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Abstract 

CLN5 is one of several proteins that when mutated result in the lysosomal storage 

disorder (LSD) Neuronal Ceroid Lipofuscinosis (NCL).  CLN5 is a soluble lysosomal protein that 

has no known function at this time.  Previously we showed that eight asparagine residues in 

CLN5 are N-glycosylated, and that this modification is important for the protein’s transport and 

function.  Now, we have identified a link between the activation of autophagy and CLN5 

deficiency.  The autophagy-lysosomal protein degradation system is one of the major pathways 

the cell uses to degrade intracellular material and recycle cellular building blocks.  It was 

recently shown that other CLN proteins affect the relative level of autophagy, indicating a 

potential link between the autophagy pathway and the NCLs. 

By knocking down endogenous CLN5 in HeLa we showed that, upon stress induction, 

cells responded with higher levels of autophagy activation.  Consistent with these knockdown 

experiments, there is a higher level of the autophagy marker protein, LC3-II, in CLN5 patient 

cells that are naturally deficient for the CLN5 protein.  Pharmaceutical induction of autophagy 

through different means also showed higher LC3-II levels compared to control, though patterns 

differed in the type of autophagy induced.  In summary, we discovered that the autophagy 

pathway is altered in CLN5 deficient cells, indicating a potential role for CLN5 in autophagy.  

Further analyses of the autophagy pathway will shed light on where CLN5 is acting and the 

mechanism by which defective CLN5 causes NCL. 
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 Lysosomal Storage Disorders 

Lysosomes 

Lysosomes are organelles first described in the late 1950’s that are found in almost all 

eukaryotic organisms1,2.  These organelles help maintain homeostasis in the cell by breaking 

down a variety of materials including wastes, cellular debris, and even invasive bacteria3.  

Intracellular proteins targeted for degradation reach the lysosome through a network of 

different pathways while extracellular substrates are endocytosed into the cell forming an early 

endosome4-6.  This early endosome, as it is called, matures into a late endosome and eventually 

a lysosome itself, in which the substrates will be metabolized (Fig. 1.1)5,7.  Lysosomes are 

distinguished from early and late endosomes by the increased acidity of the lumen.  They are 

also differentiated by a lack of mannose-6 phosphate receptors (M6PRs) which are present in 

the early and late endosomes. 

Endosomes and lysosomes distinguish themselves with the presence of Rab proteins.  

Rab monomeric G-proteins 5, 7, and 9 are markers used to further differentiate these 

structures.  Early endosomes recruit Rab5 protein which acts in complex with a 

phosphatidylinositol (3) kinase and later recruits Rab7 to late endosomes when GTP bound5.  

The association of Rab7 converts Rab5-GTP to GDP thus dissociating Rab5 from the endosome 

making Rab7, which is involved in membrane trafficking, a marker for late endosomes5.  Rab9 is 

located mainly in lysosomes and also plays a role in trafficking to the Trans-Golgi Network5.   

Mature lysosomes contain over fifty different acid hydrolases of varying natures 

including peptidases, proteases, and nucleases among other enzyme types3.  The induction of 
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the acidic environment (lumen pH of 4.5-5) is brought about by proton pumps embedded in the 

lysosomal membrane, and aids in the structural denaturation of waste molecules8.  These H+ 

ion pumps are ATPases that require a constant dose of ATP to work against equilibrium and 

maintain the acidity of the lumen9.  The low pH surroundings are also necessary for the optimal 

catalytic performance of the hydrolases in the mature lysosome10.  Without normally 

functioning lysosomes, the vital tasks they maintain fall into disarray and lead to disease.   

 

Lysosomal Storage Disorders 

The lysosomal storage disorders (LSDs) are a major disease group characterized by the 

mutation of one of many possible lysosomal proteins leading to the erroneous storage of 

particular substrates in the lysosome lumen11.  Besides a few X-linked diseases, most of the 

LSDs are autosomal recessive disorders, meaning a mutated gene is required from both 

parents. Incidence of LSDs is relatively low, even when all disease cases are combined:  

approximately one LSD per 5,000 children born12.  There are dozens of different LSDs all 

characterized by their individual accumulation of lipopigments (fats/proteins that appear 

yellow or green under UV light) as well as the age of onset and types of symptoms caused by 

the disease.  LSDs are neurodegenerative diseases in nature, brought on by the buildup of 

specific substrates in the lysosome.  As patients age, it is common to see the nervous system 

deleteriously affected, though symptoms of LSDs and the age of onset vary widely across 

different diseases.  In fact, age of onset can range anywhere from birth to full adulthood in
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Figure 1.1:  Endosome Maturation and General Protein Trafficking 
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Figure 1.1-Endosome Maturation and General Protein Trafficking.  Simplified graphic of the 

maturation of endosomes and protein trafficking.  New cargo proteins, many of which are acid 

hydrolases destined for the lysosome, are trafficked from the ER to the Golgi where they 

receive an M6P tag in the cis Golgi which is then recognized by M6PRs.  Cargo is then 

transported to early endosomes by M6PR which dissociates from the cargo protein at the late 

endosome and is trafficked back to the Trans-Golgi Network.  The late endosome later matures 

into the lysosome wherein the cargo protein reaches its final destination in the organelle’s 

lumen.   
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one’s 30s or later13.  The most prevalent and obvious symptoms caused by the diseases are 

those affecting the brain, specifically mental retardations and seizures; pulmonary, cardiac, 

skeletal muscle systems and vision irregularities are also common across the range of LSDs14.  

Prognoses for these diseases are not good, as many patients will not live to see adulthood 

(depending on onset) due to the highly degenerative nature of their particular conditions15.  

The deleterious nature of these disorders is understandable as many LSDs are shown to affect a 

large variety of critical cellular pathways including the apoptotic pathway, signaling involving 

inflammation and cellular calcium equilibrium, and autophagy15.  The effects of LSDs are wide 

ranging and as a whole, they constitute a group of diseases that require further study to 

understand and develop treatments.  

 

Neuronal Ceroid Lipofuscinoses 

Neuronal Ceroid Lipofuscinoses (NCLs) are another important group of diseases brought 

on by the dysfunction of the lysosome.  The disease family is also called Batten’s disease, 

named for the individual who first characterized it by studying a family that produced multiple 

disease-bearing offspring16.  There is some debate as to how to differentiate LSDs and NCLs, 

especially over the last 20 years with the characterizations of the NCLs.   Classical LSDs, as they 

are now distinguished by some, retain a set of characteristics not seen in NCLs and vice versa.  

Named for the buildup of a particular lysosomal substrate, classical LSDs are defective for one 

of many acid hydrolases and disease arises from the specific undigested substrate targeted by 

these hydrolases; in other words, incorrect storage is a direct result of a defective lysosomal 
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protein17.  NCLs that develop due to dysfunctional soluble hydrolases show no direct relation 

between the mutated protein of interest and the incorrectly stored material17.  However, NCLs 

and LSDs do share strikingly similar symptom patterns across the spectrum of individual 

diseases as well as the obvious improper lysosomal storage issues and enzyme malfunction 

patterns.  NCLs are a particularly unique group of LSDs, and what makes them unique is what 

has driven increased interest and research over recent years. 

It wasn’t until the mid-1990s that the genes coding for the mutated proteins causing 

NCLs were identified15.  They have slowly been characterized over the last two decades, and are 

called ceroid-lipofuscin (CLN) proteins, now numbering 1-1013.  Each CLN corresponds to a 

particular protein, and within each NCL protein of interest there are numerous patient 

mutations that have been documented (NCL Mutation Database -- 

http://www.ucl.ac.uk/ncl/mutation.shtml) and show varying pathologies and symptoms18-20.  

Diseases in the NCL family are characterized in different ways (Table 1.1).  As with LSDs, there is 

a wide range in the age of onset of disease symptoms and the deterioration of the patient21.  

Early onset cases include infantile (from birth) and juvenile while late onset cases can occur 

during the second decade of life or even full adulthood22-25.  There are also variants based on 

the region in which a certain mutation is abundant due to the defective gene persisting in a 

family (or several families) line26,27.  For example, NCLs in general are more prevalent in regions 

like Scandinavia and other eastern parts of the continent leading to the classification of Finnish 

and Turkish NCL variants.  Each variant carries with it a specific subset of symptoms unique to 

that protein and mutation.  NCL is a complex disease with many intricacies that help us 
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recognize them as separate and distinct conditions, and this complexity only gets deeper at the 

molecular level. 

Though many distinctions exist between types of NCL, they all share several common 

symptoms including types of dementia, seizures, deterioration of sight and physical wellbeing, 

and most notably premature death15.   The average life expectancy across all NCL types is 

around 15 years of age28.  These symptoms are all, of course, subject to varying levels of 

severity between disease types and cases.  Neurobehavioral aspects also vary widely depending 

on the form of NCL in question.  One study showed that there was an increased incidence of 

aggression, restlessness, difficulty sleeping, depression, irritability, and general fears in many 

NCLs; a lower but still significant and alarming number of patients also displayed varying levels 

of psychosis in the forms of hallucinations and delusions29-31.  Symptoms of NCLs vary widely in 

scope and severity, due to the many biochemical pathways that are affected in patients. 

In NCLs, the main storage bodies seen are subunit C of ATP synthase and saposins A and 

D, the latter of which are activators of lysosomal lipases.  Subunit C of mitochondrial ATP 

synthase is part of the FO/VO transmembrane portion of the ATPase; ten of these subunits form 

an oligomer that make up the FO rotor that is rotated by the flux of protons through the ATPase 

channel32.  Numerous biochemical systems are disrupted by the lysosome’s inability to degrade 

these products.  It begins with the mutated gene product, the CLN proteins, which are also not 

all completely understood in terms of function.  A few have well characterized functions like 

being soluble hydrolases in the lysosomes, while others like CLN5 have no concrete function to 

date19,29,33,34.  Autophagy, a pathway involving the systematic recycling of cellular components 

(which will be discussed in length later in this review), is one such system affected in several 
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forms of NCL.  Defects in some CLN proteins also result in disruption of endocytosis as well as 

protein trafficking within the cell.  Mutations or ablations of CLN3 and CLN5, specifically, have 

recently shown perturbations in the cell’s ability to maintain proper protein movement within 

the cell causing changes in organelle morphology, number, and distribution within the cell35,36.  

Meanwhile, recent CLN1 studies have shown that defects in the protein decrease the cell’s 

ability to undergo endocytosis as seen in Garland cells and CLN1 deficient patient 

fibroblasts37,38. Trafficking in synapses is also affected by NCL related proteins, as seen in the 

case of CLN1.  When deficient, a number of synaptic vesicle proteins remain membrane bound 

there causing an imbalance in the amount of vesicles that can be released freely into the 

synapse39,40.  NCLs have also been implicated in defects seen in the apoptotic pathway, 

oxidative pathway, and in endoplasmic reticulum (ER) stress response41-44. The symptoms and 

deleterious effects of NCLs vary greatly in how they manifest on a macro and micro scale, and 

while many of the causative proteins have a well-defined function others have yet to be 

elucidated. 

 

CLN5 

One such NCL related protein is CLN5.  CLN5 is a 407 amino acid, soluble lysosomal 

protein with no known function to date (though it is predicted to have a role in vesicular 

trafficking and has been implicated in recent studies to have a hand in several cellular 

pathways)45.  It is ubiquitously expressed in all body tissues, but as with all NCLs, the 

characteristic occlusion bodies that are the dysfunctional lysosomes are most prevalent in
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Table 1.1: Summary of NCL Genes  
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neuronal tissue46,47.  The predicted size of the protein, based on its amino acid sequence, is 

about 46 kDa while in vitro translation studies display slightly smaller versions of the 

protein45,48,49.  A sizable portion of the protein at the N-terminal end acts as a signal peptide, 

and this peptide is cleaved in the endoplasmic reticulum before CLN5 makes its path to the 

lysosome through the trans-Golgi network48.  The protein itself is also heavily glycosylated as it 

maintains 8 N-linked glycosylation sites now confirmed by our previous study in which removal 

of glycosylation sites by mutation or chemical treatment results in an appropriate size decrease 

on SDS-PAGE50,51.  With both modifications of signal peptide cleavage and glycosylation, the 

molecular weight of mature CLN5 is around 55 kDa51. 

