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INTRODUCTION

Much of the investment currently being made in new facili-

ties, equipment and operational costs within the feed industry

is determined by intuition and judgment. Substantial improvement

in efficiency and higher profits can be achieved by applying

techniques presently available in Operations Research: inventory

control theory, linear programming, queuing theory, to mention

only some of them. These techniques are tools which can be used

to size some of the facilities required in the feed industry, or

any other industry, and to help management in the determination

of optimal operational policies.

This thesis describes and analyses the problem of finished

products inventory control in a feed mill with two main objectives,

depending upon the actual situation at a given time: first, for

the mill which is going to be built, to determine the size or

capacity of the storage facilities and the best way to handle

the products through them, and second, for the mill already pro-

ducing, to optimize actual operation.

In the feed business, customers do not place orders at

regular time intervals; like any other customers, they are not

always patient if their orders are delayed. Management should

establish some optimal or nearly optimal policy that combines

a proper production schedule with an adequate quantity of

stock, so the total operational cost will be a minimum and the

cudtouer demands can be net at all times. Emergencies arising



from the possibility of being out-of-s tock at a particular time

will disrupt the regular production schedule and reduce pro-

duction rate because of frequent formula changes.

Particular to feed mills is also the fact that they produce

a large number of different products with variations in formulas,

physical form (mash, pellets, crumbles), and variations in the

way they are sold, namely in bags or in bulk. Furthermore, the

products vary widely in demand. There are formulas for which

orders are received every day (poultry, swine or dairy feeds),

and others that are very seldom sold, such as rat or monkey

feed.

The present paper studies the products that, being demanded

in relatively high levels, are sold in bulk. In other words, it

is concerned with inventory control system for bulk feed and

optimal size of the bins that will hold such products in stock.

This is so only to simplify the application of the model,

but the theory itself can be extended without major difficulties

to the consideration of the whole system with all products (in

bags or in bulk) and facilities (bagged foed warehouse and bulk-

feed bins) .

The first part of the analysis is devoted to the determina-

tion of the demand distribution of a given feed per basic time

period. Considerations have been made for particular situations,

such as availability of historical data, market research or

typical pattern of demand within the feed industry, in the

construction of demand curves. Particular data from a typical



feed company is analyzed.

Once the demand distribution is set for a particular pro-

duct, the inventory control system is built upon the character-

istics of demand and costs as a regular application of the

theory available elsewhere. Some factors related to the size

of the facilities are included in the model so that when deriving

the parameters of the best inventory policy, the same model

produces the best size of facility to handle that inventory.

It is hoped that as a result of this work the feed industry

can start overcoming the old rules of thumb still being applied

In sizing warehouses and determining inventory policies. These

rules have been determined empirically for average situations

but are frequently inadequate in particular cases.



REVIEW OF LITERATURE

Among the techniques offered by operations research, linear

programming has been the most widely used in the feed industry

in what is known as " leas t-cos t-f ormulstion" . Stafford and

Snyder (13) have extended its utilization in building a model

to evaluate courses of action in feed formulation, labor utiliza-

tion, product mix and short run pricing policy.

Inventory control theory has been applied too in the feed

industry as well as elsewhere. The same authors, Stafford and

Snyder (14), published a paper in production planning and

inventory control system in feed mills, in which they studied

forecasting, inventory policy evaluation and allocation of pro-

ductive resources.

Little has been published on sizing facilities within the

feed industry using operations research tools. In the general

field: Hancock and Kramer (6) investigated the influence of

various parameters on warehouse sizing and developed a model

in that respect. Homer (7) studied space-limited multiple

item inventory with phased deliveries and derived formulas to

determine warehouse size.

In the feed industry, only Pfost has published on sizing

equipment. (11). By applying inventory control models described

by Morse in "Queues, Inventories and Ma:.r.tertance," (10) Pfost

has shown how to select and utilize selected feed mill facilities,,

He worked out the probleu of deciding how large ingredient stor-

age bins should be for a mill which is to be built; or given an



existing mill, which should be the best ordering policy for

ingredients

.

Most of the work in inventory control has been done assuming

well known frequency distributions or density functions as demand

distributions. Simulation has been used to some extent in those

cases when demand has to be derived from combinations of two or

more distributions (1). Waller (17) did some work in the analyti-

cal determination of this kind of distribution when studying

methods of obtaining a distribution of the weight of an additive

per portion of feed.

It is necessary that in general and particularly in the

feed industry more realistic models be developed. Some of the

major textbooks covering areas related to this thesis and addi-

tional references are listed at the end.



DETERMINATION OF THE DEMAND DISTRIBUTION

Definitions

It is known that the design of the inventory control policy

depends mainly on the demand distribution for the product being

studied. Of particular interest is the demand for feed in some

units per basic time period and/or per "lead time." As stated

in the Introduction, those feed formulas that have relatively

high demand levels and are produced to be sold in bulk will be

considered. This being the case we will choose the "ton" as

the unit to measure the demand, and the basic time period will be

measured in days. Thus, the demand per basic time period will be

given in tons/day.

To define the demand per lead time, we will first define

"lead time," Lead time "t "
t is the time required by the produc-

tion department of a feed mill to produce a given quantity of

feed needed for inventory. It is the time measured between the

instant an order is sent to the production department and the

instant that order, already filled, is sent back to inventory.

In general, the lead time Is variable: in a feed mill,

that usually produces many different products, sometimes an

order for inventory can be filled almost instantaneously so

the lead time will be only the time needed to actually produce

the amount ordered; and sometimes the order has to wait In a

queue of several orders to be filled. We can take the average

of this variable lead time and consider it as the mean lead

time. Therefore, when we talk of lead time we. will mean the



average lead time and consider it as a constant. (Notice that

the lead time could be a fraction of a day.)

Lead time has to be measured in the same units chosen for

the basic time period, likely in days.

Knowing the demand per day, the demand per lead time period

is simply that demand times the lead time in days.

Definitions of demand per basic time, period and per lead

time period allow us to discuss distributions.

The demand distribution of a given feed formula in tons/

day, and per lead time period have to be determined. The next

sections are devoted to the actual determination of the first

one. The demand distribution per lead time is easily determined

by convoluting the demand distribution per day so many times

as the lead time is a multiple of the basic time period (15).

Two Di fferent Approaches

In determining the demand distribution in tons of feed per

day one can consider two different approaches depending on the

availability of historical data, market research studies or

other sources of information.

The demand, tons/day, is the result or combination of the

number of orders for the given feed, and the size of those

orders

.

If historical data exists from the mill being studied, or

other similar mills, logically it would be easier to process

that data in such way that analysis of the direct demand could

be made.



8

If for any reason, the available data is insufficient to

determine the demand directly, it might be possible to study

separately the order size distribution and the distribution of

the number of orders per day, and thus build up the distribution

in tons /day.

If there is no historical data, a market research study is

indicated. It is extremely difficult to obtain enough informa-

tion from market research to build directly an estimated demand

distribution. Therefore, the study of the market should be

conducted to obtain information such as how many customers will

the product have, how often will the customers order, and what

size of order they would like. With this data, the final demand

distribution can be built as before by combining the order size

distribution and the distribution of the number of orders/day.

We shall investigate each of these two approaches separately.

In order to do so, and as a method of showing how a practical

situation can be analysed, data taken from a typical feed mill

is used in the next section.

Analysis of Data

Data obtained from a feed mill of large production capacity

is shown in the Appendix. The data represent the daily demand

for a period of two months for nine high-demand formulas sold

in bulk. The company owns the bulk trucks with which the feed

is delivered. Each truck holds from 10 to 12 tons of feed

(depending on the bulk weight of the formula) and is divided

in four compartments. The price policy established by the



company is to charge the cost of transportation on a distance

basis, independent of the size of the order placed by the cus-

tomer. Salesmen discourage orders smaller than 3 tons.

