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Abstract

The null hypothesis of equal distributions, H : F; = F, =...= F , is commonly used
to compare two or more treatments based on data consisting of independent random
samples. Using this approach, evidence of a difference among the treatments may be
reported even though from a practical standpoint their effects are indistinguishable, a long-
standing problem in hypothesis testing. The concept of effect size is widely used in the
social sciences to deal with this issue by computing a unit-free estimate of the magnitude

of the departure from /in terms of a change in location. I extend this approach by
replacing H, with hypotheses { H, } that state that the distributions {F,} are possibly
different in location and or scale, but close, so that rejection provides evidence that at least
one treatment has an important practical effect. Assessing statistical significance under H,

is difficult and typically requires inference in the presence of nuisance parameters. I will
use frequentist, Bayesian and Fiducial modes of inference to obtain approximate tests and
carry out simulation studies of their behavior in terms of size and power. In some cases a
bootstrap will be employed. I will focus on tests based on independent random samples

arising from K > 3 normal distributions not required to have the same variances to

generalize the K =2 sample parameter P( X, > X,) = '[ F,(y)F,(dy)and non-centrality

type parameters that arise in testing for the equality of means.



INFERENCE FOR THE INTRINSIC SEPARATION
AMONG DISTRIBUTIONS WHICH MAY DIFFER IN
LOCATION AND SCALE

By
YAN LING

B.S., Nanjing University of Aeronautics and Astronautics, 1994
M.S., Kansas State University, 2005

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Statistics
College of Art and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2009

Approved by:

Major Professor
Paul I. Nelson



Copyright

YAN LING

2009



Abstract

The null hypothesis of equal distributions, H : F; = F, =...= F , is commonly used
to compare two or more treatments based on data consisting of independent random
samples. Using this approach, evidence of a difference among the treatments may be
reported even though from a practical standpoint their effects are indistinguishable, a long-
standing problem in hypothesis testing. The concept of effect size is widely used in the
social sciences to deal with this issue by computing a unit-free estimate of the magnitude

of the departure from /in terms of a change in location. I extend this approach by
replacing H, with hypotheses { H, } that state that the distributions {F;} are possibly
different in location and or scale, but close, so that rejection provides evidence that at least
one treatment has an important practical effect. Assessing statistical significance under H,

is difficult and typically requires inference in the presence of nuisance parameters. I will
use frequentist, Bayesian and Fiducial modes of inference to obtain approximate tests and
carry out simulation studies of their behavior in terms of size and power. In some cases a
bootstrap will be employed. I will focus on tests based on independent random samples

arising from K > 3 normal distributions not required to have the same variances to

generalize the K =2 sample parameter P( X, > X,) = '[ F,(y)F,(dy)and non-centrality

type parameters that arise in testing for the equality of means.



Table of Contents

LSt Of FIGUIS . .eonti i e e e ix
List Of Tables ...uoneniie e X
ACKNOWIEAZEMENLS ... .ottt Xi

CHAPTER 1 Introduction ...............ccoooiiiiiiiiiiiit e 1
CHAPTER 2 Frequentist Tests for ISy n (F) Assuming Normality .................... 8
2.1 A PIUG-IN TSt ot 8
2.2 A Likelthood Ratio TeSt......c.evuiniiniitiit e, 13
2.3 Simulation Example ....... ..o 17
2.4 Parametric Bootstrap TeStS .......cc.ovuiiriiiiiiiiiiii e 19
2.4.1 Applying (**) to Testing the Mean of a Normal Distribution ............... 20

2.4.2 Applying (**) to the Behrens - Fisher Problem ............................ 21
2.4.3 Applying (**) to ISixy (F) under Hp in (2.4) coovviniiiiiiiie, 24
2.5 An Iterative Method of Finding the MLE’s under Hyin (2.4) ...........c.covtn. 29
2.6 Two Methods of Generating LRT Statistic under Ho in (2.4) ............coovnnee. 33
2.7 Tests Based on Bootstrap Confidence Sets............ccccovviiiiiiiiiiiiiiiiiniinnnn. 34
Chapter 3 Average P-Values..............c.oooiiiiiiiiiii e, 35
3.1 Fiducial P-Value .........oouiiii 37
3.2 An Approximation of Fiducial P-Value ................c.ooii 39
3.3 Averaging Over a Posterior Distribution .............c.ccoveiiiiiiiiiiiiiininenn... 42
3.4 Consistency of “ Average” P-Value ............ciiiiiiiiiiii 44
3.5 Posterior Predictive P-Values ...........coooiiiiiiiiiii 52
CHAPTER 4 Nonparametric Tests...............cooiiiiiiiiiiiiiiiiiiiiii e 56
4.1 A Nonparametric Test StatiStiC ...........ooiiiiiiiiiiiiiii i, 57
4.2 Nonparametric Bootstrap TestS .........ooiiiiiiiiiiiii e, 58
4.2.1 Symmetric DiStributions .............cocoiiiiiiiiiiiiiii e 58

4.2.2 Skewed DiStributions ......c..o.eueieiitiiiiiiii e 59

vi



4.2.3 A Nonparametric Bootstrap CI for ISP ..., 60

4.3 The Quantile Test StatiStiC .........ovuiiiriiii i e, 61
O T 11 o) 2Tl T 61
CHAPTER 5 Simulation Results and Discussion ........................coiiii. 63
5.1. Simulation Study for ISy (F) Assuming Normality .....................c.oo.e 64
5.1.1 The Type I Error Rates Comparison ..............coeveeiiiiiienienieninannennnn. 67

5.1.2 POWET COMPATISOMNS .. .uvvtnetententettententeetete et eteteaneeeenaeaneanenns 69

5.2 Simulation Study for ISAv(F ) and ISmax(F) .oovvvvviiini 72
5.2.1 Simulated Type I Error Rates for ISAv(F ) ...oooviiiiiiii 74

5.2.2 Simulated Type I Error Rates for ISyax(F ) «ooovvvnveiiiis 74

5.2.3 Simulated Powers for ISayv(F ) and ISpax(F ) cvoevvviinniii 76

5.3 EXAMPIC ..ottt 77
CHAPTER 6 Summary and Conclusion ........................ i 82
CHAPTER 7 Further Researches ..., 84
REFERENCES. ... e 85
APPEND X A o 90
Figure A.1 Estimated P-Values under H, (2.4) ......cooiiiiiiiiiiiiiiiiii, 90
Figure A.2 Estimated P-Values under H, (2.4) ......coooiiiiiiiiiiiiiiiiiiis 91
Figure A.3 Estimated the Power (H;:(2.4) ) «.oviuiiiiiiiiiiiiiiee 92
Figure A.4 Fiducial P-Values under H, (2.4) .....coiiiiiiiiiiiiiiiiiiie 93
Figure A.5 Fiducial P-Values under H, (2.4) .....coooiiiiiiiiiiiiiiiie 94
Figure A.6 Fiducial P-Value -- the Power (H;:(2.4)) cccvvvieiiiniiiiiiiiins 95
APPENDIX B ..o 96
Table B.1 Estimated Type I Error Probabilities for LRT and PBL, 7 =7, ............ 96
Table B.2 Estimated Type I Error Probabilities for LRT and PBL, 7 < 7, ............ 97

vii



Figure B.1 QQ Plots for Comparing Method1 and Method2 ............................ 98

Figure B.2 Histogram of the Test Statistic (A4 ) .....oevvevriiiiiiiiiiiiiiiiiiine 99
Figure B.3 QQ Plots of the PBL P-value for Different Gaps ........................... 100
APPENDIX € oo e 101

Table C.1 Estimated Type I Error Probabilities Comparison for ISy (F), 7 = 7, ..101

Table C.2 Estimated Type I Error Probabilities Comparison of P-Values for ISy n(F),

TT T ettt e 104
Table C.3 Cochran Test Results ...........oooviiiiiiiii e, 105
Figure C.1 QQ Plots of the P-Values for ISuw (F) w7 =7 covvveeiiii, 106
Figure C.2 QQ Plots of the P-values for ISyin (F), 7 <7y vveiniiiiiiiii 109
Figure C.3 Power Simulation Comparison Results of Tests for ISLin(E) ............. 110
Figure C.4 Power Simulation Results for ISAv(E ) .ocoooviiiiiii 112
APPENDIX D oo 113
Result 1: R Code for Estimated Type I Error Probabilities Comparison for ISy (F)
.................................. 113
Result 2: R Code for Power Simulation Comparison Results for ISpx (F) .......... 118

viii



List of Figures

Figure 1 Separation Between Two Normal Distributions Having Common Variance

(B =y = 1)

Figure 5.2 Power Simulation Results for ISyax(F), Medium Samples ........................
Figure 5.3 PDEF CUIVES ... outiniiiiitiit et

Figure 5.4 Side by Side Boxplots for the Data Sets ...............cooiiiiiiiiiiiii .

X

77



List of Tables

Table 1 The Relationship Between ¢ and 7,, under Normality for Fixed g, —u, ..... 2
Table 2.1 Estimated Convergence Proportions Based on 10000 Iterations ................ 29
Table 2.2 Estimated Relative MSE of the MLE’s Based on 10000 iterations ............. 31
Table 2.3 Estimated BIAS of the MLE’s Based on 10000 iterations ....................... 32

Table 5.1 Estimated Type I Error Probabilities Comparison of PBL P-Values for ISy n(F)

Table 5.2 Estimated Type I Error Probabilities Using P-Values for ISy n(F), 7 =7, ... 69

Table 5.3 Prepivoting Nonparametric Bootstrap CI for ISAv(E) ...........coooiiiiiiin. 75
Table 5.4 Prepivoting Nonparametric Bootstrap CI for ISyax(E) ......ccoooviiiiiinn. 76
Table 5.5 Summary Statistics of the Data Sets for the Example ............................ 78
Table 5.6 Comparison of the P-Values for ISy n(F) for the Example ...................... 79
Table 5.7 Lower Limit of CI for ISav(F) and ISmax(F) for the Example .................. 81



Acknowledgements

I would like to express my deepest appreciation to my major professor, Prof. Paul I.
Nelson, for suggesting this interesting topic and for his expert guidance in my work. I
would also like to thank him for his patience and understanding throughout my pursuit of
this degree. He has always cared for his students and has encouraged me to explore the
field of statistics more deeply. His dedication and diligence in his work also make a strong

impression on my memory.

I also would like to thank Prof. James W. Neill, Prof. Weixing Song, Prof. Robert
Burckel (Department of Mathematics), and Prof. Daniel A. Andresen (Department of
Computing and Information Sciences) for their valuable suggestions and their willingness

to serve on my committee.
Finally, I wish to extend my gratitude to my parents and my family for their

everlasting love, encouragement and material and spiritual support. Without their support,

I could not have completed my study.

X1



Chapter 1 Introduction

The commonly used practice of comparing the locations of two or more distributions
as a method for assessing how different one treatment is from another can be misleading,

even when they have the same shape. Suppose, for example that X; and X, are independent,
normally distributed random variables, X;~ N(x,0; ), with cumulative distribution
functions denoted by ®((x — 1)/ o,), i= 1,2, where @ is the standard normal distribution

function. Then, if the means are equal

7, = P(X, > X,) = (1, — ) /(07 +05))=1/2, (1.1)

and can be made arbitrarily close to 2 by adjusting the variances, equal or not, no matter
how different the means are. This behavior is illustrated in Table 1 and Figure 1 below. If,
for example, X, and X, represent yields of two different varieties of wheat, all other things
being equal, a farmer would prefer variety one to variety two if 7, > 0.95, regardless of
how close the means are. Correspondingly, if g, is a lot bigger than p, but 7, is close
to 72, the same farmer might prefer variety two to variety one if it is cheaper to plant, grow
and bring to market. The failure of A, = u, — u, to adequately represent the difference
between two distributions arises here because A, ignores the variation in the distributions

and is not scale invariant. Furthermore, standard tests for the equality of means based on
independent random samples are consistent and will declare the distributions to be
different when sample sizes are large, no matter how close the means are, as long as they
are not identical. Broadly framed, this long-standing issue concerns distinguishing

statistical from practical significance. These problems can be somewhat remedied by
using what is called an effect size, denoted ES, given here by ES; = (u, — 11,)/+/ (6] +03)
or by ES; =(¢, — u,)/(o, +0,), to assess the separation between two normal distributions.
Note that 7, is a monotone increasing function of ES; and that both decrease rapidly in

Table 1 as 6°= o, =0, increases. These location-scale invariant effect sizes are examples

of what I call intrinsic separation parameters.



Table 1. The Relationship Between o and 7,, under Normality for Fixed g, —
p 12 y Hy—H,

My =y o ES; ES, T, Figure
1 0.1 2.23607 1.58114 0.98733 Figurel.l
1 1 0.70711 0.50000 0.76025 Figurel.2
1 10 0.22361 0.15811 0.58847 Figurel.3
1 100 0.07071 0.05000 0.52819 Figurel.4
1 1000 0.02236 0.01581 0.50892

Figurel. Separation Between Two Normal Distributions Having Common Variance
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Definition: Given K continuous distributions, F = {F,}, areal-valued function IS(F),
invariant with respect to location-scale transformations of the form F"(x) = F,(ax +b),

a>0,i=172,..., K, whose value increases with increasing differences among the { F; } will

be called an intrinsic separation parameter (ISP).

The need for this new terminology arises because the term effect size as a measure of
separation has been identified almost exclusively and narrowly with differences among
locations of distributions ofthe fromF= { F,(x)=F((x—u,)/0,), 0,>0,i=1,2,..,K },
restricted by the assumption that o, = o, =--- =0, . Specifically, for comparing the means

of two normal distributions having the same standard deviation o, the effect size is

commonly taken to be ES = (1, — 1,)/ o . The literature in this area contains no work on

inference for ES; and ES,, which are special cases of my research. The usefulness of an

ISP depends on the extent to which its values have meaning to the user.

My research develops and explores inference for intrinsic separation among two or
more distributions. The parametric part of my work will expand the scope of conclusions

that can be reached by comparing distributions of the form { F,(x) = F(x—w,)/ o0,), 0,>
0,i=12,...,K }, without requiring that they have the same scale, based on a realization of

independent random samples {X ;= x; = (x,,X,,,...,X,, ) }, with sample means and

variances, denoted {(X,,S”)}. Letting IS(F) denote an intrinsic separation parameter of

interest, I propose testing

Hy:IS(F) <¥ vs H;:IS(F) >V , (1.2)

where W is a user input value. The value of ¥ ideally represents the smallest magnitude

of separation among the distributions as measured by a particular IS(F) which is of
practical importance. An alternative, classical approach to this issue, as presented in
Hodges and Lehmann (1954) and Lehmann and Romano (2005), is to use three
hypotheses; H?:1S(E)=0, HV: 0 <IS(F)< ¥ , and H? : IS(F ) >¥ , where H"



represents an indifference zone in the parameter space. Constructing tests for these three
hypotheses can be very difficult and I will not pursue this approach. Inverting a test for
(1.2) also yields confidence sets for IS(F), which can be used to provide a data-based
assessment of the magnitude of the separation among the distributions. In the one-way
analysis of variance, K >2, based on independent random samples from normal

distributions having means { ., i=1,2,..., K} and the same unknown variance o, IS(F)

is commonly, if only implicitly, taken to be the non-centrality parameter of the F - test,
given by

K
ISaov eQ(F) = X n(u; — 1)’ /o2, (1.3)

i1
K K
where 11 = Zni w/N , N= Zni . The standard procedure here too is to take ¥ =0 so
i=1 i1
that neither Hy, which is never true in practice, nor H; accurately indicates just how
different the distributions are. In this case, testing (1.2) with ¥ > 0 is relatively easy to
carry out, as is described for K =2 in Hodges and Lehmann (1954) and for K >3 in
Murphy and Myors (2004). Specifically, since the F- family has monotone likelihood ratio

with respect to its non-centrality parameter, having observed F = F

T » Tejecting Ho if
F, exceeds the 1- a quantile of the non-central F-distribution with degrees of freedom

K-1 and N-K and non-centrality parameter ¥, yields a consistent, size a test.

Now, consider the one-way normal theory analysis of variance described above,
where the variances { ;' } need not be equal. An obvious extension of (1.3) is the intrinsic

separation parameter defined by

1Sa0v(E) = Y [n, (st~ )" 1071, (1.4)

i=1

K K
where now 1 = Z(n, u/ Gf)/ Z(n, / aiz). A reasonable, exact test for (1.4) is not available.
i=1 i

=1

However, the random variable

Q)= 2 w(X,=X,)*/ 2w, (1.5)



K K
where w. =n, /o’ and X = ZW[X ./ Zm , has a non-central chi-square distribution with

i=1 i=1
K-1 degrees of freedom and non-centrality parameter equal to ISaxov(F) as given in (1.4).
For K =2, using ISxov(F) and taking ¥ = 0 reduces to the Behrens - Fisher problem. Rice
and Gains (1989) developed a Fiducial test based on Q( ¢ ) and Krishnamoorthy, Lu, and

Mathew (2007) carried out a parametric bootstrap test based on O(S°) =(S2,S2,...,52),

both for the equality of means, ¥ = 0. I will extend both of these results and develop

Bayesian and Fiducial approaches to cover inference for ¥ > 0 in future research .

One area I will focus on concerns samples from normal distributions and the class of

intrinsic separation parameters given by

K K
ISNE) = D L /> ol (1.6)

i=1 i=1
where [ =(/,1,,...,[,) is a user input vector of constants that sum to 0. Note that for

K
independent random samples from normal distributions, @ [ISpn(F)] = P( ZIiX . >0) s

i=1
one way of extending 7, = P(X, > X),i # j, defined above, from K =2 to K =3 or more

distributions. Two other ways to accomplish this without assuming a particular form for

the underlying distributions are by using the ISP’s given by

ISMAx(E) =Max{7r,.j }, (17)

or ISAav(F) = 22 Max{r

i<j

g/’ﬂ_/i}/(K(K_l))' (18)
Absolutely no treatment effect occurs for (1.7) and (1.8) when ¥ = ' and when ¥ = 0 for
(1.6). Taking ¥ = 7 > Y for (1.7) and (1.8) and ¥ = @' () for (1.6) denotes increasing
separation as 7 approaches 1. The separation in (1.6) may be viewed as one-sided, as
dictated by the choice of the coefficients {/.}, and two-sided for (1.7) and (1.8). Under

normality, no matter what the variances may be, when all the means are equal, ISsov(F)

and IS n(F) are 0, the minimum value of ISpov(F). In calibrating ISy n(F), I assume that

5



the coefficients {/ } are chosen so that increasing IS;n(F) corresponds to increasing
separation. Thus, for example, {/.} = {-1/2,-1/2,1} indicates a preference for showing

that there is high probability that X3 is greater than (X;+X>)/2. But, if all the means are
equal, (1.7)-(1.8) are guaranteed to equal to 2, their minimum value, only if the
distributions are also symmetric. These ISP’s can be used to assess treatment effects that
involve both means and variances for skewed as well as symmetric distributions. ISP’s
(1.7) and (1.8) are also invariant with respect to an increasing transformation of the data. I

will describe below results I have obtained on inference for (1.6), (1.7) and (1.8).

Perng, et al. (1989) and Kemp, et al. (1993) constructed normal theory and

nonparametric tests, respectively, for IS(F) = 5;(71) - 1(3, and ¥ >0, when K =2, where
5;" ' is the p™ quantile of F}, 0 <p < 1/2. Note that under normality, IS(F) = ES, with

¥ =®'(1- p). Here, I will attempt to extend this approach to three or more distributions.

Effect size (ES) is a key concept that has been thoroughly discussed by Cohen (1988)
in his book Statistical Power Analysis for the Behavioral Sciences (2" ed). In general,
effect size means “the degree to which the null hypothesis is false.” It measures the degree
of departure from the null hypothesis. Cohen notes that the powers of many commonly
used tests are functions of sample size (n), the population effect size (ES), and the desired
size « . It is possible in principle to solve for any of the four values (power, n, ES, o )
given the other three. Cohen calibrates the practical importance of an estimated effect size
as being small, medium or large by relating it to power. I will develop a similar calibration
for ISP’s and develop a scheme for estimating the sample sizes necessary for my tests to

have desired power at specified alternatives in future research.

All of the problems I will study involve inference in the presence of nuisance
parameters. Pivotals, when they exist, provide direct solutions to this difficult problem.
Specifically, suppose that interest lies in inference for I'(@ ) =T". A quantity of the form
Q =Q(', Data) is pivotal if its distribution Pq is free of & when I'(6 )=T". A test of

H,:T"=T, can then be carried out at type I error ratex by rejecting H, if



0, =0y, Data) € C , where B, (Q, € C) = . Such pivotals do not exist for my
problems. Instead, in Chapter 2, I will base tests on functions of the parameters and data
of the form O =Q(I'(0), Y(0), Data) , whose distributions under H,:I'=T",, denoted
F,(-|n(0)) ,are known up to the additional nuisance parameter 7(0) . Let Y and n be
estimates of Y and 7, respectively, obtained from Data . Then, given

o, Y, Data) = 4, » 1 will construct and investigate an approximate p-value defined as 1-
F,(q,y, |17) . This approach is related to what Bayarri and Berger (2000) termed the plug-

in method. 1 will also use a parametric bootstrap to calibrate the distribution of a likelihood
ratio test. This will require solving the difficult problem of finding estimates of

Y constrained by H,,.

In Chapter 3, with F,(-|n(8))= F,(-), I will compute p-values = p(Y) as functions

of the nuisance parameters Y and “average” these over Fiducial and Bayes Posterior
distributions on Y. Berger and Selke(1987) assert that the posterior probability of H, is a
better measure of the evidence in the data than a p-value. Accordingly, I will also use
Fiducial and Bayes Posterior distributions to evaluate the probability of the null hypothesis

given the data and investigate the use of these values as evidence for choosing between H,,
and H,. Although some of the problems I present in Chapter 4 fall outside of the scope of

inference for ISP’s, they are interesting related issues I worked on while preparing this
dissertation. In Chapter 5, I present a simulation study based on the level and power for
comparing those p-values in testing IS;n(F). At the same time, a simulation study based
on the level and power for testing ISyax(F) and ISav(F) are also presented in Chapter 5. A

summary and conclusions are presented in Chapter 6.



