The earliest 

experiments had a single sample (microarray) in each of two treatment groups and the log-ratio 

of gene expression across the two treatments was used to determine a “fold change” (e.g., Lee et 

al., 1999). An arbitrary cut-off was used to determine “significant results” or those genes with 

expressions that were altered by the treatment. Little was known about the meaning of the 

expression levels, how much of it was noise or technical artifacts resulting from the new 

technology, and whether there was bias in measurements. Issues related to the design of such 

experiments, corrections for multiple testing in high-dimensional data, and software tools to 

process such data had not been considered.  In subsequent years, statisticians became involved 

and the number of publications with microarray and statistics as keywords grew substantially in 

the years after 2000. For example, the number of papers in Web of Science with ‘(Gene 

Expression OR Microarray) AND Statistics’ as keywords was 65 for the five years 1995 – 1999, 

321 for 2000 – 2004, and 938 for 2005 – 2009. The early statistics-related papers introduced the 

microarray technology from a statistical perspective and identified statistical challenges related 

to the new technology (e.g., Zhang, 1998). Other papers concerned correction for background 

noise, and others normalization of data to remove systematic sources of bias and variation 

introduced by the technologies (cf., Irizarry et al., 2003a). Many papers concerned experimental 

designs for microarray experiments (e.g. Simon and Dobbin, 2003), others sample size 

requirements (e.g., Gadbury et al., 2004), and many more the multiple testing problem where 

thousands of hypotheses are being tested simultaneously (e.g., Storey, 2002). Research is 
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ongoing and new microarray platforms introduce new issues to be considered in statistical 

analyses. 

The new area of pyrosequencing seems poised for methods development paralleling what 

happened with the emergence of microarrays though, as we will see, the statistical challenges are 

different, as are the applications that motivate pyrosequencing experiments. While true that 

pyrosequencing experiments have been designed, data collected and analyzed, and papers 

published, literature reviews suggest less evidence that statisticians have become engaged. This 

research thus represents a foray into this emerging field, and is intended to offer a beginning and 

to motivate follow-on research activity in this exciting and important area. 

To appreciate the motivating application and the nature of pyrosequencing experiments 

and data, this introduction concludes with a background of community ecology studies, 

pyrosequencing data, and then a subsection with more detail on pyrosequencing technology. 

Then, in Chapter 2, current methods of analyzing pyrosequencing data are reviewed, and some 

additional description of data provided.  Four ecological pyrosequence data sets are introduced in 

Chapter 3, and exploratory data analysis reveals the common structure of these types of data.  In 

Chapter 4, two new methodologies are presented, which comprise the central results of this 

research.  These are a nonparametric procedure to standardize the data and a new method for 

classifying common and rare species.  Chapter 5 concludes with a summary of the results of this 

research and outlines potential areas of future research. 

1.1.1. Community Ecology 
In the field of ecology, a community is a group of interacting species that inhabit a 

particular location at a particular time. Community ecologists study the collection of species in a 

community and investigate factors that affect the collection.  Comparing two or more 

communities could involve multiple locations, or could be the same location at different times.   

Factors that affect a community's structure may be related to the natural environment (e.g. 

prairie, forest) or they may be related to the species themselves (e.g. predators, prey).  In some 

cases, the factor of interest is time.  This would occur, for example, when the ecologist is 

studying the recovery of a habitat after a natural disaster such as a forest fire or volcanic 

eruption.   
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To describe communities, ecologists typically use measures such as species richness, 

species evenness, and diversity.  Species richness is simply the number of distinct species in a 

community.  Species evenness measures the equity of the abundances across the species. Species 

evenness is highest when all species in a community have the same abundance and approaches 

zero as a single species becomes more dominant.  Diversity is more complex, and incorporates 

both species richness and evenness.  There are different methods for calculating species richness, 

evenness and diversity.  These are described in Chapter 2.  

Customarily, community ecologists study a narrow group of species and/or environments. 

For example, Fischer et al. (2011) studied bird communities in agricultural landscapes and 

Magurran and Henderson (2003) examined a fish community across 21 years at a particular 

location in the United Kingdom. These studies involve macroscopic organisms, ones that can be 

visually observed and assigned to a particular taxonomic category (a species).  It is now 

recognized that species can be identified by their genetic material.  This allows community 

ecologists to examine microscopic species, such as fungi and bacteria, in order to obtain a more 

complete picture of community dynamics. 

1.1.2. Pyrosequencing 
Pyrosequencing is one method for interrogating the genetic material of an organism.  It 

can be used for two primary purposes:  to gain a complete picture of the genetic material of an 

organism (its genome) and to identify the subtle differences in genomes that make each 

individual unique. For example, the human genome project was completed in 2003 and, among 

other things, identified the precise chemical composition of human DNA (deoxyribonucleic acid) 

comprising the genome.  Subsequent interrogation of human DNA has identified variants 

responsible for specific human diseases.  According to the National Human Genome Research 

Institute in the National Institutes of Health (www.genome.gov/25521731), the genomes of many 

less complex organisms have also been mapped, including E. coli, baker's yeast, the roundworm, 

and the fruit fly.  Comparison of these genomes to the human genome provide insights into 

evolutionary history and aid in identifying the portions of the genome responsible for requisite 

biological functions of the organisms. 

Pyrosequencing can also be used to identify the taxonomic classification (e.g. species) of 

an organism.  Prior to DNA analysis, taxonomic classification relied on morphological features 
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such as shape, color, size and behavior.  Distinguishing between closely related species was 

problematic, since they could share the same morphology.  Examining the genomes of organisms 

provides a less ambiguous method of classification, and also allows the classification of 

microscopic organisms for which morphology is less precise. 

1.1.3. Nomenclature 
This research is motivated by ecological data sets generated via pyrosequencing.  In 

ecological applications, each analyte (for example, a soil core or a leaf) is called a sample.  Each 

analyte represents an ecological community, that is, a collection of interacting species at a 

particular location and time, so the analytes are also called sites or plots.  For the remainder of 

this document, the terms sample, site, plot and analyte are all synonymous.  Each sample is 

characterized by a vector of counts indicating the DNA sequences that were identified in the 

analyte. Some researchers use the term Operational Taxonomic Unit (OTU), while others use the 

term cluster.  These both refer to a (nearly) unique DNA sequence measured from an analyte, 

and it is assumed that these are a surrogate for species.  Thus the terms OTU, cluster and species 

are treated as synonyms.   The counts in each data set are derived by binning the observed DNA 

sequences into similar sequence patterns.  Thus the counts are sometimes referred to as the 

number of sequences or the number of reads.  Collectively, the counts are called abundances.  

Relative abundances, also called relative frequencies, are the proportional abundances of each 

OTU at each site, so that the total relative abundance for each site is equal to one.   

 In initial investigations of ecological OTU data, we are interested in certain summaries.  

The total count for a site (across all OTUs) is called a site total.  The total count for an OTU 

(across all sites) is called an OTU total.  A count for a particular OTU at a particular site is called 

an individual OTU count. 

1.2. Pyrosequence Data 

1.2.1. Overview of Pyrosequencing 
Pyrosequencing was developed in the 1990's by Mostafa Ronaghi, Pål Nyrén, Mathias 

Uhlén (1998)  in collaboration with several colleagues and graduate students.  They sold the first 

automated system in 1999 (Nyrén, 2007), and received a U.S. patent in 2001.  There are now 

several commercial platforms for pyrosequencing, commonly referred to as 'next generation' or 
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'massively parallel' sequencing.   These platforms include Roche 454 (http://www.454.com), 

Illumina (http://www.illumina.com), Helicos (http://www.helicosbio.com), and  SOLiD  

(http://www.appliedbiosystems.com).  These systems, among others, all rely on a complex 

combination of chemistry and computing capabilities.  While these platforms may differ in the 

details of their implementation, they all utilize a procedure known as pyrosequencing, or 

sequencing by synthesis.  In the description that follows, we focus on the Roche 454 platform 

since it is data from this sequencer that we will be examining. 

The pyrosequencing reaction relies on the chemical bonds that occur within DNA's 

double helix.  The structure is a double-stranded chain consisting of paired nucleotides, and 

the ordering of the nucleotides in the chain define the genetic information.  DNA naturally 

occurs as a double strand, and the nucleotides on one strand are complementary to the 

nucleotides on the second strand.  The complementary nucleotides are known as base pairs; 

for DNA these are adenine-thymine (A-T) and guanine-cytosine (G-C).  For example, if one 

DNA strand contains the nucleotides ATTCG then the complementary strand is TAAGC.   

The chemical bonding that occurs between the two strands ensures that the nucleotides will 

be complementary.  Unless the DNA has mutated or has been damaged (for example, by 

radiation), every nucleotide on one strand is paired with its complement on the second strand.  

Pyrosequencing relies on the natural formation of these complementary base pairs. 

To prepare an analyte for pyrosequencing, its DNA must be extracted.  Particular sections 

of the DNA that are pertinent to the current research objective are isolated and extracted.  Each 

section is molecularly tagged to identify the analyte, then attached to a small bead and duplicated 

via polymerase chain reaction (PCR) amplification.  After PCR, each bead holds millions of 

single-stranded copies of the original fragment.  These beads are placed into wells on a picotiter 

plate, one bead per well, and are ready for pyrosequencing.  This process is illustrated in Figure 

1.1. 

When the beads are loaded onto the plate, the process of pyrosequencing can begin.  This 

process is automated and occurs within the sequencer.  The plate is flooded with a solution that 

contains one of the four types of nucleotide, plus enzymes and other reagents to control the 

chemical reactions. The DNA strands attached to the beads will incorporate this nucleotide only 

if they are complementary base pairs.  If this happens, a small burst of light is emitted and the 

luminescence is captured by the pyrosequencer.   The excess solution is removed, and the plate is 



6 

 

flooded again, but this time with a different nucleotide.  Again, any luminescence is recorded by 

the pyrosequencer, and the process is repeated a fixed number of times.  Each flooding process is 

called a flow, and a series of four flows (using each of the four nucleotides) is called a flow 

cycle.  Since the strands on a bead will incorporate only a complementary nucleotide, knowing 

which nucleotide is incorporated tells us which nucleotide is on the original single strand.  Thus 

the sequence of nucleotides on the original DNA fragment can be identified.   

 

 

 

 

 

 

 

 

Figure 1.1: Preparing an Analyte  
Target DNA is extracted (a), and attached to bead (b).  After PCR amplification, 
bead contains millions of duplicates (c) and is placed into a well on a picotiter 
plate (d).  Picotiter plate being loaded (e) and magnified (f).  The plate contains 
1.6 million wells and each well is approximately one-third the width of a human 
hair.  Image source: http://www.454.com. 

When a strand incorporates a nucleotide, the amount of light emitted is proportional to 

the number of nucleotides incorporated.  The pyrosequencer records both the order in which 

nucleotides are applied to the plate and the amount of light emitted at each well.  The result for 

each well is called a 'read' and can be displayed in the form of a pyrogram (also called a 

flowgram), as shown in Figure 1.2.   There is one pyrogram (one read) for each well, and 1.6 

million wells on a plate. 

   (a)                           (b)                     (c)                     (d)   

 
                 (e)                                           (f) 
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Figure 1.2: Example Pyrogram 
Letters along the x-axis indicate which nucleotide is washed over the plate and 
the height indicates the intensity of illumination, which is proportional to the 
number of nucleotides incorporated.  Reading from the left, the first few 
incorporated nucleotides are TCAGCGTAAGG, so the DNA strand in this well 
begins with AGTCGCATTCC.   
Image source: http://www.pmgf.osu.edu/services_mps.html. 

Thus the data from the pyrosequencer consist of an enormous collection of fragmented 

DNA sequences.  Similar fragments are clustered together to form Operational Taxonomic Units 

(OTUs).  There are numerous mathematical approaches and software implementations for 

clustering these fragments, and research in this area is ongoing.  Two commonly used programs 

are CAP3 (Huang and Madan, 1999) and Pyrotagger (Kunin and Hugenholtz, 2010a).  At the 

conclusion of the clustering process, the pyrosequence data consist of a collection of OTUs along 

with the frequency of each OTU in each analyte.  The recorded data for each analyte is a vector 

of counts and the elements in the vector correspond to OTUs.  At this stage, the pyrosequence 

data can be envisioned as a matrix in which the rows represent analytes and the columns 

represent OTUs. The entries in the matrix consist of counts, i.e. the number of times each OTU 

was identified in each analyte. 
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1.2.2. Sources of Variability 
Data generated via pyrosequencing have many unique characteristics.  Typically, the 

number of analytes is in the hundreds (or less) and the number of OTUs is in the thousands.  The 

proportion of zeros is large, usually in excess of 90%, and the nonzero counts are highly 

variable.   There is variability in the total count for each analyte, and in the total count for each 

OTU.  In one typical data set (the soil data described in Chapter 3), the OTU total counts range 

from 1 to 14749, with mean 64 and standard deviation 482.   The site total counts range from 7 to 

2929, with mean 648 and standard deviation 364.  To adequately analyze these data, it is 

necessary to identify and model the sources of this variability so that remaining variability can be 

attributed to experimental and/or environmental conditions.  The major sources of variability are 

described below.  They are identified in the order they occur in the workflow, since variability at 

any stage of the process affects all downstream analysis. 

1.2.2.1. DNA Extraction and PCR Amplification 

Short strands (15 to 30 nucleotides) called primers are used to isolate the target DNA for 

PCR amplification.   There are two general kinds of primers: one to identify the beginning of the 

target DNA strand and one to identify the end.  The nucleotides in the primers are 

complementary to the beginning and end of the target DNA, so they are genome-specific and 

target-specific.  It is the sequence in the primers that determine where they bind to the sample 

DNA and therefore define the section of DNA to be amplified.  Selection of an appropriate 

primer requires knowledge of the genome, and new primers are synthesized as more is learned 

about a genome.  Small variations in the sample DNA surrounding the target area can affect the 

ability of the primer to bind to the site, which inhibits PCR amplification.  Bellemain (2010)  

examined seven primers for fungal DNA (targeting the ITS region of the genome) and concluded 

"the selected ITS primers showed large variation in the ability to amplify fungal sequences" 

(page 4). When allowing one  mismatch in the primer sequence, one primer amplified only 65% 

of the target DNA, while another amplified 91%.   This disparity extends to taxonomic groups as 

well.  One primer combination (ITS3-ITS4) amplified over 98% of the Ascomycetes sequences, 

but less than 74% of the Basidiomycetes.  These two taxonomic groups comprise 79% of all 

species of fungi, so any discrepancy in their amplification rate could have a critical impact on the 

resulting OTU counts. 
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1.2.2.2. Base Calling 

Pyrosequencing is accomplished by iteratively flowing each of the four nucleotides (A, 

C, G and T) over a picotiter plate containing wells of DNA to be sequenced.  Base calling refers 

to the determination of how many, if any, nucleotides are incorporated in each well on each flow.  

Each incorporation emits a small amount of light so that, in theory, the amount of light produced 

at each well is proportional to the number of nucleotides incorporated.  Thus a continuous value 

(the flow value, i.e.  light intensity) must be translated into an integer (number of nucleotides).   

This action is known as base calling.  Typically, the continuous values are simply rounded to 

whole numbers (Quince et al., 2009).   Base call accuracy is directly dependent on the accuracy 

of the measured light intensity.  One reason for performing PCR amplification is to increase this 

intensity, thus variation in amplification can affect base call accuracy.  The most problematic 

issue with base calling stems from homopolymers, chains of consecutive identical nucleotides on 

the target DNA.   For homopolymers less than 8 bases, the intensity of the light signal is linearly 

related to the number of nucleotides, but the signal degrades for longer homopolymers 

(Margulies et al., 2005), resulting in base calls that are too short.  This can cause mismatches in 

what are supposed to be two identical fragments, which creates difficulties in fragment clustering 

and subsequent OTU identification. 

A detailed examination (Gilles et al., 2011) of the Roche 454 GS FLX technology 

uncovered patterns in the base call error rates that can be attributed to specific sources.  An 'edge 

effect' occurs because the light-sensing camera is located at the center of the plate, so that the 

light measurement from a well along an edge of the plate is not as accurate as one in the center.   

The 'direction effect' is a result of the direction in which the nucleotide solutions are flowed over 

the plate, so that wells which receive the solution first are more likely to have stronger light 

signals.  Incomplete cleansing of the plate between flows can cause a 'carry forward' effect in 

which nucleotides from a previous flow remain in a well and are incorporated during the next 

flow.  There can also be 'incomplete extensions' in which some of the strands on a bead fail to 

incorporate during the appropriate base flow.  And finally, the position of the base along the 

target strand can also affect the accuracy of the base call, specifically, accuracy decreases as the 

length of the target DNA  increases.    

The precise characteristics and severity of these errors can be platform-specific, so there 

is no 'one size fits all' solution.  Each sequencing platform contains built-in software for base 
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calling, and generates sequence data both in flow format and base call format.  For each well, 

flow format contains the numeric values related to the light intensity at each flow, while base call 

format consists of a sequence of letters (e.g. TAACC) that represent the resulting base calls.  

There are numerous commercial and open-source software packages for base calling that can be 

used to bypass the sequencer's built-in program.  These packages utilize the flow data generated 

by the sequencer, and incorporate more sophisticated techniques for assigning the bases.  These 

packages include Phred (Beguelin and Nutt, 1994), naiveBayesCall (Kao and Song, 2011), 

BayesCall (Kao et al., 2009), PyroBayes (Quinlan et al., 2008), and Pyronoise (Quince et al., 

2009).   In addition to assigning the bases, base calling programs also provide a 'quality score' for 

each base call, which can be used as a measure of reliability.  

1.2.2.3. Contamination 

As with any complex laboratory procedure, there is potential for mistakes, although strict 

adherence to protocols minimizes the risk.  Ideally, the target DNA fragments should be long 

enough so that the end of the fragment is not reached during sequencing.  If a fragment is too 

short, then part of the primer and other molecular tags attached to the fragment will become part 

of the sequenced read for the fragment.  Thus the calculated sequence for the fragment is 

contaminated with the primer/tag sequence, which creates difficulties when trying to cluster the 

fragments.   Because the wells are in such close proximity, there is also the possibility of 

crosstalk between the wells, that is, a reaction in one well can have an effect on nearby wells.    

This can be manifested as background noise in the flow values.  These and other sources of 

potential contamination can be corrected by quality-trimming and read-filtering algorithms. 

(Balzer et al., 2011)    Quality trimming involves removing a portion (usually the end) of a read 

to eliminate a primer sequence and/or disregard the less accurate base calls.  Read filtering refers 

to removal of an entire read for reasons such as too many 'dubious' flow values in the interval 

[0.5, 0.7], which indicates a low quality read. (Margulies et al., 2005)   

1.2.2.4. Clustering the Fragments  

Prior to extracting the target DNA strands from an analyte, there are many copies of each 

DNA target because each cell in the analyte contains DNA.   The primer extracts specific 

sections of the genome and each section is amplified and sequenced.  Clustering algorithms 
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identify 'similar' sequenced sections and collect these into a set of Operational Taxonomic Units 

(OTUs).   

The clustered sequences are rarely identical.  The user provides thresholds that define 

how similar the sequences need to be in order to be clustered.  There are several types of 

thresholds, but two of the most common are minimum overlap and percent similarity.  The 

minimum overlap specifies the minimum number of contiguous nucleotides that two fragments 

have in common and the percent similarity defines a minimum percent of nucleotides that must 

match.  For each of these thresholds, a higher value results in more stringent clustering 

requirements, so that fewer fragments are clustered.  This results in a larger number of OTUs and 

smaller counts for these OTUs.  Lower threshold values produce fewer OTUs, but the counts for 

the OTUs are higher.  Regardless of the threshold values, it is customary to have several 

sequences that are not clustered at all.  These result in individual OTU designations, each with a 

frequency of one.  These are called singletons, and may represent an extremely rare species, but 

more likely these are the result of sequencing errors (Unterseher, et al., 2011). 
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Chapter 2. Current Methods 

Statistical methods for summarizing and analyzing ecological OTU abundance data have 

generally been adapted from the methods used for analyzing macroscopic species.  In general, 

species data are collected at several sites, and the research objective is to determine whether the 

species assemblage is different in different sites.  This is a very broad question, and is often 

interpreted to mean: Does the diversity change across the sites?  There are many types of 

diversity, including alpha (within-site) diversity and beta (between-site) diversity.  In either case, 

diversity is a single numeric value. Larger values of α-diversity indicate a healthier habitat, 

whereas  larger values of β-diversity indicate that the two sites are dissimilar.   

Both α- and β-diversity are generally measured as a combination of species richness and 

species evenness.  Species richness is simply the number of distinct species in the habitat and 

species evenness measures the equality with which the species are distributed in the habitat.  

While these are easy to explain, they are very difficult to measure.  For both macroscopic species 

data and microscopic OTU data, true species richness must be estimated from observed species 

richness.  Some of the methodologies are discussed in Section 2.2.   

Statistical tests to determine if there are differences between sites can be formulated in 

terms of any one of several univariate measures of diversity, or can be based on the entire vector 

of abundances measured at each site.  Furthermore, the vectors and the corresponding diversity 

measures can be based on raw abundances (actual counts), or proportions (percents of the site 

total).  Wharton and Hui (2011) reviewed articles published in Ecology during 2008-2009 and 

discovered over one-third analyzed proportions rather than raw counts.  Of these, the "most 

common method of analysis was to utilize the arcsine square root transform ... followed by a 

linear model." (page 3)  They argue that the arcsine transform should no longer be used, and that 

it should be replaced by logistic regression or generalized linear mixed models.  

This chapter summarizes methods that have been used for OTU data that have mostly 

appeared in ecological journals. It highlights steps taken to adapt relevant methods for analysis 

of macroscopic species to microscopic species. Some discussion is given on how the methods 

either do, or do not, seem to work with the distributional complexities of data from 

pyrosequencing experiments.  
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2.1. Characteristics of OTU Data 
OTU data derived from pyrosequencing share many characteristics with macroscopic 

species abundance data, but there are several differences that make OTU data unique.  For 

macroscopic organisms, such as birds or frogs, an individual organism is visually observed and 

classified into a taxonomic category (i.e., a species).  The resulting species abundance data 

consists of the  number of observed individuals in each species. With microscopic OTU data, the 

quantity being measured is the number of PCR-amplified DNA fragments, which may or may 

not directly translate into the number of individuals.  In fact, with microscopic organisms (such 

as bacteria), the biological concept of an 'individual' is not straightforward.  Nevertheless, the 

questions we attempt to answer with these data remain the same.  In general, we wish to 

determine if there are any environmental and/or experimental conditions that affect the 

occurrence or abundance of the organisms.  To explore this question, we need to understand the 

basic characteristics of OTU data and how these data compare to macroscopic species data. 

For both macroscopic species and OTUs, an abundance data set can be envisioned as a 

matrix in which the rows represent sites (aka analytes or samples) and the columns represent 

species (or OTUs).  For macroscopic species, the size of the data set is directly dependent on the 

sampling effort and the scope of the investigation, but the number of species is typically in the 

hundreds or less.  For microscopic data, the matrix contains a thousand or more OTUs, and the 

number of sites is in the hundreds or smaller.  This presents unique challenges for analyzing 

OTU data, since there is insufficient information to model each OTU separately.  In addition, 

OTU data sets contain a large proportion of zeros, usually in excess of 90%, and the distribution 

of nonzero values is strongly right-skewed.   

There are biological models, for example niche apportionment models, to explain the 

abundances of macroscopic species.  Many of the statistical distributions used to model 

macroscopic species abundance data are based on these biological models.  It is unknown 

whether the biological and stochastic processes that govern macroscopic species abundances can 

be equated to the processes that generate OTU abundances.  This distinction has been 

recognized, but not resolved (Magurran, 2004). 

Another unique characteristic of OTU data is that of singletons.  Singletons occur when a 

measured DNA sequence is unlike any other detected sequence, so that it is not clustered with 

any other sequence.  This produces an OTU with a count of one.  The presence of singletons in a 
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data set can have a profound impact on the estimate of species richness, which in turn affects the 

estimate of diversity.  While singletons can occur in macroscopic species data (when a 

particularly rare species is observed only once), singletons are much more prevalent in OTU data 

and thus warrant special attention.       

2.2. Species Richness 
Species richness is simply the number of unique species in a community.  In macroscopic 

data, it is typical that the observed species richness is less than the true species richness. This can 

occur because a species is present, but not observed.  The degree to which the distinct species are 

undercounted is related to the sampling effort and the rarity of the species.  In OTU data, the 

presence of singletons leads to an over-estimate of species richness.   Species richness is a main 

component in measuring ecological diversity, so it is important to have an accurate assessment. 

In both macroscopic and microscopic abundance data, the true species richness must be 

estimated from the observed species richness.  This has been well-studied for macroscopic 

abundance data, resulting in, among others, an estimator by Chao (1984), a jackknife estimator 

by Burnham and Overton (1978), and a bootstrap estimator derived by Smith and van Belle 

(1984).  These estimators have the common goal of increasing (extrapolating) the observed 

species richness in order to predict the true species richness.  These estimators are ill-suited for 

OTU abundance data, since the observed species richness needs to be reduced rather than 

enlarged.  Dickie (2010) applied the Chao and two versions of the jackknife estimators to 

simulated OTU data and found that none were adequate, and the Chao estimator was particularly 

sensitive to singletons.   

The presence of singletons in OTU data create exceptional difficulties in estimating 

species richness, since a singleton could represent a unique and rare species or it could be the 

result of sequencing error.  Unterseher et al. (2011) state that approximately 75% of all Roche 

454 pyrosequencing singletons are 'technical artefacts' and recommend removing all the 

singletons from a data set prior to statistical analysis.  Dickie (2010), considers this approach to 

be conservative, since this may eliminate some real species.  Reeder and Knight (2010) 

developed an algorithm called Pyronoise to filter the 'true' singletons from sequencing artefacts. 

To reduce the number of singletons in a data set, Kunin et al. (2010b) recommend setting the 

cluster similarity threshold no greater than 97%.  Jumpponen and Jones (2009) set the threshold 
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slightly lower, claiming that the number of OTUs is "relatively stable up to 95%", but the 

number of OTUs "assumes near-exponential growth at thresholds of more than 95%". 

Rarefaction analysis is another method for generating species richness values and is used 

for both macroscopic and OTU data.  Rarefaction adjusts species richness values for samples 

with a large number of individuals so that they can be compared to smaller samples.  This is 

done because samples with a larger number of individuals are likely to have a larger number of 

unique species.  The results of rarefaction analysis are usually presented in the form of 

rarefaction curves, as shown in Figure 2.1.  There is one curve for each sample (site).  To create 

one of these curves, the individuals observed at the site are statistically resampled (without 

replacement) to determine the relationship between sampling effort and number of species.  For 

OTU data, the sampling effort is measured by the number of individuals (i.e. the number of 

sequences).  To illustrate this procedure, suppose a site has 100 unique OTUs with a total count 

of 1400 sequences.  To rarefy this site to a total count of 1000, repeated subsamples of size 1000 

are selected from the 1400, and the species richness (number of distinct OTUs) in each 

subsample is recorded.  The average species richness value is used to generate the rarefaction 

curve.  This value can be compared to the rarefied species richness values for each of the sites 

that originally contained 1000 or more observed sequences.  To compare a site that has only 500 

observed sequences, all larger sites would need to be rarefied to 500 sequences. 

Magurran (2004, page 79) warns against using rarefaction curves to extrapolate species 

richness, stating "The purpose of rarefaction is to make direct comparisons amongst communities 

on the basis of number of individuals in the smallest sample."  Roesch et al. (2007) seem to 

disagree.  They fit a Michaelis-Menten equation (cf. Graham Dunn, Encyclopedia of 

Biostatistics, 2005) to each curve and estimated species richness as the upper asymptote as the 

number of sequences increases. 

Rarefaction curves can be greatly affected by the clustering thresholds used when 

defining the OTUs. Recall that each OTU represents a collection of detected DNA sequences 

that are clustered together based on their similarity and that the researcher defines clustering 

thresholds that control the degree of clustering.  For example, if the clustering threshold is 100% 

similarity (or 0% dissimilarity), only those sequences that are perfect matches will be clustered.  

This results in a larger number of OTUs, but the abundances for the OTUs will be smaller.  If the 
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clustering threshold is 95% similarity (or 5% dissimilarity), more clusters will be created 

resulting in fewer OTUs with higher abundances.   

 

 

Figure 2.1: Rarefaction Curves 
Each curve represents one site (one sample).  The curve indicated by the arrow 
contains approximately 1400 observed sequences (total abundance), and species 
richness (unique OTUs) of approximately 100.  The position of the arrow 
indicates that if only 1000 sequences had been observed at this site, the species 
richness is expected to be approximately 80.   This value is obtained by repeatedly 
sampling 1000 sequences from the original 1400 and calculating the average 
species richness across all subsamples.  Image adapted from  Jumpponen and 
Jones (2009). 