 Though its function is unknown, studies have linked CLN5 to a number of possibly 

related proteins and cellular pathways.  Recent CLN5 co-immunoprecipitation analyses have 

shown that CLN5 interacts with a number of the other NCL proteins including CLN1, CLN2, 

CLN3, CLN6, and CLN848,52.  Most notably amongst these, CLN1 has been shown to restore 

proper localization of CLN5 mutant Y392X when they are overexpressed together53.   

 

 Autophagy 

Autophagy is a catabolic cellular process in which the cell purposefully degrades its own 

unwanted, unnecessary, non-functional and damaged components in order to perpetuate the 

important functions and life of the cell under stressful conditions like starvation54.  Through a 

series of mechanisms, organelles and proteins are broken down to their most basic 

components so as to be recycled by the cell for its most pressing needs when the situation 
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demands it, though it has been shown in several cell types that there is a baseline level of 

autophagy occurring at all times55,56.  This low level of consistent cellular degradation helps 

maintain the homeostatic nature of the cell as the nutrients provided from lysosomal 

breakdown are shuttled into the cytosol for future use57.  The pathway is regulated by several 

signaling cascades, many of those intertwined with autophagy’s “sister” pathway, apoptosis58.  

When deregulated, however, the alterations in the pathway have been shown to have a role in 

a multitude of different disease types ranging from neurodegenerative and cardiovascular to 

different cancer types.59.  The regulation of autophagy is paramount in maintaining cellular 

health and in the prevention of several human diseases relying on homeostasis.  Several 

different forms of autophagy exist inside the cell based on how and what kind of components 

are degraded.  Among the major types are macroautophagy, microautophagy, and chaperone-

mediated autophagy with several subtypes amongst these bearing specificity for a certain 

protein or organelle60.   

 

 

Macroautophagy 

Macroautophagy, the form of autophagy we are most interested in, involves the 

nonspecific digestion of whole organelles and proteins through sequestration in a vesicle-like 

structure followed by lysosome-mediated degradation57.  Through a mechanism that is 

currently not fully understood (see Figure 1.2), a membrane known as an isolation membrane 

or phagophore is synthesized around the cytosolic components that are to be degraded61.  
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Recent studies and electron microscopy analyses now indicate that the phagophore originates 

from lipids of the endoplasmic reticulum62-64.  The sequestered contents can range from a 

random conglomeration in a portion of the cytoplasm to a specific set of proteins or organelles.  

The phagophore continues to expand around the selected cytosolic components until the 

membrane completely fuses around them into a vesicle-like structure now identified as an 

autophagosome.  From there, the autophagosome is targeted to the lysosome and can 

potentially join with other endosomes to consolidate all their components before its membrane 

fuses with that of the lysosome65-67.  This new structure containing the components of both 

vesicles is known as the autolysosome.  Acid hydrolases in the lysosome spill into the 

autophagosome and degrade the cellular components it holds after the fusion of the 

membranes is complete.  Building blocks from the proteins or organelles can now be released 

from the autolysosome through permeases on the lysosomal membrane to be recycled by the 

cell for a range of tasks including protein synthesis68-70.  

The main biochemical sensor used to measure the level of autophagy (macroautophagy 

specifically) occurring in cells is the autophagy hallmark protein LC3, the mammalian 

homologue of Autophagy-related protein 8 (ATG8) from yeast71.  Microtubule-associated 

protein 1A/1B- light chain 3 (LC3) is mainly found in two forms in eukaryotic cells:  LC3-I and 

LC3-II along with a pro-LC3 that is quickly modified after translation71-73.  As mentioned, 

autophagy is always occurring at low, baseline levels.  When at low levels, most of the LC3 

present is in the LC3-I form throughout the cell.  LC3-I is a soluble cytosolic protein with a 

predicted molecular weight of 14.13 kDa (14.69 kDa before modification of pro-LC3).  When 

autophagy is activated however, LC3-I is recruited to the autophagosome where it is lipidated 
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by the addition of phosphatidylethanolamine (PE)71.  Cleavage at Met 121 of pro-LC3 results in 

the exposure of carboxy-terminal Gly 120 where lipidation can occur74.  This process converts 

LC3-I to LC3-II, which due to mobility changes caused by the addition of the lipid make it appear 

slightly smaller on SDS-PAGE, around 12 kDa (though predicted molecular weight is 14.87 kDa).  

The newly formed LC3-II is embedded into the autophagosome membrane where it remains 

until the autophagosome fuses with the lysosome resulting in the degradation of the inner-

autophagosomal components by lysosomal acid hydrolases75.   The role of LC3, along with other 

proteins recruited to the autophagosomal membrane, is currently believed to be the nucleation 

and eventual expansion of the autophagosome through enabling curvature of the membrane76.  

Mutations in LC3 result in problems in the formation of autophagosomes, supporting this 

hypothesis77.  Several studies also show a relationship between the amount of LC3-II and the 

size of autophagosomes that are eventually formed71,77-79.  Because of its abundance in 

conjunction with times of increased autophagy activity, LC3-II and its turnover in particular are 

the preeminent indicators used to measure macroautophagy.     

 

Microautophagy and Chaperone-Mediated Autophagy 

Microautophagy and chaperone-mediated autophagy perform very similar functions in a 

more straightforward manner.  In the case of microautophagy, cytoplasmic components (again 

ranging from organelles to simple proteins) are taken up directly by the lysosome through a 

mechanism similar to endocytosis as opposed to transport by an autophagosome80.  This 

creates a vesicle in the lysosome whose membrane is slowly degraded thus exposing the 
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targeted cellular components to the acid hydrolases, leading to their own degradation81-83.  

Chaperone-mediated autophagy occurs in much the same manner as microautophagy in that 

the substrates of interest are directly targeted and degraded by the lysosome and no vesicle to 

vesicle transfer occurs.  However, the mechanism by which the cellular components actually 

reach the lysosome in this particular pathway is much more complex.  Unfolded proteins are 

the sole target in chaperone-mediated autophagy; these unfolded proteins are shuttled to the 

lysosome by any number of chaperones specific to this pathway much like what is seen in the 

ubiquitin-proteasome pathway in which proteins are directed by chaperones to the 

proteasome for unfolding and degradation84.  Once unfolded proteins reach the lysosome by 

means of chaperones, they enter the organelle by means of lysosome-associated membrane 

protein 2A (LAMP-2A)85.  This channel protein allows the substrate to enter the lysosome and 

there be degraded by the lysosomal hydrolases86.  As with macroautophagy, both of the other 

forms of autophagy result in the formation of amino acids and other basic cellular components 

that are exported from the lysosome by membrane permeases. This provides a foundation for 

other important cellular processes while at the same time maintaining a healthy level of 

homeostasis thus preventing the cell from entering apoptosis. 

 

Autophagy Signaling  

A variety of natural and synthetic methods to regulate autophagy are known to us 

today.  During amino acid starvation, macroautophagy, hereafter referred to as autophagy, is 

stimulated in the cell resulting in various cellular components being shuttled to the lysosome to
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Figure 1.2: Formation of Autolysosome in Macroautophagy 
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Figure 1.2-Formation of Autolysosome in Macroautophagy.  Basic overview of the mechanism 

of general autophagy.  A phagophore is synthesized from lipids provided by the ER until it 

encases cellular components and becomes a mature autophagosome.  The autophagosome 

shuttles these materials to the lysosome and fuses with it, releasing enzymes into the 

autophagosome lumen (now called the autolysosome).  These acid hydrolases degrade 

organelles and proteins into essential nutrients needed for survival which are then recycled 

back into the cytoplasm through permeases present on the membrane the lysosome.  
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be recycled and keep the cell alive by preventing the apoptosis cascade87-89.  This activation of 

autophagy is in part due to the inhibition of the mTOR pathway (Fig. 1.3); normally, addition of 

amino acids to cell culture results in stimulation of mammalian target of rapamycin (mTOR) 

signaling.  However, depletion of amino acids inhibits mTOR signaling and results in the 

activation of autophagy90-92.  mTOR signaling is normally directly regulated by Rheb, a GTPase 

that binds and activates mTOR when in the GTP-bound form93.  Other cellular activators of 

autophagy include Beclin1, a protein also involved in autophagosome formation, and 

phosphatidylinositol 3-kinase class III (PI3K class III)94.  Beclin1 first dissociates from its complex 

with anti-apoptotic protein Bcl-295.  It is then able to form a new complex with PI3K class III and 

directly activate autophagy96.  This complex is activated further by UV irradiation resistance-

associated gene (UVRAG), increasing the cell’s level of autophagy97.  In some cells, the addition 

of amino acids induces cell swelling that is sensed by integrins; the swelling of the cell results in 

the activation of p38MAPK which inhibits autophagy98,99.  Integrins are another substrate that 

can inhibit autophagy through p38MAPK activation by sensing cell swelling100.  The presence of 

amino acids also inhibits autophagy through inactivating the MAPK kinase of Erk1/2, Raf-1, by 

stimulating Ser²⁵⁹ phosphorylation101.  Without phosphorylation by Raf-1, Erk1/2 cannot 

stimulate GAIP, a GTPase-activating protein that inhibits trimeric Gi3 protein thus activating 

autophagy102. 

 

Mitophagy 

The specific subset of macroautophagy we are most interested in is mitophagy,  
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distinguished by its targeted degradation of mitochondria.  This interest is due to the presence 

of subunit C of mitochondrial ATP synthase found in the lysosomes of NCL patients with a CLN5 

mutation103-105.  Exploring a possible link between improper storage of this mitochondrial 

protein in CLN5 patients and mitophagy offers a potential mechanism for discovering the 

pathogenesis of the disease.  Mitophagy itself is a term that was coined by Lemasters a decade 

ago although the phenomenon had been observed and described far earlier106,107.  Originally 

viewed as a nonselective pathway, there are now numerous autophagy studies that indicate 

selective targeting of specific cellular bodies to phagosomes and eventually the lysosome108-110.  

These include not only mitochondria but also other organelles, invasive bacteria, and protein 

aggregates111-113. 

