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Game theory is often used to explain behavior. Such explanations often proceed by dem-
onstrating that the behavior in question is a Nash equilibrium. Agents are in Nash equi-
librium if each agent’s strategy maximizes her payoff given her opponents’ strategies.
Nash equilibriums are fundamentally static, but it is usually assumed that equilibriums
will be the outcome of a dynamic process of learning or evolution. This article demon-
strates that, even in the most simple setting, this need not be true. In two-strategy games
with just a single equilibrium, a family of imitative learning dynamics does not lead to
equilibrium.

1. Introduction. Nash equilibriums ðand Nash equilibrium refinements
such as evolutionary stabilityÞ are often relied on to explain behavior in
strategic interactions. Two agents are in Nash equilibrium if they are each
using a strategy that is a best response to the other’s strategy. In such a sit-
uation, neither player can gain by switching her strategy; given what her op-
ponent is doing, she’s doing the best she can do. A famous instance of a
scientific explanation that relies on the notion of Nash equilibrium is Fish-
er’s ð1930Þ explanation of the fact that in many species the sex ratio at re-
productive age is approximately 1:1 ðsee also Hamilton 1968; Sober 1983Þ.
Fisher noted that if a population is at an even sex ratio, then there is no re-
productive advantage to producing offspring in proportions that violate the
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ratio. This means that a 1:1 sex ratio is a Nash equilibrium. He also noted
that if a population deviates away from this ratio, then there will be a re-
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productive advantage for producing members of the scarcer sex. In mod-
ern terminology, this means roughly that a 1:1 sex ratio is not only a Nash
equilibrium but also an evolutionarily stable strategy. These equilibrium-
based observations are thought to have explained why approximately even
sex ratios are prevalent in nature. This style of explanation is prevalent
throughout all disciplines that use game theory. Explanations in microeco-
nomics, for instance, often begin and end by demonstrating that a behavior
is a Nash equilibrium.1

In order for Nash equilibriums to provide satisfying explanations of
behavior, however, there must be some underlying story as to why actors
choose to behave in such a way that their joint behaviors are in equilibrium.
A popular approach to this issue takes inspiration from theories of learning
and evolution. Instead of focusing on static equilibriums, the game is em-
bedded into a dynamical system engineered to capture the essence of differ-
ential reproduction or social learning. A growing body of mathematical re-
sults helps to link the behavior of these dynamical systems to the predictions
of static equilibrium concepts, such as Nash equilibriums. Awell-known col-
lectionof theorems, for instance, proves that in some types of games, standard
continuous-time evolutionary and learning dynamics are guaranteed to lead
to Nash equilibriums ðsee, e.g., Cressman 2003, theorem 2.7.4Þ.

But these theorems only cover somewhat special cases, and when a sys-
tem does not fit the theorems’ constraints, convergence to Nash equilibrium
is not guaranteed. For example, it is known that, in some games with four
strategies, the continuous-time replicator dynamic exhibits chaotic behav-
ior in which orbits converge to strange attractors ðArneodo, Coullet, and
Tresser 1980; Schnabl et al. 1991; Skyrms 1992Þ. An even more complex
form of behavior—Hamiltonian chaos—is seen in the replicator dynamic in
both four-dimensional rock-scissors-papergames ðSato,Akiyama, andFarmer
2002Þ and 52-dimensional zero-sum signaling games ðWagner 2012Þ. These
systems do not lead to Nash equilibrium play and therefore illustrate that the
dynamic approach to studying behavior in games does not unequivocally
vindicate a single-minded focus on static equilibrium concepts.

But how deep do these nonconvergence results go? In this article, I dem-
onstrate that they arise in the simplest possible case: ordinary two-strategy
games with a single equilibrium. Despite having an exceedingly simple state
space—the interval ½0; 1�—and just a single equilibrium, agents may not
converge to the equilibrium. A natural family of discrete-time imitation dy-
namics exhibits chaotic behavior in these simple games. This family, called
the discrete-time imitative logit dynamic, was first introduced by Cabrales

1. Any game theory textbook, such as Gibbons ð1992Þ, provides many such examples.
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and Sobel ð1992Þ, who noted that, in contrast to the discrete-time replica-
tor dynamic, the limit points of the discrete-time i-logit dynamic are rational-
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izable strategies.2 This dynamic is parameterized by a “myopic rationality”
term that influences the probability with which agents choose to imitate an-
other player with a higher payoff. For low values of this parameter, the dy-
namic resembles the not-so-rational replicator dynamic. For high values of
this parameter, the dynamic resembles the highly rational best-response dy-
namic.Thus, thediscrete-time i-logit familyallowsone tosystematicallystudy
the behavior of a range of boundedly rational players.

