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Increasing Genomic-Enabled Prediction Accuracy  
by Modeling Genotype ´ Environment Interactions  
in Kansas Wheat

Diego Jarquín, Cristiano Lemes da Silva, R. Chris Gaynor, Jesse Poland,  
Allan Fritz, Reka Howard, Sarah Battenfield,* and Jose Crossa*

Abstract
Wheat (Triticum aestivum L.) breeding programs test experimental 
lines in multiple locations over multiple years to get an accurate 
assessment of grain yield and yield stability. Selections in early 
generations of the breeding pipeline are based on information 
from only one or few locations and thus materials are advanced 
with little knowledge of the genotype × environment interaction 
(G × E) effects. Later, large trials are conducted in several loca-
tions to assess the performance of more advanced lines across 
environments. Genomic selection (GS) models that include G × 
E covariates allow us to borrow information not only from related 
materials, but also from historical and correlated environments 
to better predict performance within and across specific environ-
ments. We used reaction norm models with several cross-valida-
tion schemes to demonstrate the increased breeding efficiency 
of Kansas State University’s hard red winter wheat breeding pro-
gram. The GS reaction norm models line effect (L) + environment 
effect (E), L + E + genotype environment (G), and L + E + G + (G 
× E) effects) showed high accuracy values (>0.4) when predict-
ing the yield performance in untested environments, sites or both. 
The GS model L + E + G + (G × E) presented the highest predic-
tion ability (r = 0.54) when predicting yield in incomplete field 
trials for locations with a moderate number of lines. The difficulty 
of predicting future years (forward prediction) is indicated by the 
relatively low accuracy (r = 0.171) seen even when environments 
with 300+ lines were included.

Bread wheat, the predominant field crop in Kansas, 
represents a farm gate value of approximately $2 bil-

lion dollars per year (USDA-National Agricultural Sta-
tistical Services, 2014). However, production in Kansas is 
highly impacted by climatic factors, especially extreme 
temperature and precipitation fluctuations, which result 
in highly variable yield and production from year to year 
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Core Ideas

•	 Incorporating environmental covariates increases 
genomic selection accuracy.

•	 G × E models can impute known lines into known 
environments with good accuracy.

•	 Breeding programs may exploit genomic selection 
cross-validation schemes in trial designs.
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(Holman et al., 2011). The climatic stresses inflicted on 
the wheat crop may also promote various biotic stressors 
in different regions over different years (e.g., rust diseases, 
Fusarium head blight, and increased aphid pressure 
favoring the barley yellow dwarf virus). Thus environ-
ment and G × E interactions strongly impact realized 
yield in this region annually. Consequently, all these envi-
ronmental influences significantly affect wheat breeding 
programs’ selection for yield improvement per se.

In a breeding program, experimental lines must be 
tested over several years and locations to determine their 
expected yield performance across a wide area of adapta-
tion (multienvironment trials). The limited amount of 
seed and the large number of lines to be tested in early 
yield trials, along with the high cost of multienvironment 
trials, lead to the selection of candidate lines on the basis 
of unbalanced or augmented experimental designs in 
different environments (site–year combinations). Thus 
candidate lines that are promoted from early generation 
testing on the basis of single location’s or year’s evalua-
tion may not be stable in many environments and many 
materials that are discarded could have superior perfor-
mance in other niche environments. Breeding programs 
have long been interested in increasing the accuracy of 
selection in early generation trials in which many entries 
have limited environmental representation of the full 
range of target environments.

Genomic selection was proposed as a way to use 
information from other related materials to predict 
the performance of individuals that have not yet been 
observed, saving time, land, or costs compared with 
phenotyping. It was originally suggested that as genomic 
marker density increased, it would be possible to esti-
mate the variance attributed to all loci and predict line 
performance, as was first demonstrated by Meuwissen 
et al. (2001). Rapid developments in low-cost, dense 
genome-wide genotyping (Poland and Rife, 2012) have 
made it more feasible to use prediction models to reduce 
the amount of materials screened by breeding programs. 
Genomic selection uses genome-wide marker data and 
phenotypic information to estimate genetic breeding 
values from which superior candidates can be selected on 
the exclusive basis of genotypic data before phenotyping. 
To implement GS, two sets of lines are required; the first 
is a set of materials that have been genotyped and phe-
notyped, referred to as the training population (TRN). 
The TRN is used to calibrate the GS models and predict 
the genetic breeding values or phenotypic values of 
nonphenotyped candidates (Bassi et al., 2016). A second 
set of individuals made up of materials that have been 
genotyped but not phenotyped is the testing population 
(TST). The TRN and TST can be updated every year as 
new materials are genotyped and phenotyped by the 
breeding program with the aim of increasing the accu-
racy of its predictions over time.

Genomic selection models involving genetic markers 
or pedigree relationships have been used by several breed-
ing programs for multiple traits in wheat (de los Campos 

et al., 2009, 2010; Crossa et al., 2010, 2011; Battenfield et 
al., 2016). However, fewer studies have focused on imple-
menting GS including G × E and the unbalanced designs 
used in breeding programs (Burgueño et al., 2012; Lado et 
al., 2016). Therefore, identifying effective GS models that 
include G × E and other covariates (e.g., environmental 
covariables) could optimize resource allocation and boost 
genetic yield gains without significantly increasing costs.

Building on genetic-based models, additional models 
have been tested that include information borrowed from 
environments of interest to increase the models’ predic-
tive ability. Examples of these more complex GS models 
include models that use covariates from high-throughput 
phenotyping (Rutkoski et al., 2016) and environmental 
relationships (Jarquín et al., 2014; Heslot et al., 2014; Lado 
et al., 2016), and also incorporate pedigree × environment 
interactions (Pérez-Rodríguez et al., 2015; Velu et al., 2016) 
or crop models (Technow et al., 2016) to better predict line 
performance within specific environments. These studies 
indicated substantial increases in genomic prediction accu-
racy when the model includes G × E with the addition of 
environmental information as well as pedigree covariates.