Mitophagy is induced in mammals by the loss of mitochondrial membrane 

potential114,115.  This can be accomplished through a number of different ways, among them the 

use of carbonyl cyanide m-chlorophenylhydrazone (CCCP), an ionophore that disrupts the 

mitochondrial membrane potential116.  By transferring protons from one side of the inner 

mitochondrial membrane to the other, this drug dissipates the proton gradient that is used to 

power ATP synthesis, making it highly toxic to the organism117.  Mitochondria are seen in long 

chain formations under normal conditions, but when damaged or disrupted it has been shown 

that they become highly fragmented thus allowing autophagosomes to target and engulf the 

damaged organelles118-120.  Under normal conditions, only superfluous or damaged 

mitochondria are targeted for degradation by autophagy120. 
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CLN5 and Autophagy 

Drawing links between autophagy and NCLs appears very feasible when their processes 

are considered; NCLs result from the buildup of proteins, and autophagy seeks to remove and 

recycle proteins along with other cellular bodies.  Because of recent studies implicating other 

CLN proteins in the alteration of autophagy, we wanted to test whether CLN5 had a similar 

effect.  We postulate that CLN5 deficiency increases the activity of autophagy based on these 

previous studies.  As CLN5 localizes to the lysosome lumen, it is hard to imagine the protein 

being involved in the formation or transport of autophagosomes. It was discussed earlier that 

the autophagy and mTOR pathways are intertwined, and as such it would be interesting to look 

into CLN5 fitting in the cascade of either of these pathways.  Being a luminal lysosomal protein, 

CLN5 could potentially be interacting with a membrane-bound protein which in complex is 

involved in the binding and/or fusion of autophagosomes to lysosomes thus allowing them to 

spill their contents into the lysosome.  Linking CLN5 to autophagy will be critical in drawing 

further connections between NCL diseases and autophagy, and finding a link between NCLs and 

autophagy will be a large step toward elucidating a function for the many CLN proteins 

including CLN5. 
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Figure 1.3: Autophagy Signaling and Regulation by mTOR

Figure 1.3:  Autophagy Signaling and Regulation by mTOR.  One of the main regulators of the autophagy activation is 

the mTOR complex, which itself is regulated by Rheb-GTPase, the abundance of amino acids, and rapamycin.  S6K and 

S6 are downstream effectors of mTOR whose expression is being examined in regards to CLN5 deficiency in current 

and future experiments.  Autophagy is also directly regulated by PI3K/Beclin I complex, P38MAPK, and Erk1,2. 

 

 mTOR 
 Autophagy 

Rapamycin 

Amino Acids 

Erk1,2 

Raf-1 

Amino 

 Acids 

Cell Swelling 

P38MAPK 

Integrins 

PI3K Class 
III/Beclin 1 

S6K 

S6 

Rheb-GTP 

 Rheb-GDP 



22 

References 

1. APPELMANS F, WATTIAUX R, DE DUVE C. Tissue fractionation studies. 5. the association of 
acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J. 
1955;59(3):438-445. 

2. de Duve C. Lysosomes, a new group of cytoplasmic particles. Subcellular Particles. 1959:128-
59. 

3. Bainton DF. The discovery of lysosomes. J Cell Biol. 1981;91(3 Pt 2):66s-76s. 

4. Palmieri M, Impey S, Kang H, et al. Characterization of the CLEAR network reveals an 
integrated control of cellular clearance pathways. Hum Mol Genet. 2011;20(19):3852-3866. doi: 
10.1093/hmg/ddr306 [doi]. 

5. Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30(17):3481-3500. doi: 
10.1038/emboj.2011.286 [doi]. 

6. Saftig P, Schroder B, Blanz J. Lysosomal membrane proteins: Life between acid and neutral 
conditions. Biochem Soc Trans. 2010;38(6):1420-1423. doi: 10.1042/BST0381420 [doi]. 

7. Huizing M, Helip-Wooley A, Westbroek W, Gunay-Aygun M, Gahl WA. Disorders of lysosome-
related organelle biogenesis: Clinical and molecular genetics. Annu Rev Genomics Hum Genet. 
2008;9:359-386. doi: 10.1146/annurev.genom.9.081307.164303; 
10.1146/annurev.genom.9.081307.164303. 

8. Coffey JW, De Duve C. Digestive activity of lysosomes. I. the digestion of proteins by extracts 
of rat liver lysosomes. J Biol Chem. 1968;243(12):3255-3263. 

9. Ohkuma S, Moriyama Y, Takano T. Identification and characterization of a proton pump on 
lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A. 
1982;79(9):2758-2762. 

10. Ohkuma S, Poole B. Fluorescence probe measurement of the intralysosomal pH in living 
cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978;75(7):3327-
3331. 

11. Ballabio A, Gieselmann V. Lysosomal disorders: From storage to cellular damage. Biochim 
Biophys Acta. 2009;1793(4):684-696. doi: 10.1016/j.bbamcr.2008.12.001; 
10.1016/j.bbamcr.2008.12.001. 



23 

12. Boustany RM. Lysosomal storage diseases--the horizon expands. Nat Rev Neurol. 
2013;9(10):583-598. doi: 10.1038/nrneurol.2013.163; 10.1038/nrneurol.2013.163. 

13. Adams HR, Mink JW, University of Rochester Batten Center Study Group. Neurobehavioral 
features and natural history of juvenile neuronal ceroid lipofuscinosis (batten disease). J Child 
Neurol. 2013;28(9):1128-1136. doi: 10.1177/0883073813494813 [doi]. 

14. Shayman JA. Thematic review series: Recent advances in the treatment of lysosomal storage 
diseases. J Lipid Res. 2014. doi: jlr.E049817 [pii]. 

15. Mink JW, Augustine EF, Adams HR, Marshall FJ, Kwon JM. Classification and natural history 
of the neuronal ceroid lipofuscinoses. J Child Neurol. 2013;28(9):1101-1105. doi: 
10.1177/0883073813494268; 10.1177/0883073813494268. 

16. Batten FE. Cerebral degeneration with symmetrical changes in the maculae in two members 
of a family. Trans Ophthalmol Soc UK. 1903;23:386-390. 

17. Schultz ML, Tecedor L, Chang M, Davidson BL. Clarifying lysosomal storage diseases. Trends 
Neurosci. 2011;34(8):401-410. doi: 10.1016/j.tins.2011.05.006; 10.1016/j.tins.2011.05.006. 

18. Lerner TJ, D'Arigo KL, Haines JL, et al. Isolation of genes from the batten candidate region 
using exon amplification. batten disease consortium. Am J Med Genet. 1995;57(2):320-323. doi: 
10.1002/ajmg.1320570243 [doi]. 

19. Vesa J, Hellsten E, Verkruyse LA, et al. Mutations in the palmitoyl protein thioesterase gene 
causing infantile neuronal ceroid lipofuscinosis. Nature. 1995;376(6541):584-587. doi: 
10.1038/376584a0 [doi]. 

20. Sleat DE, Donnelly RJ, Lackland H, et al. Association of mutations in a lysosomal protein with 
classical late-infantile neuronal ceroid lipofuscinosis. Science. 1997;277(5333):1802-1805. 

21. Mole SE, Williams RE, Goebel HH. The neuronal ceroid lipofuscinoses. 2nd ed. Oxford: 
Oxford University Press; 2011. 

22. Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ. Mutation of the parkinsonism gene 
ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21(12):2646-2650. doi: 
10.1093/hmg/dds089 [doi]. 

23. Staropoli JF, Karaa A, Lim ET, et al. A homozygous mutation in KCTD7 links neuronal ceroid 
lipofuscinosis to the ubiquitin-proteasome system. Am J Hum Genet. 2012;91(1):202-208. doi: 
10.1016/j.ajhg.2012.05.023 [doi]. 



24 

24. Noskova L, Stranecky V, Hartmannova H, et al. Mutations in DNAJC5, encoding cysteine-
string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. Am 
J Hum Genet. 2011;89(2):241-252. doi: 10.1016/j.ajhg.2011.07.003 [doi]. 

25. Smith KR, Damiano J, Franceschetti S, et al. Strikingly different clinicopathological 
phenotypes determined by progranulin-mutation dosage. Am J Hum Genet. 2012;90(6):1102-
1107. doi: 10.1016/j.ajhg.2012.04.021 [doi]. 

26. Lanska DJ, Lanska MJ. Kluver-bucy syndrome in juvenile neuronal ceroid lipofuscinosis. J 
Child Neurol. 1994;9(1):67-69. 

27. Lamminranta S, Aberg LE, Autti T, et al. Neuropsychological test battery in the follow-up of 
patients with juvenile neuronal ceroid lipofuscinosis. J Intellect Disabil Res. 2001;45(Pt 1):8-17. 
doi: jir288 [pii]. 

28. Cialone J, Adams H, Augustine EF, et al. Females experience a more severe disease course in 
batten disease. J Inherit Metab Dis. 2012;35(3):549-555. doi: 10.1007/s10545-011-9421-6 [doi]. 

29. Backman ML, Santavuori PR, Aberg LE, Aronen ET. Psychiatric symptoms of children and 
adolescents with juvenile neuronal ceroid lipofuscinosis. J Intellect Disabil Res. 2005;49(Pt 
1):25-32. doi: JIR659 [pii]. 

30. Lauronen L, Munroe PB, Jarvela I, et al. Delayed classic and protracted phenotypes of 
compound heterozygous juvenile neuronal ceroid lipofuscinosis. Neurology. 1999;52(2):360-
365. 

31. Santavuori P, Linnankivi T, Jaeken J, Vanhanen SL, Telakivi T, Heiskala H. Psychological 
symptoms and sleep disturbances in neuronal ceroid-lipofuscinoses (NCL). J Inherit Metab Dis. 
1993;16(2):245-248. 

32. Fillingame RH, Angevine CM, Dmitriev OY. Mechanics of coupling proton movements to c-
ring rotation in ATP synthase. FEBS Lett. 2003;555(1):29-34. doi: S0014579303011013 [pii]. 

33. Golabek AA, Walus M, Wisniewski KE, Kida E. Glycosaminoglycans modulate activation, 
activity, and stability of tripeptidyl-peptidase I in vitro and in vivo. J Biol Chem. 
2005;280(9):7550-7561. doi: M412047200 [pii]. 

34. Santavuori P, Rapola J, Sainio K, Raitta C. A variant of jansky-bielschowsky disease. 
Neuropediatrics. 1982;13(3):135-141. doi: 10.1055/s-2008-1059612 [doi]. 

35. Mamo A, Jules F, Dumaresq-Doiron K, Costantino S, Lefrancois S. The role of ceroid 
lipofuscinosis neuronal protein 5 (CLN5) in endosomal sorting. Mol Cell Biol. 2012;32(10):1855-
1866. doi: 10.1128/MCB.06726-11 [doi]. 



25 

36. Uusi-Rauva K, Kyttala A, van der Kant R, et al. Neuronal ceroid lipofuscinosis protein CLN3 
interacts with motor proteins and modifies location of late endosomal compartments. Cell Mol 
Life Sci. 2012;69(12):2075-2089. doi: 10.1007/s00018-011-0913-1 [doi]. 

37. Saja S, Buff H, Smith AC, Williams TS, Korey CA. Identifying cellular pathways modulated by 
drosophila palmitoyl-protein thioesterase 1 function. Neurobiol Dis. 2010;40(1):135-145. doi: 
10.1016/j.nbd.2010.02.010 [doi]. 

38. Holopainen JM, Saarikoski J, Kinnunen PK, Jarvela I. Elevated lysosomal pH in neuronal 
ceroid lipofuscinoses (NCLs). Eur J Biochem. 2001;268(22):5851-5856. doi: 2530 [pii]. 

39. Virmani T, Gupta P, Liu X, Kavalali ET, Hofmann SL. Progressively reduced synaptic vesicle 
pool size in cultured neurons derived from neuronal ceroid lipofuscinosis-1 knockout mice. 
Neurobiol Dis. 2005;20(2):314-323. doi: S0969-9961(05)00076-8 [pii]. 

40. Kim SJ, Zhang Z, Sarkar C, et al. Palmitoyl protein thioesterase-1 deficiency impairs synaptic 
vesicle recycling at nerve terminals, contributing to neuropathology in humans and mice. J Clin 
Invest. 2008;118(9):3075-3086. doi: 10.1172/JCI33482 [doi]. 

41. Cho S, Dawson PE, Dawson G. Antisense palmitoyl protein thioesterase 1 (PPT1) treatment 
inhibits PPT1 activity and increases cell death in LA-N-5 neuroblastoma cells. J Neurosci Res. 
2000;62(2):234-240. doi: 10.1002/1097-4547(20001015)62:2<234::AID-JNR8>3.0.CO;2-8 [pii]. 