A derivation of this dynamic, along with a list of motivations for study-
ing its behavior, is presented in section 2. Its behavior in a game with a
single isolated interior evolutionarily stable strategy is illustrated in sec-
tion 3. The dynamic follows the period-doubling route to chaos as the my-
opic rationality parameter is varied from low to high. Thus, the route from
low rationality learning to highmyopic rationality involves a journey through
regimes of complicated limit cycles and chaotic attractors. Furthermore,
the dynamic also undergoes the period-doubling route to chaos as the pay-
offs of the game are varied. These results show that convergence to equilib-
riums cannot be guaranteed in even the most simple games, and one there-
fore perhaps ought to view the predictions of static equilibrium theory with
some skepticism. Without a robust model suggesting that actors do in fact
learn Nash equilibrium strategies, the claims of static equilibrium theory
may be irrelevant for explanations of strategic behavior.

2. The Discrete-Time Imitative Logit Dynamic. Suppose a large society
of agents are matched at random to play a two-person game, and let xi rep-
resent the frequency of agents using strategy i, so that ojxj 5 1. Sup-
pose also that each agent is equipped with an alarm clock. Each clock rings
with a rate R exponential distribution, and consequently the time between
rings of an agent’s clock is independent, and the ring times of different
agents’ clocks are independent of one another. When an agent’s clock rings,
that agent is offered an opportunity to revise her current choice of strategy.
The procedure that agents follow when updating their strategy choice is
called a revision protocol. These protocols are usually specified as condi-
tional switch rates, rij, which give the rate at which agents currently using
strategy i switch to strategy j. This rate can depend on the current popu-
lation state as well as the expected payoffs for each strategy type. The ex-
pected payoff to strategy j will be denoted pj.

2. A strategy is rationalizable if it is a best response to an action you might reasonably

expect your opponent to perform. All strategies that constitute Nash equilibriums are ra-
tionalizable, but not all rationalizable strategies constitute Nash equilibriums ðBernheim
1984; Pearce 1984Þ.
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The situation described above constitutes a stochastic game dynamic.
As time advances, agents update their strategies according to r when their
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ij

clocks ring. But, rather than investigating the sample paths of this stochas-
tic process, one can focus on the deterministic process that follows the ex-
pected motion of the stochastic dynamic. If the population is sufficiently
large, then this deterministic dynamic, called the mean dynamic, provides
a very good approximation of the underlying stochastic process. This is the
direction pursued by many authors, including Helbing ð1992Þ, Björnerstedt
and Weibull ð1996Þ, Benaïm and Weibull ð2003Þ, and Sandholm ð2010Þ.
A specification of both the game and the conditional switch rates is enough
to define a deterministic mean dynamic. This mean dynamic is given by the
expected incremental change of the stochastic process:

_xi 5 ðexpected inflowÞ2 ðexpected outflowÞ5 o
j

xjrji 2 xio
j

rij:

The most frequently studied game dynamics can be derived by some
salient revision protocols. For example, suppose agents revise by choosing
a player at random and then imitating that player’s strategy choice with
probability proportional to the difference between that player’s expected
payoff and her own expected payoff ðso long as this difference is positiveÞ.
This revision protocol can be written as the conditional switch rate rij 5 xj
½pj 2 pi�1 and has the standard continuous-time replicator dynamic as its
mean dynamic ðHelbing 1992Þ.