Chapter 2 Frequentist Tests for ISy n(F) Assuming Normality

2.1 A Plug-In Test

To review some of the ideas presented in the introduction, suppose we have K normal

distributions, {X, ~ N (/,zi,af),i =1,2,...,K}, and independent random samples {x;, j =

1,2,...,n,} from each, N = Zni . For K= 2, as noted above,

P(X, > X,) = O((1; = 1) /(0] +73)) 2.1)

=Ty,

is a location-scale invariant measure of the extent to which the distribution of X, lies
above the distribution of X, . Specifically, if =, is close to 1.0, most independent copies

of X, will be larger than most independent copies of X, . Consider tests of the form
Hy:n,=nvs H :7,>r, (2.2)

where 7 is a proportion at least 0.5. If 7 = 0.5 and o, = o,, the pooled t-test provides an
exact size o test of (2.2). If # = 0.5 and o, # 7,, (2.2) is the familiar Behrens-Fisher
problem, for which there is no reasonable, exact size « test. In this case, Welch’s test
(Welch 1938) is an approximate size & test. The Mann-Whitney test is only guaranteed to
have its nominal size for (2.2) when F'; = F, under H, and hence 7 = 0.5. My goals here
are to extend the concept of separation given in (2.1) to the case of K >3 normal
distributions and develop tests for the corresponding generalizations of (2.2) that do not

require an assumption of equal variances. [ will call a test having approximate p-value ‘p’,

a nominal size a test if the null hypothesis is rejected whenever p < ¢ . Simulation can

then be used to check if the actual type I error rate is close to its nominal value.



To generalize (2.1) so as to define separation among K >3 distributions, let

K
X' = (X, Xy X)), 1" = (,1,....01.)#0, ZIi =0, which is needed for location
i=1

) . 1
invariance, 5 <7 <1, where X" denotes the transpose of X and the components of the

vector / are user input constants. Separation can then be defined by a preference for

hypothesis H, over hypothesis H,, where,

H,: PI"X>0)<r,

H: PU"X>0)>nx. (2.3)

Increasing separation corresponds to increasing 7 . Since /° X is distributed

K K
N(Zli/,li, z ’c7), letting ®(n_) =z, (2.3) can be expressed as:
i=1

i=1

Hy: AMuo) < n, H: Apo) >n,, (2.4)

where A(p, o) = Zli:ui /VZ izo-iz = 1S,y (F).

Constructing tests for (2.4) requires dealing with the nuisance parameters p, =’ /o,
i=23,.,K. We begin by noting that since Y [.X, ~ N Lu, Y I’c}/n), we have

that

7= ZliXi _Zli:ui ~ N(O,1),

JZlfof /n,

W= Z{(nl _I)Siz /O-iz} ~ X(ZN—K)’

and W and Z are independent. Hence,



1X: 1Y 1262 /n
T — Z 1 Z 1 o-l nl (2‘5)
\/ > (n,-1)S?/ o}

(N-K)
:Z+5

Nt'(N—K,5(E,g,ll)EZli‘Lli/ Zlizo-iz/ni)’

where ¢'(v,0) denotes a non-central t-distribution with non-centrality parameter 6 and
v degrees of freedom. Dividing numerator and denominator of T by o}, setting p, = 1

and letting p = (1, p,,...,px), T can be expressed as

SiXi Y ipoiin D LX 2.6)

T:T(B): 2 2 2 2 '
\/Z(ni ~1)S?/ p,o; \/(Zzi p,/n)> (n,~1)S?/ p,)

(N -K) (N-K)

K
Let 7, (p) be the observed value of T'(p)and N = Zni . If { p,} were known, a p-value

i=1

for H,:6(u,o,n)<6,, H,:6(u,0,n)> 6, could be defined by

p(p)=p—value(p)=P(T 21,,(p) ), (2.7)

where T ~ ¢'(df = N—-K, 6 =6,). Now, letting n,) =min{n,} and n,, =max{n}, we

have that under #, given in (2.4),

A, 0) <6(u,0,n) < \ny A(p,0) .

Since a non-central t-distribution has monotone likelihood ratio in its non-centrality
parameter, computing p(p) in (2.7) by taking T ~ '(N—K, \/ny, (n,)) provides a

conservative test of (2.4), which is exact size a if n, =...=n, = n. To handle the

10



realistic case where p is not known, estimate its components by p, =S7/S},i=2,3,....K

and plug éT = (L, p,,..., Px ) into (2.6), yielding a test statistic

(3 - YILXi DX 28
& J(ZI,?Ai/ni><2<ni—1>si2//3i> S8t in, |

(N -K)
An approximate p-value can then be defined as
p(p) =p—value(p) = P(T 21, (p)) . 2.9)

Where T ~t'(df ',Jn(K)(nﬂ)) and df' is given by the approximation due to

Satterthwaite(1946),

> sy
df' = — l;‘ ik . (2.10)
5]

n.

1

i=1

Based on a preliminary simulation (given in the Appendix A, Figure A.1), the distributions
of p-values given in (2.9) appear, as desired, to be approximately uniform under the null
hypothesis if the sample sizes are equal. But, for unequal sample sizes, especially for cases
where the range of the sample sizes is large, these p-values have a highly skewed

distribution under H .

This situation can be improved by using an estimate of the non-centrality parameter
o instead of an upper bound. To carry this out, first, rewrite the non-centrality parameter

o as follows

=1 > 1Pcl/n,

11



_ zli,ui ‘Vzlizo-iz 2.11)
\/ZIiZO'iZ \/ZIiZGiz/ni
1/212 2/n

ZIIZO'
z I’c?/n,
distribution has monotone likelihood ratio in its noncentrality parameter, p-values may be
A /Zlfa,.z
i Zlfaﬁ /n,

Accordingly, again letting { S’} denote the sample variances, define an estimate of § by

5 st
1/Zl S?/n,

so that under H,, 6 <n . Again using the fact that the noncentral t-

computed using & =n , assuming that the population variances were known.

Using v = df" (the Satterthwaite approximation, (2.10) ), results in an estimated p-value,
given by:
p—value(S’)=P(T>t,(S%)) , (2.12)

where T ~t'(df", 3).

Preliminary simulations (given in the Appendix A, Figures A.2-A.3) indicate that this
approach appears to yield p-values that are approximately uniformly distributed under H
and tests that have good power, except when the range of sample sizes is very large. A full
simulation study investigating the size and power of this test is conducted in Chapter 5. I
will investigate its robustness with respect to departures from normality and the presence

of outliers in future research.

12



2.2 A Likelihood Ratio Test

The log-likelihood function for K independent random normal distributions is given

by

n

K
logL(H,gz)z—Z?’ log(2mo?) — ZZ(x,, — ) /207 . (2.13)
i=l i=l j=1
This log-likelihood is maximized by log(L(, 6°), where i and & > are the well known

maximum likelihood estimators. Carrying out a likelihood ratio test requires maximizing

the log-likelihood constrained by H,, in (2.3), which can be difficult to carry out since this

constrained likelihood is a very complicated function in a typically high dimensional space.
For example, Buot, et al. (2007) and Drton (2008) show that for the Behrens-Fisher

problem, K =2 and 7 = 0.50, the likelihood function can have multiple modes under H,.

As a first step in addressing this problem, I develop a Jacobi type algorithm for finding a

local maximum which uses a Lagrange multiplier to incorporate the boundary constraint

K
Zli:ui
A =n_. (2.14)

i=1
X T
2 _2
[Srs
i=1

Form the function D (4 &*, ) defined by

K K
D= logL(p,o’)+ A-Olu/ /21,?03 —n,) (2.15)
i=1 i=1

K

3 Mlog(2n07) - 33 (x, — ) 1207 42 (Zlul Y 2o —n,),

i=1 2 i=l j=1 i=1

where A4 is constant and is the Lagrange multiplier of the constraint (2.14). Taking partial

derivatives and setting them equal to zero, yields the equations

13



4D =0 fori=1,2,...K,
dy,;

dDz =0 fori=12,...K,
do;

1

Some simplification yields the following likelihood equations,

Ali nx — ni‘&i 0

i
A2

K

2126_2 O;
JjJ

Jj=1

, i=12,.. K, (2.16)

K

Z(x@/ - A, lfﬁZZ/ﬁ_/
e

n. j=1 .
- - : =0 ,i=12,..K (2.17)
26’\2 2 GAZ 2 K A ’ ’ ’
i ( i ) 2(21/20_/2)3/2
J=1
Equation (2.16) becomes
. A6}

f=%-— (2.18)
3567
J=1

Now, multiply (2.18) by /, on both sides and sum. Then,

K K K 12A2

Dy = 2% A =,

) 206
Jj=1

K K
QL% —Zl,ﬁij : by (2.14)

Plug the above equation into (2.18), which then can be written as

14



K K
16 n, / Y6l - Ix]
X = = (2.19)

u;=x; + K 252
S0
n,

i i
i=1 n,

1

Next, from equation (2.14), equation (2.17) becomes:

n; .
X. — (1.
. IZ:‘( ij lLll) B Alizni o
22 ~2y2 K =V,
O; (6) (Z lnui)z
in1

A i2n73r (&iz)z
—x———=0.

= ni&iz - Z(xg/ - ‘&i)z -
= QL)
i=1

From equation (2.16), the above equation can be rewritten as:

) < ,  Lnd! 2 a2
n;o; _Z(xg/ - ) ————nx, —nf1) zli o; =0.
Jj=1 (zlnui)z i=1
i1

i In’6?
A2 A N2 — A
= no; — Z(x!/ — ;) ————(nx;, —nu)=0.

K
= z Ly,
i=1

Z(xg/_lai)z
= Gl =—=~L—— — , i=12,..K (2.20)
_ Ling (n,x; —n; L)

K
Z li:ai
i=1

Therefore, under the boundary constraint (2.14), candidate maximum likelihood estimators
of {(u,, o})} are given by the solution of equations (2.19) and (2.20). In Section 2.5

below I present an iterative algorithm for solving these equations. Henceforth, following
the usual practice, I will refer to these solutions as maximum likelihood estimators,

denoted MLE’s.

15



There are 2K unknown parameters and solving this system is difficult. A likelihood
ratio test can be carried out by rejecting H, if

sup(L(u,0”)
A= <¢ | (2.21)

where c is calibrated so that the test has nominal size o . The performance of this test and
comparisons to other tests I derive are investigated by simulation in Chapter 5. Letting

A =-2In A, from the results of the simulation study described later (Appendix B, Result
4), the asymptotic distribution of A under H, appears in this nonstandard case not to have
a chi-square distribution with one degree of freedom. Drton (2009) studies a variety of
nonstandard cases and notes that this behavior can result from the nature of the local
geometry of the parameter space. It’s not even clear whether A has a limiting distribution
and if so whether that distribution is free of the true parameter. This issue needs further

study.

Jaber and Cox, in an unpublished manuscript, derived a likelihood ratio test for the

two-sided Behrens-Fisher problem. Specifically, for K=2, let / =(1,-1), and n_= 0; the
hypotheses (2.3) becomes H, : i, = u, against the alternative H, : u, # u,. Under this
null hypothesis, using x4 to denote the common unspecified mean under H,, the maximum

likelihood estimators of 1,0/, are the solutions to likelihood equations, given
implicitly by

— A2 r % A2
X0, Th,X,0,

‘Ll = AD AD
n,c; +n,o,

67 =8+ - i)’

67 =8+, - )’

Zl (xlj - )_51)2 nzz (xz_/ - )_Cz)z

j=1 j=1
where §7=-——— and S, ="
n n,

16



Hence, the LRT statistic is given by:
~2 \ 12 7 . 2\ /2
o o
A= —IJ [—ZJ . (2.22)
[S’f 52

Letting A =-2In A, the asymptotic distribution of A under H, is a chi-square distribution
with one degree of freedom. Jaber and Cox argued that the size of the LRT using &/,

63 (MLE), denoted by (LRT)), is less than that of using S/, S (sample variances),

denoted by (LRT3,), and based on a simulation study both tests have sizes close to the
nominal significance level . However, LRT has slightly higher power than LRT}, and in
most cases, LRT, compares favorably with regard to size and power to the Welch -Aspin
test (Welch (1947) and Aspin (1948)), which has size extremely close to the nominal
significance level. Furthermore, asymptotic results show that there is some relationship
between the generalized likelihood ratio test and the most commonly used test statistic,

denoted by V' below, for the Behrens-Fisher problem:

X —X>»
V=-3 2 2 -
(S; /n +S;5 /n,)

(2.23)

2.3 Simulation Example

Suppose, for example, we have three independent, normally distributed random
variables {X,}}, with means u, (i =1,2,3), standard deviations o, (i =1,2,3), and
independent random sample of sizes { n, }, respectively, and that we want to carry out the
following test:

X, +X
H,:P(X, >%

)<rm=0.9

X, + X
Ha:P(X3>L22)

)>n =09

17



2.3.1 Satterthwaite Approximation (Conservative) Test

LXi
Test statistic: T :Z—’ where [, =(-1/2, —1/2, 1)

1/Z:lizSi2 /n,

P-value=P(T 2T, ), where T~t’ (df’, \Jn(k)n_), @D(n_ )=n . Using the

Satterthwaite approximation given in (2.10), we have that:

/2 2 2
(jsf +nisz2 +nis32)2
dfv: 1 2 3 )
I 232 l; 242 132 252
(le) (isz) (—s3)
n, n, ny

+ +
(m=1) (=1 (n;=1)

Simulation results based on 10000 iterations are summarized in Figure A.1 of Appendix A,

where it can be seen that the p-values are approximately uniformly distributed under H,,

except when sample sizes are far apart.

2.3.2 Satterthwaite Approximation (Estimate) Test

LXi
Test statistic: T :Z—’ where [, =(-1/2, —1/2, 1)

1/Z:lizSi2 /n,

ZIiZSiZ )
=L ),
1/Zlizsi2 /n,

P-value=P(T >7T,, ), where T ~t’ (df’, 6 = ®d(n,)=7=09

Simulation studies for this test are given in Appendix A, Figures A.2-A.3, where closer
approximations to uniformly distributed p-values under the null hypotheses than in Result

1 are evident and powers approaching 1 are obtained as the ISP increases.

18



2.4 Parametric Bootstrap Tests

If the maximum likelihood estimators under the composite null hypothesis (2.4)
could be found, then a parametric bootstrap could be used to calibrate the critical regions

for the LRT statistic A in (2.21), as follows. Stated in general terms, let G, (-, P.) denote
the distribution of a generic test statistic 7= T'(X, ), where the observable X is
generated from a probability law P, , which depends on an unknown parameter 7 .
Suppose that large values of 7 favor H, over H,, statements about 7. An approximate
size o parametric bootstrap test would reject H, when an observed value of 7' exceeds

the 1—a quantile of GN (P, ), where 7, is an estimate of z,, a value of 7 constrained

by H,, and GN (-, P. ) is an estimate of G, (-, F; ) obtained from data generated from
P, . Simulation results presented later indicate that this procedure works reasonably
well. The following theorem gives conditions under which this parametric bootstrap test

will be asymptotically size a in terms of a distance ¢ which metrizes convergence in

distribution.

Theorem 1. (Lehmann and Romano, 2005) Let X, be generated from a probability law
P € P, . Assume the following triangular array convergence: d(P,,P)— 0 and P € P,

implies G, (., P,) converges weakly to G(.,P), with G(.,P) continuous. Moreover,

assume QN is an estimator of P based on X, which satisfies d (QN ,P) — 0 in probability

whenever P e P, . Then, for P=F e R,

P{T,>G'(1-a,0,)} > a as N - . (2.24)

To apply this theorem with 7 being the likelihood ratio statistic given in (2.21), taking
QN = GN (T,P. ) is a natural choice. As stated at the end of Section 2.3, although this

choice appears to work well in my simulation study, it’s not known if the conditions of

19



Theorem 1 hold here. However, the existence of maximum likelihood estimators {7, , }

such that

{Zov} = 7, In P, probability, (*)

is part of a condition that makes { P, } what Drton (2009) calls a regular statistical model

and provides a heuristic justification for the asymptotic validity of the parametric
bootstrap test procedure. I will now establish that (*) holds in a variety of cases by

following Silvey(1975) and showing that a.e. under £, , for any sufficiently small 5,

limsup{ sup (z~7,)"l, (1)} <0, (**)

le=zol=5

where /() =log(f(x|7))is the log-likelihood, and fN ()=

% is its vector of partial
T

derivatives.

2.4.1 Applying (**) to Testing the Mean of a Normal Distribution

Verification 2.4.1:

Let {X;} be independent~N( 1,0 ), Var(X;) = 6 > 0. Beginning with a simple illustration,
suppose we want to test:

Hyip=py, H, o>
Following (**), we have to show here that a.e. under H, for any sufficiently small &,

lim sup{ sup (0 ~6,)I,(0)}<0.
)

|6-6,|=

This will follow from the first order Taylor expansion

jN 0) = jN(QO) +(0 _Ho)z;v(e_) )
where: 0 represents, here and from now on, an appropriate intermediate value,
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0-0]<lp-06,]=5,
[ (0)=-N/20+Y (X, — ) /126°,
1, (0)= N/20> =) (X,—u,)" 16°.
Then, using the strong law of large numbers, a.e. under H, we have for 0 <6 <6, :
0 -6,),(0) = Nlo()+(0—-6,)*0 —2(0 +o(l)))/20°]
= N[o(1)+ 8% (-0 +0(1))/20°]
< N[o(1) + 8% (=0, + 5 +0(1))/2(0, + 5)*]

— -0, as N - ©

which completes the verification.

2.4.2 Applying (**) to the Behrens - Fisher Problem

Verification 2.4.2:

Suppose there are two independent random variables {X,}", ~ N(x,,6,), Var(X;) = 6,> 0,
and {Y;}"2, ~ N(u,,0,), Var(Y;) = 6,> 0 and we want to test

Hy:pw=w,, H :pu+pu,.
To show that under H, é — 0, , in probability, Theorem 1 can again be invoked by
showing that a.e. under H, for any sufficiently small 6, N= n, +n, and
n /N =4 e(0,1),

lim sup{ sup (8-0,)"1,(0)} <0,

oo,

where 8" = (1,6,,6,), 0, = (1,,6,y,6,,) . In this case, we have

ol,(0) ol (6) %@j

j 0 = 5 s
v© [ ou 6, 00,
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n

Z(Xi_:u) Z(Y/—,u) 2
8IN(Q) — =l + J=1 , 0 IN(g) :_nl/el _nz/ez’
ou 6, 0, (on)
) X —u)’ 3 X —u)?
o0 n NP @ _n &
06, 26, 207 06 20 6
3 Y. — )’ 3 Y. — )’
@ =0 oL@ _n =0
00, 20, 20 06, 20 0,
n X B n Y B
2L 25T a0 :_;( T G »
oud6, 0F oo, 0> 30,00,

I prove the consistency of the MLE’s under H, for the Behrens - Fisher problem based on

the following principles.

(1) Show that a.e each of the diagonal terms of IN (@) — —oo for all sufficiently small

0>0.

(2) Show that the off-diagonal terms are smaller than the diagonal terms in absolute value

as 0 —>0.

Notes: For sufficiently small 6 >0,

(i) For {x,y,z} such that x*+y* + z* =82, positive values {a, b, ¢}, then:
ax* + by’ +cz* > 8*Min{a,b,c}

(i) 6,/2<0,<30,/2,i=1,2

Lo/ 2< I <3u,/2
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2
(1) Clearly, a(éN ()6:) =—n, /6, —n, /0, satisfies (1) and using the strong law of large
u

numbers,
N =—L1 =l [1/2 — ]
06, 267 6] 6, b 6,

Z(X 1)’/ my + (ptg — 1) +2(pty — )X = 4]

— nl i=1

= 1/2- —
6, s 6, )

= —[1/2- B + (1, :/7)2 +°(1)] [9 20, - 2(/1_0 - /7)2 + 0(1)]
92 0, 20,
4n1

—[-1.50,, +25% + o(1)]

10

— —0,as n, > o0, and as § —> 0.

>, - iy

— ;1)
ale (0) _ M 4n,
06, 26, 0,’ 27950

Likewise, [-1.50,, +25° +0(1)].

— —0,as n, >0, and as 6 —> 0.

(2) To verify (2), we have that a.e.,

Z(X_, ~min,

0°1,(9) 0L0),,| L=
ouo8, 0,
= lo(D) + (1, — 1)/ 67 <[0(1) + 51/
<2o(1)+651/6; .
. -
Likewise M/n2 <2[o(1)+65]/6;,.

2
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Since:

(0—0,) 1y(0) =(0—0,)"1,(8,)+(8—0,)" 1,(8)(0-0,)

=(u 0)81 56, | +(6, - 910)81 56, + (6, 920)81829 o)
2 0L0) 0 0,(0) PSRN ()
+ (U — L) (u)’ +(6,—6,) (891)2 +(6, —0y) (892)2
~ 0’1,(0) ~ 0°1,(0) ~ o’ (67)
+2(p = )0, = 0,))——— 2000, + 204 — w4 )0, = Oy)—— 2000, +2(60, - 6,))(0, — 0,) 26,00,

(0-0,)"1,(0) < N[-6> min{2(A/6,, + (1 2)/6,,), 279 2 [1.50,, - 25 +o(1)],

10

4(1-1)
276;,

[1.50,, — 287 +o(1)]} + o0, (1) +0;(1)]

— —o0,as N > o, and as § = 0.

where ae. 0,(1) >0as N > o; o,5(1) >0asdé — 0, which completes the verification.

2.4.3 Applying (**) to ISLiv (F) under Hy in (2.4)

Verification 2.4.3:

Let X .~ N( ui,of /n) ,i=1,2,..., K, independent. Then the un-restricted parameter space
is given by: @ ={0" = (1, thys.cr fly,02,02,...,0-)} . Here, inference is desired for

§(0)= le. TN Zl ’c? = ¢ >0. Therefore, the restricted parameter space is defined by the
following:

O = {QT = (C,,uz,...,HK,GIZ,GZZ,...,G;)}, K>2.

Taking without loss of generality /, #0,

24



H = [C\lzliz iz _Zli:ui]/ll

Let 9" = (&, thyyens f1y50,,6,,...,0, ), where 0. =c> >0, N=n +n, +...+n, and
n/N — 21 €(0,1),i=1,..., K.

The principles needed to prove the consistency of MLE’s for (2.14), K>2 are a little

different from those for the Behrens - Fisher Problem, as follows:

(1) Show that a.e each of the diagonal terms of IN (9) - —oo for all sufficiently small
o >0.