42. Cho S, Dawson G. Palmitoyl protein thioesterase 1 protects against apoptosis mediated by 
ras-akt-caspase pathway in neuroblastoma cells. J Neurochem. 2000;74(4):1478-1488. 

43. Benedict JW, Sommers CA, Pearce DA. Progressive oxidative damage in the central nervous 
system of a murine model for juvenile batten disease. J Neurosci Res. 2007;85(13):2882-2891. 
doi: 10.1002/jnr.21416 [doi]. 

44. Galizzi G, Russo D, Deidda I, et al. Different early ER-stress responses in the CLN8(mnd) 
mouse model of neuronal ceroid lipofuscinosis. Neurosci Lett. 2011;488(3):258-262. doi: 
10.1016/j.neulet.2010.11.041 [doi]. 

45. Savukoski M, Klockars T, Holmberg V, Santavuori P, Lander ES, Peltonen L. CLN5, a novel 
gene encoding a putative transmembrane protein mutated in finnish variant late infantile 
neuronal ceroid lipofuscinosis. Nat Genet. 1998;19(3):286-288. doi: 10.1038/975 [doi]. 

46. Heinonen O, Salonen T, Jalanko A, Peltonen L, Copp A. CLN-1 and CLN-5, genes for infantile 
and variant late infantile neuronal ceroid lipofuscinoses, are expressed in the embryonic human 
brain. J Comp Neurol. 2000;426(3):406-412. doi: 10.1002/1096-9861(20001023)426:3<406::AID-
CNE5>3.0.CO;2-5 [pii]. 



26 

47. Holmberg V, Jalanko A, Isosomppi J, Fabritius AL, Peltonen L, Kopra O. The mouse ortholog 
of the neuronal ceroid lipofuscinosis CLN5 gene encodes a soluble lysosomal glycoprotein 
expressed in the developing brain. Neurobiol Dis. 2004;16(1):29-40. doi: 
10.1016/j.nbd.2003.12.019 [doi]. 

48. Vesa J, Chin MH, Oelgeschlager K, et al. Neuronal ceroid lipofuscinoses are connected at 
molecular level: Interaction of CLN5 protein with CLN2 and CLN3. Mol Biol Cell. 
2002;13(7):2410-2420. doi: 10.1091/mbc.E02-01-0031 [doi]. 

49. Isosomppi J, Vesa J, Jalanko A, Peltonen L. Lysosomal localization of the neuronal ceroid 
lipofuscinosis CLN5 protein. Hum Mol Genet. 2002;11(8):885-891. 

50. Sleat DE, Zheng H, Qian M, Lobel P. Identification of sites of mannose 6-phosphorylation on 
lysosomal proteins. Mol Cell Proteomics. 2006;5(4):686-701. doi: M500343-MCP200 [pii]. 

51. Moharir A, Peck SH, Budden T, Lee SY. The role of N-glycosylation in folding, trafficking, and 
functionality of lysosomal protein CLN5. PLoS One. 2013;8(9):e74299. doi: 
10.1371/journal.pone.0074299 [doi]. 

52. Schmiedt ML, Bessa C, Heine C, Ribeiro MG, Jalanko A, Kyttala A. The neuronal ceroid 
lipofuscinosis protein CLN5: New insights into cellular maturation, transport, and consequences 
of mutations. Hum Mutat. 2010;31(3):356-365. doi: 10.1002/humu.21195 [doi]. 

53. Lyly A, von Schantz C, Heine C, et al. Novel interactions of CLN5 support molecular 
networking between neuronal ceroid lipofuscinosis proteins. BMC Cell Biol. 2009;10:83-2121-
10-83. doi: 10.1186/1471-2121-10-83 [doi]. 

54. Komatsu M, Ichimura Y. Selective autophagy regulates various cellular functions. Genes 
Cells. 2010;15(9):923-933. doi: 10.1111/j.1365-2443.2010.01433.x; 10.1111/j.1365-
2443.2010.01433.x. 

55. Cecconi F, Levine B. The role of autophagy in mammalian development: Cell makeover 
rather than cell death. Dev Cell. 2008;15(3):344-357. doi: 10.1016/j.devcel.2008.08.012; 
10.1016/j.devcel.2008.08.012. 

56. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27-42. 
doi: 10.1016/j.cell.2007.12.018; 10.1016/j.cell.2007.12.018. 

57. Mehrpour M, Esclatine A, Beau I, Codogno P. Overview of macroautophagy regulation in 
mammalian cells. Cell Res. 2010;20(7):748-762. doi: 10.1038/cr.2010.82; 10.1038/cr.2010.82. 

58. Meijer AJ, Codogno P. Signalling and autophagy regulation in health, aging and disease. 
Molecular Aspects of Medicine. 2006;27:411-425. 



27 

59. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular 
self-digestion. Nature. 2008;451(7182):1069-1075. doi: 10.1038/nature06639; 
10.1038/nature06639. 

60. Todde V, Veenhuis M, van der Klei IJ. Autophagy: Principles and significance in health and 
disease. Biochim Biophys Acta. 2009;1792(1):3-13. doi: 10.1016/j.bbadis.2008.10.016; 
10.1016/j.bbadis.2008.10.016. 

61. Seglen PO, Gordon PB, Holen I. Non-selective autophagy. Semin Cell Biol. 1990;1(6):441-448. 

62. Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. 3D tomography reveals connections 
between the phagophore and endoplasmic reticulum. Autophagy. 2009;5(8):1180-1185. doi: 
10274 [pii]. 

63. Axe EL, Walker SA, Manifava M, et al. Autophagosome formation from membrane 
compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the 
endoplasmic reticulum. J Cell Biol. 2008;182(4):685-701. doi: 10.1083/jcb.200803137 [doi]. 

64. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. A subdomain 
of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol. 
2009;11(12):1433-1437. doi: 10.1038/ncb1991 [doi]. 

65. Fader CM, Colombo MI. Autophagy and multivesicular bodies: Two closely related partners. 
Cell Death Differ. 2009;16(1):70-78. doi: 10.1038/cdd.2008.168 [doi]. 

66. Eskelinen EL. Maturation of autophagic vacuoles in mammalian cells. Autophagy. 
2005;1(1):1-10. doi: 1270 [pii]. 

67. Simonsen A, Tooze SA. Coordination of membrane events during autophagy by multiple 
class III PI3-kinase complexes. J Cell Biol. 2009;186(6):773-782. doi: 10.1083/jcb.200907014 
[doi]. 

68. Lloyd JB. Metabolite efflux and influx across the lysosome membrane. Subcell Biochem. 
1996;27:361-386. 

69. Yang Z, Huang J, Geng J, Nair U, Klionsky DJ. Atg22 recycles amino acids to link the 
degradative and recycling functions of autophagy. Mol Biol Cell. 2006;17(12):5094-5104. doi: 
E06-06-0479 [pii]. 

70. Yang Z, Klionsky DJ. Permeases recycle amino acids resulting from autophagy. Autophagy. 
2007;3(2):149-150. doi: 3631 [pii]. 



28 

71. Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is 
localized in autophagosome membranes after processing. EMBO J. 2000;19(21):5720-5728. doi: 
10.1093/emboj/19.21.5720 [doi]. 

72. Mann SS, Hammarback JA. Molecular characterization of light chain 3. A microtubule 
binding subunit of MAP1A and MAP1B. J Biol Chem. 1994;269(15):11492-11497. 

73. Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J 
Biochem Cell Biol. 2004;36(12):2503-2518. doi: 10.1016/j.biocel.2004.05.009. 

74. Tanida I, Ueno T, Kominami E. Human light chain 3/MAP1LC3B is cleaved at its carboxyl-
terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes. 
J Biol Chem. 2004;279(46):47704-47710. doi: 10.1074/jbc.M407016200 [doi]. 

75. Geng J, Klionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in 
macroautophagy. 'protein modifications: Beyond the usual suspects' review series. EMBO Rep. 
2008;9(9):859-864. doi: 10.1038/embor.2008.163; 10.1038/embor.2008.163. 

76. Mizushima N, Yamamoto A, Hatano M, et al. Dissection of autophagosome formation using 
Apg5-deficient mouse embryonic stem cells. J Cell Biol. 2001;152(4):657-668. 

77. Xie Z, Klionsky DJ. Autophagosome formation: Core machinery and adaptations. Nat Cell 
Biol. 2007;9(10):1102-1109. doi: 10.1038/ncb1007-1102. 

78. Kirisako T, Baba M, Ishihara N, et al. Formation process of autophagosome is traced with 
Apg8/Aut7p in yeast. J Cell Biol. 1999;147(2):435-446. 

79. Xie Z, Nair U, Klionsky DJ. Atg8 controls phagophore expansion during autophagosome 
formation. Mol Biol Cell. 2008;19(8):3290-3298. doi: 10.1091/mbc.E07-12-1292; 
10.1091/mbc.E07-12-1292. 

80. Li WW, Li J, Bao JK. Microautophagy: Lesser-known self-eating. Cell Mol Life Sci. 
2012;69(7):1125-1136. doi: 10.1007/s00018-011-0865-5 [doi]. 

81. Muller O, Sattler T, Flotenmeyer M, Schwarz H, Plattner H, Mayer A. Autophagic tubes: 
Vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. J Cell 
Biol. 2000;151(3):519-528. 

82. Epple UD, Suriapranata I, Eskelinen EL, Thumm M. Aut5/Cvt17p, a putative lipase essential 
for disintegration of autophagic bodies inside the vacuole. J Bacteriol. 2001;183(20):5942-5955. 
doi: 10.1128/JB.183.20.5942-5955.2001 [doi]. 

83. De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435-492. doi: 
10.1146/annurev.ph.28.030166.002251 [doi]. 



29 

84. Neff NT, Bourret L, Miao P, Dice JF. Degradation of proteins microinjected into IMR-90 
human diploid fibroblasts. J Cell Biol. 1981;91(1):184-194. 

85. Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by 
lysosomes. Science. 1996;273(5274):501-503. 

86. Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated 
autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol 
Cell Biol. 2008;28(18):5747-5763. doi: 10.1128/MCB.02070-07 [doi]. 

87. Lum JJ, Bauer DE, Kong M, et al. Growth factor regulation of autophagy and cell survival in 
the absence of apoptosis. Cell. 2005;120(2):237-248. doi: S009286740401150X [pii]. 

88. Scott RC, Schuldiner O, Neufeld TP. Role and regulation of starvation-induced autophagy in 
the drosophila fat body. Dev Cell. 2004;7(2):167-178. doi: 10.1016/j.devcel.2004.07.009 [doi]. 

89. Boya P, Gonzalez-Polo RA, Casares N, et al. Inhibition of macroautophagy triggers apoptosis. 
Mol Cell Biol. 2005;25(3):1025-1040. doi: 25/3/1025 [pii]. 

90. Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ. Phosphorylation of 
ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem. 
1995;270(5):2320-2326. 

91. Codogno P, Meijer AJ. Autophagy and signaling: Their role in cell survival and cell death. Cell 
Death Differ. 2005;12 Suppl 2:1509-1518. doi: 4401751 [pii]. 

92. Shintani T, Klionsky DJ. Autophagy in health and disease: A double-edged sword. Science. 
2004;306(5698):990-995. doi: 306/5698/990 [pii]. 

93. Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. 
Nat Genet. 2005;37(1):19-24. doi: ng1494 [pii]. 

94. Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of 
tumorigenesis by beclin 1. Nature. 1999;402(6762):672-676. doi: 10.1038/45257 [doi]. 

95. Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit beclin 1-dependent 
autophagy. Cell. 2005;122(6):927-939. doi: S0092-8674(05)00692-6 [pii]. 

96. Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex 
functions at the trans-golgi network. EMBO Rep. 2001;2(4):330-335. doi: 10.1093/embo-
reports/kve061 [doi]. 