Cross-validation schemes are used in genomic pre-
diction studies to estimate accuracy when predicting 
different traits and environments (Burgueño et al., 2012; 
de los Campos et al., 2009, 2010; Crossa et al., 2010, 2011), 
and to mimic real situations breeders face when they 
have to predict lines in environments, sites, and years 
that have not been observed in the field. Most studies 
that incorporate G × E into genomic prediction use two 
basic random cross-validation schemes (Burgueño et al., 
2012) to predict: (i) the performance of lines that have 
not been evaluated in any of the observed environments 
(CV1) and (ii) the performance of lines that have been 
evaluated in some environments but not in others (CV2). 
Another prediction problem that does not involve ran-
dom cross-validation is predicting an environment (i.e., a 
site–year combination) that was not included in the usual 
set of testing environments in the evaluation system 
(leave-one-environment-out). In two recent studies, Jar-
quin et al. (2016) and Saint-Pierre et al. (2016) discussed 
the prediction of new sites not previously included in 
the usual testing sites (i.e., prediction of untested sites). 
However, other cross-validation schemes might be use-
ful for testing other prediction problems (when data are 
available). For example, a prediction problem called for-
ward prediction uses previous years to predict the next 
year. Other prediction problems of interest might be the 
prediction of sites that were included in different years or 
even cases where the prediction included sites and lines 
that were never used in the evaluation system.

In this study, we evalauted the genomic prediction 
accuracy for the grain yield of wheat lines that have been 
evaluated in the Kansas State University (KSU) hard red 
winter wheat breeding program for different sites and 
years. The main objective was to obtain prediction accu-
racy of cross-validation schemes that would answer ques-
tions related to several genomic prediction problems. We 
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used different sizes of the TRN sets for examining the 
use of resources more efficiently in a highly unbalanced 
and heterogeneous breeding program for predicting crop 
performance on a trial (environments) basis. We studied 
several genomic prediction problems such as genomic 
prediction of sites, years, and site–year combinations 
(environments) (leave-one- out); forward prediction 
(future years); prediction of newly developed lines not 
evaluated in any environment; and prediction of lines 
that were tested in some environments but not in oth-
ers. We provided results for these prediction problems 
by using four cross-validation schemes together with 
six prediction models. Some of these models use only 
line information and environment information, others 
include genomic information, and still others incorpo-
rate G × E interaction effects (where E denotes either 
“environments” or “sites,” depending on the model). 
The cross-validation methods consisted of random 
cross-validations (CV1 and CV2, respectively), as well as 
two more cases where no information on the environ-
ments or sites to be predicted appears in the TRN (CV0 
included the prediction of tested lines in untested sites or 
environemnts by leaving one environment out or leaving 
one site out) and another case where untested lines were 
predicted in untested environments and or sites (CV00).

We evaluated six different prediction models [Model 
1 (M1)–Model 6 (M6)] using the four different cross-
validations schemes in an extensive dataset consisting 
of 1378 breeding lines evaluated from 2009 to 2014 at 31 
different environments (site–year combinations) in the 
state of Kansas that are commonly used in the standard 
multienvironment trials of KSU’s hard red winter wheat 
breeding program.

Materials and Methods

Genetic Materials
Yield data on 1378 wheat breeding lines were obtained 
from Kansas State University’s Manhattan breeding pro-
gram for different locations in advanced stages of yield 
testing from 2009 to 2014. These lines are predominantly 
classified as hard red winter bread wheat and are adapted 
to central and eastern Kansas. Breeding materials repre-
sented preliminary, advanced, and intrastate yield testing, 
ranging from F5:7 to F5:10, with a few released cultivars 
from the region, serving as check varieties. The materi-
als were tested in an unbalanced manner, as the data 
originated from historical breeding selection trials, where 
only best materials would be advanced to further trials. 
Thus a limited number of selected individuals were tested 
across environments (site–year combination) in this data-
set. Table 1 shows a total of 31 environments, with each 
of them including a different number of lines evaluated 
(sample size). For example, in 26 environments, more than 
100 lines were tested (100+); in 17 environments, more 
than 200 lines were tested (200+); and in 14 environments, 
more than 300 lines were included (300+). The results are 

also presented according to the number of lines within the 
environment (100, 200, or 300+, respectively).

Check varieties are commonly used to allow for com-
parisons between or among individuals in different envi-
ronments in plant breeding. Therefore, most environments 
share some entries in common across years, and some 
environments may share many more entries because of the 
breeding pipeline. Table 2 (31 × 31) shows the number of 
lines in each of the 31 environments (site–year combina-
tions) in the diagonal, and the off-diagonals demonstrate 
commonalities between environments. The cells of the 
upper off-diagonal (i.e., the section above the diagonal) 
has the number of lines in common between the two envi-
ronments and the cells of the bottom off-diagonal has the 
number of lines not in shared between the two environ-
ments. Supplemental Fig. S1 depicts lines (black vertical 
lines) for the particular line × environment combinations 
that were observed in each of the environments.

Yield Trials and Experimental Design
For the advanced materials, linear mixed models were 
used to analyze breeding trials including the design effect, 
replicate, and subblock within replicated as random effect 
and the effect of the lines as random (nongenetic BLUPs), 
assuming that the lines are uncorrelated. Breeding yield 
trial data were analyzed in varying designs on the basis of 
the amount of seed and various objectives based on breed-
ing stage. Preliminary yield trials (F5:7) were conducted 
using a modification of augmented design (Federer and 
Raghavarao, 1975) with one replicate of each experimen-
tal line per location. In this design, whole-plot checks are 
planted across whole rows and columns in the field, and 
sub-block checks are randomly assigned within blocks. 
The individual yield is then adjusted using a row–column 
design (Lin and Poushinsky, 1986). Preliminary yield tri-
als were also conducted at seven locations across Kansas. 
Materials advanced from preliminary trials were pro-
moted to advanced yield trials (F5:8) using two replicated 
α-lattice designs (Patterson and Williams, 1976). Finally, 
in the most advanced stage of testing, lines in the the 
Kansas intrastate nursery (F5:9 or beyond) were planted 
in three replicated, randomized complete block designs 
(Cochran and Cox, 1957) at approximately 17 locations per 
year in Kansas (Table 1). In all these generations, yield was 
measured in plots measuring 1.5 by 4.5 m. All individual 
yield trials were analyzed with Agrobase Generation 
II software [Agrobase Generation II 2014, Agronomix, 
Winnipeg, MB, Canada; https://www.agronomix.com/ 
(accessed 8 May 2017)] according to their respective exper-
imental designs, resulting in site–year BLUPs for lines 
tested within each site × trial × year combination.

DNA Extraction and Genotyping
Genotyping of all advanced materials in the KSU wheat 
breeding program began in 2011. Initially, it was done ret-
rospectively using historical stored seed that was also gen-
otyped from yield trials as long ago as 2005. Genotyping 
of the preliminary yield trial materials was also conducted 
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annually at the line derivation stage (F5:6) from that point 
forward. DNA was extracted from bulked leaf tissue 
using the BioSprint 96 DNA Plant Kit (Qiagen) with the 
BioSprint 96 Workstation (Qiagen). DNA was quantified 
and normalized, digested with two restriction enzymes 
(PstI and MspI), ligated with barcoded adapters, and then 
sequenced following the genotyping-by-sequencing two-
enzyme protocol described in Poland et al. (2012).