The data has been analysed and some of the results are shown

in Tables and Graphs in following pages. (Formulas are identified

with the letter "F" and consecutive numbers.)

As shown in the sample distribution for order size (Table 1

and Figures 1 and 2), the company's price policy has had a marked

influence on the way customers order. At least in the formulas

with higher levels of demand (Figures 1A, IB and 2A) , the trend

is to order a whole truck in order to minimize the cost of

transportation per ton of feed. Nevertheless, in other formulas

approximately all sizes have similar probabilities; in some

others 1/2 truck is the most ordered size. It is noticed also

that although salesmen discourage orders for less than 3 tons,

there are still customers ordering as little as 1 ton. This

might be due to the fact that those customers are relatively

near to the feed mill and the price policy does not affect them

much; or they are ordering special feeds used in small quanti-

ties.

For the order size distributions, there is no regular pat-

tern in general, and at first glance it is difficult to fit them

to any of the known distributions, with the exception of formulas

F-8 and F-9 (Figs. 2C and 2D) which can be approximated by

rectangular distributions. Later on it will be discussed how

this data can be handled to fit functions which are general and

easy to work with.
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By the shape of the curve and mainly by the condition that

in almost all cases the mean and variance computed from the

number of orders per day distribution are very close to each

other (Table 3), it has been concluded that, in general, this

distribution follows approximately a Poisson distribution. It

will be assumed in this work, that customers' orders per day

follow a Poisson distribution.

Analysis made by Pfost and Thomas (12) on data gathered

from another feed mill shows that customers' orders tend to

accumulate near the weekend (Monday and Friday) , building a

sort of "seasonal" variation within a week period. It should be

pointed out that although in the data being studied here there

are some formulas for which customers' orders do seem to accumu-

late near the weekend, (formula F-7 for example) , in general

this trend has not been confirmed enough to get the same conclu-

sion.

Another characteristic situation in the feed business is

the actual existence of seasonal variations of demand through-

out the year for particular formulas. This case will not be

studied here. However, it is recognized that further research

is needed in this area, not only in the feed industry but in

the general application of the inventory control theory. The

best method of handling the problem of seasonal variations seems

to be simulation.

The graphs of the distribution of tons/day (Figures A and

5) show that for higher demand formulas, F-l and F-2 (Figures 4A
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Table 2. Number of orders per day and frequency sample
distribution of typical feeds sold in bulk.*

Number of
orders per

day

Fr«jquency and (Probability
, %)

F-l F-2 F-3 F-5

0(0.0) 1(2.5) 9(22.5) 7(17.5)

1 1(2.5) 1(2.5) 14(35.0) 10(25.0)

2 5(12.5) 3(7.5) 12(30.0) 17(42.5)

3 8(20.0) 8(20.0) 5(12.5) 3(7.5)

h 10(25.0) 5(12.5) 2(5.0)

5 10(25.0) 10(25.0) 1(2.5)

6 3(7.5) 4(10.0)

7 2(5.0) 2(5.0)

8 1(2.5) 4(10.0)

9 2(5.0)

Note: The rest of the formulas have similar frequency
distributions. * See Fig. 3.

Table 3. Sample mean and variance of number of orders per day.

F-l F-2 F-3 F-4 F-5 F-6 F-7 F-8 F-9

Mean 3.90 4.5 1.25 .95 1.57 .57 1.48 .55 .64

Variance 3.05 5.5 1.25 .68 1.42 .54 1.50 .50 .53
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and 4B) , it would be possible to fit then to a Poisson or to a

normal distribution. This first observation is partially con-

firmed by the fact that actually the demand in tons/day is the

result of the order size and the number of orders/day distribu-

tions. As mentioned before, for these two formulas customers 1

orders are almost entirely in one size (the full truck), and

if the number of orders follow the Poisson, the resulting

demand in tons/day would be another Poisson distribution.

In general, for every formula, a general procedure is

described in the next section to cover almost all possible shapes

of demand distributions.
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Table 4. Demand sample distributions in tons/day of typical
feeds sold in bulk.*

Pre bability in % Probability in %

Tons /day F-l F-2 Tons/day F-5 F-7

0-15 5.0 5.0 0-10 42.5 32.5

15-30 17.5 10.0 10-20 42.5 50.0

30-45 27.5 20.0 20-30 7.5 7.5

45-60 37.5 35.0 30-40 5.0 10.0

60-75 10.0 10.0 40-50 2.5 0.0

75-90 2.5 7.5

90-105 0.0 12.5

Mean 42.8 tons 53.2 tons Mean 13.3 tons 12.2 tons

Probability in %

Tons /day F-3 F-4 F-6 F-8 F-9

0-5 30.0 47.5 67.5 67.5 57.5

5-10 27.5 25.0 15.0 22.5 22.5

10-15 22.5 25.0 17.5 7.5 17.5

15-20 17.5 2.5 0.0 2.5 2.5

20-25 2.5 0.0 0.0 0.0 0.0

Mean 7.9 tons 5.7 tons 3.2 tens 3.1 tons 4 tons

*See Figs. 4 and 5

Note: As is shown, three different size of intervals have been
taken according to the demand levels in each formula.
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Direct Determination of Demand
from Historical Data

With the availability of historical data, the best method

of determining the demand distribution is simply to analyse

the d3ta directly. The analysis that must be made in order to

fit the sample distribution to known distributions or general

mathematical functions easy to work with, is rather simple

U3ing known statistical methods.

The general procedure is to test whether the set of data

may be looked upon as values assumed by a random variable having

a given distribution. This can be done by means of the "chi-

square test for goodness of fit," (5) and (16).

The first step could be to try distributions most likely to

fit the set of data. For instance, for formulas F-l and F-2

,

(Figs. 4A and AB) , evidently we will try to test goodness of

fit to a Poisson distribution with parameter equal to the ob-

served mean or to a normal if the mean is large enough. In

other cases, the binomial distribution might be tried.

The Beta and Gamma distributions cover a great variety of

distributions depending on the values of the parameters used in

each case ( 16)

.

In the case of a 3eta distribution, whose standard form

applies for values of the variable between and 1, a simple

linear transformation of the set of data is indicated.

There exists still another method that cculd be applied

when there is no possibility of fitting any of the best known
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distributions, or when there is no hint about what distribution

to use.

A polynomial distribution could be used to fit many

general sample distributions. The idea is to use the polynomial

function as a probability distribution that depending on the

number of terms (powers) used, will fit a wide variety of shapes

of curves within some fixed intervals.

Let "y" represent the demand of a given feed in tons/day,

and f(y) its probability distribution.

Let
f(y) - A

ny
n

+ A
n_ 1

y
n" 1

+ ... + A
2 y

2
+ A^ + A

Q

be the general polynomial expression for the probability dis-

tribution of the demand, with the conditions:

f(y) _> and <_ y <_ b

The lower limit of y is, logically, zero. The upper

limit, "b", is the maximum demand that actually occurs or has

occurred during the past. It could be some maximum quantity

over which the probability of occurrence of higher demand in

tons/day is likely to be zero or very close to zero. (At this

point it should be recalled that this method like any other

actually gives an approximation to the real probability distri-

bution of the entire population). The upper limit "b" could be

determined also on a past-experience basis but allowing an

additional level of demand equivalent to the. estimated increase

for future periods.

The problem is to find the number of terms, and consequently

the actual coefficients A in the polynomial function that



22

sufficiently fits the sample distribution.