97. Liang C, Feng P, Ku B, et al. Autophagic and tumour suppressor activity of a novel Beclin1-
binding protein UVRAG. Nat Cell Biol. 2006;8(7):688-699. doi: ncb1426 [pii]. 



30 

98. vom Dahl S, Schliess F, Reissmann R, et al. Involvement of integrins in osmosensing and 
signaling toward autophagic proteolysis in rat liver. J Biol Chem. 2003;278(29):27088-27095. 
doi: 10.1074/jbc.M210699200 [doi]. 

99. Haussinger D, Schliess F, Dombrowski F, Vom Dahl S. Involvement of p38MAPK in the 
regulation of proteolysis by liver cell hydration. Gastroenterology. 1999;116(4):921-935. doi: 
S0016508599003583 [pii]. 

100. Schliess F, Reissmann R, Reinehr R, vom Dahl S, Haussinger D. Involvement of integrins and 
src in insulin signaling toward autophagic proteolysis in rat liver. J Biol Chem. 
2004;279(20):21294-21301. doi: 10.1074/jbc.M313901200 [doi]. 

101. Pattingre S, Bauvy C, Codogno P. Amino acids interfere with the ERK1/2-dependent control 
of macroautophagy by controlling the activation of raf-1 in human colon cancer HT-29 cells. J 
Biol Chem. 2003;278(19):16667-16674. doi: 10.1074/jbc.M210998200 [doi]. 

102. Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem 
Cell Biol. 2004;36(12):2445-2462. doi: 10.1016/j.biocel.2004.02.002 [doi]. 

103. Palmer DN, Fearnley IM, Medd SM, et al. Lysosomal storage of the DCCD reactive 
proteolipid subunit of mitochondrial ATP synthase in human and ovine ceroid lipofuscinoses. 
Adv Exp Med Biol. 1989;266:211-22; discussion 223. 

104. Kominami E, Ezaki J, Muno D, Ishido K, Ueno T, Wolfe LS. Specific storage of subunit c of 
mitochondrial ATP synthase in lysosomes of neuronal ceroid lipofuscinosis (batten's disease). J 
Biochem. 1992;111(2):278-282. 

105. Ranta S, Savukoski M, Santavuori P, Haltia M. Studies of homogenous populations: CLN5 
and CLN8. Adv Genet. 2001;45:123-140. 

106. ASHFORD TP, PORTER KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol. 
1962;12:198-202. 

107. Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense 
against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 2005;8(1):3-5. 
doi: 10.1089/rej.2005.8.3. 

108. Bolender RP, Weibel ER. A morphometric study of the removal of phenobarbital-induced 
membranes from hepatocytes after cessation of threatment. J Cell Biol. 1973;56(3):746-761. 

109. Beaulaton J, Lockshin RA. Ultrastructural study of the normal degeneration of the 
intersegmental muscles of anthereae polyphemus and manduca sexta (insecta, lepidoptera) 
with particular reference of cellular autophagy. J Morphol. 1977;154(1):39-57. doi: 
10.1002/jmor.1051540104. 



31 

110. Veenhuis M, Douma A, Harder W, Osumi M. Degradation and turnover of peroxisomes in 
the yeast hansenula polymorpha induced by selective inactivation of peroxisomal enzymes. 
Arch Microbiol. 1983;134(3):193-203. 

111. Bernales S, McDonald KL, Walter P. Autophagy counterbalances endoplasmic reticulum 
expansion during the unfolded protein response. PLoS Biol. 2006;4(12):e423. doi: 
10.1371/journal.pbio.0040423. 

112. Tuttle DL, Lewin AS, Dunn WA,Jr. Selective autophagy of peroxisomes in methylotrophic 
yeasts. Eur J Cell Biol. 1993;60(2):283-290. 

113. Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH. The adaptor protein 
p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol. 
2009;183(9):5909-5916. doi: 10.4049/jimmunol.0900441; 10.4049/jimmunol.0900441. 

114. Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, Martinou JC. Impairing the 
bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death 
Differ. 2005;12(12):1613-1621. doi: 10.1038/sj.cdd.4401697. 

115. Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ. Mdm38 protein depletion causes loss 
of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ. 
2007;14(9):1647-1656. doi: 10.1038/sj.cdd.4402167. 

116. Heytler PG. Uncouplers of oxidative phosphorylation. Methods Enzymol. 1979;55:462-442. 

117. Hirose S, Yaginuma N, Inada Y. Disruption of charge separation followed by that of the 
proton gradient in the mitochondrial membrane by CCCP. J Biochem. 1974;76(1):213-216. 

118. Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are 
spared from degradation and sustain cell viability. Nat Cell Biol. 2011;13(5):589-598. doi: 
10.1038/ncb2220 [doi]. 

119. Scorrano L, Ashiya M, Buttle K, et al. A distinct pathway remodels mitochondrial cristae 
and mobilizes cytochrome c during apoptosis. Dev Cell. 2002;2(1):55-67. doi: 
S1534580701001162 [pii]. 

120. Frank S, Gaume B, Bergmann-Leitner ES, et al. The role of dynamin-related protein 1, a 
mediator of mitochondrial fission, in apoptosis. Dev Cell. 2001;1(4):515-525. doi: S1534-
5807(01)00055-7 [pii]. 



32 

 Chapter 2

CLN5 Deficiency Results in Alterations in Autophagy 
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 Abstract 

 The neuronal ceroid lipofuscinoses (NCLs) are a set of genetically inherited lysosomal 

storage diseases that have a variety of onsets and cause a range of clinical symptoms including 

loss of motor function and vision, seizures, and retardation.  These diseases result from the 

mutations of CLN proteins including CLN5, a soluble lysosomal protein with no known function 

at this time.  CLN5 disease is phenotypically characterized by the accumulation of subunit c of 

mitochondrial ATP synthase.  Other NCL related-proteins, including CLN2 and CLN3 have 

recently been shown to affect autophagy, a cellular mechanism that entails the basal and stress 

induced self-digestion of general or specified cellular components for recycling to maintain the 

survival of the cell.  By siRNA knockdown in HeLa and Hek293 as well as the utilization of CLN5 

human patient fibroblasts we examined the effect of the absence of CLN5 on the relative basal 

amounts of LC3-II, a hallmark protein of autophagy used to measure the level of autophagy 

activation.  With these tests we showed that the deficiency of CLN5 results in an increase in the 

amount of LC3-II within all cell types.  By inducing autophagy in the aforementioned cell types 

with several different drug treatments, we found that treated cells in the absence of CLN5 

produced higher LC3-II levels than treated cells with CLN5 and that the pattern and amounts of 

LC3-II expressed in these experiments varied depending on the form of autophagy induced.  

These studies indicate the absence of CLN5 increases the activation of autophagy degradation 

pathway. 
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 Introduction 

 The Neuronal ceroid lipofuscinoses (NCLs), more commonly known as Batten’s disease, 

are a set of related debilitating neurodegenerative lysosomal storage disorders.  These diseases 

are most often seen in young children, yet the onset of symptoms can range from birth to 

adulthood1.  Main symptoms of these disorders include loss of vision and some motor function, 

epileptic seizures, and varying severities of mental retardation2.  Due to early onset in the 

majority of patients, the average life expectancy for NCL patients is fifteen.  Behavioral 

symptoms throughout the life of the patient can include aggression, restlessness, difficulty 

sleeping, depression, and general irritability3-5.  NCL classification is further determined by the 

variant or region the causative mutation is most prominent6,7.  As lysosmal storage disorders, all 

NCLs are unable to degrade and remove specific proteins from their lysosomal lumens; the 

main accumulated culprits seen in NCLs are Saposin A and D as well as subunit c of 

mitochondrial ATP synthase8.  These phenotypes arise from mutations in one of any of the 

known ceroid lipofuscin (CLN) proteins, now numbering from 1 to 109.  The function of many of 

these proteins is still unknown, though several of them have been identified as lysosomal 

enzymes and integral membrane transport proteins4,10-12.  To date, mutated NCL related 

proteins (CLN proteins) have been implicated in causing defects in endoplasmic reticulum stress 

response as well as the autophagy, oxidative, and apoptotic pathways13-16. 

 CLN5 is a 407 amino acid protein found in the lysosomal lumen; it currently has no 

known function17.  This protein is found in all body tissues, but as with other CLNs the 

characteristic occlusion bodies found in patient cells are far more prevalent in neuronal 
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tissue18,19.  CLN5 is highly glycosylated with its eight putative N-glycosylation sites, all of which 

were confirmed by our earlier study utilizing mutation and chemical treatment to observe 

cleaved protein size20,21.  Recently, co-immunoprecipitation studies showed CLN5 interacts with 

other NCL proteins including CLN1, CLN2, CLN3, CLN6, and CLN822,23.  Interestingly, some of 

these same CLN proteins were recently shown to have a distinct effect on autophagy which 

piqued our interest in the relationships between these CLN proteins and this degradation 

pathway24.  

 Autophagy is one of the major degradation pathways in the cell along with the 

ubiquitin-proteasome pathway.  Unlike apoptosis, this mechanism is used to maintain the 

survival of the cell for as long as possible by degrading old, damaged, or non-essential cellular 

components.  Autophagy is activated when cells are introduced to stressful conditions like 

starvation and certain drug treatments, though it has been shown that low levels of autophagy 

are occurring at all times25-27.  Depending on the method of activation or cellular component in 

need of degradation, different forms of autophagy are utilized to fit the situation.  Known forms 

of autophagy include macroautophagy, microautophagy, and chaperone-mediated autophagy. 

Microautophagy and chaperone-mediated autophagy involve the direct transport of proteins 

into the lysosome through the lysosomal membrane28,29.  Macroautophagy entails the 

engulfment of general or specified targets by an autophagosome that is then directed to the 

lysosome for degradation30.  During starvation, general macroautophagy is induced to non-

specifically degrade proteins and organelles for the purpose of nutrient acquisition.  Other 

forms of macroautophagy like mitophagy (mitochondria-specific autophagy) can specifically 

target damaged proteins or organelles to the lysosome to maintain the homeostatic nature of 
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the cell31.  To measure autophagy, the level of LC3-II protein is measured as its formation 

correlates with autophagosome formation.  It is worth noting other methods of measuring 

autophagy exist, and these will be covered later in the discussion section.  As all methods of 

autophagy detection have their own caveats, LC3-II detection was selected as it is a commonly 

used, tried and proven method.  LC3 has two main forms, LC3-I and LC3-II (along with a pro-LC3 

that is quickly modified after translation to the LC3-I form)32.  Most of the LC3 pool is in the LC3-

I form when autophagy is at its basal level.  However, when the degradation pathway is induced 

LC3-I is lipidated with the addition of phosphatidylethanolamine; it then becomes LC3-II, which 

is directed to autophagosomes where it becomes anchored in the membrane32.  After the 

autophagosome fuses to a lysosome, LC3-II is degraded by acid hydrolases.  There is a direct 

relationship between the amount of autophagosome formation and the levels of LC3-II, thus 

the lipidated form of the protein is used as a marker for the level of autophagy activation. 

 Here we investigated the effect of CLN5 protein on different forms of autophagy.  We 

utilized siRNA knockdown techniques to silence CLN5 in HeLa and Hek293 cell cultures and 

monitor the effect of its deficiency on LC3-II levels.  Initial results indicated that knockdown of 

CLN5 resulted in an increase in the amount of LC3-II, a difference between experimental and 

control cells that was further heightened by the synthetic induction of autophagy.  We also 

studied a number of fibroblasts from patients without functional CLN5 (CLN5 human 

fibroblasts), three of which we showed to be deficient for full length CLN5 (CLN5 patient #2 

being the only exception).  In comparison to normal human fibroblasts, all four CLN5 patient 

fibroblasts initially displayed a higher baseline level of LC3-II and thus a higher level autophagy 

activity.  When these cell lines were treated to induce different forms of autophagy, different 
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patterns and levels of autophagy activation were recorded between patients and control.  