Roesch et al. (2007) provide a comparison of rarefaction curves for bacterial OTUs using 

percent similarity thresholds from 100% to 80% (dissimilarity thresholds from 0% to 20%).  One 

of their comparisons, shown in Figure 2.2, illustrates the magnitude of the change in observed 

species richness (number of OTUs) as the clustering threshold changes.  The curves representing 

20% and 10% dissimilarity are very close, and appear to have an asymptote at approximately 

500.   At 5% and 3% dissimilarity, the asymptotes are approximately 1800 and 2100.  In 

contrast, the curve for 0% dissimilarity has not yet begun to level off, so the estimate of the 

asymptote is uncertain.  These curves are all based on the same data, and could result in species 

richness estimates of 500 to 2100, depending on the clustering threshold.   
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Figure 2.2: Affect of Clustering Thresholds on Rarefaction Curves 
The clustering thresholds are used to determine how similar two DNA sequences 
need to be in order to classify them as the same Operational Taxonomic Unit 
(OTU). For 0% dissimilarity, the two DNA sequences need to be a perfect match.  
This results in a large number of distinct OTUs.  Increasing the dissimilarity 
threshold generates fewer distinct OTUs.  Image source:  Roesch et al., 2007. 

2.3. Defining Distance 
To examine the effect of experimental and/or environmental conditions on the 

assemblage of species at the sites, it is necessary to have some measure of how similar or 

dissimilar two sites are.  Since each site is characterized by a vector of OTU counts, it is natural 

to express the dissimilarity between sites as a form of multivariate distance.  When dealing with 

multivariate data, defining a reliable measure of distance, or dissimilarity, has many challenges.  

Ordinary Euclidean distance is known to be dominated by the dimension with the largest 

variability, and it is difficult to specify what constitutes 'closeness' in high-dimensional data.  

With ecological data, it is sometimes easier to conceptualize similarity, then apply a 

mathematical transformation to measure dissimilarity.  Ecological similarity between two sites is 

based on the number of shared species and abundance values they have in common.  

From a mathematical perspective the term 'distance' is the same as 'metric', while a 

'dissimilarity' is a more general (less precise) way of describing the separation between two 
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objects.  The term distance is often used as a synonym for dissimilarity.  Strictly speaking, a 

distance between x and y is any function ( ),d x y  that satisfies four conditions: 

(1) ( ), 0d x y ≥   (non-negativity) 

(2) ( ), 0 if and only if d x y x y= =   (isolation) 

(3) ( ) ( ), ,d x y d y x=   (symmetry) 

(4) ( ) ( ) ( ), , ,d x y d x z d z y≤ +  (triangle inequality) 

A function that satisfies only the first three conditions (and not the fourth) is considered a 

dissimilarity, although we will use the terms distance and dissimilarity interchangeably.  The 

triangle inequality is an important criterion if distances are to be used in clustering (partitioning 

the objects according to similar characteristics) or ordination (positioning the objects in a space 

that contains fewer dimensions than in the original data set).  Although both of these operations 

can use dissimilarities rather than distances, the results can be less reliable with dissimilarities. 

When we visualize the abundance data as a matrix, with rows representing sites and 

columns representing species, dissimilarity can be measured as a distance between rows (Q mode 

analysis) or as a distance between columns (R mode analysis).  Furthermore, the distance can be 

based on absolute abundance, relative abundance or absence/presence indicators. In general, 

quantitative measures (based on abundance) are generally superior to qualitative measures (based 

on absence/presence), although quantitative measures "can be unduly influenced by the 

abundance of the most dominant species" (Magurran, 2003, p. 175).   To alleviate this problem, 

Clarke and Warwick (2001) recommend transforming the data via square roots or logarithms. 

To quantify the amount of separation between sites (rows) or species (columns), we treat 

the rows (or columns) as vectors and combine the separation between each pair of elements.  

Metrics include ordinary Euclidean distance (the L2 norm) and the Manhattan or city block 

distance (the L1 norm).  Many of the existing dissimilarity measures for ecological data are 

variants of one of these two norms.  Other measures have been proposed based on, for example, 

chord distance, chi-squared distance, and probabilistic measures such as Kullback-Leibler 

distance.  These types of measures have not been readily accepted by the ecological community 

because, in part, they fail to capture the unique characteristics of ecological distance.  Faith, 

Minchin and Belbin (1987) performed an extensive comparison of dissimilarity measures for 



19 

 

ecological data and concluded that the Kulczynski, Bray-Curtis and Relativized Manhattan 

measures were the most robust in terms of maintaining a linear, rank-order relationship with the 

corresponding distances in ecological space.   

Similarity and dissimilarity are at opposite ends of a continuum of values that represent 

the degree of association.  While some measures are defined as similarity measures and others 

are formulated as dissimilarity, every similarity measure can be transformed to become a 

dissimilarity measure, and vice versa.  Similarity measures S are generally defined to have range 

[0, 1], so the corresponding dissimilarity measure D can be defined as D = 1 – S, D 1 S= −  or 

2D 1 S= − .  If a dissimilarity measure is constrained to the unit interval, then a comparable 

transformation can be used to obtain similarity.  If, however, the dissimilarity is not bounded 

(such as a true distance), then it may be possible to constrain the distance via standardization.    

Magurran (2004, p. 174) specifies six desirable criteria for a similarity index between 

sites, but notes that very few existing indices satisfy all six.  The criteria are: 

(1) the value should be 1 (or 100) when two samples are identical 
(2) the value should be 0 when samples have no species in common 
(3) a change of measurement unit does not affect the value of the index 
(4) the value is unchanged by the inclusion or exclusion of a species that occurs in neither 

sample 
(5) the inclusion of a third sample makes no difference to the similarity of the initial pair of 

samples 
(6) the index reflects differences in total abundance (and not just relative abundance). 

Numerous measures for similarity and dissimilarity have been proposed for ecological 

data, which makes comparison cumbersome.  This is complicated by the fact that many measures 

have been formulated independently by different researchers, and are therefore assigned different 

names.  In addition, the name can change depending on whether the measure uses absolute 

abundance, relative abundance or absence/presence indicators.   For example, one of the most 

widely used dissimilarity measures is the Bray-Curtis distance, which is also known as the 

quantitative Sørensen index and the Czekanowski distance (Cha, 2007). 

The R Package (R Development Core Team, 2009), specifically the library vegan, 

(Dixon, 2003) has 14 built-in dissimilarity measures, and also provides a program in which users 

can define their own dissimilarity function.  Exploring all of these is beyond the scope of the 

current paper.  Instead we focus on three: Bray-Curtis, Kulczynski and Morisita-Horn.   These 
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measures were chosen because they are particularly robust (Faith et al., 1987; and Magurran, 

2004, page 174) and because they are all restricted to the interval [0, 1] so that direct comparison 

is possible.  These distance measures, as applied to distances between sites, are defined below.  

To obtain the distance between OTUs, simply take the transpose of abundance data matrix. 

Let ijx  represent the abundance of OTU j at site i and let Ti  represent the total abundance 

at site i.  

 Bray-Curtis:  BC
ij kj

j
ik

i k

x x

T T

−
=

+

∑
 

 Kulczynski:  
( ) ( )min , min ,

1KUL 1
2

ij kj ij kj
j j

ik
i k

x x x x

T T

 
 

= − + 
 
 

∑ ∑
 

 Morisita-Horn: 

( )
2 2

2 2

2
MH 1

*

ij kj
j

ik
ij kj

j j
i k

i k

x x

x x
T T

T T

⋅
= −

 
 + ∗ 
 
 

∑

∑ ∑
 

We explore these distances using a subset of the soil data, which is described in Section 

3.1.  The results are shown in Figure 2.3.  Note that the intent of these comparisons is to explore 

the differences between the distance measures and not to interpret the differences between sites.  

When using the actual abundance data, the Bray-Curtis distance is generally larger than both the 

Kulczynski and Morisita-Horn distances, but the latter two measures are comparable.  When the 

abundance values are replaced by 0/1 indicator variables, the Bray-Curtis and Morisita-Horn 

measures are identical, and generate larger distances than the Kulczynski measure.  The triad of 

graphs in (c) illustrate how each measure compares to itself, using abundance values versus 

absent/present indicators.  For both the Bray-Curtis and Kulczynski measures, the distances are 

greater when they are based on the abundance values.  In contrast, the Morisita-Horn measure is 

less influenced by the total abundance, generating similar distances for both abundance values 

and absent/present indicators.  Whether we work with the raw abundance values or 

absent/present indicators, there seems to be no unambiguous method to measure distance in 

ecological data.  
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(a) Using abundance data 

 
(b) Using absent/present (0/1) data 

 
(c) Compare abundance to absent/present 

 

Figure 2.3: Comparison of Three Distance Measures 
Distance between randomly selected OTUs from the soil data, described in 
Section 3.1.  Each point represents the distance between one pair of OTUs. 
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2.4. Comparing Sites 

2.4.1. Site Totals 
Laboratory protocols for preparing each analyte should, in theory, generate 

approximately equal total counts (abundances, sequences) for each analyte (sample, site).   In 

practice, however, there can be excessive variation in these totals, creating outliers in the 

distribution of site totals.  This occurred, for example, in the soil data described in Chapter 3, in 

which soil samples taken from lower depths included larger concentrations of clay.  The clay 

inhibited DNA extraction from these samples, resulting in extremely low total counts.   

Sites with larger total abundance are likely to have larger values for species richness, 

which can affect measures of diversity.  From personal conversations with Dr. Ari Jumpponen 

and Dr. Karen Garrett, it appears that sites with extremely low totals are simply discarded.  Most 

published articles do not mention outliers among the site totals, although Jumpponen, et al. 

(2009, 2010b) use an ANOVA F test to confirm no significant differences in mean site totals 

across the experimental factors.  Another approach is presented in Ishak et al. (2011), who report 

no specific test for equality of site totals, but state that "Because the numbers of sequences 

acquired from different samples varied substantially, we randomly selected 1,000 sequences 

from each sample" (page 823).  Subsequent analysis in Ishtak et al. was based on the data 

obtained from the single resampling event. 

2.4.2. Measures of Diversity 
There are many types of diversity, but we consider only two: within-site (alpha) diversity 

and between-site (beta) diversity.  Alpha diversity is often used as a univariate measure to test 

for differences between sites.   That is, a null hypothesis of no difference between sites can be 

formally stated as: There are equal values of alpha diversity across the sites.  See, for example, 

Gao and Yang (2010) and Van Diepen et al. (2011).  Beta diversity is a measure of dissimilarity 

between sites, and is most often used as a surrogate for distance.  There are many different ways 

to measure both alpha and beta diversity, and these measures differ in the emphasis they place on 

richness as opposed to evenness.  Magurran (2004, page 101) advises that, while is tempting to 

use a variety of diversity measures and compare the results, this is not a good practice.  Instead, 
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she lists nine key points to consider in selecting an appropriate measure.  Some of the most 

widely used measured are described below. 

2.4.2.1. Alpha (within-site) Diversity   

For each site, α diversity is a combination of the site's species richness and species 

evenness.  Three of the most common methods of measuring α diversity are the Shannon index, 

Simpson's D, and Fisher's α.  To define these measures, let S represent the number of distinct 

OTUs detected at the site, and let ix  represent the abundance (count) for OTU i.  Then 

1

S
ii

N x
=

= ∑  is the total count (number of sequences) for the site and i
i

xp
N

=  is the sample 

proportion for OTU i.   These calculations exclude all counts that are zero.  Shannon's index, 

sometimes erroneously called the Shannon-Weaver index, is defined by 
1

logS
i b ii

H p p
=

= −∑ .  If 

the logarithmic base is e, the index is called H ′ .   The term "Shannon's index" can also refer to 

Shannon's evenness index, which is defined by ln
HE S

′= .  Simpson's D  estimates the 

probability that two individuals drawn at random will not belong to the same OTU.  For infinite 

populations, it is defined by 2
1

1 S
ii

D p
=

= − ∑ , but when estimating this from a sample it is 

customary to use the formula for finite populations:  ( )
( )1

1
1

1
S i i
i

x x
D

N N=

−
= −

−∑  .  The term 

"Simpson's D" sometimes refers to similarity rather than diversity.  The similarity is defined to 

be 1 D− .  Fisher's α is based on the log series distribution (see Appendix B) and is sometimes 

called log series α.   The log series is defined by , 1,2,
k

k
k

αθ
= … , where the thk  term in the 

series is the number of OTUs predicted to have exactly k individuals.  If each term in the series is 

divided by S (the number of unique OTUs in the sample), then this  series becomes the log series 

probability distribution.  Since the discrete probability distribution must sum to 1, log series must 

sum to S, so the value for α is defined by 
ln(1 )

Sα
θ

−
=

−
.  Thus θ  is the only parameter of the 

series.  Fisher's α is the maximum likelihood estimate of α.  Magurran (2004, page 30) describes 
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how to estimate Fisher's α: First iteratively solve ( 1) ln(1 )S
N

θ θ
θ
−

= ⋅ −  to get θ̂ , then 

( )ˆ1
ˆˆ

N θ

θ
α

−
= .  This result is verified in Appendix B. 

2.4.2.2. Beta (between-site) diversity 

Beta diversity measures the amount of separation between two sites, which can be 

interpreted as the 'distance' between the sites.  Thus distance measures such as those defined in 

Section 2.3 are used as measures of beta diversity.  Empirical estimates of the various beta 

diversity measures "are often uncorrelated and can provide different but equally illuminating 

views of diversity" (Lozupone, et al., 2007, page 1576).   Diversity is a measure that combines 

species evenness and species richness, and the various beta diversity measures differ in the 

degree to which they emphasize evenness versus richness.   

2.4.2.3. Absent/present vs. abundance 

If the observed data are recorded as binary (absent/present indicators) instead of the 

actual abundance (counts), then α diversity is measured by species richness, the number of 

distinct OTUs at the site.  The binary measures for beta diversity are, in most cases, derived from 

the abundance-based beta diversity measures, but the formulas simplify dramatically and the 

name of the measure can change.   The binary measures are usually defined in terms of the 

elements of a 2x2 contingency table, where A is the number of OTUs that are present at both 

sites, B is the number of OTUs present only at the first site, and C is the number of OTUs present 

only at the second site.  The fourth element in the contingency table (the number of OTUs that 

are not present at either site) is generally not used in these calculations, since it provides little 

information about the dissimilarity between the sites. One common index is the Jaccard index, 

also called the  Marczewski-Steinhaus distance, and is defined by  or 1 B CA
A B C A B C

+
+ + + +− .  

Another popular index is the Sørensen index (or Dice coefficient), defined by 2
2

A
A B C+ + , which 

is identical to the Bray-Curtis measure as applied to binary data.   
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2.4.3. Testing for Differences between Sites 
Most ecological applications for OTU data involve comparing sites, where the sites can 

be separated by space (e.g. urban vs. rural, Jumpponen and Jones, 2009, 2010a) or separated by 

time (e.g. glacial retreat, Fujiyoshi et al., 2011).  Statistical tests for detecting differences 

between sites can be based on multivariate techniques that utilize the entire vector of OTU 

counts observed at each site, or can be univariate techniques applied to any one of the diversity 

measures calculated for each site.  Univariate techniques can also be applied to each OTU  

separately.  To compare experimental and/or environmental conditions, the sites are grouped 

according to these conditions.   Univariate tests across multiple conditions typically employ 

ANOVA or the nonparametric Kruskal-Wallis test,  and two-condition comparisons often utilize 

the Mann-Whitney test or the t-test.  The normality conditions required by both ANOVA and 

t-tests are satisfied because "the Shannon, Simpson, and other widely used diversity statistics are 

often approximately normally distributed"  (Magurran, 2004, page 151).  In two separate studies 

of fungal OTU data, van Diepen et al. (2011) employed two-way ANOVA to compare the 

effects of nitrogen treatments and Gao and Yang (2010) performed a Kruskal-Wallis test to 

detect differences across two experimental factors.    Both of these analyses used Shannon's 

diversity index.   As another example, Ishak et al. (2011) used a species richness estimator and a 

Mann-Whitney test to compare bacterial OTU communities in ant colonies.  

If the difference between sites is tested using the entire vector of OTU abundances at 

each site, then a permutation test can be used.  In these tests, groups of sites are labeled 

according to the experimental and/or environmental conditions, group labels are permuted 

among the sites, and an F-type test statistic is used to compare within-group variability to 

between-group variability.  For one-way designs, the Multiple Response Permutation Procedure 

(MRPP) can be used (Zimmerman, 1985) .  This procedure is available in many statistical 

software systems, including SAS, SPSS, and in the R package vegan. Permutation tests for 

two-way designs, including possible interaction terms, can be done with PERMANOVA 

(Anderson 2001, 2005), although this requires that the experimental design be balanced.  

PERMANOVA is implemented as a standalone FORTRAN program, available as a free 

download from http://www.stat.auckland.ac.nz/~mja/Programs.htm. 
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2.5. Describing Species: Common vs. Rare 
Species (OTUs) can be characterized by their prevalence (the number of sites at which 

they occur) and by their pattern of abundances at these sites.  Commonly occurring species, also 

called resident or core species, often have different patterns of abundance than rare, or satellite, 

species.  For macroscopic species, Magurran and Henderson (2003) propose a method to classify 

species as either core or satellite.  Their method uses a 50% persistence threshold, that is, species 

that occur in at least 50% of the sites are classified as core species and those that occur at less 

than half the sites are satellite species.  The abundances of core species, when viewed across all 

samples, are usually modeled with a lognormal distribution, while the abundances of satellite 

species are modeled with a log series distribution.  Both groups have highly skewed 

distributions, but the satellite species tend to be more skewed.   

Unterseher et al. (2011) applied the 50% persistence threshold to three fungal OTU data 

sets.   To assess the effectiveness of this procedure, all species were compared to the lognormal 

distribution, then the species were split into the two groups and each group was compared to the 

lognormal distribution.  For each of the three groups (core, satellite, and combined) and each of 

the three data sets, the goodness of fit for log-normality was assessed via the chi-square, 

Anderson-Darling, Kolgmorov-Smirnov, and Shapiro-Wilk tests.  For every data set and every 

testing method, the p-value for the core group was larger than the p-value for the combined 

group, indicating that the core group is more likely to follow a lognormal distribution than the 

two groups combined. 

In a completely different approach, Scott T. Bates and colleagues at the University of 

Colorado, Boulder (unpublished work) are developing methods for creating networks to illustrate 

the relationships between OTUs.  These networks use only the most abundant OTUs, and the 

degree of association between each pair of OTUs is measured by Pearson's correlation.  

However, the use of a correlation coefficient is not recommended by Legendre and Legendre 

(1998, page 293), since it measures only a linear relationship and will fail to detect two species 

that always occur together, but "do not covary in a linear way."   

Christopher J. van der Gast, et al. (2011) used the index of dispersion as a test statistic for 

categorizing bacterial OTUs from lung tissue sampled from cystic fibrosis patients.  The index  

of dispersion is defined as the ratio of the variance to the mean.  For a random sample of size n 

from a Poisson distribution, this index is approximately distributed as chi-square with n – 1 
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degrees of freedom (Selby, 1965).  van der Gast's procedure is based on the assumption that rare 

OTUs are "randomly distributed through space" (page 785)  and therefore the individual 

abundances for these OTUs follow a Poisson distribution.  Each OTU was tested separately.  If 

the index of dispersion for an OTU fell outside the 95% confidence limits for a ( )2 1nχ −  

distribution, the OTU was classified as core.  Otherwise, the OTU was classified as rare.  The 

adequacy of the classification was assessed using both the 2χ  and Kolmogorov-Smirnov 

goodness-of-fit tests.  Within the core group, the collection of OTU total abundances was 

compared to a lognormal distribution.  Within the rare group, the collection of OTU total 

abundances was compared to a log series distribution.  For both groups and for both tests, no 

significant deviation from the target distribution was detected.  When the two groups were 

combined, neither the lognormal nor the log series distribution fit the data.  It was therefore 

concluded that the classifications were accurate. 

The cystic fibrosis data set consists of 82 OTUs measured on 14 patients and the total 

abundance (for all OTUs and all patients) is 2139.  The hypothesis test utilizing the index of 

dispersion divided the OTUs into 15 core and 57 rare OTUs.  The relatively small number of 

core OTUs account for 89.9% of the total abundance, while the large number of rare OTUs 

account for only 11.1% of the total abundance.  These percentages are typical for OTU data sets, 

but the dimension of the cystic fibrosis data set is considerably smaller than the four ecological 

data sets described in Section 3.1.    For the cystic fibrosis data, the index of dispersion tests were 

based on a chi-square distribution with 13 degrees of freedom, resulting from observations on 14 

patients.   For the soil data (described in Section 3.1), these tests would have 237 degrees of 

freedom based on observations from 238 sites.  Such a large value for degrees of freedom will 

give this test high power and increase the likelihood of detecting very small departures from the 

hypothesized distribution, departures that are not of practical significance.  For this reason, 

further investigation involving the index of dispersion has not been pursued at this time, but 

could be considered in the future when comparing methods for classification into rare versus 

core species. 
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2.6.  Probability Models 
There are many ways to view the natural variability that occurs in ecological data sets.  If 

we envision the data as a matrix, with rows representing sites and columns representing species 

(or OTUs), then each entry in the matrix is the number of individuals (abundance) of one species 

observed at one site.  There is natural variability among the entries of the matrix, which give rise 

to variability in the row totals and column totals.  Variability in row (site) totals is often related 

to sampling effort, in that sites subjected to low sampling effort are more likely to have lower 

site totals than those sites subjected to greater sampling effort.  As discussed in Section 2.4.1, site 

totals for OTU data sets are expected to be approximately equal, and sites that have 'unusually' 

low totals are usually removed from the data prior to analysis.  The literature review has 

uncovered no discussion regarding an appropriate probability distribution for the site totals, and 

the decision to remove a site from the data set is usually made on a subjective basis.     

In contrast, the literature is rife with examples of probability models for a collection of 

species within a community.  These are called Species Abundance Distributions, or SADs, and 

are one of the most basic descriptions of an ecological community.  In this sense, a 'community' 

can be a single site, a collection of similar sites, or all the sites in the data set.  An SAD describes 

the number (or proportion) of species in the community predicted to have a particular abundance. 

In some cases, the abundance values are log-transformed and binned into octaves, with 

probabilities assigned to octaves rather than to raw abundance values (see Section 3.1.3).    When 

based on empirical data, SADs can be represented in a variety of ways, including histograms, 

rank-abundance diagrams (aka Whittaker plots), or cumulative distribution functions.   When 

raw abundance values are plotted as a histogram, "every community shows a hollow curve ... 

with many rare species and just a few common species" (McGill et al., 2007).  The formation of 

the hollow curve shape is considered to be one of the universal laws of community ecology.  

Although the shape of the histogram is undisputed, there seems to be no clear consensus 

regarding how to mathematically describe this distribution.  A wide variety of probability models 

have been proposed, but these are based on observed abundance patterns in macroscopic 

organisms and it is unclear if these are appropriate for OTU data.  Some of the more popular 

models are: 

• the geometric distribution, which predicts extremely uneven abundances; 
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• the broken stick distribution (MacArthur, 1957), which predicts extremely even 

abundances; 

• the log series distribution, which predicts a high proportion of very rare species; 

• the lognormal distribution, which predicts a low proportion of very rare species. 

The confusion regarding an appropriate distribution should be apparent in the fact that the 

first three of these distributions are discrete, while the fourth is continuous.  While the lognormal 

distribution is almost universally accepted as an appropriate distribution for common species 

(see, for example, Magurran, 2004; Ludwig, 1988), Williamson and Gaston (2005) and 

Williamson (2010) claim that the lognormal distribution is never appropriate for any species 

abundance distribution since the fundamental assumptions underlying the lognormal distribution 

are never satisfied.  Numerous other distributions have been proposed, and some have been 

specifically created, to describe SADs.  McGill et al. (2007) list such 27 models, but 

acknowledge that this is a partial list.  Confusion is exacerbated when we consider species that 

are measured rather than counted.  This occurs, for example, in vegetation studies where the 

species are measured in terms of their biomass.   

2.7. Reducing Dimensionality 
OTU data sets typically contains thousand of OTUs, but many of these are rare OTUs,  

that occur in very few samples with very low total abundance.  In order to visualize relationships 

between OTUs, it is often beneficial to reduce the dimension of these data sets.   Some 

researchers simply remove rare OTUs and others combine OTUs into higher-order taxonomic 

groups.  Jumpponen and Jones (2010a) employed both strategies.  In their first analysis, "OTUs 

that occurred in more than 20% of the samples ... and were represented by more than 100 [total 

count] were analyzed ..."  In a second analysis of the same data,  each "nonsingleton OTU was 

assigned to a genus, family and order based on BLAST matches" and within each site the OTU 

abundances were summed to create genus-level abundances.  (BLAST was developed by Zhang 

et al. (2000) and is part of a collection of public databases and associated bioinformatics tools for 

genetics researchers maintained by the National Center for Biotechnology Information,  available 

at  http://blast.ncbi.nlm.nih.gov/Blast.cgi.)   

There are other methods for reducing the dimensionality of OTU datasets, including 

principal component analysis (PCA), principal coordinate analysis (PCoA) and nonmetric 
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multidimensional scaling (NMS).  In a data set with S OTUs , each vector of site abundances can 

be represented in S-dimensional real space, Sℜ .  These three methods rotate and re-scale this 

space so that the vectors can be expressed in a reduced space, while preserving the spatial 

relationship between the vectors (the distance between the sites).  This facilitates comparison of 

the sites, and may uncover relationships that are obscured in the full space Sℜ .   

PCA is a common method in other statistical applications but is rarely used with 

ecological data.  As Legendre and Legendre (1998, page 292) explain, species abundance data is 

characterized by many zeros, which distort the dispersion (or correlation) matrix upon which 

PCA relies.  In addition, the first few principal components are strongly influenced by the 

extreme skewness in the data, presenting a distorted view of the data in reduced space.  This is 

partly because PCA utilizes ordinary Euclidean distance, which is unsuitable for species 

abundance data.   

Principal coordinate analysis (PCoA) is similar to PCA but can operate on any 

dissimilarity measure, including ones that are not metrics (do not satisfy the triangle inequality).  

While this is an improvement over PCA, it is not as effective as nonmetric multidimensional 

scaling (NMS) at "compressing distances relationships among objects into, say, two or three 

dimensions." (Legendre and Legendre, 1998, page 425).  Like PCoA, NMS can use any 

dissimilarity matrix and its main purpose is to represent the data in a reduced dimensions while 

preserving the distance relationships between the sites.  The difference between PCoA and NMS 

is the stringency with which they preserve the original distances.  When all of the PCoA space is 

used,  the distances (or dissimilarities) between OTUs in PCoA space are precisely the same as 

they were in the original space.  In contrast, NMS preserves only the order of the distances, so 

that the smallest distance in the original data is still the smallest distance in NMS space, but the 

numeric values of these distances may be different.  For most ecological applications, preserving 

the ordering of the distances is sufficient.  Both NMS and PCoA are widely used as methods of 

dimension reduction, for example, by Geml et al. (2010), Jumpponen et al. (2010b),  Ishak et al. 

(2011) and Lozupone et al. (2007).  
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Chapter 3. Exploratory Studies 

This chapter describes preliminary results by the author of this proposal, and it builds off 

of an initial collaboration that resulted in the paper by Jumpponen, Keating, Gadbury, Jones, and 

Mattox (2010).  In fact, results in that paper included exploratory analyses conducted by this 

researcher that highlighted some of the complexities in pyrosequencing data.  Section 3.1 covers 

exploratory analysis of four pyrosequencing data sets to determine common characteristics that 

can highlight needs and challenges for statistical methods development.  The results of this 

section help to motivate the methods presented in Chapter 4.  

Section 3.2 examines compositional data analysis in the context of pyrosequencing data, 

and it argues that one will likely gain little if compositional data analysis is used on such data 

and lose little, if anything, from not doing such analysis. (A review of compositional data 

analysis is given in Appendix D.)  Section 3.3 introduces two new statistics that could be used to 

classify rare versus common OTUs.  These statistics would replace the 50% persistence measure 

customarily used in macroscopic data.  Later, in Section 4.3, we provide a rigorous method that 

generates a probability-based assignment of an OTU into a rare versus common category.   

Issues related to the choice of appropriate probability models are discussed in Section 3.4.  Such 

choices are a necessary first step for the development of valid statistical procedures to test for 

commonalities and differences in OTU abundances, and for detecting outliers that possibly result 

from the data processing technology.   

3.1. Comparison of Four Data Sets 
Four OTU data sets are compared for the purpose of identifying the characteristics of this 

type of data.   Of particular interest is identifying anomalies in the data, in order to explore 

methods to mitigate the anomalies.  We are also interested in characterizing the distribution of 

these data, in order to identify appropriate statistical tests and to realistically simulate the data.   

Two of these data sets are from Dr. Ari Jumpponen and two are from two different students from 

Dr. Karen Garrett's workshop the last week of July, 2011.   Table 3.1 provides some summary of 

the four data sets. 
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The Four Data Sets 

AJ Leaf Data:  Dr. Jumpponen has performed at least two distinct experiments in which 

fungal DNA was extracted from the leaves of bur oak trees.  The first experiment is documented 

in Jumpponen and Jones (2009) and the second in Jumpponen and Jones (2010a).  We examine 

the data from the second experiment.  There are 34 samples and 598 OTUs.  For the individual 

counts, 87.1% are zeros, and among the nonzeros, 25.2% are singletons. 