In order to do so we can use the properties of the moments

of distributions. Equating the moments of the population dis-

tribution with the corresponding moments of the sample we can

get as many equations as are needed to solve for the unknown

parameters (5) .

The rth. sample moment of a set of observations y.

,

y 2 ,..., y is defined as

n

i i - 1
m *»

I .A
r n

and the rth. moment of a distribution is the expected value of

the rth. power of 'y*.

u ' ** / y
r
f(y)dy

r
" y

For r « 1, m' is the sample mean and u* the expected

value of "y"» or mean of the distribution.

The first equation can be that deduced from the property:

J
f(y)dy - 1

y

Thus the system of equations becomes:

b

J
f(y)dyly - 1

J
yf(y)dy

o

n

1
*,

i - 1
x
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/ y f(y)dy
1=1

for as many equations as required.

The procedure will be by trial and error, starting with

f(y) having the minimum number of terms. Obviously when

f(y) A_ , only the first equation is needed; therefore,

A - -i-
b

and f(y) = —

—

, which is the rectangular distribution.

It will be very easy to prove in this case if the sample corres-

ponds actually to a rectangular distribution.

For irregular shapes two terms or more for f(y) must

be tried.

Each time a term is added to the polynomial function, a

chi-square test for goodness of fit should be made comparing

the observed values against those calculated from the f(y),

already derived up to that step. If the test is accepted, the

f(y) derived last is a sufficient fit to the sample distribution,

If the test is rejected, further moments should be calculated.

It has been stated that by convoluting the distribution

of tons of feed/day so many times as the number of days in

the lead time, we are able to obtain the demand distribution

per lead time.
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Supposing we have already found the best fit to the

set of data and this results in one of the distributions:

Poisson, Binomial, Normal, Gamma or Beta. Convolutions of

these well known distributions are the same distributions with

mean and variance equal the original mean and variance, times

the number of times the original distribution is being con-

voluted.

Procedures to derive convolutions of any distribution in

general, and specifically for the polynomial, are discussed in

the next section.

(Demand distribution per lead time will be designated with

the notation f (y) ).

Building the Demand Distribution
by the Second Approach

This procedure may be used when, lacking sufficient data

or having available only market research studies, it is necessary

to build the demand distribution in tons/day by combining order

size distribution with that of customers' orders/day.

Let "m" be the number of orders for a particular formula

per day. The probability distribution of m, f(m) , is assumed

to follow the Poisson.

If f(y|m) is the conditional probability of demand in

tons/day given that "m" orders are received, then, the marginal

distribution f(y) is simply the joint distribution of "y" and

"m", f(y,m), over all possible values of "m" :
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f(y) =
I f(y»m) ; when "m" is a discrete random variable,
m

and

f(y) " / f(y,m)dm ; if "m" is a continuous random variable,

m

But,

f(y,m) *> f(y[m) f(m), hence

f(y) =
I f(y|m)f(m) (discrete case),
m

or

f(y) " f f(y|m)f(m)dm (continuous case),

m

Although we have defined f(m) as a Poisson distribution,

the continuous case is given along with the discrete because if

the average number of orders/day is large enough, f(m) could

be approximated by a normal distribution.

From the last equation it is obvious that determining the

expression for the demand given "m" orders, f(y|m), f(y) will

be also determined.

Let x
A

be the size in tons of the order i, where i can take

values from 1 to "m". Then, the demand in tons/day is:

y - x. + x„ + x_ + . . . + x ,1/3 m

m
or y *

I x .

i - 1
x

The x^s are independent random variables from the distri-

bution of order size f(x).
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In order to derive a function f(y|m) where "y" is the

sum of "ra" variables from the same order size distribution, we

must determine first the f(x).

Observation of the data (Figs. 1 and 2) shows that, in

general, the order size distribution follows no standard pattern

(with the exception of two of them (Figs. 2C and 2D) that behave

almost as rectangular distributions)

.

We could repeat here what has been said in the last section

about selecting one known distribution and try to fit the set

of data to it. The polynomial approach could be applied as

well in order to determine the order size distribution f(x).

As a matter of fact, we are going to derive here the f(y|m) using

the polynomial distribution as a general expression for f(x).

For, as we will see, f(yjm) can be derived applying the theory

of convolutions or sum of random variables, and the^e convolu-

tions are we].I known in the case of the best known probability

distributions.

Let

f(x) » A x + A -x + ... + A.x + A,x + AAn n-1 2 10
be the general polynomial expression for the order size prob-

ability distribution. The same procedure explained before has

to be used here to determine the number of terms of this

expression. Only a few comments about the limits of the order

size could be made.

In general, order sizes are limited at the lower and

upper end by some known and fixed levels established by
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company policies. In actual practice, and this is confirmed

in the analysis of the data studied, the lower limit "a" is

usually the minimum order size equivalent to one of the compart-

ments of the bulk truck. The upper limit "b" Is actually the

full size of the truck in tons.

In other words, assumptions might logically be made, that

the feed mill has set some standards for the order size by

which customers cannot order less than "a" (frequently a mixer

batch) , or more than "b" tons per order. The lower limit in

some cases is relaxed to take the value of zero.

With f(x) already derived we must go on in the determina-

tion of the conditional distribution of the demand tons/day

given that "m" orders are received, f(y|m).

By the theory of sum of random variables, or convolutions,

we know that given

n

y - I x
±

i - i
x

x . , independent random variables from the same distribu-

tion f ( x) , where :

f(x)

f(x)

A x" + A ,n n-1
n-1 2

x + ... + A_x + A.x + A_ ; when a<x<b

elsewhere

Then :

f(yU) -J J J
f( y- x

2 ~

>:

m
L

m-1

- x ) f (x„) . .

.

m I

f (x )dx dx_ ... dx
m Z J m

where, f(y-x - ... - x ) - f(x.) - A (y-x - ,..-x )
n + ...^ m J. n z m

+ A (y-x_- . . . -x ) + A.
x. i. m u
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f(x ) = A x„ + A , x_ + ... + A_x_ + A.x. + A,.
2 n 2 n-1 2 2 2 12

f (x ) = A x + ... + A,x + Anm n m 1 m

Special Case

As an example, consider the case when f(x) is a rectangular

distribution between the limits "a" and "b".

Here
»

A
o

= t-=t
Thus

,

f(x) - ~-±-
a

f(x) -

Form=2;y=x.+x

when a < x < b,

elsewhere

.

1 "2

f(y|2) -
J

f(y - x
2

) f(x
2

) dx,, ,

if a < x. < b
1

}

then 2a < y < 2b

a < x_ < b

f(y|2) =

;

y-a

(b-a)
2

UA
2

dx ; when 2a < y < (a+b)

f(y|2)
/
y-b

(b-a)
2 —

2

dx ; when (a+b) < y < 2b .

Therefore ,
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f(y|2) = -^
(b-a)

when 2a < y < (a+b), and

fCyl2)
2b-y

(b-a)
:

when (a+b) < y < 2b ;

this is the expression of a triangular distribution between

the limits 2a and 2b, with mean (a+b).