Patient cells consistently showed higher levels of LC3-II than control with and without synthetic 

induction of autophagy.  Understanding CLN5 has been a slow process with the function of the 

protein still unknown.  With these experiments, however, we take a step in a promising 

direction as we show a novel reaction in autophagy to the deficiency of CLN5 protein.  Our 

studies indicate that CLN5 plays a role in the alteration of the autophagy degradation pathway.   
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 Materials and Methods 

 

Cell Culture and Transfection Methods 

Media used for cell growth and maintenance for all cell lines was Dulbecco’s Modified 

Eagle Medium (DMEM) that was supplemented with 10% fetal bovine serum (FBS), Glutamax, 

HEPES and gentamycin at 37°C in a humidified incubator with a consistent supply of 5% CO₂.  

Cells were split and seeded into either 6 or 12-well plates 18-24 hours before transfection at a 

confluence dependent on the cell type. Cell types used in these experiments include HeLa, 

Hek293, control fibroblast lines GM00498 and GM00037, and patient fibroblasts “CLN5#1, 

CLN5#2, CLN5#3, and CLN5#4.”  HeLa (Cat. No. ATCC CCL-2) and Hek293 (Cat. No. ATCC CRL-

1573) cells were purchased from American Tissue Culture Collection (ATCC).  Control skin 

fibroblasts (from non-diseased human) were purchased from the Corelli Institute for Medical 

Research while CLN5 patient cells were obtained from Massachusetts General Hospital, Boston.  

For experimentation, HeLa and Hek293 cells were seeded at ~20% confluence while patient 

fibroblasts were seeded at ~40% to ~50% depending on the growth rate of the cell line.  Aging 

fibroblasts were consistently replaced by frozen stock after ~20 passages due to extremely 

diminished cell growth.  Cells were normally transiently transfected for 24 hours using Trans IT-

LT1 (Mirus Bio) in OPTI-MEM media.  For double transfection of siRNA and plasmid DNA, Trans 

IT-TKO (Mirus Bio) was used.  Initial transfection tests using Manufacturer’s recommendations 

resulted in a significant amount of cell death, therefore the volume of reagent, media, and DNA 

was reduced while maintaining the same ratios of reagent and DNA.  For troubleshooting 
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transfection in fibroblasts the transfection reagents used were Lipofectamine from Invitrogen, 

FuGENE HD from Promega, Trans IT-3T3 from Mirus, and Trans IT-2020 from Mirus Bio.  The use 

of these reagents resulted in nearly complete cell death when used according manufacturer’s 

specifications, so reagent volumes were reduced while maintaining identical ratios between 

media, nucleic acid and reagent resulting in minimal cell death.  Cells were collected by scraping 

24 hours after transfection.  HeLa cell pellets were either used immediately for SDS-PAGE and 

western blotting experimentation or were stored at -80°C until use.  Fibroblast pellets were 

always used immediately upon harvesting to address concerns of protein degradation at -80°C. 

 

Drug Treatment 

Reagents used in autophagy induction were carbonyl cyanide m-chlorophenylhydrazone 

(CCCP) (ENZO Life Sciences), Hank’s Buffered Saline Solution (HBSS)/10 mM HEPES, and 

bortezomib (BZ) (LC Laboratories).  CCCP was dissolved in dimethyl sulfoxide (DMSO) and was 

added to cells at a final concentration of 10 µM for a period of 2 hours before cells were 

harvested.  DMSO alone was also used as control in CCCP experiments at a volume of 1μL which 

was similar to the amount of CCCP added.  20 nM BZ dissolved in DMSO was added to cells for a 

period of 24 hours and as with CCCP experiments 1μL of DMSO was used as control.  Starvation 

was induced by HBSS use after media was removed and washed with PBS.  1mL or 2mL was 

added to 12-well or 6-well plates, respectively, for a period of 2 hours.  Lysosomal degradation 

was blocked by chloroquine (CQ) (MP Biomedicals), which was dissolved in water, at a 
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concentration of 50µM for a period of 2 or 24 hours depending on what autophagy induction 

method was used. 

 

SDS-PAGE and Western Blotting 

Cell pellets were lysed in a RIPA lysis buffer consisting of 50 mM Tris pH 8, 150 mM NaCl, 

1% NP40, 0.1% SDS, 0.5% sodium deoxycholate and protease inhibitor mix) and placed on ice 

for 30 minutes.  Samples were then spun down at 20,000 rpm for 10 minutes and the soluble 

lysate was separated for further use.  Sample buffer was added to the lysate which was then 

boiled for five minutes.  Completed samples were loaded onto 15% SDS-PAGE and 

electrophoretically separated at 100 V before next being transferred onto a PVDF membrane at 

4°C for ~1 hour at 100 V.  Membranes were blocked with a 5% milk solution in TBST (20 mM 

Tris-HCl pH 7.4, 150 mM NaCl and 0.05% Tween20) and incubated at room temperature for 45 

minutes to 1 hour.  The membranes were then incubated with primary antibody for ~1 hour at 

room temperature or overnight at 4°C.  After brief washings in TBST the membranes were 

incubated with the peroxidase-conjugated secondary antibody at a dilution of 1:50,000 in TBST 

for ~45 minutes at room temperature.  Finally, membranes once again received brief TBST 

washes and were then developed using Chemiluminescent HRP substrate for ~3 minutes before 

images were taken using the G-Box imager from Syngene.  Quantification of raw data was 

completed using Syngene software.  Normalization and significance using the student t-test 

were completed using Microsoft Excel. 
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Antibodies 

Mouse monoclonal antibody (α-Myc) producing hybridoma cell line 9E10 was purchased 

from ATCC (CRL 1729), grown in RPMI-1640 with 10% FBS, Glutamax, HEPES and gentamycin.  

Media supernatant was collected and used in 1:10 dilution (all antibodies diluted in TBST).  

Mouse α β-actin was received from Genscript (Cat. No. A00702) and used at a 1:1000 dilution.  

Rabbit α LC3-B was purchased from Abcam (Cat. No. ab51520 and used at a 1:2000 dilution.  

Rabbit α CLN5 antibody was also purchased from Abcam (Cat. No. ab170899) and was diluted 

to 1:1000.  HRP-conjugated secondary antibodies (donkey α mouse/rabbit) used to complete 

western blotting were purchased from Jackson Laboratories.   

 

siRNA Knockdown and Co-transfection 

For endogenous CLN5 knockdown in HeLa and Hek293 cells, siRNA specific to CLN5 was 

overexpressed for a period of 24 hours (see sequence below).  The siRNA was purchased from 

Dharmacon and used at a concentration of 20 nM.  siGenome non-target siRNA also purchased 

from Dharmacon was used as control; oligomer targeted to firefly luciferase (Accession 

#U47296).  For CLN5 rescue experiments in HeLa and Hek293 cells, siRNA was co-transfected 

with siRNA resistant CLN5 plasmid (in pcDNA3.1/Myc-His (-) A, siRNA resistant sequence below 

in Table 2.2) using Trans IT-TKO (technical knockout) transfection reagent.  2.5 µL TKO was used 

per well of a 12-well plate after first attempting manufacturer’s recommendations followed by 

extensive troubleshooting. 
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Table 2.1:  List of CLN5 Patient Mutations 

 
CLN5 Patient Mutation 

CLN5#1 c.671G>A, p.Trp224X and c. 1103_1106del, pLys368SerfsX15 

CLN5#2 c.61C>T, p.Pro21Ser and Exon 3 Deletion 

CLN5#3 Homozygous c.694C>T, p.Gln232X 

CLN5#4 c.671G>A, p224X and Exon 4 Deletion 
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Table 2.2: Sequence Data for HeLa RNAi and Rescue Experiments 

 

 

 

 

 

 

 

  

Description Sequence 

CLN5 siRNA Oligomer GAACCUACUUAUCUGGGAAUU 

CLN5 WT Target GAACCTACTTATCTGGGAA 

CLN5 Mutation for siRNA Resistance GAACCTACCTACCTGGGAA 
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 Results 

Autophagy Activation in HeLa 

 To determine our ability to induce and measure autophagy in HeLa cells, cells were 

treated to induce autophagy through starvation (HBSS) and mitochondrial uncoupling using 

CCCP (Fig. 2.1A).  CQ was also added to observe the effect on LC3-II levels when lysosomal 

degradation was blocked.  The LC3 antibody we used specifically recognized an isoform of the 

protein, LC3B.  LC3-I and LC3-II ran on SDS-PAGE at ~14 kDa and 12 kDa, respectively.  Cells 

treated for the induction of autophagy displayed a higher level of LC3-II than non-treated cells, 

as expected (Fig. 2.1A and 2.1C).  Levels of autophagy induction for specific treatments were 

consistent in terms of elevation compared to non-treatment, though there was little 

consistency in the level of that elevation.  Over several experiments, however, a pattern was 

noticed wherein starvation induced a lower elevation of autophagy activity than did 

mitochondrial uncoupling CCCP treatment.  Additionally, CQ treatment in tandem with 

autophagy induction resulted in even more substantial LC3-II accumulation than with 

autophagy induction alone.  This elevated LC3-II in drug-treated HeLa cells confirmed our ability 

to experimentally induce autophagy and block lysosomal degradation. 

CLN5 Knockdown Effect on LC3-II 

 We next examined the effects of CLN5 deficiency on autophagy activation.  To achieve 

CLN5 knockdown, we employed RNAi experiments using siRNA to silence CLN5 in HeLa cells.   
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Figure 2.1: Autophagy Induction and CLN5 RNAi Silencing in HeLa  
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Figure 2.1-Autophagy Induction and CLN5 RNAi Silencing in HeLa.  A. Hela cells were treated 

with 1 mL HBSS for starvation or 10 µM CCCP for mitophagy for 2 hrs.  CQ was added at a 

concentration of 50 µM, also for 2 hrs.  B. siRNA oligomers for non-specific control (C) use and 

for CLN5 (5) were transfected at a 20 nM concentration for 24 or 48 hrs along with siRNA 

resistant CLN5.    C. siRNA and resistant CLN5 plasmid were transfected together for 24 hrs; 

CCCP and CQ were added during the final two hours at the concentration described above.  

Whole cell lysates were run on 15% SDS-PAGE for western; CLN5 was detected by use of mouse 

α-Myc antibody and LC3-II was detected with rabbit α-LC3-B antibody.  β-actin (A and B) and 

IMMT (C) (inner membrane protein, mitochondrial) were used as loading control. 
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RNAi experiments were first optimized with the amount of RNAi oligomers and TKO 

transfection reagent (data not shown). CLN5 specific siRNA was administered for 24 and 48 

hours to determine the most appropriate knockdown conditions.  During the time this set of 

experiments was being conducted there was no antibody that could recognize endogenous 

CLN5 available to us, so we overexpressed Myc-tagged CLN5 to assess the knockdown effects 

(Fig. 2.1B).  siRNA oligomers and Myc-tagged siRNA resistant CLN5 were simultaneously 

transfected using the TKO transfection reagent.  Compared to control knockdown, CLN5 

knockdown was greatly reduced for both 24 and 48 hour siRNA transfection conditions.   

We then treated the HeLa cells with the CLN5 siRNA oligomers for 24 hours in tandem 

with CCCP to induce mitophagy.  This experiment was designed to show the effect of the lack of 

CLN5 on LC3-II levels in HeLa cells both with and without the induction of autophagy. 