Sequence reads were analyzed using the TASSEL 
version 4 de novo pipeline to identify single nucleotide 
polymorphisms (Bradbury et al., 2007). Single nucleo-
tide polymorphisms were converted to numeric allele 
classes (1, 0, -1 for homozygous major, heterozygous, and 
homozygous minor alleles, respectively) using the R pack-
age ‘GSwGBS’ (Gaynor, 2015). Markers were filtered to 
exclude those with a minor allele frequency smaller than 
0.01 and more than 20% missing values across genotypes. 
In addition, lines with more than 50% missing molecular 
marker values were discarded. Mean marker imputation 
was conducted using the R package ‘rrBLUP’ (Endelman, 

2011), where missing markers were simply imputed as the 
mean value among all lines for that marker.

Statistical Yield Analysis
Best linear unbiased predictors  were obtained via Agro-
base Generation II (Agronomix) for each site × year com-
bination to account for the experimental design effects. 
Environments were filtered for low numbers of entries 
and excessive coefficient of variation values (CV > 12%) 
before assessing GS predictions. Yield BLUPs for each 
environment were used in the GS models.

Statistical Prediction Models
A series of models was used in this study for performing 
predictions: two models that included only phenotypic 
information on the training sets, two GS models that 
included main effects of the markers, and two models 
that added the G × E component using the reaction norm 
model as described by Jarquín et al. (2014). These models 
used the random effect approach for all components.

Table 1. Distribution, sample size, means, and yield data of 1378 wheat breeding lines from the Kansas State 
University Manhattan breeding program at the advanced stages of yield testing, 2009–2014.

Site Harvest year
Environment  

code
Environment 

number
Sample size  

(n lines tested) Mean SD Min Max

 —————————————— t ha–1 —————————————— 
Belleville 2009 Belleville09 1 56 3.29 0.36 2.39 4.14
Gypsum 2009 Gypsum09 2 55 4.36 0.36 3.59 5.07
Hutchinson 2009 Hutchinson09 3 56 3.49 0.46 1.98 4.26
Barber 2010 Barber10 4 179 2.38 0.41 1.42 3.62
Belleville 2010 Belleville10 5 179 2.73 0.58 0.90 4.17
Gypsum 2010 Gypsum10 6 179 2.80 0.43 0.88 4.21
Lane 2010 Lane10 7 179 3.80 0.57 2.10 5.54
Summer 2010 Sumner10 8 179 3.00 0.36 1.76 3.87
Gypsum 2011 Gypsum11 9 125 2.82 0.43 1.18 3.74
Hutchinson 2011 Hutchinson11 10 125 2.04 0.54 0.66 3.35
Summer 2011 Sumner11 11 104 1.67 0.32 0.83 2.63
Belleville 2012 Belleville12 12 340 3.42 0.64 1.81 4.98
Gypsum 2012 Gypsum12 13 350 2.52 0.41 1.34 3.68
Hutchinson 2012 Hutchinson12 14 349 2.87 0.61 0.03 4.43
Manhattan 2012 Manhattan12 15 349 3.41 0.48 1.69 4.78
McPherson 2012 McPherson12 16 350 3.08 0.55 0.55 4.31
Barber 2013 Barber13 17 60 2.26 0.19 1.84 2.70
Belleville 2013 Belleville13 18 287 2.74 0.41 1.76 3.96
Ellsworth 2013 Ellsworth13 19 60 2.65 0.31 1.84 3.37
Gypsum 2013 Gypsum13 20 442 3.49 0.60 1.62 5.57
Hutchinson 2013 Hutchinson13 21 441 3.29 0.66 1.55 5.26
Lane 2013 Lane13 22 157 1.75 0.40 0.65 2.79
Manhattan 2013 Manhattan13 23 442 3.20 0.34 1.91 4.28
McPherson 2013 McPherson13 24 442 2.96 0.47 1.51 4.26
Summer 2013 Sumner13 25 442 2.24 0.47 0.03 3.41
Belleville 2014 Belleville14 26 377 1.48 0.35 0.09 2.41
Lane 2014 Lane14 27 288 2.37 0.94 0.00 4.53
Gypsum 2014 Gypsum14 28 256 2.52 0.55 0.66 3.99
Manhattan 2014 Manhattan14 29 378 3.77 0.43 2.37 4.88
McPherson 2014 McPherson14 30 378 1.78 0.41 0.33 3.02
Summer 2014 Sumner14 31 378 1.95 0.35 0.77 2.68
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Baseline Model
The response of the jth genotype in the ith environment 
( )ijy  could be described as =m+ + + +ij i j ij ijy E L EL e , 
where m  is the overall mean;  iE (i = 1,…,I) denotes the 
random effect of the ith environment and assuming 

( )s2~ 0,
iid

i EE N  with N(.,.) denoting a normal density, 
where iid stands for independent and identically distrib-
uted observations, and s2

E  represents the variance com-
ponent of the environments; jL  represents the random 

effect of the jth line (j = 1,…, J) such that ( )s2~ 0, ,
iid

j LL N  
where s2

L  is the variance of the line; ijEL  describes the 
random interaction effect between the ith environment 

and the jth line with ( )s2~ 0,
iid

ij ELEL N ; and s2  EL as the line × 
environment interaction variance; ije  is the random error 

term where ( )s2~ 0,
iid

ij ee N  with s2
e  as the residual vari-

ance. The main limitation of this model is that it does not 
allow one to borrow information between lines because 
assumptions of being independent and identically dis-
tributed were made for these. All the implemented mod-
els can be derived from model (1) either by subtracting 
terms and/or adding further assumptions.

Environment + Line Model (Model 1)
This model was obtained from the baseline model after 
retaining the first three components plus the error term 
and their corresponding assumptions of these random 
effects as

=m+ + +ij i j ijy E L e  [1] 

with environments as the site–year combinations as 
described before. A graphic representation of this compo-
nent can be found in Fig. 1A, where the environments are 
considered to be independent and identically distributed.

Site + Line Model (Model 2)
In Model 1 (M1), environments were considered to be 
site–year combinations; however, since most of the sites 
were observed in several years, we attempted to recover 
information from sites in different years by considering 
the site effect instead the environment effect. Under this 
consideration, the year effect was treated as negligible 
to allow borrowing information between environments 
(site–year combinations) coming from same site but 
observed in different years (Fig. 1B). Thus the term kjy  
denotes the response of the jth line observed in the kth site 
( = ¼, 1,  2,  ,  kS k K ) and can be described as:

=m+ + +kj k j kjy S L e  [2]

with ( )s2~ 0,  
iid

k SS N and s2
S  being the variance of sites.