(2) Roughly speaking, use the diagonal terms to control the off-diagonal terms as

o —0.

Note that (u, — uio)z >0,i=2,....K, (0, —0_/0)2> 0, j=1,...,K and the off-diagonal terms
(et = p ), = 50 5- -, and (g, — )0, — 0,) are ‘small’. The loglikelihood and its

gradient vector under H are given by

IN(Q)z—Zz’log(27r0) ZZ(x,,—u,) /26, - Z(x1 —[£D 176, Zziui]/zl)z/zel,

i=1 i=2 j=1

Z(x!/ — M) "

o, (9) _ S

gﬂ—:- 5 Z(xll (S 176, - Zlu,]/z) i=2,..K,

i

519 Z(xlj [$\ 210, - Zzul 1/1) ZCZ(XU (¢ 176, - Zlul 1/1)

n
o0, 20, 20 2043126, ’
Z(x,,—u, léZ(xl,—[éw/Zle Zlu,]/l)
(D __m ; i=2,..K.
00, 20, 26 21,0,/ 1%6, T
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(1) Show that a.e each of the diagonal terms of IN (9) —> —oo for all sufficiently small
o >0.

=—=L-L1<0, i=2,..,K, satisfies (1).

_ S (x 1050 S 171
ale(Q)_ n _;(xu 4 z i Ui ; 1) ) nlllzé,z
06 26,y (D% 46,176,

| ke &
{4‘91@599” (9)&19}2(’“/ 6200 - Z AV

2(9 3[9 =260, —2(p — ,u1) +o(1 )] _|: lé, 0n1(1)+05(1):|

400.170,)
4n, ) n, N4
< 5 910[ —0.56,,+26" +o()] + = {4(2120) 0, (1)+05(l):|
— —00,
Ch(3)_ ;1(’“" o ol

©@0) 20y @) 46010

(419(219)3/2]2(’% (€216, ;lﬁ]/ll), i=2,.,K,

_ oy n l4§2
=567 16, ~ 26, 20, ~ 1) + 0D |+ {—4 s o +og(1>}
4n, 5 I'¢
27910 [-0.50,+26" +o(D)] + = [412(21 9) +o, D)+ o, (1):|
— —o0,
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(2) Now, we will use diagonal terms to control the off-diagonal terms as 6 — 0. We have

that

OLy(9) __ml,
a'uia'u/ 0_1112 ’

i’j:27"'7Ka l¢_],

PhD) i S320, - 1E1L), i=2..K
8/,11601 29_1\/21519 1(9) z(xl/ [é, Zm m z ,U,] ) 1 e K

=4 +o0, (1)+0, (1)},
{ JZ 20,

CL(@ _ nll  m(X,-R)
ou,00, 21 9\/2 2y %

, i=2,..K,

n le \/1327 o, ()+ 05(1)}

11
OIS _ mil¢ i,j=2, 0K, i# ]
014,00, 9212\/2 20,

ale(E) _ nllzé/2

0606,  46,0.126,)

m-m

s 120, - 1m/!
i s S

”1 124'2 -
[4(21 29y to, (1)+05(1):|, i=2,..,K.

m-m

O’ (8) _ Lre? n
20 - 1> ee, -1l
06,06, 4129 (2210, 419\/21,,19,,1;( D) Z Ak
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~ I’ll 12124'

AR to,(+o,(N|,  ij=2K, i#].
1 m-m

Finally, a Taylor expansion yields the expression
(8-90)"1x(9) = (990" Iy($) +(8~8,) 1 (I)I - 9,)

=i(ﬂi—ﬂio)%+i(3[ /0)81 )

i

- 20,0, oD

i=2 =1 ' (80_/)

c Y =)t — g D) LSS 0, -0,y T )

i=2,.,K; ' ' a,u,a,u im0 j= 8 89

/=1 ..... K;

i#]

ol (§)
+ (0,-6,)0,-0,))———
i =LK 0 00, 89
i# ]
lzé

LetAi=(/,ti—/,ti0) ,fori=2,.,K,and B, =(0,-0,) ———,for j=1,...K.

h ' 2IJ§§,nm

Then, we have:

(9-8) 1,9 =(3-3)"1,(3)+(3-3,) [, (I)I-3,)

22, 2A, 44,

<N|-8>min{=22, ., :
020 HKO 2 010

[1.50,, = 26" +o(D)],

4§ [1.50,, —25° +o(1)]}

KO0

——(ZA iB_,)z +oy (1) +0,(1)

1 i=2
— —00,as N > o0, and as § = 0.

where o0, (1) >0as N —o; o,(1) > 0asdé — 0,which completes the verification.

28



2.5 An Iterative Method of Finding the MLE’s under Hy in (2.4)

e Algorithm for Finding Candidate MLE’s for a specific value of =
Algorithm 2.1: Let 4 = {4, 4",..., 4"} and 6*” = {6]",8,,....6;"} denote the
candidate mle’s under the null hypothesis at the t™ step.

1. Start the iteration with the multiple initial points for E(O) : /ft(o) = X (sample means);

then from equation (2.20) calculate 6.

2. Plug the value of 6°” into equation (2.19). Then, calculate /ft(l) and
g q lad

diff () = g“’

- (0)‘ . Next, plug the value of i @ into equation (2.20) to

calculate 6*" and diff(6*)" =

~ 2(1) ~ 2(0)‘

3. Tteration: compute ( £ /,t ’,67") from the previous (/l 6" using equations

(2.19) and (2.20) until the maximum of diff (/1) and the maximum of diff (& 2)®
are less than a very small value.

4. Use (4",6"") asthe MLE (/i,6”) under H,.

Preliminary simulations presented in Table 2.1 with {/,,i =1,2,3}= {-1/2,-1/2, 1} and
7 =0.90 indicate that this iterative method appears to have good convergence rates,

especially for large sample sizes where it always converged to a local maximum.

Table 2.1 Estimated Convergence Proportions Based on 10000 iterations

Sample size (n1,n2,n3)
(10,10,10) |(10,12,15) {(10,30,90) |(30,30,30) |(50,50,50)
N(0,1), N(0,1), N(1.56767, 1) 0.8781 0.9417 0.9994 0.9877 0.9990
N(0,1), N(0,10), N(3, 2.743164) | 0.8815 0.9372 0.9991 0.9962 0.9999

X1, X2, X3
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Furthermore, I carried out some simulations to investigate the performance of the
estimators obtained from the algorithm given (2.5) in terms of BIAS and mean squared

error (MSE).

e Estimated Mean Squared Error of MLE’s

Although we do not have an explicit formula for the mean squared errors of the
maximum likelihood estimators described in (2.5), denoted MSE(MLE’s), I estimated

them by simulation, as follows. First, I specified some values for sample sizes: n = 10
(small), 30(medium), 100 (large), and parameters K =3, and {(y,,07),i=1.2,....,K. All
parameter values are listed in the third column in each table. Then, I generated 10000
independent data sets from each setting and computed W(é )= (é -0)?, where 0 = U, or
0,.2 ,i=1,.2,..., K, for each data set. Those W( 0 ) do not include the values where the
algorithm did not converge. The mean of the resulting W’s, denoted, W = MSE (é) ,1sa

consistent, unbiased estimator of MSE(é ). The results are given in Table 2.2 below,

where I report \/ MSE (&) and \/ MSE (67) /o], the latter relative value since there is

considerable variation in the ¢ ’s in the study, i =1,...,K .

e FEstimated BIAS of MLE’s

I used the same approach and data sets as described above to estimate the biases of

the maximum likelihood estimators , where now V( 0 )= (é -0),and = u or ¢’ ,i=

1,2,..., K, for each data set. The mean of the resulting V( 0 )’s over data sets where the

algorithm converged, denoted V()= BIAS(0), is a consistent, unbiased estimator of

BIAS (é) . The results are given in Table 2.3. The parameters and sample sizes setting are
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the same as those for estimated MSE. All parameter values are listed in the third column

in each table.

Table 2.2 Estimated Relative MSE of the MLE’s Based on 10000 iterations
Table 2.2.1 K=3, (a) (u,) =(0.5)

Parameter small sample medium sample large sample
T i Values sizes sizes sizes
lLl[ OA_IZ l[l i OA_IZ l[l i OA_IZ l[l i OA_IZ
1 0 1 0.2931 0.4501 0.1735 0.2581 0.0883 0.1411
055 | 2] 05 1 0.2417 0.3635 0.1364 0.1985 0.0768 0.1149
3 10.4039 1 0.1720 0.4167 0.1054 0.3205 0.0520 0.1273
1 0 1 0.2919 0.4486 0.1726 0.2563 0.0894 0.1411
065 | 2| 05 1 0.2470 0.3644 0.1375 0.2013 0.0762 0.1149
3 10.7219 1 0.1775 0.4101 0.1109 0.3106 0.0548 0.1281
1 0 1 0.2927 0.4564 0.1744 0.2583 0.0906 0.1404
0.75 | 2| 0.5 1 0.2464 0.3648 0.1375 0.1987 0.0762 0.1158
3 11.0761 1 0.1871 0.3956 0.1233 0.2965 0.0583 0.1237
1 0 1 0.3012 0.4599 0.1746 0.2567 0.0917 0.1421
085 | 2| 0.5 1 0.2526 0.3692 0.1364 0.2010 0.0781 0.1166
3115194 1 0.2045 0.3775 0.1411 0.2809 0.0625 0.1170

Table 2.2.2 K=3, (b) (1, ,) =(0.5, 2)

Parameter small sample medium sample large sample
T Values sizes sizes sizes
lLl[ OA_IZ l[l i OA_IZ l[l i OA_IZ l[l i OA_IZ
1 0 1 0.3191 0.4417 0.1811 0.2567 0.0990 0.1404
0.65 | 2 0.5 1.5 0.3165 0.3595 0.1738 0.1999 0.1 0.1157
3 2 ]20.0018] 0.3971 0.3933 0.2851 0.3085 0.1233 0.1247
1 0 1 0.3159 0.4395 0.1794 0.2575 0.0985 0.1411
0.75 | 2 0.5 1.5 0.3116 0.3602 0.1706 0.2 0.0990 0.1153
3 2 16.10671] 0.3490 0.3733 0.2498 0.2915 0.11 0.1186
1 0 1 0.3106 0.4578 0.1797 0.255 0.0954 0.1411
085 | 2 0.5 1.5 0.3059 0.3601 0.1712 0.1969 0.0959 0.1145
3 2 1.4920 | 0.2795 0.5249 0.2040 0.4087 0.0883 0.1686
1 0 1 0.2898 0.4278 0.1729 0.2587 0.09 0.1378
095 | 2 0.5 1.5 0.2895 0.3475 0.1637 0.1959 0.09 0.1105
3 2 0.5069 | 0.1735 0.3563 0.1237 0.2713 0.0548 0.1168
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Table 2.3 Estimated BIAS of the MLE’s Based on 10000 iterations
Table 2.3.1 K=3, (a) (u,) =(0.5)

Parameter small sample medium sample large sample
T i Values sizes sizes sizes

‘Ll i OA_IZ l[l i OA_IZ l[l i OA_IZ l[l i OA_IZ
1 0 1 0.00008 -0.0805 -0.0006 -0.0284 | 5.200e-04 | -0.0075
0.55 2 0.5 1 0.0050 -0.0581 -0.0015 -0.0186 | 4.805e-04 | -0.0047
3 10.4039 1 -0.0022 -0.0247 -0.0029 -0.0061 |-2.534e-05| -0.0041
1 0 1 0.0041 -0.0769 0.0005 -0.0254 0.0006 -0.0080
0.65 2 0.5 1 0.0101 -0.0498 0.0005 -0.0165 0.0008 -0.0073
3 10.7219 1 -0.0078 -0.0308 -0.0052 -0.0091 -0.0008 -0.0023
1 0 1 0.0083 -0.0780 0.0039 -0.03369 0.0013 -0.0096
0.75 2 0.5 1 0.0022 -0.0562 0.00179 -0.0166 0.0020 -0.0036
3 | 1.0761 1 -0.0185 -0.0237 -0.00809 -0.0111 -0.0007 -0.0025
1 0 1 0.0158 -0.0728 0.0037 -0.0255 0.0029 -0.0073
0.85 2 0.5 1 0.0111 -0.0488 0.0031 -0.0163 0.0005 -0.0052
3 11.5194 1 -0.0220 -0.0271 -0.0114 -0.0106 -0.0017 -0.0024

Table 2.3.2 K=3, (b) (1, 1,) =(0.5, 2)

Parameter small sample medium sample large sample
T i Values sizes sizes sizes

‘Ll i OA_IZ l[l i OA_IZ l[l i OA_IZ l[l i OA_IZ
1 0 1 -0.0005 -0.1000 0.0015 -0.0324 -0.0007 -0.0100
0.65 2 0.5 1.5 0.0081 -0.0965 -0.0042 -0.0348 0.0004 -0.0119
3 2 20.0018| -0.0393 -0.2042 -0.0211 0.0070 -0.0043 -0.0176
1 0 1 0.0018 -0.0987 0.0020 -0.0318 0.0018 -0.0081
0.75 2 0.5 1.5 0.0079 -0.0925 0.0018 -0.0302 0.0010 -0.0109
3 2 6.10671| -0.0359 -0.0700 -0.0179 -0.0199 -0.0026 -0.0066
1 0 1 0.0131 -0.0696 0.00218 -0.0316 0.0019 -0.0097
0.85 2 0.5 1.5 0.0203 -0.0634 0.0028 -0.0302 -0.0002 -0.0110
3 2 1.4920| -0.0339 -0.0740 -0.0168 -0.0140 -0.0041 -0.0051
1 0 1 0.0268 -0.0527 0.0104 -0.0094 0.0047 -0.0075
0.95 2 0.5 1.5 0.0244 -0.0266 0.0102 -0.0069 0.0038 -0.0044
3 2 0.5069 | -0.0198 -0.0271 -0.0102 -0.0171 -0.0004 -0.0018

The small entries in Table 2.2 indicate that the Algorithm 2.1 given in section 2.5
provides estimators that are close to being unbiased for the parameter values used in this
study. As expected, bias tends to decrease as sample size increases. However, the
estimated relative, root-mean-squared errors are only as low as the 10% range for the large

sample sizes.
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2.6 Two Methods of Computing a LRT Statistic Under Hy in (2.4)

My null hypothesis is composite and I used two different methods to obtain LRT statistics.
In both cases the algorithm defined above was used to estimate the maximum likelihood

estimators:

Method 1: Compute the LRT statistic with the numerator obtained only for 7 =7, so that
n.=0'(n,).

Method 2: Select representative proportions {7 ;; 0.5<7, <m, j=12,..M; r,, =7}

and use L ,, = Max{L,(y,;,c,)}in the numerator of the likelihood ratio statistic.

Specifically, use the statistic

As will be seen in Chapter 5, Method 1 does not work well, in the sense that it results in a
test that need not be unbiased. Method 2 does perform well overall and appears to result in
an unbiased test. Therefore, I will use Method 2 to investigate the parametric bootstrap
used to calibrate the LRT in the full simulation study presented in Chapter 5. The general
scheme for using a bootstrap to estimate a p-value using a statistic ‘7 ’, where large values

favor H, over H, is given below. I call this the parametric bootstrap likelihood ratio

(PBL) test when T is the LRT statistic.

Having observed 7 = ¢, a parametric bootstrap test is carried out as follows.

1. Obtain the mle éo, v (using Algorithm 2.1) constrained by Hy, where 7 = r,,.

2. Generate R independent samples {fr } from the model P, .

3. Calculate the value of the test statistics 7 (f;) (using Method 2) for each resample.

4. Estimate the p-value by
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1+ 1(1(7) 2 1)

Ak
P R+1

A full simulation study of this method applied to my tests is given in Chapter 5.

2.7. Tests Based on Bootstrap Confidence Sets

An alternative method for testing the hypotheses in (1.2), which, as the reader will
recall, amounts to choosing between ‘ IS(F) <YW > and ‘IS(F) > ¥, is to use a bootstrap,
parametric or nonparametric, to construct a one-sided lower confidence set / for IS(F) and
conclude that ‘IS(F) > V¥’ if I does not contain ¥ . The nonparametric bootstrap can be
carried out by independently resampling from the data from each distribution and using the
percentile method or the BCa (Bias Corrected and Accelerated) of constructing confidence
sets. Hall and Martin (1988) applied this approach to the Behrens-Fisher problem. In

section 4.2.3 I construct confidence sets by using a prepivoted bootstrap.
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Chapter 3 Average P-Values

As stated above, my inference problems lie within the general framework of
constructing tests in the presence of nuisance parameters. The Behrens-Fisher problem is a
famous illustration of how difficult this can be. In cases when a test statistic is pivotal

under H ,, reporting a p-value and rejecting the null hypothesis if p <« provides an exact
size a test. Consider, for example testing H,: u =y, vs H, : u> p, based on a random
sample x of size n from N(u,0°), with both parameters unknown. Here, T =

Jn (X — 1,)/ S has a t-distribution with n-1 degrees of freedom under H, for all values of

the nuisance parameter o > 0. Note that using the concept of monotone likelihood ratio,

this procedure still works if the null hypothesis is generalized to H, : u < y, . Since an

appropriate pivotal does not exist for the Behrens-Fisher problem, a special case of my

tests, p-values that are uniformly distributed under H,, may not be available. Instead, I will
construct p-values to weigh the evidence in the data against H, by averaging p-values

obtained as functions of nuisance parameters over a distribution on these unknown
quantities, a procedure recently studied in other cases by Bayarri and Berger (2000.). In
Section 3.4, I prove that average p-values are asymptotically ‘correct’ under mild

conditions.

Suppose that an observable random variable X has a family of distributions indexed
by a vector of parameters 6 = (6,,0,) and we want to test /,: 6, =0,,, viewing 6, asa
nuisance parameter. We assume that there is a test function 7( X ,8 ) such that
(X ,(6,,08,)) is pivotal for all €, and having observed X = x, large values of 7( x,
(0,0,0,)) =t(x,0,) support the alternative hypothesis H,over H,.If 6, were known, a

p-value, uniformly distributed under /,, would be given by

p(0,)=P(T(X,(0,.0,) 2t(x,0,)).
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In the absence of knowledge as to the value of the nuisance parameter and following

Barnard (1984), we can average p(6,) over a distribution P, on 6, , which may depend

on the observed value of X , yielding an extended p-value given by

p=|p(0:)P(d6; | x), (3.1)

which although not necessarily uniformly distributed under the null hypothesis will ,as I
will show, behaves like a true p-value for my problems, in some cases, in the sense that
rejecting H, when p <« leads asymptotically to an approximate size a test. I will
develop and explore this procedure in this chapter, where having observed X =x, P, isa
Fiducial distribution on @, and when P, is a posterior distribution on @, . Also, both

distributions can be used to compute the ‘probability’ that the null hypothesis is true given
the observed data. The average p-values studied in Bayarri and Berger (2000) are similar
in persepective to (3.1) but different in structure. They consider the situation where the test

function is actually a statistic ,T(X ), whose distribution , F.(-| 8), depends on an

unknown parameter €. They then define an average p-value as
p=[(1-F(T(x)|0)7(d|x),

where 7(d@|x ) is a distribution on 8 which may depend on having observed X = x .

This p-value is the same as the one given in (3.1) in some cases.
Tsui and Weerahandi (1989) have proposed another extended p-value, called a

generalized p-value, to deal with nuisance parameters, which I will investigate in future

research.
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3.1 Fiducial P-Value

The concept of Fiducial probability leads to a form of statistical inference based on
inverse probability without requiring prior probability distributions. It was first proposed
by E.B. Wilson (1927), and then developed by R. A. Fisher (1956). Edwards (1997) is an
informative essay on this mode of inference. However, Fiducial inference is not widely
used now and is not always mathematically consistent and free of contradictions in the

multivariate case. I will use the symbol FP to denote Fiducial probabilities.

In the two-sample case, K=2, [=(1,-1)" and 7 = 0.5, equation (2.1) is the Behrens-
Fisher problem. Barnard (1984) shows that the Behrens-Fisher approach (which can be
viewed as Fiducial inference) compares favorably with Welch’s test. In this chapter, I will
extend the use of the Fiducial approach to test the hypothesis in equation (2.3), for at least
three normal distributions.

Again, consider the hypotheses in (2.4), and for fixed o’ the test statistic given (2.5),

and repeated here for the reader’s convenience,

(o) = S 1Xil> 1’} In, 32)
Jz(ni -1)S}/o}

(N -K)

_Z+06

Nt'(N_K’SZZlfﬂi/ Zlizo-iz/ni) )

where again ¢'(N — K,0) denotes a non-central ¢ distribution with non-centrality parameter

5 and N —K degrees of freedom. Let 7, (c) be the observed value of T(c*).If {5}
were known, a p-value could be defined by

p(c’)=p—value(c’)=P(T 2t,(c”))

A Fiducial p-value is given by:
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Priaia = | P(c)f(c” |data)do’

= p(c")F(dc’ | data) (3.3)

where f(o’ |data) is a joint Fiducial density of o> based on the data, obtained as

follows.

2
Since w has a chi-square distribution with degree of freedom(n, —1), for

O.

fixed sample variance (S} ) and fixed sample size (7, ), the Fiducial distribution of o is
given by:

(n, —1)S?

o’ |data = L, for i=12,...,K (3.4)
FD

{U. |data ~ y*(n, —1) } and the distributions in (3.4) are then scaled-inverse chi-squares
with scale factors (n, —1)S’ and degrees of freedom (n, —1), i =1,2,...,K. The hypotheses

we are interested in are given in (2.4).