Knockdown of CLN5 did not seem to change basal levels of LC3-II (Fig. 2.1C).  However, with the 

induction of mitophagy cells that were CLN5 silenced displayed an elevated LC3-II level 

compared to control cells that were CCCP treated.  This observation creates two possibilities:  

either LC3-II is being produced at a higher level due to the activation of autophagy, or the lack 

of CLN5 causes a defect in lysosomal degradation that prevents LC3-II from being turned over.  

The addition of CQ along with CCCP treatment causes further accumulation of LC3-II in CLN5 

knockdown cells, indicating the lysosome is functional in CLN5 knockdown cells and suggesting 

a higher level of LC3-II has been produced under mitophagy.  These knockdown experiments 

suggested a link between the lack of CLN5 and the level of autophagy activation in cells 

experiencing artificially induced autophagy.  It can also be said that the elevation of LC3-II may 

be due to the increased formation and recruitment of LC3-II and not its diminished degradation.   
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CLN5 Knockdown and Overexpression 

To examine the functionality of CLN5 and to further assess if the observed effects on 

autophagy were due to the absence of CLN5, we tested whether overexpression of siRNA 

resistant CLN5 could rescue the effects of CCCP treatment (Fig. 2.2).  siRNA specific for 

endogenous CLN5 was transfected in tandem with Myc-tagged, siRNA resistant CLN5 WT or 

N192S21.  CLN5 patient mutant N192S is a glycosylation mutant that is known to properly 

localize to the lumen of the lysosome and yet must be functionally defective due to its disease 

causing nature21.  Numerous rescue experiments were undertaken over an extended period of 

time, and unfortunately no conclusion could be drawn from the results rendered.  A portion of 

the time, cells overexpressing resistant CLN5 WT plasmid reduced LC3-II back to levels 

comparable to or even lower than CLN5 silenced.  This result held with and without the 

induction of autophagy using CCCP.  Notably, the reduction of LC3-II in autophagy 

induced/CLN5 silenced cells was even greater than cells that had not been treated for 

autophagy.  However, the opposite of this effect was seen at a nearly equal incidence.  CLN5 

overexpression at times showed no ability to diminish LC3-II back to control levels with or 

without autophagy induction.  Throughout the time these experiments were undertaken, CLN5 

N192S overexpression results on autophagy activation were equally inconsistent.  No 

discernable pattern of LC3-II expression could be obtained through our analyses of the CLN5 

glycosylation mutant between the many experiments.  There are several possible explanations:  

since we couldn’t examine the level of endogenous CLN5, we cannot be certain that the 

knockdown was equally efficient in every set of experiments. Overexpression efficiency may not 

be high enough to see a consistent rescuing effect.  During extensive troubleshooting, we 
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Figure 2.2: CLN5 Rescue in HeLa Cells   
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Figure 2.2-CLN5 Rescue in HeLa Cells.  Cells were tandem transfected with CLN5-Myc, CLN5 

N192S mutant and control/CLN5 oligomers for 24 hours.  Treatment with DMSO (1 µL) and 

CCCP (10 µM) were added to cells 22 hours into the transfection period for 2 hrs.  Cells were 

harvested and whole cell lysates were run on 15% SDS-PAGE for western with rabbit α-LC3-B to 

observe LC3-II.  Β-actin was used as loading control.  Data is representative of at least five 

experiments (two shown). 
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purchased the CLN5 specific antibody previously mentioned. Although the myc antibody 

validated that we were knocking down most if not all overexpressed CLN5, the antibody specific 

for endogenous CLN5 showed the samples contained varying levels of endogenous CLN5 

present.  Despite our understanding of the problem, CLN5 patient fibroblast became available 

to us at this time.  Thus, after confirming the absence of CLN5 in these cells, we decided it was 

more prudent to use CLN5 human fibroblasts for our project.  Because of this, the RNAi 

approach was abandoned in favor of analyses that involved the use of CLN5 patient fibroblasts 

that were naturally deficient for CLN5 protein. 

 

Basal LC3-II in CLN5 Patients 

 Skin fibroblasts of CLN5 deficient patients (excluding CLN5 patient #2, which will be 

addressed in the discussion section) were obtained from the Massachusetts General Hospital 

repository.  Four patient samples were acquired, though originally two were thawed for initial 

experimentation.  We first wanted to observe the baseline levels of LC3-II in patient fibroblasts.  

For comparison, control human skin fibroblasts purchased from the Coriell Institute for Medical 

Research (GM00037 and GM00498) were used.  Total cell lysates of the control cells and the 

patient skin fibroblasts (dubbed CLN5#3 and CLN5#4) were run on SDS-PAGE and western 

blotted the CLN5 specific antibody.  This antibody revealed that the patient cells were 

completely deficient for CLN5 (Fig. 2.3).  Control fibroblasts, on the other hand, displayed a 

relatively high level of the CLN5 protein.  Even more notably, the control fibroblasts expressed a 

markedly lower level of LC3-II protein than did the CLN5 mutant cells.  With this revelation, the 
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Figure 2.3: CLN5 Patient Fibroblasts Display Elevated Basal LC3-II   
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Figure 2.3-CLN5 Patient Fibroblasts Display Elevated Basal LC3-II.  Whole cell lysates of control 

fibroblasts (GM00037 and GM00498) and CLN5 patient fibroblasts (CLN5#1-4) were run on 15% 

SDS-PAGE for western.  LC3-II and CLN5 were detected by rabbit α-LC3-B and rabbit α-CLN5 

antibodies, respectively.  β-actin was used as loading control.  LC3-II levels were normalized to 

β-actin, then normalized again to GM00498 when set at a value of 1.   
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decision was made to abandon the RNAi protocol used in HeLa cells as the patient fibroblast 

system showed more promise and removed the potential for incomplete siRNA knockdown 

affecting experimental results.   

 

CLN5 Patients and Autophagy:  Mitochondrial Uncoupling 

After determining CLN5 deficient patient cells had elevated LC3-II levels, we proceeded 

to look into the cause of this elevation as well as the effect of different forms of autophagy 

induction in this system.  Experiments were run with two patient cell lines at a time along with 

a single control line, GM00498.  This division in patient samples between experiments was 

necessary to accommodate the number of lanes available in our SDS-PAGE system.  

Additionally, control fibroblast line GM00037 growth proved too slow and became a detriment 

in an experimental and time management sense, so it was discarded in favor of GM00498.  

Patient fibroblasts were subjected to mitophagy induction experiments with the use of CCCP 

(Fig. 2.4).  Cells were treated for a period of 2 hours with the drug at a concentration of 10µM 

as well as with and without 50µM CQ for the same period.  Cell death from the use of CCCP at 

this concentration and incubation period was minimal.  Cells were lysed and run on SDS-PAGE, 

then β-actin and LC3-II levels were measured with western blotting.  Raw data was quantified 

by normalizing all LC3-II bands to their respective β-actin loading control.  These data were then 

used to determine the fold change to control cells with no treatment which was set to a value 

of one.  With this method we were able to properly analyze the effects of the drugs on the cells 

and draw definitive conclusions. 
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Patient cell lines CLN5#1, CLN5#2, and CLN5#4 all showed LC3-II elevation across all four 

treatment types (including no treatment) compared to GM00498 levels (Fig. 2.4).  This was 

especially true for CLN5#2 and CLN5#4, which both showed a five-fold increase in the amount 

of LC3-II seen in control cells with a combination of CCCP and CQ treatment.  These two 

patients also showed statistically relevant increases in LC3 compared to control under different 

treatment conditions (all treatments for CLN5#2, combination of CCCP and CQ treatment in 

CLN5#4).  Notably, patient line CLN5#3 again showed similar autophagy activation in 

comparison to GM00498 for all treatment types.  This pattern was not expected in this analysis 

as several times during CCCP treatment experiments CLN5#3 patient cells showed elevated LC3-

II levels like those in the other mutant lines.  The previous result may be due to the age and 

health of the cells used, and will be discussed further in the discussion.    With these results we 

were able to conclude that specific autophagy for mitochondria is increased in patient cells 

CLN5#1, CLN5#2, and CLN5#4 that are deficient for functional CLN5 protein. 

 

 CLN5 Patients and Autophagy:  Protein Aggregation 

One of the three autophagy induction methods used for these assays was the use of the 

proteasome inhibitor bortezomib (BZ).  This drug blocks proteasome function resulting in the 

accumulation of protein aggregates, thus rendering it incapable of being catalytically cleaved by 

the proteasome.  Autophagy is activated to replace lost function of the ubiquitin-proteasome 

mechanism in this scenario.  Cells were treated with 20nM BZ for ~24 hours, with and without 

the addition of 50µM CQ to block lysosomal degradation.  Numerical data was quantified and 
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Figure 2.4: LC3-II Elevation and Mitophagy Studies in CLN5 Patients 
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Figure 2.4-LC3-II Elevation and Mitophagy Studies in CLN5 Patients.  Cells were treated with 10 

µM CCCP and 50 µM CQ for 24 hrs. -/- denotes no autophagy induction drug and no CQ use.  

Whole cell lysates were run on 15% SDS-PAGE for western; LC3-II was detected by using rabbit 

α-LC3-B antibody.  β-actin was used as loading control.  Western blots are representative of 3-5 

experiments.  Graphs denote arbitrary levels of LC3-II normalized to β-actin with overall control 

-/- set to a value of 1.  Student t-test was used to determine significance. * =P < .05, ** =P < .01 
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normalized as described in the mitochondrial uncoupling section. 

 The LC3-II changes in these experiments showed similar patterns to those seen in 

mitochondrial uncoupling experiments which was expected as both are forms of autophagy 

specific for targeting and degrading materials that may damage the cell.  Again, lines CLN5#2 

and CLN5#4 showed significant LC3 increase in CQ and BZ/CQ combination experiments 

respectively, though CLN5#1, #2, and #4 all displayed a noticeable pattern of increase in all 

experiments.  Both patient lines CLN5#1 and CLN5#2 showed a higher level of LC3-II compared 

to GM00498 without any drug treatment, which is similar to what was in Fig. 2.3 in the initial 

patient fibroblast experiment.  The addition of proteasome inhibitor increased LC3-II for all cell 

lines, though the level continued to be moderately more elevated in CLN5#1 and CLN5#2 Fig. 

2.5).  CQ treatment to prevent LC3-II degradation showed the same pattern, as did the same 

treatment with the addition of BZ:  both CLN5 patient lines showed a markedly larger increase 

in LC3-II levels than their control counterpart.  The same experiments on patient CLN#4 showed 

an identical pattern of elevated LC3-II in regards to GM00498 with all treatment combinations.  

Once again, CLN5#3 did not follow this trend as was expected.  CLN5#3 showed lower LC3-II 

levels than control in BZ, CQ, and the combination treatment.  From these experiments we can 

conclude that the deficiency of CLN5 for three of the four mutants in conjunction with 

proteasome inhibition mediated autophagy results in a high level of autophagy activation. 
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Figure 2.5: LC3-II Elevation and Protein Aggregation in CLN5 Patients  
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Figure 2.5-LC3-II Elevation and Protein Aggregation in CLN5 Patients.  Cells were treated with 

20 nM BZ and 50 µM CQ for 24 hrs. -/- denotes no autophagy induction drug and no CQ use.  

Whole cell lysates were run on 15% SDS-PAGE for western; LC3-II was detected by using rabbit 

α-LC3-B antibody.  β-actin was used as loading control.  Western blots are representative of 3 

experiments.  Graphs denote arbitrary levels of LC3-II normalized to β-actin with overall control 

-/- set to a value of 1.  Student t-test was used to determine significance. * =P < .05, ** =P < .01 
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CLN5 Patients and Autophagy:  Starvation 

 The final autophagy induction method used to assay LC3-II amounts in patient 

fibroblasts was starvation.  Cell cultures were washed with PBS for removal of any residual 

growth media and HBSS was added in its place; as with previous treatments, CQ was also used 

to observe the effect starvation had on autophagy activation when degradation was blocked.  