Here’s another salient revision protocol. Suppose that when an agent’s
clock rings she chooses an opponent at random. Say this opponent is using
strategy j. She then imitates that opponent with probability proportional to
some copying weight wðpjÞ. If she does not imitate this opponent, then she
draws another at random and repeats this procedure until imitation occurs.
This revision protocol has conditional switch rates:

rij 5
xjwðpjÞ
okxkwðpkÞ

:

Sandholm ð2010, chap. 5Þ describes this protocol in some detail. If the
copying weight wðpjÞ is simply equal to the payoff pj, then it yields May-
nard Smith’s adjusted replicator dynamic as its mean dynamic ðSandholm
2010, 155Þ. However, if the copying weight is exponential ði.e., wðpjÞ5
expðbpjÞÞ, then the resulting dynamic is the continuous-time imitative logit
ði-logitÞ dynamic ð158Þ:

_xi 5
xiexpðbpiÞ
okxkexpðbpkÞ

2 xi:
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Hofbauer and Weibull ð1996Þ note that this dynamic provides a general-
ization of both the best-response dynamic and the replicator dynamic. When
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b is large, the interior trajectories of the i-logit dynamic approximate those
of the best-response dynamic. However, when b→ 0 the trajectories of the
i-logit dynamic approximate those of the replicator dynamic, although with
a slower speed of adjustment ðsee Hofbauer and Weibull 1996, 565Þ.3 Thus,
b can be thought of as a myopic rationality parameter. As b is increased,
agents become more likely to select best responses when they revise their
strategies.

Now, instead of imagining that agents revise strategies when their per-
sonal alarm clocks ring, imagine that agents all simultaneously adjust after
a certain length of play. As before, they adjust according to some condi-
tional switching rate that depends on the current population state and pay-
offs. But now, rather than the mean dynamic being a continuous differen-
tial equation, the mean dynamic is a discrete dynamical system. Although it
is now discrete, the mean dynamic still tracks the expected movement of
the population. That is, the change in xi is given by the expected difference
between the number of agents switching to i and the number of agents switch-
ing away from i. In other words,

Dxi 5 ðexpected inflowÞ2 ðexpected outflowÞ5 o
j

xjrji 2 xio
j

rij:

This formulation is subject to the constraint that the population frequencies
must remain in the unit simplex.

Suppose, like before, that the conditional switch rates are exponential
functions of payoffs. Then the resulting discrete-time dynamic is the discrete
version of the i-logit dynamic:

x0i 5 xi 1 Dxi

5 xi 1 o
j

xjxiexpðbpiÞ
okxkexpðbpkÞ

2 xio
j

xj expðbpjÞ
okxkexpðbpkÞ

5
xiexpðbpiÞ
okxkexpðbpkÞ

:

Just like in the continuous case, the b here can be thought of as a repre-
sentation of the agents’ degree of myopic rationality. When b is large, the
discrete-time i-logit dynamic approximates the discrete-time myopic best-
response dynamic that has the entire population simultaneously switch to
the best reply to the current population state. However, when b is small, ad-
justment proceeds more slowly, and the discrete-time i-logit dynamic re-

3. Of course, all states are stationary when b5 0.
This content downloaded from 129.130.37.84 on Mon, 17 Feb 2014 16:12:58 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


sembles the discrete-time replicator dynamic. These relationships will be il-
lustrated for a specific game in the next section. This provides a powerful
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motivation for studying the discrete-time i-logit dynamic: it is a discrete dy-
namic that spans the range between low and highmyopic rationality. This dy-
namic allows one to systematically study the ramifications that slight changes
in myopic rationality have on the behavior of agents playing a game.

Here is a second motivation: the discrete-time i-logit dynamic is the pro-
totype of a dynamic with limit points that are guaranteed to be rationalizable
strategies ðCabrales and Sobel 1992Þ. This is not true of, for example, the
discrete-time replicator dynamic. The discrete-time replicator dynamic does
not eliminate strictly dominated strategies ðDekel and Scotchmer 1992Þ, and
one might think that these clearly inferior strategies ought to be driven to
extinction by any plausible evolutionary or learning dynamic. Aggregate log
monotonic dynamics are the only discrete-time dynamics that do eliminate
strictly dominated strategies, and within this class of dynamics the discrete-
time i-logit dynamic has special salience because it is the aggregate log mono-
tonic dynamic that corresponds to the continuous-time replicator dynamic
ðCabrales and Sobel 1992, 415Þ.