If we further assume that the K variances are independent, the Fiducial joint density

( f(c” |data)) of o based on the data is given by

f(g2 | data) = f(o_l2 |S12’ I’ll)f(O'zz |S22’ i’lz)f(O'f( |Slz<9 ny)

H(f(o 1S, n,)

where f(o7|S’, n.) is the Fiducial density function of & given by the data.
That is:

(n,—1) S?
2

.[; f(o-i2 | Siz’ni) do—iz = Pr{%(zn,—l) < b

i

Substituting these Fiducial distributions into (3.3) gives an explicit, complicated

expression for p,.. ... For the case of two-sample Behrens-Fisher problem, the Fiducial p-
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value (3.3) is a generalized p-value as given by Tsui and Weerahandi (1989). The Fiducial

approach also leads to an evaluation of the ‘probability’ of H, as follows.
Since Qllu)| o’ Data~ N L%,y I}a} In,), (3.5)

and under H,,,

Zli:ui <n, \/Zlizo_iz ’ (3.6)

we have that

FP(H, |o’, Data) = ®( (3.7)

n, 211.20'1.2 - le.)?[)
,/Zlfaiz/nl_ '

Averaging over the distributions in (3.4), yields

FP(H, | Data)=E ,[P(H,| o’,Data)]
s DY WS
= o’ \/le‘zo-z‘z/ni

_ 272 . _
=FE, [q)(nﬂ \/Z (n, 1S/ U, Zlixi
nU,

)] (3.8)

Note that FP(H, | Data) # p,.,... here, but they are equivalent using another simple test

statistic Z(c) given in (3.19) below. Small values of FP(H, | Data) could be taken as

evidence in support of the alternative hypothesis.

3.2 An Approximation to the Fiducial P-Value

The Fiducial p-value in (3.3) can in principle be computed by numerical integration.

However, this can be difficult to carry out accurately. An approximation to the Fiducial p-
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value can be obtained by a Monte Carlo simulation, as follows. Instead of numerically

approximating the complicated integral of (3.3), independently select a large number (B)

) from the Fiducial distribution of ¢ , i=1,2,...,K. Next, using

values of o (say, oy,

those independent values O'irep) (i =1,...,K) calculate the value of 7'(c (Zmp)) for each
replication. Then, evaluate the p-value, denoted by f)(g?mp)) . The average of those p-

values is an approximation of the Fiducial p-value, denoted by p,., ., and given by

_ B
ﬁFiducial = Zﬁ(gfrep))/B ’ (39)

rep=1

where p(oc ?,ep)) =P(T>t,(c ?,ep))) and ¢ (g?,ep)) is the observed value of T (g(zrep)) .

obs obs

Here, we take 7 to have a non-central t-distribution with non-centrality parameter 6 =

M (1) and v = N —K degrees of freedom, which provides a conservative test.

This Fiducial p-value is a generalized p-value that will hopefully lead to a test of size
at most or a little above « that also has good power. Based on a preliminary simulation
(given in the Appendix A, Figure A.4), the distribution of the approximation to the
Fiducial p-value in (3.9) appears, as desired, to be approximately uniform under the null
hypothesis only if the sample sizes are equal and large enough (n = 100). But for unequal
sample sizes and for small equal sample sizes (n = 10), the P-values have a highly skewed

distribution under H,. The unequal-sample-sizes case can be improved by using the

replication estimates of the non-centrality parameter ¢ instead of an upper bound as

described in (2.11). Again using

2 2
5=n —VZZU (3.10)
\ /Zlfaf /n,
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2

i(repy 10O this equation in place of o . Then, the test statistic T(c %)

plug the replication o

in equation (3.2) is treated as having a noncentral t-distribution with non-centrality

parameter J,,,, and N-K degrees of freedom. Using

2_2
T(c! : 5. = 2%y 3.11
g(rep)) ~ t (N-K’ ( n ) ) ( . )

rep) ) T
\/ le‘ itremy ! 1

results in an approximation of the Fiducial p-value given by:

_ B
ﬁFiducial = Zﬁ(g?rep))/B ’ (312)

rep=1

where p(oc ?,ep)) =P(T>t,(c ?,ep))) , t (g?,ep)) is an observed value of T (g(zrep)) , and

obs

2

i(rpy s a scaled-inverse

2 2 2 2 —
O rep) = 1T 1trepy> O arepys+++s Okrepy § » TOT TEp =1,2,.. B, Each o

chi-square distribution with scale factor (7, —1)S? and degree of freedom (n, —1) (in

equation 3.4) and they are independent.

Preliminary simulations for Fiducial p-value in (3.12) (given in Appendix A, Figures
A.5-A.6) indicate that this approach appears to yield Fiducial p-values that are

approximately uniformly distributed under H |, and tests that have good power, except for

small sample sizes.
e An Example of the Fiducial P-Value

Assume we have three independent samples from normal distributions having sample
means X,, sample size n,, and sample variance S’, respectively, i =1,2,3. Suppose we

want to test:

H,:P(X, >

(X, +X2))£” ’
2

(X, +X,)

H,:P(X; > )>o, (3.13)
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using the test statistic 7 in equation (3.2) with {/} =(-1/2, —-1/2, 1).

Preliminary simulations for the Fiducial p-value in (3.9) and (3.12) are given in the
Appendix A, Figures A.4-A.6. In Chapter 5, I conducted a full-scale simulation study to
investigate the size and power of this test and compare the results to the frequentist tests

given in Chapter 2.

3.3 Averaging Over a Posterior Distribution

In this section, we present a Bayesian approach to testing the Hypotheses in Equation
(2.4). A conjugate prior distribution and a semi-conjugate prior distribution will be

considered in my future research. Here, we use a Jeffrey’s-type noninformative prior,

given by
K 2
v o
pat. o=ttt (3.14)
N Hi:lo-iz
where ¢ is an arbitrary positive constant.
The posterior distributions of u and o ? are specified by
w %%, ~ N(x,02 /n) (3.15)
2 K .
where {ui o/, x, }i:l are independent and
2
o2 |y, =TS (3.16)
D U.

1

{U,|x,~x*(n,—1)} and {o] | x, } are independent. These distributions can then be used
in (3.1) to compute an average p-value. The distributions in (3.16) are scaled-inverse chi-
square distributions with scale factors (1, —1)S; and degrees of freedom (n, —1), i =1,2,...
K. The hypotheses we are interested in are given in (2.4). Equations (3.5) and (3.6) imply

that the posterior probability of H, given o is
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WY PP =Yy
P(H, |c’, Data) =®(n” \/Z‘ijizz ,x,)' (3.17)
[Fo; /n,

Averaging over the distributions in (3.17), yields
P(H,|Data)=E ,[P(H,|c’,Data)]

BN P ML
* 1/Z:lfaf/ni

:EU[q)(nn\/Z(ni -DS7IT /U, _Zli)_ci)] '

5 (=D} e
nU,
Let us define another simple test statistic:
1X, —n e
Z(gz)_ z i T z i (319)

If o> were known, then the test statistic Z(o”) would have a standard normal distribution

under the upper boundary of H, in (2.4). And a p-value for H (2.4) could be defined by

pa’) = p-value(c™) = P(Z > z,,(c")), (3.20)
where Z ~ N(0,1) ; a posterior p-value could be defined by

Py = | P(c*)d(c” | Data) do” (3.21)

where D(o’ |data) is a joint posterior distribution of o . Comparing (3.21) with equation

(3.18), it is easy to see that P(H, | Data) = p,,, . | will use simulation to study the
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performance of tests based on treating P(H |, | Data) in (3.18) as a p-value for test statistic

Z (gz) in (3.19) and make comparisons to my other tests.

There are many different techniques for simulating draws from complicated
distributions, such as: Rejection Sampling, Gibbs Sampling, and the Metropolis algorithm.

In my future research I will explore using these methods.

3.4 Consistency of “Average” P-Value

Here we show that the average p-values defined in (3.1) are asymptotically correct

under mild conditions, a concept which does not appear to have yet been treated in the
literature. Partition 0 ={0,,0,}, where 8, e EcR’, r>1, is viewed as a vector of
nuisance parameters. Many of our tests have the form H,:{(0)=¢, vs H,:{(0)>¢, ,
where £ (0)={¢ is areal valued function. Suppose that there is a real valued pivotal

T,(Xy,&,0,) such that for a known function H,(.) of x,,, { and 9, :
By (Ty <T\(xy,¢,0,))= Hy(xy |£,0,)

=1- A, (xy 1£.0,).

Based ondata X, = x,, suppose that large values of 7, (x,,&,,0,) support H, over H,,
whatever these hypotheses happen to be. Having observed X , = x,,, T, (x,,¢,.0,) =
t,.(8,)andif 0, were known, a p-value uniformly distributed under H, when the data
were generated by 0 = (6, ,0,) with £(0)=¢,, would be given by

Pyt (0,)) = P(Ty >1,,(6,)[,,0,) (3.22)

= HN(EN |§0’Q2)

Let 7,(8, | x,) be a joint continuous (Posterior or Fiducial) density on ®, ={6,}, N >1.

Then, as defined above, an “average” p-value over =, (6, |x,) is given by
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ﬁN(ﬁN)sz__IN(EN 1 £0,0,)my (0, xy)d0O, . (3.23)

Definition: The average p-value ( p ) is consistent if for all {0 =(6,,0,), £(0)=¢, },

Py(X,)—py(Xy 6550 ae P, as N> (3.24)

where 0 = (0,,0,) denotes the true parameter vector.

Since for all N, p,(X, |0;) is uniformly distributed when X, ~ P., it follows from
Slutsky’s Theorem that a consistent { p, (X,)} is asymptotically uniformly distributed
with respect to P.. This makes p, (X)) what Bayarri and Berger (2000) call a

frequentist p-value.

Theorem 2: Suppose that for all x, and &,, H,(x, |¢,,0,)is differentiable with respect
to 0, and, as , N — oo ,for a decreasing sequence of positive constants {¢,, } = 0 ,

forall " =(6,,0,) for which £(0)=¢,, a.e. P.

() P (0, -8 > ey 1 X,) >0, (3.25)
(i) £y sup A (X 10,0 >0, (3.26)
j=1|82-0|<ey

where ||.| denotes a Euclidean distance and 4’ (X |£,,0,) = 0H (X y 1£,,0,)/06,, 6,

in 0, , are the partial derivatives of H, at 0,, which are assumed to be jointly continuous

functions of (X ,,0,), N >1. Then,

Py(Xy)=py(X, 105 >0 ae P, when N—o
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Proof:

Let B= {0, ;

0, -0 <ey . b (xy) =sup A (xy 14,,6,)

;Qz € B} > d; = (Qz _Q;)_/ >

forj=1,..., . Then, for 8 =(6,,0,), Q_?z a point between @, and 6, , partitioning the
parameter space and using a first-order Taylor expansion, we obtain:

Py (X)) - py(X, 16)| <

Hy (X 1€0,0)—Hy (X, 16,,00)| 740 | X ) O,

J s

e Iy (X 1€0002) = Hy (X, 1£,,62)

7y (0,1 Xy) dO,

(0 =02 hy (X 1£0,0,)|my (0| X )dO,

< .
lo:-6: <o

+J. ng *Q;H>8N ﬂ.N(QZ | KN) dQZ
) I lox—tifse Z‘a'/bj(v/)()_(N)‘ 7y (0, X,y)do,+ J.HQZ*Q;HMN 7y (0, Xy)do,

<[y, W X 101X dO+ [ 70(0:]X ) dO,

,
=en 2,

J=1

BOX )R (|0, -0 > 2 1 X)

"
9, ’ng *QZHS“:N

—0 ae as N >,

which completes the proof.

Berger(1985) gives conditions under which JN (0, -6, | x,) is almost surely,

asymptotically normally distributed with a positive-definite covariance matrix, which can
in some cases be used to verify (i) of Theorem 2. One need not subscribe to either a

Bayesian or Fiducial approach to apply Theorem 2. For frequentists, where the data are

generated from P . with fixed (0,, Q;) , as long as the prior density is positive at Q; , and

(1) and (ii) hold, consistency prevails.
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Example 3.1: Suppose {X_/.}_]/.V=1 ~ iid N(u,0”) and we want to test H, : u = u,, vs
H,:u> u,. We use this example even though the familiar t-test provides an alternative,
exact solution, since it leads to a relatively easy illustration of Theorem 2. With 6, = &”

and TN(ENaGZ):\/ﬁ(fN_;uo)/Ga p(iN,O'z) = HN(&N |,UO,O'2)= (D[\/N()TN_,UO)/O-)]-

Taking a Jeffreys-type noninformative prior of the form
p(@*)=(c/0”) 1y,,(0") ,
the posterior distribution of ¢ is given by:
n(c?|xy)=IG(N -1)/2, (N-1)S,/2), (3.27)

an inverse gamma distribution corresponding to (N —1)Sy /U, where U has a chi-square
distribution with N —1 degrees of freedom. Take &, = N~"**, 0<g<1/2. Condition (i)
holds since, using the asymptotic standard normality of the posterior distribution of

JN (6> —c")/y, where y’is the limiting variance, ¢ denotes the standard normal

density, a.e. ljuo(;* ,

LimP, .(o*-0”|>&,| X\)=Lim[2(1-®(/Ne, /7))] (3.28)

=0.

To verify condition (ii), we have that

NI

207" $((y— X )N /o)

[y (T | 1,07 = (o = X

1 \/ﬁ‘ﬂo _)?N‘

<
2\/% (62)3/2

(3.29)

From the Law of the Iterated Logarithm, we have
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\/ﬁ‘,uo _)_(N‘

Limsu =1 ae. P ., 330
Now p(O'*\/Q,lOglogN) 019,60, ( )
= 035{)’2}{(81\,) o sup ‘h (X, | ty,0 )‘}
Ly (\/loglogN)
—_ 2}\/_ 2* _g) b

w/loglogN) _

a.e. (3.31)

’ ‘910 0,

=
N—>oo 2\/_(
with 6> ¢>0 .

Thus, both conditions of Theorem 2 are satisfied and therefore, the “average” p-value ( p)

for this example is consistent.

Example 3.2: Referring back to the separation hypothesis given in (2.3), let {X, i =
2,...,K} be independent with X, ~N(u,,0./n), i=1,2,..., K, independent.

K K K K
Hy: Zl[ui/ /Zlfa? =n_ vs Hi Zliui/ /Zlfaf >n_, (3.32)
i=1 i=1 i=1 i=1

where {/,} are known constants. Letting 0, = (14,, ..., it )and 0, =(67,05,...,0%),

n,/N =2, €(0,1), we have here £(0)= > Ly, /> I’c} . For known 6,, a p-value

may be based on

K K
TN(KNaéaQZ)zl:Zli)_(i _nﬂ\/zlizo-iz}/\/zlizo-z/n
i=1 i=1

which has a standard normal distribution under H.
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(1) I present a Bayesian approach to testing these hypotheses using an average posterior p-
value. Here, we use a Jeffreys-type noninformative prior, given by

[H,[il 1(0,00) (O'iz )]

2

i=1 i

p(y, o) =c(x)

The posterior distributions of u and o ? are specified by

2 = 2
H; | O;,X; NN(Xi,O'[ /l’li)

K .
where {ui |6i2,§i} , are independent and

=

(n, ~1)S;
U.

1

2
o |x;

1

Sl

{U,|x,~x*(n,—1)} and {o] | x, } are independent with each other. So we have
H(QZ |£) = H[”(QZ[ |£1)] and as in (327)9 l = 1527"'7K

0, | x; =(n,— s, /U,, in distribution, U,~ chi-square (n;-1).

Consider the case K > 2, n,/N - 4, €(0,1), i=1,2,...,K; and Ho: £ (8) =, holds.
Since U, = ';lef , m;,=n,—1, independent, N(0,1) random variables,
Z, =lU;—m]/\2m, — N(0,]).

Hence, in distribution,
0 | x;, = misi /[Zm,\/ 2m; +m,],
and

0y =53 )|x, = —(5512”111/2/111[)/[2”1,1/2/mi +1] . (3.33)

Then, we have a.e., in distribution.

(05— sH) | x, > N(0,262), i=1,..K. (3.34)

Note that P(|s; — 0> &y |xy)=1(4,), i=1...K , where
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I(A4,)=1if ‘sf —6’;‘ > ¢, and 0 otherwise.

Take ¢, = N’ °. We have then,

S, - X = (X, =) In—(X, - ), i=1..K.

J=1 J=1

Using the Law of the Iterated Logarithm and letting ¥, = (X — w), i=1..,K and

} = LimSup{N‘Sq }

= LimSup{N*""[| Y (¥, — 6;) | /n,\[2n,6}, loglog(n,) 21,6}, loglog(n,)}

J=1

= LimSup{[| Y(¥, - 65) | /\[2n,6}, loglog(n) 12, ***n;* 265, loglog(n)}
j=1

j=1...,n

1

S, -0)/n,

J=1

Z(X!/ — 1) /n, -6,

J=1

LimSup{gN1

=0, a.e. PQ .
Likewise,

LimSupi{e, (X, — )’}

= LimSup{n, (X, — )" (N?nA)} =0, a.e. P..
Hence,
LimSup{gN1 Z'(X!/ -X,)’/n -0, } =0, ae. P,.
j=1
and

Lim{P(|s} -0,

2ey|x)t=0 ae. P,

To verify condition (i) for the consistency of the average p-value, we then have :
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(3.38)



P(HQz _Q;HZ ey lxy)
Sip(‘em‘ _9;‘ 2&y/K|xy)
i=1
SiP(‘OZi—sf‘ZeN/2K|§N)+iP(‘9; —s5|z e, /2K | xy)
i=1 i=l1

ggp(ﬁ(ey -7 JAN /2K umép(\@; ~si[2 N 2K )

0, ae., (3.39)

which verifies Condition (i) for the consistency of the average p-value.

(2) To verify (i1), letting @ = ((L,9, Mygs---» Hyyo ) » @, ) be any vector of parameters for
which Hj holds and @ '= ¢, the standard normal pdf, we obtain,

EN(XN 1£4-05) :q)(_zli()?i _,uio)/\lzlizo_iz /n, )a

) g v _ 2 2 (1/2)211‘()?1‘_,“[0) 2
h7(t160,0,0,) =¢( zli(Xi :uio)/\/zli o /n)l n_/(zl,zo'iz/”i)m i

Let ¢(—Zli()?i - /,tio)/lefEf /n;)=d <1/+2x . Hence, using the Law of the Iterated

Logarithm applied to |)? =Ml i=1,2,.. K, we have that for positive constants C,,j
=1,..., K,

K
(6)), sup {h(X,0,,0,)}
J=10, »HQZ *Q;HSEN
S (1/2)21-()_(-—#0)
=(gy) sup |d][ -
' zeee n, (X l'o} In)"

I
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[J;l|ll|‘yl _:u[O‘]

\/20:2 loglogn,

J20 loglogn,
% \/Oi” %% L o)
n[

J267 loglog N
9 908 L,

JAN

K d‘]?‘ Ko
S(N’O‘S“’)Z 4 — Zle sup

j=l 2nj (Z:ll.2 (O':z—g)/nl.) i=1

Nd |’
< (Nfo‘sw)i Ml . s iLim sup
=1 2lj (Zlf (of2 —g)/ll.) i=1

[\/n_zvz”)_(z _:uio‘]

\/ 20,” loglogn,

K
(NN C \Jloglog N +o(1)
=

— 0, a.e. P@

with n,) I}(c]/n)> ¢ >0

Thus, both conditions of Theorem 2 are satisfied and therefore, the “average” p-value ( p)

for this example is consistent.

3.5 Posterior Predictive P-Values

The test statistic 7 in equation (2.6) has two different levels of dependence on

unknown (nuisance) parameters. The first level of dependence is on the nuisance parameter
p =(1,py,...p) in equation (2.6), which is equivalent to ¢* = (07,...,04 ). The second
level of dependence arises because the distribution of T depends on the unknown variances
gz = (612,...,0,2< ). In Chapter 2, one solution was to insert estimates for the nuisance
parameters and take the maximum of p((6,,6, )) over the values of (6,,0, ) determined by

the null hypothesis. As mentioned earlier, a traditional p-value does not exist in the cases

I study because there is no useful pivotal.

Presenting a Bayesian view, Meng (1994) offered a solution to cases like this where

the test variable depends on nuisance parameters by giving an extended p-value, called a
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posterior predictive p-value or discrepancy p-value, which is the tail area probability for a
“discrepancy variable” under the joint posterior distribution of replicate data and the
(nuisance) parameter, both conditional on the null hypothesis. The “discrepancy variable”
is a “test statistic” dependent on unknown parameter(s). The posterior predictive p-value
reduces the two levels of dependence. Following Meng (1994), given a null hypothesis

H,:0,=0,,, the posterior predictive p-value is given by :

Py = Pr{D(ErepaQnQQ} 2 D(E:Qlagz) | LHO}

= Pr{D(Erepanagz} 2 D(x,0,,0,)| x} (3.40)

where D(x,0,,0,) is a discrepancy variable, x'* denotes a replication of x , a “future
observation”. The probability in (3.40) is taken over the joint posterior distribution of
(x"”,6,,,0,) given H . Specifically,

f(ErepaQan | LHo) = f(fep | Qlagz)”o(gz | E) s Ql = Qlo s (341)

= f(irep |Q107Q2)”0 @,1x)

where 7,(8, | x) is the posterior density (probability) of 8, under H,. Meng also gives an
alternative interpretation of p, by taking the posterior mean of p(8,) over the posterior

distribution of @, under H . That is,

ps =E(p(8,)|x,H,) , (3.42)

where p(6,) = Pr{D(X,0,,0,} > D(x,6,,8,) |6, = 6,,,0,} . This probability is obtained

from the frequentist setting, using the sampling density (X |8,,,6,).

Choosing discrepancy variables can be difficult. Meng(1994) suggested two
discrepancy variables, called a conditional likelihood ratio (CLR) and a generalized
likelihood ratio (GLR), assuming that the density f(-) is jointly continuous in its

arguments, is given by
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Supy co, f(x16,,8,)
Supy co, f(x16,,8,)

D (x) = SUp, .o, SUPy, f(x]6,,0,) (3.44)

SupPy e, SUPy, f(x16,,0,)

DC(E&QZ) =

(3.43)

Meng (1994) used two classical examples, including the Behrens-Fisher problem, to
illustrate the posterior predictive p-value. A posterior predictive p-value need not have a
uniform distribution under Hy. But, Meng (1994) shows that if the replication is defined
by nuisance parameters and new data generated, then the Type I frequentist error of a
nominal a-level posterior predictive test is often close to but less than « and will never

exceed 2a.

Here, I verify that the posterior predictive p-value with the conditional likelihood ratio
(CLR), the discrepancy variable, is exactly equivalent to the posterior p-value with the test

statistics in (3.19) and is then also equivalent to P(H | Data).

To prove that p, is equivalent to P(H, | Data)=p,,, , we need to obtain the relationship

between CLR and Z(o’) as defined in (3.19). In fact, it is easy to check that the CLR is a

monotone function of Z(gz) .