For m => 3; y = x + x + x.

y-2a y-x.-a

f <y I
3 >

J j
f(y-x

2
-x

3
)f(x

2
)f(x

3
)dx

2
dx

3

when 3a < y < 2 a+b

,

y-x
3
-a

f (yl 3 >

J J
f(y~x

2
-x

3
)f(x

2
)f(x

3
)dx

2
dx

3
+

y-a-b a

y-a-b b

+
J J

f(y-x
2
-x

3
)f(x

2
)f (x

3
)dx

2
dx

3

a y-x
3
-b

and
b b

f(y[3) - f f

when 2 a+b < y < a+2b
,

f (y-x
2
-x

3
) f (x

2
)dx

£
dx

3
; when

y-2b y-x
3
-b a+2b < y < 3b

which yields :

f Cy |3) = -iZ&L
2(b-a)

when 3a < y < 2a+b,

f( y [3) « -L2f- 3a )
2

- 3fv-_L2_a+b;
2

2(b-a)
3

when 2a+b < y < a+2b

,
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f(y|3) = (3b-y)

2(b-a)
when a+2b < y < 3b.

We would like to get some general expression f(yjm). In

order to do so, we can take the particular case for a=0 and

b=l which has been worked out, (8) and (9), and make a trans-

formation ,

When a=0 and b=l:

g(wlm) -
n

(m-1)! I <-l)
r Q(w-r) m-1

r=o

when n < w < n+1

for n = 0, 1, . . . , m-1

Here, the total interval is o < w < m, and we want to

change the variable and transform to: ma < y < mb

So, y w(b-a) + ma

or w
y-ma
b-a

f(y|m) = g(w|m)
jdw

dy

f(y|m) = g(w[m) -7—

Then,

fCyJra) -
I ("I)" (?) [y-ma-rCb-a)]"" 1

(b-a) '"(m-1) 1 r=o

when (m-n)a + nb < y < (m-n-l)a + (r.+ l)b; for n = 0, 1 m-1;

and m > 0{ which is the general formula for the demand in tons/day

given "m ,! orders and, being the order size re ctangularily distri-

buted.
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As m increases this function tends to approach the normal

curve. In fact, it can be proved that when "m" is large enough

this function approaches normality in virtue of the Central

Limit theorem in general, and particularly by a theorem of

Lindberg, 1922, (9) and (18).

The mean of the rectangular distribution is
a * b-

2 2

and the variance is —
. Therefore, the mean and variance

of f(y|m), which is f(x) convoluted "m" times, are:

m(a+b)

, 2 m(b-a)
and s = __

(mean)

(variance)

Therefore if "m" is large enough, we can express f(y|m)

as a normal function:

f(y[m) » /12

/27 (b-a) /m

[y _ JEU+M] 2

exp {"-

—

L m(b- a) }

or,

f(y|m) = m
nm (b-a)

exp
{

3[2y-m(a+b

m(b-a)
uL

}

Gener al Case

Consider now the general case, when the polynomial function

has more than one term.

For m = 2, y = x
x
+ x

2
; and for m = 3, y = x

±
+ x

2
+ x

,

f(yjm) is derived exactly as for the rectangular distribution

case, only that the proper f(x) has to be used.



32

For m > 3 ; (y - x . + x_ + x. + ... + x ).—————— i i, i m

Only for reasons of space, let:

f(y-x
2
-x

3
- ... -x

m
)f (x

2
)f (x

3
) ... f(x

m
) = g(X)

and dx.dx. ... dx dX .
2 3m

Then:

y-(m-l)a y~x -(m-2)a y-x -x -(m-3)a
m m m—

1

fCy(m)
/ / /

J

y- ... -x.-a

g(X)dX

when ma < y < (m-l)a+b,

y-(m-2)a-b y-x -(m-3)a-b
m

f(y|m) -
J

f

/

y-. . .-x, -a-b b

/
g(X)dX

y-x -x .- ... -x_-b
' m m-1 3

J

y-(m-2)a-b y-x -(m-3)a«b
m

J
a

/

y-x -,..-2a-b b
m

/

y-x - ... -x.-a
m 3

/
g(X)dX

y-x - ... -x .-a-b am 4



y-(m-2)a-b y-x - ... -3a-b b
m

/ / J
y-x - .... -2a-b

m
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y-x - ... -x.-2a y-x - ... -x^-a
xa h m 3

/ !
g(X)dX

y-x -(m-2)a

/

m

J
y-(m-2)a-b

y-x - ... -x -a
m 3

/
g(X)dX

when (ra-l)a+b < y < (m-2)a+2b,

y-(n-3)a-2b y-x -(m-4)a-2b
m

f(y|m)
J

I

y-x -a-2b
o

/ J
g(X)dX

y-x - ... -x .-2bJ m 4
y-x - ... -x--b

m 3

+
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/ / ... /
y-(m-3)a-2b y-x -(m-3)a-b a

y-x - ... -2a y-x - ... -x_-a
m m j

/
g(X)dX

m

when (m-2)a+2b < y < (m-3)a+3b,

f(y|m) - ..,

and, b b b b

f(yU) -
J

.... f g(X)dX

y-(m-l)b y-x
m
-(m-2)b y-x

ni
-x

m_ 1
-(m-3)b y- . . . -x

3
~b

when a+(m-l)b < y < mb.

Here again, as in the case when f(x) is a rectangular dis-

tribution, when "m" is large enough, f(y|m) will approach the

normal distribution, and even faster than the f(y|m) for the

rectangular case. Mean and variance, as before, equals "m"

times the mean and variance of the original f (x) being convoluted.

With the expression of f(y|m), f(y) can be derived.

With "m" having a Poisson distribution, and letting 'N' be

the parameter of that distribution (N » mean = variance):

f(m)
„m -N
N e

mJ

f(y) ~ I f(y|m)f(m)
ra

f (y) - I f(y|»)
m=o

M m -N
N e

m!
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If the average number of orders/day, "N" , is large enough,

the Poisson distribution approaches a normal:

f(m)
r2*N

exp [
- (m-N)

2N

and

,

f(y) - f(y[m) f(m)dm

f(y) -

/2ttN
J

f(y|m) exp [
- (m-N)

2N ] dm

Again, when f(y|m) is the convolution of a rectangular distri-

bution f (x) :

,ra -Nf M
f( *> - l { C»-l)lm?(b-a)° I (

- 1)r(
?> [y— rCb-a)]

111
" 1

} ;

m=o * r=o J

this expression can be solved numerically as shown in the example

at the end of this section.

If "m" is large, f(y|m) approaches the normal distribution;

and if "N" is large f(m) approaches also the normal; then,

f(y) - /12

2ir (b-a) /n

/* -1/2 f m
2

r 3(a+b)
2

,1
O

_£l _ 6y( a+b)

m(b-a)
/

(b-a)
2 I-} «-
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which can be solved also numerically.

The derivation of f (y) , demand distribution per lead time

is simple now:

Convoluting 't' times f(m), being 't' the number of days

in lead time,

/ Hk ,n -N t

f (B) - <»t> e

t
N

' m!

(The convolution of a Poisson distribution is another

Poisson with parameter the original one times "t")

,

and

,

(Nt)
m

e"*
Nt

f^(y) I f(y|m) —* —r^ for the discrete case.
t III •m=o

In the continuous case, substituting the parameter "Nt' : for

N in the expression of f(y) already shown for that case, would

be required.
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EXAMPLE I

This is an example to show how to build the demand distri-

bution f(y) by considering separately the distributions of the

order size, "x" t and the number of orders per day, "m".

Consider the order size distribution of F-9 shown in Table

1 and Figure 2D. The number of orders follow a Poisson distri-

bution with mean N=0.64 (Table 3). Assume that the lead time

is one day.

Therefore

,

f
t
(y) - f(y)

F
t
(y) - F(y)

and f(m)
(0.64)"1

e
m -0.64

m!

To determine the order size distribution the polynomial

approach will be used.

Corresponding with the grouped data for the considered

formula, the. upper limit b = 12 , and the lower limit a = 0.

Following the method explained:

f(x) ~ A.

1?.