Environment + Genomic Main Effects Model  
(Model 3)
Markers are introduced in M1 by a genomic representa-
tion of the random effect of line ( jL ) with its genomic 

surrogate, such that 
=

=å
1

p

j jm m
m

g x b , a linear combination 

between p markers and their corresponding marker 
effects; marker values were coded as before. Marker 
effects are considered to be random effects, such that 

( )s2~ 0,
iid

m bb N  for (m = 1,…,p) and s2
b  is the marker effect 

variance. Using the properties of the multivariate normal 
distribution, the vector ( )= ¼1g , ,g 'Jg  containing the 
genomic values of all the lines follows a multivariate nor-
mal density with a zero mean and a covariance matrix 

( )= s2
gCov g G , where =

XX`
p

G  is the genomic relationship 

matrix (VanRaden, 2008), X is the centered and stan-
dardized genotype matrix, and s2

g  is the genomic vari-
ance equivalent to p times the variance of the markers 
( )s = ´s2 2i.e.,   g bp .

Therefore, after adding g ,j  M1 becomes Model 3 
(M3), which includes environment and line effects plus 
genomic main effects (this last component is also known 
as the GBLUP model) and can be expressed as:

=m+ + + +ij i j j ijy E L g e  [3]

where { } ( )= s2g ~ 0,j N gg G  and the other terms are 
as defined previously. In this case, the line component 
remains in the model to account for imperfect informa-
tion and model misspecification caused by imperfect 
linkage disequilibrium.

Site + Genomic Main Effects Model (Model 4)
This is similar to M3 but the response variable and 
the environmental component are replaced with the 
response and the site random effects terms shown in 
Model 2 (M2). Thus Model 4 (M4) is:

=m+ + + +kj k j j kjy S L g e  [4]

Interaction Model for Environments (Model 5)
This random effects model (Model 5, M5) accounts not 
only for the genomic main effects, as was the case in 
M3, but also attempts to include G × E interactions by 
including covariance structures, as shown by Jarquín et 
al. (2014). In this case, ,ijEL  the interaction component 
of the baseline model, can be replaced by ,ijEg  a compo-
nent that conceptually represents the interaction between 
each molecular marker and each environment (further 
details given below). Under these assumptions, M3 can 
be extended as follows:
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=m+ + + + +ij i j j ij ijy E L g Eg e  [5]

with { } ( ) ( )( )= ° s2~ 0,ijEg N Z Z Z' '
g g E E EgEg Z G , where Z g  

and ZE   are the incidence matrices for lines and environ-
ments, respectively; s2

Eg  is the variance component of the 
ijEg  interaction component; and   stands for the Had-

amard or Schur product between two matrices. It denotes 
the element-to-element product between two matrices.

Interaction Model for Sites (Model 6)
Like the last model, Model 6 (M6) replaces the interac-
tions term between each marker and each environment 
by the interactions between each marker and each site. 
Thus M6 is:

=m+ + + + +kj k j j kj kjy S L g Sg e  [6]

where { } ( ) ( )( )2~ 0,kjSg N= ° sZ Z Z Z' '
g g S S SgSg G , ZS  is the 

incidence matrix for sites, s2
Sg  is the variance component 

of the kjSg  interaction component, and the other terms 
are as previously defined.

Description of Prediction Problems Using Various 
Cross-Validation Strategies
Model predictive ability was assessed on a trial basis 
(Jarquin et al., 2016). Predictive ability was computed as 
the correlation between observed and predicted values 
within the same environment (location–year), no mat-
ter how the TST sets were comprised under the different 
cross-validation schemes. The main objective was to 
study prediction problems of interest to the KSU hard 

red winter wheat breeding program. The main prediction 
problems consisted of studying the prediction accuracy 
of environments, years, and sites, as well as the predic-
tion accuracy of newly developed lines (i.e., lines that 
were never evaluated in any environment, CV1) and of 
lines that were evaluated in some environments but not 
in others (CV2). Prediction of environments, years, and 
sites was achieved by using the cross-validations CV0, 
which consisted of predicting environments that were 
never previously observed, and CV00, which predicted 
both lines and environments never previously tested.

Table 3 shows the eight strategies used for specific 
combinations of the four cross-validation schemes (CV2, 
CV1, CV0, and CV00) and two levels of genotypes and 
environments (tested or untested) for genotypes and 
environments, as well as four problems to be solved: pre-
diction of incomplete field trials, prediction of ‘newly’ 

Fig. 1. Graphic representation of experimental trials at three sites (S) tested in two different years (Y) under different assumptions about 
the year effect. (A) Site–year combinations (S1.Y1, S1.Y2, S1.Y3, S2.Y2, S2.Y3, S2.Y3) are treated as independent outcomes for the 
same site. (B) When years present a null effect over certain sites, the environmental conditions observed across years could be consid-
ered as equivalent, allowing information to be borrowed within sites predicting, for example, environment E3 (blue shading).

Table 3. Strategies (prediction problem by cross-vali-
dation scheme combinations) used for mimicking real 
scenarios that wheat breeders may face in the field. 

Prediction problem

Cross-validation schemes

CV2† CV1 CV0 CV00

Prediction of lines in incomplete trials (sparse testing) 1 – – –
Pr�edicting new lines (not being observed in any 

environment yet)
– 2 – –

Predicting lines in untested environments – – 3 4
Predicting lines in untested sites – – 5 6
Predicting lines in untested years – – 7 8

† CV2, predicting tested lines in tested environments; CV1, predicting untested lines in tested environ-
ments; CV0, predicting tested lines in untested environments; CV00, predicting untested lines in 
untested environments.
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developed (untested) lines, prediction of unobserved 
sites, and prediction of unobserved years. CV2 is used 
to solve the problem of predicting a certain portion of 
tested genotypes in a certain portion of tested environ-
ments; CV1 refers to cases where certain individuals were 
not observed in any tested environment, whereas other 
lines were tested in these environments; CV0 refers to 
cases where some tested genotypes that were observed in 
some tested environments are predicted in environments 
that were not previously used (untested environments); 
and CV00 refers to cases where unobserved individuals 
(untested genotypes) are predicted in environments not 
previously used (untested environments).