Verification 3.5.1: The log likelihood function is given by

K K n
log L(p.0”") =~ log(2n07) = 2.3 (x, — )’ /207
i i=1 j=I

i=1
Suppose 0, =" is fixed. Then, it is easy to obtain the maximum likelihood estimators

(MLE’s) under the null hypothesis and alternative hypothesis.
For 6, ¢®,, the MLE is : 1, =X, (sample mean)

K K
lLo’[n, /Zlfdiz —Zlifi]

For 0,€0,, the MLE is : i, =X, + — g7 =
niz i

i=1 N

1
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Then, we can obtain the conditional likelihood ratio (CLR):
Supy ce, f(x16,,8,)

DC (Ea QZ) =
Supy co, f(x16,,8,)
S (x,“ - ,a,‘)z _(x,“ - ﬁi)z
—opd (A AT,
=1 j=1 20;
1 ) [z li)_ci —-n, zlizo_iz ]2
= ( > cXp z lizo_iz /ni
1
-Qew(z@r)
Thus, 2In[ D€ (x,0,)] ~ x>(1) (a chi-square distribution with df = 1)

= p; is equivalent to P(H, | Data)=Dp,,,,

which completes the verification.
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Chapter 4 Nonparametric Tests

The Wilcoxon-Rank sum test, also called the Mann-Whitney test (Wilcoxon 1945;
Mann and Whitney 1947), provides an exact size « test for the equality of two continuous
distributions, denoted F; and £, based on independent random samples. It is the locally
most powerful rank test for detecting a shift in the logistic distribution and has good power
for many other shift models, without the need to assume a particular distributional form.

The Mann-Whitney form of the test indicates that it is based on estimating 7, = P(X >Y),
X ~F and Y ~ F,, and its asymptotic power function increases as 7, moves away from

1/2. However, the test’s null distribution is obtained under the assumption that ; = F> and
it can perform poorly as a test of equal locations when F, and F; are not just translates of
one another. The rank Welch test (Zimmerman and Zumbo 1993) provides an approximate
size a test of the stochastic equality and inequality (4.1) using an approximating Student-t
distribution, but it exhibits some « inflation in certain cases as given in Delaney and
Vargha (2002). To deal with this case, Reiczigel, Zakaria’s and Ro’zsa (2005) developed a
new test, called the Bootstrap Rank Welch test (BRW), to test for stochastic symmetry

without assuming that the distributions have the same shape. Their hypotheses are given by

H,:P(X<Y)=P(X>Y), H,:P(X<Y)#P(X>Y), (4.1)

for two-sided tests, and

H, :P(X<Y)>P(X>Y) or H,:P(X<Y)<P(X>Y), (4.2)

for a one-sided test.

As described below, I will extend their hypotheses and construct tests to deal with
three or more distributions. Also, Teprstra(1952) and Jonckheere(1954) proposed a
nonparametric test for ordered alternatives among two or more distributions based on the
sum of pairwise Mann-Whitney statistics. In future work I plan to extend their null

hypothesis of equality among the distributions to encompass a degree of ordered separation.
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A generalization of (4.1) relevant to my goal of assessing separation is ISav(F ) given in

(1.8) for some user input 7 > Y2,

H, :2Zmax{7z!/,7zﬁ}/(K(K -)<n, H, :2Zmax{7z

i<j i<j

TMKEK-D))>7.  (43)

§?

I also propose the related hypotheses based on ISpax(F) given in (1.7),

H,:max{rn,}<nm, H,:max{m,}>7. (4.4)

Another well known extension of (4.1) is given by what are called slippage tests,

which will be discussed further in section 4.4.

4.1 A Nonparametric Test Statistic

Developing exact tests for (4.3)-(4.4) is not possible in general since the null
hypotheses are composite and do not require that the distributions be identical. Instead, I
will develop tests based on the bootstrap and study their properties in terms of size, power

and robustness. For example, a test for (4.4) could be based on the statistic

#(x, > X ):l

7= max
i#j,k=L,..n;,I=1..,n; nn.
’ L)

(4.5)

To construct bootstrap tests, we need to take resamples from an estimate of Fj, the
distribution of the data under the null hypothesis. For composite null hypotheses, where H,
does not fully specify Fy, Efron and Tibshirani (1993) propose the following guidelines:

1. Use a test statistic which is approximately pivotal so that its distribution changes
little over the conditions determined by the null hypothesis.

2. Condition on a sufficient statistic for the unknown parameters.

3. Estimate Fy by a CDF F, which satisfies Hy and resample from it.
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Here, I will focus on (3). In our hypothesis tests, there are many parameters of interest and
many nuisance parameters, so that constraining ' so that the null hypothesis holds will be

very challenging.

4.2 Nonparametric Bootstrap Tests

The proposed method applies the nonparametric bootstrap principle to testing (4.4)

based on the new test statistic 7 given in (4.5). First we need to transform the samples
{x,X,,..Xx } into {x,",x,",..x' }to satisfy the null hypothesis, that is, to stochastic
equality. The null distribution of 7 is estimated by resampling from the distributions
(x,",x,",..x,"} and calculating the test statistic for each resample group (f:b) ,b=12,...,B).

Based on this simulated null distribution of 7 , a P-value can be defined as:

p = %Zl(f > f(* 5) for an upper-tail test (4.6)
LA P fora | il

P, = EZ (7 <7) or a lower-tail test 4.7)

p=2mn{p,p,} for a two-tailed test (4.8)

The challenging part here is to figure out how to transform the samples into a new data set

to satisfy the null hypothesis, a problem I will work on.

4.2.1 Symmetric Distributions

If the distributions { F, } are symmetric and 7 =1/2, the hypotheses in inequalities
(4.3) and (4.4) may be viewed as a test for the equality of means,
Hy:p=p=...= .,

H , : At least two means are different. (4.9)
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Then we could just use the usual shift transformation. First, compute an overall mean for
the pooled data, denoted by x . Second, use the equation below to complete the
transformation.

X'=x,~X+% ,j=L2..n,i=12,.,K, (4.10)

g g

where X, = in/ /n, is the sample mean of the i th sample.
J=l

4.2.2 Skewed Distributions

e Shift Models

Assume that we have two or more independent random variables with the same shape
and 7 =1/2. Then our hypothesis test (4.3) and (4.4) becomes a test of equality of
distributions.

We might follow the shift transformation (4.11), use the sample median instead of

sample mean to minimize the effect of outliers,

x,'=x; —Med, + Med , j=12,..,n,i=12,.,K, (4.11)
where Med, denotes the sample median of the i #h variable, and Med denotes the overall

sample median. A simulation study is needed in this case.

e General Models
If we know nothing about the distributions of those random variables, then figuring
out how to transform the samples into a new data set to satisfy the null hypothesis is a
difficult problem. In the present study, there are three potentially useful transformations to
try. The first one is the shift transformation (4.12), a little different from (4.10). The
second transformation is called a stretch transformation (4.13). The last one is a power
transformation (4.14).

x,'=x;+a, j=L2,.,n,i=2,..K, (4.12)

where a can be obtained as the median of the values (x; —x,, ).
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x,'=c(x; —w)y+w, j=12,..n,i=2,..K, (4.13)

. . x,“ - w
where w > 0 and ¢ can be obtained as the median of the values ( —~

).

Im

x'=x! j=12..n,i=2,..K, (4.14)

g g

log(x!/)

where d can be obtained as the median of values {
log(x,,,)
For those three transformations, we let x,, '=x, , m =12,...,n, and make some

transformations for the other samples to satisfy the null hypothesis. Note that the last two
transformations change the ratio of the variances. We need to do a simulation study in the

future to see if this works.

4.2.3 A Nonparametric Bootstrap CI for ISP
Since transforming the samples { x,,x,,...x } into {x,",x,",...x; '} to satisfy the null

hypothesis is complicated, especially to our composite hypothesis. I will use a
nonparametric bootstrap to construct a one-sided lower confidence set CI for ISav(F ) and
ISmax(F) , and conclude that the alternative hypothesis is correct if CI does not contain

Y . The nonparametric bootstrap CI for ISyax(F) is carried out as follows

(1) Resample independently and separately from the data {x,}’, i=L...,K, and
compute IS, (F)=7.

(2) Independently repeat B times, resulting in {7, 7, .

(3) Use the percentile method or prepivoting method developed by (Beran, 1987) to
construct a Lower CI for ISyx(F): CI = [i(Data), o]. Reject Hy if 7 < i(Data) X

Simulation results for this procedure are given in Chapter 5. In future research, I will
use the BCa (Bias Corrected and Accelerated) bootstrap to construct a Lower CI for

IS AV(E ) and ISMAx(E).
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4.3 The Quantile Test Statistic

I examined another test statistic for the hypothesis tests (4.2)-(4.4) called the quantile

test statistic, which is given by:

max|F; (p) = F}'(p)
H(p)=—* (4.15)
-1 -1
KZ;\F (3/4)—F;'(1/4)
where F'(p) is the inverse CDF for ith treatment, defined by:
F'(p)=inf{y:F,(y)>p} for0<p<l1. (4.16)

A preliminary simulation was conducted and the results did not show a general

pattern in a plot of the test statistic H(p) verses p . Therefore, the quantile test statistic

needs to be revised or adjusted in future research.

4.4 Slippage Tests

Slippage tests were considered as an outlier distribution detection by Mosteller
(1948), Paulson (1952), Kudo (1956), Doornbos and Prins (1956), and others for location
slippage, and by Cochran (1941) for variance slippage. In general, suppose we want to
compare K distributions to find out if all these distributions are identical, or, if not, which
one has “slipped” away from the others, which are identical. Actually, this is a more
restrictive test for both null and alternative hypotheses, since it only considers one
‘extreme’ distribution. R. Doornbos published a book called “Slippage tests” in 1966 to
describe the slippage tests for one, or more than one outlier under several families of

distributions.

In my hypothesis test (4.1), another extension is given by slippage tests, whose right-
sided hypotheses are given by:
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Hy: P(X,<X,)=P(X,>X,)=r,=1/2 fori#j

1
Hal:P(Xi>Xj)=ﬂij>E (for j#i=m, and j=1,..m—-1,m+1,...,K;m unknown)

and P(X;>X,)= P(X,<X,)=m; =% (forj#i, and i,j=1,...m—-1,m+1,....K)
(4.17)
Left-sided slippage hypotheses are given by
H, P(X;>X))=m, <% (for j#i=m, and j=1,..m-1,m+1,.,K)
and PX;>X,)=PX,<X;)=nr, 2% (for j#i, andi, j=1,...m—-1,m+1,..,K)
(4.18)

If we assume that those random variables {X,} have the same shape, then the hypothesis

tests in equation (5.5) and (5.6) become.

H,.F=F,=.=F,
1

H :PX.>X)=rm,>— IEN

al ( i _/) 7[4/ 2 (for ]) (4'19)
and X, (j=L..,i-1i+l..,K) follow the same distribution

for one unknown value of 7 (right-slippage test), and

H, :P(X.>X)=n <l (for i#j)

A A / (4.20)

and X, (j=L..,i-1i+l..,K) follow the same distribution

for one unknown value of i (left-slippage test).

The test statistics 7 in (4.5) and H(p) in (4.15) can also can be used to test for the

hypotheses in (4.17) — (4.20).
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Chapter S Simulation Results and Discussion

Before carrying out a full simulation study, I did a small-scale simulation to compare
the bias of the likelihood ratio test (LRT) of the hypotheses given in (2.3), assuming

normality, using Method 1 and Method 2, as explained in Section 2.5, Let 7, denote the
maximum value of 7 under H . Estimated power functions for selected values of

<, ( H,holds) are reported in Appendix B, Table B.1, for the case 7 =7, and Table B.2
for 7 <, , where the LRT p-value is calibrated using a chi-square distribution with df=1
and PBL p-values are calibrated using a bootstrap. I also present QQ plots of the p-values

(LRT and PBL) vs a uniform (0, 1) distribution for the two methods in Appendix B, Figure
B.1.

From these tables and graphs we see that power functions using Method 2 are close

to and mostly less than the nominal ¢ =0.05 value for all cases. On the other hand, the

entries for Method 1 are much larger than nominal when 7 < 7. These conclusions are

supported by the QQ plots in Appendix B, Figure B.1 which show sharp departures from

linearity unless 7 = 7, .

In addition, to investigate the distribution of the test statistics A4, the logarithm of the
likelihood ratio test statistic, Figure B.2 in Appendix B presents histograms of simulated ,

independent copies of 4 under several conditions when A, holds. Sample means and

variances of these histograms indicate sometimes significant departures from the values of
one and two, respectively, which would be the case if these were samples from a chi-
square distribution with one degree of freedom. Consequently, the chi-square distribution
with one degree of freedom should not be used to calibrate the LRT for this class of
hypotheses and accordingly my full-scale simulation only uses the Method 2 with LRT
statistic calibrated using a bootstrap, designated PBL.
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Furthermore, I investigated the affect of different choices of the values {7, } used in

Method 2 on the behavior of the PBL. The results in Table 5.1 and the QQ plots in

Appendix B, Figure B.3, indicate that there is not a large difference due to changing the

gap value, |7, - 7, | from 0.01 to 0.05. In my full simulations described below, I will use

three different gaps.

Table 5.1 Estimated Type I Error Probabilities Comparison of PBL P-Values for IS n(F)

K=3, 1" =(=1/2,-1/2,1), (b) (14, 1t3) = (0.5, 2), & =0.05, 7 = m, = 0.75(PBL),
Iterations = 1000

Small sample sizes Medium sample sizes large sample sizes

Gap | o =0.05 a=0.10 | a«=0.05 a=0.10 | a=0.05 a=0.10
0.01 0.05 0.09 0.035 0.065 0.04 0.09
0.025 0.05 0.09 0.035 0.065 0.04 0.09
0.05 0.05 0.09 0.035 0.065 0.04 0.09

5.1 Simulation Study for ISpv (F) Assuming Normality

In this sub-section, I will focus on the test for the hypotheses given in (2.3). Simulations
here were used to check and compare the Type I error rates and power curves of five p-
values for ISy x (F) under normality. Recall that
K K
ISUNE) = D Lu ! [D 7o}
] i1

I consider the fixed-effects model

Xy =M +&;,
where the independent error terms & ~ N(O,af),i =12,...K;j=1,.,n,,N = Zni ,

resulting in data {xi/. J=12,...n} .

Parameter Settings:
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K=3,57
1" = (=1/(K =1),~1/(K =1),..0), (-1V/(J)-1/(J1),...,1/(J), 1/( J))

where Z‘II/J1 = Z‘II/J2 ,and J,,J, < K are specified below,

#J)) #J2)
a =0.05,0.10
i, =0, o7 =1 (without loss of generality)
# = 200 iterations (data sets)
sample sizes : n = 10(small), 30(medium), 100 (large)
Average p-value: generate 1000 independent variances from the chi-square
distribution.

Bootstrap procedure: generate 99 bootstrap samples.

Case 1

> K=3: I' =(-1/2,-1/2,1)
m =0.55, 0.65,0.75, 0.85
(a) Equal Variance: o} =0, =0, =1
(u,) =(0), (0.5), (1)-------- 3 parameter settings
r =0.75,0.8,0.85, 0.9 for (1,)=(1)
K K
Obtain g, sothat ®[> Ly / D I'c}]=x.
=1 i=1
(b) 67 = u, +1, so that the variance increases with the mean.
(u,, 1) = (0.5, 1), (0.5, 2), (0.5, 5)------ 3 parameter settings
r =0.55,0.65,0.75, 0.8 for (u,, ;)= (0.5,1)
K K
Obtain o, so that CD[ZI[M/ Zlfa?]=ﬂ.

i
i=1 i=1

Case 2
> K=5: I" =(-1/3,-1/3,-1/3,1/2,1/2)
7 =0.75, 0.8, 0.85, 0.9
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(a) Equal Variance: o) =0, =0, =0, =0. =1
(uy, 15, 1,) = (0,0,1),(0.5,0.5,1) ---—---—-- 2 parameter settings
K

K
Obtain u, so that d)[Zl[ui/ Zlfa?]=ﬂ.

i=1 i=1
(b) o7 =p, +1 fori=2,3,4

(W5 s, 1y 1s) = (0,0,2,2),(0.5,1, 3, 3.5) ------ 2 parameter settings

K K
Obtain o; so that ®[D 1,/ /21303]=7z.
i=1 i=1

> K=7: I" =(-1/6,-1/6,-1/6,-1/6,-1/6,-1/6,1)

Case 3

(a) Equal Variance: o} =0, =0, =0, =0. =0, =0, =1
r =0.75,0.8,0.85,0.9
(1> H35 My 155 1) =(0,0,0,0,0), (0.5, 0.5, 0.5, 1,1), (1, 1, 1, 1, 1)

-------- 3 parameter settings

K K
Obtain u, so that d)[Zl[ui/ Zlfa?]=ﬂ.

i
i=1 i=1

(b) 6 =u, +1 fori=2,3,4,5,6

m =0.55,0.65, 0.75, 0.85

(s My, 1y, Hsy Mg, 15) = (0,0, 0,0,0, 1), (0, 0.5, 0.5, 0.5, 0.5, 2),
0.5,1,1, 1, 1.5, 3)------ 3 parameter settings

K K
Obtain o so that O[> /u,/ /szaf 1=x.
i=1 i=1

For each of the parameter combinations, I compare the following test statistics for both
size and the power. In each case, the null hypothesis is rejected if the estimated p-value is

at most the nominal type I error rate, o .
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S LX
N

A_T: Average p-value for T(c’)

Test Statistic: Plug: Plug-in p-value for 7' =

A Z: Average p-value for Z(o ?)= Posterior Predictive p-value

S LX
WA

PBL: Parametric Boostrap Test p-value for LRT statistic A

PBp: Parametric Boostrap Test p-value for plug-in 7' =

The Type I error rates and the power comparisons for a = 0.05 and 0.10 are estimated
using Monte Carlo simulation. As mentioned above, I will use Method 2 throughout my
simulation study to generate PBL p-values under the null hypothesis. I set the gaps

between 7, and 7., equal to three cases, 0.01, 0.025, 0.05.

5.1.1 Comparison of Type I Error Rates

In (2.3), H, is composite for ISy n(F), which makes it difficult to check type I error rates
and powers . Table 5.2 reports representative cases of estimated type I error rates, a , for

these five tests with small, medium, and large sample sizes and nominal type I error

ratea = 0.05 when 7 = 7,. The complete simulation results are summarized in Appendix
C, Table C.1. Cells in the tables where a = 0.05 does not lie in the approximate .95
confidence interval @ £1.96,/a(1—a)/200 are highlighted. The gray color indicates that

the corresponding entry is smaller than the lower bound of the approximate .95 confidence
interval. The pink color indicates that the corresponding entry is greater than the upper
bound of the CI above. The results for &« = 0.10 are very similar and are not reported.
Further, some QQ plots for these five p-values are given in Appendix C, Figure C.1.

These tables and plots lead to the following summary statements.
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(1)

)

()

4)

()

In general, when the sample sizes are large, the Type I error rates for all five tests

are very similar and close to the nominal level « .

For small samples, the Type I error rates for Plug may exceed the nominal « in
some cases, but appear never to exceed 2 « . But, for most of cases, even for
small samples, the estimated Type I error rates for Plug p-value tests appear to be

more stable and closer to the nominal level ¢ than the error rates for the others.

The Average p-value tests for 7 (4_T) and for Z (A_Z) have similar estimated
Type I error rates and these two p-values seem to be a little conservative for small

samples.

The QQ plots in Appendix C, Figure C.1, appear to be equiangular lines through

the origin, especially for the large samples.

Furthermore, in order to check whether the estimated type I error probabilities for

those five tests are less than the nominal a over the parameter space determined

by the composite null hypothesis, I generated data sets under 7 <7, . The

corresponding results are exhibited in Appendix C, Table C.2 for o =0.05 and in
Appendix C, Figure C.2 using QQ plots. These simulation results indicate that
the estimated levels of those five tests are less than the nominal a = 0.05.
Specifically, for some small samples even some medium-size samples, and the
large values of 7, the PBp and PBL p-values have a very conservative Type I

error rate. Sometimes, the estimated Type I error rate = 0.

Although the PBp and PBL test compare well with the tests based on the plug in and

average p-values, they are complex, time-consuming procedures.
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Table 5.2 Estimated Type I Error Probabilities Using P-Values for ISyn(F), 7 =7,.

Table 5.2.1 K=3, (a) (1) =(0.5), & =0.05, I" =(~1/2,-1/2,1)

small sample sizes medium sample sizes large sample sizes
7T |Plug| A T] A Z|PBp | PBL|Plug| A T| A Z|PBp|PBL|Plug| 4 T| 4 z|PBp| PBL

0.55] 0.06 | 0.05 | 0.05 | 0.065 | 0.065 | 0.065 | 0.06 | 0.065| 0.06 | 0.06 | 0.045 | 0.045 | 0.045 | 0.05 | 0.05

0.65] 0.04 | 0.04 | 0.04 |0.045| 0.05 | 0.055| 0.05 | 0.05 | 0.055| 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06

0.75]0.055 | 0.03 | 0.03 |[0.055| 0.03 | 0.065| 0.05 | 0.05 | 0.06 | 0.04 | 0.04 | 0.04 | 0.04 | 0.045 | 0.035

0.85] 0.06 | 0.05 | 0.05 | 0.036 | 0.025 | 0.055 | 0.055 | 0.055 | 0.055 | 0.05 | 0.055| 0.05 | 0.05 | 0.06 | 0.045

Table 5.2.2 K=3, (b) (1,, 11,) =(0.5, 2), a =0.05, 1" =(=1/2,-1/2,1)

small sample sizes Medium sample sizes large sample sizes
7T |Plug| A T] A Z|PBp | PBL|Plug| A T| A Z|PBp | PBL|Plug| 4 T| 4 z|PBp| PBL

0.55] 0.04 |0.045 | 0.045 | 0.04 | 0.05 | 0.035|0.035| 0.04 | 0.045 | 0.045 | 0.05 | 0.05 | 0.05 | 0.045 | 0.045

0.65] 0.035 | 0.035 | 0.035 | 0.035 | 0.055 | 0.06 | 0.055| 0.06 | 0.06 | 0.06 | 0.045 | 0.045 | 0.045 | 0.045 | 0.03

0.75] 0.06 |0.055|0.055| 0.06 | 0.04 | 0.05 | 0.05 | 0.05 | 0.055| 0.06 | 0.05 | 0.05 | 0.05 | 0.055| 0.04

0.85] 0.045 | 0.035 | 0.035 | 0.016 | 0.021 | 0.065 | 0.055 | 0.055 | 0.036 | 0.026 | 0.03 | 0.03 | 0.03 | 0.03 | 0.055

5.1.2 Power Comparisons

To compare powers x(8) at specified alternatives, I present estimated power profiles for
those cases where the type I error rates appear to be close to the nominal « . Figure 5.1 and
Appendix C, Figure C.3, plot estimated powers, denoted &, and compare these five tests
with small, medium, and large sample sizes for some parameter settings. Using the
variance of a binomial distribution, standard errors of these entries K are at most 0.021 for
0< K <0.100r.90 < £<1;0.028 for 0.10< € < 0.20 or .80 < K< 0.90; 0.032 for
0.20< € £ 0.30 0r.70 < £<0.80; 0.035 for 0.30< Kk < 0.70. Furthermore, in Appendix
C, Table C.3, I present the results of Cochran’s test for testing the equality of the powers

among the six tests at fixed alternatives.