AJ Soil Data:  This data set is also from Dr. Jumpponen. Fungal DNA was extracted 

from soil samples at five different depths (10, 20, 40, 60 and 100 centimeters).  The depth 100 

samples did not generate sufficient DNA to be included in the analysis.  Excluding the depth 100 

samples, there are 238 samples and 2,422 OTUs.  For the individual counts, 96.3% are zeros and, 

among the nonzeros, 48.6% are singletons. 

Lorena's Data: These data were generated by Lorena Gomez Montano, one of Dr. Karen 

Garrett's students.  This is fungal DNA from soil samples.  There are 37 samples and 799 OTUs.  

Among the individual counts, 91.3% are zeros and, of the nonzeros, 56.2% are singletons. 

Neshmi's Data: These data were generated by Neshmi Salaues Mendoza, one of the off-

campus participants in Dr. Garrett's workshop.  It is bacterial DNA with 30 samples and 21,620 

OTUs.  Among the individual counts, there are 91.3% zeros and, of the nonzeros, 63.0% are 

singletons. 

 
 

Data Set AJ Leaf AJ Soil Lorena Neshmi 

Number of Samples 34 238 37 30 

Number of OTUs 598 2,422 799 21,620 

Number of Zeros 17,704 554,971 26,985 591,988 

Percent Zeros 87.1 96.3 91.3 91.3 

Number of Individual Singletons 662 10,442 1,450 35,681 

Percent of Nonzeros that are Singletons 25.2 48.6 56.2 63.0 

Total Count 46,179 154,195 17,428 154,112 

Table 3.1: Summary of Four Data Sets 
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3.1.1. Site Totals 
According to Dr. Garrett (personal communication, July 2011), there should be 

approximately equal numbers (OTU counts) in each sample, and that excessive variation in these 

counts may indicate problematic DNA extraction and/or PCR amplification.  The histograms in 

Figure 3.1 show the wide variation of sample (site) totals in each data set.  Lorena's data indicate  

one site with a distinctly low total, but the remaining site totals appear approximately 

symmetrically distributed.  Neshmi's data set shows a slightly skewed distribution, and contains 

what could be one small and 2 (or perhaps 4) large sites.  The leaf data are not symmetric, but 

there do not appear to be any extreme outliers.  The soil data are unique in both the range of site 

totals and the handful of extremely large values.     

It is fairly clear, even without any statistical tests, that the one small sample in Lorena's 

data is inconsistent with the remaining site totals in that data set.  Lorena has indicated that this 

sample will be discarded.  A similar situation occurs in soil data, but in this data set a few 'overly' 

large site totals appear to be incompatible with the rest.  Unlike Lorena's data, the soil data 

contain no clear separation between acceptable and unacceptable site totals, thus some form of 

systematic investigation is warranted.  For both Neshmi's data and the leaf data, there appear to 

be obvious signs of outliers. 

To better assess the differences in the empirical distributions of the site totals, particularly 

the small site totals, we now consider a logarithmic transformation.  The histograms are shown in 

Figure 3.2.  Lorena's data, excluding the one small sample, are similar in shape to the leaf data.  

Neshmi's data show two 'large' samples, although this interpretation is subjective.  The soil data 

are unique due to its numerous small samples, which were not apparent until the data were 

log-transformed.   For the soil data, the median sample count is 606, but there are 12 sites (out of 

238) that each have total count less than 100, and the smallest of these is only 7.  Sites with such 

small totals cannot be directly compared to a site with 600 sequences.  Samples that are too small 

are considered not viable and should be removed from the data set, but it is currently unclear at 

what point a site total is too small to be considered viable.  These determinations are not 

regularly reported in published articles, although Jumpponen and Jones (2010a) and Jumpponen 

et al. (2010b) report using one-way ANOVA to test for equitable site totals across experimental 

conditions.  In both cases, no significant differences in site totals were detected. 
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Figure 3.1: Distribution of Site Totals for Four OTU Data Sets 
Site totals should be approximately equal, and extreme imbalances may indicate 
problematic DNA extraction or amplification.  Sites with small site totals are 
usually discarded.  Sites with large site totals can be rarefied for comparison to 
sites with smaller totals.  See the text for details on rarefaction. 
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Figure 3.2: Distribution of the Logarithm of Site Totals 
A logarithmic transformation reveals different patterns in the distribution of site 
totals.  In the soil data, for example, there are many sites with extremely small 
totals.  This pattern is not evident until the data are transformed.  

As shown in the previous histograms, site totals that are too small may not be clearly 

distinguished when examining the raw site totals.  A logarithmic transformation is well suited to 

separate the small values, but this will tend to obscure unreasonably large values.  Rather than 

binning the logarithmic site totals to create a histogram, it may be beneficial to view these values 

in comparison to the number of unique OTUs in the site.  Graphs for the four data sets are shown 

in Figure 3.3.  Lorena's single small sample is clearly shown an unusual point, while neither 

Neshmi's data nor the leaf data indicate unusual site totals.  The soil data, in contrast, show many 

'suspicious' points, as indicated by the long tail to the left.   It is possible that these small samples 

occur by chance alone, since the soil data contain approximately six times the number of samples 
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as the other data sets.  Note that the logarithmic scale obscures the large site totals in the soil 

data. 

 

 

Figure 3.3: Species Richness (Number of OTUs) and Site Abundance 
Each point represents one site (one sample), and shows the number of distinct 
OTUs observed at the site versus the total abundance for the site. Site totals are 
given in logarithmic scale. 

We can also use side-by-side boxplots to compare the distributions of site totals in these 

four data sets.  The measures of center (the median) for these four data sets are quite different, 

from a low of 475 in Lorena's data to a high of 5089 in Neshmi's data.  To facilitate comparison, 

we standardize the values within each data set by subtracting the median and dividing by the 

interquartile range.  The distributions of the standardized totals are shown in Figure 3.4.  

Lorena's single small sample is clearly shown as an outlier, as are two large samples in Neshmi's 
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data. Note that this plot completely obscures the numerous small samples in the soil data, most 

likely because this data set contains both large and small samples, and the small values are 

truncated at zero while the large samples have no upper bound.     

 

Figure 3.4: Standardized Site Totals 
For each data set, the total abundance for each site is standardized by subtracting 
the median and dividing by the interquartile range. 

3.1.2. Detecting Outliers in Site Totals 
Although it is recognized that extreme variations in site totals is undesirable, there 

appears to be no obvious method for detecting outliers in these totals.  Graphs such as those in 

the preceding subsection can assist in identifying potential outliers, but they provide no statistical 

basis for identifying a site total as an outlier.  It is known that variations in PCR amplification 

can have a direct impact on site totals, but it is unclear if there is a theoretical basis for an 

underlying probability distribution for these totals, which would give rise to a parametric 

statistical testing procedure.   Currently, sites with low totals are deemed improperly amplified 

and are simply discarded,  and sites with overly large totals are rarefied in order to estimate 

species richness.  It is unclear if any other accommodations are made for large site totals.  In 
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addition, the determination between acceptable and unacceptable site totals appears to be made 

on a subjective basis.  

Although the histograms indicate that the site totals are not normally distributed, a test for 

equal site totals using ordinary analysis of variance was performed.  For both Lorena's data and 

the leaf data, we compared two types of sites (Umala vs. Ancoraimes for Lorena's data and 

Urban vs. Rural for the leaf data).  For the soil data, we translated the three-way factorial 

experimental design into a one-way design and compared the site totals for each of the 24 

combinations.  We did not perform this test on Neshmi's data because we do not have 

information regarding the experimental factors so there are no groups to compare.  The normal 

probability diagnostic plots from ANOVA are shown in Figure 3.5.  Other than the one small 

sample, the plot for Lorena's data shows no obvious signs of departure from normality.  In 

contrast, both the soil data and the leaf data show that the assumption of normality is not 

reasonable. 

 
 Lorena's Data AJ Soil Data AJ Leaf Data 

 

Figure 3.5: Diagnostic Normal Probability Plots from ANOVA 
The normal quantile-quantile plots from ordinary analysis of variance indicate 
that the assumption of normal errors may not hold for some OTU data sets.  In 
particular, both the soil data and the leaf data show obvious departures from 
normality. 

Since the assumption of normality is not satisfied, the ANOVA p-values cannot be 

trusted for either the soil data or the leaf data.  For comparison, we perform the same test using 

the  Kruskal-Wallis procedure.  Since this is a nonparametric test, it does not produce a 

diagnostic normal probability plot.  The results are reported in Table 3.2. Note that the leaf data 
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set is not significant under either test and that Lorena's data set is significant under both tests.  

The soil data set is only marginally significant under ANOVA (p-value 0.052), but is significant 

under Kruskal-Wallis (p-value 0.010).  Given the appearance of the normal probability plot, a 

determination based on the nonparametric test may be more valid. 

 

 ANOVA Kruskal-Wallis 

 df F p-value df KW p-value 

Lorena's Data 1, 35 4.837 0.035 1 11.440 0.001 

Soil Data 23, 214 1.572 0.052 23 41.552 0.010 

Leaf Data 1, 32 1.464 0.235 1 0.898 0.344 

Table 3.2: Results of Tests for Equal Site Totals 
 

The ANOVA procedure is testing for equality of 'average' site totals under the various 

experimental conditions, while the Kruskal-Wallis procedure is testing for equality in the 

complete distributions of site totals.  Neither of these procedures is specifically testing for 

outliers. Delete-1 diagnostic statistics can be computed to gauge the effect of each value, but this 

will most likely fail to detect clusters of outliers such as the low site totals in the soil data.  

Further aspects of this approach have not been explored at this time.  Section 3.1.5 will present a 

potential method for adjusting outliers, and Section 3.4 a possible statistical technique for 

detecting them. 

3.1.3. OTU Total Abundances 
We now consider the distribution of total counts (abundances) for each OTU across all 

samples.  In the ecological literature, these are called species abundance distributions, and the 

models can be divided into two categories (Magurran, 2004).  Biological models attempt to 

explain the interdependencies between species and their relation to the environment by relating 

the types and availability of resources in an environment to the species that inhabit the 

environment.  In contrast,  statistical models simply describe the assemblage of species by fitting 

a probability model to the observed abundance data.   Biological models used most often in the 

ecological literature are based on observed macroscopic organisms, such as the number of birds 

in a given geographic area, and are applied to pyrosequence data by treating each OTU as a 
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species.  It is currently unknown if the biological mechanisms that control macroscopic species 

abundances are applicable to microscopic OTU abundances.  For this reason, we concentrate on 

statistical models of species abundance distributions. 

Species that are commonly found will necessarily have a different distribution than rare 

species.  For macroscopic organisms, common and rare species are differentiated by their 

prevalence, that is, the number of samples in which the species is found.  Common species (also 

called core species or residents) occur in many samples and rare species (also called satellites, 

migrants, or occasional species) are found in fewer samples.  Total abundance for common 

OTUs is usually assumed to follow a lognormal distribution, while rare OTUs are modeled with 

a log series distribution (Fisher et al, 1943).  Both of these distributions predict the proportion of 

OTUs that have a specified total abundance; they are not currently used to predict the abundance 

of a single OTU.  Details of the log series distribution are provided in Appendix B. 

   Following the method of Magurran and Henderson (2003), core OTUs were separated 

from satellite OTUs based on a 50% persistence threshold.  OTUs that occur in at least 50% of 

the samples are categorized as core OTUs and the rest are considered rare.  This can be 

visualized in Persistence-Abundance plots, shown in Figure 3.6.  For these plots, persistence is 

defined to be the number of sites in which the OTU occurs and abundance is the maximum 

abundance of the OTU in any one site.   

These plots clearly reflect the differences in the dimensions of these data sets.  The leaf 

data and Lorena's data are roughly equivalent in terms of both number of sites and number of 

OTUs, but the number of OTUs in Neshmi's data is an order of magnitude larger, and the number 

of sites in the soil data is roughly six times larger than the other data sets.   The dashed vertical 

lines indicate the 50% persistence threshold, but it is difficult to identify any separation along the 

horizontal axis, so the classification of rare and core species is ambiguous.   This is particularly 

true for Neshmi's data, in which no separation is apparent.  Also note the appearance of the soil 

data graph, which is substantially different than the other three.  This may be caused by the 

larger number of sites in this data set, but the wide variation in site totals may also be a factor.    

The 50% persistence threshold appears misplaced in the soil data graph, but there are 238 sites in 

this data set and  the most persistent OTU occurs in only 183 sites.  In each of the other data sets, 

the most persistent OTU occurs in every site. 
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Figure 3.6: Persistence-Abundance Plots 
Each point represents one OTU, a surrogate for species.  The x-axis is the number 
of sites  in which the OTU is present and the y-axis is the maximum abundance for 
the OTU in any one site.  Note the logarithmic scale on the y-axis, which assists in 
visually discriminating between the many low abundances and the few large 
abundances. 

Using the 50% threshold, the OTUs in each data set were categorized as either core or 

rare.  To assess the validity of these assignments, a log series distribution is fit to each group and 

the goodness of fit is evaluated via both a chi-square test and by a Kolmogorov-Smirnov test.   

Since abundance data are strongly right-skewed, it is customary in ecological applications 

to apply the chi-square test to abundance octaves rather than to the raw abundance values.  This 

procedure is described in Magurran (2004, page  216) and Krebs (1999, page 430).  To create the 

octaves, the abundance values are log-transformed (using base 2) and the octave boundaries are 

positive integers.  The observed abundances for the OTUs and the abundances predicted by the 

log series distribution are each binned into to the octaves.  To assess the fit, we treat each octave 

as a category (i.e. a table cell) and compare the observed and expected number of OTUs in each 

category.  These calculations were conducted in the R programming language (R Development 
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Core Team, 2009) using the package vegan (Dixon, 2003).  The OTU abundance data are very 

strongly right-skewed, so that some abundance octaves contained no OTUs.  Thus some cells 

contain a value of 0.  This presents difficulties for the  chi-square test because the asymptotic 

chi-square distribution is less accurate when cell values are small.  To improve the accuracy, a 

continuity correction of 0.5 was added to each cell before performing the chi-square test.  

The Kolmogorov-Smirnov test uses the raw abundance values and does not bin these into 

octaves.  The test statistic is the maximum difference between the empirical cumulative 

distribution function (ECDF) and the CDF of the proposed log series distribution.  This test was 

conducted in the R Programming Language, using the function ks.test.  This function utilizes 

a permutation procedure to obtain a p-value for the test, and the accuracy of the p-value depends 

on having no tied values (OTU totals) in the data.  Among the rare OTUs, which occur 

infrequently and in small numbers, there are usually a large number of tied OTU totals.  Thus the  

performance characteristics of the Kolmogorov-Smirnov test may need to be scrutinized, 

especially for rare OTUs.     

The p-values for these tests are provided in Table 3.3.  Each of these tests is a goodness 

of fit test to the log series distribution, so that small p-values indicate the log series distribution is 

not an accurate probability model for the data.  We would expect small p-values for the core 

OTUs and large p-values for the rare OTUs, but this did not occur.  Only three p-values are not 

significant at α = 0.05, and all three occur for the core OTUs, where we had expected to find 

small p-values.   

The results of the chi-square test suggest that the core OTUs in Lorena's data and AJ Soil 

data follow a log series distribution, and that all of the other groups of OTUs follow a different 

distribution.  However, it is known that the chi-square test does not perform well when the cell 

counts are small, and the two largest chi-square p-values (0.9850 and 0.4522) are based on only 

4 and 11 OTUs, respectively.  When these are dispersed among the abundance classes (octaves), 

the cell counts are too small for the chi-square test to be reliable.  Another difficulty with the 

chi-square test is that the counts can be too large.  For example, there are 20,963 rare OTUs in 

Neshmi's data, classified into 8 octaves, while Lorena's data has 788 rare OTUs classified into 10 

octaves.  Neshmi's chi-square test statistic will be much larger than Lorena's, but it will also have 

fewer degrees of freedom.  The result is a p-value of nearly zero, such as those in Table 3.3. 
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  Core OTUs Rare OTUs Combined 
 number of OTUs 11 788 799 

Lorena's Data chi-square 0.4522 0 0 
 K-S 0.0473 0 0 
 number of OTUs 657 20,963 21,620 

Neshmi's Data chi-square 0 0 0 
 K-S 0 0 0 
 number of OTUs 33 565 598 

AJ Leaf Data chi-square 0 0 0 
 K-S 0.0001 0.0001 0 
 number of OTUs 4 2,418 2,422 

AJ Soil Data chi-square 0.9850 0 0 
 K-S 0.0713 0 0 

Table 3.3: P-values for Goodness-of-Fit to Log Series Distribution 
Each OTU is classified as either rare or core using a 50% persistence threshold.  
Each group is tested for a log series distribution using both the chi-square and 
Kolmogorov-Smirnov tests.  The number of OTUs in each group is the sample size 
for the test.  The large number of rare OTUs gives these tests considerable power, 
resulting in near-zero p-values for all data sets.  The opposite is true for core 
OTUs:  the relatively small number of core OTUs may be generating p-values 
that are too large. 

To investigate why the Kolmogorov-Smirnov p-values are so small, we take a closer look 

at the leaf data.  The empirical cumulative distribution functions, shown in Figure 3.7, compare 

the observed OTU abundances to the abundances predicted from a log series distribution.   The 

maximum difference between the observed and hypothesized CDFs is the test statistic for the 

Kolmogorov-Smirnov test.  While there are clear differences between the ECDFs of the core 

OTUs, differences in the rare OTUs are obscured due to the large number of rare OTUs, as 

determined by the 50% persistence threshold.  In spite of this, the p-values for these two tests are 

nearly identical.  For the core OTUs, the K-S test statistic is D = 0.4848, with p-value 0.000855 

and for the rare OTUs, the K-S test statistic is D = 0.1168, with p-value 0.000897.  This p-value, 

however, relies on having no ties in the data.   This is not true for OTU abundance data, 

particularly for the rare OTUs whose abundance values are usually smaller.  For the leaf data, 

there are 565 rare OTUs, but only 90 distinct abundance values.  Thus there are numerous ties in 

the data, and the accuracy of Kolmogorov-Smirnov test is questionable.   Most of the tied values 

are small abundances (less than 15), so it is possible the removing OTU singletons and additional 

data pre-processing may reduce the number of ties. 
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Figure 3.7: Empirical CDFs for OTU Abundance 

Predicted values are from the log series distribution. The maximum difference 
between observed and predicted is the test statistic for the Kolmogorov-Smirnov 
test.  The large number of rare OTUs (565 in the leaf data) visually obscure the 
differences and give the Kolmogorov-Smirnov test extremely large power for 
detecting very small differences. 

Another difficulty with the Kolmogorov-Smirnov test stems from the computing 

capabilities of the function ks.test in the R Programming Language.  For one-sample 

problems such as ours, ks.test  requires the vector of observed values and a named probability 

distribution, along with its associated parameters.  The log series distribution is not a standard 

distribution in the R language, so this test was implemented as a two-sample problem in which 

the named probability distribution is replaced by a randomly generated vector from the log series 

distribution.  Parameters for the log series distribution were generated from the observed data.  

We realize that this is not a ideal solution, and the validity of this approach was tested on 

simulated data.      

To explore the accuracy of both the chi-square and Kolmogorov-Smirnov tests, we 

performed a small simulation.  Abundance data for rare OTUs were generated as log series and 

core OTUs were generated as lognormal.  Each of these was tested against a log series 

distribution using both the chi-square and Kolmogorov-Smirnov tests.   Parameters for the 

lognormal distribution were chosen to match the mean and variance of log series distribution 

with parameter θ = 0.995.  Each test was repeated 100 times, using a randomly generated vector 
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of length 500 following the designated distribution.  The results, given in Table 3.4, are testing 

the null distribution is the log-series distribution.  Both the chi-square and Kolmogorov-Smirnov 

tests performed well, but the chi-square test has significance level 0.08 instead of 0.05.  Not 

surprisingly, the chi-square test also has higher power for detecting the lognormal distribution.  

Based on these limited results, we conclude that both of these tests are performing adequately, 

provided there are no ties in the data.  For Type I error control we prefer the Kolmogorov-

Smirnov test.  

 
 proportion of  

rejected tests 
True Distribution 2χ  K-S 

log series (θ=0.995) 8% 0% 
lognormal (µ=40, σ=80) 96% 83% 

Table 3.4: Goodness of Fit Tests on Simulated Data  
Both the chi-square and Kolmogorov-Smirnov tests have sufficient power for 
detecting that a randomly generated lognormal sample is not a log series, but the 
chi-square test is level 0.08 instead of the intended 0.05. 

Since both tests seem to be adequate when applied to simulated data, we return to the 

four OTU data sets and visually assess the fit by comparing the observed and fitted values.  

These graphs, shown in Figure 3.8, indicate that the log series distribution fits the rare OTUs 

better than the core OTUs.  However, the log series distribution fails to capture the extreme 

height in the lower octaves of the rare OTUs.  This lack of fit may diminish when the singletons 

are removed from the data.  Although not conclusive, these results bring into question the 

validity of using the log series distribution to model rare OTU abundances.  It is possible that a 

different distribution or a mixture distribution  is needed, or perhaps the size of the octaves could 

be adjusted (by altering the base of the logarithm) to obtain a better fit.  A similar procedure 

could be used to assess the suitability of the lognormal distribution for core OTUs, but this issue 

has not been addressed at this time. 

These tests highlight some critical differences between OTU data sets and the data 

collected on macroscopic species, so that methods applied to macroscopic data may not be 

applicable to OTU data.  Some key differences are 
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• Customary probability models for species abundance distributions do not capture 

the extreme variability in OTU data. 

• The 50% persistence threshold for common/rare classification does not 

accommodate the large proportion of zeros in OTU data. 

• Traditional goodness-of-fit test are inadequate due to the high dimensionality and 

sparseness of OTU data. 

 

These results illustrate that the procedures and assumptions regarding macroscopic 

species abundance data cannot be directly applied, without consideration, to OTU abundance 

data.  Perhaps the 50% threshold needs to be shifted to better discriminate between common and 

rare OTUs, or perhaps a different criterion is needed.   This is discussed in more detail in 

Section 3.3.  Another concern is the suitability of the chi-square and Kolmogorov-Smirnov tests 

to perform accurately on OTU data, which is characterized by its extreme skewness and large 

dimension.    The difficulties in evaluating the goodness of fit tests have been addressed by other 

authors, for example Mouillot and Lepretre (2000), who note that the observed data often fit 

either all of the proposed probability models or none at all.   
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Figure 3.8: Observed vs. Predicted OTU Abundance Patterns 
Abundance classes (octaves) are represented on the x-axis with number of species 
on the y-axis.  Predicted values are from a log series distribution. 
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3.1.4. OTU Singletons 
Singletons occur when a particular DNA sequence is detected only once at a site.  As 

discussed in Section 2.2, the presence of singletons in a data set can have a profound impact on 

the estimate of species richness and subsequent measures of diversity, and thus warrant special 

attention.  They are generally perceived to be the result of sequencing errors, but they could 

represent an extremely rare species.   Typically, OTU data sets contain only a small proportion of 

nonzero counts, but many of these are singletons. In Lorena's data, for example, only 8.7% of the 

counts are greater than zero, but over half of these (56.2%) are singletons.        

To explore the impact of singletons, we examine the soil data.  This data set was chosen 

because it contains the smallest percentage of nonzero counts (3.7%), and nearly half of these are 

singletons.  For each singleton, we examine the context of the singleton by considering the 

counts for the same OTU at the other sites.  We are concerned with the number of other sites at 

which this OTU occurs and whether or not these other occurrences are also singletons.  This 

information can serve as a basis for deciding whether the OTU represents a sequencing error 

(which should be removed from the data) or a 'real' OTU which should be kept in the data. 

The soil data contains a total of 10,442 singletons.  Each of the 238 sites has at least one 

singleton, and 2001 of the 2422 OTUs occur as a singleton in at least one site.  There are 657 

OTUs that occur only as singletons, that is, these OTUs were either not detected or detected only 

once at each site.  There are an additional 1344 OTUs that occur in some sites as singletons, but 

also occur in greater number at some sites.  The remaining 421 OTUs never occur as singletons. 

We first examine the 657 OTUs that occur only as singletons.  The combined count for 

these OTUs is 1,833 of the total 10,442 singleton counts.  The distribution of occurrences of 

these 657 OTUs is shown in Figure 3.9.   Note that 56 of these OTUs occur at only one site.  

Thus in the entire data set, each of these OTUs occur only once and they occur as a singleton.  A 

strong argument could be made for attributing these to sequencing errors, and eliminate these 

OTUs from the data set.  It is less clear, however, how to interpret remaining OTUs that occur at 

two or more sites, but each occurrence is a singleton.  For example, there is one OTU that occurs 

(with a count of one) at 12 sites.  It is unclear whether this should be interpreted as an extremely 

rare OTU (that is present at 12 sites) or as a sequencing error that occurred 12 times. 
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Figure 3.9: OTU Singletons in the Soil Data 
Distribution of the 657 OTUs that occur only as singletons in the soil data.  For 
example, there are 56 singleton OTUs that each occurred exactly one time in 
exactly one sample (one site), while 345 OTUs occurred exactly one time in two 
different sites.  Note that one OTU was detected at exactly 12 sites and was 
recorded as a singleton at all 12 sites.   

A more complicated pattern of singletons emerges when we broaden our attention to  the 

1344 OTUs that occur as singletons, but also occur at other sites in greater numbers.  These 

singletons account for 8,609 of the total 10,442 singletons.  Since these OTUs occur in other 

sites with larger counts, it is of interest to compare the occurrence of singletons and 

nonsingletons for these OTUs.   These are shown in Table 3.5.  This characterization is harder to 

describe, but in general, OTUs that occur as a singleton in a small number of samples are also 

likely to occur as a nonsingleton in a small number of samples.  For example, the upper left cell 

in Table 3.5 indicates that 752 OTUs occur as singletons in 5 or fewer sites, and these same 

OTUs occur as nonsingletons in 5 or fewer sites.  The bottom right cell indicates that 51 OTUs 

occur as singletons in more than 20 sites, and also occur as nonsingletons in more than 20 sites.   
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  Number of Sites at which OTU occurs with count >1  
  1-5 6-10 11-15 15-20 >20 Total 

Number of Sites 1-5 752 61 11 9 4 837 
at which 6-10 149 59 23 9 17 257 

OTU occurs  11-15 31 38 20 6 31 126 
as a 16-20 5 10 7 8 24 54 

Singleton >20 2 7 6 4 51 70 
 Total 939 175 67 36 127 1344 

Table 3.5: Number of Nonzero Counts for Mixed OTUs in the Soil Data 
In the soil data, 1,344 of the 2,422 OTUs occur as a singleton in at least one site 
and also occur as a nonsingleton in at least one site.  These are called mixed 
OTUs, and are classified according to the number of times (number of sites) they 
occur as a singleton and the number of times they occur as a nonsingleton.  OTUs 
that occur often as a singleton but rarely as a nonsingleton may represent 
sequencing errors, which should be removed from the data. 

It is unclear what guidelines should be used to determine whether these singletons should 

be kept or discarded.  It seems intuitive that OTUs that occur in a small number of sites, and 

occur only as singletons at those sites, are most likely the result of sequencing errors and should 

be removed from the data.  But if an OTU occurs in some sites as a singleton and in other sites as 

a nonsingleton, the decision is not as straightforward.  The options include:  

(1) Remove all individual counts of one and then remove the OTUs that are no longer 

observed at any site.  For the soil data, this would eliminate 657 of the 2,422 OTUs 

and reduce the total count in the data set by 10,442, a reduction of 6.8%.  

(2) Remove all OTUs that occur only as singletons.  For the soil data, this would 

eliminate 657 OTUs, but would remove the counts only for these OTUs.  The 

reduction in total count is 1833, or 1.2%. 

(3) Remove all OTUs that occur only as singletons and meet another minimum threshold 

requirement.  The additional requirement could specify a the number of sites at which 

the OTU occurs, or could specify a minimum total count for the OTU.     

These options are further complicated by the fact that a sequencing error could be 

duplicated, resulting in counts of two or more for a 'phantom' OTU.  This could occur, for 

example, if the target DNA (the 'true' OTU) contains homopolymers which are routinely 

mis-called by the base calling software, as discussed in Section 1.2.2.2.  Multiple errors could 
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also be the result of variation in PCR amplification.  With these considerations, it is not only the 

singletons that are problematic, but other small counts may need to be scrutinized as well. 

3.1.5. Outliers in Individual Abundances 
Much of the preceding work has focused on marginal analysis, that is, row (site) totals 

and column (OTU) totals of the abundance matrix.  The individual entries in the matrix, 

representing the abundance for a particular OTU at a particular site, are more difficult to 

characterize because the matrix contains so many zeros.  The nonzero values are highly skewed, 

with numerous small values punctuated by occasional extremely large values.  A comparison of 

the 95th to 100th percentiles, Table 3.6, clarifies this point.  For example, in the soil data there 

are 21,465 nonzero values in the matrix.  Among the nonzeros, 95% of the values are 19 or less, 

and 99% are less than 105, but there is at least one value of 2739.    

 
Percentile Lorena Neshmi AJ Leaf AJ Soil 

95% 29 9 78 19 
96% 37 10 97 25 
97% 53 13 124 34 
98% 81 17 175 54 
99% 122 26 296 105 

maximum 253 292 962 2739 

Table 3.6: Upper Percentiles of Individual Nonzero Abundances 
The extreme skewness of individual OTU abundances can be seen in the upper 
percentiles of the distribution.  In Neshmi's data, for example, 95% of the nonzero 
entries in the OTU abundance matrix are less than 9, but the largest value is 292.  
Similar disparities occur in all four data sets. 