J
f(x)dx - 1

12

J *°
dx - 1

hence, A = ~-

and

.12

£(x) - £
f(x) =

when < x < 12

elsewhere
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Applying a Chi-square test of goodness of fit:

the null hypothesis is: the given data comes from a

population having a rectangular distribution.

Reject the null hypothesis if x
2

> J
~ a, n-1

2 2
* - x .05,3

x' " I

n < p , - O
2

X .05,3 ' 7 »815

2
i

c
i'

i-1 e
i

where

n « 4 (number of observations)

Order Size
(tons)

Observed
Frequency

P
±
(%)

Observed
Probability

e
±
(%)

Calculated
Probability

7 26 25

7 26 25

7 26 25

6 22 25

0-2.9

3-5,9

6-8.9

9-11.9

X ~25 +
25

+
25" +

2T
= °' 48

Therefore, the null hypothesis is accepted. (If the null
hypothesis had been rejected, one term would have been added
to the polynomial.)

Substituting the v,lu83 ot ... .„„ „„., ±n the genatai ^
of f(y|m) already derived for a rectangular order size
dis tribut ion

:
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f(y|n)
m

(12)
u
(m-l) I r=o

I (-l)
r
(?)(y-12r)

m~ 1

when 12n < y < 12(n+l)

for n , 1 , . . .
, m-l

and m > 0.

For ra =»
, y " and f(y) will be the probability of getting

no orders.

For m > 0:

m-l
f(y)

» r -0* 64, _ , . «

m

e (0. 6 4)um-l L m!
1 I (-l)

r (p(y-12r) m_1
1

m . r=sn J
(12)

m
(m-l)!

when 12n < y < (n+l)(12)

for n = 0, 1 , ..., m-l

Using Poisson probabilities:

For m =

f(y) - .5227

For m » 1

f(y)

For m = 2

"
12

f , v .1102
f( y ) r. ._ y

(12)"

f(y) - ^-i^f (24-y)
(12)*

For m » 3

when y

when < y < 12

when < y < 12

when 12 < y < 24

f(y> - r y
2(12)

J

f( y) . ^241^
[y

2_ 3(y _ 12)
2

]

f(y) -

2(12)

.0241

v/hen < y < 12

when 12 < y < 24

s
2— z [y -3(y-12)N-3(y-24) A
Jvhec 24 <

C12)
J y < 36
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For all practical purposes for m > 3, f(y) because the

Poisson probabilities for this particular case are almost zero,

and they have to be divided in each case by the value (12) .

Therefore, the demand distribution is:

f(y) = .5227 when y =

tf \ «3384 .1102 . .0120 2 , n , , .,
f (y) " tT" + J y + o y when < y < 12

iZ (12)* (12)

tf ^ . 1843 .0379 . 0241 2 . „ , , ,,f(y) " To —
o y o y when 12 < y < 24

(12) (12)
J

-, % .1084 .0723 . .012 2 . ., „ ^ ,.f(y) " f5 T y + o y when 24 < y < 36
(12)

Z
(12)

J

f(y) - when y > 36
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INVENTORY CONTROL MODEL AND OPTIMAL

SIZE OF BINS

Designing an inventory control system is finding the best

possible policy to handle the inventory in order to meet future

demand.

The best possible policy is simply that which, taking into

account all cost and time factors involved, enables the system

to satisfy customers' demands with a minimum total cost.

There are two major systems of inventory control as defined

by Starr and Miller (15). The difference between them consists

in the manner in which the problem of controlling the existing

variables is handled.

These variables are related to the problem of how much to

stock, how much of a given formula to produce at a given time,

and how often should that formula be produced. Translated to

the "inventory control terminology" this means, what level of

inventory should be kept, what size of order should be sent

to the production department in order to replenish the inventory,

and when is replenishment needed.

Actually the variables are only two: the frequency of

ordering and the amount ordered., (The term "order" refers

here, and through the rest of this thesis, to orders sent by

the inventory control personnel to the production department

for a given quantity of feed to be produced for stock.)

From the point of view of average demand level, the two

variables can be considered as only one since each of them
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could be derived from the other one. But, when fluctuations

above and below average demand are considered, those fluctuations

can be covered by varying either the frequency of orders or

the size of the orders.

These two possibilities determine the two major systems

of inventory control.

The C-system is characterized by having a fixed order

size and a variable order period. Fluctuations in demand are

covered by the frequency of ordering. The system works in

the following fashion:

Whenever the stock on hand falls to a minimum level called

the Reorder Point, (determined by considerations about the

demand during the lead time) , some fixed quantity of product

is ordered to be produced for replenishing the inventory. The

system is defined by determining the optimal reorder level and

the order size.

The P-system is characterized by having 3 fixed order

period and a variable order size. Fluctuation?, in demand are

covered by different sizes of orders placed in successive

periods. The system is defined by determining the optimal

order period and some maximum level "M" on which basis the

order size is calculated each time. The inventory is reviewed

at the end of the order period, and the order size is deduced

from the difference between the level "M" and the actual

stock on hand at that instant.

Facts about which one of these two major systems should

be chosen in a particular case, or which one is more economical
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when actually applied, are fully discussed in the literature of

inventory control theory, available elsewhere. The Q-systera

seems to be more generally applicable to feed mills and its

model will be used here to derive the optimal size of the

facilities. Nevertheless, the P-system could also be used,

and the method to be described here could also be applied as

both models are actually developed with similar assumptions and

mathematical derivations.

Before going into the analysis for the model of the Q-

system and its specific application in sizing the bins for

feed in bulk, it is necessary to repeat some of the assumptions

already made in the first part of this thesis, namely:

a. The demand distribution in tons of feed per day,

f (y) t and per lead time period, f (y), are known as

a result of the analysis discussed earlier, or by

other means.

b. f(y) is stationary, the same from day to day. Demand

is independent of the demand level in preceding periods.

c. The lead time, already defined, is constant. Cases

when the lead time cannot be estimated as a constant

(its average or maximum value) are discussed in

detail by some authors. Such cases are analysed

through the queueing theory, (10) and (15).

Let,

y - expected value of the demand of feed in tons/day.

D = average demand per year. If 5 days per week and 52

weeks per year are assumed, then D = 260 y.
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c cost per ton of feed to be stored (ingredient and

processing costs).

X = size of the order to be produced for replenishing

the inventory, in tons.

R - average demand during the lead time period.

W = lead time period safety reserve. Reserve needed to

cover fluctuations in demand during the lead time.

R+W = Reorder point.

C
c = inventory carrying rate. Interest rate to apply to

the amount of money invested in inventory. This

rate will determine the estimated return on the

amount of money tied up in inventory if it had been

invested in some other place, inside or outside of

the feed mill itself.

C
r = set-up cost. Cost of changing over the production

process to produce some specific formula. It is

mainly the cost of the time losf ^ «t<, • ruue Liu,e ios,. xn changing formulas.

At the end of the analysis c f the model an entire

section is devoted to discussing the determination of

this cost in a feed mill.

K - fixed out-of-Stock cost or cost of being out of stock.

This is also discussed in detail later.

C
s - yearly storage cost. Cost of the space required to

store the inventory of a given feed. Some authors

have pointed out that this is a fixed cost with

respect to the inventory system because in general
there is no possibility of using the storage space
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for any other activity. For that reason they have

disregarded this cost in the inventory analysis.

Although in some cases this argument could be true,

the storage cost is included here to help in the

determination of the optimal bin size as described

next.

The inventory policy will be defined when the unknowns

X and W are determined. The analysis must be directed to find

some optimal values for X and W by balancing properly all the

cost factors involved so that the total cost of the system is

minimized.