H,: The powers are equal.

H ,: At least two powers differ.
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Cochran’s test is used to compare proportions, since all five tests are performed on the

same data set.

Summary of power comparisons:

(1)  When sample sizes are large, or even medium, the power comparison results
indicate that all five tests exhibit similar behavior. Further, Cochran’s test
indicates that the powers only differ for some values of 7, for a few medium and
most small samples.

(2) The Plug p-value test exhibits the highest power when sample sizes are small and
medium.

(3) The PBp and PBL p-values have almost the same power. In some small samples,
these two p-values-based tests appear to be almost as powerful as the Plug p-
value test and they appear to be more powerful than the other two, 4 Tand A_Z,
in most cases.

(4) Clearly, for small or medium samples, the A 7, and A Z have almost exactly the
same power. In most small samples, they appear to be less powerful than the
others. But they appear to be more powerful than the other two (PBp and PBL) in

SOme Cascs.

Overall, from the simulation results for both the level and the power, we conclude that
when samples from normal distributions are large or medium, it does not make any
practical difference which of these five tests is used. But, because the PBp and PBL tests
require much more time than the others, I recommend using the pl/ug-in and the average p-
value tests. For small samples, I recommend using the plug-in test and using parametric
boostrap tests and average p-value tests if controlling the type I error rate is very important.

Overall, the plug-in test is recommended for all cases in practical applications.
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Figure 5.1 Power Simulation of Tests for ISy n(F) From Normally Distributed Data
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5.2 Simulation Study for ISAv(F ) and ISyax(F)

Now, let us investigate the nonparametric tests for ISav(F ) and ISyax(F). As I already
mentioned in Chapter 4, developing exact tests for (4.3) and (4.4) is not possible in
general. Instead, I developed tests based on the bootstrap and studied their properties in
terms of size and power. This sub-section presents estimated Type I error rates and powers

for the nonparametric bootstrap tests (4.3) and (4.4) for ISov(F ) and ISpax(F) .

I first constructed a simple nonparametric bootstrap CI for ISyax and ISay. Since
preliminary simulations indicated that these confidence intervals when used as tests do not
work well in most of cases, I switched to CI’s based on a pre-pivoting bootstrap (Beran,
(1987)) to correct bias and found that it performed better. When a pivot does not exist for a
bootstrap test, its actual type 1 error rate could be far from its nominal value, even for large
samples. The Prepivoting method was developed by Beran (1987) to produce a bootstrap
confidence set that has close to its nominal coverage rate. Beran stated that “Prepivoting is
the transformation of a confidence set root by its estimated bootstrap cumulative
distribution function”. The Prepivoting algorithm for constructing a nonparametric

bootstrap CI is given below:
Algorithm 5.1: Prepivoting Algorithm for Bootstrap CI’s:

Let T be a test statistic, /' be the true cumulative distribution function of the data and

A

Fis the empirical cumulative distribution function obtained from the data. Compute the

n

test statistic 7 (1:"”) obtained from the data.

(A) Let { Z:’ ZZ""’ Z*M} be independent bootstrap samples drawn from 1:"” , Let 15;_/ be an

estimate of 1:"” , obtained from y*A , j=1,2,...,M . Then compute test statistic 7 (ﬁn* /)
—J .
for each resample y*A , j=L12,...,M and the corresponding error term
—J
R,, =T (15;_/) -T (1:"”) , for j=1,2,....M . The empirical cumulative distribution
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(B)

©)

(D)

function of the value {R, ;:1< j <M} well approximates H , for sufficiently large

M, where H (x)=H, (x,F )= pr{R, <x|F}.

Let {Zt‘*l’ Zt‘*z""’ yt*B} be B independent bootstrap samples from 1:“;_/, j=12,...M .
Then, compute test statistic 7 (1:“ /k) for each double resample y*A*k , j=L2,...M,
/> =/

k=1,2,...,B and the corresponding error terms R, .= T(ﬁ;) —T(ﬁ;_/) , for

j:1727--'5M 5 k=1,2,...,B.

#R, .

n »

<R .
Compute Z; = # , for j=1,2,...,M . Then, the empirical cumulative

distribution function of the { Z,:1< j <M } approximates H .. for sufficiently large

M and B, where H,,(x)=H,,(x,F,)= pripriR, ,, <R, } | F} <x|E,].

An approximate 1-o , one-sided C.I. for T is given by:
Cl,, = {t.R,() < H'{H, (1-0)}}

={T-T<H'{H, (1-a)}

Parameter Settings:

The parameter settings for the simulation study of ISav(F ) and ISyax(F) for Normal

distributions are the same as for ISyn (F) with additional choices for pre-pivoting

bootstrap resamples. Specifically, set:

M=100 (M represents the numbers of the bootstrap resample),
B=100 (B is the double bootstrap resample numbers)

Sample sizes: small(10), medium(20), large(50)

a =0.05, 0.10

73



Time constraints only allowed 100 bootstrap resamples and the simulation results are not
good and precise enough to investigate the attained Type I error rates and powers for
ISAv(F ) and ISmax(F) when a =0.05. Usually, for the more precise results, we need at

least 999 bootstrap resamples for o =0.05. So, I only show the results for a =0.10 here.

5.2.1 Simulated Type I Error Rates for IS v(F )

Table 5.3 records estimated Type I error rates of ISav(F ) obtained by using a prepivoting

nonparametric bootstrap CI method. Cells in the table where o = 0.10 does not lie in the
approximate .95 confidence interval @ £1.96,/a(1 —&)/200 are highlighted, where &

represents the estimated type I error rate. The gray color indicates that the corresponding
entry is smaller than the lower bound of the approximate .95 confidence interval. And the

pink color indicates that the corresponding entry is greater than the upper bound of this CI.

The error rates in Table 5.3 are close to 0.10 in general even for some small samples,
except for the case u, = u, =0. That shows us that when two or more populations are very

close to each other, the error rates are inflated even for large samples (n=50). The, largest

inflation might be double what value it should be (a =0.10) when 7 =0.80.

Hence, the prepivoting method seems to work well for ISaov(F) when two or more

distributions are not identical and are fairly far apart.

5.2.2 Simulated Type I Error Rates for ISmax(F )

From the simulation results for the type I error rates of ISyax(F) (given in Table 5.4), we
notice that when we increase the sample size n to 50, the type I error rate is very close to
0.10, even when 7 is large. So, the prepivoting method for ISyax(F) appears to work well

for large sample sizes.

74



But for the small samples, the Type I error rates exhibit serious inflation and even can be
as large as 0.49 when 7 = 0.95. So for ISyax(F), the pre-pivoting method is not useful for

small samples.

Therefore, for ISyax(F), the simulation studies show that the pre-pivoting method is

helpful in reducing the bias for some cases, especially for the large samples.

For both ISav(F) and ISmax(F), there is some inflation of estimated Type I error rates. |

will investigate this issue in future research.

Table 5.3 Prepivoting Nonparametric Bootstrap CI for ISav(F)

Table 5.3.1 k=3, a=0.10

(@) (u,=0) (a) (u,=0.5) (@) (u,=1)
Type I error (¢t ) e e T
0.60 0.70 0.80 0.60 | 0.70 0.80 0.70 0.80 0.85
n=(10,8,9) 0.19 0.21 0.16 0.15 | 0.13 0.13 0.13 0.08 0.1

n=(20,25,28) 0.2 0.19 0.22 0.11 | 0.14 0.12 0.13 0.11 0.1
n=(50,60,55) 0.18 | 0.14 0.25 0.11 | 0.09 0.06 0.1 0.08 0.1

(b) (Hy, 145)=(05,1) | (b) (1y,45)=(0.5,2) | (b) (44, 14;)=(0.5,5)
Type I error (¢t )

T T T
0.65 0.70 0.65 | 0.75 | 0.80 | 0.65 | 0.75 | 0.85
n=(10,8,9) 0.08 0.13 0.07 | 0.14 | 012 | 0.05 | 0.14 | 0.09
n=(20,25,28) 0.12 0.12 010 | 0.14 | 0.08 | 01 | 01 | 0.05
n=(50,60,55) 0.08 0.14 0.16 | 0.09 | 013 | 014 | 0.12 | 0.10

Table 5.3.2 K=5, a=0.10
(@ (0,0,1) (@) (05,05, 1) |(b)(0,0,2,2)] (b) (05,1,3,3.5)
3 T T T

0.66 | 0.70 | 0.75 | 0.65 | 0.70 | 0.75 | 0.71 | 0.74 | 0.77 0.80
n=(10,8,9,7,9) 0.24 | 0.13 | 0.17 | 0.16 | 0.15 | 0.15 | 0.22 | 0.30 0.09 0.12

n=(20,25,22,24,26) | 0.28 | 0.17 | 0.28 | 0.09 | 0.13 | 0.15 | 0.17 | 0.26 | 0.06 0.14
n=(50,60,55,54,58) | 0.17 | 0.12 | 0.16 | 0.16 | 0.19 | 0.15 | 0.23 | 0.24 | 0.13 0.14

Type I error (@)
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Table 5.4 Prepivoting Nonparametric Bootstrap CI for [Syax(F)

Table 5.4.1 K=3, o =0.10

(@ u,=0 (a) 1,=0.5
Type I error () T T
0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95
n=(10,8,9) 0.13 0.23 0.32 0.49 0.12 0.14 0.26 0.47
n=(20,25,28) 0.16 0.12 0.14 0.23 0.11 0.09 0.09 0.23
n=(50,60,55) 0.16 0.11 0.15 0.13 0.09 0.11 0.10 0.11
Table 5.4.2 K=3, a =0.10
(b) (#,,H5)=(05,1) (b) (1, 145)=(05,2)
Type I error (¢t ) T T
0.65 0.70 0.75 0.80 0.65 0.75 0.85 0.95
n=(10,8,9) 0.16 0.12 0.14 0.13 0.11 0.1 0.26 0.42
n=(20,25,28) 0.09 0.05 0.05 0.11 0.08 0.08 0.12 0.19
n=(50,60,55) 0.18 0.09 0.14 0.09 0.16 0.08 0.15 0.09
Table 5.4.3 K=5, o =0.10
(a) (,uz s ,u3 ’ ,u4) = (09091) (a) (,uz s :u3 s :u4) = (0-530-591)
Type I error () T T

0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95
n=(10,8,9,7,9) 0.43 0.53 0.61 0.69 0.32 0.32 0.36 0.54

n=(20,25,22,24,26) | 0.21 0.21 0.33 0.47 0.11 0.07 0.1 0.18
n=(50,60,55,54,58) | 0.21 0.22 0.15 0.18 0.08 0.10 0.09 0.05

5.2.3 Simulated Powers for ISAv(F ) and ISyax(F )

I also investigated the power properties of tests for both ISav(F ) and ISyax(E ). When the
attained Type I error rate is close to its nominal value (« =0.10), the simulated-powers
results for [ISav(F ) (illustrated in Appendix C, Figure C.4) and for ISyax(F) (given in
Figure 5.2) indicate that the prepivoting Bootstrap tests have an increasing power function

when the value of 7 increases.
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Figure 5.2 Power Simulation Results for ISyax(F), Medium Samples

06
1

the power

T T T T T T T
065 070 075 080 085 090 095

pi

(a) K=3 (a) (11,) =(0.5), 7 =0.75

the power
06 08

04

02

T T T T T T T
065 070 075 080 085 080 095

pi

(¢) K=3(b) (u,,15)=1(0.5,2),
n=0.75

5.3 Example

Consider three Normal distributions:

—— X, ~N(0,05{ =0.5),

3),
X, ~ N(l,0; =14.705) .

—--- X, ~N(0,5?
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Although the means are not identical, there is considerable overlap among the three
distributions, as pictured in Figure 5.3 and as indicated by the following values of some

intrinsic separation parameters:

IS, (F)=0.2533 = ®(S,, (F)=0.60. for " ={, =1, =-1/2, [, =1}

1S ,,(F)=0.5650, 1S, (F)=0.6012.

We generated independent random samples of three sample sizes, small, medium, and
large, from these three distributions. Summary statistics are listed in Table 5.5 and the
corresponding side by side boxplots are given in Figure 5.4. The considerable overlap
among these boxplots is, of course, what decision-makers using these data sets would see.

The five p-values for testing the value of 1S,,, using the hypothesis in (2.4) with 7 = 0.50,
0.55, 0.60, 0.65, 0.70 are given in Table 5.6.

First, note that all tests yield results which support the conclusion that the three means are
not identical, i.e., 7 > 0.50. As & increases, indicating increasing separation, the tests
provide increasing support for the hypothesis that the distributions are not ‘far’ apart, a
main point of this dissertation. Except for ‘small’ samples, the p-values of all the tests are
very similar. This example motivates me to investigate in the future procedures for

selecting sample sizes so that my tests have desired power at specified alternatives.

Table 5.5 Summary Statistics of the Data Sets for the Example

Treatments U, o} n, X, s’

10 -0.0251 0.3745

Xl 0 0.5 30 0.0244 0.4039
100 -0.0433 0.5370
15 0.0714 1.705

X2 0 3 50 0.1058 3.3723
150 -0.1622 2.9977
12 2.7141 10.2982

X3 1 14.7050 20 2.5142 16.0952
120 1.3517 15.1650
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Figure 5.4 Side by Side Boxplots for the Data Sets

Side by Side Boxplots
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Table 5.6 Comparison of the P-Values for ISy n(F) for the Example
Table 5.6.1 == 0.50
Sample Sizes Plug AT AZ PBp PBL
Small 0.0074 0.0079 0.0081 0.010 0.0227
Medium 0.0069 0.0075 0.0075 0.010 0.0222
Large 5.4168e-05 | 5.4151e-05 | 5.2923¢-05 0.010 0.0128
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Table 5.6.2 7 =0.55

Sample Sizes Plug AT AZ PBp PBL
Small 0.0202 0.020 0.0193 0.050 0.050
Medium 0.0268 0.0272 0.0269 0.020 0.020
Large 0.0057 0.0058 0.0059 0.020 0.020
Table 5.6.3 7= 0.60
Sample Sizes Plug AT AZ PBp PBL
Small 0.0486 0.0496 0.0508 0.090 0.100
Medium 0.0818 0.0835 0.0825 0.140 0.140
Large 0.1222 0.1216 0.1218 0.140 0.140
Table 5.6.4 7=0.65
Sample Sizes Plug AT AZ PBp PBL
Small 0.1046 0.1075 0.1081 0.070 0.080
Medium 0.2007 0.2013 0.1981 0.220 0.220
Large 0.5969 0.6013 0.6025 0.590 0.750
Table 5.6.5 7=0.70
Sample Sizes Plug AT AZ PBp PBL
Small 0.2025 0.2050 0.2056 0.220 0.230
Medium 0.3990 0.4045 0.4048 0.440 0.440
Large 0.9582 0.9589 0.9594 0.90 0.77

Table 5.7 exhibits the lower limits ( L(Data)) of one-sided lower confidence sets for
ISav(F) and ISmax(F) for the data in this example, obtained by using a nonparametric
bootstrap and prepivoting. We would conclude that the separation among the distributions,
as measured by [Say or ISmax, is greater than 7 only if 7 < i(Data). Again, as L(Data)

increases, indicating increasing separation, the tests provide decreasing support for the
hypothesis that the distributions are ‘that far’ apart. The dividing line here between
separation and not separation is for 7 around 0.56 for IS,y and around 0.60 for ISpax. We
note that these bootstrap results depend, hopefully weakly, on the resample numbers (M,
B).
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Table 5.7 Lower Limit of CI for ISav(F) and ISyax(F) for the Example

Table 5.7.1 Lower Limit of CI for ISsv(F)

) a =0.05 a=0.10
Sample Sizes
M=B=100 | M=B=500 | M=B=100 | M=B=500
Small 0.5489 0.5466 0.5553 0.5719
Medium 0.5743 0.5348 0.5799 0.5558
Large 0.5525 0.5559 0.5544 0.5670

Table 5.7.2 Lower Limit of CI for ISyax(F)

) a =0.05 a=0.10
Sample Sizes
M=B=100 | M=B=500 | M=B=100 | M=B=500
Small 0.6167 0.60 0.6167 0.60
Medium 0.525 0.5683 0.6267 0.6364
Large 0.5792 0.5692 0.5809 0.5804

81



CHAPTER 6 Summary and Conclusion

I developed and explored the concept and tests for some Intrinsic Separation
Parameters: ISpN(F), ISmax(F), and ISav(F)), assuming normality for ISy n(F) , among two
or more distributions which may have different shapes by using frequentist, Bayesian,
Fiducial and bootstrap modes of inference . Over all, the tests developed for ISP among
normal distributions with unequal variances are more complex than the one-way ANOVA,

which tests the equality of means with equal variances.

For ISy n(E), 1 developed five tests for this ISP, assuming the normality. They are the
plug-in test (Plug), two average p-value tests (A_T, A_Z), and two parametric boostrap
tests (PBp, PBL). The asymptotic behavior of the parametric bootstrap test and the average
p-value tests are derived in Chapter 2 and Chapter 3 separately. Chapter 2 presents a
method for proving that the parametric bootstrap test for the LRT is an asymptotically
size-o¢ test under normality and some mild conditions. Chapter 3 proves that the average
p-value ( p) is consistent under normality. In addition, based on the simulation results in
Chapter 5, in terms of estimated size and power, my five testing procedures perform very
similarly and very well for medium and large samples. Furthermore, Example 5.3
illustrates these five tests and shows them to behave similarly. In general, it does not

matter which of these five procedures for medium and large samples (>30), we use.

When samples are very small (< 15), simulation results show that the plug-in test
performs well regardless of the values of the error variances, and the number of
distributions being compared, except it has type I error rates inflated for a few cases. Other
tests, compared to the plug-in test, are more conservative, but with the loss of power

(significant in most of cases).

Since a meaningful interpretation of IS,  (F) depends heavily on the assumption of

normality, the issue of robustness of tests for it is of limited interest. Defining and
investigating more ISP’s such as ISyax(F) and ISay(F)) which do not depend on the form

of the underlying distributions would be an important step forward. Constructing effective
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tests for ISP for ISav(F ) and ISmax(F) remains a challenging problem. Prepivoting a
bootstrap to reduce the bias in constructing a one-sided lower confidence set for ISav(F )

and ISyax(F) only appears to works in some cases. This issue warrants further study.
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(1)
)

3)

4)

)

(6)

CHAPTER 7 Further Researches

Investigate robustness of my tests with respect to the presence of outliers.

Develop procedures for selecting sample sizes so that my tests have desired power
at specified alternatives.

Develop another approach to compare several distributions (sometimes called
counting overlap), which is an intrinsic separation test based on the proportion of
overlapping observations.

Further explore the concept of separation for skewed families of location scale
distributions such as the extreme value.

Investigate the ISP for ISav(F ) and ISyax(F) by using BCa (Bias Corrected and

Accelerated) method or develop other procedures.

Derive the asymptotic distribution of the likelihood ratio test for IS, (F).
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APPENDIX A

Figure A.1 Estimated P-Values Under (2.4): H,: [Syn(F)<n_

Satterthwaite Approximation (Conservative) Test—p-value (2.9) , 10000 Iterations

(A1) X, =X, ~N(O1), X, ~N(1.56767,1), [ = (~1/2,~1/2,1)

Figure A.1.1 Uniform Q-Q Plot of Estimated P- Value
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Figure A.1.2 Uniform Q-Q Plots of Estimated P- Values
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Figure A.2 Estimated P-Values Under H, (2.4)

Satterthwaite Approximation (Estimate) test—p-value (2.12)

(A2.1) X, =X, ~N(O1), X, ~N(1.56767,1), I" = (~1/2,~1/2,1), 10000 Iterations

Figure A.2.1 Uniform Q-Q Plots of Estimated P- Values
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Figure A.3 Estimated Power (//,:(2.4) )

Satterthwaite Approximation (Estimate) Test (p-value (2.12))—Power

(A3.1) X, =X, ~N(O1), X, ~N(1.56767,1), I" = (~1/2,~1/2,1), 1000 Iterations ,

m=n,_.
Figure A.3.1 Power vs n_
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Figure A.4 Fiducial P-Values under 4, (2.4)

Conservative Test—P-value (3.9)

(Ad.1) X, =X, ~N(O1), X, ~N(1.56767,1), I = (~1/2,~1/2,1), 5000 Iterations
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Sample Quantiles

Figure A.5 Fiducial P-Values under 4, (2.4)
Replication Test—P-value (3.12)

(A5.1) X, ng ~N(0,1), X, ~N(1.56767,1), 1" =(~1/2,-1/2,1), 5000 Iterations
(rep = 1000)

Figure A.5.1 The Uniform Q-Q Plot of Fiducial P- Value (Replication test)
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Figure A.6 Fiducial P-Value -- Power (,:(2.4) )

Replication Test (p-value (3.12))—Power

X, ~N(O,1), X, ~N(0,(10)*), X, ~ N(5,(12.5087)*), I" =(~1/2,-1/2,1),
1000 Iterations (rep = 500) , m= n_.