A plot of the 50 largest individual values in the soil data, shown in Figure 3.10, clearly 

shows the separation between the largest and second-largest value in this data set.  It is difficult 

to interpret such a large value, when the majority of other values are so small.  Could this 

represent an OTU that has completely dominated a site, or is this value artificially inflated as a 

result of, perhaps, PCR amplification?   Regardless of the cause, the existence of a small number 

of extremely large values has implications in all statistical analyses.  The values can cause 

excessive variation in both the row (site) totals and column (OTU) totals, which creates difficulty 
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in fitting probability models to these totals.  Excessively large values can also distort distances 

between the sites or between the OTUs.   

 

 

Figure 3.10: Twenty-five Largest Individual Abundances in the Soil Data 
Each point represents an individual OTU abundance (the count for a particular 
OTU at a particular site).  These 25 abundance values comprise only 0.1% of all 
the nonzero values in the soil data.  Excessively large values will dominate the 
statistical analysis and obscure the contribution of the lesser abundance values to 
ecological diversity measures.    

One possible method for mitigating the effect of excessively large counts is to simply use 

rank abundance instead of the actual abundance values.  This approach is not deemed practical 

for OTU data, given the large number of ties among the lower abundance values.  As an 

alternative approach, we develop an algorithm that reduces the values of the excessive counts 

while maintaining the rank order relationship among all related counts.  For our purposes, a 

'related' count is any count for (1) the same OTU or (2) the same site or (3) any site that shares at 

least one  environmental and/or experimental condition with the large count.  For example, if one 

large count was detected for OTU a  at a site that had been subjected to treatment conditions T1 

and T2, the related counts include all counts for OTU a (regardless of the site), and all counts for 

all OTUs at the sites that experienced either treatment T1 or T2.  For brevity, the collection of 

related counts is called a 'cohort'.  
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Algorithm for Reducing Overly Large Individual Counts 

1. Specify the user inputs: 
a) N =  the number of large counts to examine 
b) P  = the proportion of separation to maintain between counts 
c) the factors that define the cohorts 

2. Identify the N largest individual OTU counts. 
3. For each large count C,  

a) Identify the next largest count in the cohort; call this count M 
b) If the ratio C/M  is less than 1 + P, then do not change the current count.  Go to 

Step 3 and get the next "big" count. 
c) If the ratio C/M  is greater than 1 + P, then change the current count so that it is 

P% more than M . 
4. Go to Step 3 and get the next "large" count. 
5. When all N counts have been processed, repeat Step 3.  Continue repeating Step 3 

until there are no changes to any of the N counts. 

 
This algorithm was applied to the soil data.  The twelve largest counts in the data set 

(which are the counts greater than 1000) were targeted for potential reduction, maintaining a 

separation of  P = 10%.  After six iterations, the seven largest counts were reduced, but the 

remaining counts were unchanged.  A summary of each iteration is given in Table 3.7.  Six of the 

changed counts were for OTU 2023, and the total count for this OTU was reduced by 1925.  The 

only other OTU affected is OTU 1173, which was reduced by 114.   Each of the seven changed 

values occurred in different sites, so only seven site totals were affected.  Changes to the site 

totals, shown in Figure 3.11, indicate a clear reduction in the skewness of this distribution.  The 

reduction may be insufficient, however, in that the lesser counts may still be dwarfed by the 

excessive counts.  A more robust reduction technique is presented in Section 4.1. 
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 Iterations  

Site OTU Count 1 2 3 4 5 6 Reduction 
06_4_040 2023 2739 1849 1781 1781 1781 1708 1621 1118 
05_3_040 2023 1681 1619 1619 1619 1553 1474 1474 207 
09_2_060 2023 1472 1472 1472 1412 1340 1340 1340 132 
06_4_060 2023 1437 1431 1284 1218 1218 1218 1218 219 
06_1_040 2023 1301 1167 1107 1107 1107 1107 1107 194 
02_3_020 1173 1121 1007 1007 1007 1007 1007 1007 114 
10_4_040 2023 1061 1006 1006 1006 1006 1006 1006 55 
09_2_020 2023 915 915 915 915 915 915 915 0 
09_2_040 2023 861 861 861 861 861 861 861 0 
02_4_040 2269 808 808 808 808 808 808 808 0 
09_4_060 2023 797 797 797 797 797 797 797 0 
07_3_100 2072 779 779 779 779 779 779 779 0 

Table 3.7: Results of Algorithm for Reducing Large Counts 
After 6 iterations, the largest individual count in the soil data was reduced from 
2739 to 1621, and the second-largest count was reduced from 1681 to 1474.  
Twelve individual counts were targeted for reduction, but only seven were 
actually reduced.  

 

 

Figure 3.11: Downward Shift of Site Total Abundances 
The shaded histogram represents the distribution of total site abundances before 
the adjustment and the histogram with the cross-hatches indicates the distribution 
after the adjustment. 
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3.2. Applying Logratio Analysis to OTU Abundance Data 
As discussed in Section 3.1.1, the mechanisms by which OTU abundance are generated 

should produce site totals that are roughly equivalent.  To accommodate random fluctuations in 

these totals, some researchers prefer to analyze relative frequencies rather than the raw 

abundance values.  The relative frequencies are defined to be the proportional abundances at 

each site, so that the total relative abundance at each site is equal to one.   Whenever relative 

frequencies are used, the analysis should take into account the constrained nature of these values.  

This is accomplished with compositional data analysis, in particular logratio analysis, as 

presented in Appendix D.  There are many considerations in applying logratio analysis to OTU 

data.  Some of these issues are addressed below.    

3.2.1. Zeros  
Logratio analysis requires that all data values be strictly positive, but OTU data typically 

contain 90% or more zeros.  Logically, it seems that we could combine (amalgamate) some of 

the OTUs to reduce the number of zeros.  It also seems logical that we could use taxonomic 

classification (species-genus-family or higher orders)  to perform this amalgamation.  

Unfortunately, it seems that there is not currently a clear mapping between DNA sequences and 

taxonomy and that amalgamation would introduce too much uncertainty in the data (Jumpponen,  

personal communication, Fall 2011).   Another method for eliminating zeros is simply to replace 

each zero with a small positive value.  This approach treats each zero as a missing value, and 

imputes an appropriate replacement value based on the remaining data.  Although many 

zero-replacement strategies have been proposed, they address only 'rounded' zeros.  That is, they 

assume the actual abundance for each OTU at each site is a positive value, but is too small to be 

detected.  Many of the zeros in an OTU data set are 'structural' zeros, that is, these a zero occurs 

because an OTU is not present at a site.    Thus a zero in an OTU data set conveys important 

information, and should not routinely be replaced with a positive value.    

3.2.2. Spurious Correlation 
The primary reason for considering logratio analysis for relative frequency data is that the 

data are constrained by a common sum (the site total), so that the relative frequencies are not 

independent even when the original abundances are independent.  The dependency created by the 
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sum-to-one constraint is called spurious correlation, and the methods of logratio analysis are 

designed to accommodate this correlation so that any 'true' correlation can be revealed.   

The effect of spurious correlation can be seen in the following example.  Let the random 

variables X, Y and Z represent the raw abundances for three OTUs and suppose that they are 

mutually independent.  Divide each raw abundance by the sum (X+Y+Z), to create the 

compositional vector of relative frequencies (C1, C2, C3).  Any correlation between the C's will 

be spurious correlation, since the elements of the original vector are presumed to be independent.  

To illustrate, we simulate 1000 independent and identically distributed samples of size 200 for 

each of X, Y and Z, following a gamma distribution with shape 2 and scale 250.  (These 

parameters were chosen to mimic the shape of OTU abundance data).  Each (X, Y, Z) triple 

represents one of the 200 sites, but when viewed across sites the collection of 200 values for X 

represent a random sample of 200 abundances for the first OTU, with a similar interpretation for 

Y and Z.  We use these 200 values to calculate the pairwise correlations between the original 

random variables and the pairwise correlations between the corresponding relative frequencies.  

This provides 1,000 simulated values for each correlation.  The distributions of these correlations 

are shown in Figure 3.12.  Since the raw abundances (X, Y, Z) are independent, their pairwise 

correlations are, as expected,  centered at 0.  In contrast, the correlation between relative 

abundances are all negative, and centered at approximately -0.5.  This is the spurious correlation. 

The most extreme case of spurious correlation occurs when there are only two OTUs.  In 

this case, the vector of raw abundances at a site is 1 2( , )x x  and the relative abundances are 

( )1 2
1 2 1 2 1 2

( , ) ,x x
x x x xp p + += .  Regardless of the relationship between 1x  and 2x , we have 1 2 1p p+ =

so that 1 2cor( , ) 1p p = − .  The preceding simulation illustrates that when a third OTU is included, 

the correlation between proportions is not as strong, but is still negative.  We know that typical 

OTU data sets contains hundreds, perhaps thousands, of OTUs.  Does this large dimension 

reduce spurious correlation to a negligible value?  We explore this question with another 

simulation.   
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Figure 3.12: Spurious Correlation for Three OTUs 
The top row of histograms show the sampling distribution of the correlation 
between independent vectors,  based on 1000 replications of three random vectors 
(X, Y, Z).  Each vector has length 200.  The bottom row of histograms show the 
sampling distribution of the spurious correlation between the elements of the 
corresponding compositional data vectors.   

To investigate the degree to which the number of OTUs affects the magnitude of spurious 

correlation, we performed a series of simulations.  The number of OTUs was varied from 50 to 

2000. Each simulation contained 200 sites and each OTU abundance at each site was generated 

independently from a mixture distribution  

0 0(0.1, 1) (1 ) (0.1, 50)gamma gammaπ π⋅ + − ⋅  
with 0π = 0.80.  These parameters were chosen to mimic the leaf data, discussed in Section 3.1.  

For each collection of OTUs, the correlation between raw abundances is compared to the 

correlation between the corresponding proportions.  The results, shown in Figure 3.13,  are for 

Pearson's correlation.  Similar results were obtained for Spearman's correlation and for Kendall's 

tau.  These graphs illustrate that, as the number of OTUs increases, the correlation between 

proportions approaches the raw correlations.  Thus the spurious correlation diminishes as the 

number of OTUs increases. 
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  50 OTUs                500 OTUs                      1000 OTUs          2000 OTUs 

 

Figure 3.13: Simulated Spurious Correlation as the Number of OTUs Increases 
Each point represents one pair of OTUs.  Correlation between raw abundances is 
on the x axis and the correlation between the proportions (relative frequencies) is 
on the y axis.  The line indicates where these correlations are equal. 

In addition to the simulation results, under certain distributional assumptions it is possible 

to express the spurious correlation as a closed form expression.   

 

Result 3.2:   
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The derivation of this result is given in Appendix D.  Note that the correlation is negative 

and that it does not depend on the common scale parameter.  Both of these results are intuitive.  

A negative correlation occurs because the relative frequencies must sum to 1.  Also, these 

proportions are ratios of gamma random variables with the same scale parameter, so their 

distributions and hence their correlations should not depend on the scale parameter.  Also note 

that each iα  is positive, so that α+ is strictly increasing in S (the number of OTUs), but it is not 

guaranteed to increase without bound.  For some values of the iα , this sum may converge to a 

constant.    For any fixed i and j, the numerator is constant while the denominator will increase 
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with S.  Thus the absolute value of the correlation will decrease as S increases, but it is still 

unclear under what conditions the correlation will go to 0. 

3.2.3. Other Considerations 
In addition to the preponderance of zeros and the effects of spurious correlation, there are 

other challenges with applying logratio analysis to OTU data.  One such challenge is the 

assumption that logratio-transformed relative abundances follow a multivariate normal 

distribution.  Given the extreme skewness of abundance data, it is unlikely that any 

transformation will induce normality, although this has not been formally examined.  Another 

challenge is a result of the large dimension of OTU data sets, so that some operations are not 

feasible without extended computing power.  For example, one version of a logratio variation 

matrix requires examining the ratio of every pair of OTUs.  In Neshmi's data there are 21,620 

OTUs and over 200 million pairs of OTUs.  This is beyond the capability of most computers.  

In view of all of these difficulties, it has been decided that logratio analysis of OTU data 

should not be pursued at this time.  This decision is based on two principal considerations: (1) 

spurious correlation, which is one primary reason for performing logratio analysis, is only a 

minor obstacle in large dimensional OTU data sets; and (2) replacing all the zeros with positive 

values would introduce too much uncertainty in subsequent analysis.   
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3.3. Rare vs. Common OTUs 
As described in Section 2.5, it is typical to classify OTUs as either common or rare, based 

on their prevalence in the observed data.  This is a logical classification, since the biological and 

environmental mechanisms that govern common species are distinctly different than the 

mechanisms that govern rare species.  In particular, it has been noted that "biological factors 

underpinned the relative abundance of the core [common] species, whereas random dispersal 

was more important in structuring the satellite [rare] species." (van der Gast, et al., 2011, page 

781)  This suggests that the abundance patterns for core and rare species follow different 

probability models, although the precise form of appropriate models remains a source of much 

debate.  This is discussed in Section 3.4   The assignment of OTUs into common and rare groups 

is also important for measuring changes in the health of a habitat, since "[e]cologically relevant 

shifts in abundances probably occur predominantly among the core [common] members that are 

by definition well established in the system"  (Unterseher et al., 2011).   Thus an accurate 

description of OTU abundance data requires a reliable method for identifying rare and core 

OTUs. 

 The 50% persistence threshold for macroscopic species, recommended by Magurran and 

Henderson (2003) and described in Section 2.5, seems ill-suited for OTU data primarily because 

the persistence patterns for microscopic species are very different from macroscopic species.  In 

macroscopic data sets, it is customary to have many species that occur in every sample, but this 

is not true for microscopic data.  In general, the large dimensions of OTU data sets and the 

excessive number of zeros distort the persistence threshold.  An example of this occurs in the soil 

data in which only four OTUs are present in at least 50% of the sites (samples).  These four 

OTUs would be classified as common, and the remaining 2,418 OTUs would be classified as 

rare.  Shifting the persistence threshold to 40% generates only 13 common OTUs, which is only 

approximately 1
2 %  of the total number of OTUs.   

When using Magurran and Henderson’s persistence threshold criterion, only the 

persistence is used to classify an OTU.  The abundance values for the OTU are ignored.  It seems 

reasonable that an OTU classification criterion should use both the persistence and abundance, 

and that OTUs with low persistence and irregular abundance patterns should be classified as rare, 

while those OTUs with high persistence and a more even distribution of abundances should be 
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classified as common.   We propose a new method, based on the Gini index, which is described 

in the following section. 

3.3.1. Lorenz Curve 
The Lorenz curve is used in financial applications to model the distribution of wealth (or 

income) in a population.  It is designed to accommodate distributions with long right tails, and is 

therefore particularly well suited for OTU abundance data.  A Lorenz curve describes the 

inequity, or unevenness,  in a distribution and we believe it may prove useful to differentiate 

between rare and common OTUs. 

A Lorenz curve is defined by two parametric functions of the probability density of a 

continuous random variable W.  In financial models, W is typically the wealth of individuals (or 

households) in a population.  To apply this to OTU data, we let W represent the abundances for 

one OTU across several sites.  Suppose W has pdf f and cdf F, with support (0, ∞ ) and mean µ .  

Each value of w in the support generates one (x, y) pair on the Lorenz curve, defined by 

 ( ) ( ) ( )
0

w
x w F w f t dt= = ∫  

 ( ) ( )
0

1 w
y w t f t dt

µ
= ⋅∫  

Note that both x and y are bounded in the interval [0, 1].  These values are sometimes 

converted to percentages. In a financial situation, the point (0.25, 0.1) indicates that  the 25% of 

the population with the lowest wealth controls 10% of the total wealth.  When this is applied to 

OTU data (in particular, one OTU across several sites), this point indicates that the smallest 25% 

of the sites contain 10% of the total abundance for this OTU.  In this sense, a 'small' site is one 

that has a low abundance for this OTU.     

If the abundances are perfectly evenly distributed, then the lowest 10% of the sites will 

contain 10% of the total abundance, the lowest 25% of the sites will contain 25% of the total 

abundance, and so on.  Thus the line y = x is called the line of perfect equality.  Any inequity in 

the distribution will cause the Lorenz curve to fall below this line, as indicated in Figure 3.14.  

Greater inequity creates greater distance between the curve and the line of perfect equality.   

 



62 

 

  

Figure 3.14: A Lorenz Curve 
The curve represents one OTU across several sites.  The x axis represents the 
accumulated proportion of sites and the y-axis represents the accumulated proportion 
of abundance at those sites. For example, the point (0.8, 0.2) indicates that 80% of 
the sites contain 20% of the total abundance for this OTU.   

3.3.2. Gini Index and Asymmetry Coefficient 
The area between the Lorenz curve and the line of perfect equality is a measure of the 

total amount of inequity.  Since this area is always between 0 and 0.5, it is customarily doubled 

so that it is between 0 and 1.  The doubled area is called the Gini index (or Gini coefficient).  We 

postulate that the Gini index can be used as a measure of unevenness in the abundances of an 

OTU and can therefore serve to discriminate rare OTUs from common ones.  Rare OTUs occur 

in few sites and their abundances can be irregular.  Common OTUs, in contrast, occur in many 

sites and their abundances tend to be more stable (more even).    Measures of variability based on 

sample moments, such as the standard deviation and skewness, are affected by the magnitude of 

the observed abundances.  Given the extreme variation in OTU abundance data, comparisons 

based on sample moments may be unreliable. 

The Gini index  is but one univariate measure based on the Lorenz curve.  Gastwirth et 

al. (2005) describe Gini's mean difference and the Gini index of concentration, but the 
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applicability of these measures to OTU data have not been explored at this time.  Another 

measure, the Lorenz Asymmetry Coefficient (LAC) proposed by Damgaard and Weiner (2000), 

may  prove useful in distinguishing rare and common OTUs.  The LAC is calculated from one 

point on the Lorenz curve, specifically the point ( )0 0,x y  at which the slope of the Lorenz curve 

equals 1.  This point is chosen because, for the subpopulation of sites in a neighborhood of this 

point, the abundances are distributed equally.  (The slope 1 matches the slope of the line of 

perfect equality.)  This point  ( )0 0,x y  is generated from the parametric equations evaluated at the 

value µ , the mean of the distribution of abundances.  In other words, ( ) ( )0 0
x x f t dt

µ
µ= = ∫  and 

( ) ( )0 0

1y y t f t dt
µ

µ
µ

= = ⋅∫ . The Lorenz Asymmetry Coefficient is defined to be sum of the two 

coordinates, 0 0x y+ , and the Lorenz curve is said to be symmetric if the LAC equals 1.  A 

geometric interpretation is based on the line of symmetry, which is perpendicular to the line of 

perfect equality. The equation for the line of symmetry is x + y = 1, so if the Lorenz curve is 

perfectly symmetric, the point ( )0 0,x y  will be on this line.  The concept of symmetry can be 

visualized by rotating the graph so that the line of perfect equality is horizontal and the line of 

symmetry is vertical.  If the curve is symmetric, the graph will be mirror images around the line 

of symmetry. It should be noted that the Lorenz Asymmetry Coefficient does not measure the 

symmetry in the original distribution of abundances.  Instead, it measures the symmetry in the 

accumulated abundances, as depicted in the Lorenz curve.  One very interesting characteristic of 

the LAC is that, if the underlying distribution of abundances is lognormal, then the theoretical 

value for the LAC is 1.  This fact may be useful for testing whether the abundances follow a 

lognormal distribution (and the OTU would therefore be designated as a common OTU).  

Two simulations may help to clarify these concepts.  In the first simulation, abundance 

data for one OTU and 500 sites were generated from a gamma distribution with shape parameter 

0.3 and scale parameter 0.05 (so the mean is 6).  The histogram and resulting Lorenz curve are 

shown in Figure 3.15.   For comparison, the graphs shown in Figure 3.16 are based on 500 

observations from a gamma distribution with shape 2 and scale 0.01  For both of these data sets, 

the distribution of abundances is skewed, but the skew is less pronounced in the latter 
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distribution.  This is reflected in the corresponding Lorenz curves, and in particular the Gini 

coefficient, which is 0.720 for the distribution that is more skewed and 0.353 for the distribution  

 

Figure 3.15: Lorenz Curve for Gamma (0.3, 0.05) 
The Lorenz curve is generated from the 500 simulated OTU abundance values 
shown at left.  The abundances follow a gamma distribution with shape parameter 
0.3 and scale parameter 0.05. The Gini coefficient is 0.720 and the asymmetry 
coefficient is 0.842 

 

 
Figure 3.16: Lorenz Curve for Gamma (2, 0.01) 

The Lorenz curve is generated from the 500 simulated OTU abundance values 
shown at left.  The abundances follow a gamma distribution with shape parameter 
2 and scale parameter 0.01. The Gini coefficient is 0.353 and the asymmetry 
coefficient is 0.950 
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that is less skewed.   A smaller value for Gini coefficient indicates a more equitable distribution.   

The asymmetry coefficients, 0.842 and 0.950, respectively, also reflect the differences in 

skewness of these two distributions, but a more accurate interpretation of these coefficients is   

that they reflect the differences in accumulated abundances.  This is shown in Figure 3.17. 

 

 
Figure 3.17: Curvature in Rank Abundance Plots 

The x axis represents the rank of the abundance values, from smallest to largest.  
The y axis is the cumulative total abundance.  The Lorenz asymmetry coefficient 
captures the curvature of this graph.  The graph on the left has Lorenz asymmetry 
coefficient equal to 0.842, while the one on the right is 0.950.   This coefficient is 
in the range [0, 2], and values at each extreme are the result of a nearly straight 
line.  

In order to assess whether the Gini coefficient or the Lorenz asymmetry coefficient are 

suitable statistics for conducting hypothesis tests, we need to evaluate the characteristics of their 

sampling distributions.  The results of several simulations are shown on the following pages.  

These results are limited in scope, since the intent is to determine if there is a preference for one 

of these measures for use in distinguishing rare vs. common OTUs.  We compare four 

distributions for the abundances: exponential with parameter 0.01, lognormal with parameters 

1.8 and 1.5, Pareto with parameters 1 and  1.00000025, and gamma with parameters 2 and 0.1.  

The parameters were chosen arbitrarily to generate highly skewed distributions typical of OTU 

abundance data. For each of these distributions, we considered two sample sizes: 30 and 150.  

For each of the eight combinations, the sampling distributions for the Lorenz asymmetry 

coefficient and the Gini coefficient were based on 1000 replications.  In addition, we provide a 

histogram of one of the 1,000 samples and a scatterplot of the two coefficients for each sample. 
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In all cases, the sampling distributions for both the Gini coefficient and the Lorenz 

asymmetry coefficient appear to be symmetric, even when the original distribution is highly 

skewed.  In addition, there seems to be no relationship between these two coefficients, since the 

scatterplots appear to be circles.  The one exception to this is the larger sample size for the 

lognormal distribution, in which there appears to be a very weak linear relationship between the 

two coefficients. 

In another comparison of these two coefficients, we provide boxplots of their sampling 

distributions in Figure 3.20 and Figure 3.21.    As expected, both coefficients have less 

variability when the sample size is larger.  The Gini coefficient appears to better discriminate 

between the four highly distinct abundance distributions, since there is a greater separation in the 

Gini coefficient medians and less overlap in the sampling distributions.  In contrast, the medians 

for the asymmetry coefficient are similar for all the distributions, and the overlap in the sampling 

distributions for the asymmetry coefficient would make it difficult for this coefficient to properly 

detect the underlying distribution.  

The key results of this analysis are: 

• The Gini index measures the inequity in a distribution. Its range is [0, 1], where 0 

represents perfect equity and 1 represents perfect inequity 

• The Lorenz asymmetry coefficient measures the symmetry of the Lorenz curve.  

Its range is [0, 2], where 1 represents perfect symmetry. 

• Both the Gini index and the Lorenz asymmetry coefficient have symmetric 

sampling distributions. 

• Simulation results indicate that the sampling distribution of the Gini index is more 

sensitive to the underlying distribution of counts, making it a better measure for 

distinguishing between unknown distributions.  

 

Based on these preliminary results, we advocate continued exploration of the Gini 

coefficient as a test statistic for identifying rare and common OTUs, but we do not recommend 

further investigation into the Lorenz asymmetry coefficient.  
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Figure 3.18: Sampling Distributions of the Gini and Asymmetry Coefficients. Part I 
First panel shows the histogram of simulated abundances for one sample.   The 
second and third panels show the sampling distribution for the Lorenz Asymmetry 
Coefficient and the Gini Coefficient, based on 1000 replicated samples. The last 
panel shows the relationship between the two coefficients.    
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Pareto, sample size = 30

 

Pareto, sample size = 150

 
Gamma, sample size = 30

 

Gamma, sample size = 150

 

Figure 3.19: Sampling Distributions of the Gini and Asymmetry Coefficients. Part II 
First panel shows the histogram of simulated abundances for one sample.   The 
second and third panels show the sampling distribution for the Lorenz Asymmetry 
Coefficient and the Gini Coefficient, based on 1000 replicated samples. The last 
panel shows the relationship between the two coefficients.    
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Figure 3.20: Comparative Boxplots for the Asymmetry Coefficient 
The similarity of the medians and the overlap in the sampling distributions 
indicate that the Asymmetry Coefficient may be ineffective as a test statistic for 
distinguishing these distributions.     

 

 

Figure 3.21: Comparative Boxplots for the Gini Coefficient 
The sampling distributions for the Gini coefficient show greater separation is 
medians and less overlap among the various distributions.  Thus the Gini 
coefficient could be a useful tool for discriminating between these distributions.  
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3.4. Probability Models 
When we investigate possible distributions for OTU abundance data, we must consider 

the origins of the data.  In particular, we are examining PCR-amplified segments of the DNA of 

microscopic organisms.  The mechanisms that control the growth and decay of microscopic 

organisms in a natural environment are not yet well understood, since the technological advances 

necessary to monitor such organisms have only recently been attained.  The counts that are 

recorded in an OTU data set are measuring the amount of microscopic organisms.  In this setting, 

the concept of an 'individual' has no meaning, and thus the counts can be considered 

measurements from a continuous distribution, which are simply rounded to the closest integer. 

For these reasons, we believe the most plausible distributions for OTU abundance data 

are continuous, nonnegative and strongly right-skewed.  Such distributions include the 

exponential, gamma, lognormal and Pareto.  From a mathematical perspective, the Pareto 

distribution is particularly attractive, since it provides a cohesive set of statistically plausible 

distributions for the individual entries in the OTU abundance matrix, and the corresponding 

column (OTU) totals.  Specifically, let , 1, 2, , ,iX i n= …  represent the nonzero abundances for 

one OTU at each of n sites.  For this initial investigation, we assume the sites are independent, so 

that the iX  are independent.  Under a null hypothesis that there is no difference among the sites, 

the iX  will also be identically distributed, so 1 2{ , , , }nX X X…  form a random sample from some 

distribution X.  Suppose X ~ Pareto (1, b), that is, X  has pdf ( ) 1, 1, 0bf x b x x b− −= ⋅ ≥ > .  Then 

( )log ~X exponential b  and 
1
log ~ ( , )n

ii
T X gamma n b

=
= ∑ .  When this is applied to an OTU 

data set, each OTU will have its own parameter b, which can be estimated from the data.  Each 

OTU will also have its own value for n, the number of sites at which the OTU is present.  Thus, 

for OTU j, 
1
log ~ ( , )jn

j ij j ji
T X gamma n b

=
= ∑ .  The T's are not independent because the OTUs 

are not independent.  Thus, under these assumptions, the precise form of the species abundance 

distribution is not known.  But this is more coherent than the approach taken by some authors, 

for example, van der Gast et al. (2011), in which individual abundance values were presumed to 

follow a Poisson distribution, and their sum was fitted to a log series distribution.   

There is another beneficial property of the Pareto distribution that may prove useful in 

detecting outliers in the individual abundance values, which in turn could illuminate outliers in 
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row and/or column totals.  This property is defined in the following result, which is proven in 

Appendix C. 

 

Result 3.4:  

If (1) (2 ) ( ), , , nX X X…  are the order statistics of a random sample from a Pareto(1,b) 

distribution, then the ratio of the largest to the second-largest ( )

( 1)

n

n

X
R

X −

=  also follows a 

Pareto (1,b) distribution.   

 

Note that this implies that the mean and all the moments of the original distribution 

should match the mean and moments of the observed ratio ( )

( 1)

n

n

X
X −

.  This also implies that 

( ) ( 1)log log logn nR X X −= −  follows an exponential(b) distribution.  This could be used to 

identify 'unusually large' values for individual abundances (i.e. values for one OTU at one site), 

which would be targeted for reduction in the algorithm described in Section 3.1.5. 
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Chapter 4. Methods and Results 

4.1. Data Standardization 
 Pyrosequencing is a relatively new technology and, as with all new technologies, presents 

unique statistical challenges.  Ongoing advancements in the technology continue to improve the 

quality of the resultant data, but there is still a large amount of variability in OTU data sets. 