The variables X and W are also two of the three parameters

needed to determine the size of the bin that will hold the

inventory, (The word "bin" is used as a general term. Actually

a given feed formula could have one, two or more bins assigned.)

When the stock, on hand falls to the Reorder Point (R+W)
,

an order for X units is sent to the production department.

During the lead time on the average, the demand will be R.

Under average conditions when the order X is filled and sent

back to inventory only W will be on hand. If the demand has

exceeded R, the quantity W should have covered that excess,

so at the arrival of X there would be on hand some level of

inventory between zero and W, depending on the actual value

of the excess. An extreme condition occurs when there has been

no demand *t all during the lead time. In this case, at the.

arrival of X the inventory level would be R+W.
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The bin might be designed to cover this last extreme

condition* In other words, the size of the bin should be that

which would hold the largest possible inventory level.

Let "S" be the size of the bin to be determined. Then,

S = X + W + R

Consider "C." as the variable cost of the bin, or that
b

part of the total cost that varies with the size of the bin. In

other words, for a system of bins there will be some costs

(equipment and others) that are fixed, and there will be some

other costs that depend on the size of the bin. The latter are

those whose sura will be called "C, ". This is expressed in

dollars/ton of capacity and can be easily determined from

experience or from data available elsewhere. The yearly storage

cost , C . is then

:

' s

C » (X + W + R)C,D
s b s

D is defined, as depreciation rate in per cent per year,
s

(This might also include interest, insurance, taxes, etc.)

Assuming that on the average, the reserve stock W is

carried all year round; the average inventory carried is —a—

;

and knowiiig that the average number of orders per year is

—rr-, the yearly costs involved in the inventory system are:

DC
Ordering cost

Carrying cost = (.—-— + W) cC + (X + W + R) C, D
^ c b s

Out-of-s tock-cos t
JDK
x"

f(y)dy

R+W
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(The integral of the function between (R+W) and » is the

probability of being out of stock; or the probability that the

demand exceeds (R+W)

.

Therefore, the total yearly cost:

DC .

T.C. - —~ + (-— + W)cC
c
+ (X + W + R)C

b
D
g

+ -~- f(y)dy

R+W

The objective is to determine the unknowns X and W so as

to get a minimum yearly cost. This is obtained by taking partial

derivatives of the function T.C. with respect to each one of

the variables and equating to zero (15). The two resulting

equations are:

DC cC
+ —~~ + C.D - -^- [1 - F (R+W) ] = 0,

x
2 2 b s

x
2 *

and cC + CL D - „ f (R+W) =
c b s Xt

Solving each equation for X and equating the results:

2(cC
c
+ C

b
D
g

)

2
{C

r
+ K[l-F

t
(R+W)]}

[f (R+W)]
2

t
DK

2
(cC + 2C, D )

C OS

To solve for W a trial and error procedure could be used:

assume first F (R+W) = 1 and compute the corresponding value

for f (R+W), With this value go to the known function which

gives the probability distribution of the demand per lead time,

and deduce a value for W. With this value of W compute F (R+W)

and substitute it in the equation. Proceed as before as many
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times as necessary to obtain two consecutive solutions close in

value.

Once W is determined, X is calculated from the equation

X " cC I CK D
- f

t<
R+W >

c b s

In this fashion the inventory control system and the bin

size have been simultaneously derived.

There is still the possibility of reducing the bin size

using a second approach which is more general than the previous

one. It has been said that S must be equal to (X + W + R) to

cover the extreme condition of no demand during the lead time,

and the quantity X is arriving to be stocked.

Let T be some level of demand between zero and R, that

can occur during the lead time.

Let the expression for the bin size be

S + X + W + (R-T) ; o < T < R

This means that management is willing to risk not having

enough space to store all of the quantity X if the demand

during the lead time happens to be less than T.

In order to investigate this case a new cost should be

introduced into the system. This cost might be defined as

some penalty cost for not having enough room to store what has

been produced at a given time. To fully understand what this

means, suppose that a feed mill has already built its bins and

has sized them by some empirical methods. Later on an inventory

control system is designed and in its application it is found
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that the size of the bins is insufficient to handle the inven-

tory which is produced under an "optimum" policy.

The cost of building additional storage space or the cost

of having to store the feed originally produced to be sold in

bulk in some other place would be considered the penalty cost

referred to. Let "C " be this penalty cost. To visualize the

case a graphical presentation of the problem has been developed

(Fig. 6). There it has been assumed that the demand distribu-

tion during the lead time is normal with mean R.

The total yearly cost in this case is:

DC
T.C. - ~- + (-f- + W)cC + [X + W + (R-T)]C L D* ~ c b s

DC.

f(y)dy + -2L_ f(y)dy

o R+W

(The integral of the function between zero and T is the probability

that the demand be T or less.)

There are now three unknowns: X, W, and I,

(Notice that when T - 0, the first case is reached.)

Taking partial derivatives with respect to these three

variables and equating to zero, a system of three equations is

obtained

:

DC cC

r- V. - -fA
DC

[l-F
t
(R+W>] |~ F

fc

(T) - 0,

cC + C, D
c b s

DK
f
t

(R+W) = 0,
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c T >L J< —

W

c
' *)* R- 1 >p

< R —

H

»< R+W

w

SIZE OF BIN WHEN T=0
S=X+W+R

R-T

SIZE OF BIN WHEN T=T

S=X+W+(R-T)

FIGURE 6. DEMAND DISTRIBUTION DURING LEAD TIME(ASSUMED NORMAL) AND SIZE OF BIN



51

DC
and " C

b
D
s

+ X" f
t
(T) ~ °

This system can be solved for X, W and T, using a numerical

procedure as the one previously used. Of course, the optimum

values for X, W, and T depend on the real costs for each particu-

lar case. Therefore, the reduction of the size of the bin, by

the quantity T, will depend on the cost structure. This

structure determines whether X and W for the second case are

going to be of a larger, equal or lesser size than those for the

first case (T = 0)

.

Incomplete knowledge of the demand distribution does not

mean that the inventory control model can not be developed. If

only the mean and the standard deviation are known for instance,

a model still can be worked out by applying Tcheby chef f
* s in-

equality.

The results, of course, will not be the best policy, but

that is the price of a lack of knowledge of the actual distri-

bution. The more known about the distribution the nearer the

results will be to the optimum.

Knowledge of the distribution moments, whether there

exists immodality or not, etc. , improve the resulting model.

Those cases of partial information are. fully discussed in the

literature (15). Best results are logically obtained when the

demand distribution is defined, as assumed in the model worked

out.
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Set-up Cost (C )r_

In general set-up cost is simply the cost of the lost time

during set-up. Within the feed mill it would be the time

lost in making the necessary changes to produce a new formula

when it has been producing a different one.

Whenever a change of formula occurs or even with the same

formula but changing the shape of the final product (mash, pellets,

crumbles) or changing from bulk to bags, some time is spent in

setting the equipment so the new formula can be produced at full

capacity. This operation is called "set-up", and the cost is

the set-up cost.

Deriving the set-up cost involves determining the period

of time spent between the time the scheduled production of the

current formula is finished and the time the mill is producing

the new formula at its regular capacity. Once this period of

time is determined and knowing the cost per hour of the mill

(labor, utilities, depreciation rates, etc.), the set-up -cost is

derived by multiplying the set-up time times the cost per hour.

Set-up cost for similarly processed formulas would be the

same. In other words, independent of the formula itself if

two formulas are produced in the same way (pellets in bulk or

mash in bags, for example) they will have, on the average, the

same set-up cost. By the same token, variation on these con-

ditions will vary the set-up cost.