Figure A.6 Power vs n_
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APPENDIX B

Table B.1: Estimated Type I Error Probabilities for LRT and PBL, 7 =7,

Table B.1.1 k=3, I” =(~1/2,-1/2,1), (a)(1,) =(0.5), & =0.05

small samples

medium samples

large samples

T Methodl Method2 Methodl Method?2 Methodl Method?2
LRT PBL PBL LRT PBL PBL LRT PBL PBL
0.55| 0.085 0.065 0.065 0.055 0.05 0.06 0.065 0.065 0.05
0.65| 0.065 0.065 0.05 0.065 0.06 0.06 0.045 0.045 0.06
0.75 0.05 0.03 0.03 0.045 0.05 0.04 0.05 0.055 0.035
0.85] 0.051 0.062 0.025 0.050 0.065 0.05 0.055 0.055 0.045
Table B.1.2 K=3, [T =(-1/2,-1/2,1), (b) (u,, 1;) =(0.5, 2), o =0.05

small samples

medium samples

large samples

T Methodl Method?2 Methodl Method?2 Methodl Method?2
LRT PBL PBL LRT PBL PBL LRT PBL PBL
0.55 0.07 0.06 0.05 0.04 0.035 0.045 0.065 0.055 0.045
0.65| 0.055 0.05 0.055 0.055 0.04 0.06 0.07 0.055 0.03
0.75| 0.085 0.055 0.04 0.05 0.04 0.06 0.065 0.065 0.04
0.85| 0.041 0.052 0.021 0.047 0.052 0.026 0.04 0.045 0.055
Note:

(1) The gray color indicates that the entry is smaller than the lower bound of the

approximate .95 confidence interval.

(2) The LRT p-value is constructed by using a chi-square distribution with df=1.
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Table B.2 Estimated Type I Error Probabilities for LRT and PBL, 7 < r,

Table B.2.1 Estimated type I error probabilities, K=3, [T =(-1/2,-1/2,1),
(a)(u,) =(0.5), o =0.05, 7, =0.85 (methodl)

LRT PBL
T 0.65 0.70 0.75 0.80 0.65 0.70 0.75 0.80
Small samples | 0.575 0.37 0.18 0.09 0.575 0.395 0.21 0.11
Medium samples| 0835 | 0715 | 0335 | 0.105 0.84 0.69 0.33 0.11
Large samples 1 1 0.96 0.47 1 1 0.955 0.46

Table B.2.2 Estimated type I error probabilities, K=3, [T =(-1/2,-1/2,1),
(b)(u,, 13) =(0.5, 2), 7, =0.75 (methodl)

LRT PBL
T 0.60 0.65 0.70 0.74 0.60 0.65 0.70 0.74
Small samples 0.28 0.2 0.095 0.04 0.285 0.18 0.09 0.035
Medium samples| 0.425 0.215 0.1 0.065 0.415 0.215 0.095 0.05
Large samples | 0.99 0.815 0.355 0.045 0.99 0.815 0.34 0.05

Table B.2.3 Estimated type I error probabilities for PBL, K=3, [T =(-1/2,-1/2,1),
7 < 1, (method2)

(@) (u,) =(0.5), 7, =0.85 (b) (1y, H3) =(0.5,2), 7, =0.75
T 0.65 0.70 0.75 0.80 0.60 0.65 0.70 0.74
Small samples 0 0 0.005 0.005 0.015 0.01 0.025 0.06
Medium samples 0 0 0 0 0 0.005 0.002 0.025
Large samples 0 0 0 0 0 0 0 0.003

Note:
(1) The rose color indicates that the entry is greater than the upper bound of the
approximate .95 confidence interval.
(2) The LRT p-value is constructed by using a chi-square distribution with df=1.
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Figure B.2 Histograms of the Test Statistic (1)
7, =0.75, K=3, 1" =(=1/2,-1/2,1), (a) (u,) =(0.5), medium samples.
(generate 1000 data sets)

Figure B.2.1 Using Medthod 1 (7,=0.75 ) to obtain A
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Figure B.2.2 Using Method 2 ( max( L, )=max(log L(ﬁ,g2 ),) ) to obtain A
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Figure B.3 QQ Plots of the PBL P-Value for Different Gaps

Figure B.3.1 Small samples
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Figure B.3.2 Medium samples

Sample Quantiles

Figure B.3.3 Large samples
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APPENDIX C

Table C.1 Estimated Type I Error Probabilities for ISy~ (F), 7 = 7,

Table C.1.1 k=3, 1" =(~1/2,-1/2,1), (a)(1,) = (0), & =0.05

small samples

medium samples

large samples

JU |Plug| AT|AZ|PBp |PBL|Plug| AT|AZ|PBp|PBL|Plug|\AT|AZ| PBp |PBL
0.55] 0.055 | 0.035 | 0.035 | 0.055 | 0.055 | 0.05 | 0.05 | 0.05 | 0.05 | 0.055| 0.06 | 0.06 | 0.06 | 0.055 | 0.03
0.65] 0.055 | 0.035 | 0.03 | 0.05 | 0.045 [ 0.055 | 0.05 | 0.05 | 0.05 | 0.075 | 0.06 | 0.06 | 0.06 | 0.045 | 0.04
0.75] 0.065 | 0.045 | 0.045 | 0.06 | 0.055 | 0.05 | 0.05 | 0.05 | 0.055 | 0.055| 0.06 | 0.055 | 0.06 | 0.055 | 0.05
0.85] 0.04 | 0.025 | 0.025 | 0.035 | 0.031 | 0.04 | 0.04 | 0.04 | 0.04 | 0.075 | 0.05 | 0.045 | 0.045 | 0.06 |0.085
Table C.1.2 K=3, [" =(-1/2,-1/2,1), (a)(u,) =(1), a =0.05

small samples medium samples large samples

JU |Plug| AT|AZ|PBp |PBL|Plug|\AT|AZ|PBp|PBL|Plug|\AT|AZ| PBp |PBL
0.75] 0.045 | 0.035 | 0.035 | 0.05 | 0.055 | 0.05 | 0.05 | 0.05 | 0.065 | 0.08 | 0.035 [ 0.035 | 0.035 | 0.04 |0.065
0.80] 0.035 | 0.02 | 0.02 | 0.025 | 0.06 | 0.05 | 0.045 | 0.05 | 0.045 | 0.07 | 0.05 | 0.05 | 0.05 | 0.05 | 0.04
0.85] 0.065 | 0.045 | 0.045 | 0.026 | 0.025 | 0.05 | 0.04 | 0.045 | 0.05 | 0.03 | 0.035 | 0.03 | 0.03 | 0.035[0.075
0.90| 0.06 | 0.03 | 0.03 | 0.006 | 0.006 | 0.06 | 0.06 | 0.065 | 0.011 | 0.016 | 0.04 | 0.035 | 0.035 | 0.035 |0.065
Table C.1.3 K=3, " =(=1/2,-1/2,1), (b) (14, 1t;) =(0.5, 1), ¢ =0.05

small samples medium samples large samples

7T \Plug| AT|\AZ|PBp|PBL|Plug|\AT|AZ|PBp|PBL|Plug|\AT|AZ| PBp|PBL
0.55] 0.04 | 0.04 | 004 | 003 [0055[ 0.03 | 0.03 | 003 | 003 | 005 | 0.07 | 0.07 | 0.07 | 0.065 | 0.07
0.65] 0.055 | 0.045 | 0.045 | 0.06 | 0.035 | 0.04 | 0.04 | 0.04 | 0.045 | 0.07 | 0.035 | 0.035 | 0.035 | 0.035 | 0.03
0.75] 0.05 | 0.035 | 0.035 | 0.04 | 0.05 | 0.045 | 0.035 | 0.035 | 0.04 | 0.035| 0.06 | 0.055 | 0.055 | 0.055 |0.035
0.80| 0.06 | 0.035 | 0.035 | 0.065 | 0.05 | 0.04 | 0.03 | 0.03 | 0.05 | 0.035| 0.065 | 0.06 | 0.06 | 0.065 |0.065
Table C.1.4 K=3, I" =(=1/2,-1/2,1), (b) (1, 1t;) =(0.5, 5), & =0.05

small samples medium samples large samples

7T \Plug| AT|\AZ|PBp|PBL|Plug|\AT|AZ|PBp|PBL|Plug|\AT|AZ| PBp|PBL
0.55] 0.035 | 0.035 [ 0.035 | 0.03 | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | 0.065| 0.04 | 0.04 | 0.04 | 0.035 | 0.03
0.65] 0.045 | 0.045 | 0.045 | 0.04 | 0.055 [ 0.03 | 0.035 | 0.035 | 0.035 | 0.04 | 0.045 | 0.045 | 0.045 | 0.045 | 0.07
0.75] 0.03 | 0.03 | 0.03 | 0.03 [ 0.026 [ 0.055| 0.06 | 0.06 | 0.04 | 0.035| 0.06 | 0.06 | 0.055 | 0.055 | 0.08
0.85] 0.045 | 0.045 | 0.045 | 0 0 | 005|005 [0045| 0 0 | 0.055] 005 | 0055|0055 [0035
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Table C.1.5 K=5, 1" =(=1/3,-1/3,-1/3,1/2,1/2), (@) (1, 15, it,) = (0, 0, 1), & =0.05

small samples

medium samples

large samples

T |Plug| A T|AZ|PBp | PBL|Plug|l A T] AZz|PBp|PBL|Plug| 4 T| 42| PBp|PBL
0.75] 0.04 | 0.025 | 0.025 | 0.035 | 0.04 | 0.065 | 0.055 | 0.055 | 0.075 | 0.08 | 0.055 [ 0.05 | 0.05 | 0.055 | 0.06
0.80] 0.045 | 0.005 | 0.005 | 0.04 | 0.04 | 0.06 | 0.06 | 0.06 | 007 | 0.07 | 0.04 | 0.035 | 0.035 | 0.05 |0.055
0.85] 0.04 | 0.02 | 002 | 0.04 | 0055 0045 | 0.03 | 0.03 | 0.04 | 0.035| 0.05 | 0.04 | 0.04 | 0.045 | 0.05
0.90] 0.075 | 0.025 | 0.025 | 0.035 | 0.045 | 0.025 | 0.02 | 0.02 | 0.04 | 0.04 | 0.05 | 0.045 | 0.045 | 0.055 |0.055
Table C.1.6 K=5, I" = (=1/3,-1/3,-1/3,1/2,1/2), (a) (i, it5, 2,) = (0.5, 0.5, 1),

a =0.05

small samples medium samples large samples
T |Plug| A T|AZ|PBp | PBL|Plug| A T] AZz|PBp|PBL|Plug| 4 T| 42| PBp|PBL
0.75] 0.06 | 0.035 | 0.035 | 0.075 | 0.075 | 0.055 | 0.045 | 0.045 | 0.05 | 0.05 | 0.04 | 0.035 | 0.035 | 0.055 |0.055
0.80] 0.02 | 0.005 | 0.005 | 0.03 | 0.045 [ 0.05 | 0.04 | 0.04 | 0.05 | 0.055| 0.055 | 0.045 | 0.045 | 0.035 | 0.04
0.85] 0.055 | 0.045 | 0.04 | 0.051 | 0.051 | 0.055 | 0.03 | 0.03 | 0.055 | 0.05 | 0.05 | 0.045 | 0.045 | 0.05 | 0.05
0.90] 0.065 | 0.02 | 0.025 | 0.045 | 0.045 | 0.045 | 0.04 | 0.04 | 0.045 | 0.045 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05
Table C.1.7 K=5, I" = (=1/3,-1/3,-1/3,1/2,1/2), (b) (i, 145, 11, ) = (0, 0, 2, 2),

a =0.05

small samples medium samples large samples
T |Plug| A T|AZ|PBp | PBL|Plug| A T] Az |PBp|PBL|Plug| 4 T| 42| PBp|PBL
0.75] 0.06 | 0.05 | 0.05 | 0.045 | 0.045 | 0.04 | 0.04 | 0.04 | 004 | 004 | 005 | 0.05 | 0.05 | 0.045 |0.045
0.80] 0.05 | 0.04 | 004 | 004 | 0.04 | 0.05 | 0.05 | 0.05 | 0.055| 0.055| 0.04 | 0.03 | 0.03 | 0.05 | 0.05
0.85] 0.04 | 0.025 | 0.025 | 0.020 | 0.025 | 0.045 | 0.04 | 0.04 | 0.03 | 0.03 | 0.045 | 0.04 | 0.04 | 0.055 |0.055
0.90| 0.06 | 0.015 | 0.015 | 0.027 | 0.011 | 0.04 | 0.035 | 0.035 | 0.02 | 0.015 | 0.075 | 0.065 | 0.065 | 0.06 |0.065

Table C.1.8 K=5, [T =(-1/3,-1/3,-1/3,1/2,1/2), (b) (1, pt5, p1,,145) =(0.5, 1, 3, 3.5),
a =0.05

small samples

medium samples

large samples

Plug

AT

AZ

PBp

PBL

Plug

AT

AZ

PBp

PBL

Plug

AT

AZ

PBp

PBL

0.75

0.04

0.03

0.03

0.025

0.02

0.035

0.035

0.035

0.025

0.025

0.045

0.045

0.045

0.04

0.04

0.80

0.06

0.05

0.05

0.036

0.036

0.08

0.08

0.08

0.061

0.061

0.065

0.055

0.05

0.065

0.06

0.85

0.04

0.025

0.025

0.005

0.005

0.04

0.035

0.035

0.026

0.031

0.04

0.035

0.035

0.035

0.03

0.90

0.045

0.035

0.035

0.022

0.005

0.05

0.05

0.05

0.021

0.015

0.04

0.03

0.03

0.03

0.035
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Table C.1.9 K=7, (a) (14, f1s, iy tss f1g) = (0.5,0.5,0.5, 1, 1), & =0.05,
1" =(=1/6,-1/6,-1/6,-1/6,~1/6,-1/6,1)

small samples medium samples large samples
7T \Plug| AT|\AZ|PBp|PBL|Plug|\AT|AZ|PBp|PBL|Plug|\AT|AZ| PBp|PBL
0.70] 0.055 | 0.04 | 0.04 | 0.055 | 0.055 | 0.06 | 0.05 | 0.045 | 0.045 | 0.05 | 0.04 | 0.04 | 0.04 | 0.05 | 0.05
0.75] 0.09 | 0.05 | 005 | 006 | 0.06 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.055 | 0.045 |0.045
0.80] 0.095 | 0.065 | 0.065 | 0.051 | 0.051 | 0.075 | 0.065 | 0.065 | 0.065 | 0.065 | 0.08 | 0.08 | 0.08 | 0.075 |0.075
0.85] 0.065 | 0.045 | 0.045 | 0.011 | 0.006 | 0.065 | 0.045 | 0.045 | 0.051 | 0.056 | 0.08 | 0.08 | 0.08 | 0.07 | 0.07
Table C.1.10 K=7, (a) (u,, py, thy ts, 1) =(1, 1, 1,1, 1), o =0.05,
1" =(-1/6,-1/6,-1/6,-1/6,-1/6,~1/6,1)
small samples medium samples large samples
7T \Plug| AT|\AZ|PBp|PBL|Plug|\AT|AZ|PBp|PBL|Plug|\AT|AZ| PBp|PBL
0.70] 0.07 | 0.055 | 0.055 | 0.065 | 0.065 | 0.06 | 0.055 | 0.055 | 0.065 | 0.065 | 0.045 | 0.04 | 0.04 | 0.045 |0.045
0.75] 0.08 | 0.05 | 0.05 | 0.07 | 0.065 | 0.065 | 0.055 | 0.055 | 0.055 | 0.055 | 0.06 | 0.06 | 0.06 | 0.06 |0.065
0.80] 0.06 | 0.04 | 0.04 | 0.035 | 0.035 | 0.045 | 0.045 | 0.045 | 0.06 | 0.06 | 0.035 | 0.035 | 0.035 | 0.045 |0.045
0.85] 0.075 | 0.04 | 0.04 | 0.006 | 0.006 | 0.045 | 0.03 | 0.03 | 0.035 | 0.035 | 0.065 [ 0.065 | 0.06 | 0.05 | 0.04
Table C.1.11 K=7, (b) (), ly, 1y, Us, Mo, 145) =(0,0.5,0.5,0.5, 0.5, 2), a =0.05
1" =(-1/6,-1/6,-1/6,-1/6,-1/6,~1/6,1)
small samples medium samples large samples
7T \Plug| AT|\AZ|PBp|PBL|Plug|\AT|AZ|PBp|PBL|Plug|\AT|AZ| PBp|PBL
0.75] 0.045 | 0.045 | 0.045 | 0.035 | 0.035 | 0.045 | 0.04 | 0.035 | 0.045 | 0.045 | 0.06 | 0.06 | 0.06 | 0.05 | 0.05
0.80] 0.055 | 0.05 | 0.055 | 0.011 [ 0.011 | 0.07 | 0.065 | 0.065 | 0.06 | 0.06 | 0.065 | 0.055 | 0.055 | 0.06 | 0.06
0.85] 0.06 | 0.02 [ 0.025| 002 | 0 [ 0045 0.04 | 0.04 | 0.011 | 0.011 | 0.055 | 0.05 | 0.055 | 0.05 | 0.05
0.90] 0.05 | 0.035 | 0.035 | 0 0 | 005 [ 00450045 | 0 0 | 003 [0035]0035 | 00350035
Table C.1.12 K=7, (b) (pty, ly, My, Hs, Mo, ;) =(0.5, 1,1, 1, 1.5, 3), a =0.05,
1" =(-1/6,-1/6,-1/6,-1/6,-1/6,~1/6,1)
small samples medium samples large samples
7T \Plug| AT|\AZ|PBp|PBL|Plug|\AT|AZ|PBp|PBL|Plug|\AT|AZ| PBp|PBL
0.75] 0.055 | 0.05 | 005 | 003 | 0.03 | 0.06 | 0.06 | 0.06 | 006 | 006 | 0.06 | 0.06 | 0.06 | 0.045 |0.045
0.80] 0.055 | 0.035 | 0.035 | 0.011 | 0.011 | 0.065 | 0.06 | 0.06 | 0.065 | 0.06 | 0.06 | 0.055 | 0.06 | 0.06 | 0.06
0.85] 0.09 | 0.075 | 0.075 | 0 0 | 00650055 005 | 0 0 | 0.055]0055]0055| 005 | 005
0.90] 0.09 | 007 | 007 | 0 0 |0055] 005 | 005 | 0 0 | 0.055]0055] 0055|0010 [0.010
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Table C.2 Estimated Type I Error Probabilities of P-Values for ISpin(F), 7 <7,
Table C.2.1 K=3, [ =(-1/2,-1/2,1), (a)(u,)=(0.5), a =0.05, 7, =0.85

small samples medium samples large samples

7T \Plug| A T|AZ|PBp|PBL|Plug\ A T]|AZ|PBp|PBL|Plug| AT]|A2Z]|PBp|PBL

0.65] o 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.75] 0.01 | 0.01 | 0.01 | 0.01 | 0.005 | 0.005 | 0.005 | 0.005 0 0 0 0 0 0 0
0.80] 0.015 | 0.01 | 0.01 | 0.005 | 0.005| 0.01 | 0.01 | 0.01 0 0 0 0 0 0 0

0.84] 0.025 | 0.025 | 0.025 | 0.01 0.01 || 0.035 | 0.035 | 0.035 | 0.030 | 0.030 | 0.04 | 0.04 | 0.04 0.04 [0.045

Table C.2.2 k=3, 1" =(~1/2,-1/2,1), (b) (4, ;) = (0.5, 2), & =0.05, 7, =0.75

small samples medium samples large samples

7T \Plug| A T|AZ|PBp|PBL|Plug\ A T]|AZ|PBp|PBL|Plug| AT]|A42Z]|PBp|PBL

0.60] 0.005 | 0.005 | 0.005 | 0.005 | 0.015 0 0 0 0 0 0 0 0 0 0
0.65] 0.01 | 0.01 | 0.01 |0.005| 0.01 | 0.005 ]| 0.005 | 0.005 | 0.005 | 0.005 0 0 0 0 0
0.70] 0.03 | 0.025 | 0.025 | 0.025 | 0.025 | 0.015 | 0.015 | 0.015 | 0.02 | 0.02 0 0 0 0 0

0.74) 0.07 | 0.055 | 0.055 | 0.055 | 0.060 || 0.035 | 0.035 | 0.035 | 0.025 | 0.025 | 0.04 | 0.04 | 0.04 0.03 | 0.03

Table C.2.3 K=5, " =(-1/3,-1/3,~1/3,1/2,1/2), a =0.05, 7, =0.85
(@) (4,5 45, 144)=(0.5,0.5, 1)

small samples medium samples large samples

7T \Plug| A T|AZ|PBp|PBL|Plug\ A T]|AZ|PBp|PBL|Plug| AT]|A2Z]|PBp|PBL

0.65]| o 0 0 0 0.005 0 0 0 0 0 0 0 0 0 0
0.75] o 0 0 0.005 | 0.005 0 0 0 0 0 0 0 0 0 0
0.80]| 0.01 0 0 0.005 | 0.015 0 0 0 0.005 | 0.005 0 0 0 0 0

0.84] 0.045 | 0.01 0.01 | 0.045 | 0.040 | 0.025 | 0.025 | 0.02 | 0.03 | 0.035 || 0.01 0.01 | 0.005 { 0.01 | 0.01

Table C.2.4 K=7, [T =(-1/6,-1/6,-1/6,-1/6,-1/6,-1/6,1), a =0.05, =, =0.75,
(8) (kg fhys Hys s 11g) = (0.5, 0.5, 0.5, 1, 1)

small samples medium samples large samples

7T \Plug| A T|AZ|PBp | PBL|Plug\ A T]|AZ|PBp|PBL|Plug| AT]|A2Z]|PBp|PBL

0.60] o 0 0 0 0.005 0 0 0 0 0.005 0 0 0 0 0
0.65] 0.015 | 0.015 | 0.015 | 0.015 | 0.015 0 0 0 0 0 0 0 0 0 0
0.70] 0.02 | 0.02 | 0.015 | 0.035 | 0.035 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 0 0 0 0 0

0.74] 0.06 0.04 | 0.04 [ 0.035| 0.04 || 0.045 | 0.03 | 0.035 | 0.04 0.04 || 0.025 | 0.025 | 0.025 | 0.045 |0.045
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Table C.3 Cochran’s Test