Assessing Prediction Accuracy for Each  
Cross-Validation Strategy
Four basic cross-validation schemes were implemented to 
mimic real application problems that breeders may face in 
the field: CV1, CV2, CV0, and CV00 (Fig. 2A–D). Random 
fivefold partitions of the entire population were used for 
CV1 and CV2 and prediction accuracy was the average 
correlation between predicted and observed values of the 
lines within the same environment for 50 random fivefold 
partitions (see the detailed description below). For CV0 
and CV00, the correlations between observed and pre-
dicted values are computed for (i) leave-one-environment-
out, (ii) leave-one-site-out, and for (iii) forward prediction 
of one future year using all the previous years. In all cases, 
correlations were computed only between predicted and 
observed values within the same environment.

The random CV2 strategy mimics the problem of 
predicting incomplete field trials where some experimen-
tal lines have been evaluated in some environments but 
not in others. For example, Fig. 2A shows that the aim is 
to predict those lines that appear in gray color in the top 
left panel, having observed the performance of these lines 
in other environments (bottom left panel), other lines 
in these same environments (top right panel), and other 
lines in other environments (bottom right panel). In this 
case, breeders may wish to estimate the performance of 
the unobserved lines in a target environment using phe-
notypic information on these lines and others observed in 
other environments together with information on the per-
formance of other lines tested in the current environment. 
Knowing how the target environment affected other lines 
may help the prediction process, since the unobserved 
genotypes could be affected in a similar way. Site–year 
yield BLUPs were assigned randomly to fivefold partitions 
and each partition was predicted using the remaining four 
in a proportion of 20:80 (20% of the phenotypic records 
were predicted using the remaining 80%). This process was 
repeated 50 times, then the correlations between the pre-
dicted and observed values within the same environment 
were computed for all environments; means (and SD) 
across replicates for each environment were computed.

As previously described, the random CV1 scheme 
mimicks the problem of predicting the crop perfor-
mance of new experimental lines that have not yet been 

observed in any of the tested environments. Fig. 2B 
depicts the prediction of the lines in gray color in those 
enviroments in the top left panel; no information from 
these lines was observed in the other environments, since 
these were masked as missing (bottom left panel). The 
genetic similarities between lines in TRN and TST play 
a major role in the models’ predictive ability. Lines were 
assigned randomly to fivefold partitions (with 20% of the 
lines being predicted using the phenotypic information 
of the remaining 80% of the genotypes) such that all the 
phenotypes from the same line appeared in same fold. 
Each partition was predicted using the remaining four, 
one at a time. The correlations between predicted and 
observed values within same environment were com-
puted for all 50 fivefold random partitions.

The CV0 strategy aims to predict the crop per-
formance of th experimental lines in new (untested) 
environments. Fig. 2C shows that the aim is to predict 
those lines in gray color observed in those environments 
grouped in the top left panel, although there are no data 
from any line tested before in these same environments 
(top right panel). This method is used when there are no 
phenotypic records of any line being observed in the tar-
get environment (Jarquin et al., 2016; Saint-Pierre et al., 
2016). The success of this strategy’s predictive ability will 
depend partly on whether the environmental conditions 
in the unobserved environment fall within the range of 
conditions in the environments making up TST as well as 
the performance and number of phenotypic records from 
the same genotypes in the TST observed in other envi-
ronments. Here, the predictions are made by leaving one 
environment out and using the remaining environments 
as the TST. The correlations between the predicted and 
observed values for each environment were then com-
puted. The procedure does not involve random partition-
ing and thus it was implemented only once.

The CV00 strategy is similar to the previous scheme; 
however, the lines to be predicted were never observed 
before (lines are untested). This is shown in Fig. 2D with 
the same objective as before: to predict those lines in 
gray color observed in the environments that appear in 
the top left panel where the only source of information 
is a different set of lines observed in other environments 
(bottom right panel). This model may apply to the situ-
ation where most of the materials (except the checks) 
are new or have not been observed before in any field 
and their performance for the next year needs to be esti-
mated. The accuracy of this strategy’s predictive ability 
will depend on the genetic similarities shown between 
lines in the TST and those in the TRN sets.

Models M1 to M6 represented in Eq. [1–6] were 
implemented following the eight strategies described in 
Table 3. In models that included the site component (S, 
site only) instead of the environment component (E, site–
year combination) the correlation between the predicted 
and observed values were computed within environ-
ments and not within sites. If there was valuable infor-
mation on sites, this could be recovered from predicting 
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Fig. 2. (continued on next page) Graphic representation of the four cross-validation (CV) schemes used in this study (CV1, CV2, CV0, 
and CV00) to assess predictive ability of models on a trial basis (environment). Lines appear along the x axis and environments are 
indicated on the y axis. In this example, for all cases, the testing population (TST) is the block of lines that appear in gray in the environ-
ments at the top. (A) CV2 (incomplete field trials) attempt to predict the TST using information from other lines observed in all environ-
ments plus the same lines from TST but observed in the remaining environments. Black vertical lines represent combinations of lines and 
environments observed in the field. Gray lines denote the prediction of a portion of tested lines that were never observed in some tested 
environments. (B) CV1 (newly developed lines) discards the lines from TST observed in other environments from the training set. Black 
lines represent combinations of lines and environments observed in the field. Gray lines denote the prediction of a portion of tested 
lines that were never observed in some tested environments. (C) CV0 (observed lines in unobserved environment) discards information 
from all lines observed in the environments to be predicted from the training set. Black lines represent combinations of lines and environ-
ments observed in the field. Gray lines represents the prediction of a portion of tested lines in untested environments. (D) CV00 (unob-
served lines in unobserved environments) discards not only information on all lines observed in the environments to be predicted but 
also lines from TST observed in other environments. Black lines represent combinations of lines and environments observed in the field. 
Gray lines denote the prediction of untested lines in untested environments.
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the performance for a year at the same site using another 
year. For predicting new environments via the CV0 and 
CV00 strategies, predictions were made by leaving one 
environment out at the time (Strategies 3 and 4 in Table 
3) and not leaving sites out, unless explicity stated. For 
example, using M1, M3, and M5 to predict environment 
E3, Fig. 1A shows the portion of data that should be set 
as missing, which corresponds to S1.Y3 (Site 1 × Year 
3 combination). On the other hand, with M2, M4, and 
M6, the data portion of phenotypes to be set as missing 
is the same as before but we assume that the other envi-
ronments (S1.Y1 and S1.Y2) are a part of a more general 

environment where all partitions (three in this explana-
tory example) shared similar environmental conditions 
without considering time constraint or issues (Fig. 1B).