There are several operations that have to be made in

changing formulas in a feed mill. The set-up time will be com-
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puted on the "bottle-neck" operation; that which will take more

time in setting the mill up, since almost all of them can be

made simultaneously.

In general time losses may occur at the following points,

a. Check if major ingredients are available in the

ingredient bins. If not, order transfer from storage

bins or warehouse of the quantity needed. Set grinders

and grind if it is necessary. (Usually in normal

operation this should have been done before the

formula change,)

b. Check availability of minor ingredients, premix, etc.

[same observation as in (a)],

c Check if the flow from ingredient bins to final

destination of the mix is clear. Set the flow, spouts,

conveyors, etc. For ba gged feed: Arrange for avail-

ability of bags, labels, etc. F or bulk feed: Set

spouts and flow to the desired bin. For pelleted or

crumbl ized" feed : (1) change pellet mill die if it is

necessary, (2) empty cooler, (3) set feed rate, steam

rate, temperature to get optimal capacity in pellet

mill and optimal pellet quality, and (4) fill cooler.

Only careful time studies can determine the extent of

the time losses in an actual mill.
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Cost of Being Out-of-Stock (K)

The out-of-stock cost is the cost of not carrying inventory.

There are several situations to consider in regard to this cost.

If an order for some amount of a particular feed arrives at the

mill when this is out-of-stock:

a. If the customer is willing to wait the time required to

fill the order, and the mill is not running 24 hours

per day , the order could be filled by overtime pro-

duction. The regular production schedule could be

interrupted in order to make room for the particular

order, and of course, overtime is needed to recuperate

the normal production. Or the order could be run

directly in overtime without interrupting the regular

schedule. In any case the out-of-stock cost (K)

would be: (Overtime production cost + set-up cost for

interrupted normal schedule). The overt i me product ion

cos t can be easily calculated, and usually amounts

to the regular production cost plus the additional

percentage of labor cost due to overtime.

Set-up cost was explained above.

b. If the customer is willing to wait some time to get

his order filled but the mill is running 24 hours per

day, the order could be lost (this case is discussed

later), or the production schedule should be inter-

rupted to make room for that particular order. In

this latter case, recuperation of the lost production
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could be done over the week-end with its consequent

costs (overtime cost plus set-up cost), or lost pro-

duction could be carried on indefinitely with risk

of going out-of-stock in other formulas and losing

additional orders.

Assuming that the mill is running 24 hours, seven

days a week, or if the customer is not willing to

wait for his order to be filled in a given time. This

depends on the emergency of the order itself from the

customer's point of view. (Animals could starve, for

instance.) In this case, the sale will be lost because

the customer will go to some other feed supplier to

get his order. The cost of out-of-stock would be

then, the profit lost due to not making a sale.

But usually this is not all because a customer who

has found one or more out-of-s tocks in one given

formula, will become less likely to return and there-

fore, the customer will be lost. It could happen

that a particular customer usually buys not only the

formula we have been talking about, but several

others.

Thus, the cost of out-of-ctock would be the profit

lost due to not making all possible future sales in

the different formulas the lost customer used to buy.

It is very difficult to measure this cost and perhaps

it could only be established by estimation. The way
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to do this is by establishing a policy of permissible

percentage level of out-of-stocks , one out-of-stock

in a hundred times or one in a thousand times for

example. This kind of policy imputes automatically

a cost to the condition of being out-of-stock:

We have derived the following equation.

f (R + W)
cC + CV D t

c b s

in the analysis of the Q-system.

X can be approximate from the optimal lot-size formula

which is usually applied for inventory problems with fixed known

demand:

s.
2 DC

x . v __X
c

therefore we could write:

DK - / 2 DC
r

f
t
(R + U) TC f C,D cC

c b s c
V-

or

K
ri cC C r C, D ,

V D L f (R + W) J

Here as before f (R + VJ) is the lead time demand distri-

bution..

If our policy is to permit one out-of-stock in a hundred

times :
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1 - F
t
(R + W) - .01

F (R + W) = .99

With this value of ,99 we can evaluate our F (y) and

deduce the value of (R + W) , and therefore the value of

f (R + W) . Substituting this in our formula for K we get an

estimation of the cost of being out-of-stock for the particuiar

policy we have set.

The approach of the optimal lot-size formula and the

policy of permissible percentage level of being out-of-stock

is an approximated method of analysis to derive the Q-system.
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Con siderations on the Design of
the System of Bins

Once the optimal theoretical size of the bin for each one

of the feed formulas under study has been determined, the

system of bins must be analysed as a whole.

Logically, because of the existing differences in the

demand and some other characteristics, each product will result

with a different bin size in theory. It is more economical,

of course, to have many or all bins of the same size. Besides,

there are some other known engineering and operational factors

that lead one to follow regular patterns In the construction

of the system of bins. For these reasons some combinations

should be made in order to achieve standard measures in the

height and sections of the bins. Following this idea, some

products could have two or more bins assigned, and some others

only one.

In the case of a feed formula having two or more bins

assigned, one of the bins could be used as the "reorder level";

in other words, the last bin of the set would be used as the

signal to place a new order. This method reduces considerably

the cost of the perpetual inventory that otherwise must be kept

in dealing with the Q-system of inventory control.
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EXAMPLE II

To show how the. model operates an example illustrating the

first approach of determining the demand distribution f (y)

,

is shown next*

Consider formula F-l which sample demand distribution in

ton3/day is shown in Table 4 and Figure 4A.

Sample mean and variance were calculated before the data

was grouped being their values:

u *» 42.8 tons (mean)

2
s " 280,11 (variance)

s - 16,75 (standard deviation)

Let us try to fit the data to a normal distribution by

running a chi-square test of goodness of fit:

The null hypothesis is that data cone from a population

having a normal distribution. Reject the null hypothesis if

2 2
X^ il X __3 (n=number of observations;

'
2 parameters are used)

2 2
X - X ,05,3

X
2

> 7.815

X
2 5

(P
i

- e
i>

2

I

i-1
6
i

n = 6
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P
1
(%) e

i<
% >

Demand (tons/day) Observed Probability Expected Probability

0-15 5.0 4.33

15-30 17.5 17.51

30-45 27.5 32.81

45-60 37.5 29.72

60-75 10.0 12.47

75- 2.5 2.58

e. has been calculated from a normal distribution with mean

equal to 42.8 and standard deviation equal to 16.75.

X - 3.47 < 7.815

Therefore the null hypothesis is accepted and f(y) can be ex-

pressed as a normal distribution:

f(y)
riv (16.75)

, 1 , y-42.8 ,2.exP [ - j C
y
16 . 75

) 1

To derive the best policy of inventory control and the

size of bins needed for formula F-l 9 some estimation of costs

is needed* (The cost data used here is estimated and it has

been selected only as illustration).

Let:

Lead time 1 day

R = u = 42.8 tons

s ** 16.75 tons

D = (260)R = 11,128 tors/year

c - S80/ton

C. " $30/ton
b



D - ,10
s

C - .10
c

c
r

« $10

Two costs have not been given: the out-of-stock "K" cost,

and the cost of running out of storage space.

Assume that the company has set a standard cf 1% as permis-

sible percentage of time of being out of stock. K can now be

estimated by the formula

/~2cC C
r j.

CD ..