Work reported in Chapter 3 described characteristics and challenges in OTU data and presented 

some initial approaches for summarizing and analyzing OTU data.  The standardization 

technique described in this section builds from the common structure observed in the four OTU 

data sets.  The proposed technique is a systematic and statistically defensible procedure to 

identify and reduce excess variability, that is, variability due to noise or technical artifacts 

resulting from the new technology.  While it may seem mundane, it is necessary to preprocess 

any data set prior to performing statistical analysis.  In fact, there is a large body of literature 

devoted to preprocessing of microarray data.  The unique characteristics of pyrosequence data 

require unique preprocessing methods that have not yet been considered.      

Individual entries in a pyrosequence data set represent the abundance, or count, for a 

particular OTU at a particular site.  As noted in Section 3.1, approximately 90% of the entries are 

zero, and singletons can account for half or more of the nonzero values.  We now consider the 

opposite extreme in the distribution of these counts, namely, the very large abundances.  Each of 

the four data sets we have examined contain only a small number of extremely large individual 

counts, but they occur at least once in almost every site and are the major contributors to the total 

count at each site.  In Lorena's data, for example, the two largest OTUs  (with total counts 3949 

and 3450, respectively) occur in every site, with individual counts ranging from 22 to 253.  The 

third largest OTU, with total count 1261, occurs in 22 of the 37 sites, with individual counts 

ranging from 2 to 168.  These three OTUs account for more than 50% of the total count in the 

data set, but less than 1% of all the OTUs and less than 5% of the individual nonzero values.   

They are among the most abundant OTUs in each site, and they dominate the smaller counts.    

This is illustrated in Figure 4.1 
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Figure 4.1: Dominance of the Three Largest OTUs in Lorena's Data 
OTUs 1, 2 and 3 are among the most abundant OTUs in every site and comprise 
most the total count at each site.  The presence of these large counts obscure the 
contributions of smaller counts. 

Such large differences in scale among the OTUs will distort summary measures based on 

Euclidean distances, such as variance and correlation.  One customary method for 

accommodating large differences is to center and scale each variable (OTU) across the sites.  In 

ordinary circumstances, this is accomplished by subtracting some measure of location and 

dividing by some measure of variation.  This is not feasible for pyrosequence data sets, in part 

because the extreme skew of the distribution inhibits reasonable and interpretable definitions of 

center and scale.   Even when the zeros are disregarded, robust measures such as the median 

provide little useful information.  In Lorena's data, for example, over three-fourths of all OTUs 

have median nonzero count equal to 1, and subtracting 1 will do little to center these highly 

skewed counts. 

In Section 3.1.5, we presented an algorithm to reduce these overly large counts.  This was 

a deterministic algorithm that forcibly reduced each 'large' count by a fixed percentage,  while 

maintaining the rank order of the counts.   This algorithm was applied to the soil data and 

reduced 7 individual counts  in 7 different sites, but affected only two OTUs.   Given the 
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prevalence of the three most abundant OTUs in Lorena's data, a more robust standardization 

method is needed. 

Since the data are derived from a relatively new technology, sources of variability in the 

OTU datasets are currently not well understood.  Variation can occur as a result of experimental 

and/or environmental conditions, and this is what we hope to discover as a result of the analysis.  

But variation can also occur as part of the data collection process, which was described in 

Section 1.2.    For example, a small deviation in the concentration of amplicons in an analyte (a 

site) will affect all counts observed for that site, and primer bias can affect the amplification rate 

of specific OTUs, which can result in an entire column in the data matrix to be overly large or 

overly small.  Such extraneous variability in the data needs to be identified before meaningful 

analysis can be conducted.  Since amplification is a multiplicative process, we propose to use a 

multiplicative model to capture this excess variability.  The results from this model can then be 

used to standardize the data.  

4.1.1. Multiplicative Model 
We propose to use a multiplicative model to standardize an OTU dataset.  The model 

contains one parameter for each row (site) and one parameter for each column (OTU).  Estimates 

of these parameters will capture the excess variability, which can be used to standardize the 

observed counts.  This technique is borrowed from compositional data analysis, in which the data 

are centered prior to analysis (Daunis-I-Estadella, et al., 2006).  To center a compositional data 

set, each value in the data matrix is divided by the geometric mean of the column.  We propose 

to doubly-center the data set: first divide each entry by the geometric mean of the row, then 

divide the result by the geometric mean of the column.  This procedure is very similar to one 

iteration of Tukey's median polish, with multiplication and division replacing addition and 

subtraction, and geometric means replacing medians.  Median polish generates an additive 

model: 

 ij i j ijobs Row Columnµ ε= + + +  
We are generating a multiplicative model: 

 ( ) ( )( )ij i j ijobs overall effect Row Effect Column Effect e= × × ×
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The overall effect is a scalar.  For a data matrix containing N rows (sites) and D columns 

(OTUs), the row effect is a vector of length N, the column effect is a vector of length D, and the 

residuals are a matrix with dimension N×D.   

 The effects for the multiplicative model are estimated by iterating a  multiplicative 

version of Tukey's median polish.  Implementation of this procedure requires that all counts be 

strictly positive, thus the data matrix and the corresponding residuals matrix will contain missing 

entries in place of the zeros.  In median polish, each iteration consists of a row sweep and a 

column sweep, where each sweep subtracts the row or column median.  The algorithm has 

converged when each row and column median is nearly 0.  The multiplicative version of this 

algorithm iteratively sweeps rows and columns, but each sweep consists of dividing by the 

geometric mean of the nonzero values in the row or column.  The multiplicative algorithm 

converges when the geometric mean of every row and column is nearly 1.  We call this 

procedure geopolish. 

 This algorithm was applied to Lorena's complete data, consisting of all 37 sites and all 

799 OTUs.  Unlike our earlier analyses, no sites and no OTUs were removed from the data.  One 

of the sites (Plot 123) contains an extremely small number of OTUs and a low total count as 

compared to the other sites (see Figure 3.1).  For all of our previous analyses, this site was 

deemed improperly amplified and was simply removed from the data.  We keep this site in the 

current analysis, and examine the ability of the multiplicative model to detect that it is different.  

The data set also includes every OTU that was observed, even if it occurs in only one site and 

occurred as a singleton at that site.    

 Lorena's complete data set contains 2,578 nonzero counts and 1,450 singletons.  The total 

count is 17,428 and the maximum individual count is 253.  The large counts were not reduced 

prior to fitting the multiplicative model.  Of the 799 OTUs, 407 occur in only one site and occur 

as a singleton at that site, 126 OTUs occur only as singletons, but in multiple sites, and an 

additional 47 occur in only one site, but with a count greater than 1.  In most of our previous 

work these extremely rare OTUs were set aside, but we keep them in the current analysis. 
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The geopolish algorithm 

1. Initialize the overall effect, all row effects and all column effects to be 1. 

2. Calculate the geometric mean of the nonzero values for each row (site).   

3. Divide each data value (individual count) by the geometric mean of its site. 

4. Calculate the geometric mean of each column (OTU), using the nonzero (adjusted) 
values for the column. 

5. Divide each adjusted value by the geometric mean of its OTU.  These are the 
residuals. 

6. Calculate the geometric mean of the values in Step 2. 

7. Calculate the geometric mean of the values in Step 4. 

8. Multiply the values in Steps 6 and 7.  This is the overall effect for the current 
iteration. 

9. Divide each value in Step 2 by the geometric mean from Step 6.  These are the row  
effects for the current iteration 

10. Divide each value in Step 4 by the geometric mean from Step 7.  These are the 
column effects for the current iteration. 

11. Multiply the overall effect from the previous iteration and the overall effect from the 
current iteration.  This is the overall effect that will be carried into the next iteration. 

12. For each row, multiply the row effect from the previous iteration and the row effect 
from the current iteration.  These are the row effects that will be carried into the next 
iteration. 

13. For each column, multiply the column effect from the previous iteration and the 
column effect from the current iteration.  These are the column effects that will be 
carried into the next iteration. 

14. Check the convergence criteria.  If all of the geometric means calculated in Steps 2 
and 4 are nearly 1, then stop.  Otherwise, use the residuals from Step 5, the overall 
effect from Step 11, the row effects from Step 12 and the column effects from Step 
13, and repeat Steps 2 through 14 until convergence. 

 

Applied to Lorena's data, the geopolish algorithm converged after 38 iterations.  A 

boxplot of the 37 estimated row effects shown in Figure 4.2 clearly indicates Plot 123 as an 

outlier, while the remaining row effects are centered at 1.  The scatterplot indicates that the row 

effects are not highly correlated with the total count for the site. 
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 Figure 4.2: Estimated Row Effects versus number of OTUs present. 
The one small site in Lorena's is clearly shown as an outlier, with estimated row 
effect 0.5.  Row effects for the remaining sites are all near 1, indicating the 
overall similarity of these sites. 

The boxplot of column effects, shown on a log scale in Figure 4.3, shows the extreme 

skew in the distribution.  The column effects range from 0.6 to 71.9, where small effect sizes 

correspond to small, under-represented OTUs and large effect sizes correspond to more 

prominent OTUs.  Since the data set was not trimmed to exclude the extremely rare OTUs, there 

are a large number of small column effects. A total of 540 OTUs (out of 799) have effect size 

less than 1, which indicates a 'below average' OTU.  Unlike the row effects, the column effects 

do seem to be correlated with the total count for the OTU, when both are represented on a log 

scale.  This is most likely due to the fact that the OTU total counts are highly skewed, with range 

[1, 3949] and median 1, and this extreme variation is captured by the column effects. 

The geopolish algorithm generates one estimated row effect for each site and one 

estimated column effect for each OTU.  These effects are, in essence, summary statistics of the 

corresponding sites and OTUs.  These statistics can be used to test for differences between sites, 

or to classify OTUs as either rare or common.  An example is given in Section 4.1.6.  In order to 

perform these tests, we must have knowledge of the sampling distributions of these statistics.  

This is discussed in Section 4.1.4.  In addition to the row and column effects, the geopolish 

algorithm generates one residual for each observed count in the dataset.  These residuals are the 

standardized data.  The distribution of the residuals is examined in Section 4.1.2 and examples of 

their interpretation are given in Section 4.1.5. 
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Figure 4.3: Estimated Column Effects versus total Count 
There are many small column effects, corresponding to the many infrequent 
OTUs, but only a few large column effects for the more prominent OTUs.  The 
vertical axis is the log of the column effects.  

4.1.2. Residuals from the Multiplicative Model 
We now explore the residuals from the multiplicative model.  These are considered the 

standardized data, since they are free of excess variability in sites and OTUs as a result of the 

data collection process.  Of particular interest is the distribution of the standardized data.  If we 

can reasonably conclude that the distribution of the log-transformed standardized data is 

approximately normal, then usual parametric theory can be applied.  On the other hand, if these 

data remain highly skewed, then nonparametric methods should be used to draw inferences.  

A histogram of the standardized values are shown in the right panel of Figure 4.4 and the 

original counts are shown in the left panel.  (Both histograms are given in log scale).  The 

standardization has definitely changed the shape of the distribution.  The skewness has 

diminished considerably and it is now centered at 0 (on a log scale).  The excess of values in the 

interval (–0.5, 1] is of some concern, so we examine these residuals in more detail.  Recall that 

the estimates for the multiplicative model were obtained using every nonzero count in Lorena's 

data, including all the singletons and the OTUs that occur at only one site.  It is possible that 

these extremely rare OTUs and small counts are causing the spike in the histogram.  We now 

explore some options to trim the data, and perhaps obtain a more symmetric distribution.  We 

first consider removing the residuals associated with singleton counts.  
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Figure 4.4: Distribution of Original and Adjusted Counts 
When viewed on a log scale, the histogram of adjusted counts (i.e. residuals) from 
the multiplicative model (shown on the right) are centered at 0, while the original 
counts are clearly skewed.    

The distribution of residuals is derived from all of the 2,578 nonzero counts present in the 

data, which includes 1,450 singletons.  The residuals for the singletons are concentrated in the 

range (-0.5, 0] on a log scale.  As shown in Figure 4.5, when these residuals are removed, the 

distribution of log residuals for the nonsingleton counts appears to follow a normal distribution, 

but the center is not at 0.    

 

Figure 4.5: Distribution of Log Residuals 
When viewed on a log scale, the histogram of residuals from the multiplicative 
model (shown on the left) are centered at 0, but are not symmetric with a spike 
just below zero.  When the residuals associated with singleton counts are 
removed, the histogram appears symmetric (shown on the right), but the center is 
no longer at 0.   

By visual inspection, it would seem that the logarithm of the residuals for nonsingleton 

counts follows a normal distribution, although each of five different tests for normality soundly 
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reject the normal distribution as a plausible model.    These tests are Anderson-Darling, 

Cramer-von Mises, Lilliefors, Shapiro-Wilk and Pearson's chi-square, and their p-values range 

from 10-12 to10-6.   The normal QQ plot, shown in Figure 4.6,  suggests that the deviation occurs 

in the tails, while a more detailed histogram indicates too much probability mass in the center of 

the distribution.    

 

Figure 4.6: Normal Probability Plot and Histogram of Log Residuals 
When viewed on a log scale, the histogram of residuals from the multiplicative 
model (shown on the left) are centered at 0, but are clearly asymmetric with a 
spike just below zero.  When the residuals associated with singleton counts are 
removed, the histogram appears symmetric (shown on the right), but the center is 
no longer at 0.   

It should be noted that all five normality tests are performed on all the nonsingleton 

residuals in the data set, so the sample size is 1,128.  Such a large sample may be giving these 

tests too much power for detecting differences that are not of practical importance.  Before we 

make a final decision regarding the normality of the log residuals, we consider trimming the data 

to reduce the excess number of residuals near the center of the distribution.  We believe that the 

asymmetry in the distribution is caused, in part, by the singletons and extremely rare OTUs in the 

dataset.  We consider the following seven options for trimming the data. 

Option 1: Use all counts (this is the original data set with no trimming) 
Option 2: Remove OTUs that occur in only one site, and occur as a singleton at that site. 
Option 3: Remove all singletons from the data set.  This may result in removing some OTUs 

from the data.  
Option 4: Re-scale the vector of counts for each site by dividing by the total count for the 

site.   This creates a compositional vector for each site, whose entries sum to 1. 
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Option 5: Remove all OTUs that either occur in only one site or occur only as singletons 
(perhaps in multiple sites).  This will remove every column from the data set that 
has only one nonzero value (regardless of what the value is), and will also remove 
columns that contain only 1's. 

Option 6: Remove OTUs that occur only as singletons, regardless of the number of sites in 
which the OTU is present. 

Option 7: Remove OTUs that occur in only one site, regardless of the count for the OTU at 
that site. 

 

The geopolish algorithm was performed on each trimmed data set.  Summaries of the 

trimmed data sets are presented in Table 4.1, and histograms of the log residuals are given in 

Figure 4.7.   

 None of the data trimming options were successful at eliminating the asymmetry in the 

distribution of log residuals of all counts (histograms on the left in each panel of Figure 4.7), 

although most of the trimming options generated a symmetric distribution for nonsingleton 

counts (histograms on the right).  It is interesting to note that trimming option 3, which removes 

all singletons, generated the most asymmetric distribution of log residuals.  This seems to 

suggest that singleton counts are not the only source of skewed residuals.   

Consider how the geopolish algorithm generates the residuals.  In particular, we focus on 

the steps involving the column sweeps and how these sweeps affect a column that contains only 

one positive count.   These columns represent OTUs that occur in only one site.  The geometric 

mean for this column is equal to the lone nonzero count, so when this count is divided by the 

geometric mean the result (the residual) is always equal to 1, within round-off error.  Thus all of 

the effect for this OTU is swept into column effect, leaving no variability in the residual.     This 

occurs for 454 of the 799 OTUs in Lorena's original data set, and these counts comprise nearly 

18% of the nonzero individual counts in the data.  All of these counts are removed under options 

5 and 7, and some are removed under options 2, 3 and 6.  The effect on the distribution of the log 

residuals is shown in Figure 4.8.  All of these histograms exhibit asymmetry with an excessive 

number of log residuals slightly below 0.   
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Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 

Number of Sites 37 37 37 37 37 37 37 

Number of OTUs 799 392 266 799 219 266 345 

Number of 
Nonzero Counts 

2578 2171 1128 2578 1790 1837 2124 

Number of 
Singletons 

1450 1043 0 0 709 709 1043 

Total Count 17,428 17,021 15,978 37 16,572 16,687 16,906 

Range of 
Individual Counts 

[1, 253] [1, 253] [2, 253] [0, 0.52] [1, 253] [1, 253] [1, 253] 

Range of Site Totals [104, 589] [99, 578] [93, 548] [1, 1] [95, 557] [97, 566] [97, 569] 

Range of OTU Totals [1, 3949] [2, 3949] [2, 3949] [0, 8.38] [3,3949] [2, 3949] [2,3949] 

Range of Number of 
OTUs at a Site [18, 106] [13, 83] [7, 53] [18, 106] [10, 68] [11, 71] [12, 80] 

Range of Number of 
Sites for an OTU [1, 37] [1, 37] [1, 37] [1, 37] [2, 37] [1, 37] [2, 37] 

Converged at Iteration 38 30 32 38 26 27 30 

Table 4.1: Impact of Data Trimming Options on Lorena's Data 
The data trimming options are designed to reduce the number of small counts, 
and the impact is most dramatic in the reduction of number of OTUs.  Option 4 
transforms each site vector into a compositional vector, so the values represent 
proportions.  The remaining options show little impact on either the total count or 
range of counts in the data set. 

The residual analysis indicates that any OTU with only one positive count will have a log 

residual equal to 0, within roundoff.  These counts, among others, contribute to the asymmetric 

spike in the center of the distribution.   Even when these counts are removed, the distribution of 

log residuals is still asymmetric with an excessive number of values slightly below zero.  Some 

of these residuals are associated with singleton counts, but they are also associated with 

nonsingleton counts and with OTUs with a wide range of site occurrences and total counts.  At 

the present time, it seems the asymmetry in the residuals is a result of the asymmetry in the 

original counts and the unknown dependencies between OTUs. 
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Figure 4.7: Distribution of Log Residuals Under Various Data Trimming Options 
Lorena's data was trimmed according to the seven options and each resulting 
dataset was fit to the multiplicative model.  In each panel, the histogram on the 
left shows the distribution of all log residuals and the histogram on the right 
shows the distribution of log residuals that are associated with nonsingleton 
counts.  
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Figure 4.8: Distribution of Log Residuals, Showing Solo Counts for OTUs 
Log residuals arising from OTUs that occur in only one site are shown in white.  
Some trimming options removed all of these counts and their associated residuals.  
The spike near the center of each histogram remains intact. 

Since none of the data trimming options were successful at removing the spike near the 

center of the distribution of residuals, there is no motivation for trimming the data prior to fitting 

the multiplicative model.  We will therefore continue to use Lorena's full data set, but we will be 

cautious in using inference that is sensitive to the assumption of normal, independent errors.  The 

multiplicative model captures much of the variability in sites and OTUs that can be attributed to 

the data collection process.  The residuals from this model are the adjusted, or standardized, 

counts. When viewed on a log scale, the adjusted counts have a mound-shaped distribution, 

instead of the extremely skewed distribution of the original log counts.  Furthermore, the 

multiplicative model is robust to extremely small counts and infrequent OTUs, so all of the data 

can be standardized and used in subsequent analysis.  

Although the usual assumption of independent, normal errors in linear models may not be 

satisfied, the structure of the multiplicative model is equivalent to a log linear model.  In the next 

section, we explore this relationship in order to compare the estimates obtained from the 

geopolish algorithm to ordinary least squares estimates. 
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4.1.3. Relation to Ordinary Least Squares 
The estimates generated by geopolish algorithm are equivalent to ordinary least squares 

estimates of a log-transformed model.  The multiplicative model is  

, 1, , 1,ij i j ijx a R C e i N j D= × × × = =… …  

where  

ijx is the observed count for OTU j at site i 

a is the overall effect 

iR  is the row effect for site i 

jC  is the column effect for OTU j 

ije is the random error 

This is equivalent to the log linear model 

 ij i j ijy α β γ ε= + + +  

where log( )ij ijy x=  and the ' ,  ' ,  's s sβ γ ε are the row effects, column effects, and errors on a 

log scale.   

We fit the log linear model to Lorena's data containing all counts (so nothing was 

trimmed), using the R function lm .  The diagnostic plots, shown in Figure 4.9,  indicate that the 

assumption of independent normal errors may not hold.  The location-scale plot also reveals 

repetitive V-shaped patterns, which are produced by the many small duplicate counts in the data.   

We now compare the diagnostic plots from the log linear model to those obtained from the 

multiplicative model.  To facilitate comparison, we log-transform the results from the 

multiplicative model. The two diagnostic plots from the multiplicative look very similar to those 

from the log linear model, and in fact, they are identical.  When viewed on a log scale, the 

estimated multiplicative model is exactly equal to the estimated log linear model.  This is not a 

coincidence.  It can, in fact, be shown that this is true in general.  The derivation is 

straightforward, but tedious, and is not included here. 
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Figure 4.9: Diagnostic Plots for the Log Linear Model  
The distinctive patterns in the two plots on the left and the curvature in the 
normal probability plot are indications that the errors may not be independent 
and normally distributed. 

 

Figure 4.10: Diagnostic Plots (Log Scale) for the Multiplicative Model  
The distinctive patterns in the two plots on the left and the curvature in the 
normal probability plot are indications that the errors may not be independent 
and normally distributed. 

The multiplicative model generates an estimated effect for every row and every column, 

while the log linear model treats rows and columns as factors, and defines appropriate indicator 

variables for the levels of each factor.  The resulting model matrix is not of full rank, and 

additional constraints must be placed on the parameters in order to identify a unique least squares 

solution.  One common constraint  is to select one level of each factor as the reference level and 

set its parameter equal to zero.  Then the estimates for the remaining levels of this factor are in 

relation to the reference level.  Another common constraint is to require that  the estimated 

coefficients for each factor sum to zero.  We will show that the log-transformed estimates from 
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the multiplicative model also satisfy this constraint, and that the parameter estimates from the 

two models are equal.    

The solution found by the geopolish algorithm satisfies the log linear least squares 

estimating equations, and therefore is a least squares solution.  This is a direct result of the 

convergence criteria and the normalization that occurs within the algorithm.  The convergence 

criteria requires that, for each row and each column, the product of the residuals will equal one.  

Therefore, the sum of the log residuals for each row and each column will equal zero. The 

normalization that occurs in Steps 9 and 10 of the algorithm guarantee that the product of the 

row effects will equal one and that the product of the column effects will also equal one, thus the 

sum of the log of these effects will equal 0.  Therefore, log-transformed estimates from the 

multiplicative model satisfy the least squares estimating equations and the solution is a least 

squares solution.  In addition, the sum of the log coefficients for each factor (row and column) 

sum to 0, so the least squares solution found by the geopolish algorithm is the same as that found 

by OLS in the log linear model. 

4.1.4. Standard Errors of the Estimates 
Although the geopolish algorithm is able to estimate every model parameter, it does not 

provide estimates of their standard errors.  Information about the standard errors is required for 

any form of inference regarding these estimates.  Least squares theory provides standard errors 

of the estimates of the parameters in the log linear model, and we can apply the Delta Rule to 

adjust the known standard error for the log transformation.  The relationships between the 

parameters are 

( ) ( ) ( )log ; log ; and logi i j ja R Cα β γ= = = , or 

( ) ( ) ( )exp ; exp ; and expi i j ja R Cα β γ= = =  

so, by the Delta rule, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆˆ ˆ ˆ ˆˆ exp ; exp ; and expi i i j j jse a se se R se se C seα α β β γ γ= = = . 

This approach has two major drawbacks.  First, the Delta Rule is merely a large sample  

approximation and uses normal distribution theory.  Thus it may not provide accurate results for 

some parameters.  Second, it relies on the accuracy of the standard errors generated by the log 

linear model.  As we will show below, the lack of compliance with the log linear model 
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assumptions generates standard errors that are too large.  Therefore, these inflated standard errors 

should not be used to generate standard errors for the multiplicative model.     

The key to understanding why the log linear standard errors are too large lies in the 

histogram of log residuals from the multiplicative model, which are the same as the residuals 

from the log linear model.  This was shown in Figure 4.5 and is reproduced here (Figure 4.11) 

for convenience.  The assumption of normal errors is not valid because there are too many 

residuals in the interval (–0.5, 0]. Thus the actual residuals are more compressed toward zero 

than modeled by the normal assumption.  As a result, the log linear model will produce standard 

errors that are too large.  

  
Figure 4.11: Log Residuals from the Multiplicative Model  

These are also the residuals from the log linear model. 

To obtain accurate standard errors for the multiplicative model estimates, we will 

bootstrap the residuals from that model.  These residuals are free from both row and column 

effects, so that under a null hypothesis of 'no difference' (between treatment and/or 

environmental conditions), we can argue that each residual is equally likely to be observed with 

any row or column.  By permuting the residuals, we are we are assigning them to a new row and 

column combination.  We then multiply the original estimates for the row, column and overall 

effects with the newly permuted residual, and obtain a new dataset from which we can generate 

new estimates of the row, column and overall effects.  By repeating this process numerous times, 

we can estimate the sampling variability of these estimated effects.  This technique is analogous 

to the residual bootstrap for linear models (cf. Efron and Tibshirani, 1994).   

By resampling the original residuals, we are preserving the concentration of residuals 

near 1 (that is, the log residuals near 0), as shown in Figure 4.11.  This produces standard errors 

that are smaller than those generated by the log linear model, which erroneously assumes a more 

-3 -2 -1 0 1 2 3
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dispersed distribution of residuals.  For 1,000 resamples, the differences between the estimated 

standard errors for site effects are shown in the left panel of Figure 4.12, and standard errors for 

OTU effects are in the right panel.  The range of estimated OTU effects is large (0.6 to 71.9), and 

this is reflected in the standard errors.  In contrast, the range of estimated site effects is only 0.5 

to 1.3, and the difference between the two sources of standard errors appears to be multiplicative.  

For the site effects, the slope of the regression line through these points is 0.833 (se = .003), with 

correlation 0.988.  

  

Figure 4.12: Standard Errors for Site and OTU Effects  
The y-axis represents the estimates from resampling and the x-axis are the 
estimates obtained from the log linear model, transformed via the Delta rule.  The 
dashed line represents equality between the two estimates. 

4.1.5. Advantages of the Multiplicative Model 
 Other methods to model or analyze OTU data may require the removal of some rows and 

some columns from the dataset.  Sites (rows) with low total count are often removed because the 

sites are deemed improperly amplified,  and OTUs (columns) with many zeros generate 

numerically unstable estimates for some summary statistics.   In contrast, the multiplicative 

model is robust for these extreme data and generates estimated effects for every site and every 

OTU in the data set.  The row effects, column effects and residuals estimated from the 

multiplicative model can be used in various ways, as both summary statistics and to standardize 
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the observed counts.  In particular, the residuals can be interpreted as the standardized counts, 

less influenced by the variability associated with the data collection process.  Examination of 

these adjusted counts often reveal an underlying pattern in the data that is obscured in the 

original counts. 

Consider the counts for Site 112, as shown in Figure 4.13.  As expected, many OTUs 

have very small counts, but OTUs 3 and 31 have larger counts, and all of these are dominated by 

the counts for OTUs 1, 2 and 6.    It is known that OTUs 1, 2 and 3 have large counts in nearly 

every site,  but we do not know if the counts observed in Site 112 are typical for these OTUs.    

When we consider the adjusted counts, a very different pattern of abundances emerges, as 

shown by the open triangles in Figure 4.14.  The adjusted counts indicate where the observed 

counts fit in relation to all the counts for the OTU.  A small adjusted count indicates that the 

observed is small for this OTU,  an adjusted count near 1 indicates that the observed count is 

fairly typical for the OTU, while values greater than 1 indicate a large count for this OTU.  The 

adjusted counts shown in Figure 4.14 reveal that the counts for OTUs 6 and 31 are unusually 

large, while the counts for OTU 1, 2 and 3 are fairly typical.   

The distribution of original counts for these OTUs, shown in Figure 4.15, verify these 

conclusions.  Even though the counts for OTUs 1, 2 and 3 are among the largest in Site 112,  

these OTUs have large counts in many sites.  Their counts in Site 112 are neither unusually large 

nor unusually small, so their adjusted counts are near 1.  The largest count in Site 112 occurs for 

OTU 6, and this is the second-largest count (in any site) for this OTU.  This is an unusually large 

count, which is reflected in the large adjusted count (greater than 10).   The count for OTU 31 is 

even more unusual, even though it is only 47.    This is the largest count for this OTU,  and its 

next-largest count (in any site) is only 7.  Its adjusted count is slightly more than 12. 
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Figure 4.13: Observed Nonzero Counts at Site 112  

Site 112 contains 52 unique OTUs, but 26 occur as singletons.  Some of the 
singleton counts are not shown. OTU 6 has the largest count (150), followed by 
OTUs 1, 2, 31 and 3, with counts 99, 89, 47 and 26, respectively.   