Two more studies were proposed to evaluate the 
potential of GS methods for making predictions in real 
scenarios. The first one attempts to predict all environ-
ments coming from the same site. The aim was to predict 
the crop performance of lines in new sites but not includ-
ing the years when the experiments were established. These 
are strategies 5 and 6 in Table 3, which use the CV0 and 
CV00 cross-validation strategies, respectively. A graphic 
representation of this scheme considering Environments 

Fig. 2. Continued.
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1 to 3 [environments observed in the same site (Site 1) but 
in different years (Years 1, 2, and 3)] to predict all environ-
ments in Site 2 (S2.Y1, S2.Y2, and S2.Y3) appears in Fig. 1B. 
As before, correlations were computed on a trial basis (i.e., 
correlations between predicted and observed performance 
were computed only within environments).

The second study involves so-called forward predic-
tion (Strategies 7 and 8 in Table 3). This consists of pre-
dicting the environments in any given year (TST popula-
tion) using all the environments from the previous years 
(TRN population). For example, data from 2009 are the 
TRN population used for predicting the year 2010 (the 
TST population); data from 2009 and 2010 combined are 
the TRN population used to predict the year 2011 (the 
TST population). This forward cross-validation predic-
tion scheme provides a more realistic idea of GS potential 
to deal with unobserved years. As in the other cases, 
correlations for each environment were computed after 
poststratifying predicted values.

Results and Discussion

Phenotypic Results
The average number of phenotypic records for the 31 
environments was 258; the sample size of the environ-
ments with the smallest and largest number of individu-
als was 55 and 442, respectively. Of the 31 environments, 
26, 17, and 14 had more than 100, 200, and 300 pheno-
typic records; thus only five environments contained 
fewer than 100 records (only 57 on average). The mean 
grain yield for all environments was 2.77 t ha–1, whereas 
the maximum and minimum values were 1.48 and 4.36 t 
ha–1, and the standard deviation was 0.46 t ha–1.

Large portions of variance were attributed to the 
environment or site, depending on the model of data 
analysis (Table 4). As expected, the variability explained 
by the environment component in M1, M3, and M5 was 
larger than the variance explained by the other compo-
nents. For M2, M4, and M6, the variability explained 
by the site component was close to 50% of the variance 
explained by the environments. In this case, the remain-
ing variability was left in the residual component. Half 
of the environment variance component is accounted for 
by the site and the remaining by the line, genomic, and 

residual variances. Since predictive ability is assessed on 
a trial basis, it is important to compare the percentage of 
within-environment (site–year) or within-site (location) 
variance shown for the interaction components. In this 
case, G × E and genome × site effects explained a larger 
percentage of variability than the linear effects of the 
lines and the markers forM5 and M6.

Genomic Selection Performance
Results from the different cross-validation strategies and 
models for different groups of environments with differ-
ent sample sizes appear in Table 5, Table 6, Table 7, Table 
8 and Fig. 3. In all cases, four different groups of sample 
sizes were considered. “All” displays the mean across all 
environments despite the number of phenotypic records 
per environment. The other cases show the mean across 
environments with more than 100, 200, and 300 lines 
included in each of them.

For the strategy of predicting incomplete field trials 
using the CV2 scheme, Table 5 shows an average predic-
tive ability of 0.381 considering only lines and environ-
ments. A small increase was achieved when markers were 
included using M3; however, M5, which accounts for 
the G × E interaction, improved by about 16%, shown by 
Fig. 3. In all these cases, the predictive ability improved 
slightly in environments with larger sample sizes. With 
models M2, M4 and M6 improvements in predictive abil-
ity were observed in environments with larger samples; 
however, the results were never as good as those achieved 
by their counterparts (M1, M3, and M5).

The strategy of predicting newly developed lines using 
the CV1 strategy showed (Table 5) that M5 produced bet-
ter results than all the other models. Model 5 improved 
predictive ability between 52 and 82% for the different 
sample sizes compared with the baseline model, M3, 
which did not include the G × E component. As before, 
models based on sites (i.e., M2, M4, and M6) showed simi-
lar patterns; however, they never outperformed models 
that considered environments as site–year combinations. 
This may indicate a strong effect of the year factor on sites.

Predicting unobserved environments using the CV0 
strategy with models M1, M3, and M5 produced results 
that improved the prediction accuracy of sites with larger 
sample sizes (Table 6, Fig. 3). However, no advantages of 

Table 4. Estimated variance components (for six models (M1–M6) and percentage of within-environment or within-
site variance accounted for by each random effect of the corresponding model using the full data for the grain 
yield of wheat lines.

Models

Estimated variance component Percentage of within-environment or within-site variance

E† S L G G × E G × S Res. L G G × E G × S Res.

M1 = L + E 124.66 – 17.84 – – – 46.96 27.53 – – – 72.47
M3 = L + E + G 119.65 – 11.25 7.08 – – 46.95 17.23 10.84 – – 71.92
M5 = L + E + G + (G × E) 115.25 – 11.27 4.59 14.55 – 34.02 17.49 7.12 22.59 – 52.80
M2 = L + S – 63.14 34.93 – – – 105.61 24.85 – – – 75.15
M4 = L + S + G – 52.72 12.73 22.72 – – 105.17 9.05 16.16 – – 74.79
M6 = L + S + G + (G × S) – 45.15 15.30 16.14 – 27.12 78.42 11.17 11.78 – 19.80 57.25

† E, environment; L, line; S, site; G, genomic (marker); G × E, genomic × environment; G × S, genomic × site; Res., residual 



12 of 15	 the plant genome  july 2017  vol. 10, no. 2

Table 6. Correlation between predictive and observed 
values for two cross-validation scenarios for wheat trials 
leaving one environment out: prediction of crop perfor-
mance in unobserved environments using information 
on lines from other environments (CV0) and when none 
of these lines and environments have ever been tested 
before (CV00) for groups of environments with different 
sample sizes and six prediction models (M1–M6).

Purpose CV
Sample 

size† M1‡ M3 M5 M2 M4 M6 

Pr�edicting 
environ-
ments

CV0 All 0.405 0.399 0.398 0.359 0.318 0.239
100+ 0.414 0.412 0.404 0.375 0.348 0.247
200+ 0.478 0.476 0.466 0.439 0.415 0.292
300+ 0.471 0.47 0.457 0.432 0.409 0.308

CV00 All -0.016 0.023 0.028 -0.025 0.043 0.015
100+ -0.008 0.014 0.025 -0.04 0.031 0.002
200+ -0.012 0.04 0.057 -0.02 0.035 0.007
300+ -0.003 0.027 0.045 -0.022 0.026 0.006

† All, 31 environments were included; 100+, the 26 environments where 100 or more lines were 
tested; 200+, the 17 environments where 200 or more lines were tested; 300+, the 14 environ-
ments where 300 or more lines were tested.