K =v ~— [-Tu+wT"J

F(R+W) = .99 which yields f(R+W) = .003

(value found in normal tables for mean and standard deviation

used) «

Substituting correspondent values in the formula and

solving

:

K - $114

The cost of running out of storage space can be given in

a per ton basis. Let C be the notation for this per ton cor>t.
o * *

and assume in this example, that:

C « $5 /ton
o

At this point a review of the model is indicated. Since

the model derived included a fixed cost of running out of

storage space; CT «
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When C
q

is given instead of C the total yearly cost of

the system is:

DC
T,C. =

X
— +

(f
+ W)cC

c
+ [X + W + (R-T)]C

b
D
s

+ ^
K
- f(y)dy

R+W

+ f C
Q J

(T-y)f(y)dy

The last term is the average yearly cost of running out of

storage space, heing — the average number of orders per year and

/ <T-y)f(y)dy the expected value of the number of tons the demand
o

"y" is less than the value "T".

Taking derivatives with respect to the three variables X,

W., T, equating to zero, and assuming that the lead time is one

day [which means that f
t
(y) = f(y); and F (y) = F(y) ] ; three

equations are obtained:

(I)
« 2D{C + K[1-F(R+W)] + C [T F(T) - / yf(y)dy

cC + 2 C,D
c b s

(II) fCR-i-W) =
cC + C, D

c b s

DK X

(III) F(T) -
^ C

S
X

This system can be solved numerically: assume a value for

X, calculate F(T) out of equation (III) and f(R+W) out of

equation (II) . Deduce correspondent values for T and W from

the known f(y)« Substitute those values in equation (I) and

compute the new value for X. Compare this value with that
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previously assumed and proceed as before if they are not close

to each other.

The only difficulty that can be found is in the term
T

/ yf(y)dy. Let G be the notation for this term and see what

happens when f(y) is normal as in the example being studied,

T T

G -
J

yf(y)dy -
/ /m

exp [ - — (^~) ] dy

Here the normal distribution is truncated at zero, however

the Chi-square test assumes no negative values for the actual

case.

Changing variables:

y-u
s

y » sz + u

dy sdz

T>u
s

b m j

, , . -1/2 z* .

(zs 4- u)e dz

u
s

Integrating by parts

1 ,T-u^2 .T-u.3 ,T- U
\
5 /T-u.7

^7
l v

s 3 15 105
h •••••) i

l/T-u>2
4 .T<—> [s + u <* +

cS
3

(?)
5

+ -fj-
4- ....)]}
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Solving now the example;

a) Assume X 167 (this value is calculated from the
optimal lot size formula for X,
given in the section devoted to
discussing the out-of-stock cost K)

b) Substitute in (III) and solve:

F(T) =
hVi\uV) (]67) " - 009

T = 3.27 (from normal tables)

c) Equation (II):

ffp+i^ • (80)(.10) + (30)(.1Q) Mf7 . _._,f(R+w) _ \ 1i fl28)(114 ) (167) - .0014

Then, (R+W) - (42.8 + 39.85) - 82.66

d) Compute G with the value of T:

T-u 3.2 7 - 42.8
8 16.75 "

~Zc0/

U 42.8 _ ,.
T " -Tc "?£ '

= 2.56
s 16 . 75

1 —2 80
C . { e ^' ou

[-i6.75 + 42. 8(-2. 37-4. 44-4. 99-4. 00-2, 49-1, 28-0. 55)

]

/2rt

le"
3,28

[16 ,75+42. 8(2. 56+5. 6+7. 33+6. 87+5+3+1. 5+0. 3) ]}

(The series converge to zero after the terms shown)

G e _~J™_ (51.55 _ 52.67)

G = -0.45

e) Compute [1 - F(R+W) ] with the value of W

[1 - F(R+W)1 = .009 (from normal tables)
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f) Compute X in equation (I)

X
(2) (11,128){10 + 114C009) + 5[3.27(.0Q9) + 0.45] }

(80)(.10) + 2(30)(.10)

146

The whole procedure is repeated now with this new value

of X. In this example the solution was found at the third

trial:

X - 136 R+W - 84

W - 41

T - 3

The policy should be: whenever the stock on hand falls to

85 tons, order 116 tons.

Th'j bin size:

S - X + W + (R-T)

S a 217 tons
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The main difficulties in developing models of inventory

control that lead to proper sizing of facilities are those

fcund vrhen trying to get the demand distribution.

Management of existing feed mills should study directly

available data in tons of feed per day in order to build the

demand distribution. New mills have, perhaps, to study

separately order size and number of order distributions and

apply the second approach discussed here.

Data analysed for feed formulas sold in bulk, product of

particular conditions of the market, price policies and sone

other characteristics for the feed mill studied, have shown

that:

a. Price policies have definite influence in order

size distributions for feed formulas.

b. Customers' order frequency follow approximately a

Polsson distribution.

c. In general no seasonal variation during a week

period was observed.

Some of the methods that can be used to get. general

functions with which future demand could be predicted within

reasonable risks have been discussed. Particularly, it has

been shown how to get: the demand distribution as a marginal

probability function, when the order size is expressed by

means of a general polynomial function and the number of order:

per day follows a Poisson.
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Some other techniques not discussed here, such as fitting

experimental data to Pearson curves or simulation, can be

equally applied.

Simulation is indicated for the design of inventory

control systems where seasonal variations occur in weekly or

yearly periods*

Inventory control systems covered by major textbooks in

the field were discussed and several cost factors were analysed

in applying those systems to the feed industry. The mathe-

matical model of one of the systems was extended to derive

parameters that allowed bulk feed bin sizing, A new concept

of cost, the cost: of running out of storage space, was intro-

duced in the model to generalize more its application.

Set-up cost can only be determined by detailed time

studies,, Estimations of the out-of-stock cost and the penalty

cost of no room for storage depend to a certain extent on

management judgment.

Further research is needed in determining over-all policies

of operation and facilities sizing ia feed mills. Studies

that consider all possible variables involved: production

capacity and planning, ingredient procurement and storage,

feed formulation, inventory for bagged and bulk feed, ware-

houses, etc.; will surely determine better policies than

those resulting from partial analysis of each area separately.
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The feed industry can improve efficiency in general and

achieve higher profits by applying Operations Research techniques

in sizing facilities and determining operational policies. This

thesis analyses the problem of finished product inventory con-

trol in feed mills with the objective of optimizing actual

operation and determining the proper capacity of storage

facilities. It studies in particular feed formulas produced to

be sold in bulk and correspondent sizing of bulk feed bins.

However, the analysis can be extended to the consideration of

bagged feed and general warehouses.

The main difficulties in developing models of inventory

control are those involved in determining the demand distribution

for a given formula. The first part of the thesis is devoted

to the determination of that probability distribution. Considera-

tions have been made for practical situations, such as avail-

ability of historical data and market research studies, indicating

procedures to follow while studying existing or new mills. Data

from a particular feed mill with characteristic conditions of

market and price policies is analysed. Results shew that order

sire distributions for feeds are definitely influenced by price

policies and customers' order frequency follow approximately e

Poisson distribution.

Some of the methods that can be used to get general functions

to predict future demand within reasonable risks are discussed.

It is specifically shown how to get the demand distribut ior. as a



marginal probability function, when the order size distribution

is approximated by polynomial expressions and the number of

orders follows a Poisson distribution.

The mathematical model of one of the major systems of

inventory control is derived including factors related to the

size of the bin that will hold the inventory. In this fashion

the best inventory policy and the parameters needed to size the

facility are simultaneously obtained. The model. is generalized

introducing a new cost: the cost of " running out of storage

space ", Factors involved in inventory control are defined

especially from the feed industry point of view and particular

discussion is devoted to steps to be followed to determine set-

up and out-of ~s tock costs in a feed mill.

This work shows the actual possibility of overcoming

empirical methods still being used in the feed industry when

sizing warehouses or setting inventory policies.