 

 
Figure 4.14: Adjusted Counts at Site 112  

The adjusted counts reveal that the counts for OTUs 31 and 6 are unusually large 
for these OTUs.  In contrast, while the original counts for OTUs 1, 2 and 3 are 
large, these OTUs have many large counts (in other sites), so the counts observed 
in Site 112 are not considered large for these OTUs. Note the change in scale on 
the two y-axes.  The largest original count is 150 (for OTU 6), while the largest 
adjusted count is only 12 (for OTU 31). 
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Figure 4.15:  Distribution of All Observed Counts for Five OTUs  
These boxplots show the distribution of all observed counts (across all sites) for 
the five most abundant OTUs in Site 112.  The large triangle is the count in Site 
112.  The counts for OTUs 1, 2 and 3 are fairly typical for these OTUs, while the 
counts for OTUs 6 and 31 are unusually large.     

4.1.6. Testing for Differences Across Sites 
 Lorena's dataset contains a descriptive variable for each site, corresponding to the area in 

Bolivia (Ancoraimes or Umala) in which the site is located.  Of the 37 sites, 23 are in the Umala 

region and 14 are in Ancoraimes.  We want to know if there is a difference between Ancoraimes 

and Umala sites.  Depending on the research objective, it may be desirable to test specific OTUs 

for differences between the sites.  If the hypothesis involves only one OTU then the original 

counts can be compared directly, that is, adjusted counts are not necessary.  On the other hand, if 

we want to compare sites using a collection of OTUs at each site,  then we should consider using 

the adjusted counts.    The adjusted counts can be used to calculate summary statistics for each 

site, and these summary statistics can serve as the response variables on which we base the test.  

An alternative approach is to use the row effects themselves as the response variable.  We 

illustrate these approaches using Lorena's data, testing for differences between Umala and 

Ancoraimes sites. 

We consider several univariate measures to summarize each site, and compare sites on 

the basis of these measures.  One of the most common univariate summary statistics used in 

ecological studies is the diversity measure Fisher's alpha (see Appendix B), but there are other 

choices.  Possibilities include the Gini index calculated for each site (as a measure of 
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unevenness), the total count for a site, and the row effects from the multiplicative model.  For 

both the total count and the Gini index, we also have a choice to use the original counts or the 

adjusted counts.  However, estimation of Fisher's alpha requires all values to be integers, so the 

original counts must be used.    Boxplots of these measures are shown in Figure 4.16. 

 

 

 

Figure 4.16:  Boxplots of Summary Measures for the Sites  
These measures can be used as response variables when testing for differences 
between Umala and Ancoraimes sites.     

The boxplots of the site totals and the Gini indexes are very different for the original 

counts than they are for the adjusted counts.  This is because the column effects vary from 0.6 to 

71.9, with larger values for more abundant OTUs.  When the counts are adjusted, the large 

counts for abundant OTUs are, in essence, divided by a large column effect.  While the original 

counts range from 1 to 253, the adjusted counts are all between  0.05 to 20.69.  By reducing the 

magnitude and spread of these values, the Gini index interprets the adjusted counts as more 

evenly distributed, and therefore the Gini values are closer to 0.  These changes affect the Umala 

sites more than the Ancoraimes sites because the Umala sites contain most of the large counts in 

the data set.  Of the 40 largest counts, 35 are from Umala sites. 

As an aside, the boxplots in Figure 4.16 indicate a striking similarity in the distributions 

of Fisher's alpha and the adjusted site totals.  These two measures are highly correlated (0.87), as 
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indicated in Figure 4.17.  At present, it is unknown if there is a quantifiable relationship between 

these two measures, or if this is merely a coincidence in Lorena's data. 

 

Figure 4.17:  Relationship between Fisher's alpha and the Adjusted Site Totals  
These measures can be used as response variables when testing for differences 
between Umala and Ancoraimes sites.     

Each of these six summaries is used as a response variable to test for differences between 

Umala and Ancoraimes sites. Since the boxplots indicate asymmetric distributions with outliers, 

we employ the Kruskal-Wallis rank-based test.    The p-values, shown in Table 4.2, indicate that 

all tests are significant at α = 0.05, with the exception of the Gini index calculated from adjusted 

counts.  For comparison, we also performed these tests using ordinary ANOVA.  Although the 

QQ plots (Figure 4.18) show troublesome departures from normality, the p-values are all similar 

to those from the Kruskal-Wallis test. 

Response variable 
p-values 

Kruskal-Wallis ANOVA F 
Original site totals 0.0007 0.0346 

Adjusted site totals 0.0418 0.0584 
Original Gini index 4.8e-06 0 
Adjusted Gini index 0.1497 0.1229 

Fisher's alpha 0.0013 0.0016 
Row effects 0.0011 0.0008 

Table 4.2: P-values for Testing Umala vs. Ancoraimes Sites  
With the exception of the Gini index calculated from adjusted counts, all Kruskal-
Wallis tests are significant at α = 0.05. Results from ANOVA are provided solely 
for comparison; we should rely on the results from the Kruskal-Wallis tests. 
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Figure 4.18:  Normal Probability Plots from ANOVA  
Outliers and distinct curvature indicate the assumption of independent normal 
errors may be not satisfied.  We should base our decision on the nonparametric 
Kruskal-Wallis test.     

We now explore a second method for utilizing the row effects from the multiplicative 

model in order to detect differences between Umala and Ancoraimes sites.  We divide the dataset 

by rows into two groups, according to the two geographic regions.  Separate estimates are 

obtained for the multiplicative model: once using only Umala sites and once using only 

Ancoraimes sites.   These estimates are then compared to the estimates obtained using the full 

data set. 

The results, shown in Figure 4.19, clearly show a separation between regions when only a 

subset of the data is used to estimate the site effects.  Ancoraimes sites have larger site effects 

when the full data set is used, while site effects for Umala sites are smaller when the full data set 

is used.  This pattern of separation may be useful in detecting differences in OTU compositions 

between the two types of sites, but at this time it is not clear how to construct a viable test 

statistic that incorporates this information.     
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Figure 4.19:  Comparing Row Effects Using Subsets of Data  
There is a very distinct separation between the site effects for Umala and 
Ancoraimes regions when only the data from the region are used to estimate the 
effects.     

4.2. Theoretical Results for the Gini Index 
 The Gini index was introduced in Section 3.3 as an alternate measure for classifying rare 

and common OTUs.  We advocate its use as a replacement of the 50% persistence threshold 

criterion proposed by Magurran and Henderson (2003).  In this section, we present some 

properties of the Gini index that make it particularly well suited to OTU data. We develop a 

closed form expression for the Gini index, under the assumption that individual nonzero 

abundances follow a Pareto distribution, and we extend this expression to accommodate the 

additional zeros present in OTU data.  We also derive the exact (non-asymptotic) distribution of 

the maximum likelihood estimator  of the Pareto parameter b and use this to develop a 

confidence interval for the true Gini index.  These results form a solid theoretical foundation for 

applying the Gini index to OTU data.  In Section 4.3, we will develop a procedure that uses the 

Gini index to perform common/rare OTU classification. 

There is only one definition for the Gini index, but there are several equivalent ways to 

calculate it.  All are based on the Lorenz curve, which is derived from the underlying distribution 

of X.  In economic applications, X represents the wealth or income of individuals.  For OTU data, 

X represents the abundance of an OTU.  For the current application, X designates an individual 
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abundance for an OTU at a site, and the sample consists of the abundances for this OTU across 

all sites in the data set.    

Assume X is continuous with pdf f, cdf F, mean µ and support [0, ∞).  The Lorenz curve 

consists of pairs ( ),x yL L  defined by the parametric equations 

 ( ) ( ) ( )
0

w

xL w f t dt F w= =∫  

 ( ) ( )
0

1 w

yL w t f t dt
µ

= ⋅∫  

Since F is a continuous distribution, it is reasonable to assume F is one-to-one, so 1F −  

exists.  With this assumption, the Lorenz curve can be written in terms of ( )xp L w=  as follows 

 ( )
0

1 w

yL t f t dt
µ

= ⋅∫  

Substitute ( ) ( ) ( )1 so  and u F t F u t du f t dt−= = = . 

 ( )( ) 1

0

1 F w

yL F u du
µ

−= ∫  

Let ( )p F w= , which is the x value on the Lorenz curve. Then ( ) ( )1

0

1 p

yL p F t dt
µ

−= ∫  

and the Lorenz curve is specified by the pairs ( )( ), yp L p . 

The Gini coefficient, denoted by G,  is defined as twice the area between the line 

( )yL p p=  and the Lorenz curve.  Note that the line is always above the curve, so absolute 

values are not needed to obtain the vertical distance.  There are several equivalent ways to 

specify the area.  Using the inverse of the cdf,  

 

( ){ }

{ } ( ){ }
( ){ }

1

0

112 11
2 0 0 0

1 1

0 0

2

22

21

y

p

p

G p L p dp

p F t dt dp

F t dt dp

µ

µ

−

−

= × −

= × − ×

= − ×

∫

∫ ∫

∫ ∫

 

If the inverse is intractable, we can work with the cdf, beginning with the parametric 

definition of the Lorenz curve. 
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( ) ( ){ } ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0

0 0

0 0 0

2

12

12

x y x

w

w

G L w L w dL w

F w t f t dt f w dw

F w f w dw t f t dt f w dw

µ

µ

∞

∞

∞ ∞

= × −

 
= × − ⋅ 

 
  = × − ⋅    

∫

∫ ∫

∫ ∫ ∫

 

In the first integral, substitute ( )u F w= , so ( )du f w dw= .  In the second integral, 

reverse the order of the double integral. 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ){ }
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1 12
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1 22 1
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1 2
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t
G F w f w dw t f t dt

F t t f t dt

t f t dt F t t f t dt

F t t f t dt

F t t f t dt

F t t f t dt t f t dt

F t t f t dt

µ

µ

µ µ

µ

µ
µ

µ

µ

∞
∞ ∞

∞

∞ ∞

∞

∞

∞ ∞

∞

     = × − ⋅    
  

 = × − − ⋅ 

= − ⋅ + ⋅ ⋅

= − + ⋅ ⋅

= ⋅ ⋅ −

= ⋅ ⋅ − ⋅

 = − ⋅ 

∫ ∫

∫

∫ ∫

∫

∫

∫ ∫

∫
 

This is the definition provided by Sandstrom et al., (1988).  Equivalent forms are given 

by Gastwirth (1972) and Peng (2011).  These are, respectively, 

 
( ) ( )

( )

0

2

0

1 1

11 1

G F x F x dx

G F x dx

µ

µ

∞

∞

 = − 

 = − − 

∫

∫
 

For many common distributions, the cdf is not available in a simple closed form.  In this 

event, numeric approximations can be used to estimate the true value of the Gini coefficient.  

The exponential and Pareto distributions are two exceptions in that both the cdf and the Gini 

coefficient can be calculated directly.   
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Example 

Assume X ~ ( )exp β , so ( ) xf x e ββ −= , ( ) 1 xF x e β−= − , and 
1µ
β

= .  Using Gastwirth's 

definition,  

 

( ) ( )

( )

( )

0

0

2

0

1 1

1

1
2
1(0 1) 0 1
2

1
2

x x

x x

G F x F x dx

e e dx

e e

β β

β β

µ

β

∞

∞ − −

∞
− −

 = − 

= −

 = − + 
 

= − − + −

=

∫

∫

 

Note that this does not depend on the value of β. ■ 
 

 

We now develop a closed form for the theoretical value for the Gini index under the 

Pareto distribution.  We first consider the case in which there are no zeros.   

Claim: 

Let Y represent the nonzero abundances for an OTU (across the sites), with Y~ Pareto (1, b), 

and suppose that b > 1.  Then the Gini index is 1
2 1

G
b

=
−

. 

 

Proof: 

Y has pdf ( ) ( )1 1bf y b y I y− −= ⋅ ≥  and cdf ( ) 1 , 1bF y y y−= − ≥ , with mean , 1
1

b b
b

µ = >
−

.  The 

Gini index is 
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( ) ( ) ( )( )

( )

( ) ( )
( )( )

1 1

2

1

1 2 1

1

1 11 1

1

1 1 1
1 2 1

1 0 1 0 1 1 1 1
1 2 1 1 2 1

2 1 11
1 2 1

b b
Y

b b

b b

bG F y F y dy y y dy
b

b y y dy
b

b y y
b b b

b b
b b b b b b

b bb
b b b

µ
∞ ∞ − −

∞ − −

∞
− + − +

−  = − = −    
− = − 

 

−   = −   − + − +   

− − − −     = − = −     − + − + − −     
 − − −− =    − − 

∫ ∫

∫

( )( )
1

1 2 1
b b

b b b
  − =     − −     

1
2 1b

=
−

 

■

 

 

We now extend this to accommodate the zeros.   

Claim: 

Suppose X follows the zero-inflated Pareto mixture distribution with pdf 

 ( ) ( ) ( ) ( )10 1 1bh x I x b x I xπ π − −= ⋅ = + − ⋅ ⋅ ≥  

Then the Gini index is ( ) 11
2 1

G
b

π π= + − ⋅
−

. 

Proof: 

X  has cdf  

 

( ) ( )
( )( )

0 0
Pr 0 1

1 1 1b

x
H x X x x

x x

π

π π −

 <= ≤ = ≤ <
 + − − ≥

 

and  mean  ( ) ( ) ( ) ( )0 1 1
1

bE X E Y
b

π π π  = ⋅ + − = −  −   
 

 

The Gini index is 
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Note that the zero-inflated Gini index is a weighted average of 1 and the Gini index that 

excludes zeros, where the weights are the proportion of zeros and nonzeros.   

We now consider the sampling distribution of the maximum likelihood estimator of the 

Gini index, based on a random sample of nonzero values. 

 

Claim: 

If ( )1 2, , nx x x…  is an iid sample from Pareto(1, b),  

then b̂  ~ inverted-gamma ( ), .n nbα β= =  

Proof: 

Suppose X ~ Pareto(1, b), so X  has pdf ( ) 1, for 1 and 0bf x b x x b− −= ⋅ ≥ > .   

Then the MLE of b is ( )
1

1

1ˆ logn
ii

b x
n

−

=

 =   
∑ . 

Define log( )Y X= .  Then the cdf of Y is 

 
( ) ( ) (log ) ( )

1 ( ) 1

y
Y

y b by

F y P Y y P X y P X e

e e− −

= ≤ = ≤ = ≤

= − = −
 

This is the cdf of an exponential distribution with parameter 1
b

β = , which is also gamma 

distribution with 11 and 
b

α β= = .  Therefore  

 ( )1 1

1log ~ gamma ,n n
i ii i

x y n
b

α β
= =

 = = = 
 

∑ ∑  

and  

 ( )1

1 1log  ~ gamma ,n
ii

x n
n nb

α β
=

 = = 
 

∑  

Thus 
( )

( )
1

1

1ˆ ~  inv-gamma ,
logn

in i

b n nb
x

α β
=

= = =
∑

. ■ 

 



103 

 

Note that ( )ˆ
1 1 1

nb nE b b
n n

β
α

 = = =  − − − 
, so b̂  is a biased estimator of b, but 1 ˆn b

n
− 

 
 

 is 

unbiased.  Also note that ( )
( ) ( ) ( ) ( )

2 2 2

2 2
ˆ =  for 2

1 2 1 2
n bVar b n

n n
β

α α
= >

− − − −
, so the variance of 

the unbiased estimator is ( )
2 21 ˆVar

2
n bb

n n
−  =  − 

. 

Now that we know some interesting things about the distribution of b̂ , we can use this 

information to construct a confidence interval for the true b (and hence a confidence interval for 

the true G).  We know that ( )ˆ ~ inv-gamma ,b n nbα β= =  so ( )
ˆ

~ inv-gamma ,b n n
b

α β= =  and 

1~ gamma ,ˆ
b n

nb
α β = = 

 
.   Let L and U represent the lower and upper 

2
α  percentiles of the 

gamma 1,n
n

 
 
 

 distribution.  Then 

 ( )
1 ˆ

ˆ ˆ2 1 2 1 2 1

1 1 1
ˆ ˆ2 12 1 2 1

bP L U
b

P bL b bU

P
bbU bL

α  − = ≤ ≤ 
 

= − ≤ − ≤ −

 = ≤ ≤ −− − 

 

so a ( )100 1 %α−  confidence interval for the true value of the Gini index is  

 ( ) ( )1 1ˆ ˆ2 1 , 2 1Ub Lb
− − − −  

 

where L and U and lower and upper 
2
α  percentiles of gamma 1,n

n
 
 
 

 and n > 2 is the number of 

nonzero counts. 

The MLE of b has nice properties, but the estimator becomes numerically unstable for 

very small values of b and very small sample sizes.  For this reason, we rely on a more robust 

estimator based on the area under the Lorenz curve approximated via trapezoids.  This estimator 

is very stable for all sample sizes, but it is also a biased estimator.  The theoretical value of the 

Gini coefficient is based on a continuous distribution function so that the Lorenz curve for the 
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population is continuous.  Given a random sample from the population, the Lorenz curve is 

estimated by a series connected line segments and the area under this 'curve' is calculated as the 

sum of the areas for the underlying polygons.  The true (population) Lorenz curve is always 

convex, and using polygons to estimate the area will always over-estimate the true area.  Thus 

the resulting estimate for the Gini coefficient is always biased downward.  This can be seen in 

Figure 4.20. 

 

Figure 4.20:  Source of Bias in the Gini Index Trapezoidal Estimator   
The Gini index estimated via trapezoidal approximation excludes the shaded area 
and is therefore biased downward.  The amount of bias is inversely proportional 
to the number of trapezoids, which is the number of nonzeros in the sample.     

As the sample size increases, the amount of misappropriated area decreases so that the 

bias goes to zero.  For small samples, however, the bias can be quite large and can dominant the 

standard error of the estimate (Deltas, 2003).  The values for the true Gini coefficient range from 

0 to 1.  The extremes occur when either all members of the population have equal values (Gini is 

1) or one member of the population has 100% of the 'wealth' and the remaining members have 0 

(Gini is 0).  When the Gini coefficient is estimated from a sample, the values range from 0 to 

1n
n
− .   Thus smaller samples have a reduced range for the estimated Gini coefficient, which 

makes comparison of different-sized samples difficult. 

Deltas (2003) recommends adjusting the Gini estimates by multiplying by  
1

n
n −

.  This 

forces the range of the Gini estimate to be [0, 1] regardless of the sample size, and increases each 

This area is erroneously 
included in the area under the 
Lorenz curve, so it is excluded 
from the Gini estimator. Similar 
errors occur in every trapezoid. 
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estimate to alleviate the downward bias.  This adjustment is needed only if the sample sizes are 

unequal.   

This section has presented some key results about the Gini index, when the underlying 

distribution is Pareto with minimum value 1 and shape parameter b.  These results are 

• If we ignore the zeros, the true value for the Gini index is 1
2 1

G
b

=
−

 

• If we model a point mass at 0 (with proportion π ), ( ) 11
2 1

G
b

π π= + − ⋅
−

. 

• For a random sample of size n (excluding zeros), the exact distribution of the MLE of b is 

( )ˆ ~ inv-gamma ,b n nbα β= =  

• For a random sample of size n, a ( )100 1 %α−  confidence interval for the true value of 

the Gini index is  

 ( ) ( )1 1ˆ ˆ2 1 , 2 1Ub Lb
− − − −    

where L and U and lower and upper 
2
α  percentiles of gamma 1,n

n
 
 
 

 

• For small values of b (b < 1), the theoretical value of the Gini index is undefined, but 

numerically stable estimates can be obtained via trapezoidal approximation. 

4.3. Gini Index for Common/Rare OTU Classification 
In Section 3.3.2, we introduced the Gini index as a measure for identifying rare and 

common OTUs.  In this section, we develop a procedure for performing this classification. We 

are working under the premise that the values for a rare OTU follows a Pareto distribution, while 

the distribution for a common OTU is unspecified.  We have considered (in Section 3.1.3) 

traditional goodness-of-fit tests, but there are two major difficulties with these tests.  First, the 

observed values are highly skewed with sparse right tails.  The chi-square goodness-of-fit test 

requires that the data be binned into cells, and even when the bins are defined on a logarithmic 

scale there are numerous cells with zero counts.  Thus the asymptotic chi-square distribution may 

fail to hold, and the results of this test may be inaccurate.  Second, the observed values typically 

contain many duplicate small values which results in ties among the data, thus rank-based 

methods such as the Kolmogorov-Smirnov test  may produce unreliable results.   
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We propose to use the Gini index to classify OTUs as either rare or common. The range 

of the Gini index is [0, 1], with values near 0 indicating a more even distribution (typical of 

common OTUs) and value near 1 indicating a less even distribution (typical of rare OTUs).   

Strictly speaking, the prevalence of an OTU should also be considered when classifying OTUs, 

since common OTUs are generally more prevalent (occur in more sites) than rare OTUs.  We do 

not explicitly consider the prevalence of an OTU, instead it is incorporated into the calculation of 

the Gini index.  For each OTU, the Gini index is estimated via trapezoidal approximation (see 

Section 4.2) using the nonzero abundances for the OTU. 

We have shown (see Section 4.2)  that if the data follow a Pareto distribution with 

parameter b >1, then the true value for the Gini index is ( ) 12 1G b −= − .  (The true value of the 

Gini index is undefined if 0 < b ≤ 1, because the mean of the Pareto distribution is undefined for 

these values of b.)   This result, however, does not translate directly to pyrosequence data sets.  

The derivation of the true value for the Gini index requires that the data are continuous, and the 

observed  values in pyrosequence data sets are discrete.  To derive the true value for the Gini 

index for discrete distributions, improper integrals are replaced by infinite sums.  By the integral 

test, these sums are guaranteed to converge but their convergence value is unknown.   Thus, for 

discrete counts, the true value of the Gini index is unknown.  However, an estimate for the Gini 

index can be obtained for discrete data, but the theoretical results presented in Section 4.2 would 

no longer apply since the data are not continuous.  The Gini index can also be estimated from the 

adjusted counts, which are continuous. 

To obtain the sample estimate of the Gini index for each OTU, we use trapezoidal 

approximation.  However, this estimate is known to be biased downward (Section 4.2).  

Furthermore, the amount of bias is proportional to the sample size (the number of nonzero counts 

for the OTU), so the amount of bias varies across OTUs.  In addition, there is a relationship 

between the values of n and b.  In particular, larges for one of the (n, b) pair are associated with 

small values of the other.  For Lorena's data, this relationship is depicted in Figure 4.21.  Thus 

both the sample size (n) and the Pareto parameter (b) affect the sampling distribution of the Gini 

index. 
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Figure 4.21:  Relationship between n and b̂  in Lorena's Data  
For the OTUs in Lorena's data, there is an inverse relationship between the 
number of nonzeros for the OTU (n) and the MLE of the Pareto parameter (b).       

To circumvent the uncertainties regarding the sampling distribution of the Gini values, 

we employ a resampling strategy.  For each observed OTU, a simulated Gini distribution is 

derived from 1,000 parametric bootstrap samples generated from a Pareto distribution with 

minimum value 1 and shape parameter b, which is estimated from the observed sample.  The size 

of each bootstrap sample (n) is equal to the observed sample size (the number of nonzero counts 

for the OTU).  Since the Gini index is sensitive to the values of n and b, by restricting these 

values to the estimates obtained from the sample, we are ensuring that the simulated Gini values 

are comparable to the observed Gini value. 

We are comparing the observed Gini value for an unknown type of OTU to a simulated 

distribution of Gini values generated for a rare OTU.  If the OTU is common, its Gini value is 

likely to be smaller (closer to 0) and thus should be smaller than most of  the simulated rare Gini 

values.  We count the proportion of simulated Gini values that are smaller than the observed Gini 

value.  We expect to see a large proportion if the unknown OTU is rare and a small proportion if 

the unknown OTU is common.  Thus this proportion can be interpreted as a measure of the 

likelihood that the OTU is rare.  Although this is not a true probability, for convenience we will 

refer to this as the probability of rare.  We first apply this procedure to the original counts in 

Lorena's data, then we repeat the process using the adjusted counts and compare the results. 

We illustrate this concept using two OTUs from Lorena's data.  For each OTU, we record 

n and calculate b̂ .  We generate 1,000 samples of size n from a Pareto distribution with shape 

5 10 15 20 25 30 35

0
2

4
6

8

Lorena's Data

Number of Nonzeros
b̂
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parameter b̂  and calculate the Gini index for each sample.  This generates one bootstrapped 

distribution, and we repeat this process to generate 20 bootstrapped distributions for each OTU.  

These are shown in Figure 4.22 and Figure 4.23.  Before we assess the 'rarity' of these OTUs, 

notice the stability of the bootstrapped distributions.  In particular, the medians and quartiles 

change very little within each OTU.  This stability occurred for each of 218 OTUs in Lorena's 

data, so we feel comfortable making assessments based on a single bootstrapped distribution.  

As shown in Figure 4.22 and Figure 4.23, both of the examined OTUs occur in 15 sites, 

but OTU 19 has total count 141 with estimated Gini value 0.42, while OTU 52 has total count 68 

with estimated Gini value 0.53.  On the basis of total count, we would expect OTU 19 to be 

'more common' and OTU 52 to be 'more rare', but we need to consider the distribution of these 

counts.  The bootstrap results are used to quantify these assessments.  For OTU 19, the 

probability of rare is estimated to be slightly less than 0.25, since less than 25% of the simulated 

Gini values are below the observed Gini value (as indicate by the horizontal line).  For OTU 52, 

the probability of rare is estimated at slightly above 0.5, since slightly more than one-half of the 

simulated Gini values are below the observed Gini value. 

We apply this procedure to the original counts in Lorena's data, which contains 799 

OTUs.  Since the MLE of b involves the reciprocal of the log counts, OTUs that occur in only 

one site or occur only as singletons have unreliable (or undefined) estimates for b.  These OTUs 

are pre-designated as rare because there is insufficient information to conclude otherwise.  This 

removes 581 of the original 799 OTUs.  The remaining 218 OTUs are classified according to the 

proportion of bootstrapped Gini values that are smaller than the observed Gini value for the 

OTU.  If this proportion exceeds a pre-defined threshold, the OTU is classified as rare.  

Otherwise, the OTU is classified as common.     

The next consideration is the choice of an appropriate threshold.  We are trying to 

separate rare and common OTUs, and these are distinguished by fairly even counts for common 

OTUs and erratic counts for rare OTUs.  We therefore choose a threshold that produces clear 

differences in the distributions of total OTU count.  When viewed on a log scale, we want the 

total count for common OTUs to appear roughly symmetric, while the rare OTUs will remain 

right-skewed.   The histograms in Figure 4.24 show these distributions as the threshold changes 

from 0.20 to 0.80.  For example, when the threshold is 0.20, an OTU will be classified as rare if 

its estimated probability of rare is 0.20 or higher.  This occurred for 192 of the 218 OTUs in 
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OTU 19 Observed Counts: 2 3 3 4 5 5 6 6 7 8 10 13 16 19 34 

 

Figure 4.22:  Simulated Sampling Distributions of the Gini Index for OTU 19  
Each boxplot represents one simulated distribution of Gini values based on 1,000 
bootstrapped samples.  The horizontal line is the Gini value calculated from 
observed counts for this OTU. The probability that this OTU is rare is estimated 
to be less than 0.25, since less than 25% of the simulated distribution is below the 
observed value. 

OTU 52 Observed Counts: 1 1 1 1 1 1 2 2 3 5 6 6 7 7 24 

 

Figure 4.23:  Simulated Sampling Distribution of the Gini Index for OTU 52 
Each boxplot represents one simulated distribution of Gini values based on 1,000 
bootstrapped samples.  The horizontal line is the Gini value calculated from 
observed counts for this OTU. The probability that this OTU is rare is estimated 
to be just over 0.50, since slightly more than half of the simulated distribution is 
below the observed value. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Simulation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.
2

0.
4

0.
6

0.
8

Simulation



110 

 

Lorena's data.  When the threshold is higher, some of these 'rare' OTUs will no longer be 

classified as rare; instead they will be classified as common.  Thus as the threshold increases, 

more OTUs are shifted from the rare classification to the common classification.  We know we 

have shifted too many OTUs when the common distribution becomes skewed.  In Lorena's data, 

an appropriate threshold is somewhere between 0.40 and 0.60, so we choose the threshold 0.50.   

In the bootstrapping procedure, we used the original counts to calculate the Gini index 

and to generate the estimate b̂  from which the bootstrap samples were generated.  Since b̂ is 

unreliable or undefined for many OTUs, we were required to pre-designate many OTUs as rare.  

We now examine the impact of using adjusted counts to calculate the Gini index, where the 

counts are adjusted according to the results of the multiplicative model presented in Section 

4.1.1.   

In the previous bootstrapping procedure, we simply ignored the site-specific information 

for each of these counts, and treated all counts as equally likely.  We now incorporate the results 

of the fitted multiplicative model by using the adjusted counts.  These counts have been adjusted  

by the row effect for the site in which the count occurs.  The reason for this modification is 

intuitive.  All of the counts for one site are obtained from a single analyte collected at the site, 

and this analyte undergoes DNA extraction and amplification before being sequenced.  Thus any 

variation the DNA extraction and amplification occurs for all counts that are observed at the site.  

This variation is captured in the row effects, and therefore the adjusted counts remove this 

variability from the observations. 