‡ L, line effect; E, environment (site–year combination) effect; G, main effect of genomic markers;  
G × E, genotype × environment interaction; S, site effect; G × S, genotype × site interaction; M1, L + 
E; M3, L + E + G; M5, L + E + G + (G × E); M2, L + S; M4, L + S + G; M6, L + S + G + (G × S).

Table 7. Correlation between predictive and observed 
values for two cross-validation scenarios for wheath 
trials leaving  one site out: prediction of crop per-
formance in unobserved sites using information on 
lines from other sites (CV0) and when none of these 
lines and sites has ever been tested before (CV00) for 
groups of environments with different sample sizes 
and six prediction models (M1–M6).

Purpose CV
Sample 

size† M1‡ M3 M5 M2 M4 M6 

Pr�edicting 
sites

CV0 All 0.404 0.398 0.393 0.364 0.320 0.352
100+ 0.413 0.412 0.401 0.382 0.351 0.375
200+ 0.481 0.478 0.465 0.449 0.420 0.437
300+ 0.473 0.472 0.456 0.437 0.406 0.422

CV00 All -0.009 0.031 0.032 0.012 0.042 0.038
100+ 0.000 0.031 0.035 0.015 0.035 0.028
200+ 0.005 0.060 0.060 0.001 0.045 0.044
300+ 0.000 0.052 0.047 0.001 0.041 0.041

† All, 31 environments were included; 100+, the 26 environments where 100 or more lines were 
tested; 200+, the 17 environments where 200 or more lines were tested; 300+, the 14 environ-
ments where 300 or more lines were tested.

‡ L, line effect; E, environment (site–year combination) effect; G, main effect of markers; G × E, 
genotype × environment interaction; S, site effect; G × S, genotype × site interaction; M1, L + E; M3, 
L + E + G; M5, L + E + G + (G × E); M2, L + S; M4, L + S + G; M6, L + S + G + (G × S).

Table 8. Correlation between predictive and observed 
values for two cross-validation scenarios in wheat trials 
with forward prediction of years.: prediction of crop 
performance in future unobserved year using informa-
tion on lines from previous years (CV0) and when none 
of these lines and years have ever been tested before 
(CV00) for groups of environments with different sample 
sizes and six prediction models (M1–M6) (M1 = L+E, 
M3 = L+E+G, M5 = L+E+G+ (G × E), M2 = L+S, M4 = 
L+S+G and M6 = L+S+G+G×S; L: line effect, E: Environ-
ment [site-by-year combination] effect, G: main effect of 
markers, G × E: genotype × environment interaction, S: 
site effect; G×S: genotype × site interaction).

Purpose CV
Sample 

size† M1‡ M3 M5 M2 M4 M6 

P�r�edicting 
years

CV0 All 0.141 0.112 0.127 0.056 0.070 0.041
100+ 0.169 0.128 0.144 0.078 0.088 0.056
200+ 0.151 0.141 0.159 0.087 0.093 0.056
300+ 0.168 0.151 0.171 0.105 0.103 0.073

CV00 All 0.01 0.018 0.019 0.024 0.041 0.013
100+ -0.001 0.01 0.02 -0.007 0.028 0.002
200+ -0.001 0.033 0.052 -0.004 0.031 0.004
300+ -0.012 0.021 0.04 -0.011 0.022 0.004

† All, 31 environments were included; 100+, the 26 environments where 100 or more lines were 
tested; 200+, the 17 environments where 200 or more lines were tested; 300+ includes the 14 
environments where 300 or more lines were tested. 

‡ L, line effect; E, environment (site–year combination) effect; G, main effect of markers; G × E, 
genotype × environment interaction; S, site effect; G × S, genotype × site interaction; M1, L + E; M3, 
L + E + G; M5, L + E + G + (G × E); M2, L + S; M4, L + S + G; M6, L + S + G + (G × S).

Table 5. Mean correlation and the SD (in parentheses) 
between predictive and observed values for wheat 
trials from two random cross-validation for groups 
of environments with different sample sizes and six 
prediction models (M1–M6).

Purpose CV
Sample 

size† M1‡ M3 M5 M2 M4 M6 

P�redicting 
lines in 
incomplete 
trials

CV2§ All 0.381
(0.018)

0.386
(0.018)

0.445
(0.023)

0.339
(0.021)

0.312
(0.018)

0.299
(0.024)

100+ 0.397
(0.013)

0.403
(0.012)

0.459
(0.018)

0.358
(0.015)

0.343
(0.013)

0.314
(0.014)

200+ 0.465
(0.009)

0.472
(0.008)

0.540
(0.013)

0.419
(0.013)

0.408
(0.010)

0.363
(0.015)

300+ 0.465
(0.008)

0.472
(0.008)

0.540
(0.013)

0.419
(0.012)

0.408
(0.010)

0.363
(0.015)

P�redicting 
newly 
developed 
lines

CV1 All -0.089
(0.071)

0.143
(0.033)

0.261
(0.038)

-0.029
(0.075)

0.144
(0.021)

0.165
(0.024)

100+ -0.077
(0.060)

0.171
(0.026)

0.286
(0.031)

-0.024
(0.064)

0.165
(0.019)

0.18
(0.021)

200+ -0.057
(0.051)

0.242
(0.019)

0.368
(0.022)

-0.021
(0.051)

0.218
(0.015)

0.219
(0.019)

300+ -0.057
(0.049)

0.242
(0.018)

0.368
(0.021)

-0.021
(0.049)

0.218
(0.015)

0.219
(0.019)

† All, 31 environments were included; 100+, the 26 environments where 100 or more lines 
were tested; 200+, the 17 environments where 200 or more lines were tested; 300+, the 14 
environments where 300 or more lines were tested.

‡ L, line effect; E, environment (site–year combination) effect; G, main effect of genomic markers; G 
× E, genotype × environment interaction; S, site effect; G×S, genotype × site interaction; M1, L + E; 
M3, L + E + G; M5, L + E + G + (G × E); M2, L + S; M4, L + S + G; M6, L + S + G + (G × S) 

§ CV2, prediction of incomplete field trials, where some lines were  tested in some environments but not in 
others; CV1, prediction of newly developed lines, with lines that have not yet been tested in any field trial.
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including the G × E component were observed. Here, most 
lines had already been observed in other environments, 
so we could consider them as replicates of lines in the 
unobserved environments; thus there was plenty of infor-
mation on these lines, which enabled good predictions 
for the missing environments. Slight differences on these 
patterns were observed with those models based on sites 
(M2, M4, and M6); however, these values never improved 
the prediction accuracy of previous models. On the other 
hand, CV00 gave very low values in general for all models, 
further demonstrating that predictive models perform 
best when they borrow information from closely related 
genotypes and environments.