Incubation occurred over a two hour period before cells were harvested for lysis and loading on 

SDS-PAGE.   

 We expected the level of LC3-II to rise with the induction of autophagy through 

starvation as we saw with the use of CCCP and BZ.  However, in this instance the exact opposite 

effect was observed.  All cell types, patient and control, showed a large decrease in the amount 

of LC3-II under solely starvation (starve/-) conditions than samples that were not treated for 

autophagy induction via starvation (Fig. 2.6).  Upon addition of CQ (starve/CQ), LC3-II levels 

were elevated compared to starvation alone, but were much lower than cells treated with CQ 

without starvation (-/CQ).  This phenomenon has been documented in other studies, and may 

be due to the type of cell and/or the length of time cells were starved32,33.  The pattern of 

baseline and autophagy induced LC3-II levels between control and CLN5 patient cells remained 

similar to that seen with the other induction experiments with the exception that patient 

CLN5#3 also showed increased levels.  In these experiments, patients #2 and #4 again showed 

noticeable LC3 increases compared to control with all treatments.  These experiments show 

that, as with previous fibroblast experiments, CLN5 deficiency results in an increase in LC3-II 

levels compared to control in many of the patients. However, overall LC3-II is decreased in all
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Figure 2.6: LC3-II Elevation and Starvation Studies in CLN5 Patients  
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Figure 2.6-LC3-II Elevation and Starvation Studies in CLN5 Patients.  Cells were treated with 1 

mL HBSS and 50 µM CQ for 2 hrs. -/- denotes no autophagy induction drug and no CQ use.  

Whole cell lysates were run on 15% SDS-PAGE for western; LC3-II was detected by using rabbit 

α-LC3-B antibody.  β-actin was used as loading control.  Western blots are representative of 3 

experiments.  Graphs denote arbitrary levels of LC3-II normalized to β-actin with overall control 

-/- set to a value of 1.  Student t-test was used to determine significance. * =P < .05 
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cells with the induction of starvation in comparison to non-induced samples. 
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 Discussion 

 Although the function of the CLN5 protein is still unknown at this point, it is clear from 

our research here that lack of or defect in the protein plays a role in how the cell regulates 

autophagy-based degradation.  Though this study does not directly elucidate the function of 

the protein, it points to a potential place for CLN5 in the autophagy cascade to be examined 

and elaborated upon in future studies.  Of four CLN5 patient fibroblasts, only patient #2 has 

detectable level of CLN5.  Mutation data of CLN5 patient #2 suggests a point mutation in the 

signal peptide of the protein results in the expression of dysfunctional CLN5 since the other 

allele is an exon deletion.   With this knowledge, as well as that of the specific mutations for 

each patient, the most likely scenario is that the patient CLN5 proteins are unstable and thus 

degraded.  CLN5 patient #2 cells, however, do produce mature full length CLN5 (Fig 2.3).  We 

are currently investigating whether this full length CLN5 has wild-type CLN5 function.   CLN5 

patient #2 is the only patient whose CLN5 mutations include something other than an exon 

deletion or truncation.  The CLN5 antibody we used for these is rabbit monoclonal antibody 

against the middle portion of CLN5, based on the information provided by Abcam.  Thus, the 

conclusions herein are made with the knowledge that even with the use of our antibody 

specific for endogenous CLN5, some truncated non-functional forms of the protein may be 

present.   

 Our initial experiments with autophagy induction in CLN5 silenced HeLa cells showed 

our ability to induce autophagy and satisfactorily knockdown CLN5.  They also showed that the 

level of LC3-II increase is much more marked in CLN5 silenced cells that have been treated for 
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autophagy induction than in those only silenced for the protein (Figure 2.1 C).  Thus, although 

the lack of the protein may itself increase the level of autophagy activation, the effect is far 

more prominent when autophagy is already occurring at high levels.  Whatever its function 

within autophagy may be, it seems as though its presence is most important during periods of 

high autophagy activity due to the difference in LC3-II between silenced cells and silenced, 

autophagy treated cells.   

 As discussed earlier, HeLa rescue experiments were determined to be inconclusive due 

to inconsistency between experiments.  Though promising at times with decreased amounts of 

LC3-II with CLN5 overexpression, some unknown form of experimental variation caused many 

experiments to show opposing results.  This may also be due to HeLa culture conditions or the 

passage number, as it was later seen in human skin fibroblasts that the level of LC3-II expressed 

and the health of the cells declined after many passages.  After troubleshooting in many areas 

including cell culture treatment, storage, antibody use, and image development it was 

determined that the source of inconsistency was in siRNA knockdown of CLN5.  Much more 

time, effort, and research will need to go into these rescue methods to make them viable and 

capable of producing solid conclusions.   

In the CLN5 patient fibroblasts, we saw an elevation of LC3-II compared to the control 

skin fibroblasts which confirmed the RNAi in HeLa cell studies, supporting our hypothesis that 

the lack of CLN5 causes this increase.  The experiments that followed determined how different 

forms of autophagy, whether specific or general, were affected by the absence of CLN5. The 

conclusion we were able to make from these experiments was that the elevation in LC3-II found 
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in CLN5 patients was due to an increase in its formation and not a decrease in its degradation.  

If decreased degradation had been the cause, treatment with CQ would have resulted in similar 

levels of undigested LC3-II as compared to no CQ treatment in CLN5 deficient cells. 

For both of the specific forms of artificially induced autophagy (protein aggregation and 

mitophagy) similar patterns for most patient cell lines compared to control were observed.  All 

patients except CLN5#3 showed increased amounts of LC3-II across all treatment types though 

much more noticeably when lysosome activity was blocked during induced autophagy 

activation.  This reinforces our previous belief that whatever the function of CLN5 with regards 

to autophagy may be, it is more crucial in its regulation during times of increased autophagy 

activity than when the cell is under normal conditions.  As for starvation, the general form of 

induced autophagy, all cell types including control showed reduced LC3-II levels when depleted 

of nutrients.  This decrease may be due to enhanced lysosomal activity during starvation, the 

amount of time cells were starved, how these specific cells react to starvation, or possibly the 

method of starvation induction34.  Some studies have shown that different cell types show LC3-

II buildup at different rates when autophagy is induced, and also that LC3-II decreases 

exponentially after different periods of time depending on cell type33.  In this case, more 

troubleshooting would need to be undertaken to determine whether more or less time is 

needed in starvation experiments to accurately capture the elevated LC3-II levels indicating 

autophagy activation.  The method of starvation might also need to be changed to see the 

expected increase of LC3-II during starvation that is seen with other autophagy induction 

experiments.  Though HBSS is used in several studies to induce starvation, this is not the true 

amino acid starvation that is known to activate autophagy.  In these studies using balanced salt 
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solution, such as HBSS or EBSS, lower levels of LC3-II have been observed35.  Without CQ 

blocking lysosome function, the reduced level of LC3-II suggests enhanced lysosome activity 

during induction of autophagy35. Our experiments deprive cells of amino acids and all other 

cellular nutrients excluding the basic salts found in HBSS, so another media concoction would 

be needed containing all normal cell culture media nutrients excluding amino acids and 

substrates that can be degraded to produce them.  However, the decrease in LC3-II expression 

may not necessarily indicate a decrease in autophagy activity.  Using these fibroblasts along 

with HBSS as a starvation method, another explanation might be a unique way in which these 

cells metabolize LC3-II under these conditions.  With mitophagy and protein aggregation 

induced autophagy the cell is targeting a specific set of dysfunctional organelles or proteins to 

prevent them from causing further damage to the cell, processes that requires a high level of 

autophagy to remove the deleterious components as quickly as possible.  Starvation, however, 

requires that the cell induce enough autophagy-based degradation for the purpose of 

replenishing necessary nutrients to allow the cell to survive; in essence, degrade enough 

cellular components to survive, but not thrive, until conditions approve.  At the same time, the 

cell would want to turn over these components into usable cellular building blocks as quickly as 

possible to keep the cell alive.  These factors may account for the diminished LC3-II seen with 

starvation treatment, including those treatments with the addition of CQ which shows reduced 

levels of the protein.   

 Across the many autophagy induction experiments using patient fibroblasts, only 

patients CLN5#2 and CLN5#4 showed significant change of autophagy activation in a few 

experiment types.  That said, during these experiments and previous ones all patient cells 
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showed noticeable patterns of LC3-II elevation compared to control fibroblasts with and 

without CQ use.  Some of the experiments seen in these figures were also very close (within 

5%) of statistical relevance, so an increase in the number of repeats could potentially prove 

these to be relevant as several of these figures were produced with as few as three repeats (up 

to five).  Again, the pattern of LC3-II increase in CLN5 deficient cells was very strong and 

noticeable from experiment to experiment.  Even in the case of CLN5#3, whose low levels of 

LC3-II during the last several weeks of autophagy induction experiments could be explained by 

cells that had been passaged too far.  Future experiments would entail using fibroblasts at 

identical passages once thawed, and discarding them all together before they reached an 

unhealthy state.   

 The phenomenon of lowered LC3-II in starvation experiments and in CLN5#3 (as 

opposed to earlier experiments) could also be circumvented all together with the use of 

additional autophagy activation markers including Beclin1 and p62.  The use of these proteins 

in the assays used here would be beneficial in confirming the levels of autophagy in each of 

these experiments.  Beclin1 is a protein that, as seen in the literature review, interacts with 

class III PI3K and is important in the localization of autophagosome-related proteins36,37.  Up-

regulation of Beclin1 in this complex results in the activation of autophagy, so its levels directly 

correlate with the level of autophagy.  p62/SQSTM (sequestosome 1) is another protein 

complex that is often used to monitor autophagy, and may also improve our future studies.  

This complex interacts with protein aggregates that are eventually targeted to the 

autolysosome, so it too has a direct relationship with autophagy activation38,39.  This method 
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would be especially important and relevant to further BZ induced autophagy experiments due 

to the specificity of the complex to protein aggregates.   

Though most of the CLN5 patients show similarities in terms of displaying increased 

levels of LC3-II, the levels of that increase vary between mutant types.  This may be accounted 

for by unknown metabolic discrepancies specific to certain mutants besides the absence of 

CLN5.  Additionally, each patient possesses different CLN5 mutations, and as discussed before 

the complete ablation of CLN5 protein in fibroblasts has only been confirmed with antibody 

specific for endogenous CLN5.  This may not account for possible truncated CLN5 protein in 

certain mutants than can result in semi-functional CLN5 that would restore some function to 

the protein’s unknown role in autophagy regulation.    

As of this point, much of the data we have is preliminary and further work is required to 

support some of the conclusions made and hypotheses postulated herein.  This includes 

analyses into specific autophagy mechanism types and the status of potential truncated CLN5 

protein in patient cells.  Additionally, more work is required in the area of CLN5 rescue in 

patient fibroblasts to confirm replacement of lost CLN5 function as to date extensive 

troubleshooting in fibroblast transfection has been unsuccessful.  Discussion has been held in 

regards to potentially using a retroviral transfection system.  The future of this project is 

ultimately geared toward elucidating the function of CLN5 in the autophagy cascade.  This 

study, however, has shown that the CLN5 protein has some role in the regulation of autophagy, 

and that its role is not involved in the degradation of lysosomal targets as our CQ experiments 

indicated the excess LC3-II was due to increased expression of the protein.  We also showed 



71 

 

that the expression of LC3-II was dependent on the type of autophagy induced and differed 

between patients most likely due to difference in mutation.  Although the function of CLN5 is 

still unknown, this study provides a mechanism to further explore to elucidate the protein’s 

function. 
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