Recall that Lorena's data contains one site that has a much lower total count than the 

remaining sites.  The small site was deemed improperly amplified and was simply removed from 

the data set.  We kept this site in the multiplicative model, and its estimated row effect is 0.5, 

while the row effects for the remaining sites range between 0.8 and 1.3.  Since most of the row 

effects are close to 1, the row adjustment will not substantially alter the observed count.  In 

contrast, the column effects vary from 0.6 to 71.9, so removing these effect from the observed 

counts will create very different adjusted counts.  However, the column adjustment affect all 

counts in the same column equally.  That is, there is only one effect value for each column, and 

every observed count in that column is adjusted (divided) by the same column effect value.  The 

Gini index is invariant to changes in scale, so the estimate of the Gini index is unaffected by the  
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Figure 4.24:  Distribution of OTU Totals as the Threshold Changes 
These histograms are based on the log of total count for each OTU, using the 
original counts in Lorena's data.  When the threshold is low, more OTUs are 
classified as rare.  As the threshold increases, OTUs are shifted from the rare 
classification to the common classification.  An appropriate threshold will 
generate a non-skewed distribution for the common OTUs. From these 
histograms, we can determine that an appropriate threshold is approximately 
0.50. 
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column adjustment.  Therefore only the row adjustment will affect the Gini estimate and since 

the row effects are not widespread, we do not expect the Gini estimate to change much when 

adjusted values are used.  This is reflected in Figure 4.25, which compares the Gini index 

calculated from original counts to the index calculated from adjusted counts.  The biggest 

differences occur when the original Gini index is 0, that is, when the original counts are all equal.  

After adjusting these counts via the multiplicative model, the values are no longer equal and Gini 

index increases as a result.   

 

 

Figure 4.25:  Gini Index: Original vs. Adjusted Counts 
This graph compares the Gini index calculated from the original counts (x-axis) 
vs. adjusted counts (y-axis).  The biggest change occurs for OTUs whose original 
counts are all equal.  For these OTUs, the original Gini index is 0 because the 
counts are perfectly evenly distributed.  When these counts are adjusted, the 
counts are no longer equal and the Gini index increases. 

Since the values of the Gini index are not dramatically affected when the data are 

adjusted, we do not expect a substantial difference in the Common/Rare classification that uses 

this index.  This is reflected in Figure 4.26, which indicates that the two methods generated the 

same classification in all but 23 OTUs.  The circled points represent OTUs that would be 

classified differently depending on whether we use the original counts or the adjusted counts.  

Both of these methods use a threshold of 0.5, so OTUs with Pr(Rare) greater than 0.5 are 

classified rare and all others are classified common. 
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Most of the mismatched classifications in the upper left corner of Figure 4.26 correspond 

to OTUs that occur in a small number of sites and also have duplicate counts.  When the original 

counts are used, the Gini index interprets the duplicate counts as arising from a equitable 

distribution (which is indicative of Common OTUs), and therefore erroneously classifies these  

OTUs as Common.  When the integer counts are adjusted, the Gini index is better able to detect 

the rarity of the OTU.  Most of the mismatched classifications in the lower right corner 

correspond to OTUs that occur in many sites, but also have several singletons.  All but one of 

these points are at or near the threshold of 0.5.  The exception is OTU 76, which has Pr(Rare) 0.7 

using the original counts and 0.3 using the adjusted counts.  This OTU occurs in 18 sites (which 

indicates that it is common), but it occurs as a singleton in 10 of these sites and its maximum 

individual count is only 4 (which indicates that it is rare).  It is therefore not surprising that the 

two procedures would arrive at opposite classifications, since the true classification of this OTU 

is ambiguous.  

 

Figure 4.26:  Common/Rare Classifications Using Original vs. Adjusted Counts 
This graph compares the classification of each OTU, according to whether the 
original counts or the adjusted counts are used.  Classifications were different for 
only 23 OTUs, shown as circled points on the graph. 

It may be possible to use the estimated column effects from the multiplicative model to 

classify OTUs as rare or common.  Each column effect is an indication of the prevalence of an 
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perceives as excess variability may actually be a manifestation of a very common OTU.  It seems 

logical, then, that the estimated column effects may be a suitable measure to distinguish common 

and rare OTUs.  In our previous work, OTUs were designated as either rare or common by 

estimating the probability that the OTU is rare, which was based on the Gini index for the OTU.  

We now compare these two measures.  Common OTUs should have small values from the Gini 

index and large column effects, while rare OTUs should have large values from the Gini index 

and small column effects.  To orient these two measures, we compare the column effects to the 

complement of the probability of rare.    

In Figure 4.27,  the x axis represents the column effects (on a log scale) estimated from 

the multiplicative model, and the y axis is 1 – Pr(Rare) estimated from the Gini index.   The gray 

circles represent the OTUs that were pre-designated as rare during the Gini procedure.  These 

OTUs have such extremely small counts that the algorithm employed in the Gini procedure 

became numerically unstable for these OTUs, and they were pre-designated as rare and assigned 

Pr(Rare) equal to 1.  The horizontal dashed line at 0.5 represents the threshold value used in the 

Gini procedure to designate an OTU as either rare or common. Points above this line indicate 

common OTUs and points below the line indicate rare OTUs.   

 

 

Figure 4.27:  Compare Column Effects to the Probability of Rare 
Each point represents one OTU from Lorena's data.  Large values for the column 
effect (x-axis) indicates the OTU is common.  The y-axis is the complement of the 
probability of rare, so large values also indicate the OTU is common.   

The scatterplot in Figure 4.27 exhibits a positive relationship between estimates obtained 

in the multiplicative model (on the x axis) and estimates obtained via the Gini index (on the y 

axis). This seems to indicate that both measures are detecting a similar pattern in the data.  This 
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graph also contains a tight cluster of points in the lower left corner, which corresponds to the 

numerous infrequent OTUs in the data. It seems, then, that either measure could be used to 

classify rare and common OTUs, but there are advantages and disadvantages of each measure.  

One advantage of using the measure based on the Gini index is that its values are more 

evenly dispersed, even though they are constrained in the interval [0, 1].  The column effects  

have no upper bound, but they are restricted to be strictly positive.  As the boxplots in Figure 

4.28 illustrate, the both distributions are skewed, but the unbounded column effects have large 

outliers, while the measure based on the Gini index does not.  One major drawback of using the 

Gini index as a classification measure is that it is based on the assumption that the individual 

counts for rare OTUs follow a Pareto distribution.  While we do have evidence to support this 

assumption in the four data sets we are analyzing, there is no guarantee that this assumption 

would be satisfied by other OTU data sets.  The column effects, in contrast, are completely data-

driven and make no distributional assumptions about the data.  It seems, then, that either of these 

measures could be used classify common and rare OTUs. 

 

 

Figure 4.28:  Distributions of Two Measures to Classify Common/Rare 
The top boxplot is the measure based on the Gini index, and the bottom boxplot 
shows the column effects from the multiplicative model.  Either measure could be 
used to classify OTUs as common or rare. 
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Chapter 5. Conclusion 

5.1. Summary of Primary Results 
With their high proportion of zeros, highly skewed nonzero values, and the potential 

variability in the data collection process, pyrosequence data sets must be preprocessed before 

they can be analyzed.  For this purpose, we have proposed a multiplicative model that measures 

the variability in both sites and OTUs, and it generates standardized data which can be analyzed 

using traditional methods.  The parameters of the model, which consist of an effect parameter for 

each site and each OTU, are estimated via a multiplicative adaption of Tukey's median polish. 

The residuals of the fitted model are the standardized data.  The multiplicative standardization 

process has many advantages.   

• All of the observed data can be retained.   

This is unlike other forms of preprocessing pyrosequence data, which require the 

elimination of many extremely small values and OTUs that occur in small abundances.  

• It reduces the extreme skew of the distribution.   

This is most easily seen when both the original and standardized data are in log scale, as 

shown in Figure 5.1 below. 

• It highlights values that are unusual for the combination of site and OTU.   

Relatively obscure original values can be highly unusual because they occur in an 

unlikely site or because they are unusually large or small for a particular OTU.  The 

standardized values incorporate both site and OTU information to make unusual values 

more prominent.  This was illustrated in Figure 4.14, in which an obscure original count 

of 47 (for OTU 31 at site 112) was standardized to 12.3.  Since the standardized values 

are the result of a multiplicative model, a standardized value of 1 indicates a typical 

count, so that the standardized value of 12.3 indicates this is approximately 12 times 

larger than what we should expect to see for this OTU at this site. 

• The multiplicative algorithm is more efficient than traditional least squares. 

The multiplicative model is equivalent to a log linear model, and the parameters of the 

multiplicative model could be estimated by traditional least squares methods.  Available 

software for least squares estimation manipulates the design matrix of the log linear 

model, and these matrices can be quite large for some pyrosequence data sets.   The 



117 

 

multiplicative adaption of Tukey's median polish requires fewer computer resources and 

executes in less time than traditional least squares estimation. 

 

 

Figure 5.1:  Distributions Original and Standardized Data 
Both the original and standardized data are extremely skewed, but 
standardization reduces the degree of skewness.  When the data are 
log-transformed, the original data are still skewed, while the standardized data 
are almost symmetric. 

A second major contribution of this research is the development of a new procedure for 

classifying rare and common OTUs.  This new procedure is based on the recognition that both 

the original data and the standardized data are highly skewed, and similar in structure to financial 

data such as insurance claims and the distribution of wealth in a population.  Financial 

applications frequently use the Gini index to summarize the inequity, or lack of evenness, in a 

distribution.  Building on the similarities between these two types of data, the Gini index is used 

as test statistic for performing common/rare classification.  For continuous data that follows a 

Pareto distribution, the true value of the Gini index is known.  However, the original data are 

discrete so the true Gini value is not known.  Parametric bootstrapping yields a simulated 

sampling distribution of the Gini index for each OTU, from which we estimate the probability 

that the OTU is rare.  This method appears to be far more suitable for microscopic species data 

than the 50% persistence threshold criterion used for macroscopic species classification, but the 

accuracy of the new method cannot be verified since the true classifications of the observed 

OTUs are unknown. 

The research topics presented in this report should establish a firm foundation upon 

which future research can be based.  To date, development of sound procedures of analysis have 
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been hindered by the complexities in OTU data, resulting in extensive use of standard statistical 

procedures with little regard for their suitability to the data.   This research as well as other 

current and future research will likely identify new open questions to be explored. As 

methodologists address these questions, new tools will be added to the armamentarium of 

researchers producing pyrosequence data. As time progresses, these tools will be vetted for their 

usefulness and validity in answering questions of scientific interest, and eventually some 

consensus reached for which approaches seem most valid. This progression, again, will mirror 

the methodological development for microarray data (see Allison et al., 2006; Mehta et al., 

2006). The results of the current research are seen as an early contribution to addressing the 

needs of researchers producing data from pyrosequencing technology.  

5.2. Areas of Future Research 

5.2.1. Simulate Data 
A necessary component of any proposed statistical method is the ability to ascertain 

whether or not the method is able to uncover the 'truth' about the data generating process.  For 

example, in Section 4.3, we developed a method to classify each OTU as either rare or common, 

but we could not assign any measure of confidence to the resulting classifications because we do 

not know which OTUs are truly rare and which ones are common.  In order to make this 

determination, we must be able to generate simulated datasets so that we know the 'truth'.  

During our investigation, we have employed two types of simulation strategies to 

generate  portions of OTU data.  These were presented in Section 4.3 and Section 4.1.4.  While 

these strategies varied in both scope and intent, they each provide tantalizing clues as to how 

entire pyrosequence data sets may be simulated.     

In Section 4.3, individual nonzero abundances for specific OTUs were generated by 

assuming the abundances followed a Pareto distribution.  For each OTU that was observed in 

data, nonzero values were simulated specifically for this OTU, using both the sample size n and 

the estimated Pareto parameter b based on the observed data for that OTU. These simulations 

were performed under the assumption that the OTU is rare, which justifies the use of a Pareto 

distribution.  Only nonzero values were generated, and the association between the sites and the 
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generated values was not modeled.  That is, we generated only a vector of nonzero values for 

each OTU, for the purpose of estimating the sampling distribution of the Gini index for the OTU.     

A different strategy was employed in Section 4.1.4.  Using the results of the fitted 

multiplicative model, the estimated overall, row and column effects were all held fixed and the 

residuals were permuted.  A new data set was generated by multiplying the three estimated 

effects and the permuted residuals.  The new data set generated new estimates for the overall, 

row and column effects.  By replicating this process we were able to simulate the sampling 

distributions of the estimated effects.   Unlike the OTU-specific simulations in Section 4.3, the 

residual permutation strategy does associate each simulated value to an OTU and a site.    

Neither of these simulation strategies explicitly model the zeros.  The zeros were 

completely ignored in the OTU-specific simulations in Section 4.3, because the intent was to 

generate a distribution for the Gini index and the Gini index uses only the positive values.  In the 

residual permutation strategy of Section 4.1.4, we begin with residuals associated with the 

nonzero values and permute them among the nonzero values.  Thus all the observations that were 

originally zero will remain zero.  

The ability to simulate realistic OTU data is crucial for evaluating both existing and 

proposed statistical methods, so this will necessarily be an area of future research.  One possible 

approach is to extend the residual permutation strategy as applied to the multiplicative model.  

Instead of using residuals and effects estimated from an existing dataset, these could be 

generated from plausible probability models.  Appropriate distributions for the row and column 

effects would need to be determined, and it is anticipated that the column effects will need to be 

generated separately for rare and common OTUs.  A mixture distribution, perhaps combining 

two normal densities, may be suitable for modeling the asymmetric residuals, and a Bernoulli 

component could be used to model the zeros.   

5.2.2. Measure Relationships between OTUs 
In addition to enumerating OTUs that are present at any given site, researchers are often 

interested in identifying and quantifying the interactions and interdependencies between OTUs.  

For example, are there collections of OTUs that tend to occur (or not occur) together at the same 

sites?  Or perhaps the presence (or increased abundance) of one OTU is related to a change in 

abundance of another OTU.  While the co-occurrence patterns are straightforward to model, 
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other forms of relationships are difficult to identify, in part because the association may be 

nonlinear so that customary measures such as correlation may fail to detect it.  Another obstacle 

in uncovering these relationships may lie in the extreme skewness of the observed data.  This 

may be one reason the data are routinely divided into rare and common OTUs:  the common 

OTUs occur in such large abundances that comparison to the smaller abundances of rare OTUs 

can be distorted.  It has already been shown (in Section 4.1.5), that the standardized data reveal 

patterns in the data that are obscured in the original data.  It seems reasonable to investigate 

whether the standardized data may also reveal associations between OTUs that are not evident in 

the original data. 

5.2.3. Experimental Designs  
Dr. Ari Jumpponen (personal communication, June 2012) is collecting data in a block 

design experiment, specifically constructed to isolate levels of variation in OTU community 

structure.  The design involves six locations with two trees at each location, and fungal DNA is 

extracted from three leaves on each tree.  The main objective is to compare the variability in each 

stratum: between leaves within the same tree; between trees in the same location; and between 

locations.  Traditionally, block designs isolate the variability, so that the lower strata (between 

leaves) have less variability than the higher strata (between locations), but it is uncertain if 

blocking will perform its intended purpose on microbial communities.  Thus the results of this 

experiment will provide valuable information for the design of future experiments.   

In an similar biomedical study, the Human Microbiome Project recently released a report 

detailing a first census of the microorganisms that inhabit human bodies  (The Human 

Microbiome Project Consortium, 2012).   They found, among other things, that both the 

occurrence and abundance of microbes (OTUs) within one person was relatively stable over 

time, but that different parts of the body have very different patterns of microbial occurrence and 

abundance.  They also report that the variation among body areas within one person can be much 

greater than the variation in one body area across multiple persons.  While there is no direct link 

between microbial patterns in humans and fungal OTU patterns in a natural environment, it 

should not be forgotten that this is a new and emerging scientific area.  Thus customary 

techniques, including customary experimental designs, should not be universally applied without 

consideration of details that are “application specific.”  
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Appendix A. Glossary 

Amalgamation 

The act of combining two or more parts of a composition.  For example, if we take a 4-part 

composition ( )1 2 3 4, , ,x x x x  and amalgamate parts 3 and 4, the result is the 3-part composition 

( ) ( )1 2 3 1 2 3 4, , , ,y y y x x x x= + . 

Base pairs 

Each strand of double-stranded DNA contains a sequence of nucleotides.  The two strands are 

joined into a double helix by chemical bonds between two nucleotides, one nucleotide on each 

strand.  The pair of nucleotides that are bonded together are called base pairs.  

Closure 

The transformation in which each element of a positive-valued vector is divided by the sum of 

the elements.  The image is a compositional vector.  The closure operation is denoted by �. 

Composition 

 For an integer D ≥ 2, a D-part composition is defined to be ( )1 2, , , Dx x x=x … ,  

where 
1

0 and 1D
i ii

x x
=

≥ =∑ . For logratio analysis, the xi are required to be strictly positive. 

Diversity 

A combination of species richness and species richness that can be used to measure the health 

of an ecological community or to measure differences between communities. 

DNA 

Deoxyribonucleic acid, consisting of two strands of nucleotides coiled together to form a 

double helix.   

Evenness 

The equity of species abundances in a community. 

Genome 

The complete DNA sequence of an organism. 

OTU 

Operational Taxonomic Unit.  In the current research, OTU is a surrogate for species. 
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PCR amplification 

Polymerase Chain Reaction: one method for duplicating (amplifying) sections of DNA   

Perturbation   

A vector operation on the simplex, equivalent to vector addition in real space.  The 

perturbation operation is denoted by ⊕.  For a composition x and any vector u that has 

nonnegative elements,  

( ) ( )1 1 2 2
1 1 2 2

1 1 2 2

, , ,
, , , D D

D D
D D

u x u x u x
u x u x u x

u x u x u x
⊕ = =

+ + +
u x

…
…

…
C  

Powering  

A vector operation on the simplex, equivalent to scalar multiplication in real space.  The 

powering operation is denoted by .  For a scalar α ∈ ℜ1 and compositional vector x, 

( ) ( )1 2
1 2

1 2

, , ,
, , , D

D
D

x x x
x x x

x x x

α α α
α α α

α α αα =
+

=
+ +

xe
…

…
…

C  

Simplex 

The set of all D-part compositions, denoted ∇D-1. 

( ){ }D 1
1 2 1 2 1 2, , , | 0, 0, , 0; 1D D Dx x x x x x x x x−∇ = ≥ ≥ ≥ + + + =… … … . 

Singletons 

Singletons occur when an OTU is observed exactly once at a site.  This is recorded as a '1' in 

the OTU data matrix. 

Richness 

The number of species present at a site. 

Subcomposition 

A composition containing a subset of parts.  For example, if the original composition contains 

four parts ( )1 2 3 4, , ,x x x x , a two-part subcomposition is ( ) 2
1 2

1 2 1

1

2

, ,x x
x x

x x
x x

 
=  + + 

C  
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Appendix B. Log Series Distribution and Fisher's α 

The logarithmic series distribution is a discrete distribution defined by the probability mass 

function 

 
1( ) , 0 1, 1, 2, , where 

ln(1 )

kaP T k k a
k
θ θ

θ
−

= = < < = =
−

… . 

Since the value for a is completely defined in terms of θ, this distribution has only one 

parameter.  This distribution is right-skewed and is more strongly skewed as θ approaches 1, as 

shown in Figure B.1.  

 

 
Figure B.1: Log Series Distribution 

To use this distribution for species abundances, let , 1, 2, ,iX i S= …  be the total abundances 

(across all sites) for OTU i and let 
1

S
ii

N X
=

= ∑  be the total abundance for all OTUs.    

 

To find the maximum likelihood estimator of θ, we treat the elements of the vector X as 

independent observations and construct the log likelihood function 

 
( )1

1( | ) ln ln ln
ln 1

S
i ii

x xθ θ
θ=

  − = + −   −   
∑xl  
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With repeated use of the chain rule, the derivative is 

 

( )
( )

( )

( ) ( )

( ) ( )

2

11

1 1

1 1ln 1
11 ln 1

1
1 ln 1

1 ln 1

S i
i

S S i
i i

x

x

S N

θ θ
θ θ θθ

θ θ θ

θ θ θ

−

−=

= =

 ∂ −  = ⋅ − ⋅ +  ∂ − − ⋅ −   

= +
− −

= +
− −

∑

∑ ∑

l

 

The MLE θ̂  is the solution to 0θ =∂
∂
l , which is the solution to  

 
( ) ( )

( ) ( )ˆ ˆ1 ln 1
  or  ˆ ˆˆ ˆ1 ln 1

N S S
N

θ θ

θ θθ θ

− ⋅ −−
= =

− ⋅ −
. 

Note that this implies  ( ) ( )
ˆˆln 1

ˆ 1
S
N

θθ
θ

− = ⋅
−

. 

By the invariance property of MLEs,  

 
( )

( )
ˆ

ˆ 1

ˆ11 1ˆ ˆˆln 1 S
N

N
a

Sθ
θ

θ

θθ  
 
 

−

−− −= = =
⋅− ⋅

. 

This is the MLE for a in the log series distribution, which has a one-to-one correspondence to the 

log series used in ecological studies.  The log series is defined by 

 
2 3

, , , , ,
2 3

k

k
αθ αθ αθαθ … … 

where the thk  term in the series is the predicted number of OTUs that have abundance k.  Thus 

the  relationship between the series and the distribution is  

 

( ) number of OTUs with count an OTU has count 
number of OTUs

1k k

kP k

a
k S k

S a

θ αθ

α

=

= ⋅

⋅ =

 

The value of Fisher's α is the MLE of α,  
ˆ ˆ1 1ˆ ˆ ˆ ˆ

NS a S N
S

θ θα
θ θ
− −

= ⋅ = ⋅ ⋅ = ⋅ . 
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Appendix C. Proof of Result 3.4 

Result 3.4: 

Let (1) (2 ) ( ), , , nX X X…  be the order statistics of a random sample of size n from a 

Pareto (1, b) distribution with pdf 1( ) , 1, 0bf x b x x b− −= ⋅ ≥ > .  Then the ratio 

( 1)

( )

k

k

X
X

+  follows a Pareto distribution with parameters 1 and ( )b n k− . 

 

Proof: 

The pdf of X is 1( ) , 1, 0bf x b x x b− −= ⋅ ≥ > , and the cdf is ( ) 0 if 1
1 if 1b

x
F x

x x−

<
=  − ≥

. 

For i < j and i jx x< , the joint pdf of the order statistics ( )iX  and ( )jX  is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )11
,

!, 1
1 ! 1 ! !

j i n ji
i j i j i j i j i j

nf x x f x f x F x F x F x F x
i j i n j

− − −−     = − −     − − − −
 

For consecutive order statistics ( )kX  and ( 1)kX + , this simplifies to 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1

, 1 1 1 1

111 1
1 1

2 1 1

11 1
1

!, 1
1 ! 1 !

! 1 1 1
1 ! 1 !

! 1 11
1 ! 1 !

k n k
k k k k k k k k

n kkb b b b
k k k k

k n kb b
k kb b

k k

nf x x f x f x F x F x
k n k

n b x b x x x
k n k

n b x x
k n k x x

− − −

+ + + +

− −−− − − − − −
+ +

− − −− −
++ +

+

   = −   − − −

      = ⋅ ⋅ − − −       − − −

   = ⋅ ⋅ − ⋅ ⋅   − − −

 

Define the transformation ( )kU X=  and ( 1)

( )

k

k

X
V

X
+= , so the inverse transformation is  

( )kX U=  and ( 1)kX UV+ = , with Jacobian 
1 0

J u
v u

= = .    

Then the joint pdf of U and V is 



135 

 

( )

( ) ( ) ( )
( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( )

, , 1

2 11

11

2 1

1 2 2 1

2 1

11

12

, ( , )

! 1 11
1 ! 1 !

! 1 11
1 ! 1 !

! 1 1 11
1 ! 1 !

!
1 ! 1 !

U V k k

n kk bb
bb

kb
b bn bk b b bn bk b

kb
bb n k b n k

b n k nb

f u v f u uv u

n b u uv u
k n k u uv

n b u
k n k v u

n b u
k n k uv u

n b v u
k n k

+

− −− −−
++

−−
+ + − − + + − − −

−−
+− + −

− − −
−

= ⋅

 = ⋅ − ⋅ − − −

= ⋅ ⋅ − ⋅
− − −

= ⋅ ⋅ − ⋅ ⋅
− − −

=
− − −

( ) 1 11
k kb bu u

− −− − −−

 

We want the pdf of V, so integrate out u. 

( )
( )

( ) ( ) ( ) ( )
12 1 1

1

! 1
1 ! 1 !

b n k n k kb b b
V

n b vf v u u u du
k n k

∞− − −
− −− − − −= −

− − − ∫  

Substitute bt u−= , so 1bdt bu− −= − .  As , 0 (because 0),  and as 1, 1u t b u t→ ∞ → > → → . 

( )
( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

12 0 1

1

1 1 1

0

! 1 1
1 ! 1 !

! 1
1 ! 1 !

b n k
n k k

V

b n k
n k k

n b vf v t t dt
k n k b

n b v t t dt
k n k

− − −
− −

− − −
− −

 = − − − − − 

= −
− − −

∫

∫
 

The integral is a beta function. 

( )
( )

( ) ( )
( ) ( )

( )
( )

( ) ( )
( ) ( )

( ) ( )

1

1

1

1!
1 ! 1 ! 1

! 1 !!
1 ! 1 ! !

b n k

V

b n k

b n k

n k kn b vf v
k n k n

n k kn b v
k n k n

b n k v

− − −

− − −

− − −

Γ − + Γ
= ⋅

− − − Γ +

− −
= ⋅

− − −

= −

 

Therefore, ( 1)

( )

k

k

X
V

X
+=  follows a Pareto ( )( )1, b n k−  distribution. ■ 

 
This pdf applies to the ratio of any two consecutive order statistics from a Pareto distribution.  

For the purpose of identifying potential large outliers, we are interested in the specific ratio 

( )

( 1)

n

n

X
V

X −

= .  For this ratio, 1 (or 1)k n n k= − − = , and its pdf is ( ) 1b
Vf v b v− −= , which is 

precisely the pdf of the original distribution. 
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Appendix D. Review of Compositional Data Analysis 

 
Compositional data are defined to be multivariate observations whose elements are 

nonnegative and sum to one.  From a mathematical perspective, compositional data are derived 

from a larger class of multivariate data known as directional data, in which each element in the 

vector is required to be nonnegative, but the elements do not necessarily sum to one.  For OTU 

data, the vector of observed abundances for a particular site is a directional vector. When the 

vector of OTU abundances for a site is divided by the site total, the result is a vector of sample 

proportions, which is a compositional vector. 

To facilitate comparison of sites that have different site totals some researchers analyze 

proportions rather than raw abundance values.  Shannon's index, for example, is based on sample 

(site) proportions.  These proportional (compositional) vectors are constrained so that the 

elements sum to one.  If the statistical analysis is conducted on the proportions instead of the raw 

abundances, the constrained nature of these vectors may need to be considered.  This is 

accomplished with compositional data analysis.  

Much work has been done with this research project to determine the characteristics of 

OTU data and the suitability of compositional analysis for such data. A conclusion reached and 

presented in Section 3.2 is that, for a variety of reasons, little is to be gained from compositional 

analysis of OTU data, and the potential cost of doing so can be added theoretical and 

computational complexity and increased difficulty in interpreting results. In order to make this 

argument and for completeness, this appendix reviews some background of compositional 

analysis. 

The sum-to-unity constraint for compositional data presents numerous challenges for 

analysis.  Simple concepts that are usually taken for granted with real-valued multivariate data, 

such as vector addition and scalar multiplication, can generate highly unexpected and sometimes 

nonsensical results when applied to compositional data.   For example, taking the difference of 

two compositional vectors will result in a vector that is not a composition because its 

components will no longer sum to one and because some components could be negative.  These 

difficulties are compounded when we attempt to calculate more complicated measures, such as 

similarity and variability. 



137 

 

The transformation known as closure maps directional (count) vectors to compositional 

(proportion) vectors; this transformation simply re-scales each element in the directional vector 

by dividing each element by the sum of the element values.  The elements in a compositional 

vector are also called parts, or components. A directional vector with S elements can be 

visualized as geometric ray (i.e. a half-line) from the origin into the positive orthant of Sℜ , and 

the act of closure projects the directional vector onto a restricted hyperplane in 1S −ℜ .  Thus this 

transformation is sometimes called the linear transformation.  Other transformations have been 

suggested (Barceló-Vidal et al., 2001), including a spherical transformation and a hyperbolic 

transformation, which project a ray from the positive orthant to the unit hypersphere and 

hyperbolic surface, respectively.  The spherical transformation divides directional vector by its 

Euclidean (L2) norm and hyperbolic transformation divides a directional vector by the product of 

its component parts.  The hyperbolic transformation receives further attention in compositional 

data analysis as it is related to a centering transformation. (Aitchison, 2003, p.79) 

When the closure transformation is applied to a directional vector with S elements, the 

result is a S-part composition: ( )1 2, , Sx x x x= … , where the elements are nonnegative and sum to 

one.   The set of all S-part compositions occupy a subspace of 1S −ℜ .  The reduction of dimension 

occurs as a direct result of the sum-to-one constraint, since 
1

1
1 S

S ii
x x−

=
= −∑ .  The remaining S-1 

parts of the composition are also constrained by the fact that their sum cannot exceed 1.  Thus 

the space occupied by all S-part compositions is a subspace of 1S −ℜ .  This subspace is called the 

simplex, denoted 1S −∇ .  Since it is a constrained subspace (more specifically, a truncated 

hyperplane), the geometry of the simplex is unlike customary Euclidean geometry . When S = 3, 

the simplex can be represented geometrically by a triangular surface bounded by the points 

(0,0,1), (0,1,0) and (1,0,0).  Data points in this space are typically represented in ternary 

diagrams, as shown in Figure D.1. 