The prediction of sites with the CV0 strategy (Table 7) 
produced similar predictive ability values as those obtained 
when predicting environments with M1, M3, and M5; M2, 
M4, and M6 also improved their performance. However, in 
spite of these improvements, the predictive ability of M2, 
M4, and M6 was never as good as their counterparts’ pre-
dictive ability using this strategy. Using the CV00 strategy, 
the predictive abilities were technically null.

Forward prediction (Table 8) showed, on average, 
moderate results when predicting the following year 
after including previous years in the TST sets. For CV0, 
the best results were observed with M1 and M5; M3 
gave intermediate values, whereas M2, M4, and M6 per-
formed very poorly. On the other hand, none of the six 
models showed moderate values when CV00 was used 
for comprising the training sets.

Discussion
The importance of year-to-year variation on the environ-
mental conditions prevailing in the Great Plains would 

make the implementation of GS difficult without account-
ing for G × E. This study highlighted this issue, since 
environment models were generally more predictive than 
site models. This may not be true for traits under produc-
tion in regions that have more stable climates where fac-
tors such as soil characteristics play a larger relative role. 
In those cases, the site model might be superior.

The clearest directive that can be taken from this study 
is the efficiency that can be gained in early-generation yield 
testing. Families in early generations could be split with 
half of the family members being tested in one set of sites 
and the other half at other sets of sites. This would reduce 
the number of harvested plots by half while providing good 
information on performance. The results also suggest that 
the breeder could test half the members of each family 
and predict the other half. The number of plots that can be 
harvested is the primary limiting factor in the size of the 
KSU hard red winter wheat breeding program. Implement-
ing this strategy allow the program to expand, in terms of 
the crosses and lines per cross that are evaluated, without 
increasing the amount of plots that need to be harvested.

Sites previously observed in the breeding pipeline 
may be selected to best represent one or several target 
environment types or key stressors in which to predict 
new lines, which also would allow for in silico breeding 
for either more selected niche targets or broader yield 
stability. Assuming allele frequencies within a breeding 
program do not change too radically over a 5- to 10-yr 
window, it can be speculated that a relatively small set of 
materials grown at each site in each year could provide a 
way to classify environments and identify which environ-
ments are most representative of yield performance over 
time. If one were to use the most predictive environments, 

Fig. 3. Average prediction accuracy obtained for the four cross-validation schemes and six models. Values of locations with more than 
100 entries are depicted; however, correlations were obtained for all environments.
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our results imply that GS could be a good tool for predict-
ing untested material. This study shows the importance 
of having an adequate number of lines tested at each site 
to gain the benefits from GS; thus good training sets are 
important for the intent of applying GS as an integral part 
of the breeding effort. Interestingly, the results indicated 
that there was little advantage to having 300 lines at a site 
compared to 200. Optimizing this trade-off in the num-
ber of entries per site for best prediction accuracy will 
assist in trial design for incorporation of G × E GS in the 
breeding program. Additionally, this decision is likely to 
be crucial when considering other traits such as disease 
resistance and end-use quality, which are highly heritable 
and predictable (Battenfield et al., 2016) and should be 
incorporated in this strategy as well.

The results of this study indicated that even under 
the complexity and challenge of predicting new environ-
ments, sites, or both that have not been previously used 
in the testing system, good prediction accuracies (around 
r = 0.46) can be achieved when more than 300 lines are 
evaluated in each environment, highlighting the impor-
tance of continued phenotyping in GS applications. An 
important practical result is that assessing and quanti-
fying G × E improves the prediction accuracy of newly 
unobserved lines predicted in new environments. Results 
indicated that predicting the performance in new years 
in Kansas is the most challenging situation; however, 
increasing the number of tested lines in each environ-
ment to more than 300 increased the prediction accu-
racy. Again, the results indicate the importance of having 
enough phenotypic information to be used for predicting 
unobserved lines in future years. Finally, the prediction 
of lines that were never tested in environments that were 
never used is not feasible even for the case of testing 
more than 300 lines in each tested environment.

Conclusions
Large year-to-year variability is commonplace in the 
Great Plains of the United States (Holman et al., 2011), 
which makes phenotypic selection for breeding difficult. 
This also presents a significant challenge for implement-
ing GS in a two-step approach, where a single BLUP value 
for each line from a very unbalanced dataset is used to 
train the model. Here, we demonstrate that using infor-
mation from environments (site–years) modeled along 
with genomic data increases predictive ability in GS mod-
els in comparisons of variance components for all models 
and comparisons of GS accuracy between CV0 and CV1 
or CV2. Thus, we recommend that efforts in yield GS in 
breeding programs be designed to utilize information 
borrowed from related environments either within the 
current year or from historically observed testing sites.

Designing breeding programs to exploit cross-val-
idation accuracy in genomic and environment-enabled 
prediction models will assist in resource allocation within 
the KSU hard red winter wheat breeding program. Here, 
we have demonstrated (with CV2) that the amount of 
plots could be reduced by implementing incomplete 

replication designs, subsequently increasing the number 
of lines evaluated. The CV2 strategy would impute all 
lines into all environments, reducing the land used, work-
load in harvesting and trial preparation, and increasing 
efficiency per plot. Trends were also found in these data 
that indicated that having around 200 lines per site was 
ideal for GS accuracy, which will assist in planning the 
number of sites and lines tested in the breeding program.

We also demonstrated that new experimental lines 
may be predicted prior to phenotyping by using histori-
cally known environment, as simulated in CV1, which is 
highly desired by breeders. As genotyping costs continue 
to decrease and the cost for yield plots either remains con-
stant or increases (Poland and Rife, 2012), screening hun-
dreds or thousands of candidate lines initially through GS 
becomes a more attractive tool for breeders. In our study, 
CV1 showed intermediate predictability when more than 
300 lines were evaluated in each environment and when 
genomic models exploit the G × E information (0.368). 
This can be used as a tool to make an initial cull of mate-
rials that could potentially be tested in yield trials.

Overall, designing the breeding pipeline to take 
advantage of various cross-validation strategies can allow 
the breeding program to grow while still using the same 
amount of plots. The use of in silico breeding can help 
breeders make decisions without adding extra workload 
to the program and without the burden of increasing 
expenditure. The results of this study indicate the the 
importance of having enough phenotypic data on lines 
tested in environments for achieving intermadiate to high 
prediction accuracy, as well as the need to model and 
exploit the information existing in G × E interactions.

Supplemental Information 
Supplemental Figure S1. Allocation of experimental 
lines (x axis) by environments (y axis); environments 
were defined as site–year combinations. Black verti-
cal lines indicate the particular combinations of lines × 
environments that were observed in the field.
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