The very tight connections between the continuous-time and discrete-
time i-logit dynamics constitute a thirdmotivation. These two dynamics arise
from the same revision protocol, and just as Maynard Smith ð1982Þ derived
the continuous-time adjusted replicator dynamic from the discrete-time rep-
licator dynamic, it is possible to derive the continuous-time i-logit dynamic
from the discrete-time i-logit dynamic. The continuous dynamic is obtained
by taking the continuous rate of change _xi to be equal to the aggregate change
Dxi of the discrete dynamic. The continuous-time dynamic may be preferred
because the assumption of simultaneous strategy revision is unrealistic for
some applications. But there are some situations in which strategy revision
does occur in discrete time intervals,4 and thus the discrete-time dynamic is
of independent interest.

So there are compelling reasons to study the discrete-time i-logit dy-
namic. It is the mean dynamic that results from the exponential imitation
described above. It generalizes commonly investigated low and high myo-
pically rational discrete-time dynamics. And it eliminates strictly dominated
strategies, which is a perhaps the first property one might demand from a
system intended to model somewhat intelligent learning. In the rest of this
article, I will demonstrate that this simple dynamic leads to complex non-
convergent behavior in a class of very simple two-strategy games.

4. Imagine a rock-paper-scissors tournament in which players are matched in pairs and
then all pairs play the game simultaneously. Or maybe the game’s players are high school

students and the strategies are choices of clothing worn to school. In this case, all players
simultaneously revise their choices in the morning before school, and their choices are
locked-in during the school day.
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3. One-Dimensional Deterministic Chaos. For two-strategy games, the
discrete-time i-logit dynamic is given by the one-dimensional map

EXPLANATORY RELEVANCE OF NASH EQUILIBRIUM 789
x0 5
xexpðbp1Þ

xexp ðbp1Þ1 ð12 xÞexpðbp2Þ ;

where x is the proportion of agents playing strategy 1 and p1 and p2 are the
expected payoffs of playing strategies 1 and 2 when matched with an oppo-
nent drawn at random from the population. Imagine that players are ran-
domly matched to play a game with the following payoff matrix:

1 2
a 1

� �

The expected payoff for strategy 1, p1, is 22 x. The expected payoff for
strategy 2, p2, is 11 xða2 1Þ. These payoffs are equal when x5 1=a, and
thus this game’s sole Nash equilibrium occurs at x5 1=a. Moreover, since
payoffs are identical, the state x5 1=a is stationary under the discrete-time
i-logit dynamic.

Consider fixing a5 3. Figure 1 shows the discrete-time i-logit dynamic
with both b5 :05 and b5 1 as well as the discrete-time replicator dynamic
and the discrete-time best-response dynamic. It is easy to see that for low
b the discrete-time i-logit dynamic has behavior similar to that of the rep-
Figure 1. Discrete-time i-logit dynamic with b5 1 and b5 30 compared with the
discrete-time replicator dynamic and the discrete-time best-response dynamic.
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licator dynamic, but for high b the discrete-time i-logit dynamic has be-
havior similar to that of the best-response dynamic. This illustrates the fact
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that the parameterized i-logit family exhibits behaviors encompassing those
seen in the low-rationality replicator dynamic and the highly rational myo-
pic best-response dynamic.

Figure 2 shows cobweb diagrams illustrating the long-term behavior
of the discrete-time i-logit dynamic when a5 3 for four different values
of b. All four diagrams show the evolution of the initial condition x5 0:1.
When b5 1, the dynamic converges to the Nash equilibrium. This long-
term behavior is identical to that of the discrete-time replicator dynamic.
When b5 15, the dynamic converges to a cycle ðof period 3Þ that has the
population alternating between the majority playing each of the two strate-
gies. This long-term behavior approximates that of the best-response dy-
namic. But for intermediate values of b, the discrete-time i-logic dynamic
exhibits more complicated behaviors. For example, when b5 3:5, the dy-
namic converges to a period 4 cycle, and when b5 5, it does not appear
to converge to any sort of periodic behavior. Instead, the dynamic exhibits
deterministic chaos.