Extension to higher dimensions is achieved by either creating a grid of ternary diagrams, 

similar to scatterplot matrices, or through the use of biplots.  In the Euclidean sense, a biplot 

represents a projection of the sample points onto the plane created by the first two principal 

components.  This has been adapted by Aitchison and Greenacre (2002) for the geometry of 

simplex.   
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Figure D.1: Visual Representations of the Three-Part Simplex 
 

In addition to  computational challenges, much care must be taken when modeling  and 

interpreting compositional data.  The sum-to-unity constraint forces dependence among the parts 

of a compositional vector.  Since a positive change in any one part of the composition forces a 

negative change in at least one other part of the composition, it would seem that the correlation 

between any two parts must necessarily be negative.  This is not always the case, however.  For 

example, a shortage of a particular food supply can cause the abundance of some OTUs to decay 

at the same rate, and thus intuitively these OTUs should be positively correlated.  In addition, the 

usual methods for estimating correlations can produce arbitrary results when applied to 

compositional data.  (Chayes, 1960) 

In an early study, Karl Pearson (1897) warned of the dangers of "spurious correlations" 

that can occur between ratios of random variables.  For example, X/Z and Y/Z can exhibit strong 

correlation even when X, Y and Z are mutually independent.    In the case of  pyrosequence data, 

we expect even stronger spurious correlations since the numerators are not independent of the 

common denominator (the sum).   Despite Pearson's warnings, much of the work with 

compositional data completely disregards the constrained nature of the data.  In the 1980's, John 

Aitchison postulated that compositional data provide information solely on the relative, and not 

absolute, magnitudes of the components and therefore statistical analysis must be based on ratios 

of components within the compositional data vector.  Taking the logarithm of these ratios 

transforms the constrained compositional vectors into unconstrained real-valued vectors, so that 

conventional multivariate techniques can be applied to the transformed vectors and the results 

translated back into the compositional framework. This approach is called logratio analysis 

(Aitchison, 2003).   
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Although mathematically rigorous, this approach has not been universally accepted.  A 

thorough literature review has revealed many applications within the geological sciences, but 

none in community ecology.  There is also some dissention among geologists.  Opposition has 

primarily focused on the difficulty in interpreting logratio results and consolidating these results 

with pre-existing work.  Interested readers can follow the discourse in the Letters to the Editor of 

Mathematical Geology from 1988 to 2002.   

D.1. Criteria for Reasonable Statistical Approaches 
Any reasonable statistical analysis must generate results that are reproducible and 

consistent with results obtained when other valid approaches are used on the same data.  For 

compositional data analysis, the three main principles are scale invariance, subcompositional 

coherence, and permutation invariance.   

Scale invariance is simply a recognition that compositional data provide information only 

about the relative values between components, so that ratios of components are the relevant 

values to examine.  This implies that any function f  of the data must also be scale invariant, 

that is, for any compositional vector x and  positive scalar ( ) ( ), f fα α =x x .  

The concept of subcompositional coherence involves working with subsets of 

components within a composition.  For example, suppose a compositional data set contains five 

components, and one researcher analyzes all five components while a second researcher analyzes 

only the first three components.  Any relationships detected in the second analysis should also be 

detected in the first analysis.  In other words, the presence of additional components in the first 

analysis should not affect the relationships between the common components that are present in 

both analyses.   

The requirement of subcompositional coherence also extends to amalgamations, in which 

some components are combined (added) so that the length of the compositional vector is reduced 

while keeping the sum-to-one constraint intact.   As an illustration, suppose that analysis of a 

five-part compositional data set indicates strong correlation between parts 1 and 5 and between 

parts 2 and 5.  If parts 1 and 2 are combined into a single part and the data are re-analyzed as a 

four-part composition, any reasonable statistical approach must be able to detect a strong 

correlation between the new part and the original part 5. 
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In addition to scale invariance and subcompositional coherence, any sensible statistical 

methodology must also be permutation invariant.  This means that the results should be 

unaffected if the parts are the composition are simply rearranged (permuted).  Prior to 

Aitchison's logratio approach, statistical techniques applied to compositional data routinely failed 

to achieve scale invariance, subcompositional coherence and/or permutation invariance.  The 

result was much confusion in scientific communities, since two researchers could reach opposite 

conclusions when using the same data. 

D.2. Logratio Transformations and Zeros 
The most direct way to analyze compositional data vectors is to first transform them into 

real space, perform the desired multivariate analysis on the unconstrained vectors, and then 

transform the results back to the simplex.  An acceptable transformation must map 1S −∇  onto 
1S −ℜ  and it must be one-to-one so that the results can be mapped from 1S −ℜ  back to 1S −∇ .   

Typically, the transformed vectors are assumed to follow a multivariate normal distribution.  For 
1Sx −∈∇  and 1Sy −∈ℜ , the three transformations that appear most often in the literature are the 

additive logratio transformation (alr), the centered logratio transformation (clr) and the isometric 

logratio transformation (ilr).  These are defined by 

  ( ) 11 2alr log , , , S

S S S

xx x
x x x

− 
= = … 

 
xy  and ( ) ( )

clr log
g

 
= =   

 

x
x

y x ,  

where ( )
1

1
( )

SS
ii

g x
=

= ∏x  is the geometric mean of x.  The isometric logratio transformation 

generates vectors whose elements are coordinates with respect to an orthonormal basis for the 

simplex.  The choice of the set of basis vectors dictates the precise form of the transformation.  

In order to perform logratio analysis, it is necessary that all the elements of every 

compositional vector to be strictly positive.  One mechanism for eliminating zeros is to simply 

amalgamate (combine) elements.  This is not feasible for a data set that contains many zeros 

because it may require combining parts that are of central importance to the research objectives.  

Another strategy is to replace each zero with a small positive number prior to logratio 

transformation.  Replacement strategies and their impact on the resulting analysis is currently an 

active area of research.  See, for example, Fry, Fry and McLaren (2000), Palarea-Albaladejo, 

et.al. (2007),  Martin-Fernandez, et.al. (2000, 2003, 2006), and Tauber (1999).    
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D.3. The Simplex as a Vector Space 
The logratio transformations are well-suited for mapping the data vectors but they cannot 

be applied to model parameters.  For example, means and standard errors of model parameters 

based on the simplex geometry cannot be interpreted in terms of untransformed proportions. 

Thus research objectives defined in terms of proportions are answered in terms of logratios.  This 

is an unfortunate situation,  so statisticians and mathematicians are currently exploring methods 

that exploit the structure of compositional data in order to provide interpretable answers.  

When analyzing compositional data, the unique geometry of the simplex cannot be 

ignored.  Simple measures, such as “average” can have many different meanings in the simplex.  

In addition, vector operations in the simplex are unlike vector operations in Euclidean space.  In 

the simplex, the two main binary operations are perturbations and powering.  These correspond 

to vector addition and scalar multiplication, respectively, in Euclidean space.  

A perturbation models change in a composition.  For example, consider a composition 

consisting of the proportion of three species in a habitat.  Suppose that the initial composition is 

(0.4, 0.1, 0.5), then the habitat experiences a disturbance so that its composition changes. Further 

suppose that the first species is reduced by 50%, while the remaining species are reduced by 20% 

each. Then the result is (0.5*0.4, 0.8*0.1, 0.8*0.5) = (0.2, 0.08, 0.4),  but this vector needs to be 

closed (so that it sums to one).  The closure operation is denoted by C .  The composition after 

disturbance is  

( ) ( ) ( )0.2,0.08,0.4
0.5*0.4,0.8*0.1,0.8*0.5 0.294,0.118,0.588

0.2 0.08 0.4
= ≈

+ +
C . 

Note that the first proportion is reduced from 0.4 to 0.294, but the second two proportions 

actually increase as a result of the disturbance.  This is counter-intuitive, since the actual 

abundances of these species are presumed to decrease.  In this example, however, the first 

species is reduced at a larger rate so that, after the disturbance, the relative amounts of second 

two species are larger. This example illustrates one difficulty in measuring differences between 

compositional vectors. 

In general, the perturbation operation is defined by 1 1 2 2( , , )S Su x u x u x⊕ =u x …C , where x 

is a compositional vector and the perturbing vector u contains nonnegative entries.   When 

modeling a transition, the perturbing vector is not required to be a composition; in fact, one or 

more of the entries may be greater than 1.  This would model a process in which a species 
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becomes more abundant.  The powering operation in the simplex is the equivalent of scalar 

multiplication in Euclidean real space.  For any scalar α and any composition x, the powering 

operation is defined by  1 2( , , )Sx x xα α αα =xe …C  

With perturbation as vector addition and powering as scalar multiplication, Billheimer, 

Guttorp and Fagan (2001) propose a 'linear' model involving these two operations.  Their model 

is intuitively appealing because the parameters are directly interpretable within the framework of 

compositional processes.   In the same article, they show that  the simplex is both a vector space 

and a Hilbert space, with an inner product based on logratios. This provides the necessary 

structure from which we can define a distance between two compositions, and also allows the 

use of probability measures directly on the simplex. 

D.4. Distance, Center and Variability 
The inner product of two compositional vectors x and y is defined as 

[ ] [ ] [ ] ( )[ ]1
1 1, clr( ) clr( ) alr( ) alr( )S SSa − −

′ ′= = −x y x y x yI J  

where I is the identity and J is a square matrix of 1's.  The simplicial distance between x and y is

( ), ,a a
d =x y z z , where ( )1= ⊕ −z x ye .   (The subscript a denotes Aitchison's distance.)  

Note the similarity between the simplicial distance and ordinary Euclidean distance.  In the 

simplex, perturbation is vector addition and powering is scalar multiplication, so ( )1⊕ −x ye  in 

the simplex is equivalent to −x y% %  in Euclidean space.  In both spaces, distance is measured as a 

sum of squared differences.   Unlike their Euclidean counterparts, distances in the simplex are 

difficult to assess by visual inspection, especially when the points are near the boundary of the 

simplex.  An example given by Billheimer, et al. (2001)  illustrates this point.  Given the three 

3-part compositions x = (1/3, 1/3, 1/3),  y = (0.1, 0.1, 0.8) and z = (0.01, 0.01, 0.98), the 

simplicial distances are ����, ��=  1.698 and ����, ��=   2.046.  These three points are plotted 

in the ternary diagram in Figure D.2.  By visual inspection, we see that the Euclidean distance 

between y and z is smaller than the distance between x and y.  In simplicial geometry, the 

distance between y and z is greater. This occurs because the constraints on the simplex cause 

distance to be visually distorted near the edges. 
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Figure D.2: Visually Deceptive Distances in the Simplex 

 
For a random composition � = ���, ��, … , ���, a measure of center is defined to be the 

point � in the simplex that minimizes E���
���, ��� the mean value of the squared simplicial 

distance.  Note that this definition parallels the definition of the expected value of a random 

variable in Euclidean space.  This center is � = cen���=  ( )exp E[log ]  XC which is also 

called the geometric mean (Aitchison and Egozcue, 2005).  A natural estimator is ��, the closed 

vector of geometric means, where the geometric mean for each component is taken across all 

observed vectors.  This estimator is the best linear unbiased estimator (Pawlowsky-Glahn and 

Egozcue, 2002) in terms of simplicial geometry.  In spite of this, �� would be impractical if the 

observed data contains any zeros, since this would cause the estimated center for the affected 

component to be 0, no matter how many positive entries may be present.  

There are several approaches to measuring the variability of a random composition.  

Aitchison (2003) defines three measures of variation for a S-part composition: 

• variation matrix: var log i
ij

j

X
X

τ
   

   = =           
T   

• logratio covariance matrix: cov log , log ji
ij

S S

XX
X X

σ
       = =               

Σ  

• centered logratio covariance matrix: cov log , log
( ) ( )

ji
ij

XX
g X g X

γ
      = =             

Γ , 

where ( )g X  is the geometric mean  

z 

x 

y larger distance 

smaller distance 
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Note that � is the covariance matrix of � = alr(�) and � is the covariance matrix of 

� = clr(�), but � is not a covariance matrix.  Pawlowsky-Glahn and Egozcue (2002) use the 

variation matrix �	to define the metric variance, a scalar value that represents the overall 

dispersion, defined by 

( ) ( )2 1 1Mvar , var log
1 1

i
a ij

i j i jj

XE d
S X S

τ
< <

 
 = = =    − − 

∑ ∑X X ξ  

In order to obtain reproducible results, the use of logratio analysis is considered necessary 

whenever the observed multivariate observations are constrained to have unit sum.  However, 

there are unique features of OTU data that may render logratio analysis unnecessary.  Practical 

issues for applying logratio analysis to OTU data are discussed in Section 3.2. 

D.5. Derivation of Result 3.2 
Result 3.2:   

Assume jX  ~ ( , )jgamma α β , j = 1, 2, …, S, with jX  and jX ′  independent for j j′≠  and 

define 
1

j
j S

ii

X
P

X
=

=
∑

.  

Then ( )
( )( ) 1

corr , ,  where Si j
i j kk

i j

P P
α α

α α
α α α α

+ =

+ +

−
= =

− −
∑

 
 

Derivation: 

Assume ~ ( , ), 1,2,
ind

j jX gamma j Sα β = … .  Note that the scale parameter does not depend on j.  

Define ( )
,

S

ij k i j
k i k j

T X T X X
≠ ≠

= = − −∑ . For simplicity of notation, let 
1

S

j
j

α α+
=

= ∑  and 

,

S

ij k i j
k i k j

α α α α α+
≠ ≠

= = − −∑ . Then ( ) ~ ( , )ij ijT gamma α β , and ( ) , ,  and Xij i jT X  are mutually 

independent.  The joint pdf  is 

( )
( )

1 11

, ,
1( , , ) exp , 0, 0, 0

( ) ( ) ( )

j iji

i j ij

i j
X X T i j i j i j

i j ij

x x t
f x x t x x t x x t

α αα

αα α α β β+

− −−  
= − + + > > > Γ Γ Γ  
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We will use this density to derive the joint distribution of ( , )i jP P .  Define the transformation 

( )

i

i j ij

XU
X X T

=
+ +

   
( )

j

i j ij

X
V

X X T
=

+ +
  ( )i j ijQ X X T= + +  

with inverse transformation 

 iX UQ=   jX VQ=   ( )ijT Q UQ VQ= − −  

and Jacobian 

( )
( ) ( ) ( )

2 2

0
0 1

1

i i i

j j j

ij ij ij

x x x
u v q

x x x
u v q

T T T
u v q

Q U
J Q V Q Q U V QV UQ Q

Q Q U V

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

 = = = − − + + = 
− − − −

 

 

For u > 0, v > 0, u + v < 1 and q > 0, the joint pdf of (U, V, Q) is  

 ( )
( )

2
, , , ,( , , ) , , (1 )

i j ijU V Q X X Tf u v q f uq vq q u v q= − − ⋅ . 

Let 
1

( ) ( ) ( )i j ij
ακ α α α β +

−
 = Γ Γ Γ  .  Then 

, , ( , , )U V Qf u v q   

 ( ) ( ) ( ) ( )( )11 1 2 11 exp 1iji juq vq q u v q uq vq q u v
αα ακ

β
−− −  

 = ⋅ − − − + + − −  
 

 

 ( ) ( )11 2 11 2 1 expijj i j iji qu v q q q u v αα α α αα
βκ −− + − −−= ⋅ − − −  

 ( ) ( )111 11 expijji qu v u v qααα α
βκ +

−−− −= ⋅ − − −  

 

Note that U is really Pi and V is Pj, so to get the joint distribution of (Pi, Pj), we need to integrate 

out q. 

( ) ( ) ( )111 1
,

0

, 1 expijji q
U Vf u v u v u v q dqααα α

βκ +

∞
−−− −= ⋅ − − −∫   

 ( ) ( ) ( ) ( )1111 11 1

0

1 expijji qu v u v q dq
αααα α α

β β βκ β +
+ +

∞
−−−− −= ⋅ − − −∫  

 ( ) 111 1 ( )ijjiu v u v ααα ακ β α+
−−−

+= ⋅ − − Γ  
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 ( ) 111( ) 1
( ) ( ) ( )

ijji

i j ij

u v u v
α

ααα
α

β α
α α α β

+

+

−−−+Γ
= − −

Γ Γ Γ
 

 

So the joint pdf of (Pi, Pj) is 

( ) ( ) 111
,

( ), 1 , for 0, 0, 1
( ) ( ) ( )

ijji

i jP P i j i j i j i j i j
i j ij

f p p p p p p p p p p
αααα

α α α
−−−+Γ

= − − > > + ≤
Γ Γ Γ

 

 

In order to calculate ( )cov ,i jP P , we will need to use a Dirichlet type 1 integral (Weisstein, 

2011).  This integral is defined by 

( )

( ) ( )

( ){ }

11 2

1

111 1 1
1 2 1 2 1 2 0

1 2

( )  

where , , , 0, 1

n
iin

n
ii

n n n

n i i

g t t t t t t dt dt dt g d

t t t t t

ααα α α

α
τ τ τ=

=

Γ−− − Σ −

∇ Γ

∏+ + + =
∑

∇ = > <

∫ ∫ ∫ ∫

∑

L L L L

…
 

 

From the definition of covariance ( ) ( )cov( , ) ( )i j i j i jP P E PP E P E P= − , we have 

( ) ( )
( ) ( ) ( ) ( ) 1

1 ij ji
i j i j i j i j

i j ij

E PP p p p p dp dp
α ααα

α α α
−+

∇

Γ
= − −

Γ Γ Γ ∫∫  

Let ( ) ( ) 1
1

ij

i j i jg p p p p
α −

 + = − +  .  Using the Dirichlet type 1 integral,  

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

11 1

0

1 1
1

2
ij

i ji j
i j

i j ij i j

E PP d
α

α αα αα
τ τ τ

α α α α α

−
+ ++

Γ + Γ +Γ
= ⋅ ⋅ −

Γ Γ Γ Γ + + ∫  

The integrand is the kernel of a beta distribution with parameters 2 and i j ijα α α+ + . 

( ) ( )
( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

1 1 2

2 2
i j ij i j

i j
i j ij i j ij i j

E PP
α α α α αα

α α α α α α α α
+

Γ + Γ + Γ Γ + +Γ
= ⋅ ⋅

Γ Γ Γ Γ + + Γ + + +
 

( ) ( )
( )

( )
( )

( )
( ) ( )

11
2 1

j i ji
i j

i j

E PP
α α αα α

α α α αα
+

+ + +

Γ +Γ + Γ
= ⋅ ⋅ =

Γ Γ + +Γ
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To complete the calculation of the correlation, we will also need expectations and variances of  

 and Pi jP .  The marginal distribution of Pi is a beta distribution with parameters  and i iα α α+ −  

(this is derived below), so 

  ( ) = =
( )

i i
i

i i

E P α α
α α α α+ ++ −

  

and  

( ) ( )
( ) ( )

( )
( )2 2var = =

1( ) ( ) 1
i i i i

i
i i i i

P
α α α α α α

α αα α α α α α
+ +

+ ++ +

− −
++ − + − +

.   

 

Similarly, ( )= j
jE P

α
α+

 and ( ) ( )
( )2var =

1
j j

jP
α α α
α α

+

+ +

−

+
.   

Therefore, 

( ) ( ) 2

1 1cov( , )
1 1 1

i j j i j i ji
i jP P

α α α α α α αα
α α α α α α α α α+ + + + + + + + +

− 
= − = − = + + + 

 

and 

( ) ( )
( )
( )

( )
( )

2

2 2

1
corr ,

1 1

i j

i j

j ji i

P P

α α
α α

α α αα α α
α α α α

+ +

++

+ + + +

−
+

=
−−

+ +

 

( )
( )( )

corr , i j
i j

i j

P P
α α

α α α α+ +

−
=

− −
 

■ 

 

This expression defines the spurious correlation between the relative frequencies of 

OTUs i and j, assuming the original counts are independent gamma random variables with a 

common scale parameter. 
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Appendix E. R programs 

E.1. Geopolish: Fit the multiplicative model 
# --------------------------------------------------------------- 
# Function to iterate multiplicative version of Tukey's  
# median polish to fit a multiplicative model to a data matrix. 
#  The model is  
#  obs = (all effect) * (row effect) * (column effect) * (residual) 
# 
# Input: 
#  df      : data frame containing the named variables 
#             'Contig' contains the column identifier 
#             'Plot'   contains the row identifier 
#             'Count'  is the observed count (must be strictly positive) 
#  n.iter  : maximum number of iterations to perform (default 50) 
#  toler   : tolerance for stopping criteria (default 10 -̂9) 
# 
# Function returns a list with these components: 
#  resids  : data frame containing "Contig","Plot","resids" 
#  col.eff : a named vector containing column effects for each OTU 
#  row.eff : a named vector containing row effects for each Plot 
#  all.eff : a scalar for the overall effect 
#  msg     : a character string indicating the termination status 
# --------------------------------------------------------------- 
# geometric mean for nonzero entries 
  gmean<-function(x) {  
  x<-x[x>0] 
  prod(x)^(1/length(x)) } 
# --------------------------------------------------------------- 
 
geopolish <- function (df,n.iter=50,toler=10 -̂9) { 
 df<-df[,c("Plot","Contig","Count")] 
  
 df<-df[df$Count>0,]        # use only positive counts 
 
 end.row.effect<-rep(1,length(unique(df$Plot))) 
 names(end.row.effect)<-levels(df$Plot) 
 end.col.effect<-rep(1,length(unique(df$Contig))) 
 names(end.col.effect)<-levels(df$Contig) 
 end.all.effect<-1 
 
 for(kk in 1:n.iter) { 
  # sweep rows 
  g.row<-tapply(df$Count,df$Plot,gmean) 
  resids<-df$Count/g.row[as.character(df$Plot)] 
  # sweep columns 
  g.col<-tapply(resids,df$Contig,gmean) 
  resids<-resids/g.col[as.character(df$Contig)]  
  # effects for current iteration 
  gg.row<-gmean(g.row) 
  gg.col<-gmean(g.col) 
  all.effect<-gg.row*gg.col 
  row.effect<-g.row/gg.row 
  col.effect<-g.col/gg.col   
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  # effects for all iterations 
  df$Count<-resids 
  end.row.effect<-end.row.effect*row.effect 
  end.col.effect<-end.col.effect*col.effect 
  end.all.effect<-end.all.effect*all.effect 
 
  # stop when all row and col gmeans are == 1 
  if (max(abs(g.row-1)) < toler & max(abs(g.col-1)) < toler )  
    { names(df)<-c("Plot","Contig","resids") 
      msg<-paste("Tolerance met at iteration",kk) 
      return(list(resids=df, 
                  col.eff=end.col.effect, 
                  row.eff=end.row.effect, 
                  all.eff=end.all.effect, 
                  msg=msg) ) 
     } 
} # end iteration loop 
 
 names(df)<-c("Plot","Contig","resids") 
 msg<-paste("Maximum iterations",kk) 
 return(list(resids=df, 
             col.eff=end.col.effect, 
             row.eff=end.row.effect, 
             all.eff=end.all.effect, 
             msg=msg) ) 
} 
# end function geopolish 
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E.2. Drawdown: Large Count Reduction Algorithm 
#  
# FUNCTION: drawdown (df,sites,contigs,rownums,facts,pct=0.10) 
# 
# Purpose: To reduce the excessively large individual counts in the dataset 
# User supplies 
#  df      : data frame containing variables Plot, Contig, Count and 
#            additional variables defining the experimental factors 
#  sites   : a vector of site values ('Plot') that contain the large counts 
#  contigs : a vector of OTU values ('Contig') that contain the large counts 
#            (Must be the same length as sites.  Together, sites and contigs 
#            uniquely identify the individual large counts that will be 
#            examined for potential reduction.) 
#  rownums : the data frame row numbers that contain the large counts 
#             (used instead of 'sites' and 'contigs' to identify these  
#              counts) 
#  facts   : a vector of variable names that define the experimental factors 
#  pct     : percent separation to maintain between the successive counts 
# 
# function returns a list with 3 elements 
#  * error code 
#  * error message 
#  * modified data frame, with specified large counts potentially reduced 
########################################################### 
 
drawdown<-function(df,sites,contigs,facts=NA,targ.rows=NA,pct) { 
 
# initialize 
 err.code<-0   # no error 
 err.msg<-""   # NULL error message 
 
 # verify the input is valid 
 
 # determine whether user has supplied the actual row numbers 
 # or if we need to find the row numbers based on the sites and contigs 
 rownums<-targ.rows 
 if (length(targ.rows)==1) { 
  if (is.na(targ.rows) ){ 
   # if supplied, vectors 'sites' & 'contigs' should have same length 
   if (length(sites) != length(contigs) ) { 
    err.code<-1 
    err.msg<-"Sites and Contigs must have same length" 
    return(list(err.code,err.msg,df)) 
   }  # endif 
  rownums<-c() 
  for (kk in 1:length(sites) ){ 
   rownums[kk]<-which(df$Plot==sites[kk] & df$Contig==contigs[kk],arr.ind=T) 
  } # end loop kk 
 }  # endif is.na 
 }  # endif length 
 
 # variable names in 'facts' should all be in the data frame 
 # fact.col = column numbers for the experimental factors  
 #            (incl. Plot and Contig) 
 fact.col<-which(names(df) %in% c("Plot","Contig"), arr.ind=T) 
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 if(!is.na(facts)){ 
  idx<-which(names(df) %in% facts,arr.ind=T) 
  if (length(idx) != length(facts) ) { 
   err.code<-1 
   err.msg="Not all factor names are in the data frame" 
   return(list(err.code,err.msg,df)) 
  } 
 fact.col<-which(names(df) %in% c(facts,"Plot","Contig"),arr.ind=T) 
}  
  
 
 # pct should be between 0 and 1 
 if (pct <= 0 | pct>=1) { 
  err.code<-1 
  err.msg<-"Percent separation must be between 0 and 1" 
  return(list(err.code,err.msg,df)) 
 } 
  
 any.change<-1 
 while(any.change==1) { 
  any.change<-0 # flag is set to 1 if there are any changes to the counts 
  for ( kk in 1:length(rownums) ) {  
    rownum<-rownums[kk]                                                                
# ; print(paste('rownum:',rownum)) 
   # get related counts 
   values<-df[rownum,fact.col]                                           
    # ; print("values:");print(values) 
   tally<-rep(0,length(df$Count)) 
   for (kk in 1:length(fact.col)) { 
    tally.new<-ifelse(unclass(df[,fact.col[kk]])==unclass(values[kk]),1,0) 
    tally <- tally+tally.new 
    } 
   useit<-ifelse(tally>0,TRUE,FALSE) 
   counts<-sort(df$Count[useit])        
    # ; print("related counts:");print(counts) 
    kk <-which.max(counts[counts<=df$Count[rownum]]) 
    if (kk > 1) { 
     if (counts[kk] > ceiling( (1+pct)*counts[kk-1]) )  { 
       df$Count[rownum] <- ceiling( (1+pct)*counts[kk-1] ) 
       any.change<-1 
       } 
     } 
   } #  ; (paste("any.change",any.change)) 
 } 
     
list(err.code,err.msg,df) 
}   # end function 'drawdown' 
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##################################################################### 
# 
# FUNCTION: target.counts(df,pct=0.10,min.count=10,plotit=FALSE) 
# 
# Purpose: to identify the target counts for potential reduction 
# User supplies 
#  df        : data frame with variable name 'Count' 
#  pct       : percent separation between successive counts 
#  min.count : smallest count to be considered for reduction  
#  plotit    : logical, should graph be plotted? 
# 
# Function returns 
#  a vector of dataframe row numbers for the counts to be targeted  
# 
# Counts are flagged if the ratio between the count and next-largest count  
# exceeds 1+'pct' and the count is is at least 'min.count'. 
# Counts are targeted for potential reduction if their count is 
# at least as large as the smallest flagged count. 
 
target.counts<-function(df,pct=0.10,min.count=10,plotit=FALSE,plot.main='') { 
 
 ord<-order(df$Count,decreasing=T) 
 ratio<-c(df$Count[ord[-length(ord)]]/df$Count[ord[-1]]) 
 ratio<-c(ratio,1) 
 # min count gets a ratio of 1 -- other ratios are current count to next-
largest count 
 target<-ifelse(ratio>(1+pct) & df$Count[ord]>min.count,TRUE,FALSE) 
 targ.min<-min(df$Count[ord[target]]) 
 target<-ifelse(df$Count[ord]>=targ.min,TRUE,FALSE) 
 if (plotit==TRUE) { 
  plot(df$Count[ord],ratio, 
      main=plot.main, 
      xlab="Rank of Count", 
      ylab="Ratio Successive Counts") 
  points(df$Count[ord[target]],ratio[target],bg="red",pch=21) 
 } 
 ord[target] 
} 
 
 
 
 
 
 
 
 

 

 

    
 

 