H , : The powers are equally effective

H ,: There is a difference in effectiveness among Powers

Table C.3.1. K=3, 1" =(~1/2,-1/2,1), (a) (11,) =(0.5), 7 =0.65, & = 0.05

7y =0.66

7y =0.76

7y =0.80

7,y =0.88

7y =0.98

Small samples

Do not reject

Reject

Reject

Reject

Do not reject

Medium samples

Do not reject

Do not reject

Do not reject

Do not reject

Do not reject

Large samples

Do not reject

Do not reject

Do not reject

Do not reject

Do not reject

Table C.3.2. K=3, 1" =(-1/2,-1/2,1), (b) (1, 1,)= (0.5, 2), 7 =0.75, a = 0.05

7, =0.76 7, =0.82 7, =0.85 Ty =0.88 Ty =0.95
Small samples Do not reject Reject Reject Reject Reject
Medium samples | Do not reject Reject

Do not reject

Do not reject

(p-value=0.0435)

Do not reject

Large samples

Do not reject

Do not reject

Do not reject

Do not reject

Do not reject

Table C.3.3. k=5, 1" =(=1/3,-1/3,-1/3,1/2,1/2), (8) (14,, tts, 11,) = (0.5, 0.5, 1),

=075, a=0.05

7w, =0.76 7, =0.82 7, =0.85 7y =0.88 7y =0.95
Small samples Reject Reject Reject Reject Rejct
Medium samples Reject Reject Reject Reject Do not reject
Large samples Do notreject | Do notreject | Donotreject | Do notreject | Do not reject

Table C.3.4. K=7,(a) (y, fs, fhs» tss )= (0.5,0.5,0.5, 1, 1), 7 =0.70, a = 0.05,
1" =(=1/6,-1/6,-1/6,-1/6,~1/6,-1/6,1)

7y =0.75

7Ty =0.82

7Ty =0.85

7,y =0.88

7Ty =0.95

Small samples

Reject

Reject

Do not reject

Reject

Do not reject

Medium samples

Do not reject

Do not reject

Do not reject

Do not reject

Do not reject

Large samples

Do not reject

Do not reject

Do not reject

Do not reject

Do not reject
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Figure C.1 QQ Plots of the P-Values for ISy (F), 7 =7,

Figure C.1.1 K=3, [ =(-1/2,-1/2,1), (a) (1,) =(0.5), 7 = 0.65
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(c) Large samples (100,150,120)
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Figure C.2 QQ Plots of the P-Values for ISy.iv (F), 7 < 7,, Medium Samples

Figure C.2.1 k=3, 1" =(=1/2,-1/2,1), (a) (1,) =(0.5), & =0.05, 7, =0.85, 7 =0.80.
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Figure C.3 Power Simulation Results of Tests for ISy n(F)
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Figure C.3.3 K=7, (a) (1y, ty, iy, tss 1) = (0.5,0.5,0.5, 1, 1), 7 = 0.70, o =0.05,

1" =(=1/6,-1/6,~1/6,-1/6,~1/6,~1/6,1).
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Figure C.4 Power Simulation Results for IS v(F)
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APPENDIX D

Result 1 R Code for Estimated Type I Error Probabilities for ISy v (F)

(K=3), Method 2

T T R R R

# This Splus/R Function to compare the estimated P-Values of my Ph.D research

# ni = sample size for random variable xi

# Normality

# Ho: P(I'x>0)<=Pi  #K=3

T T R R R T R R R
#Obtain the MLE's

mle.iteration<-function(nl,n2,n3,x1,x2,x3,npai,gap) {
m<-0 # counts iterations

diff<-1

I<-¢(11,12,13)

n<-c(nl,n2,n3)

sample.mean<-c(mean(x1),mean(x2),mean(x3))
sample.var<-c(var(x1),var(x2),var(x3))
mu.hat<-sample.mean

var.hat<-rep(0,3)

y<-rep(0,3)
z<-rep(0,3)

while( diff>gap) {
m<-m+1

var.hat[ 1 [<-sum((x1-mu.hat[1])"2)/(n[1]*(1-1[1]*(npai"*2)*(sample.mean[ 1 |-mu.hat[ 1 ])/sum(1*mu.hat)))
var.hat[2]<-sum((x2-mu.hat[2])"2)/(n[2]*(1-1[2]* (npai"2)*(sample.mean[2 ]-mu.hat[2])/sum(1*mu.hat)))
var.hat[3]<-sum((x3-mu.hat[3])"2)/(n[3]*(1-1[3]*(npai"2)*(sample.mean[3]-mu.hat[3])/sum(1*mu.hat)))

if (is.na(var.hat[1])==TRUE) {
results<-NA
break

}

if (min(var.hat)<0) {
#cat("var.hat<0","\n")
return (NULL)
break

H

diff.var<-abs(z-var.hat)
z<-var.hat

for (jin 1:3) {
y[j]<-sample.mean[j]+(1[j]*var.hat[j]*(npai*sqrt(sum(1"2*var.hat))-

sum(I*sample.mean)))/(n[j]*sum(1"2*var.hat/n))

diff. mu<-abs(y-mu.hat)
diff<-max(c(diff.mu,diff.var))
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mu.hat<-y

if (m>=800) {
#cat("iteration more than 800 ", "n")

return (NULL)
break

results<-cbind(mu.hat,var.hat)

return (results)

}

T R T R R R R
# function to get the test statistic T star plugin

Tstar plug<-function(nl,n2,n3,x1,x2,x3){
al<-11"2*var(x1)/n1+12"2*var(x2)/n2+13"2*var(x3)/n3

T p plugin<-(11*mean(x1)+12*mean(x2)+13*mean(x3))/sqrt(al)
T p plugin

H

T R R R R R A
# function to get the test statistic T _star LRT

Tstar LRT1<-function(n1,n2,n3,x1,x2,x3,npai){
mle<-mle.iteration(n1,n2,n3,x1,x2,x3,npai,le-5)

if (is.matrix(mle)==FALSE) {
lambda<-NA

}else {

S1.2<-var(x1)*(nl-1)/nl

S2.2<-var(x2)*(n2-1)/n2

S3.2<-var(x3)*(n3-1)/n3

lambdal<-(-2)*((n1/2)*log(S1.2/mle[1,2])+(n1/2)-sum((x1-mle[1,1])"2/(2*mle[1,2])))
lambda2<-(-2)*((n2/2)*log(S2.2/mle[2,2])+(n2/2)-sum((x2-mle[2,1])"2/(2*mle[2,2])))
lambda3<-(-2)*((n3/2)*log(S3.2/mle[3,2])+(n3/2)-sum((x3-mle[3,1])"2/(2*mle[3,2])))

lambda=lambdal+lambda2+lambda3

}
lambda

}

R R
max.log_mle<-function(nl,n2,n3,x1,x2,x3,npai){

mle<-mle.iteration(n1,n2,n3,x1,x2,x3,npai,le-5)
if (is.matrix(mle)==FALSE) {

log mle<-NA
} else {
mlel<-(-1)*(n1/2)*log(2*(3.141593)*mle[ 1,2])-sum((x1-mle[1,1])"2/(2*mle[1,2]))
mle2<-(-1)*(n2/2)*log(2*(3.141593)*mle[2,2])-sum((x2-mle[2,1])"2/(2*mle[2,2]))
mle3<-(-1)*(n3/2)*log(2*(3.141593)*mle[3,2])-sum((x3-mle[3,1])"2/(2*mle[3,2]))
log_mle=mlel+mle2+mle3

}
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result<-c(npai, log_mle)
result

}

T R T T R R R R
# function to get the test statistic T _star LRT

Tstar LRT<-function(n1,n2,n3,x1,x2,x3){
try<-array(rep(0,length(pi_j)*2),c(length(pi _j),2))
for (j in l:length(pi_j))

try[j,]<-max.log mle(n1,n2,n3,x1,x2,x3,npai_j[j])

h

if (sum(is.na(try))>0) {
tryl<-try[-which(is.na(try[,2])),]
} else {

tryl<-try

H
npai_max<-tryl[which(tryl[,2]==max(try1[,2]))]

p_max<-Tstar LRT1(nl,n2,n3,x1,x2,x3,npai_max)
p_max

}

T R R R R R R R T
general.p_value<-function(n1,n2,n3){

x1<-rnorm(nl,mul,sigmal) # generate n Normal (0,1) random variables
x2<-rnorm(n2,mu2,sigma2)  # generate n Normal (0,sqrt(10)) random variables
x3<-rnorm(n3,mu3,sigma3)  # generate n Normal (3,sigma3) random variables

varl hat<-var(x1)*(n1-1)/rchisq(num,df=n1-1)
var2_hat<-var(x2)*(n2-1)/rchisq(num,df=n2-1)
var3_hat<-var(x3)*(n3-1)/rchisq(num,df=n3-1)

TR
# plug in p_value

al<-11"2*var(x1)/n1+12"2*var(x2)/n2+13"2*var(x3)/n3

T p plugin<-(11*mean(x1)+12*mean(x2)+13*mean(x3))/sqrt(al)
deml1<-(11"2*var(x1)/n1)"2/(n1-1)+(12"2*var(x2)/n2)"2/(n2-1)+(13"2*var(x3)/n3)"2/(n3-1)
dfl<-al*2/deml

deltal<-sqrt(11"2*var(x1)+12"2*var(x2)+13/2*var(x3))*qnorm(pi)/sqrt(al)
p_value.plugin<-1-pt(T _p_plugin, df=dfl, ncp=deltal)

HHHHHHHHHHHHH A
# average p_value for T

a2<-1"2*varl_hat/n1+12"2*var2 hat/n2+13"2*var3 hat/n3
b2<-((nl-1)*var(x1)/varl hat+(n2-1)*var(x2)/var2_hat+(n3-1)*var(x3)/var3_hat)/(n1+n2+n3-3)
T p hat<-((11*mean(x1)+12*mean(x2)+13*mean(x3))/sqrt(a2))/sqrt(b2)

delta2<-sqrt(11"2*varl hat+12"2*var2 hat+13"2*var3_hat)*qnorm(pi)/sqrt(a2)
p_value. T<-1-pt(T_p_hat, df=n1+n2+n3-3, ncp=delta2)
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p_value.average T<-mean(p_value.T)

HHHHHHHHHHHHH A
# average p_value for Z

Z p_hat<-(I1*mean(x1)+12*mean(x2)+13*mean(x3)-
qnorm(pi)*sqrt(11"2*varl_hat+12"2*var2 hat+13~2*var3_hat))/sqrt(a2)
p_value.Z<-1-pnorm(Z p hat)

p_value.average Z<-mean(p_value.Z)

TR AR
# Parametric Bootstrap Test for T plugin and LRT

T pl<-Tstar plug(nl,n2,n3,x1,x2,x3)
T p2<-Tstar LRT(n1,n2,n3,x1,x2,x3)

m<-99
mle2<-mle.iteration(n1,n2,n3,x1,x2,x3,qnorm(pi), le-5)

if (is.matrix(mle2)==FALSE) {
p PBT plug<-NA
p PBT LRT<-NA

} else {
MLE.mu<-mle2[,1]
MLE.sigma<-sqrt(mle2[,2])

x1.boot1<-replicate(m, rnorm(nl, MLE.mu[1], MLE.sigma[1]))
x2.boot1<-replicate(m, rnorm(n2, MLE.mu[2], MLE.sigma[2]))
x3.boot1<-replicate(m, rnorm(n3, MLE.mu[3], MLE.sigma[3]))

# compute test statistics for each resample

T boot.1<-rep(0,m)

T boot.2<-rep(0,m)

for (j in 1:m) {
T boot.1[j]<-Tstar_plug(nl,n2,n3,x1.bootl[,j],x2.boot1[,j],x3.boot1[,j])
T boot.2[j]<-Tstar LRT(n1,n2,n3,x1.bootl[,j],x2.boot1[,j],x3.boot1[,j])

reject]<-ifelse(T_boot.1>=T pl,1,0)
reject.2<-ifelse(T_boot.2>=T p2,1,0)
reject2<-reject.2[!is.na(reject.2)]

p_PBT plug<-(sum(rejectl)+1)/(m+1)

p PBT LRT<-(sum(reject2)+1)/(length(reject2)+1)
H

TR

# compute the p_value

p_value<-c(p_value.plugin, p_value.average T,p value.average Z, p PBT plug, p PBT LRT)
p_value

H

HHHHHHHHHHHRRHHHRHAH R

set.seed(6543267)

num<-1000 # get 1000 number of independant var hat from the chi-square distribution
B<-200 # get 100 data sets to do simulation

nl=30
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n2=50

n3=20

11=-0.5

12=-0.5

13=1

pi<-0.85
pi_j<-seq(0.50,pi,by=0.025)
npai_j<-qnorm(pi_j)
pi_true<-0.75

T HH R R R

#(a)equal variance

mul<-0

mu2<-0.5

sigmal<-1

sigma2<-1

sigma3<-1
mu3<-sqrt(sigma3”2+(sigmal”2+sigma2"2)/4)*qnorm(pi_true)+(mul+mu2)/2

TR AR A
#(b)sigmasq_i=mu_i+1

#mul<-0

#sigmal<-1

#mu2<-0.5

#sigma2<-sqrt(mu2+1)

#mu3<-1
#sigma3<-sqrt(((mu3-(mul+mu2)/2)/qnorm(pi_true))"2-(sigmal”2+sigma2”2)/4)

T R R A R T T R R A T
p.dist<-array(rep(0,5*B),c(5,B))

reject.05<-array(rep(0,5*B),c(5,B))

for (iin 1:B){

p.dist[,i]<-general.p_value(nl,n2,n3)

reject.05[,i]<-ifelse(p.dist[,i]<=0.05,1,0)

H

L G P I R T G TR
reject.05<-ifelse(p.dist<=0.05,1,0)

rel<-reject.05[1,]

re2<-reject.05[2,]

re3<-reject.05[3,]

re.4<-reject.05[4,]

red4<-re.4[!is.na(re.4)]

re.5<-reject.05[5,]

reS<-re.5[!is.na(re.5)]

typel errorl.05<-sum(rel)/length(rel)
typel error2.05<-sum(re2)/length(re2)
typel _error3.05<-sum(re3)/length(re3)
typel error4.05<-sum(re4)/length(re4)
typel _error5.05<-sum(re5)/length(re5)

cat('Typel error(0.05) plugin =', typel errorl1.05, "\n')

cat('Typel error(0.05) average T =, typel_error2.05, "\n')

cat('Typel error(0.05) average Z=PP p value=', typel error3.05, "\n")
cat('Typel error(0.05) PBT plugin =, typel error4.05, "n")
cat('Typel error(0.05) PBT LRT =, typel error5.05, "\n')
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Result 2 R Code for Power Simulation Results for ISpn (F)

(K=3), Method 2

TR R A

# This Splus/R Function to compare the power of P values of my ph.D research

# ni = sample size for random variable xi

# Normality

# Ho: P(I'x>0)<=Pi

TR AR R A A
general.p_value<-function(n1,n2,n3,n_alter){

#mu3<-sqrt(sigma3”2+(sigmal”2+sigma2"2)/4)*n_alter+(mul+mu2)/2
sigma3<-sqrt(((mu3-(mul+mu2)/2)/n_alter)*2-(sigmal”2+sigma2”2)/4)

x1<-rnorm(nl,mul,sigmal) # generate n Normal (0,1) random variables
x2<-rnorm(n2,mu2,sigma2)  # generate n Normal (0,sqrt(10)) random variables
x3<-rnorm(n3,mu3,sigma3)  # generate n Normal (3,sigma3) random variables

varl hat<-var(x1)*(n1-1)/rchisq(num,df=n1-1)
var2_hat<-var(x2)*(n2-1)/rchisq(num,df=n2-1)
var3_hat<-var(x3)*(n3-1)/rchisq(num,df=n3-1)

TR
# plug in p_value

al<-11"2*var(x1)/n1+12"2*var(x2)/n2+13"2*var(x3)/n3

T p plugin<-(11*mean(x1)+12*mean(x2)+13*mean(x3))/sqrt(al)
deml1<-(11"2*var(x1)/n1)"2/(n1-1)+(12"2*var(x2)/n2)"2/(n2-1)+(13"2*var(x3)/n3)"2/(n3-1)
dfl<-al*2/deml
deltal<-sqrt(11"2*var(x1)+12"2*var(x2)+13/2*var(x3))*qnorm(pi)/sqrt(al)

p_value.plugin<-1-pt(T p_plugin, df=dfl, ncp=deltal)

HHHHHHHHHHHHH Y
# average p_value for T

a2<-1"2*varl_hat/n1+12"2*var2 hat/n2+13"2*var3 hat/n3
b2<-((nl-1)*var(x1)/varl hat+(n2-1)*var(x2)/var2_hat+(n3-1)*var(x3)/var3_hat)/(n1+n2+n3-3)

T p hat<-((11*mean(x1)+12*mean(x2)+13*mean(x3))/sqrt(a2))/sqrt(b2)
delta2<-sqrt(11"2*varl hat+12"2*var2 hat+13"2*var3_hat)*qnorm(pi)/sqrt(a2)
p_value. T<-1-pt(T_p_hat, df=n1+n2+n3-3, ncp=delta2)

p_value.average T<-mean(p_value.T)

HHHHHHHHHHHHH A
# average p_value for Z

Z p_hat<-(I1*mean(x1)+12*mean(x2)+13*mean(x3)-
qnorm(pi)*sqrt(11"2*varl_hat+12"2*var2 hat+13~2*var3_hat))/sqrt(a2)

p_value.Z<-1-pnorm(Z p_hat)
p_value.average Z<-mean(p_value.Z)
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TR AR
# Parametric Bootstrap Test for T plugin and LRT

T pl<-Tstar plug(nl,n2,n3,x1,x2,x3)
T p2<-Tstar LRT(n1,n2,n3,x1,x2,x3)

m<-99
mle2<-mle.iteration(n1,n2,n3,x1,x2,x3,qnorm(pi), le-5)

if (is.matrix(mle2)==FALSE) {
p PBT plug<-NA
p PBT LRT<-NA

} else {
MLE.mu<-mle2[,1]
MLE.sigma<-sqrt(mle2[,2])

x1.boot1<-replicate(m, rnorm(nl, MLE.mu[ 1], MLE.sigma[1]))
x2.boot1<-replicate(m, rnorm(n2, MLE.mu[2], MLE.sigma[2]))
x3.boot1<-replicate(m, rnorm(n3, MLE.mu[3], MLE.sigma[3]))

# compute test statistics for each resample

T boot.1<-rep(0,m)

T boot.2<-rep(0,m)

for (j in 1:m) {
T boot.1[j]<-Tstar_plug(nl,n2,n3,x1.bootl[,j],x2.boot1[,j],x3.boot1[,j])
T boot.2[j]<-Tstar LRT(n1,n2,n3,x1.bootl[,j],x2.boot1[,j],x3.boot1[,j])

}

reject]<-ifelse(T_boot.1>=T pl,1,0)
reject.2<-ifelse(T_boot.2>=T p2,1,0)
reject2<-reject.2[!is.na(reject.2)]

p_PBT plug<-(sum(rejectl)+1)/(m+1)
p PBT LRT<-(sum(reject2)+1)/(length(reject2)+1)
H

HHHHHHHHHHHHH Y
# compute the p_value

p_value<-c(p_value.plugin, p_value.average T,p value.average Z, p PBT plug, p PBT LRT)
p_value

}

T R R R
power<-function(n_alter){

B<-200 # get 200 data sets to do simulation
p.dist<-array(rep(0,5*B),c(5,B))
reject.05<-array(rep(0,5*B),c(5,B))

for (iin 1:B){
p.dist[,i]<-general.p_value(nl,n2,n3,n_alter)
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reject.05[,i]<-ifelse(p.dist[,i]<=0.05,1,0)

rel<-reject.05[1,]
re2<-reject.05[2,]
re3<-reject.05[3,]
re.4<-reject.05[4,]
red4<-re.4[!is.na(re.4)]
re.5<-reject.05[5,]
reS<-re.5[!is.na(re.5)]

typel errorl.05<-sum(rel)/length(rel)
typel error2.05<-sum(re2)/length(re2)
typel _error3.05<-sum(re3)/length(re3)
typel error4.05<-sum(re4)/length(re4)
typel _error5.05<-sum(re5)/length(re5)

typel _error.05<-c(typel_errorl.05, typel error2.05, typel error3.05, typel error4.05, typel error5.05)
typel error.05

}

T R R R A A
begin.time=Sys.time()

set.seed(6543267)

num<-1000 # get 1000 number of independant var hat from the chi-square distribution

nl1=100
n2=150
n3=120

11=-0.5
12=-0.5
13=1

T R R R R R R
#(a)equal variance

#mul<-0

#mu2<-0.5

#sigmal<-1

#sigma2<-1

#sigma3<-1
#mu3<-sqrt(sigma3”2+(sigmal”2+sigma2”2)/4)*qnorm(pi_true)+(mul+mu2)/2

TR AR AR
#(b)sigmasq_i=mu_i+1

mul<-0

sigmal<-1

mu2<-0.5

sigma2<-sqrt(mu2+1)

mu3<-2
#sigma3<-sqrt(((mu3-(mul+mu2)/2)/qnorm(pi_true))"2-(sigmal”2+sigma2”2)/4)

R R A

pi<-0.75
pi_j<-seq(0.50,pi,by=0.05)
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npai_j<-qnorm(pi_j)
pi_true<-0.75

#m<-c(0.86,0.88,0.90,0.92,0.94,0.96,0.98) #pi=0.85
#m<-c(0.81,0.83,0.85,0.87,0.89,0.91,0.93,0.95,0.98) #pi=0.80
m<-c(0.76,0.79,0.82,0.85,0.88,0.91,0.95,0.98) #pi=0.75
#m<-c(0.66,0.69,0.72,0.76,0.8,0.84,0.88,0.92,0.95,0.98) #pi=0.65
#m<-c(0.56,0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.94,0.98) #pi=0.55

n_alter.m<-gqnorm(m,mean=0,sd=1)
mm<-length(m)

power_function<-array(rep(0,5*mm),c(5,mm))

for (j in 1:mm){
power_function[,j]<-power(n_alter.m[j])

b

end.time=Sys.time()

tt=end.time-begin.time

tt

plot(m,power_function[1,],type="1",lwd=3,ylab="the power",col="blue",xlab="pi")
lines(m,power_function[2,],type="1",lwd=3,col = "red")
lines(m,power_function[3,],type="1",lwd=3,col = "green",Ity = "dashed")
lines(m,power_function[4,],type="1",lwd=3,col = "black",Ity = "dashed")
lines(m,power_function[5,],type="1",lwd=3,col = "yellow",lty = "dashed")
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