This chaos can be systematically investigated with orbit diagrams. These
diagrams show the states that occur in the long run as the map is iterated.
Figure 3 shows an orbit diagram for this system as b increases from 1 to 10.
This figure illustrates the period-doubling route to chaos typical of one-
dimensional maps. It also shows the Lyapunov exponents for each value of
b in this range. Positive Lyapunov exponents indicate exponential diver-
gence of nearby trajectories and are often considered the hallmark of cha-
otic dynamics.5 For a one-dimensional map f, the Lyapunov exponent l for
an orbit starting at x0 is

l5 lim
n→`

1

n o
n21

i50

ln j f 0ðxiÞj
� �

:

These exponents can be numerically computed using a scheme described in
Strogatz ð1994, 368–69Þ. As figure 3 shows, the system has positive Lya-
punov exponents for some values of b, and thus the system does indeed
exhibit deterministic chaos.

Figure 4 also shows an orbit diagram and Lyapunov exponents, but now
with the payoff parameter a being varied. This parameter is the payoff that
an agent using strategy 2 receives when she meets an agent using strategy 1.
5. Strogatz ð1994, 323Þ defines chaos as “aperiodic long-term behavior in a determin-
istic system that exhibits sensitive dependence on initial conditions.” A system shows
sensitive dependence on initial conditions if nearby orbits diverge exponentially fast.
Such orbits have positive Lyapunov exponents.
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The game’s Nash equilibrium is located at x5 1=a, so as this parameter is
increased, the equilibrium moves toward x5 0. When a is less than ap-
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proximately 1.8, the dynamic converges to the Nash equilibrium. But if a
is above this value, the dynamic does not lead to equilibrium play. It in-
stead leads to either a periodic orbit or chaos.

4. Conclusion. The above is an example of a very simple game and a very
simple process of imitative learning that yields a system that does not con-
verge to the game’s sole equilibrium. This illustrates that a single-minded
focus on static equilibrium concepts is perhaps misguided. Even in a game
with just two strategies and just a single equilibrium, players may not con-
verge to that equilibrium. And not only may players fail to converge, but
the sequence of play may be chaotic and thus appear to be random.

It is sometimes claimed that nonconvergent dynamics are not realis-
tic and are mere artifacts of unsophisticated learning rules. Real agents, the
argument goes, are sophisticated enough to recognize and exploit out-of-
equilibrium behavior, and this exploitation will drive the system to equi-
librium. In their influential textbook on game-theoretic learning dynamics,
Fudenberg and Levine sum up this sentiment as follows: “Our argument is
that . . . when learning models fail to converge, the behavior of the mod-
el’s individuals is typically quite naive; for example, the players may ignore
the fact that the model is locked in to a persistent cycle. We suspect that if
the cycles persist long enough, the agents will eventually use more sophis-
ticated inference rules that detect them; for this reason we are not convinced
that models of cycles in learning are useful descriptions of actual behavior”
ð1998, 3Þ.

Much can be said about this argument. For one, the nonconvergent play
exhibited by the system described above is not always cyclic; inside the
chaotic regimes the behavior is aperiodic. Furthermore, the system’s sensi-
tivity on initial conditions implies that it is impossible to make precise pre-
dictions about the system’s future state. Any slight error in measurement of
the current state is magnified exponentially, and this makes exploitation of
future behavior a tricky business.

But perhaps most important, it is not a lack of sophistication or ratio-
nality that leads to nonconvergence. When the myopic rationality parameter
b is low, the players are guaranteed to converge to the equilibrium, just like
in the low-rationality replicator dynamic.Nonconvergence only occurswhen
b is increased, and as b grows players become more myopically rational.
The quick speed at which rational agents adopt a best response causes
the population to overshoot the equilibrium, so to speak. This overshooting
is what creates periodic and chaotic attractors. If players are less likely to
revise to a best response, then the population does not overshoot the equi-
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librium, and players converge to the equilibrium. Increasing b does not en-
dow the agents with any additional pattern matching or inferential abilities,

EXPLANATORY RELEVANCE OF NASH EQUILIBRIUM 795
but myopic rationality is one form of sophistication. And, contrary to what
might be expected, increased rationality does not result in convergence to
equilibriums. Instead, increased myopic rationality is the cause of the cha-
otic behavior, and the persistent out-of-equilibrium play, seen above.
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